WO2005094404A2 - Semiconductor manufacturing gas flow divider system and method - Google Patents

Semiconductor manufacturing gas flow divider system and method Download PDF

Info

Publication number
WO2005094404A2
WO2005094404A2 PCT/US2005/002783 US2005002783W WO2005094404A2 WO 2005094404 A2 WO2005094404 A2 WO 2005094404A2 US 2005002783 W US2005002783 W US 2005002783W WO 2005094404 A2 WO2005094404 A2 WO 2005094404A2
Authority
WO
WIPO (PCT)
Prior art keywords
flow
ratio
measurements
lines
corrected
Prior art date
Application number
PCT/US2005/002783
Other languages
French (fr)
Other versions
WO2005094404A3 (en
Inventor
Ali Shajii
Siddharth Nagarkatti
Original Assignee
Mks Instruments, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mks Instruments, Inc. filed Critical Mks Instruments, Inc.
Priority to KR1020067020209A priority Critical patent/KR101113776B1/en
Priority to JP2007502806A priority patent/JP5300261B2/en
Priority to DE112005000485T priority patent/DE112005000485T5/en
Priority to GB0618943A priority patent/GB2428823B/en
Publication of WO2005094404A2 publication Critical patent/WO2005094404A2/en
Publication of WO2005094404A3 publication Critical patent/WO2005094404A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0664Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged for the control of a plurality of diverging flows from a single flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0363For producing proportionate flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2514Self-proportioning flow systems
    • Y10T137/2521Flow comparison or differential response
    • Y10T137/2524Flow dividers [e.g., reversely acting controls]

Definitions

  • wafer manufacturing facilities are commonly organized to include areas in which chemical vapor deposition, plasma deposition, plasma etching, sputtering and other similar gas manufacturing processes are carried out.
  • the processing tools such as chemical vapor deposition reactors, vacuum sputtering machines, plasma etchers or plasma enhanced chemical vapor deposition, must be supplied with various process gases. Pure gases must be supplied to the tools in precisely metered quantities.
  • the gases are stored in tanks, which are connected via piping or conduit to a gas box.
  • the gas box delivers precisely metered quantities of pure inert or reactant gases from the tanks of the manufacturing facility to a process tool.
  • the gas box, or gas metering system includes a plurality of gas paths having gas metering units, such as valves, pressure regulators and transducers, mass flow controllers and filters/purifiers. Each gas path has its own inlet for connection to separate sources of gas, but all of the gas paths converge into a single outlet for connection to the process tool.
  • Various semiconductor manufacturing processes such as low or atmospheric pressure chemical-vapor deposition, etching, epitaxy, utilize a showerhead within a process chamber for evenly distributing process gasses over a semiconductor wafer being processed within the process chamber.
  • the showerhead may comprise a single zone, or may comprise two or more zones.
  • Examples of multi-zone showerheads include, but are not limited to, those shown in U.S. patent number 5,453,124 to Moslehi et al., U.S. patent number 5,624,498 to Lee et al, U.S. patent number 5,976,261 to Moslehi et al., U.S. patent number 6,251,187 to Li et al., U.S. patent number 6,302,964 to Umotoy et al., and U.S. patent number 6,676,760 to ? ??holodenko et al.
  • flow dividing systems are used. Examples of flow dividing systems include, but are not limited to, those shown in U.S. patent number 4,369,031 to Goldman et al, U.S. patent number 6,333,272 to McMillin et al., U.S. patent number 6,418,954 to Taylor et al., and published U.S. patent application number 2003/0130807.
  • the flow dividing system and method will incorporate in-situ process (wafer uniformity) monitoring to instantly adjust, if necessary, the flow ratios produced by the flow dividing system and method, and correct semiconductor wafer non-uniformity in real time.
  • in-situ process wafer uniformity
  • the present disclosure provides a system for dividing a single mass flow into two or more secondary mass flows of desired ratios.
  • the system includes an inlet for receiving the single mass flow and at least two secondary flow lines connected to the inlet.
  • the system also includes an input device for receiving at least one desired ratio of flow (i.e., a set point), at least one in-situ process monitor providing measurements of products (e.g., thin film measurements of semiconductor wafers) produced by each of the flows lines, and a controller connected to the input device and the in-situ process monitor.
  • the controller is programmed to receive the desired ratio of flow through the input device, receive the product measurements from the in-situ process monitor, and calculate a corrected ratio of flow based upon the desired ratio of flow and the product measurements.
  • the system includes separate process chambers connected to each flow line, and each process chamber includes at least one of the in-situ process monitors for providing measurements of semiconductor wafers within each process chamber.
  • the system includes a single process chamber connected to all of the flow lines, and a semiconductor wafer positioned in the process chamber is divided into zones corresponding to the flow lines.
  • the flow lines are connected to a showerhead of the process chamber, and the process chamber includes at least one of the in-situ process monitors for providing measurements of each of the zones of the semiconductor wafer within the process chamber.
  • the system provides real time corrections for semiconductor wafer processing inconsistencies.
  • the system can divide a single flow of process gases among separate process chambers or among separate portions of a single process chamber, and incorporates in-situ process (wafer uniformity) monitoring to instantly adjust, if necessary, the flow ratios produced by the flow dividing system to correct semiconductor wafer non-uniformity in real time.
  • the in-situ process monitor comprises a differential sensor.
  • the present disclosure therefore, utilizes sensors that require only relative calibration and avoids a need for absolute calibration, which is tedious, expensive and often unreliable.
  • FIG. 1 is a schematic illustration of a flow dividing system constructed in accordance with the present disclosure, and shown connected between a gas metering box and a showerhead of a single process chamber;
  • Fig. 2 is a flow chart of a method for dividing flow for the system of Fig. 1;
  • FIG. 3 is a schematic illustration of the flow divider system of Fig. 1 shown connected between a gas metering box and two process chambers.
  • the present disclosure provides a flow divider system 10 and method 12 for dividing a single flow of gas (also referred to as mass flow) into a desired ratio of two or more flows.
  • the system 10 and method 12 are particularly intended for use with gas metering systems for delivering contaminant-free, precisely metered quantities of process gases to semiconductor process chambers.
  • the presently disclosed system 10 and method 12 incorporate in-situ process (wafer uniforaiity) monitoring to instantly adjust, if necessary, the flow ratios to correct semiconductor wafer non-uniformity in real time.
  • FIG. 1 is a schematic illustration of an exemplary embodiment of the flow dividing system 10 shown comiected between an exemplary embodiment of a gas metering box 110 and an exemplary embodiment of a showerhead 107 of a single process chamber 106, which is shown holding a semiconductor wafer 200 for processing.
  • the gas metering box 110 receives multiple gases, including for example both process gases and a purge gas, from gas supplies (e.g., gas tanks) 104a, 104b, 104c, 104d (while four tanks are shown, the system can include more or less than four tanks, as desired), for example, and then combines and precisely meters the gases to the flow dividing system 10.
  • gas supplies e.g., gas tanks
  • 104a, 104b, 104c, 104d while four tanks are shown, the system can include more or less than four tanks, as desired
  • the gas box 110 has a plurality of gas sticks 112a, 112b, 112c, 112d (while four sticks are shown, the gas box can include more or less than four).
  • Each stick includes, for example, a mass flow controller (MFC) 114, a valve 116 positioned before the MFC and a valve 118 positioned after the MFC.
  • MFC mass flow controller
  • the gas sticks 112a, 112b, 112c, 112d are separately connected to the gas sources 104a, 104b, 104c, 104d and provide controllable gas passageways so that a contaminant-free, precisely metered amount of a gas, or combination of gases, can be supplied from the gas box 110 to the flow divider system 10.
  • the sticks 112a, 112b, 112c, 112d can also each be provided with other components for monitoring or controlling gases, such as filters, purifiers, and pressure transducers and controllers.
  • the sticks 112a, 112b, 112c, 112d connect together, in an outlet manifold 128 for example, to allow the gas flows from each stick to be mixed if desired prior to leaving the gas box.
  • a vacuum pump 120 is connected to the process chamber 106 through a gate valves 122.
  • the vacuum pump 120 draws gas from the gas sources 104a, 104b, 104c, 104d, through the gas box 110 and the flow divider system 10 and into the process chamber 106, so that the gases can be used to process the semiconductor wafer 200.
  • the processes carried out by the gases in the process chamber 106 can include, but are not limited to, chemical vapor deposition, plasma deposition, plasma etching, and sputtering.
  • the processes may cause layers of material to be deposited or removed from a top surface of the wafer 200, or may cause properties (e.g., porosity) of the top surface of the wafer 200 to be changed. These changes to the wafer 200 can be monitored to determine the progress of the desired process or processes caused by the gases.
  • the presently disclosed flow divider system 10 includes an inlet line or manifold 13 for receiving the single gas flow from the outlet manifold 128 of the gas box 110, and first and second flow lines 14a, 14b connected to the inlet 13.
  • Each line 14a, 14b is provided with a mass flow meter 18a, 18b measuring mass flow t-hrough the line and providing a signal indicative of the measured flow, and a valve 20a, 20b controlling flow through the line based on a signal indicative of a desired flow rate.
  • the ratio system 10 also has a input device 22 for receiving a desired flow ratio (either directly from a human operator or indirectly through a wafer processing computer controller), and a controller 24 connected to the flow meters 18a, 18b, the valves 20a, 20b and the input device 22.
  • the flow ratio ⁇ is defined herein as the flow Q 2 through the second line 14b divided by the flow Qi through the first line 14a.
  • the flow divider system 10 also includes an in-situ process monitor 100 providing measurements of products produced by each of the flows lines 14a, 14b.
  • the in-situ process monitor 100 may, for example, provide a measurement of the thickness of a layer of film being deposited or removed from the top surface of the wafer 200.
  • the in-situ process monitor 100 may alternatively, for example, provide measurements of properties (e.g., porosity) of the top surface of the wafer 200.
  • the measurements provided by the in-situ process monitor 100 are used to determine the progress of the desired process or processes caused by the gases on the wafer 200 within the process chamber 106.
  • In-situ process monitors use advanced thin film metrology such as ellipsometry, optical emission spectroscopy (OES) and interferometry to determine properties, such as deposition film thickness of semiconductor wafers.
  • the in-situ process monitor 100 used as part of the system 10 of the present disclosure comprises a differential sensor that obtains measurements by monitoring a ratio of reflected light and emitted light from a light source.
  • In-situ process monitors are shown, for example, in U.S. Patent No. 5,387,309 to Bobel et al., U.S. Patent No. 6,113,733 to Eriguchi et al., U.S. Patent No. 6,117,348 to Peng et al., U.S. Patent No. 6,278,809 to Johnson et al., U.S. Patent No. 6,563,578 to Halliyal et al, and U.S. Patent No. 6,633,391 to Oluseyi et al., all of which are incorporated herein by reference. In-situ process monitors are presently available, for example, from Jobin Yvon, hie.
  • the flow lines 14a, 14b of the system 10 are both feed into the showerhead 107 of the process chamber 106.
  • the flow Q through the second line 14b therefore affects an outer portion or zone of the wafer 200
  • the flow Qi through the first line 14a affects an inner portion or zone of the wafer 200.
  • the inner zone of the wafer 200 therefore, corresponds to the first flow line 14a and the outer zone of the wafer 200 corresponds to the second flow line 14b.
  • the in-situ process monitor 100 provides at least one measurement Mi from the inner zone of the wafer 200, to indicate the process results of the gas flow through the first flow line 14a.
  • the in-situ process monitor 100 also provides at least one measurement M from the outer zone of the wafer 200, to indicate the process results of the gas flow through the second flow line 14b.
  • the controller 24 is programmed to receive the desired ratio of flow through the input device 22, as shown at 30, receive the signals indicative of measured flow from the flow meters 18a, 18b, as shown at 32, calculate an actual ratio of flow through the flow lines 14a, 14b based upon the measured flow, as shown at 34, and compare the actual ratio to a "corrected" ratio of flow, as shown at 36.
  • the controller 24 is also programmed to calculate the desired flow through at least one of the flow lines 14a, 14b if the actual ratio is unequal to the corrected ratio, as shown at 38, and provide an "adjustment" signal indicative of the desired flow to at least one of the valves 20a, 20b, as shown at 40.
  • the controller 24, therefore, adjusts flow through at least one of the flow lines 14a, 14b until the actual ratio of flow through the lines equals the corrected ratio of flow.
  • the controller 24 is also programmed to receive the measurements Mi and M 2 from the in-situ process monitor 100, as shown at 50 of Fig. 2, and compare the measurements Mi and M 2 as shown at 52. If the measurements Mi and M 2 are equal, indicating that the flows Qi and Q 2 are producing equal process results on the inner and the out zones of the wafer 200, then the controller 24 is programmed to calculate a corrected ratio of flow equal to the desired ratio of flow, as shown at 54. In other words,' no corrections are required since the flows Qi and Q 2 are not producing unequal process results (e.g., unequal film thicl iess on the inner and the out zones of the wafer 200) and the system 10 is operating as desired.
  • the controller 24 is programmed to calculate a corrected ratio of flow, as shown at 56.
  • the corrected ratio of flow is equal to the desired ratio of flow multiplied by the process uniformity error ⁇ m .
  • the corrected ratio of flow can be calculated ( ⁇ m ), wherein/is a function that is determined using a model-based approach based upon the actual physical system used.
  • the controller 24 is programmed to provide an "initial" signal to the valve 20a of the first line 14a indicative of a first desired flow, calculate a second desired flow if the actual flow ratio is unequal to the desired flow ratio, and provide an "adjustment" signal to the valve 20b of the second flow line 14b indicative of the second desired flow.
  • the adjustment signal N c2 is calculated using the following equation:
  • Nc2 K pa ( ⁇ - ⁇ sp ) + K ( ⁇ - ⁇ sp ) dt
  • N c is the command from the controller 24 to the second valve 20b
  • K pa is a proportional gain for the ratio control
  • Kj a is an integral gain for the ratio control
  • is the measured flow ratio
  • ⁇ sp is the ratio set point or desired flow ratio.
  • the valve 20a of the first line 14a acts as a fixed orifice
  • the valve 20b of the second line 14b acts as a variable control valve.
  • the controller 24 is programmed to cause the valve 20a of the first line 14a to fully open, such that the overall pressure drop across the system 10 is minimized.
  • Examples of suitable mass flow meters 18a, 18b for use with the ratio system 10 of the present disclosure are thermally based Mass-Flo ® brand controllers available from the assignee of the present disclosure, ?MKS histruments of Andover, MA (http://www.mksinst.com).
  • Suitable valves 20a, 20b are also available from the assignee.
  • the valves 20a, 20b are non-linear and have a narrow controllable range.
  • the thermal flow meters 18a, 18b are the limiting factor in determining a control range provided by the system 10, since the flow meters are not nonnally reliable below five percent of the maximum sensor range (e.g., a 2,000 seem thermal flow meter is not reliable below 100 seem).
  • the mass flow ratio system 10 can be provided with more than two flow lines 14, with each additional flow line having a valve 20 and a flow meter 18 connected to the controller 24.
  • a mass flow controller can be used as the mass flow meter and the valve of each line.
  • the disclosed ratio system 10 can be provided as a modular unit for quick and easy assembly between a gas box and a process chamber(s). In such a case, a shut-off valve or suitable comiector 150 might be provided between the inlet manifold 13 of the ratio system 10 and the outlet manifold 128 of the gas box 110, as shown in Fig. 1. '
  • Embodiments of a system and a method for dividing flow according to the present invention can further include a pressure sensor for the inlet 13 and/or outlets of the system 10.
  • the inlet pressure and or the outlet pressure measurement provided by the pressure sensor(s) is used by the controller 24 to not only control the ratio ⁇ of the flows, but also control the inlet pressure and/or the outlet pressures.
  • Adding a pressure control feature has a number of ancillary benefits, including improving the system 10 performance and reducing disturbances to devices upstream or downstream of the system 10. By operating the system 10 at the maximum allowable pressures, the need for factors of safety in the ratio control system can be removed or reduced. In addition, controlling the pressure drop across the valves 20a, 20b improves valve performance and makes valve setup, matching, and tuning more simple.
  • the present disclosure is intended, therefore, to include a system and a method for dividing flow, with any added pressure control features.
  • the present disclosure is intended to include the flow divider system 10 plus a pressure sensor(s) in the inlet and/or the outlets of the system.
  • the present disclosure is also intended to include a method 12 of dividing flow plus measuring pressure(s) in the inlet and/or the outlets. In effect, the present application is meant to include any control methodologies using pressure measurements for the claimed flow dividing system and method.
  • the controller 24 is programmed to take three inputs: the flow Q 2 through the second line 14b; the flow Qi through the first line 14a; and a measured pressure Pj n at the inlet 13 as provided by the pressure sensor.
  • the controller 24 is programmed to issue commands to both of the first and the second valves 20a, 20b dynamically, instead of just controlling one valve at a time.
  • the "fixed valve” is mostly open, while the ratio is determined by controlling the other valve between 10% and 50% of a control range of the valve.
  • the fixed valve is set to control the inlet pressure, and the other valve is used to control the flow ratio.
  • N c ⁇ Kp P (P in - P t ) + K ip - P t )dt
  • Nc2 K p ⁇ ( ⁇ - ⁇ sp ) + Ki J( ⁇ - sp ) ',dt
  • N c ⁇ is the command from the controller 24 to the first valve 20a
  • N c2 is the command to the second valve 20b
  • K pp is a proportional gain for pressure control
  • Ki P is an integral gain for the pressure control
  • K p ⁇ is a proportional gain for the ratio control
  • Ki ⁇ is an integral gain for the ratio control
  • is the measured flow ratio
  • ⁇ sp is the ratio set point or desired flow ratio
  • Pi n is the measured inlet pressure
  • P t is an operating pressure threshold (or a desired pressure).
  • control system and method is described as a proportional-plus- integral (PI) type control system and method, it should be appreciated that other types of control systems and methods can be used, such as proportional, integral, proportional- plus-derivative (PD), and proportional-plus-integral-plus-derivative (PID) types of control systems and methods.
  • PI proportional-plus- integral
  • PD proportional-plus-derivative
  • PID proportional-plus-integral-plus-derivative
  • the system 10 includes separate process chambers 106, 108 connected to each flow line 14a, 14b, respectively, and each process chamber 106, 108 includes at least one of the in-situ process monitors 100 for providing measurements of semiconductor wafers 200 within each process chamber.
  • the system 10 provides real time corrections for semiconductor wafer processing inconsistencies.
  • the system 10 can divide a single flow of process gases among separate process chambers 106, 108 or among separate portions of a single process chamber 106, and incorporates in-situ process (wafer uniformity) monitoring to instantly adjust, if necessary, the flow ratios produced by the flow dividing system 10 to correct semiconductor wafer non-uniformity in real time. Since the in-situ process monitor 100 comprises a differential sensor, in-situ process monitor requires only relative calibration and avoids a need for absolute calibration, which is tedious, expensive and often unreliable.

Abstract

A system for dividing a single flow into two or more secondary flows of desired ratios, including an inlet adapted to receive the single flow, at least two secondary flow lines connected to the inlet, an input device adapted to receive at least one desired ratio of flow, at least one in-situ process monitor providing measurements of products produced by each of the flows lines, and a controller connected to the input device and the in-situ process monitor. The controller is programmed to receive the desired ratio of flow through the input device, receive the product measurements from the in-situ process monitor, and calculate a corrected ratio of flow based upon the desired ratio of flow and the product measurements. If the product measurements are not equal, then the corrected ratio of flow will be different than the desired ratio of flow.

Description

SEMICONDUCTOR MANUFACTURING GAS FLOW DIVIDER SYSTEM AND METHOD
Field of the Disclosure
[0001] The present disclosure relates generally to semiconductor manufacturing equipment and, more particularly, to systems and methods for delivering precisely portioned quantities of process gases to semiconductor process chambers. Even more particularly, the present disclosure relates to a system and method for dividing a single flow of process gases into a desired ratio of two or more flows, wherein an in-situ process monitor is used to provide real-time monitoring of processing results produced by each flow and, if the processing results produced by each flow are not equal, then the system and method adjust the ratio of the flows in real time to obtain the desired processing results.
Background of the Disclosure
[0002] The manufacture or fabrication of semiconductor devices often requires the careful synchronization and precisely measured delivery of as many as a dozen gases to a process chamber. Various recipes are used in the manufacturing process, and many discrete processing steps, where a semiconductor device is cleaned, polished, oxidized, masked, etched, doped, metalized, etc., can be required. The steps used, their particular sequence, and the materials involved all contribute to the making of particular devices.
[0003] Accordingly, wafer manufacturing facilities are commonly organized to include areas in which chemical vapor deposition, plasma deposition, plasma etching, sputtering and other similar gas manufacturing processes are carried out. The processing tools, such as chemical vapor deposition reactors, vacuum sputtering machines, plasma etchers or plasma enhanced chemical vapor deposition, must be supplied with various process gases. Pure gases must be supplied to the tools in precisely metered quantities.
[0004] In a typical wafer manufacturing facility the gases are stored in tanks, which are connected via piping or conduit to a gas box. The gas box delivers precisely metered quantities of pure inert or reactant gases from the tanks of the manufacturing facility to a process tool. The gas box, or gas metering system includes a plurality of gas paths having gas metering units, such as valves, pressure regulators and transducers, mass flow controllers and filters/purifiers. Each gas path has its own inlet for connection to separate sources of gas, but all of the gas paths converge into a single outlet for connection to the process tool.
[0005] Sometimes dividing the combined process gases into equal flows, or into unequal but proportional flows, is desired. For example, it may be desirable to divide a single gas flow from a gas box to multiple process chambers, wherein each process chamber receives an equal flow. It may also be desirable to divide a single gas flow from a gas box into separate portions of a single process chamber, wherein each portion of the process chamber receives an equal flow or an unequal but proportional flow.
[0006] Various semiconductor manufacturing processes such as low or atmospheric pressure chemical-vapor deposition, etching, epitaxy, utilize a showerhead within a process chamber for evenly distributing process gasses over a semiconductor wafer being processed within the process chamber. The showerhead may comprise a single zone, or may comprise two or more zones. Examples of multi-zone showerheads include, but are not limited to, those shown in U.S. patent number 5,453,124 to Moslehi et al., U.S. patent number 5,624,498 to Lee et al, U.S. patent number 5,976,261 to Moslehi et al., U.S. patent number 6,251,187 to Li et al., U.S. patent number 6,302,964 to Umotoy et al., and U.S. patent number 6,676,760 to ? ??holodenko et al.
[0007] To ensure that the primary flow of the gas box is divided as desired among separate process chambers or separate portions of a single process chamber, flow dividing systems are used. Examples of flow dividing systems include, but are not limited to, those shown in U.S. patent number 4,369,031 to Goldman et al, U.S. patent number 6,333,272 to McMillin et al., U.S. patent number 6,418,954 to Taylor et al., and published U.S. patent application number 2003/0130807.
[0008] What is still desired is a new and improved gas flow dividing system and method that can be used, for example, to divide a single flow of process gases among separate process chambers or separate portions of a single process chamber. Preferably, the flow dividing system and method will incorporate in-situ process (wafer uniformity) monitoring to instantly adjust, if necessary, the flow ratios produced by the flow dividing system and method, and correct semiconductor wafer non-uniformity in real time.
Summary of the Disclosure
[0009] The present disclosure provides a system for dividing a single mass flow into two or more secondary mass flows of desired ratios. The system includes an inlet for receiving the single mass flow and at least two secondary flow lines connected to the inlet. The system also includes an input device for receiving at least one desired ratio of flow (i.e., a set point), at least one in-situ process monitor providing measurements of products (e.g., thin film measurements of semiconductor wafers) produced by each of the flows lines, and a controller connected to the input device and the in-situ process monitor. The controller is programmed to receive the desired ratio of flow through the input device, receive the product measurements from the in-situ process monitor, and calculate a corrected ratio of flow based upon the desired ratio of flow and the product measurements.
[0010] According to one aspect of the present disclosure, the system includes separate process chambers connected to each flow line, and each process chamber includes at least one of the in-situ process monitors for providing measurements of semiconductor wafers within each process chamber.
[0011] According to another aspect, the system includes a single process chamber connected to all of the flow lines, and a semiconductor wafer positioned in the process chamber is divided into zones corresponding to the flow lines. According to an additional aspect, the flow lines are connected to a showerhead of the process chamber, and the process chamber includes at least one of the in-situ process monitors for providing measurements of each of the zones of the semiconductor wafer within the process chamber.
[0012] Among other aspects and advantages of the present disclosure, the system provides real time corrections for semiconductor wafer processing inconsistencies. The system can divide a single flow of process gases among separate process chambers or among separate portions of a single process chamber,, and incorporates in-situ process (wafer uniformity) monitoring to instantly adjust, if necessary, the flow ratios produced by the flow dividing system to correct semiconductor wafer non-uniformity in real time.
[0013] According to a further aspect of the present disclosure, the in-situ process monitor comprises a differential sensor. The present disclosure, therefore, utilizes sensors that require only relative calibration and avoids a need for absolute calibration, which is tedious, expensive and often unreliable.
[0014] Additional aspects and advantages of the present disclosure will become readily apparent to those s?killed in this art from the following detailed description, wherein an exemplary embodiment of the present disclosure is shown and described, simply by way of illustration. As will be realized, the present disclosure is capable of other and different embodiments and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
Brief Description of the Drawings
[0015] Reference is made to the attached drawings, wherein elements having the same reference characters represent like elements throughout, and wherein:
[0016] Fig. 1 is a schematic illustration of a flow dividing system constructed in accordance with the present disclosure, and shown connected between a gas metering box and a showerhead of a single process chamber;
[0017] Fig. 2 is a flow chart of a method for dividing flow for the system of Fig. 1; and
[0018] Fig. 3 is a schematic illustration of the flow divider system of Fig. 1 shown connected between a gas metering box and two process chambers. Detailed Description of Exemplary Embodiments
[0019] Referring to Figs. 1 and 2, the present disclosure provides a flow divider system 10 and method 12 for dividing a single flow of gas (also referred to as mass flow) into a desired ratio of two or more flows. The system 10 and method 12 are particularly intended for use with gas metering systems for delivering contaminant-free, precisely metered quantities of process gases to semiconductor process chambers. The presently disclosed system 10 and method 12 incorporate in-situ process (wafer uniforaiity) monitoring to instantly adjust, if necessary, the flow ratios to correct semiconductor wafer non-uniformity in real time.
[0020] Fig. 1 is a schematic illustration of an exemplary embodiment of the flow dividing system 10 shown comiected between an exemplary embodiment of a gas metering box 110 and an exemplary embodiment of a showerhead 107 of a single process chamber 106, which is shown holding a semiconductor wafer 200 for processing. The gas metering box 110 receives multiple gases, including for example both process gases and a purge gas, from gas supplies (e.g., gas tanks) 104a, 104b, 104c, 104d (while four tanks are shown, the system can include more or less than four tanks, as desired), for example, and then combines and precisely meters the gases to the flow dividing system 10.
[0021] The gas box 110 has a plurality of gas sticks 112a, 112b, 112c, 112d (while four sticks are shown, the gas box can include more or less than four). Each stick includes, for example, a mass flow controller (MFC) 114, a valve 116 positioned before the MFC and a valve 118 positioned after the MFC. The gas sticks 112a, 112b, 112c, 112d are separately connected to the gas sources 104a, 104b, 104c, 104d and provide controllable gas passageways so that a contaminant-free, precisely metered amount of a gas, or combination of gases, can be supplied from the gas box 110 to the flow divider system 10. Although not shown, the sticks 112a, 112b, 112c, 112d can also each be provided with other components for monitoring or controlling gases, such as filters, purifiers, and pressure transducers and controllers. The sticks 112a, 112b, 112c, 112d connect together, in an outlet manifold 128 for example, to allow the gas flows from each stick to be mixed if desired prior to leaving the gas box. [0022] A vacuum pump 120 is connected to the process chamber 106 through a gate valves 122. During operation, the vacuum pump 120 draws gas from the gas sources 104a, 104b, 104c, 104d, through the gas box 110 and the flow divider system 10 and into the process chamber 106, so that the gases can be used to process the semiconductor wafer 200. The processes carried out by the gases in the process chamber 106 can include, but are not limited to, chemical vapor deposition, plasma deposition, plasma etching, and sputtering. The processes may cause layers of material to be deposited or removed from a top surface of the wafer 200, or may cause properties (e.g., porosity) of the top surface of the wafer 200 to be changed. These changes to the wafer 200 can be monitored to determine the progress of the desired process or processes caused by the gases.
[0023] Referring again to Fig. 1, the presently disclosed flow divider system 10 includes an inlet line or manifold 13 for receiving the single gas flow from the outlet manifold 128 of the gas box 110, and first and second flow lines 14a, 14b connected to the inlet 13. Each line 14a, 14b is provided with a mass flow meter 18a, 18b measuring mass flow t-hrough the line and providing a signal indicative of the measured flow, and a valve 20a, 20b controlling flow through the line based on a signal indicative of a desired flow rate. The ratio system 10 also has a input device 22 for receiving a desired flow ratio (either directly from a human operator or indirectly through a wafer processing computer controller), and a controller 24 connected to the flow meters 18a, 18b, the valves 20a, 20b and the input device 22. The flow ratio α is defined herein as the flow Q2 through the second line 14b divided by the flow Qi through the first line 14a.
[0024] It should be noted that, although the exemplary embodiment of the flow divider system shown 10 in Fig. 1 includes only two flow lines 14a, 14b, a flow divider system constructed in accordance with the present disclosure can be provide with three or more flow lines. *
[0025] The flow divider system 10 also includes an in-situ process monitor 100 providing measurements of products produced by each of the flows lines 14a, 14b. The in-situ process monitor 100 may, for example, provide a measurement of the thickness of a layer of film being deposited or removed from the top surface of the wafer 200. The in-situ process monitor 100 may alternatively, for example, provide measurements of properties (e.g., porosity) of the top surface of the wafer 200. The measurements provided by the in-situ process monitor 100 are used to determine the progress of the desired process or processes caused by the gases on the wafer 200 within the process chamber 106.
[0026] In-situ process monitors use advanced thin film metrology such as ellipsometry, optical emission spectroscopy (OES) and interferometry to determine properties, such as deposition film thickness of semiconductor wafers. According to one exemplary embodiment, the in-situ process monitor 100 used as part of the system 10 of the present disclosure comprises a differential sensor that obtains measurements by monitoring a ratio of reflected light and emitted light from a light source.
[0027] In-situ process monitors are shown, for example, in U.S. Patent No. 5,387,309 to Bobel et al., U.S. Patent No. 6,113,733 to Eriguchi et al., U.S. Patent No. 6,117,348 to Peng et al., U.S. Patent No. 6,278,809 to Johnson et al., U.S. Patent No. 6,563,578 to Halliyal et al, and U.S. Patent No. 6,633,391 to Oluseyi et al., all of which are incorporated herein by reference. In-situ process monitors are presently available, for example, from Jobin Yvon, hie. of Edison, NJ (www.jobinyvon.com), SNT Associates, Inc. of Eden Prairie, -M-Ν (www.svta.com), Micro Photonics Inc. of Allentown, PA (www.microphotonics.com), Luxtron Corporation of Santa Clara, CA (www.luxtron.com), and 4Wave, Inc. of Sterling, NA (www.4waveinc.com).
[0028] In the exemplary embodiment of Fig. 1, the flow lines 14a, 14b of the system 10 are both feed into the showerhead 107 of the process chamber 106. The flow Q through the second line 14b therefore affects an outer portion or zone of the wafer 200, while the flow Qi through the first line 14a affects an inner portion or zone of the wafer 200. The inner zone of the wafer 200, therefore, corresponds to the first flow line 14a and the outer zone of the wafer 200 corresponds to the second flow line 14b.
[0029] In the exemplary embodiment of Fig. 1, the in-situ process monitor 100 provides at least one measurement Mi from the inner zone of the wafer 200, to indicate the process results of the gas flow through the first flow line 14a. The in-situ process monitor 100 also provides at least one measurement M from the outer zone of the wafer 200, to indicate the process results of the gas flow through the second flow line 14b.
[0030] Referring now to Fig. 2, the controller 24 is programmed to receive the desired ratio of flow through the input device 22, as shown at 30, receive the signals indicative of measured flow from the flow meters 18a, 18b, as shown at 32, calculate an actual ratio of flow through the flow lines 14a, 14b based upon the measured flow, as shown at 34, and compare the actual ratio to a "corrected" ratio of flow, as shown at 36. The controller 24 is also programmed to calculate the desired flow through at least one of the flow lines 14a, 14b if the actual ratio is unequal to the corrected ratio, as shown at 38, and provide an "adjustment" signal indicative of the desired flow to at least one of the valves 20a, 20b, as shown at 40. The controller 24, therefore, adjusts flow through at least one of the flow lines 14a, 14b until the actual ratio of flow through the lines equals the corrected ratio of flow.
[0031] The controller 24 is also programmed to receive the measurements Mi and M2 from the in-situ process monitor 100, as shown at 50 of Fig. 2, and compare the measurements Mi and M2 as shown at 52. If the measurements Mi and M2 are equal, indicating that the flows Qi and Q2 are producing equal process results on the inner and the out zones of the wafer 200, then the controller 24 is programmed to calculate a corrected ratio of flow equal to the desired ratio of flow, as shown at 54. In other words,' no corrections are required since the flows Qi and Q2 are not producing unequal process results (e.g., unequal film thicl iess on the inner and the out zones of the wafer 200) and the system 10 is operating as desired.
[0032] If the measurements Mi and M are not equal, indicating that the flows Qi and Q2 are not producing equal process results on the inner and the out zones of the wafer 200, then the controller 24 is programmed to calculate a corrected ratio of flow, as shown at 56. First, the controller 24 calculates a process uniformity error εm = km/2 [(Mι-M2)/(Mι+M2)], wherein km is an arbitrary positive scalar constant, and then calculates the corrected ratio of flow based upon the desired ratio of flow and the process uniformity enor εm. According to one exemplary embodiment, the corrected ratio of flow is equal to the desired ratio of flow multiplied by the process uniformity error εm. Alternatively, the corrected ratio of flow can be calculated (εm), wherein/is a function that is determined using a model-based approach based upon the actual physical system used.
[0033] In one exemplary embodiment, the controller 24 is programmed to provide an "initial" signal to the valve 20a of the first line 14a indicative of a first desired flow, calculate a second desired flow if the actual flow ratio is unequal to the desired flow ratio, and provide an "adjustment" signal to the valve 20b of the second flow line 14b indicative of the second desired flow. The adjustment signal Nc2 is calculated using the following equation:
Nc2 = Kpa(α - αsp) + K (α - αsp)dt
[0034] Wherein Nc is the command from the controller 24 to the second valve 20b, Kpa is a proportional gain for the ratio control, Kja is an integral gain for the ratio control, α is the measured flow ratio, and αsp is the ratio set point or desired flow ratio. In this manner, the valve 20a of the first line 14a acts as a fixed orifice, while the valve 20b of the second line 14b acts as a variable control valve. This feature allows the system 10 to operate independently of the type of gas(es) controlled through the system, since errors in flow measurement due to differing gases are the same for both flow meters 18a, 18b. Preferably, the controller 24 is programmed to cause the valve 20a of the first line 14a to fully open, such that the overall pressure drop across the system 10 is minimized.
[0035] Examples of suitable mass flow meters 18a, 18b for use with the ratio system 10 of the present disclosure are thermally based Mass-Flo® brand controllers available from the assignee of the present disclosure, ?MKS histruments of Andover, MA (http://www.mksinst.com). Suitable valves 20a, 20b are also available from the assignee. The valves 20a, 20b are non-linear and have a narrow controllable range. The thermal flow meters 18a, 18b, however, are the limiting factor in determining a control range provided by the system 10, since the flow meters are not nonnally reliable below five percent of the maximum sensor range (e.g., a 2,000 seem thermal flow meter is not reliable below 100 seem). [0036] Although not shown, the mass flow ratio system 10 can be provided with more than two flow lines 14, with each additional flow line having a valve 20 and a flow meter 18 connected to the controller 24. In addition, it is envisioned that a mass flow controller can be used as the mass flow meter and the valve of each line. Although not shown, it is envisioned that the disclosed ratio system 10 can be provided as a modular unit for quick and easy assembly between a gas box and a process chamber(s). In such a case, a shut-off valve or suitable comiector 150 might be provided between the inlet manifold 13 of the ratio system 10 and the outlet manifold 128 of the gas box 110, as shown in Fig. 1. '
[0037] Embodiments of a system and a method for dividing flow according to the present invention can further include a pressure sensor for the inlet 13 and/or outlets of the system 10. The inlet pressure and or the outlet pressure measurement provided by the pressure sensor(s) is used by the controller 24 to not only control the ratio α of the flows, but also control the inlet pressure and/or the outlet pressures.
[0038] Adding a pressure control feature has a number of ancillary benefits, including improving the system 10 performance and reducing disturbances to devices upstream or downstream of the system 10. By operating the system 10 at the maximum allowable pressures, the need for factors of safety in the ratio control system can be removed or reduced. In addition, controlling the pressure drop across the valves 20a, 20b improves valve performance and makes valve setup, matching, and tuning more simple. The present disclosure is intended, therefore, to include a system and a method for dividing flow, with any added pressure control features. For example, the present disclosure is intended to include the flow divider system 10 plus a pressure sensor(s) in the inlet and/or the outlets of the system. The present disclosure is also intended to include a method 12 of dividing flow plus measuring pressure(s) in the inlet and/or the outlets. In effect, the present application is meant to include any control methodologies using pressure measurements for the claimed flow dividing system and method.
[0039] The following example is made with reference to Fig. 1. Assuming the addition of a pressure sensor (not shown) on the inlet 13 of the mass flow ratio system 10, the controller 24 is programmed to take three inputs: the flow Q2 through the second line 14b; the flow Qi through the first line 14a; and a measured pressure Pjn at the inlet 13 as provided by the pressure sensor. The controller 24 is programmed to issue commands to both of the first and the second valves 20a, 20b dynamically, instead of just controlling one valve at a time. However, in terms of ratio control, the "fixed valve" is mostly open, while the ratio is determined by controlling the other valve between 10% and 50% of a control range of the valve. With the addition of the pressure signal the fixed valve is set to control the inlet pressure, and the other valve is used to control the flow ratio.
[0040] An example of an inlet pressure control could be written as:
Ncι = KpP(Pin - Pt) + Kip - Pt)dt
Nc2 = K(α - αsp) + Ki J(α - sp) ',dt
[0041] Wherein Ncι is the command from the controller 24 to the first valve 20a, and Nc2 is the command to the second valve 20b, Kpp is a proportional gain for pressure control, KiP is an integral gain for the pressure control, K is a proportional gain for the ratio control, Kiα is an integral gain for the ratio control, α is the measured flow ratio, αsp is the ratio set point or desired flow ratio, Pin is the measured inlet pressure, and Pt is an operating pressure threshold (or a desired pressure).
[0042] While the control system and method is described as a proportional-plus- integral (PI) type control system and method, it should be appreciated that other types of control systems and methods can be used, such as proportional, integral, proportional- plus-derivative (PD), and proportional-plus-integral-plus-derivative (PID) types of control systems and methods.
[0043] In Fig. 3, the system 10 includes separate process chambers 106, 108 connected to each flow line 14a, 14b, respectively, and each process chamber 106, 108 includes at least one of the in-situ process monitors 100 for providing measurements of semiconductor wafers 200 within each process chamber. [0044] Among other aspects and advantages of the present disclosure, the system 10 provides real time corrections for semiconductor wafer processing inconsistencies. The system 10 can divide a single flow of process gases among separate process chambers 106, 108 or among separate portions of a single process chamber 106, and incorporates in-situ process (wafer uniformity) monitoring to instantly adjust, if necessary, the flow ratios produced by the flow dividing system 10 to correct semiconductor wafer non-uniformity in real time. Since the in-situ process monitor 100 comprises a differential sensor, in-situ process monitor requires only relative calibration and avoids a need for absolute calibration, which is tedious, expensive and often unreliable.
[0045] The exemplary embodiments described in this specification have been presented by way of illustration rather than limitation, and various modifications, combinations and substitutions may be effected by those skilled in the art without departure either in spirit or scope from this disclosure in its broader aspects and as set forth in the appended claims.

Claims

What is claimed is:
1. A system for dividing a single flow into two or more secondary flows of desired ratios, comprising: an inlet adapted to receive the single flow; at least two secondary flow lines connected to the inlet; an input device adapted to receive at least one desired ratio of flow; at least one in-situ process monitor providing measurements of products produced by each of the flows lines; and a controller connected to the input device and the in-situ process monitor and programmed to, receive the desired ratio of flow through the input device, receive the product measurements from the in-situ process monitor, calculate a corrected ratio of flow based upon the desired ratio of flow and the product measurements.
2. A system according to claim 1, further comprising separate process chambers comiected to each flow line.
3. A system according to claim 2, wherein each process chamber includes at least one of the in-situ process monitors for providing measurements of semiconductor wafers within each process chamber.
4. A system according to claim 3, wherein the measurements provided by the in-situ process monitors comprise film thickness measurements of each wafer.
5. A system according to claim 1, further comprising a single process chamber connected to all of the flow lines, and a semiconductor wafer positioned in the process chamber is divided into zones corresponding to the flow lines.
6. A system according to claim 5, wherein the flow lines are connected to a showerhead of the process chamber.
7. A system according to claim 5, wherein the process chamber includes at least one of the in-situ process monitors for providing measurements of each of the zones of the semiconductor wafer within the process chamber.
8. A system according to claim 7, wherein the measurements provided by the in-situ process monitor comprise film thickness measurements of each zone.
9. A system according to claim 1, wherein the system comprises two flow lines, the in-situ process monitor provides two of the measurements Mi and M2, and the controller is programmed to calculate a process uniformity error εm = km!2 [(Mi- M2)/(Mι+M2)], wherein km is an arbitrary positive scalar constant, and then calculate the corrected ratio of flow based upon the desired ratio of flow and the process uniformity error εm.
10. A system according to claim 1 , wherein the corrected ratio of flow is equal to the desired ratio of flow multiplied by the process uniformity error εm.
11. A system according to claim 1 , wherein the in-situ process monitor is a differential sensor.
12. A system according to claim 11, wherein the in-situ process monitor obtains measurements by monitoring a ratio of reflected light and emitted light from a light source.
13. A system according to claim 1, wherein each flow line includes a flow meter measuring flow through the flow line, and a valve controlling flow through the flow line, and wherein the controller receives measured flows from the flow meters, calculate an actual ratio of flow through the flow lines based upon the measured flows, compares the actual ratio to the corrected ratio of flow, calculates a desired flow through at least one of the flow lines if the actual ratio is unequal to the compensated desired ratio, and provides the desired flow to at least one of the valves.
14. A system according to claim 13, wherein the desired flow is substantially equal to Kp(α - αsp) + K;J(α - sp)dt, wherein Kp is a proportional gain, K; is an integral gain, α is the actual flow ratio, and αsp is the corrected flow ratio.
15. A system according to claim 13, further comprising a pressure sensor measuring pressure in the inlet.
16. A system according to claim 15, wherein the controller is programmed to provide a signal indicative of the desired flow to the valve of the first flow line substantially equal to K(α - αsp) + K;αJ(α - sp)dt, wherein K is a proportional gain for ratio control, Kα is an integral gain for ratio control, α is the actual flow ratio, and αsp is the corrected flow ratio.
17. A system according to claim 16, wherein the controller is programmed to provide a signal indicative of the desired flow to the valve of the second flow line substantially equal to Kpp(Pin - Pt) + Kip p>in - Pt)dt, wherein Kpp is a proportional gain for pressure control, K;p is an integral gain for pressure control, P;n is the measured inlet pressure, and P is an operating pressure threshold.
18. A method for dividing a single flow into two or more secondary flows of desired ratios, comprising: dividing a single flow into at least two flow lines; measuring flow t-hrough each flow line; receiving at least one desired ratio of flow; measuring products produced by each of the flows lines in-situ; calculating a corrected ratio of flow based upon the desired ratio of flow and the product measurements; calculating an actual ratio of mass flow t-hrough the flow lines based upon the measured flows; calculating a desired flow through at least one of the flow lines if the actual ratio does not equal the corrected ratio; and regulating the flow line to the desired flow.
19. A method according to claim 18, wherein: the single mass flow is divided into first and second flow lines; the first flow line is regulated to a first desired flow; a second desired flow is calculated using the desired ratio and the first desired flow if the actual ratio is unequal to the corrected ratio; and the second flow line is regulated to the second desired flow.
20. A method according to claim 19, wherein the first desired flow causes the first line to be fully open.
21. A method according to claim 18, wherein the desired flow is substantially equal to Kp(α - αsp) + K (α - αsp)dt, wherein Kp is a proportional gain, Ki is an integral gain, α is the actual flow ratio, and αsp is the corrected flow ratio.
22. A method according to claim 18, further comprising measuring pressure in the inlets.
23. A method according to claim 22, wherein the desired flow in one of the flow lines is substantially equal to K(α - αsp) + Ki (α - αsp)dt, wherein K is a proportional gain for ratio control, Kjα is an integral gain for ratio control, α is the actual flow ratio, and αsp is the corrected flow ratio.
24. A method according to claim 22, wherein the desired flow in one of the flow lines is substantially equal to Kpp(Pjn - Pt) + Kjp p^ - Pt)dt, wherein Kpp is a proportional gain for pressure control, Kip is an integral gain for pressure control, Pin is the measured inlet pressure, and Pt is an operating pressure threshold.
25. A method according to claim 18, further comprising connecting each flow lines to a separate process chamber.
26. A method according to claim 18, further comprising connecting a single process chamber to all of the flow lines.
27. A method according to claim 26, wherein the flow lines are connected to a showerhead of the process chamber.
28. A method according to claim 18, wherein the corrected ratio of flow is based upon the desired ratio of flow and a process uniformity error εm = km/2 [(M?ι- M2)/(Mι+M2)], wherein km is an arbitrary positive scalar constant, and Mi and M2 are the in-situ measurements of products produced by each flow line.
29. A method according to claim 28, wherein the corrected ratio of flow is equal to the desired ratio of flow multiplied by the process unifonnity error εm.
30. A method according to claim 18, wherein the in-situ measurements of products comprise differential measurements.
31. A method according to claim 18, wherein the in-situ measurements of products are obtained by monitoring a ratio of reflected light and emitted light from a light source.
PCT/US2005/002783 2004-03-09 2005-02-01 Semiconductor manufacturing gas flow divider system and method WO2005094404A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020067020209A KR101113776B1 (en) 2004-03-09 2005-02-01 Semiconductor manufacturing gas flow divider system and method
JP2007502806A JP5300261B2 (en) 2004-03-09 2005-02-01 Gas flow splitting system and method for semiconductor manufacturing
DE112005000485T DE112005000485T5 (en) 2004-03-09 2005-02-01 System and method for dividing a gas flow in semiconductor manufacturing
GB0618943A GB2428823B (en) 2004-03-09 2005-02-01 Semiconductor manufacturing gas flow divider system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/796,693 2004-03-09
US10/796,693 US7072743B2 (en) 2004-03-09 2004-03-09 Semiconductor manufacturing gas flow divider system and method

Publications (2)

Publication Number Publication Date
WO2005094404A2 true WO2005094404A2 (en) 2005-10-13
WO2005094404A3 WO2005094404A3 (en) 2006-09-21

Family

ID=34919914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/002783 WO2005094404A2 (en) 2004-03-09 2005-02-01 Semiconductor manufacturing gas flow divider system and method

Country Status (7)

Country Link
US (1) US7072743B2 (en)
JP (2) JP5300261B2 (en)
KR (1) KR101113776B1 (en)
CN (1) CN1938661A (en)
DE (1) DE112005000485T5 (en)
GB (1) GB2428823B (en)
WO (1) WO2005094404A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127361B2 (en) 2009-12-07 2015-09-08 Mks Instruments, Inc. Methods of and apparatus for controlling pressure in multiple zones of a process tool

Families Citing this family (268)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3985899B2 (en) * 2002-03-28 2007-10-03 株式会社日立国際電気 Substrate processing equipment
US7628861B2 (en) * 2004-12-17 2009-12-08 Mks Instruments, Inc. Pulsed mass flow delivery system and method
US7628860B2 (en) * 2004-04-12 2009-12-08 Mks Instruments, Inc. Pulsed mass flow delivery system and method
US7621290B2 (en) * 2005-04-21 2009-11-24 Mks Instruments, Inc. Gas delivery method and system including a flow ratio controller using antisymmetric optimal control
US9405298B2 (en) * 2006-11-20 2016-08-02 Applied Materials, Inc. System and method to divide fluid flow in a predetermined ratio
US7706925B2 (en) * 2007-01-10 2010-04-27 Mks Instruments, Inc. Integrated pressure and flow ratio control system
US7846497B2 (en) * 2007-02-26 2010-12-07 Applied Materials, Inc. Method and apparatus for controlling gas flow to a processing chamber
US8074677B2 (en) * 2007-02-26 2011-12-13 Applied Materials, Inc. Method and apparatus for controlling gas flow to a processing chamber
US7775236B2 (en) * 2007-02-26 2010-08-17 Applied Materials, Inc. Method and apparatus for controlling gas flow to a processing chamber
US20100084023A1 (en) * 2008-10-07 2010-04-08 Chris Melcer Flow control module for a fluid delivery system
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8771537B2 (en) * 2009-08-20 2014-07-08 Tokyo Electron Limited Plasma treatment device and plasma treatment method
CN102053617B (en) * 2009-10-28 2013-11-13 北京北方微电子基地设备工艺研究中心有限责任公司 On-line calibrating method for FRC (Flow Ratio Controller), system and plasma treatment equipment
WO2011085064A2 (en) * 2010-01-08 2011-07-14 Applied Materials, Inc. N-channel flow ratio controller calibration
JP5562712B2 (en) * 2010-04-30 2014-07-30 東京エレクトロン株式会社 Gas supply equipment for semiconductor manufacturing equipment
CN103003924B (en) * 2010-06-28 2015-07-08 东京毅力科创株式会社 Plasma processing apparatus and plasma processing method
JP5696931B2 (en) * 2010-08-06 2015-04-08 日立金属株式会社 Shunt control device
JP5528374B2 (en) * 2011-03-03 2014-06-25 東京エレクトロン株式会社 Gas decompression supply device, cylinder cabinet including the same, valve box, and substrate processing apparatus
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
JP5739261B2 (en) * 2011-07-28 2015-06-24 株式会社堀場エステック Gas supply system
US8849466B2 (en) 2011-10-04 2014-09-30 Mks Instruments, Inc. Method of and apparatus for multiple channel flow ratio controller system
US9004107B2 (en) * 2012-08-21 2015-04-14 Applied Materials, Inc. Methods and apparatus for enhanced gas flow rate control
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
JP5616416B2 (en) * 2012-11-02 2014-10-29 株式会社フジキン Integrated gas supply device
KR102064552B1 (en) 2013-03-26 2020-01-10 삼성전자주식회사 Substrate treating apparatus
US9632516B2 (en) * 2013-12-19 2017-04-25 Tawan Semiconductor Manufacturing Co., Ltd Gas-supply system and method
US10161060B2 (en) 2013-12-19 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Gas-supply system and method
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9724663B2 (en) 2014-08-05 2017-08-08 Board Of Regents, The University Of Texas System Systems and methods of continuously producing encapsulated liquid water
US20160041089A1 (en) * 2014-08-08 2016-02-11 Minna Hovinen Systems and methods utilizing long wavelength electromagnetic radiation for feature definition
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
JP6417999B2 (en) * 2015-02-19 2018-11-07 東京エレクトロン株式会社 Treatment liquid supply apparatus, treatment liquid supply method, and storage medium
KR101652469B1 (en) 2015-02-27 2016-08-30 주식회사 유진테크 Method for multi-supplying gas and apparatus for multi-supplying gas
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10957561B2 (en) * 2015-07-30 2021-03-23 Lam Research Corporation Gas delivery system
US9620376B2 (en) * 2015-08-19 2017-04-11 Lam Research Corporation Self limiting lateral atomic layer etch
US10192751B2 (en) 2015-10-15 2019-01-29 Lam Research Corporation Systems and methods for ultrahigh selective nitride etch
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10825659B2 (en) 2016-01-07 2020-11-03 Lam Research Corporation Substrate processing chamber including multiple gas injection points and dual injector
US10699878B2 (en) 2016-02-12 2020-06-30 Lam Research Corporation Chamber member of a plasma source and pedestal with radially outward positioned lift pins for translation of a substrate c-ring
US10147588B2 (en) 2016-02-12 2018-12-04 Lam Research Corporation System and method for increasing electron density levels in a plasma of a substrate processing system
US10651015B2 (en) 2016-02-12 2020-05-12 Lam Research Corporation Variable depth edge ring for etch uniformity control
US10438833B2 (en) 2016-02-16 2019-10-08 Lam Research Corporation Wafer lift ring system for wafer transfer
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US20180046206A1 (en) * 2016-08-13 2018-02-15 Applied Materials, Inc. Method and apparatus for controlling gas flow to a process chamber
US10410832B2 (en) 2016-08-19 2019-09-10 Lam Research Corporation Control of on-wafer CD uniformity with movable edge ring and gas injection adjustment
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
KR102457289B1 (en) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102630301B1 (en) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
KR102597978B1 (en) 2017-11-27 2023-11-06 에이에스엠 아이피 홀딩 비.브이. Storage device for storing wafer cassettes for use with batch furnaces
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
WO2019142055A2 (en) 2018-01-19 2019-07-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
TWI799494B (en) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 Deposition method
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
CN111699278B (en) 2018-02-14 2023-05-16 Asm Ip私人控股有限公司 Method for depositing ruthenium-containing films on substrates by cyclical deposition processes
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
KR102501472B1 (en) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
TW202344708A (en) 2018-05-08 2023-11-16 荷蘭商Asm Ip私人控股有限公司 Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
TWI816783B (en) 2018-05-11 2023-10-01 荷蘭商Asm 智慧財產控股公司 Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
TW202013553A (en) 2018-06-04 2020-04-01 荷蘭商Asm 智慧財產控股公司 Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
JP2021529254A (en) 2018-06-27 2021-10-28 エーエスエム・アイピー・ホールディング・ベー・フェー Periodic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
KR20210027265A (en) 2018-06-27 2021-03-10 에이에스엠 아이피 홀딩 비.브이. Periodic deposition method for forming metal-containing material and film and structure comprising metal-containing material
KR20200002519A (en) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11053591B2 (en) * 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (en) 2018-10-01 2020-04-07 Asm Ip控股有限公司 Substrate holding apparatus, system including the same, and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
CN111276421A (en) * 2018-12-05 2020-06-12 北京七星华创流量计有限公司 Flow distribution device, air inlet system and reaction chamber
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (en) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming device structure using selective deposition of gallium nitride, and system for the same
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
JP2020136678A (en) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Method for filing concave part formed inside front surface of base material, and device
KR20200102357A (en) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for plug fill deposition in 3-d nand applications
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
JP2020136677A (en) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Periodic accumulation method for filing concave part formed inside front surface of base material, and device
TW202100794A (en) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
KR20200108248A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. STRUCTURE INCLUDING SiOCN LAYER AND METHOD OF FORMING SAME
JP2020167398A (en) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141003A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system including a gas detector
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP2021015791A (en) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. Plasma device and substrate processing method using coaxial waveguide
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (en) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 Method of forming topologically controlled amorphous carbon polymer films
CN112309843A (en) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 Selective deposition method for achieving high dopant doping
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
KR20210018759A (en) 2019-08-05 2021-02-18 에이에스엠 아이피 홀딩 비.브이. Liquid level sensor for a chemical source vessel
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TW202128273A (en) * 2019-10-08 2021-08-01 荷蘭商Asm Ip私人控股有限公司 Gas injection system, reactor system, and method of depositing material on surface of substratewithin reaction chamber
TW202129060A (en) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 Substrate processing device, and substrate processing method
KR20210043460A (en) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. Method of forming a photoresist underlayer and structure including same
KR20210045930A (en) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. Method of Topology-Selective Film Formation of Silicon Oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
JP7296854B2 (en) * 2019-11-07 2023-06-23 東京エレクトロン株式会社 Gas supply method and substrate processing apparatus
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
KR20210065848A (en) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
CN112992667A (en) 2019-12-17 2021-06-18 Asm Ip私人控股有限公司 Method of forming vanadium nitride layer and structure including vanadium nitride layer
KR20210080214A (en) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. Methods for filling a gap feature on a substrate and related semiconductor structures
KR20210095050A (en) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
TW202146882A (en) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
KR20210116249A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. lockout tagout assembly and system and method of using same
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
KR20210117157A (en) 2020-03-12 2021-09-28 에이에스엠 아이피 홀딩 비.브이. Method for Fabricating Layer Structure Having Target Topological Profile
US11486927B2 (en) * 2020-04-02 2022-11-01 Applied Materials, Inc. Bode fingerprinting for characterizations and failure detections in processing chamber
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210132605A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Vertical batch furnace assembly comprising a cooling gas supply
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
KR20210134226A (en) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. Solid source precursor vessel
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
KR20210143653A (en) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
TW202219628A (en) 2020-07-17 2022-05-16 荷蘭商Asm Ip私人控股有限公司 Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
TW202217037A (en) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
TW202235675A (en) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 Injector, and substrate processing apparatus
CN114639631A (en) 2020-12-16 2022-06-17 Asm Ip私人控股有限公司 Fixing device for measuring jumping and swinging
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
US11940307B2 (en) * 2021-06-08 2024-03-26 Mks Instruments, Inc. Methods and apparatus for pressure based mass flow ratio control
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
CN113944876B (en) * 2021-10-31 2023-05-05 东风商用车有限公司 Multi-gas cylinder gas supply system
US11940819B1 (en) * 2023-01-20 2024-03-26 Applied Materials, Inc. Mass flow controller based fast gas exchange

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040470A (en) * 1988-03-25 1991-08-20 Shell Western E&P Inc. Steam generating system with NOx reduction
US5289678A (en) * 1992-11-25 1994-03-01 Ford Motor Company Apparatus and method of on-board catalytic converter efficiency monitoring
US5719495A (en) * 1990-12-31 1998-02-17 Texas Instruments Incorporated Apparatus for semiconductor device fabrication diagnosis and prognosis
US6813534B2 (en) * 1998-07-10 2004-11-02 Zhifeng Sui Endpoint detection in substrate fabrication processes
US6829056B1 (en) * 2003-08-21 2004-12-07 Michael Barnes Monitoring dimensions of features at different locations in the processing of substrates

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4369031A (en) * 1981-09-15 1983-01-18 Thermco Products Corporation Gas control system for chemical vapor deposition system
JPH02229788A (en) * 1989-02-28 1990-09-12 Sumitomo Metal Ind Ltd Vapor phase growth device
JPH03281780A (en) * 1990-03-30 1991-12-12 Hitachi Ltd Cvd device
DE4017440C2 (en) * 1990-05-30 1994-02-10 Fraunhofer Ges Forschung Method for measuring the layer thickness and the refractive index of a thin layer on a substrate and device for carrying out the method
US5453124A (en) * 1992-12-30 1995-09-26 Texas Instruments Incorporated Programmable multizone gas injector for single-wafer semiconductor processing equipment
KR950020993A (en) * 1993-12-22 1995-07-26 김광호 Semiconductor manufacturing device
JPH08203694A (en) * 1995-01-30 1996-08-09 Hitachi Ltd Plasma treatment device
JP3624476B2 (en) * 1995-07-17 2005-03-02 セイコーエプソン株式会社 Manufacturing method of semiconductor laser device
KR100201386B1 (en) * 1995-10-28 1999-06-15 구본준 Reaction gas injecting apparatus of chemical vapor deposition apparatus
US5772771A (en) * 1995-12-13 1998-06-30 Applied Materials, Inc. Deposition chamber for improved deposition thickness uniformity
US5976261A (en) * 1996-07-11 1999-11-02 Cvc Products, Inc. Multi-zone gas injection apparatus and method for microelectronics manufacturing equipment
US6113733A (en) * 1996-11-08 2000-09-05 Matsushita Electric Industrial Co., Ltd. Apparatus and method for optical evaluation, apparatus and method for manufacturing semiconductor device, method of controlling apparatus for manufacturing semiconductor device, and semiconductor device
US6278809B1 (en) * 1997-05-30 2001-08-21 Ion Optics, Inc. Fiber optic reflectance apparatus for in situ characterization of thin films
US6117348A (en) * 1998-06-03 2000-09-12 Taiwan Semiconductor Manufacturing Company, Ltd Real time monitoring of plasma etching process
US6302964B1 (en) * 1998-06-16 2001-10-16 Applied Materials, Inc. One-piece dual gas faceplate for a showerhead in a semiconductor wafer processing system
JP3787444B2 (en) * 1998-10-28 2006-06-21 キヤノン株式会社 Method and apparatus for forming semiconductor thin film
US6333272B1 (en) * 2000-10-06 2001-12-25 Lam Research Corporation Gas distribution apparatus for semiconductor processing
US6633391B1 (en) * 2000-11-07 2003-10-14 Applied Materials, Inc Monitoring of film characteristics during plasma-based semi-conductor processing using optical emission spectroscopy
US6563578B2 (en) * 2001-04-02 2003-05-13 Advanced Micro Devices, Inc. In-situ thickness measurement for use in semiconductor processing
US6418954B1 (en) * 2001-04-17 2002-07-16 Mks Instruments, Inc. System and method for dividing flow
US6676760B2 (en) * 2001-08-16 2004-01-13 Appiled Materials, Inc. Process chamber having multiple gas distributors and method
US6766260B2 (en) * 2002-01-04 2004-07-20 Mks Instruments, Inc. Mass flow ratio system and method
US6829456B2 (en) * 2002-05-10 2004-12-07 Hewlett-Packard Development Company, L.P. Printer calibration system and method
JP3856730B2 (en) * 2002-06-03 2006-12-13 東京エレクトロン株式会社 A gas diversion supply method to a chamber from a gas supply facility provided with a flow rate control device.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040470A (en) * 1988-03-25 1991-08-20 Shell Western E&P Inc. Steam generating system with NOx reduction
US5719495A (en) * 1990-12-31 1998-02-17 Texas Instruments Incorporated Apparatus for semiconductor device fabrication diagnosis and prognosis
US5289678A (en) * 1992-11-25 1994-03-01 Ford Motor Company Apparatus and method of on-board catalytic converter efficiency monitoring
US6813534B2 (en) * 1998-07-10 2004-11-02 Zhifeng Sui Endpoint detection in substrate fabrication processes
US6829056B1 (en) * 2003-08-21 2004-12-07 Michael Barnes Monitoring dimensions of features at different locations in the processing of substrates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127361B2 (en) 2009-12-07 2015-09-08 Mks Instruments, Inc. Methods of and apparatus for controlling pressure in multiple zones of a process tool

Also Published As

Publication number Publication date
CN1938661A (en) 2007-03-28
KR20070011342A (en) 2007-01-24
WO2005094404A3 (en) 2006-09-21
JP2007528603A (en) 2007-10-11
GB0618943D0 (en) 2006-11-08
US7072743B2 (en) 2006-07-04
JP2012169651A (en) 2012-09-06
KR101113776B1 (en) 2012-02-27
JP5300261B2 (en) 2013-09-25
GB2428823A (en) 2007-02-07
US20050199342A1 (en) 2005-09-15
DE112005000485T5 (en) 2007-01-25
GB2428823B (en) 2008-08-06

Similar Documents

Publication Publication Date Title
US7072743B2 (en) Semiconductor manufacturing gas flow divider system and method
US11053591B2 (en) Multi-port gas injection system and reactor system including same
US6766260B2 (en) Mass flow ratio system and method
US6418954B1 (en) System and method for dividing flow
JP5613752B2 (en) Gas delivery method and system including flow ratio controller using multi antisymmetric optimal control performance configuration
JP5086336B2 (en) Multi-conduit flow rate controller
KR102531896B1 (en) Gas delivery system
KR102568977B1 (en) Flow balancing in gas distribution networks
US9405298B2 (en) System and method to divide fluid flow in a predetermined ratio
TWI525734B (en) And a raw material gas supply device for a semiconductor manufacturing apparatus
TW202224032A (en) Methods and assemblies for gas flow ratio control
US11028482B2 (en) Use of voltage and current measurements to control dual zone ceramic pedestals
US10497542B2 (en) Flow control showerhead with integrated flow restrictors for improved gas delivery to a semiconductor process
Nagarkatti et al. 104aft. 14-re na 104b.--it-112b
WO2002033361A2 (en) Apparatus and method for maintaining a constant pressure drop across a gas metering unit
WO2022261618A1 (en) Methods and apparatus for pressure based mass flow ratio control

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1120050004856

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2007502806

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 0618943.5

Country of ref document: GB

Ref document number: 0618943

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 200580010200.4

Country of ref document: CN

Ref document number: 1020067020209

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067020209

Country of ref document: KR

122 Ep: pct application non-entry in european phase