WO2005089768A1 - Intranasal benzodiazepine compositions - Google Patents

Intranasal benzodiazepine compositions Download PDF

Info

Publication number
WO2005089768A1
WO2005089768A1 PCT/US2005/008090 US2005008090W WO2005089768A1 WO 2005089768 A1 WO2005089768 A1 WO 2005089768A1 US 2005008090 W US2005008090 W US 2005008090W WO 2005089768 A1 WO2005089768 A1 WO 2005089768A1
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
midazolam
composition according
dose
intranasal administration
Prior art date
Application number
PCT/US2005/008090
Other languages
French (fr)
Inventor
Daniel P. Wermeling
Original Assignee
University Of Kentucky Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Kentucky Research Foundation filed Critical University Of Kentucky Research Foundation
Priority to MXPA06010477A priority Critical patent/MXPA06010477A/en
Priority to JP2007503975A priority patent/JP2007529525A/en
Priority to EP05725322A priority patent/EP1727549A4/en
Priority to CA002560024A priority patent/CA2560024A1/en
Priority to AU2005222608A priority patent/AU2005222608A1/en
Publication of WO2005089768A1 publication Critical patent/WO2005089768A1/en
Priority to IL178024A priority patent/IL178024A0/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0043Nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P23/00Anaesthetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia

Definitions

  • the subjects were in good health and had no clinically significant previous nasal surgery or polyps or other physical abnormalities of the nose, cardiovascular, gastrointestinal, renal, hepatic, pulmonary or hematological disease.
  • Subjects who had a history of cerebral trauma with sequelae, hypotension, heart failure, cardiac conduction defect, chronic respiratory disease, bleeding tendency, glaucoma, and a formal diagnosis of sleep apnea or a history of alcohol or substance abuse were excluded.
  • Subjects abstained from alcohol and caffeine containing beverages 48 hours before the dosing period and during the study.
  • Subjects were asked to abstain from prescription and non- prescription drugs that might interact with MZ metabolism or nasal physiology from the date of screening until the end of the study.
  • IV and IM solutions were prepared for administration in the University of Kentucky Hospital Investigational Drug Service Pharmacy using commercially available MZ (Versed® Injection by Hoffinan-LaRoche).
  • MZ 5 mL of
  • Example 1 Twelve subjects completed the study without clinically significant or serious adverse events. There were no clinically relevant changes in physical examination, nasal evaluations, or laboratory tests. The principal investigator's review of the data indicated that, in general, doses of the study drug were well tolerated and events were mild to moderate and temporary (2-90 minutes). Two of twelve subjects noted mild dizziness that lasted 35 and 50 minutes. Three of twelve subjects noted bluned vision that lasted 5- 90 minutes. No subjects experienced respiratory depression, apnea, laryngospasm, bronchospasm or wheezing. The mean plasma concentration versus time curve profiles over the first 4 hours and the entire 12 hours for the three doses are shown in Figures 1 and 2. Figure 1 shows that absorption of MZ following IN administration was very rapid.

Abstract

A pharmaceutical composition for intranasal administration to a mammal. The pharmaceutical composition comprises an effective amount of a benzodiazepine or pharmaceutically acceptable salt thereof; and a nasal carrier. In some embodiments, the pharmaceutical composition when administered intranasally produces a rapid physiological response. Pharmaceutical compositions may also include at least one or more sweeteners, flavoring agents, or masking agents or combinations thereof.

Description

INTRANASAL BENZODIAZEPINE COMPOSITIONS This application is a continuation-in-part of U.S. application Serial No. 10/418,260 filed April 15, 2003, which is a continuation application of U.S. application Serial No. 09/790,199 filed February 20, 2001, now U.S. Patent No. 6,610,271. The entire disclosure of these applications is herein incorporated by reference.
BACKGROUND Benzodiazepines have been used to prevent or treat a wide variety of clinical conditions based on their anxiolytic, hypnotic, anticonvulsant, and antispastic properties. Some benzodiazepines have also demonstrated efficacy for their antipanic, antidepressant, amnestic, and anesthetic effects. Chlordiazepoxide and diazepam, the earliest benzodiazepines, have the classic 1,4-diazepine ring structure and also a 5-aryl substituent ring fused to a benzene ring. A number of modifications to the 1,4-diazepine structure led to compounds such as midazolam, which is a short-acting benzodiazepine that has an imidazo ring fused to the diazepine ring, and alprazolam and triazolam, which have a triazolo ring fused to the diazepine ring. There are other compounds that do not have the classic benzodiazepine structure, yet still have the anxiolytic or sedative effects associated with some of the benzodiazepines. These other compounds include for example, zopiclone, zolpidem, abecarnil, and bretazenil. The therapeutic effects of benzodiazepines and other compounds, in part, result from enhancing the actions of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) at its receptor. Benzodiazepines work at the GABA receptor and cause GABA to produce a more rapid pulsatile opening of the chloride channel causing an influx of chloride into the cell. Benzodiazepines have different onset and duration of action, making them useful in treating a variety of different clinical conditions. Benzodiazepines with short onset and duration of action maybe useful when an immediate effect is needed (e.g., for outpatient surgical and diagnostic procedures), although longer duration of action may be desired (e.g., in treatment of sleep-maintenance disturbances or for seizure control). Some benzodiazepines have been used to treat anxiety, schizophrenia, phobias, sleep and depressive disorders. Used alone or in combination with neuroleptics, benzodiazepines have proved valuable for management of various psychiatric emergencies involving agitation or hostility. Intravenous diazepam is frequently a life saving drug in various convulsive emergencies, such as status epilepticus or tetanus spasms. Benzodiazepines frequently bring substantial relief of spasticity and involuntary movement disorders, such as, choreas, myoclonus, and some dyskinesias and dystonias associated with use of neuroleptic medications. Benzodiazepines are also effective in managing acute withdrawal from alcohol. When administered prior to surgical procedures, benzodiazepines reduce anxiety, provide sedation, facilitate anesthetic induction, and produce amnesia for the events sunounding induction. In the treatment of cancer, lorazepam and other benzodiazepines can help to control nausea and vomiting associated with chemotherapy. Although benzodiazepines can be used to treat a wide variety of conditions, a patient's non-compliance or failure to take medication as prescribed, has been linked to inadequate treatment of many conditions. Some benzodiazepines are available by injections (e.g., intravenous (IV), intramuscular (IM) or subcutaneous injection). The intravenous route is normally regarded as one of the most in-convenient routes to administer medication. Intravenous administration may cause non-compliance, because not only do patients fear getting the injection, but unpleasant experiences such as pain, irritation and infection resulting at the injection site may also lead to non-compliance. The intranasal route is currently receiving special interest for administering benzodiazepines. When medication is administered via the intranasal route, the medication is applied to the nasal mucosa where it is absorbed. The extensive network of blood capillaries under the nasal mucosa is particularly suited to provide rapid and effective systemic absorption of drugs. The intranasal route of administration should achieve similar dose to plasma concentration (bioavailability) and efficacy to that of the intravenous route. Intranasal administration of medication provides numerous advantages over the intravenous route. The principal advantages of intranasal route are non-invasive delivery, rapid drug absorption, and convenience. The intravenous route, unlike the intranasal route, requires sterilization of hypodermic syringes and, in the institutional setting, leads to concerns among medical personnel about the risk of contracting disease if they are accidentally stuck by a contaminated needle. Strict requirements for the safe disposal of needles and syringes have also been imposed. , In contrast, intranasal administration requires little time on the part of the patient and attending medical personnel, and is far less burdensome on the institution than injectable routes. There is no significant risk of infection of the patient or medical personnel in the institutional setting when dealing with the intranasal delivery of medication. A second important advantage of intranasal administration over intravenous is patient acceptance of the intranasal delivery route. In some cases, the injections cause burning edema, swelling, turgidity, hardness and soreness. In contrast, intranasal administration is perceived as non-invasive, is not accompanied by pain, has no after- effects and produces a prompt means of treating a wide variety of medical conditions. This is of particular advantage when the patient is a child. Many, if not most, patients experience anxiety and exhibit symptoms of stress when faced with hypodermic injections via the IM or IV routes. Further, most people have some familiarity with nasal sprays in the form of over-the-counter decongestants for alleviating the symptoms of colds and allergies that they or a family member have used routinely. Another important consideration is that the patient can self-administer the prescribed dosage(s) of nasal spray without the need for trained medical personnel. There are different intranasal benzodiazepine compositions known in the pharmaceutical arts. However, some intranasal benzodiazepine compositions have poor absorption or delayed time to peak plasma concentration, which is not appropriate, for prevention or treatment of some clinical conditions. Other prior art benzodiazepine formulations do not enhance patient compliance. For example, some intranasal midazolam formulations are produced at a pH that often causes nasal irritation and burning. Based on the above, there is a need for intranasal benzodiazepine compositions with improved properties, such as for example, rapid absorption and time to peak concentration. There is also a need for intranasal compositions that improve patient compliance.
SUMMARY In various embodiments, pharmaceutical compositions for intranasal administration to a mammal are provided. The pharmaceutical composition comprises an effective amount of a benzodiazepine or pharmaceutically acceptable salt thereof and a nasal carrier. In various embodiments, the pharmaceutical composition, when administered intranasally, produce a rapid physiological response. In various embodiments, a pharmaceutical composition is provided for intranasal administration comprising: an effective amount of a benzodiazepine or pharmaceutically acceptable salt thereof; a nasal carrier; and at least one or more sweeteners, flavoring agents, or masking agents or combinations thereof. In various embodiments, a pharmaceutical composition is provided for intranasal administration to a mammal comprising: an effective amount of midazolam or pharmaceutically acceptable salt thereof, polyethylene glycol, and propylene glycol. In various embodiments, a method of treating a mammal in need of rapid sedation, anxiolysis, amnesia, or induction of anesthesia is provided comprising intranasally administering to the mammal an effective amount of a pharmaceutical composition comprising midazolam or pharmaceutically acceptable salt thereof; and a nasal carrier; wherein the rapid sedation, anxiolysis, amnesia, or induction of anesthesia occurs within 5 minutes after intranasal administration. In various embodiments, a method of treating a mammal in need of rapid sedation, anxiolysis, amnesia, or induction of anesthesia is provided comprising intranasally administering to the mammal an effective amount of a pharmaceutical composition comprising midazolam or pharmaceutically acceptable salt thereof; a nasal carrier; and at least one or more sweeteners, flavoring agents, or masking agents or combinations thereof. In various embodiments, a method of making a pharmaceutical composition for intranasal administration is provided comprising adding at least one or more sweeteners, flavoring agents, or masking agents or combinations thereof to a pharmaceutical composition comprising midazolam or pharmaceutically acceptable salt thereof, and a nasal carrier so as to make the pharmaceutical composition.
For a better understanding of various embodiments, reference is made to the following description taken in conjunction with the examples, the scope of which is set forth in the appended claims.
BRIEF DESCRIPTION OF THE FIGURES Preferred embodiments have been chosen for purposes of illustration and description, but are not intended in any way to restrict the scope of the claims. The prefereed embodiments are shown in the accompanying figures, wherein: Figure 1 is a graphic representation of mean blood plasma concentration (n=12) of midazolam in plasma versus time for three different midazolam compositions over a four- hour period.
Figure 2 is a graphic representation of mean blood plasma concentration (n=12) of midazolam in plasma versus time for three different midazolam compositions over a twelve-hour period.
Figure 3 is a graphic representation of mean blood plasma concentration (n=17) of midazolam in plasma versus time for three different midazolam compositions over a four- hour period.
Figure 4 is a graphic representation of mean blood plasma concentration (n=17) of midazolam in plasma versus time for three different midazolam compositions over a twelve-hour period.
DETAILED DESCRIPTION Various embodimesnts will now be described. These embodiments are presented to aid in an understanding of the claims and are not intended to, and should not be construed to, limit the claims in any way. All alternatives, modifications and equivalents that may become obvious to those of ordinary skill on reading the disclosure are included within the spirit and scope of the claims. The pharmaceutical composition comprise benzodiazepine or other compoxmds. Benzodiazepines, as used herein, include but are not limited to alprazolam, brotizolam, chlordiazepoxide, clobazepam, clonazepam, clorazepate, demoxepam, diazepam, estazolam, flurazepam, quazepam, halazepam, lorazepam, midazolam, nitrazepam, nordazapam, oxazepam, prazepam, quazepam, temazepam, triazolam, zolpidem, zaleplon or combinations thereof. Other compounds that have anxiolytic or sedative effects of some benzodiazepines include, for example, zopiclone, zolpidem, abecarnil, and bretazenil. In various embodiments, the benzodiazepine may be in free form or in pharmaceutically acceptable salt or complex form. Some examples of pharmaceutically acceptable salts of benzod azepines include those salt-forming acids and bases that do not substantially increase the toxicity of the compound. Some examples of suitable salts include salts of alkali metals such as magnesium, potassium and ammonium. Salts of mineral acids such as hydrochloric, hydriodic, hydrobromic, phosphoric, metaphosphoric, nitric and sulfuric acids, as well as salts of organic acids such as tartaric, acetic, citric, malic, benzoic, glycollic, gluconic, gulonic, succinic, arylsulfonic, e.g. p-toluenesulfonic acids, and the like. In various embodiments, pharmaceutical compositions are provided for intranasal administration comprising midazolam or pharmaceutically acceptable salts thereof. In various embodiments, the pharmaceutical composition comprises midazolam hydrochloride. Midazolam- includes 8-chloro-6-(2-fluorophenyl)-l -methyl- 4H-Imidazo- [l,5-a][l,4]benzodiazepine, [CAS 59467-70-8]. The molecular weight of midazolam is 325.8. Midazolam has the molecular formula: Cι83ClFN3 and exhibits the following general structure:
Figure imgf000009_0001
In various embodiments, the pharmaceutical compositions comprise a benzodiazepine or pharmaceutically acceptable salt thereof and a nasal carrier. As used herein, "nasal carrier" includes a solution, emulsion, suspension, or powder designed for delivery of the benzodiazepine or other compound to the nasal mucosa. The nasal carrier may include a diluent suitable for application to the nasal mucosa. Suitable diluents include aqueous or non-aqueous diluents or combinations thereof. Examples of aqueous diluents include, but are not limited to, saline, water, dextrose or combinations thereof. Non-aqueous diluents include, but are not limited to, alcohols, particularly polyhydroxy alcohols such as propylene glycol, polyethylene glycol, glycerol, and vegetable or mineral oils or combinations thereof. These aqueous and/or non-aqueous diluents can be added in various concentrations and combinations to form solutions, suspensions, oil-in- water emulsions or water-in-oil emulsions. In various embodiments, the nasal carrier comprises polyethylene glycol and propylene glycol. In various embodiments; the polyethylene glycol constitutes from about 15% to about 25% by volume and the propylene glycol constitutes from about 75% to about 85%o by volume of the composition. In various embodiments, the polyethylene glycol has an average molecular weight of about 400. In various embodiments, the ratio of polyethylene glycol to propylene glycol is about one to about four. The nasal carrier, in some embodiments, may also contain excipients such as antioxidants, chemical preservatives, buffering agents, surfactants and/or agents that increase viscosity. Antioxidants are substances that prevent oxidation of the formulations. Suitable antioxidants for use in the pharmaceutical composition, if one is employed, includes but is not limited to, butylated hydroxytohiene, butylated hydroxyanisole, potassium metabisulfite, and the like. In various embodiments, the composition contains a preservative that is chosen in quantities that preserve the composition, but preferably does not cause irritation to the nasal mucosa. Suitable preservatives for use in some embodiments include, but is not limited to, benzalkonium chloride, methyl, ethyl, propyl or butylparaben, benzyl alcohol, phenylethyl alcohol, benzethonium, or combination thereof. Typically, the preservative is added to the compositions in quantities of from about 0.01% to about 0.5% by weight. In some embodiments, the formulation is preservative-free. As used herein, preservative-free includes compositions that do not contain any preservative. Thus, the composition does not contain, for example, benzalkonium chloride, methyl, ethyl, propyl or butylparaben, benzyl alcohol, phenylethyl alcohol, or benzethonium. If a buffering agent is employed in the composition, it is chosen in quantities that preferably do not irritate the nasal mucosa. Buffering agents include agents that reduce pH changes. Some buffering agents that may be used in the pharmaceutical composition include, but are not limited to, salts of citrate, acetate, or phosphate, for example, sodium citrate, sodium acetate, sodium phosphate, and/or combinations thereof. Typically, the buffer is added to the compositions in quantities of from about 0.01% to about 3%> by weight. When one or more surfactants are employed, the amount present in the compositions will vary depending on the particular surfactant chosen, the particular mode of administration (e.g. drop or spray) and the effect desired. In general, however, the amount present will be in the order of from about 0.1 mg l to about 10 mg/ l, in various embodiments, about 0.5 mg/ml to 5 mg/ml and, in various embodiments, about 1 mg/ml is used. In various embodiments, the pharmaceutical composition may include one or more agents that increase viscosity, which are chosen in quantities that preferably do not irritate the nasal mucosa and increase nasal retention time. Some agents that increase viscosity include, but are not limited to, methylcellulose, carboxymethylcellulose sodium, ethylcellulose, carrageenan, carbopol, and/or combinations thereof, hi various embodiments, an agent used to increase viscosity and increase nasal retention time is methylcellulose or carbopol. Typically, the agent that increases viscosity may be added to the compositions in quantities of from about 0.1% to about 10% by weight. To reduce the bitter taste of the intranasal composition and/or enhance patient compliance, in various embodiments, one or more sweeteners or flavoring agents or masking agents are employed. The sweetener or flavoring agent or masking agent includes any agent that sweetens or provides flavor to the pharmaceutical composition: The sweetener or flavoring agent or masking agent will mask the bitter or bad taste that may occur if the pharmaceutical composition drips back into the mouth after intranasal administration. By addition of a sweetener or flavoring agent or masking agent to the intranasal composition, any barrier that a patient may have to taking the intranasal composition because of unpleasant taste is reduced. By adding a sweetener, flavoring agent or masking agent to the intranasal pharmaceutical composition, patient compliance is enhanced or improved. As used herein, one or more sweeteners or flavoring agents or masking agents include, but are not limited to, acacia syrup, anethole, anise oil, aromatic elixir, benzaldehyde, benzaldehyde elixir, cyclodextrins, compound, caraway, caraway oil, cardamom oil, cardamom seed, cardamom spirit, compound, cardamom tincture, compound, cherry juice, cherry syrup, cinnamon, cinnamon oil, cinnamon water, citric acid, citric acid syrup, clove oil, cocoa, cocoa syrup, coriander oil, dextrose, eriodictyon, eriodictyon fluidextract, eriodictyon syrup, aromatic, ethylacetate, ethyl vanillin, fennel oil, ginger, ginger fluidextract, ginger oleoresin, dextrose, glucose, sugar, maltodextrin, glycerin, glycyrrhiza, glycyrihiza elixir, glycyrrhiza extract, glycyrrhiza extract pure, glycyrrhiza fluidextract, glycyrrhiza syrup, honey, iso-alcoholic elixir, lavender oil, lemon oil, lemon tincture, mannitol, methyl salicylate, nutmeg oil, orange bitter, elixir, orange bitter, oil, orange flower oil, orange flower water, orange oil, orange peel, bitter, orange peel sweet, tincture, orange spirit, compound, orange syrup, peppermint, peppermint oil, peppermint spirit, peppermint water, phenylethyl alcohol, raspberry juice, raspberry syrup, rosemary oil, rose oil, rose water, rose water, stronger, saccharin, saccharin calcium, saccharin sodium, sarsaparilla syrup, sarsaparilla compound, sorbitol solution, spearmint, spearmint oil, sucrose, sucralose, syrup, thyme oil, tolu balsam, tolu balsam syrup, vanilla, vanilla tincture, vanillin, or wild cherry syrup, or combinations thereof.. In various embodiments, the sweetener is saccharin, sodium saccharin, xylitol, mannitol, glycerin, sorbitol, sucralose, maltodextrin, sucrose, aspartame, acesulfame potassium, dextrose, glycosides, maltose, sweet orange oil, dextrose, glucose, or honey or combinations thereof. Some flavoring agents to use in various embodiments include, but are not limited to, glycerin, wintergreen oil, peppermint oil, peppermint water, peppermint spirit, menthol, or syrup, or combinations thereof. In various embodiments, the masking agents do not make contact with the taste buds. In various embodiments, the masking agent includes, but is not limited to, cyclodextrins, cyclodextrins emulsions, cyclodextrins particles, or cyclodextrin complexes, or combinations thereof. To reduce burning, if it occurs, the composition may contain an anesthetic agent. Some anesthetic agents include, but are not limited to, lidocaine, prilocaine, procaine, benzocaine tetracaine, chloroprocaine, or pharmaceutically acceptable salts thereof or combinations thereof. The pharmaceutical compositions, in different embodiments, may also include additional ingredients, such as pharmaceutically acceptable surfactants, co-solvents, adhesives, agents to adjust the pH and osmolarity. The pharmaceutical compositions are not limited to any particular pH. However, generally for nasal administration a mildly acid pH will be preferced. The pH ranges from about 3 to 6 in some embodiments, in other embodiments, pH ranges are from about 3 to about 5, and in other embodiments pH ranges are from about 4 to about 5. If the adjustment of the pH is needed, it can be achieved by the addition of an appropriate acid, such as hydrochloric acid, or base, such as for example, sodium hydroxide. The pharmaceutical composition in some embodiments can be made, for example, by mixing the benzodiazepine with the nasal carrier and/or a sweetener, flavoring agent, or masking agent or combinations thereof at, for example, room temperature under aseptic conditions to form a mixture. In other embodiments, the mixture is filtered, for example, by a 0.22 micron filter. It will be understood by those of ordinary skill in the art that the order of mixing is not critical, and various embodiments include without limitation mixing of the composition in any order. In various embodiments, the pharmaceutical composition is a sterile solution or suspension. Pharmaceutical compositions can be administered intranasally by nasal spray, drop, solution, suspension, gel, and the like. Intranasal administration is an art- recognized term and includes, but is not limited to, administration o_f the composition into the nasal cavity. When the pharmaceutical composition is a liquid, volumes o f the liquid that may be absorbed through the nasal mucosa include, for example, from ab out 0.025ml to about 2ml or from about 0.25ml to 1ml, or from about 0.05ml to about 15ml in an adult and smaller volumes for children. However, the pharmaceutical compositions are not limited to any one particular volume. Devices for intranasal delivery are known in the art. Some devices suitable for use with the pharmaceutical compositions are available from, for example, Pfeiffer of America of Princeton, New Jersey and Valois of America, Inc. of Greenwich, Connecticut. These devices are prefened because they have the capability of consistently delivering the pharmaceutical composition. These devices are easily operable by the patient, leave virtually no benzodiazepine remaining in the device after use and can thereafter be discarded without concern that others may abuse the benzodiazepine or other controlled substance. In various embodiments, the intranasal delivery device may b« modified, for example, by increasing the size of the discharge orifice in the nose pi«ce of the applicator to about 0.07 mm for non-aqueous compositions that comprise, for example, polyethylene glycol and/or propylene glycol, in order to accommodate higher viscosity compositions. For aqueous compositions, the diameter can be, for example, from about 0.05 mm in diameter. The intranasal delivery device may also contain a swirl chamber. The applicatpr components may also be sterilized by methods well known in the art. The intranasal delivery device may be filled with single or mαltidose amounts of benzodiazepines. In various embodiments, the device is filled with one single dose of benzodiazepine. In some embodiments, the container holding the pharmaceutical composition and its sealing means are sterilizable, in some embodiments, at least parts of the device that are in contact with the pharmaceutical composition is constructed and assembled in a configuration that can be sterilized. Devices with one or more unit- dose(s) can be sterilized either before or after packaging, employing methods and technology that are well known in the art. Individual devices can be packaged, sterilized and shipped; alternatively, entire shipping and storage packages can be sterilized at once, and the devices removed individually for dispensing, without affecting the sterility of the remaining units. The amount of benzodiazepine or other compound that can be intranasally administered in accordance with the composition and methods will depend on the particular benzodiazepine chosen, the condition to be treated, the desired frequency of administration and the effect desired. Some medical or veterinary symptoms, syndromes, conditions or diseases that benzodiazepines or other compounds are useful in preventing or treating include, but are not limited to, anxiety, panic attacks, schizophrenia, phobias, sleep disorders (e.g. insomnia) and depressive disorders, agitation, hostility, epilepsy, convulsion, spasticity, involuntary movements, or alcohol withdrawal or combinations thereof. Benzodiazepines or other compounds may be used as adjuncts in medical and dental procedures, such as for example, reducing anxiety before surgical anesthesia, providing sedation, facilitating anesthesia induction, producing amnesia, or to control nausea and vomiting. In various embodiments, the pharmaceutical composition comprises midazolam and is administered to a mammal in need of rapid sedation, anxiolysis, amnesia, or anesthesia induction. As used herein, an effective amount of benzodiazepine or other compound includes that amount effective to achieve the relief or palliation of symptoms, condition and/or diseases that need benzodiazepine therapy. Maximal dosage of the pharmaceutical composition for a mammal is the highest dosage that elicits the desirable response, which does not cause undesirable or intolerable side effects. The minimal dose of the benzodiazepine is the lowest dose that achieves the desired result. In any event, the practitioner is guided by skill and knowledge in the field, and the present invention includes without limitation dosages that are effective to achieve the desired effect in the mammal. Doses of benzodiazepines suitable for intranasal administration, include but are not limited to, from about 0. lmg to about 30mg. For example, doses of midazolam HCL for intranasal administration include, but are not limited to, from about O.lmg to about 20 mg. hi various embodiments, it has been surprisingly discovered that pharmaceutical compositions comprising midazolam, when intranasally administered, have rapid absorption and time to peak (Tmax) leading to rapid onset than midazolam administered by the IV route. For example, the Tmax for intranasally administered midazolam was in some cases about 5 minutes, while the Tmaχ for midazolam administered IV was about 15 minutes. In various embodiments, the pharmaceutical composition comprising midazolam achieves a maximum plasma concentration (Cmax) of about 40ngmL from a 2.5mg dose or about 80ng mL from a 5mg dose after intranasal administration. In various embodiments, the ratio of the AUC for intranasal midazolam to AUC of for midazolam after an equivalent dose of intravenous midazolam is at least about 1 : 1.7. In various embodiments, the benzodiazepine is administered to a mammal suffering from a condition and/or disease that requires benzodiazepine treatment. Mammals include, for example, humans, as well as pet animals such as dogs and cats, laboratory animals, such as rats and mice, and farm animals, such as horses and cows. In various embodiments, a method of treating a mammal in need of rapid sedation, anxiolysis, amnesia, or induction of anesthesia is provided. The method comprises intranasally administering to the mammal an effective amount of a pharmaceutical composition comprising midazolam or pharmaceutically acceptable salt thereof in a nasal carrier. The pharmaceutical composition may also contain a sweetener, masking agent or flavoring agent. In various embodiments, the pharmaceutical composition comprising midazolam is intranasally administered to the mammal and the composition is metabolized by the mammal and achieves a 1-hydroxymidazolam plasma level of about 1 to about 8 nanograms/ml. EXAMPLES The examples below demonstrate improved absorption, rapid time to reached peak concentrations, and good bioavailability of the various compositions. The examples also show midazolam compositions that include, for example, sweeteners, which improve patient compliance by reducing the unpleasant taste after intranasal administration. Example 1 This example compares 5.0 mg midazolam (MZ) after intranasal (IN), intramuscular (IM) and intravenous (IV) administration in 12 healthy male and female subjects. Subjects
Twelve, nonsmoking, healthy subjects (6 male, 6 female) between the ages of 20 and 2-9 years (mean 22.3 years) and weighing 132 to 202 lbs. (mean 157 lbs.) participated in this inpatient study after giving informed consent. Eleven of the volunteers who enrolled in the study were Caucasian and one was Asian. Study participants were selected based on inclusion exclusion criteria, medical history, physical and nasal exams, vital signs, laboratory tests, and other procedures as outlined in the protocol. Subjects were within ± 20% of ideal body weight in relation to height and elbow breadth and weighed at least 60 kg (132 lbs). The subjects were in good health and had no clinically significant previous nasal surgery or polyps or other physical abnormalities of the nose, cardiovascular, gastrointestinal, renal, hepatic, pulmonary or hematological disease. Subjects who had a history of cerebral trauma with sequelae, hypotension, heart failure, cardiac conduction defect, chronic respiratory disease, bleeding tendency, glaucoma, and a formal diagnosis of sleep apnea or a history of alcohol or substance abuse were excluded. Subjects abstained from alcohol and caffeine containing beverages 48 hours before the dosing period and during the study. Subjects were asked to abstain from prescription and non- prescription drugs that might interact with MZ metabolism or nasal physiology from the date of screening until the end of the study. Subjects had to demonstrate their ability to perform the pharmacodynamic (PD) assessments during the screening evaluation. Informed consent was obtained and this study was conducted according to the applicable guidelines for Good Clinical Practice.
IV and IM Formulations
The intravenous (IV) and intramuscular (IM) solutions were prepared for administration in the University of Kentucky Hospital Investigational Drug Service Pharmacy using commercially available MZ (Versed® Injection by Hoffinan-LaRoche). MZ (5 mL of
1.0 mg/mL) sterile solution was diluted to 10 mL with normal saline for a total volume of 10 mL to be infused over 15 minutes. The 5.0 mg IM MZ (1 mL of 5.0 mg/1.0 mL) was administered without dilution.
IN Formulation of MZ The 25 mg/mL IN MZ formulation was prepared under GMP conditions in the University of Kentucky College of Pharmacy Center for Pharmaceutical Science and Technology (CPST). The IN formulation comprised midazolam 25 mg; polyethylene glycol 400, USP 0.18 mL; butylated hydroxytoluene, NF 0.10 mg; saccharin powder, NF 1.00 mg; propylene glycol, USP Q.S. to 1.00 mL. The formulation provided 2.5 mg of MZ in 0.1 mL spray from a modified version of the commercially available, single-dose, metered sprayer (unit dose spray pumps, Pfeiffer of America, Princeton, NJ). Each subject received a single spray in each nostril for a total of 5.0 mg.
Protocol An open-label, randomized, three-way crossover study design was used. Treatment assignments were in the random order generated by a statistician. The three treatments were: Treatment A: 5.0 mg (5 mL of 1.0 mg mL) IV MZ infused over 15 minutes, Treatment B: 5.0 mg intramuscular MZ (5.0 mg/1.0 mL), and Treatment C: 5.0 mg intranasal MZ solution (2.5 mg/100 μL per sprayer). The three treatments were separated by six-day washout periods. PK blood samples were drawn following each dose. MZ (5 mL of 1.0 mg/mL) sterile solution was diluted to 10 mL with normal saline for a total volume of 10 mL and infused over 15 minutes by a nurse using a stopwatch. IN MZ doses were administered by a physician using Pfeiffer modified unit dose sprayers (Pfeiffer of America, Princeton NJ). The 5.0 mg IM MZ (5.0 mg/1.0 mL) was administered without dilution. Drug administration occuned in the morning following an overnight fast of at least 8 hours. The subjects continued to fast for 2 hours after dosing. Water was allowed except within two hours before or after drug administration. Subjects were allowed juice, 360 mL, at least 2 hours prior to dosing for each dose. Subjects were awakened 1 hour prior to dosing for performance of PD testing. Blood samples were collected in 10 mL Vacutainer® tubes containing the anticoagulant sodium heparin.
Serial blood samples were obtained by venipuncture according to the following schedule: 0 (pre-dose), 5, 10, 20, 30, and 45 minutes, and 1, 1.5, 2, 3, 4, 8, and 12 hours following MZ administration. Actual sampling times were used in PK analysis. After collection, the blood was centrifuged in a refrigerated centrifuge at 4°C to separate the plasma and the cells, and the plasma was transfened to polypropylene tubes. The plasma was stored at or below -20°C at the study site until shipped to Kansas City Analytical Services, Inc. (KCAS) in Shawnee, Kansas.
LC MS/MS Assay for MZ and α-hydroxymidazolam
The sample analysis was conducted for MZ and α-hydroxymidazolam using a PE/Sciex API m + LC/MS/MS system in MRM mode by KCAS in Shawnee, KS. Concentrations less than 0.50 ng/mL were reported as below quantitation limit (BQL). Samples with concentrations greater than 500 ng/mL were reanalyzed using a dilution so that the assayed concentration was within the range of 0.50 to 500.0 ng/mL.
Pharmacokmetic (PK) Data Analysis PK parameters were determined using standard noncompartmental methods with log- linear least square regression analysis to determine the elimination rate constants (WinNonlin, Pharsight Corp., Palo Alto, CA). The areas under the concentration versus time curves from time zero to infinity (AUCrj-∞) were calculated using a combination of the linear and logarithmic trapezoidal rules, with extrapolation to infinity by dividing the last measurable serum concentration by the elimination rate constant (λz) (Proost, 1985). Values for the maximum concentration (Cmax) and time to Cmax (Tmax) were determined by WinNonlin. The elimination half-life was determined from 0.693/λz. Clearance (CL/F) was determined by dividing the dose by AUCo-∞. Volumes of distribution for elimination (Vz/F) and at steady state (Vss) were determined by moment curves (Gibaldi and Perrier, 1982). Vz/F was calculated as Dose/(λz* AUCo-∞). Vss was calculated as CL * MRT for IV data. The absolute bioavailability (F) for the IN and IM dosage forms was determined by F = AUQN.OA AU v,o-∞. and F =
Figure imgf000018_0001
AUCIV,O-∞, respectively. Relative bioavailability of the IN compared to the IM dose was calculated by AUCjN,o-oJ AUCI .O-O .. Mean plasma concentrations were calculated for graphical evaluation only. The calculations included data from samples with measurable concentrations drawn within 5% of the expected sampling time. Statistical Data Analysis
Statistical analyses were performed with Statistical Analysis System PC-SAS version 6.12. The statistical tests were 2-sided with a critical level of 0.05. An analysis of variance (ANOVA) with factors sequence, subject(sequence), treatment and period was performed for log-transformed AUC and Cmax. The least square geometric means from the ANOVA were used to calculate the ratios and their 90% confidence intervals between treatment groups for AUC and Cmax. The carryover effect for the three treatments was analyzed using an ANOVA of log-transformed AUC and Craax. The difference in Tmax values between the IN and IM treatments was compared using an ANOVA of rank- transformed Tmax. The ANOVA model included factors sequence, subject(sequence), treatment and period. The gender effect for all three treatments was analyzed using an ANOVA of log-transformed AUC and Cmax with factors gender, treatment and period.
Results of Example 1 Twelve subjects completed the study without clinically significant or serious adverse events. There were no clinically relevant changes in physical examination, nasal evaluations, or laboratory tests. The principal investigator's review of the data indicated that, in general, doses of the study drug were well tolerated and events were mild to moderate and temporary (2-90 minutes). Two of twelve subjects noted mild dizziness that lasted 35 and 50 minutes. Three of twelve subjects noted bluned vision that lasted 5- 90 minutes. No subjects experienced respiratory depression, apnea, laryngospasm, bronchospasm or wheezing. The mean plasma concentration versus time curve profiles over the first 4 hours and the entire 12 hours for the three doses are shown in Figures 1 and 2. Figure 1 shows that absorption of MZ following IN administration was very rapid. MZ concentrations reached a peak in 2 individuals at 5 min and in 8 of 12 individuals in 10 min or less. No secondary or late bumps indicating absorption from swallowing the IN dose were observed in the plasma concentration time curves. Table 1 summarizes PK data for the three treatments. Median Tmax values were 10 and 30 min for the IN and IM doses, respectively. Cmax values after the IN dose were higher than those after the IM dose and occuned consistently earlier. Relative bioavailability of the IM to IN dose was on average 79%. Unfortunately, the absolute bioavailability of MZ by the IN and IM routes in Table 1 is overestimated due to the underestimation of the AUC0--0 for the IV dose. The AUCo-∞ given for the IV dose underestimates the true AUCo-∞ because the area around the Cmax (which would have been at the end of the 15 minute infusion) was not captured in this study. However, the data for the IM dose are accurate and acceptable for making conclusions regarding the relative bioavailability of the IN dose compared to the IM dose. The high relative bioavailability of the IN to IM dose confirms that bioavailability was good for MZ administered by the IN route.
Figure imgf000020_0001
No significant gender differences were found for AUCo-∞ and Cmax values (P >.l). The gender effect was significant for AUC0-t values (P= 0.0452, M > F). Larger differences in AUCo_t between males and females were observed for the IM formulation. The differences were smaller for the IN formulation (12%). Data were combined for analysis of treatment effects. A significantly shorter Tmax was observed for the IN formulation compared to the IM formulation (p=0.0001). Tmax and Cmax were not captured at the end of the infusion for the IV dose. Statistical analysis of carryover effect on log transformed AUCo-∞, AUCo-t and Cmax for the two IN treatments was performed. P-values from an ANOVA with factors sequence, subject (sequence), treatment and period for sequence BC and CB were >0.1, so the carryover effects were not significant and this implies the validity of the analyses in Table 2.
Table 2 summarizes the ratios and 90% confidence intervals (CI) of Cmaχ and AUCs after Treatments A, B and C. AUCo-t and AUCo-∞ were more comparable between the IM and IV treatments (B/A) than between the IV and IN (C/A) treatments. However, Cmaχ values were almost 50% higher after Treatment C (IN) compared to Treatment B (IM).
Figure imgf000021_0001
The 1-hydroxymidazolam metabolite concentrations were consistently lower than those of the parent drug. Discussion
The pharmacokinetics of MZ were evaluated in 12 healthy male and female volunteers after single 5.0 mg doses of IV, J-M and IN MZ. All subjects completed the study without clinically significant or serious adverse events. The pharmacokinetics of MZ were consistent with rapid but relatively short duration of action. The mean absolute bioavailability of IN MZ would be predicted to be around 65% assuming that about 7% of the IV AUC was missed. The mean relative bioavailability compared to the IM dose was 79%. Less than complete bioavailability after the IN administration may be explained by metabolism during absorption across the nasal mucosa or simply incomplete absorption and swallowing. There was no evidence of swallowing. Plasma clearance and volumes of distribution were high. The IN formulation of MZ had rapid absorption (median peak times of 10 min). In comparison with IM administration, the IN formulation had earlier and higher peak plasma concentrations.
Conclusion
Intravenously administered MZ distributes extensively and rapidly in the body. A total systemic clearance of 28 L/hr indicates that MZ is a highly cleared drug. The IN formulation of MZ had rapid absorption and reached peak concentrations significantly more rapidly than the IM dose. Absolute bioavailability of MZ from the IN dosage form was good and supports further investigation of this dosage form for. clinical use. Relative bioavailability compared to the IM dose was 79.2% (23.7 %oCV). No treatment emergent adverse events were observed during the conduct of this protocol that would preclude further study of MZ in healthy subjects. Adverse events were mild and expected for this drug. As evidenced by the lack of cardiovascular and respiratory adverse events, all the subjects tolerated the drug well. Example 2 This study compares the pharmacokinetics of midazolam (MZ) after administration of 2.5 and 5.0 mg intranasal (IN) MZ and 2.5 mg intravenous (IV) MZ in 18 healthy male and female subjects. Subjects
Eighteen, nonsmoking, healthy subjects (9 male, 9 female) between the ages of 20 and 29 years (mean 22.3 years) and weighing 60 to 92 kg (mean 71 kg) participated in this inpatient study after giving informed consent. Seventeen of the volunteers who enrolled in the study were Caucasian and one was African-American. Seventeen subjects completed the study. Study participants were selected based on inclusion/exclusion criteria, medical history, physical and nasal exams, vital signs, laboratory tests, and other procedures as outlined in the protocol. Subjects were within + 25% of ideal body weight in relation to height and elbow breadth and weighed at least 60 kg (132 lbs). The subjects were in good health, between 18 and 45 years of age and had no clinically significant previous nasal surgery or polyps or other physical abnormalities of the nose, vital signs, cardiovascular, gastrointestinal, renal, hepatic, pulmonary, hematological or neurological disease. Subjects who had a history of a seizure disorder, cerebral trauma with sequelae, hypotension, heart failure, cardiac conduction defect, chronic respiratory disease, bleeding tendency, narrow-angle glaucoma, a formal diagnosis of sleep apnea, a cunent formal diagnosis of depressive disorder or psychosis or a medical diagnosis of alcohol or substance abuse were excluded. Subjects with a known history of Gilbert's Syndrome or with any other etiology for an increased serum total bilirubin level and subjects with any other clinical condition that might affect the absorption, distribution, biotransformation, or excretion of the drug (e.g., acute respiratory illness, allergic rhinitis, etc.) or were allergic to MZ or formulation components were excluded. Subjects who had a history of regular sedative/hypnotic medication use (i.e., at least once per week) or who had taken any sedative/hypnotic medications within the 2 weeks prior to study drug administration were excluded. Subjects abstained from alcohol and caffeine containing beverages 48 hours before the dosing period and during the study. Subjects were asked to abstain from prescription and non-prescription medication, vaccines, herbal and nutritional supplements that might interact with MZ metabolism or nasal physiology within 7 days of dosing and during the study. IV Formulation The intravenous (IV) solutions were prepared for administration in the University of Kentucky Hospital Investigational Drug Service Pharmacy using commercially available MZ (Versed® Injection by Hoffinan-LaRoche). MZ (0.5 mL of 5.0 mg/mL) sterile solution was diluted to 10 mL with normal saline for a total volume of 10 mL to be infused over 15 minutes.
IN Formulation of MZ0 The 25 mg/mL IN MZ formulation was prepared xmder GMP conditions in the University of Kentucky College of Pharmacy Center for Pharmaceutical Science and Technology (CPST). The IN formulation contained midazolam 25 mg; polyethylene glycol 400, USP 0.18 mL; butylated hydroxytoluene, NF 0.10 mg; saccharin powder, NF 1.00 mg; propylene glycol, USP Q.S. to 1.00 mL. The formulation provided 2.5 mg of MZ in 0.15 mL spray from a modified version of the commercially available, single-dose, metered sprayer (unit dose spray pumps, Pfeiffer of America, Princeton, NJ). Each subject received a single spray in one nostril for a 2.5 mg dose or a single spray in each nostril for a total of 5.0 mg. 0 Protocol An open-label, randomized, three-way crossover study design was used. Treatment assignments were in the random order generated by a statistician. The three treatments were: Treatment A: 2.5 mg (5 mL of 1.0 mg/mL) IV MZ infused over 15 minutes, Treatment B: 2.5 mg intranasal MZ solution, one 2.5 mg/100 μL sprayer, and Treatment5 C: 5.0 mg intranasal MZ solution, two 2.5 mg/100 μL sprayers, one sprayer per naris. The three treatments were separated by six-day washout periods. PK blood samples were drawn following each dose. MZ (5 mL of 1.0 mg/mL) sterile solution was diluted to 10 L with normal saline for a total volume of 10 mL and infused over 15 minutes by a nurse using a stopwatch. IN MZ doses were administered by a physician using PfeifferO modified unit dose sprayers (Pfeiffer of America, Princeton NJ). Drug administration occuned in the morning following an overnight fast of at least 8 hours. The subjects continued to fast for 2 hours after dosing. Water was allowed except within two hours before or after drug administration. Subjects were allowed juice, 240 mL, at least 2 hours prior to dosing for each dose. Grapefruit juice was not allowed during the study. Blood samples were collected in 10 mL Vacutainer® tubes containing the anticoagulant sodium heparin. Serial blood samples were obtained by venipuncture according to the following schedule: 0 (pre-dose), 5, 10, 15, 20, 30, and 45 minutes, and 1, 1.5, 2, 3, 4, 8, and 12 hours following MZ administration. Actual sampling times were used in PK analysis. After collection, the blood was centrifuged in a refrigerated centrifuge at 4°C to separate the plasma and the cells, and the plasma was transfened to polypropylene tubes. The plasma was stored at or below -20°C at the study site until shipped to Kansas City Analytical Services, inc. (KCAS) in Shawnee, Kansas.
LC/MS/MS Assay for MZ and α-hvdroxymidazolam
The sample analysis was conducted for MZ and α-hydroxymidazolam using a PE/Sciex API III + LC/MS/MS system in MRM mode by KCAS in Shawnee, KS. Concentrations less than 0.50 ng/mL were reported as below quantitation limit (BQL). Samples with concentrations greater than 500 ng/mL were reanalyzed using a dilution so that the assayed concentration was within the range of 0.50 to 500.0 ng/mL.
Pharmacokinetic (PK) Data Analysis IN doses were determined by weighing the nasal spray pumps before and after dosing.
These weights and the concentrations of the IN solutions (2.5 mg/mL, density 1.056) were used to confirm each subject's dose and to evaluate delivery. The dose weights were not used for PK analysis. PK parameters were determined using standard noncompartmental methods with log-linear least square regression analysis to determine the elimination rate constants (WinNonlin, Pharsight Corp., Palo Alto, CA). The areas under the concentration versus time curves from time zero to infinity (AUC0-- ) were calculated using a combination of the linear and logarithmic trapezoidal rules, with extrapolation to infinity by dividing the last measurable serum concentration by the elimination rate constant (λz) (Proost, 1985). Values for the maximum concentration (Cmax) and time to Cmax (Tmax) were determined by WinNonlin. The elimination half-life was determined from 0.693/λz. Clearance (CL/F) was determined by dividing the dose by AUCo-oo. Volumes of distribution for elimination (Vz/F) and at steady state (Vss) were determined by moment curves (Gibaldi and Perrier, 1982). Vz /F was calculated as Dose/(^* AUCo-c ). Vss was calculated as CL * MRT for IV data. The absolute bioavailability (F) for the IN dosage form was determined by F = AUQN,O-∞/ AU v.o-∞. Mean plasma concentrations were calculated for graphical evaluation only. The calculations included data from samples with measurable concentrations drawn within 5% of the expected sampling time.
Pharmacodynamic (PD) Data Analysis Self-report measures were collected using Visual Analog Scales (VAS) and the Stanford
Sleepiness Scale (SSS). The VAS and SSS were administered at 0 (pre-dose), 10, 20, 30, and 45 minutes, and 1, 1.5, 2, 3, 4, 6, 8, and 12 hours after initiation of the JN dose and administration of the IN doses. Observer Sedation Rating was also performed. The observer for each subject rated the degree of sedation using a qualitative categorical measure of sedation at 0 (pre-dose), 5, 10, 20, 30, and 45 minutes, and 1, 1.5, 2, 3, 4, 6, 8, and 12 hours after initiation of the JV dose and administration of the IN doses. The Observer's Assessment of Alertness/Sedation Scale was used to rate sedation at the above time points. The OAA/S Scale is composed of the following categories: responsiveness, speech, facial expression, and eyes. Subjects were evaluated in each category. The OAA/S was scored in two ways. A composite score was documented as the lowest score in any one of the four assessment categories. A sum score was calculated as the sum of the four category scores. Dependent variables were analyzed as a function of treatment. Analyses of peak effects, time to peak effects, and AUCs, using linear trapezoidal rules, were also evaluated. Separate AUC analyses were completed for AUC between baseline and 4 hours after dose (AUC4, over the duration of peak effects) as well as between baseline and last measurable point and 12 hours after dose (AUCall and AUC 12, respectively).
Statistical Data Analysis Statistical analyses were performed with PC-SAS (version 6.12, SAS Institute, Gary,
North Carolina). The statistical tests for PK parameters were 2-sided with a critical level of 0.05 unless specified otherwise. An analysis of variance (ANOVA) with factors sequence, subject(sequence), treatment and period was performed for log-transformed AUC and Cmax. The least square geometric means from the ANOVA were used to calculate the ratios and their 90%» confidence intervals between treatment groups for AUC and Cmaχ. The carryover effect for the three treatments was also assessed using the ANOVA. The gender effect for all three treatments was analyzed using an ANOVA of log-transformed AUC and nax with factors gender, treatment and period. One subject 216's data for Treatment B was included in the summary statistics of PK parameters. However, Subjects 216 (with outlier for Treatment B) and 218 (early withdrawal) were excluded from the PK analyses for evaluable subjects.
Effects of treatment on each PD parameter were tested using ANOVA with factors sequence, subject(sequence), treatment and period. The carryover effects for the treatment PD effects were also assessed using ANOVA. hi some cases, significant carryover was found but this was expected because repetition of tests has been shown to produce performance changes.
PK Results of Example 2
Seventeen subjects completed the study without clinically significant or serious adverse events. One subject received a single 2.5 mg IN dose and then did not return for subsequent treatments. There were no clinically relevant changes in physical examination, nasal evaluations, or laboratory tests. The principal investigator's review of the data indicated that, in general, doses of the study drug were well tolerated and events were mild to moderate and temporary. There were 1, 2 and no reports of dizziness after the 2.5 mg IV, 2.5 mg IN and 5.0 mg IN doses, respectively. Dizziness lasted up to 86 minutes. Three out of eighteen subjects noted bluned or double vision that lasted 5-40 minutes. No subjects experienced respiratory depression, apnea, laryngospasm, bronchospasm or wheezing.
The mean plasma concentration versus time curve profiles over the first 4 hours and the entire 12 hours for the three treatments are shown in Figures 3 and 4. Figure 3 shows that the absorption of MZ following IN administration was very rapid. MZ concentrations reached a peak at 5 min in one-quarter to one-third of the individuals for the two IN treatments. Median Tmax values were 10 min (range 5 to 20, min) for the 2.5 mg and 5.0 mg IN doses. Three individuals had Cma values after the 5.0 mg IN dose that were higher than the Cmax after the 15 minute, 2.5 mg IV infusion. One subject had plasma concentrations that were low and they increased and decreased with no pattern. His elimination rate constant was indeterminant as a result. The concentrations ranged from 1.15 to 3.16 ng/mL over the 4 hour period and then dropped to below quantifiable limits.
Table 3 summarizes PK data for the three treatments. Tmaχ values were not significantly different for the two IN treatments (P>0.2).
Figure imgf000028_0001
The actual doses administered presented were determined by weighing the pumps before and after dosing. They were lower that the intended doses, on average, by about 16% (Table 4). The range was from 38%> below to 20% above the intended dose.
Figure imgf000029_0003
Absolute bioavailability of the MZ was, on average, 60- 1%» for the IN doses. However, the absolute bioavailability of MZ by the IN routes in Table 3 is underestimated due to the less than expected dose delivery of the nasal sprayers. The dose weight data that are given in Table 4 show that on average, the delivered dose in this study was about 84% of the planned dose. Recalculating the bioavailability based on the actual doses administered (by weight) would make the bioavailability about 72% for the IN doses. No significant gender differences were found for
Figure imgf000029_0001
and Cmax values (P >0.1). The gender effect was significant for dose-normalized AUCo-t values (P= 0.0371, M > F). Data were combined for analysis of treatment effects. Statistical analysis of carryover effect on log transformed
Figure imgf000029_0002
AUCo-t and Cmax for the two IN treatments was performed. P-values from an ANOVA with factors sequence, subject(sequence), treatment and period for sequence were >0.3, so the carryover effects were not significant and this implies the validity of the analyses in Table 5.
Table 5 summarizes the ratios and 90% confidence intervals (CI) of Cmax and AUCs after Treatments A, B and C. The ratio of dose normalized Cmax and AUC values were near unity after Treatment C (IN) compared to Treatment B (IN), as expected.
Figure imgf000030_0001
The α-hydroxymidazolam metabolite concentrations were consistently lower than those of the parent drug. PD Results of Example 2 Table 6 summarizes analyses of PD VAS ratings. Cmax (peak effects), time to peak effects (Tmax), and areas under the ratings curves are given (AUC4, AUC 12 and AUCall) for the VAS ratings. VAS parameters that showed statistical significance and their P values are listed in alphabetical order above the break in Table 6. These ratings illustrate the typical effects of dose and route on MZ PD. On 30 out of 40 measures, the order of magnitude of effects were identical with TV producing the greatest effects followed by the higher IN dose and then the lower IN dose. There were many trends in these data, however, only ratings of 10 parameters out of 40 reached significance. No differences were obtained on Tmax. No parameters for "willing to take drug again," "anxious" or "stimulated" reached significance. Due to the large number of missing values, the results from VAS ratings should be interpreted with caution. These statistical comparisons are presented for their usefulness in future study design. Table 6. Mean (SD) midazolam PD parameters following Treatments A, B and C Variable 2.5 g MZIV 2.5 mg MZIN 5.0 mg MZIN
Parameter Name Treatment A Treatment B Treatment C P Value P < 0.05 fatigue AUC12 158.88 (149.98) 75.24 ( 58.97) 108.71 ( 76.91) 0.0213 fatigue AUC4 86.24 ( 53.67) 48.47 ( 38.88) 72.46(46.95) 0.0054 fatigue AUCall 140.83 (137.18) 78.79 ( 57.56) 99.45(71.32) 0.0200 fatigue Cmax 53.59(22.17) 36.72(21.14) 48.29(20.68) 0.0080 Feel AUC12 87.58 ( 53.23) 64.85(44.60) 95.54 ( 54.92) 0.0430 Feel AUC4 64.88 ( 33.38) 48.05 ( 34.88) 75.37(47.54) 0.0211 Feel Cmax 56.06 ( 17.52) 40.22(26.43) 59.41 (21.11) 0.0085 High Cmax 46.35 ( 26.07) 27.39 ( 18.08) 38.53(22.61) 0.0053 Like Cmax 61.31(22.98) 47.38 ( 22.75) 70.00 ( 19.47) 0.0264 Sedate Cmax 55.85 ( 19.27) 40.22(22.70) 52.35 ( 13.60) 0.0157 P>0.05 anxious AUC12 54.79 ( 66.56) 46.18(72.33) 54.76 ( 84.30) 0.4220 anxious AUC4 29.78(28.52) 18.64 ( 17.40) 25.95(32.12) 0.0849 anxious AUCall 53.76(61.44) 49.71 ( 72.20) 52.94 ( 77.28) 0.2931 anxious Cmax 26.79(25.29) 15.36 ( 15.71) 19.26(20.76) 0.1023 anxious Tmax 0.51 ( 0.56) 1.52 ( 2.89) 2.41 ( 3.55) 0.0978 fatigue Tmax 0.78 ( 0.50) 1.10 ( 1.58) 1.11 ( 1.44) 0.6626 Feel AUCall 86.43(53.96) 68.76 ( 46.02) 86.98 ( 54.25) 0.0646 Feel Tmax 0.72 ( 0.52) 0.74 ( 0.92) 0.69 ( 0.50) 0.9469 High AUC12 66.81(38.03) 54.74(42.79) 62.24(51.11) 0.2549 High AUC4 48.28 ( 30.67) 32.82 ( 25.47) 45.52 ( 38.64) 0.1299 High AUCall 66.33(41.50) 58.14(45.62) 61.94(49.98) 0.3256 High Tmax 1.06 ( 2.85) 0.54 ( 0.69) 1.40 ( 2.83) 0.5662 Like AUC12 339.54(321.48) 270.93 (290.84) 309.07 (234.08) 0.6696 Like AUC4 126.94 ( 78.08) 106.78 ( 86.06) 119.62(64.44) 0.6350 Like AUCall 288.98 (293.37) 246.16 (268.39) 253.80 (224.50) 0.8362 Like Tmax 2.52 ( 3.01) 1.08 ( 1.83) 2.07 ( 2.81) 0.2344 Sedate AUC12 95.76 ( 79.62) 68.43 ( 56.69) 99.77 ( 68.40) 0.0702 Sedate AUC4 71.42(46.70) 52.29 ( 45.44) 70.24(40.68) 0.1273 Sedate AUCall 93.47 ( 73.41) 73.15 ( 55.43) 92.02 ( 64.32) 0.0931 Sedate Tmax 0.75 ( 0.50) 0.53 ( 0.47) 0.62 ( 0.37) 0.2946 Stim AUC12 172.23 (195.40) 148.22 (182.23) 187.20(201.87) 0.3108 Stim AUC4 67.07 ( 52.47) 56.53 ( 53.38) 67.09 ( 50.51) 0.5830 Stim AUCall 187.40 (196.21) 157.54 (177.94) 184.74 (192.46) 0.5364 Stim Cmax 40.00(21.78) 33.36(20.50) 41.41(22.03) 0.3008 Stim Tmax 1.62 ( 2.90) 1.74 ( 2.86) 2.69 ( 3.93) 0.3200 Will AUC12 739.92 (396.94) 690.63 (392.61) 714.86 (368.68) 0.5568 Will AUC4 241.10(102.12) 215.94 (122.09) 233.52 (108.09) 0.6826 Will AUCall 699.79 (385.66) 638.61 (400.75) 704.00 (379.58) 0.5389 Will Cmax 79.44 ( 16.62) 76.25 ( 25.26) 80.26 ( 20.05) 0.9669 Will Tmax 3.09 ( 4.06) 2.73 ( 3.37) 2.76 ( 3.90) 0.9608
P values from ANOVA. Note: These ratings are not the same as the similarly named PK parameters. Units for parameters: Tmax (hr), Cmax (rating score), AUC4, AUC 12 and AUCall (rating*hour). Discussion
The pharmacokinetics of MZ were evaluated in healthy male and female volunteers after single 2.5 mg and 5.0 mg doses of IV and IN MZ. Seventeen out of eighteen subjects completed the study without clinically significant or serious adverse events. One male subject dropped out for scheduling reasons after receiving one treatment. The pharmacokinetics of MZ were consistent with rapid absorption (median peak times of 10 minutes after IN administration), but relatively short duration of action. The mean absolute bioavailability of IN MZ was approximately 60-61%. However, based on actual dose delivery weights, bioavailability was about 72% for the IN doses. The 84% delivery of doses was most likely because of under filling of sprayers during manufacturing. The remainder of the incomplete bioavailability after the IN administration maybe explained by metabolism during absorption across the nasal mucosa or simply, incomplete absorption and swallowing. There was no evidence of swallowing but that would be expected due to the low oral bioavailability of MZ. Plasma clearance and volumes of distribution were high, as expected for MZ.
PD analyses indicated clearly that all three treatments produced changes in subjective ratings of sleep scores, VAS ratings and observer ratings. The intensity of the PD effects was greatest over the first 2 hours following dose administration. The order of magnitude of effects on all PD outcome measures were not always identical but in most cases, TV produced the largest or a similar duration/magnitude of effects compared to the high dose of IN MZ which was followed by the low IN MZ dose. The peak time of effects did not differ statistically between IV and IN doses. The onset did not vary with dose as much as the duration of effect did, as determined through the AUC analyses.
Conclusion
Intravenously administered MZ distributes extensively and rapidly in the body. A total systemic clearance of 21 L/hr indicates that MZ is a highly cleared drug. The IN formulation of MZ had rapid absorption with median times of 10 minutes to achieve peak concentrations . The rise in plasma concentrations matched the IV infusion in some cases. The α-hydroxymidazolam metabolite concentrations were consistently lower than those of the parent drug. The absolute bioavailability of MZ from the IN dosage form was approximately 60% and supports further investigation of this dosage form for clinical use. PD analyses indicated clearly that all three treatments produced changes in subjective ratings of sleep scores, VAS ratings and observer ratings. The intensity of the
PD effects was greatest over the first 2 hours following dose administration.
No treatment emergent adverse events were observed during the conduct of this protocol that would preclude further study of MZ in healthy subjects. Adverse events were unremarkable and expected for this drug. As evidenced by the lack of cardiovascular and respiratory adverse events, all the subjects tolerated the drug well. Having now generally described the embodiments, the same may be more readily understood through the following reference to the following example, which is provided by way of illustration and is not intended to limit the present invention unless specified.

Claims

WHAT IS CLAIMED IS: 1. A pharmaceutical composition for intranasal administration comprising: an effective amount of a benzodiazepine or pharmaceutically acceptable salt thereof; a nasal carrier; and at least one or more sweeteners, flavoring agents, or masking agents or combinations thereof.
2. A pharmaceutical composition according to claim 1 , wherein the benzodiazepine is alprazolam, brotizolam, chlordiazepoxide, clobazepam, clonazepam, clorazepate, demoxepam, diazepam, estazolam, flurazepam, quazepam, halazepam, lorazepam, midazolam, nitrazepam, nordazapam, oxazepam, prazepam, quazepam, temazepam, triazolam, zolpidem, zaleplon or combinations thereof.
3. A pharmaceutical composition according to claim 2, wherein the benzodiazepine is midazolam.
4. A pharmaceutical composition according to claim 3, wherein the volume of the composition is about 0.1 ml.
5. A pharmaceutical composition according to claim 3, wherein the composition is preservative free.
6. A pharmaceutical composition according to claim 3 , wherein the composition contains a buffer.
7. A pharmaceutical composition according to claim 3, wherein the composition is a sterile solution or suspension.
8. A pharmaceutical composition according to claim 3, wherein the composition contains an anesthetic agent.
9. A pharmaceutical composition according to claim 1, wherein the one or more sweeteners, flavoring agents or masking agents is saccharin, sodium saccharin, xylitol, mannitol, sorbitol, sucrose, sucralose, maltodextrin, aspartame, acesulfame potassium, dextrose, glycosides, maltose, sweet orange oil, glycerin, wintergreen oil, peppermint oil, peppermint water, peppermint spirit, menthol, or combinations thereof.
10. A pharmaceutical composition according to claim 1, wherein the composition has a pH of about 5.0.
11. A pharmaceutical composition for intranasal administration to a mammal comprising: an effective amount of midazolam or pharmaceutically acceptable salt thereof, polyethylene glycol, saccharin powder, and propylene glycol.
12. A pharmaceutical composition according to claim 11 , wherein the polyethylene glycol comprises from about 15% to about 25% by volume and the propylene glycol constitutes from about 75% to about 85% by volume of the composition.
13. A pharmaceutical composition according to claim 11 , wherein the composition contains a preservative.
14. A pharmaceutical composition according to claim 11 , wherein the composition is preservative-free.
15. A pharmaceutical composition according to claim 11 , wherein the composition contains an anesthetic agent.
16. A pharmaceutical composition according to claim 11 , wherein the composition achieves a time to maximum plasma concentration (Tmax) within about 5 minutes to about 20 minutes after intranasal administration.
17. A pharmaceutical composition according to claim 11 , wherein the composition achieves a time to maximum plasma concentration (Tmax) within about 5 minutes after intranasal administration.
18. A pharmaceutical composition according to claim 11 , wherein the composition achieves a maximum plasma concentration (Cmax) of about 40ng/mL from a 2.5mg dose or about 80ng mL from a 5mg dose after intranasal administration.
19. A pharmaceutical composition according to claim 18, wherein the ratio of the AUC for intranasal midazolam to AUC of for midazolam after an equivalent dose of intravenous midazolam is at least about 1 :1.7.
20. A method of treating a mammal in need of rapid sedation, anxiolysis, amnesia, or induction of anesthesia comprising intranasally administering to the mammal an effective amount of a pharmaceutical composition comprising midazolam or pharmaceutically acceptable salt thereof; and a nasal carrier; wherein the rapid sedation, anxiolysis, amnesia, or induction of anesthesia occurs within 5 minutes after intranasal administration.
21. A method of treating a mammal in need of rapid sedation, anxiolysis, amnesia, or induction of anesthesia comprising intranasally administering to the mammal an effective amount of a pharmaceutical composition comprising midazolam or pharmaceutically acceptable salt thereof; a nasal carrier; and at least one or more sweeteners, flavoring agents, or masking agents or combinations thereof.
22. A method according to claim 21 , wherein the at least one sweetener, flavoring agent or masking agent is saccharin, sodium saccharin, xylitol, mannitol, sorbitol, sucrose, aspartame, acesulfame potassium, dextrose, glycosides, maltose, sweet orange oil, glycerin, wintergreen oil, peppermint oil, peppermint water, peppermint spirit, menthol, or combinations thereof.
23. A method according to claim 21 , wherein the rapid sedation, anxiolysis, amnesia, or induction of anesthesia occurs within 5 minutes after intranasal administration.
24. A method according to claim 21 , wherein the rapid sedation, anxiolysis, amnesia, or induction of anesthesia occurs at a time to maximum plasma concentration (Tmax) of within 5 minutes after intranasal administration.
25. A method according to claim 21 , wherein the pharmaceutical composition achieves a 1-hydroxymidazolam plasma level of about 1 to about 8 nanograms/ml after intranasal administration.
26. A method of making a pharmaceutical composition for intranasal administration comprising adding at least one or more sweeteners, flavoring agents, or masking agents or combinations thereof to a pharmaceutical composition comprising midazolam or pharmaceutically acceptable salt thereof, and a nasal carrier so as to make the pharmaceutical composition.
PCT/US2005/008090 2004-03-17 2005-03-11 Intranasal benzodiazepine compositions WO2005089768A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MXPA06010477A MXPA06010477A (en) 2004-03-17 2005-03-11 Intranasal benzodiazepine compositions.
JP2007503975A JP2007529525A (en) 2004-03-17 2005-03-11 Intranasal benzodiazepine composition
EP05725322A EP1727549A4 (en) 2004-03-17 2005-03-11 Intranasal benzodiazepine compositions
CA002560024A CA2560024A1 (en) 2004-03-17 2005-03-11 Intranasal benzodiazepine compositions
AU2005222608A AU2005222608A1 (en) 2004-03-17 2005-03-11 Intranasal benzodiazepine compositions
IL178024A IL178024A0 (en) 2004-03-17 2006-09-12 Pharmaceutical compositions for intranasal administration containing a benzodiazepine compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/803,521 US20040176359A1 (en) 2001-02-20 2004-03-17 Intranasal Benzodiazepine compositions
US10/803,521 2004-03-17

Publications (1)

Publication Number Publication Date
WO2005089768A1 true WO2005089768A1 (en) 2005-09-29

Family

ID=34993434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/008090 WO2005089768A1 (en) 2004-03-17 2005-03-11 Intranasal benzodiazepine compositions

Country Status (9)

Country Link
US (3) US20040176359A1 (en)
EP (1) EP1727549A4 (en)
JP (1) JP2007529525A (en)
CN (1) CN1972691A (en)
AU (1) AU2005222608A1 (en)
CA (1) CA2560024A1 (en)
IL (1) IL178024A0 (en)
MX (1) MXPA06010477A (en)
WO (1) WO2005089768A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513672A (en) * 2005-10-31 2009-04-02 ブレインセルス,インコーポレイティド GABA receptor-mediated regulation of neurogenesis
JP2010518074A (en) * 2007-02-12 2010-05-27 ボウジベル,ラサアド Aseptic sucralose solution without preservatives
JP2010526822A (en) * 2007-05-07 2010-08-05 クエスター ファーマシューティカルズ,インク. Nasal administration of benzodiazepines
US8530463B2 (en) 2007-05-07 2013-09-10 Hale Biopharma Ventures Llc Multimodal particulate formulations
WO2014127459A1 (en) * 2013-02-22 2014-08-28 Eastgate Pharmaceuticals Inc. Pharmaceutical composition for enhanced transmucosal administration of benzodiazepines
US8895546B2 (en) 2009-03-27 2014-11-25 Hale Biopharma Ventures, Llc Administration of benzodiazepine compositions
US9265720B2 (en) 2004-10-27 2016-02-23 Orexo Ab Pharmaceutical formulations useful in the treatment of insomnia
WO2020129085A1 (en) 2018-12-18 2020-06-25 Cipla Limited Intranasal formulation
US11241414B2 (en) 2008-03-28 2022-02-08 Neurelis, Inc. Administration of benzodiazepine compositions

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7747325B2 (en) 1998-08-05 2010-06-29 Neurovista Corporation Systems and methods for monitoring a patient's neurological disease state
US9415222B2 (en) 1998-08-05 2016-08-16 Cyberonics, Inc. Monitoring an epilepsy disease state with a supervisory module
US8762065B2 (en) 1998-08-05 2014-06-24 Cyberonics, Inc. Closed-loop feedback-driven neuromodulation
US7209787B2 (en) 1998-08-05 2007-04-24 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US9042988B2 (en) 1998-08-05 2015-05-26 Cyberonics, Inc. Closed-loop vagus nerve stimulation
US9375573B2 (en) * 1998-08-05 2016-06-28 Cyberonics, Inc. Systems and methods for monitoring a patient's neurological disease state
US9320900B2 (en) 1998-08-05 2016-04-26 Cyberonics, Inc. Methods and systems for determining subject-specific parameters for a neuromodulation therapy
US20040115133A1 (en) * 2000-05-10 2004-06-17 Wermeling Daniel P. Intranasal opioid compositions
GB0329918D0 (en) * 2003-12-24 2004-01-28 West Pharm Serv Drug Res Ltd Intranasal compositions
GB0400804D0 (en) 2004-01-14 2004-02-18 Innoscience Technology Bv Pharmaceutical compositions
US20060110471A1 (en) * 2004-11-19 2006-05-25 Nichols Wendy S Essential oil blend for inhalation
LT2486942T (en) * 2004-11-24 2019-01-25 Meda Pharmaceuticals Inc. Compositions comprising azelastine and methods of use thereof
US20070020330A1 (en) 2004-11-24 2007-01-25 Medpointe Healthcare Inc. Compositions comprising azelastine and methods of use thereof
ES2675228T3 (en) 2005-06-17 2018-07-09 Wisconsin Alumni Research Foundation Topical vasoconstrictor preparations and methods to protect cells during cancer chemotherapy and radiation therapy
AU2014202738B2 (en) * 2005-06-17 2016-05-12 Wisconsin Alumni Research Foundation Topical vasoconstrictor preparations and methods for protecting cells during cancer chemotherapy and radiotherapy
US8868172B2 (en) 2005-12-28 2014-10-21 Cyberonics, Inc. Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders
US8725243B2 (en) 2005-12-28 2014-05-13 Cyberonics, Inc. Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
EP1971394A4 (en) * 2005-12-28 2009-04-01 Neurovista Corp Methods and systems for recommending an action to a patient for managing epilepsy and other neurological disorders
GB2437488A (en) * 2006-04-25 2007-10-31 Optinose As Pharmaceutical oily formulation for nasal or buccal administration
EP2034885A4 (en) * 2006-06-23 2010-12-01 Neurovista Corp Minimally invasive monitoring systems and methods
TW200824693A (en) * 2006-08-28 2008-06-16 Jazz Pharmaceuticals Inc Pharmaceutical compositions of clonazepam and methods of use thereof
US8295934B2 (en) 2006-11-14 2012-10-23 Neurovista Corporation Systems and methods of reducing artifact in neurological stimulation systems
US20080275030A1 (en) * 2007-01-19 2008-11-06 Sveinbjorn Gizurarson Methods and Compositions for the Delivery of a Therapeutic Agent
WO2008092119A2 (en) * 2007-01-25 2008-07-31 Neurovista Corporation Systems and methods for identifying a contra-ictal condition in a subject
EP2124734A2 (en) * 2007-01-25 2009-12-02 NeuroVista Corporation Methods and systems for measuring a subject's susceptibility to a seizure
US8036736B2 (en) 2007-03-21 2011-10-11 Neuro Vista Corporation Implantable systems and methods for identifying a contra-ictal condition in a subject
US9788744B2 (en) 2007-07-27 2017-10-17 Cyberonics, Inc. Systems for monitoring brain activity and patient advisory device
BRPI0815782A2 (en) * 2007-08-31 2015-02-24 Archimedes Dev Ltd COMPOSITION FOR INTRANASAL DRUG DISPENSATION, USE OF A NON-WATER COMPOSITION, NASAL DRUG DISPENSER OR DOSE CARTRIDGE, USES OF A NON-WATER VEHICLE, AND A NON-VEHICLE DRUG
EP2030610A1 (en) * 2007-08-31 2009-03-04 Archimedes Development Limited Non-aqueous pharmaceutical compositions
US20090171168A1 (en) 2007-12-28 2009-07-02 Leyde Kent W Systems and Method for Recording Clinical Manifestations of a Seizure
US9259591B2 (en) 2007-12-28 2016-02-16 Cyberonics, Inc. Housing for an implantable medical device
US8849390B2 (en) 2008-12-29 2014-09-30 Cyberonics, Inc. Processing for multi-channel signals
US8588933B2 (en) 2009-01-09 2013-11-19 Cyberonics, Inc. Medical lead termination sleeve for implantable medical devices
US8786624B2 (en) 2009-06-02 2014-07-22 Cyberonics, Inc. Processing for multi-channel signals
US9643019B2 (en) 2010-02-12 2017-05-09 Cyberonics, Inc. Neurological monitoring and alerts
CN102309438B (en) * 2010-07-02 2013-04-17 中国人民解放军军事医学科学院毒物药物研究所 Midazolam medicament composition as well as preparation method and application thereof
CN102335430B (en) * 2010-07-14 2013-07-31 中国人民解放军军事医学科学院毒物药物研究所 Compound pharmaceutical composition containing midazolam and neuro protective agent
US20120323178A1 (en) 2011-01-04 2012-12-20 Mitsubishi Tanabe Pharma Corporation Bepotastine compositions
FR3032353B1 (en) 2015-02-06 2017-03-10 Jacques Seguin PHARMACEUTICAL COMPOSITION AND DEVICE FOR THE TREATMENT OF PAIN
CN106539557A (en) * 2016-10-08 2017-03-29 西安交通大学 A kind of assay method of the pharmacokinetic parameter being input into based on constant rate intravenous
BR112020022688A2 (en) * 2018-05-08 2021-02-09 Akroswiss Ag bidose nasal spray
WO2019226753A1 (en) 2018-05-25 2019-11-28 Ucb Biopharma Sprl Benzodiazepine formulations
CN111821477A (en) * 2020-06-05 2020-10-27 哈工大机器人(中山)无人装备与人工智能研究院 A degassing unit for puncture equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474759A (en) * 1991-06-10 1995-12-12 Schering Corporation Non-chlorofluorocarbon aerosol formulations
US5693608A (en) * 1990-05-10 1997-12-02 Bechgaard International Research And Development A/S Method of administering a biologically active substance
USRE36744E (en) * 1988-09-16 2000-06-20 Ribogene, Inc. Nasal administration of benzodiazepine hypnotics

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US586143A (en) * 1897-07-13 Combined ink-well and penholder
US36744A (en) * 1862-10-21 Improvement in machines for milling and cutting metals
US3812853A (en) * 1971-11-17 1974-05-28 P Crain Apparatus for applying medication or the like to human nasal passages
US4464378A (en) * 1981-04-28 1984-08-07 University Of Kentucky Research Foundation Method of administering narcotic antagonists and analgesics and novel dosage forms containing same
US5132114A (en) * 1985-05-01 1992-07-21 University Of Utah Research Foundation Compositions and methods of manufacture of compressed powder medicaments
US4889860A (en) * 1985-09-23 1989-12-26 Nova Pharmaceutical Corporation Oximes of oxymorphone, naltrexone and naloxone as potent, selective opioid receptor agonists and antagonists
US4673679A (en) * 1986-05-14 1987-06-16 E. I. Du Pont De Nemours And Company Use of prodrugs of 3-hydroxymorphinans to prevent bitter taste upon buccal, nasal or sublingual administration
US4782047A (en) * 1986-05-22 1988-11-01 Syntex Pharmaceuticals International Ltd. Aqueous steroid formulations for nasal administration
DE3734306A1 (en) * 1987-10-10 1989-04-27 Pfeiffer Erich Gmbh & Co Kg DISCHARGE DEVICE FOR FLOWABLE MEDIA
US4973596A (en) * 1988-05-20 1990-11-27 Barr Laboratories, Inc. Method of administering a narcotic analgesic and dosage forms therefor
US4950664A (en) * 1988-09-16 1990-08-21 Rugby-Darby Group Companies, Inc. Nasal administration of benzodiazepine hypnotics
US5225183A (en) * 1988-12-06 1993-07-06 Riker Laboratories, Inc. Medicinal aerosol formulations
US5776434A (en) * 1988-12-06 1998-07-07 Riker Laboratories, Inc. Medicinal aerosol formulations
US5397771A (en) * 1990-05-10 1995-03-14 Bechgaard International Research And Development A/S Pharmaceutical preparation
FR2662672B1 (en) * 1990-05-31 1992-08-21 Aerosols & Bouchage MIXTURE DISPENSER.
US5166202A (en) * 1990-09-19 1992-11-24 Trustees Of The University Of Pennsylvania Method for the treatment of panic disorder
GB9026998D0 (en) * 1990-12-12 1991-01-30 Glaxo Group Ltd Medicaments
GB9125699D0 (en) * 1991-12-03 1992-01-29 Glaxo Group Ltd Device
US6193984B1 (en) * 1992-02-03 2001-02-27 Cedars-Sinai Medical Center Pharmaceutical composition of herpes simplex virus typ-1 (HSV-1) glycoproteins
GB9202464D0 (en) * 1992-02-05 1992-03-18 Danbiosyst Uk Composition for nasal administration
NZ257056A (en) * 1992-10-19 1996-08-27 Dura Pharma Inc Dry powder inhaler: housing with mixing chamber and impeller
CN1098708C (en) * 1993-10-21 2003-01-15 久光制药株式会社 Pernasal composition and pernasal preparation containing the same
US5897858A (en) * 1994-02-03 1999-04-27 Schering-Plough Healthcare Products, Inc. Nasal spray compositions exhibiting increased retention in the nasal cavity
US5543434A (en) * 1994-02-25 1996-08-06 Weg; Stuart L. Nasal administration of ketamine to manage pain
US6228383B1 (en) * 1994-03-03 2001-05-08 Gs Development Ab Use of fatty acid esters as bioadhesive substances
GB9409778D0 (en) * 1994-05-16 1994-07-06 Dumex Ltd As Compositions
US5529787A (en) * 1994-07-07 1996-06-25 Alza Corporation Hydromorphone therapy
US5958379A (en) * 1994-09-30 1999-09-28 Mika Pharma Gesellschaft Fuer Die Entwicklung Und Vermarktung Pharmazeutischer Producte Mbh Pharmaceutical composition
US5866143A (en) * 1995-03-24 1999-02-02 El Khoury And Stein, Ltd. Topical application of opioid drugs such as morphine for relief of itching and skin disease
US5622166A (en) * 1995-04-24 1997-04-22 Dura Pharmaceuticals, Inc. Dry powder inhaler delivery system
US5948389A (en) * 1995-06-07 1999-09-07 El Khoury & Stein, Ltd. Method of enhancing the analgesic efficacy of locally and topically administered opioids and other local anesthetics
US5637314A (en) * 1995-06-07 1997-06-10 Beth Israel Deaconess Medical Center, Inc. Topical and systemic application of buspirone or derivatives thereof for treating atopic dermatitis
US6017963A (en) * 1995-11-14 2000-01-25 Euro-Celtique, S.A. Formulation for intranasal administration
CA2259418A1 (en) * 1996-07-11 1998-01-22 Farmarc Nederland B.V. Pharmaceutical composition containing acid addition salt of basic drug
DE19709702A1 (en) * 1997-03-10 1998-09-17 Wolff Walsrode Ag Paint binder preparations, their manufacture and use
US5855907A (en) * 1997-03-24 1999-01-05 Peyman; Gholam A. Method of treatment of migraine
FR2772271B1 (en) * 1997-12-11 2000-09-01 Union Pharma Scient Appl NEW PHARMACEUTICAL ASSOCIATION WITH ANALGESIC ACTIVITY
DE19807921A1 (en) * 1998-02-25 1999-08-26 Pfeiffer Erich Gmbh & Co Kg Discharge control for a media donor
US6608073B1 (en) * 1998-10-14 2003-08-19 New Millennium Pharmaceutical Research, Inc. Intranasal codeine for the rapid suppression of cough and rapid relief of pain
EP1189603A2 (en) * 1999-03-22 2002-03-27 Immugen Pharmaceuticals, Inc. Treatment of immune diseases like hiv disease and neoplastic disorders
AU2001262992A1 (en) * 2000-05-10 2002-02-18 University Of Kentucky Research Foundation System and method for intranasal administration of opioids
US6610271B2 (en) * 2000-05-10 2003-08-26 University Of Kentucky Research Foundation System and method for intranasal administration of lorazepam
US20040115133A1 (en) * 2000-05-10 2004-06-17 Wermeling Daniel P. Intranasal opioid compositions
WO2002013886A2 (en) * 2000-08-15 2002-02-21 University Of Kentucky Research Foundation Programmable multi-dose intranasal drug delivery device
GB0400804D0 (en) * 2004-01-14 2004-02-18 Innoscience Technology Bv Pharmaceutical compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36744E (en) * 1988-09-16 2000-06-20 Ribogene, Inc. Nasal administration of benzodiazepine hypnotics
US5693608A (en) * 1990-05-10 1997-12-02 Bechgaard International Research And Development A/S Method of administering a biologically active substance
US5474759A (en) * 1991-06-10 1995-12-12 Schering Corporation Non-chlorofluorocarbon aerosol formulations

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1727549A4 *
WEBER F.ET AL: "Premedication with nasal s-ketamine and midazolam provides", CAN.J.ANESTH., vol. 50, no. 5, 2003, pages 470 - 475, XP002988090 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9265720B2 (en) 2004-10-27 2016-02-23 Orexo Ab Pharmaceutical formulations useful in the treatment of insomnia
US9597281B2 (en) 2004-10-27 2017-03-21 Orexo Ab Pharmaceutical formulations useful in the treatment of insomnia
JP2009513672A (en) * 2005-10-31 2009-04-02 ブレインセルス,インコーポレイティド GABA receptor-mediated regulation of neurogenesis
JP2010518074A (en) * 2007-02-12 2010-05-27 ボウジベル,ラサアド Aseptic sucralose solution without preservatives
JP2010526822A (en) * 2007-05-07 2010-08-05 クエスター ファーマシューティカルズ,インク. Nasal administration of benzodiazepines
US8530463B2 (en) 2007-05-07 2013-09-10 Hale Biopharma Ventures Llc Multimodal particulate formulations
US9763876B2 (en) 2008-03-28 2017-09-19 Hale Biopharma Ventures, Llc Administration of benzodiazepine compositions
US11241414B2 (en) 2008-03-28 2022-02-08 Neurelis, Inc. Administration of benzodiazepine compositions
US11793786B2 (en) 2008-03-28 2023-10-24 Neurelis, Inc. Administration of benzodiazepine compositions
US8895546B2 (en) 2009-03-27 2014-11-25 Hale Biopharma Ventures, Llc Administration of benzodiazepine compositions
WO2014127459A1 (en) * 2013-02-22 2014-08-28 Eastgate Pharmaceuticals Inc. Pharmaceutical composition for enhanced transmucosal administration of benzodiazepines
WO2020129085A1 (en) 2018-12-18 2020-06-25 Cipla Limited Intranasal formulation

Also Published As

Publication number Publication date
JP2007529525A (en) 2007-10-25
IL178024A0 (en) 2007-07-04
US20040176359A1 (en) 2004-09-09
EP1727549A4 (en) 2007-12-26
MXPA06010477A (en) 2007-10-08
CN1972691A (en) 2007-05-30
CA2560024A1 (en) 2005-09-29
US20070071687A1 (en) 2007-03-29
EP1727549A1 (en) 2006-12-06
AU2005222608A1 (en) 2005-09-29
US20100113426A1 (en) 2010-05-06

Similar Documents

Publication Publication Date Title
US20100113426A1 (en) Intranasal Benzodiazepine Compositions
US8198291B2 (en) Intranasal opioid compositions
US6610271B2 (en) System and method for intranasal administration of lorazepam
RU2769397C2 (en) Compositions and methods of treating opioid overdose
MXPA06008086A (en) Pharmaceutical compositions comprising midazolam in a high concentration.
WO2010132882A2 (en) Sublingual dexmedetomidine compositions and methods of use thereof
AU2014249530B2 (en) Use of levocetirizine and montelukast in the treatment of anaphylaxis
JP2019520361A (en) Compositions, devices and methods for the treatment of alcohol use disorders
Wermeling et al. A pharmacokinetic and pharmacodynamic study, in healthy volunteers, of a rapidly absorbed intranasal midazolam formulation
Miller et al. Comparison of intranasal administration of haloperidol with intravenous and intramuscular administration: a pilot pharmacokinetic study
US20200390691A1 (en) Compositions, devices, and methods for the treatment of overdose and reward-based disorders
US20060039869A1 (en) Intranasal delivery of antipsychotic drugs
JP2022514340A (en) Compositions, Devices, and Methods for Treating Overdose and Reward-Based Disorders
US20230301903A1 (en) Intranasal olanzapine formulations and methods of their use
Davies A review of the use of intranasally administered midazolam in adults and its application in dentistry
Wermeling Intranasal Opioid Compositions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005222608

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 178024

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/010477

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2007503975

Country of ref document: JP

Ref document number: 2560024

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005725322

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005222608

Country of ref document: AU

Date of ref document: 20050311

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005222608

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580014011.4

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005725322

Country of ref document: EP