WO2005108328A1 - ハニカム構造体及びその製造方法 - Google Patents

ハニカム構造体及びその製造方法 Download PDF

Info

Publication number
WO2005108328A1
WO2005108328A1 PCT/JP2004/019382 JP2004019382W WO2005108328A1 WO 2005108328 A1 WO2005108328 A1 WO 2005108328A1 JP 2004019382 W JP2004019382 W JP 2004019382W WO 2005108328 A1 WO2005108328 A1 WO 2005108328A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
cam
cross
material layer
longitudinal direction
Prior art date
Application number
PCT/JP2004/019382
Other languages
English (en)
French (fr)
Inventor
Tomohisa Takahashi
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35238194&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005108328(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to DE602004014271T priority Critical patent/DE602004014271D1/de
Priority to JP2006519313A priority patent/JPWO2005108328A1/ja
Priority to PL04801922T priority patent/PL1626037T3/pl
Priority to EP04801922A priority patent/EP1626037B1/en
Priority to US11/092,902 priority patent/US7846229B2/en
Publication of WO2005108328A1 publication Critical patent/WO2005108328A1/ja
Priority to US12/872,102 priority patent/US7976605B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2466Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the adhesive layers, i.e. joints between segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/9454Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/002Producing shaped prefabricated articles from the material assembled from preformed elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/383Alpha silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/083Carbide interlayers, e.g. silicon carbide interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/09Ceramic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/361Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/28Methods or apparatus for fitting, inserting or repairing different elements by using adhesive material, e.g. cement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/496Multiperforated metal article making
    • Y10T29/49604Filter

Definitions

  • the present invention relates to a filter for removing particulates and the like in exhaust gas discharged from an internal combustion engine such as a diesel engine, and a honeycomb structure used as a catalyst carrier.
  • a her cam unit mainly composed of a porous ceramic having a silicon carbide force in which a large number of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween has been used.
  • a hard cam structure in which a sealing material layer is provided on the outer peripheral portion of a ceramic block bonded with a plurality of steel material layers!
  • honeycomb structures have a circular cross-sectional shape perpendicular to the longitudinal direction, but recently, a cross-sectional shape perpendicular to the longitudinal direction has an elliptical shape (lace track). Shape), an elliptical shape, a substantially triangular shape, a substantially trapezoidal shape, and the like have also been proposed (see, for example, Patent Documents 14 and 14).
  • FIG. 7 (a) is a perspective view schematically showing such a her cam filter having a her cam structure force
  • FIG. 7 (b) is a partially enlarged perspective view showing a part thereof
  • FIG. 8 (a) is a perspective view schematically showing an example of the her cam unit constituting the noise-cam filter shown in FIG. 7, and
  • FIG. 8 (b) is a cross-sectional view taken along line AA.
  • the her cam filter 100 includes a her cam unit made of silicon carbide or the like. A plurality of 110 are bound together through an adhesive layer 101 to form a ceramic block 105, and a coat layer 102 is formed around the ceramic block 105.
  • the end face of the her cam filter 100 has an oval shape, and the pattern of the sealing material layer between the honeycomb units in the cross section perpendicular to the longitudinal direction is almost the same as the long axis of the shape constituting the outline of the cross section. Configured to be vertical! RU
  • the hard cam unit 110 has a large number of through holes 111 arranged in parallel in the longitudinal direction, and a partition wall 113 separating the through holes 111 is used as a filter. It is functioning. That is, in the through-hole 111 formed in the her cam unit 110, as shown in FIG. 8B, either the inlet side or the outlet side end of the exhaust gas is sealed with the sealing material 112. The exhaust gas flowing into one through-hole 111 always passes through the partition wall 113 separating the through-holes 111 and then flows out from the other through-holes 111.
  • the honeycomb structure having such a shape has an effect of suppressing a decrease in resistance to canning (carrying strength).
  • the Hercam filter shown in FIG. 7 has a cross section perpendicular to the longitudinal direction, and a sealing material layer is formed substantially perpendicular to the major axis of the ellipse constituting the outline of the cross section.
  • the length of the sealing material layer formed at right angles is short!
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-273130
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-260322
  • Patent Document 3 International Publication No. 03Z078026A1 Pamphlet
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2003-181233
  • the present invention has been made in view of the above problems, and is capable of maintaining an adhesive strength that makes the sealing material layer difficult to be damaged when the temperature is raised, and has a flat shape with high resistance to physical impact.
  • An object of the present invention is to provide a honeycomb structure.
  • the present invention provides a method of manufacturing a her cam structure that can be cut quickly and efficiently when a flat honeycomb structure is manufactured. Objective.
  • the her cam unit mainly composed of porous ceramics in which a large number of through-holes are arranged in parallel in the longitudinal direction with a partition wall interposed therebetween is interposed between the sealing material layers.
  • a her cam structure in which a sealing material layer is provided on the outer periphery of a flat ceramic block bonded with a plurality of layers,
  • Pattern force of sealant layer between her cam units in a cross section perpendicular to the longitudinal direction It is characterized in that it is formed in an oblique direction with respect to the major axis of the shape constituting the contour of the surface.
  • the her cam structure of the present invention is perpendicular to the longitudinal direction where it is desirable that the area of the cross section perpendicular to the longitudinal direction of the her cam unit constituting the her cam structure is 25 cm 2 or less. It is desirable that the angle formed by the pattern of the sealing material layer between the hard cam units on the cross section and the long axis of the shape that forms the profile of the cross section is in the range of 5 to 85 °.
  • the her cam unit constituting the her cam structure of the present invention preferably includes a catalyst that is preferably made of silicon carbide ceramic. It is desirable to be sealed at the end.
  • a method for manufacturing a honeycomb structure of the present invention is a manufacturing method for manufacturing a flat honeycomb structure
  • a her cam unit attaching step in which a plurality of her cam units mainly composed of porous ceramics in which a plurality of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween are bonded with a sealing material and dried;
  • a nose-cam unit assembly in which a plurality of her-cam units are bonded via a sealing material layer constitutes the pattern force cross-sectional contour of the sealing material layer between the her-cam units in a cross section perpendicular to the longitudinal direction.
  • the pattern force of the sealing material layer between the honeycomb units in the cross section perpendicular to the longitudinal direction is formed in an oblique direction with respect to the major axis of the shape constituting the contour of the cross section.
  • stress hardly concentrates between the sealing material layer as the internal adhesive and the sealing material layer as the outer coating layer, so that the sealing material layer is damaged when the temperature rises. Therefore, the sealing material layer can maintain the adhesive strength.
  • a no-cam structure having excellent durability against physical impact and excellent durability is obtained.
  • a cross section perpendicular to the longitudinal direction is used.
  • the pattern force of the sealing material layer between the two cam units is cut in an oblique direction with respect to the major axis of the shape that forms the contour of the cross section, and a flat ceramic block is produced, so that cutting can be performed quickly.
  • the honeycomb structure can be manufactured efficiently.
  • Patent Document 1 the pattern force of the sealing material layer between the her-cam units in the cross section perpendicular to the longitudinal direction is the length of the shape constituting the contour of the cross section, as in the present invention. What is formed in an oblique direction with respect to the axis is described.
  • the above-mentioned her cam structure is not manufactured by cutting, and various shapes of her cam units are manufactured and bonded in combination to form a her cam structure of a predetermined shape. There is a problem that the manufacturing process becomes complicated.
  • the her cam structure of the present invention includes a plurality of her cam units mainly composed of a porous ceramic in which a large number of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween.
  • a nose-cam structure in which a sealing material layer is provided on the outer periphery of a flat ceramic block attached individually,
  • the pattern force of the sealing material layer between the her cam units in the cross section perpendicular to the longitudinal direction is characterized in that it is formed in an oblique direction with respect to the major axis of the shape constituting the contour of the cross section.
  • FIG. 1 (a) is a perspective view schematically showing an example of the her cam structure of the present invention
  • FIG. 1 (b) is a long axis of the her cam structure shown in FIG. 1 (a).
  • FIG. 2 (a) is a perspective view schematically showing a her cam unit constituting the her cam structure of the present invention
  • FIG. 2 (b) is an A view of the her cam unit shown in FIG. 2 (a).
  • Cross section along line A As shown in FIG. 1 (a), the her cam structure 10 includes a plurality of her cam units 20 each having a silicon carbide equivalent force, which are bound via a sealing material layer (adhesive layer) 11.
  • a ceramic block 15 is formed, and a sealing material layer (coat layer) 12 is formed around the ceramic block 15.
  • the end face of the her cam filter 10 has an oval shape (race track shape), and the length of the shape constituting the contour of the cross section of the pattern force of the sealing material layer between the her cam units in the cross section perpendicular to the longitudinal direction. Formed obliquely to the axis.
  • the hard cam unit 20 has a large number of through holes 21 arranged in parallel in the longitudinal direction, and the partition wall 23 separating the through holes 21 functions as a filter. It comes to be. That is, in the through-hole 21 formed in the her cam unit 20, as shown in FIG. 2B, either the inlet side or the outlet side end of the exhaust gas is sealed with the sealing material 22. The exhaust gas that has flowed into one through hole 21 always passes through the partition wall 23 separating the through holes 21 and then flows out from the other through holes 21.
  • the pattern of the sealing material layer (adhesive layer) 11 between the her cam units 20 in the cross section perpendicular to the longitudinal direction is the long axis of the shape (oval shape) constituting the contour of the cross section.
  • the angle formed between the sealing material layer (adhesive layer) 11 and the sealing material layer (coating layer) 12 between the hard clutch 20 in a cross section perpendicular to the longitudinal direction is formed in an oblique direction. There are more parts that are diagonal.
  • the sealing material layer (Adhesive layer) 101 and the sealing material layer (coat layer) 102 are formed so that the angle between them is almost vertical, and the area where both are in contact is small.
  • the sealing material layer (adhesive) is caused by the difference in these thermal expansion coefficients when the temperature rises.
  • Layer) 10 1 and the force that generates stress between the sealing material layer (coat layer) 102 The stress acts perpendicularly to the sealing material layer (coat layer) 102 and the contact area between the two is small. Further, the force is further increased, and the sealing material layer (coat layer) 102 is easily broken (see FIG. 7).
  • the pattern force of the sealing material layer (adhesive layer) 11 between the her cam units 20 in a cross section perpendicular to the longitudinal direction is oblique to the sealing material layer (coat layer) 12.
  • the contact area between the sealing material layer (adhesive layer) 11 and the sealing material layer (coat layer) 12 is large. Therefore, the vertical force is reduced, and the seal material layer (coat layer) 12 is less likely to break.
  • the pattern force of the sealing material layer (adhesive layer) 11 between the her-cam units 20 in the cross section perpendicular to the longitudinal direction is formed in an oblique direction with respect to the major axis of the shape constituting the contour of the cross section. Therefore, the angle with the partition wall 23 constituting the her cam unit 20 is also inclined, and even if the partition wall 23 is cut, the partition wall 23 is not cut thinly. Therefore, the honeycomb structure is excellent in durability and excellent in durability.
  • the minimum value of the angle formed by the pattern of the sealing material layer 11 between the her cam units in the cross section perpendicular to the longitudinal direction and the major axis of the outer peripheral pattern is preferably 5 °. It is even more desirable to be 30 °, which is more desirable to be 15 °.
  • the maximum value of the angle formed by the major axis of the outer peripheral pattern is preferably 85 °, more preferably 75 °, and even more preferably 60 °.
  • the area of the cross section perpendicular to the longitudinal direction of the her cam unit constituting the her cam structure is 25 cm 2 or less.
  • the cross-sectional area is desirably 1 cm 2 or more.
  • the area of the cross section perpendicular to the longitudinal direction of the Hercam unit is 25 cm 2 or less, the cross-sectional area is small, so even if the temperature difference between the middle and the surrounding area is too large even when the temperature rises, etc. Therefore, the thermal stress is not so large and it is resistant to thermal shock.
  • the Hercam structure of the present invention mainly has a porous ceramic force, and examples of the material include nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride, silicon carbide, and carbonized carbide. Examples thereof include carbide ceramics such as zirconium, titanium carbide, tantalum carbide, and tungsten carbide, and oxide ceramics such as alumina, zirconium, cordierite, mullite, and silica.
  • the hard cam structure 10 is made of silicon and silicon carbide.
  • the composite, aluminum titanate, and two or more kinds of material forces may also be formed.
  • Silicon carbide ceramic means silicon carbide of 60 wt% or more.
  • the particle size of the ceramic used in the production of the Hercam structure 10 is not particularly limited, but it is desirable that the ceramics have less shrinkage in the subsequent firing step, for example, 0.3-50 / A combination of 100 parts by weight of a powder having an average particle diameter of about zm and 5-65 parts by weight of a powder having an average particle diameter of about 0.1 to 1.0 m is desirable U.
  • an integral type hard cam structure made of porous ceramic can be produced.
  • the sealing material 22 and the partition wall 23 constituting the her cam unit 20 have the same porous ceramic force.
  • the adhesive strength between them can be increased, and the porosity of the sealing material 22 is adjusted in the same manner as that of the partition wall 23, so that the thermal expansion coefficient of the partition wall 23 and the thermal expansion coefficient of the sealing material 22 are adjusted.
  • the gap between the sealing material 22 and the partition wall 23 is generated by the thermal stress during manufacturing or use, or the partition wall 23 in the part contacting the sealing material 22 or the sealing material 22 It is possible to prevent cracks from occurring.
  • the sealing material 22 may contain a metal or the like in addition to the ceramic described above in order to adjust its heat capacity.
  • the metal is not particularly limited, and examples thereof include iron, aluminum, metal silicon (Si) and the like. These may be used alone or in combination of two or more.
  • the thickness of the sealing material 22 is not particularly limited.
  • the sealing material 22 is made of porous silicon carbide, it is desirable that the thickness is 1 to 40 mm, and 3 to 20 mm. More desirable
  • the thickness of the partition wall 23 is not particularly limited, but a desirable lower limit is 0.1 mm, and a desirable upper limit is 1.2 mm. If the thickness is less than 1 mm, the strength of the her cam structure 10 is insufficient. 1. If it exceeds 2 mm, the partition wall 23 in contact with the sealing material 22 that seals the inlet-side through hole group 21a will rise in temperature, so heat will be generated near the interface between the sealing material 22 and the partition wall 23. Due to stress Cracks may occur.
  • the sealing material layer 11 is formed between the her cam units 20 and functions as an adhesive that binds the plurality of her cam units 20 together.
  • the sealing material layer 12 is formed on the outer peripheral surface of the ceramic block 15, and when the two-cam structure 10 is installed in the exhaust passage of the internal combustion engine, the outer peripheral surface force of the ceramic block 15 also passes through the through hole. It functions as a sealing material to prevent exhaust gas from leaking out.
  • the sealing material layer 11 and the sealing material layer 12 may have the same material force or may be made of different materials. Furthermore, when the sealing material layer 11 and the sealing material layer 12 are made of the same material, the blending ratio of the materials may be the same or different.
  • the sealing material layer 11 may have a dense physical strength, or may have a porous physical strength so that the exhaust gas can flow into the inside thereof. It is desirable that the sealing material layer 12 has a dense physical strength. This is because the sealing material layer 12 is formed for the purpose of preventing exhaust gas from leaking out of the outer peripheral surface force of the ceramic block 15 when the her cam unit 10 is installed in the exhaust passage of the internal combustion engine.
  • the minimum thickness of the sealing material layer 11 is preferably 0.1 mm, and more preferably 0.2 mm.
  • the maximum thickness of the sealing material layer 11 is preferably 10 mm, and more preferably 3 mm.
  • the minimum value of the thickness of the sealing material layer 12 is 0.1 mm.
  • the maximum thickness of the sealant layer 11 is preferably 10 mm, more preferably 4 mm.
  • the material constituting the sealing material layer 11 and the sealing material layer 12 is not particularly limited, for example,
  • an inorganic binder an organic binder, inorganic fibers and Z or inorganic particles.
  • Examples of the inorganic binder include silica sol and alumina sol. These may be used alone or in combination of two or more. Among the inorganic binders, silica zonole is desirable. [0043] Examples of the organic binder include polybulal alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and the like. These may be used alone or in combination of two or more. Among the above organic binders, carboxylmethylcellulose is desired.
  • the inorganic fibers include ceramic fibers such as silica alumina, mullite, alumina, silica, and the like. These may be used alone or in combination of two or more.
  • alumina fiber and silica-alumina fiber are desirable.
  • the lower limit of the fiber length of the inorganic fiber is desirably 5 m.
  • the upper limit of the fiber length of the inorganic fiber is desirably 100 m force S, which is desirably 100 mm. If the length is less than 5 m, the elasticity of the sealing material layer may not be improved. On the other hand, if it exceeds 100 mm, the inorganic fibers are more likely to form pills. The dispersion may worsen. If the length exceeds 100 m, it may be difficult to reduce the thickness of the sealing material layer.
  • Examples of the inorganic particles include carbides and nitrides. Specific examples include inorganic powders or whiskers such as silicon carbide, silicon nitride, and boron nitride. These may be used alone or in combination of two or more. Of the inorganic particles, silicon carbide having excellent thermal conductivity is desirable.
  • a pore-forming agent such as balloons that are fine hollow spheres containing oxide ceramics, spherical acrylic particles, or graphite may be added to the sealing material paste as necessary.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • the porosity of the honeycomb structure 10 is not particularly limited, but a desirable lower limit is 20%, and a desirable upper limit is 80%. If it is less than 20%, the her cam structure 10 may be clogged immediately.On the other hand, if it exceeds 80%, the strength of the her cam structure 10 is reduced and easily broken. Sometimes.
  • the porosity is, for example, a mercury intrusion method, an Archimedes method, or a scanning electron microscope. It can be measured by a conventionally known method such as measurement by (SEM).
  • the desirable lower limit of the average pore diameter of the Hercam structure 10 is 1 ⁇ m, and the desirable upper limit is 100 ⁇ m. If it is less than 1 ⁇ m, the particulates can easily become clogged. On the other hand, if it exceeds 100 m, the particulates pass through the pores, and the particulates cannot be collected and may not function as a filter.
  • the knot-cam structure 10 shown in FIG. 1 has an oval (race track shape) force.
  • the honeycomb structure of the present invention is not particularly limited as long as it has a flat shape.
  • FIG. As shown, the shape of the cross section perpendicular to the longitudinal direction may be an ellipse, and the shape shown in FIGS. 4 and 5 may also be mentioned.
  • reference numerals 31, 41, and 51 denote inner sheath material layers
  • reference numerals 32, 42, and 52 denote outer peripheral sealing material layers
  • reference numerals 33, 43, and 53 denote noise camouflage. It is.
  • the through hole has an outlet so that the total area of the cross sections perpendicular to the longitudinal direction is relatively large over the entire end face of the her cam structure.
  • the inlet side end portion is sealed with the sealing material so that the sum of the area of the inlet side through hole group in which the end portion on the side is sealed with the sealing material and the cross-sectional area is relatively small.
  • each through-hole has the same cross-sectional area perpendicular to the longitudinal direction and the number of through-holes constituting the inlet-side through-hole group is large
  • individual through-hole groups constituting the inlet-side through-hole group When the through-holes and the individual through-holes constituting the outlet-side through-hole group have different cross-sectional areas and different numbers of through-holes, (3) individual through-holes constituting the inlet-side through-hole group
  • the through-holes constituting the inlet-side through-hole group and the through-holes constituting the Z- or outlet-side through-hole group are each one kind of through-hole having the same shape and the cross-sectional area perpendicular to the longitudinal direction. It may be composed of two or more types of through holes with different shapes and cross-sectional areas perpendicular to the longitudinal direction.
  • the two-cam structure 10 may carry a catalyst capable of purifying CO, HC, NOx and the like in the exhaust gas.
  • the her cam structure 10 By supporting such a catalyst, the her cam structure 10 functions as a filter that collects particulates in the exhaust gas and purifies CO, HC, NOx, etc. contained in the exhaust gas. It functions as a catalytic converter.
  • the catalyst supported on the Hercam structure 10 is not particularly limited as long as it is a catalyst that can purify CO, HC, NOx, and the like in the exhaust gas.
  • a catalyst that can purify CO, HC, NOx, and the like in the exhaust gas.
  • a so-called three-way catalyst that has platinum, noradium and rhodium power is desirable.
  • alkali metals Group 1 of the Periodic Table of Elements
  • alkaline earth metals Group 2 of the Periodic Table of Elements
  • rare earth elements Group 3 of the Periodic Table of Elements
  • transition metal elements etc.
  • the catalyst may be supported on the surface of the pores of the hard cam structure 10, or may be supported with a certain thickness on the partition wall 23. Further, the catalyst may be uniformly supported on the surface of the partition wall 23 and the surface of Z or pores, or may be supported unevenly at a certain place. In particular, it is desirable that both of these are supported on the surface of the partition wall 23 in the through holes 21 constituting the inlet side through hole group or on the surface of the pores near the surface. . This is because the catalyst and the particulates can easily come into contact with each other, so that the particulates can be burned efficiently.
  • the catalyst when the catalyst is applied to the hard cam structure 10, it is desirable to apply the catalyst after the surface is previously coated with a support material such as alumina. As a result, the specific surface area can be increased, the degree of dispersion of the catalyst can be increased, and the number of reaction sites of the catalyst can be increased. In addition, since the catalyst material can be prevented from sintering by the support material, the heat resistance of the catalyst is also improved. It makes it possible to reduce pressure loss.
  • a support material such as alumina
  • the Hercam structure of the present invention on which the catalyst is supported functions as a gas purifier similar to a conventionally known DPF with catalyst (a diesel “particulate” filter). Therefore, the detailed description in the case where the integrated her-cam structure of the present invention also functions as a catalyst carrier is omitted here.
  • the raw material paste is not particularly limited, but it is desirable that the Hercam structure has a porosity of 20 to 80% after manufacture.
  • a powder having a ceramic force as described above, The thing which added the dispersion medium liquid etc. can be mentioned.
  • the ceramic powder is not particularly limited, and examples thereof include oxide ceramics such as cordierite, alumina, silica, and mullite, and carbide ceramics such as silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, and tungsten carbide. And powders of nitride ceramics such as aluminum nitride, silicon nitride, boron nitride and titanium nitride, and composites of silicon carbide and silicon. Among these, mechanical heat resistance is high. Carbide carbide, which has excellent characteristics and high thermal conductivity, is preferable.
  • the particle size of the ceramic powder is not particularly limited, it is preferable that the ceramic powder has less shrinkage in the subsequent firing step.
  • 100 parts by weight of powder having an average particle size of about 0.3-50 / zm A combination of 5-65 parts by weight of powder having an average particle size of about 0.1-1.0 m is preferred.
  • the binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, and epoxy resin.
  • the blending amount of the binder is desirably about 1 to 10 parts by weight per 100 parts by weight of the ceramic powder.
  • the dispersion medium liquid is not particularly limited, and examples thereof include organic solvents such as benzene, alcohols such as methanol, and water.
  • the dispersion medium liquid is blended in an appropriate amount so that the viscosity of the raw material paste is within a certain range.
  • a molding aid may be added to the raw material paste as necessary.
  • the molding aid is not particularly limited.
  • ethylene glycol, dextrin examples include fatty acid sarcophagus and polyalcohol.
  • the raw material paste may be added with a pore-forming agent such as balloons, spherical acrylic particles, and graphite, which are fine hollow spheres containing an acid oxide ceramic as necessary. Good.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • the ceramic molded body is dried using a microwave dryer, hot air dryer, dielectric dryer, vacuum dryer, vacuum dryer, freeze dryer, or the like to obtain a ceramic dried body.
  • the outlet side end portion of the inlet side through hole group and the inlet side end portion of the outlet side through hole group are filled with a predetermined amount of a sealing material paste as a sealing material, and the through holes are filled. Seal it.
  • the above-mentioned sealing material paste is not particularly limited, but it is desirable that the sealing material produced through a subsequent process has a porosity of 20 to 80%.
  • the same material paste as that described above is used.
  • Force that can be used The ceramic powder used in the above raw material paste must contain ceramic fiber, powder that also has the above-mentioned metal force, lubricant, solvent, dispersant, solder, etc. More desirable. This is because it is possible to adjust the heat capacity of the sealing material manufactured through the post-process and to prevent the ceramic particles and the like in the sealing material paste from settling during the sealing process. .
  • the ceramic fiber is not particularly limited, and examples thereof include silica alumina, mullite, alumina, silica and the like. These may be used alone or in combination of two or more.
  • the structured hard cam unit 20 can be manufactured.
  • the conditions for degreasing and firing the ceramic dried body the conditions conventionally used for producing a filter made of a porous ceramic can be applied.
  • the Hercam unit 20 has a lower limit of 10 / ⁇ ⁇ and an upper limit of 70 m. More desirable. Up If the average grain size of the ceramic crystal is less than 2 m, the pore diameter of the pores existing inside the her cam unit will become too narrow and clogged immediately, making it difficult to function as a filter. Become. On the other hand, if the average grain size of the ceramic crystal exceeds 150 m, the pore diameter of the pores present inside the ceramic crystal may become too large, and the strength of the her cam unit may be reduced. In addition, it is not easy to produce a hard cam unit having ceramic crystals having a predetermined proportion of open pores and an average particle size exceeding 150 m.
  • the average pore size of such a hard cam unit is preferably 1 to 40 ⁇ m.
  • an alumina film having a high specific surface area is formed on the surface of the ceramic sintered body obtained by firing, and the promoter is formed on the surface of the alumina film.
  • the ceramic fired body is impregnated with a solution of a metal compound containing aluminum such as
  • Examples thereof include a heating method, a method in which a ceramic fired body is impregnated with a solution containing alumina powder, and a heating method.
  • Examples of a method for imparting a cocatalyst to the alumina film include rare earth such as Ce (NO)
  • Examples thereof include a method in which a ceramic fired body is impregnated with a solution of a metal compound containing an element and heated.
  • a dinitrodiammine platinum nitrate solution [Pt (NH) (NO)] HNO, platinum concentration 4.53 wt%) is used as a ceramic fired body.
  • Examples of the method include impregnation and heating.
  • the sealing material paste layer is then applied to the side surface of the her cam unit 20 with a uniform thickness so as to form the sealing material layer 11. Then, the process of sequentially laminating other her cam units 20 on the sealing material paste layer is repeated to produce a her cam unit assembly having a predetermined size.
  • the her cam unit assembly is heated to dry and solidify the sealing material paste layer.
  • the sealing material layer is 11.
  • honeycomb structure of the present invention is not particularly limited, but it is desirable to use it for an exhaust gas purifying device of a vehicle.
  • FIG. 6 is a cross-sectional view schematically showing an example of an exhaust gas purification device for a vehicle in which the her cam structure of the present invention is installed.
  • the exhaust gas purifying device 70 mainly includes a housing 71, a casing 71 covering the outside of the housing structure 10, and a two-cam structure 80. And an inlet pipe 74 connected to an internal combustion engine such as an engine at the end of the casing 71 where exhaust gas is introduced. A discharge pipe 75 connected to the outside is connected to the other end of the casing 71.
  • the arrows indicate the exhaust gas flow.
  • the her cam structure 80 is the her cam structure 30, 40, 50 shown in FIG. 3-5, which may be the her cam structure 10 shown in FIG. May be.
  • the casing must be shaped to fit each shape.
  • exhaust gas discharged from an internal combustion engine such as an engine is introduced into the casing 71 through the introduction pipe 74, and the inlet side through hole cover also flows into the Hercam structure, passes through the partition wall, and the particulates are collected and purified by this partition wall. It will be discharged to the outside.
  • the exhaust gas purification device 70 when a large amount of particulates accumulates on the partition walls of the her cam structure and the pressure loss increases, the regeneration process of the her cam structure is performed.
  • the her cam structure is heated and the particulates deposited on the partition walls are burned and removed.
  • the patty chelate may be removed by combustion using a post-injection method.
  • the generated shaped body is dried using a microwave dryer or the like to form a ceramic dried body, and then the sealing material paste having the same composition as the generated shaped body has a thickness after drying of 1. Omm. A predetermined through-hole was filled so that
  • the porosity is 42%
  • the average pore size 9 m the size is 34.3 mm X 34.3 mm X 150 mm
  • the number of through holes 21 is 28
  • Zcm 2 partition wall 23 is 0.40 mm thick
  • Table 1 shows the cross-sectional area of the above Hercam unit. As shown in Table 1, the cross-sectional area of the above herm cout was 11.8 cm 2 .
  • the through holes were sealed with a sealing material so as to form a pinecone pattern. That is, when one end surface is sealed with a sealing material so as to have the pattern shown in FIG. 2, the other end surface is sealed with a sealing material so that the opposite pattern is formed. Stopped.
  • ceramic fibers made of alumina silicate as inorganic fibers shot content: 3%, fiber length: 0.1-100 mm) 23.3% by weight, carbon particles having an average particle size of 0.3 m as inorganic particles Silicon powder 30. 2% by weight, silica sol as inorganic binder (contains SiO in sol
  • a sealing material paste layer was formed on the outer periphery of the ceramic block 15 using the sealing material paste. Then, this sealing material paste layer is dried at 120 ° C. to form a sealing material layer 12.
  • the sealing material layer has a thickness of 0.2 mm, a major axis of 200 mm, and a minor axis of 100 mm.
  • a Hercam structure 10 was manufactured. The cross-sectional area of the cross section perpendicular to the longitudinal direction of the her cam structure is 179 cm 2 , and the pattern of the sealing material layer between the her cam units in this cross section and the length of the shape constituting the cross section outline The angle formed by the shaft was 5 °.
  • the cross-sectional area of this her cam unit was 11.8 cm 2 at maximum.
  • a hard cam structure 10 was manufactured in the same manner as in Example 1 except that the values shown in Table 1 were used.
  • the pattern of the sealing material layer between the hard cam units in the cross section perpendicular to the longitudinal direction, The angle between the major axis of the shape that forms the surface contour and the maximum cross-sectional area perpendicular to the longitudinal direction of the honeycomb unit are the values shown in Table 1, and the sealing material (bonding) for bonding the cam unit 20 as agents) paste, fiber length 20 m alumina fiber 30 weight 0/0, the average particle diameter of 0. 6 / zm silicon carbide particles 21% by weight of silica sol 15 wt%, carboxymethyl cellulose 5.6% by weight, and water 28.
  • a ceramic block was prepared using a heat-resistant sealing material (adhesive) paste containing 4% by weight, and ceramic fiber made of alumina silicate (shot content: 3%, Fiber length: 5—100 m) 23. 3 Weight. / 0 , silicon carbide powder with an average particle size of 0.3 m 30.2% by weight, silica sol (content of SiO 2 in sol: 30% by weight) 7% by weight, carboxymethylcellulose 0.5% by weight and water 39
  • a hard cam structure 10 was manufactured in the same manner as in Example 1 except that a sealant layer was formed on the outer periphery of the ceramic block 15 using an outer periphery sealant paste containing wt%.
  • the contour of the end face is the ellipse shown in FIG. 3, the angle between the pattern of the sealing material layer between the two cam units in the cross section perpendicular to the longitudinal direction, and the long axis of the shape constituting the contour of the cross section, and A her cam structure 30 was manufactured in the same manner as in Example 1 except that the maximum cross-sectional area perpendicular to the length direction of the her cam unit was changed to the value shown in Table 1.
  • the angle formed by the pattern of the sealing material layer between the hard cam units in the cross section perpendicular to the longitudinal direction and the long axis of the shape constituting the profile of the cross section, and the maximum cross sectional area perpendicular to the longitudinal direction of the honeycomb unit was a value shown in Table 1, ha - as a sealing material (adhesives) paste for bonding the cam unit 20, fiber length 20 m alumina fiber 30 weight 0/0, silicon carbide having an average particle diameter of 0.
  • a ceramic block was prepared using a heat-resistant sealing material (adhesive) paste containing 21% by weight of particles, 15% by weight of silica sol, 5.6% by weight of carboxymethylcellulose, and 28.4% by weight of water, and the outer periphery.
  • Ceramic fiber made of alumina silicate as part sealing material paste (shot content: 3%, fiber length: 5-100 m) 23.3 weight. / 0 , silicon carbide powder with an average particle size of 0.3 m 30.2% by weight, silica sol (content of SiO 2 in sol: 30% by weight) 7% by weight, carboxymethylcellulose 0.5% by weight and water 39
  • the contour of the end face has a substantially trapezoidal shape as shown in Fig. 5, and the pattern of the sealing material layer between the hard cam units in the cross section perpendicular to the longitudinal direction and the long axis of the shape constituting the cross section contour.
  • the Hercam structure 50 was manufactured in the same manner as in Example 1 except that the angle and the maximum cross-sectional area perpendicular to the length direction of the Hercam unit were set to the values shown in Table 1.
  • the angle formed by the pattern of the sealing material layer between the hard cam units in the cross section perpendicular to the longitudinal direction and the long axis of the shape constituting the profile of the cross section, and the maximum cross sectional area perpendicular to the longitudinal direction of the honeycomb unit was a value shown in Table 1, ha - as a sealing material (adhesives) paste for bonding the cam unit 20, fiber length 20 m alumina fiber 30 weight 0/0, silicon carbide having an average particle diameter of 0.
  • a ceramic block was prepared using a heat-resistant sealing material (adhesive) paste containing 21% by weight of particles, 15% by weight of silica sol, 5.6% by weight of carboxymethylcellulose, and 28.4% by weight of water, and the outer periphery.
  • Ceramic fiber made of alumina silicate as part sealing material paste (shot content: 3%, fiber length: 5-100 m) 23.3 weight. / 0 , silicon carbide powder with an average particle size of 0.3 m 30.2% by weight, silica sol (content of SiO 2 in sol: 30% by weight) 7% by weight, carboxymethylcellulose 0.5% by weight and water 39
  • a hard cam structure 10 was manufactured in the same manner as in Example 17 except that a seal material layer was formed on the outer periphery of the ceramic block 15 using an outer periphery seal material paste containing wt%.
  • a her cam structure 10 was manufactured in the same manner as in Example 1 except that the maximum cross-sectional area perpendicular to the length direction of the her cam unit was changed to the values shown in Table 1.
  • the dimension of the cross section perpendicular to the longitudinal direction of the used hard cue was 5.2 cm X 5.2 cm in Reference Example 1 and 6.3 cm X 6.3 cm in Reference Example 2. .
  • honeycomb structures according to the examples and the comparative examples were each put into an electric furnace, changed in temperature rising rate, held at 700 ° C for 30 minutes, and then slowly cooled to room temperature (20 ° C). Thermal shock A test was conducted.
  • the temperature rise temperature is changed to obtain test conditions for cracks in the sealing material layer (outer peripheral portion) of the her cam structure, and the temperature rise rate under the test conditions is determined by the non-cam structure structure.
  • the thermal shock limit temperature rise rate was used. Table 1 shows the results of the honeycomb structures according to Examples and Comparative Examples.
  • honeycomb structures according to the examples and the comparative examples were each put into an electric furnace, changed in temperature rising speed (10 ° CZmin, 20 ° CZmin), held at 700 ° C for 30 minutes, and then room temperature.
  • a thermal shock test was performed in which the sample was slowly cooled to 20 ° C.
  • each honeycomb structure was placed in a hollow cylindrical jig. After that, select one of the hard cam filters at the approximate center of each of the hard cam structures, and apply pressure in the direction in which the hard cam filter is pushed by a stainless steel cylindrical jig with a diameter of 3 lmm.
  • the breaking load adheresion strength
  • the result was taken as the push-through load (breaking load) of the seal material layer joint after receiving the thermal shock.
  • Table 1 shows the result of the her cam structure according to the example and the comparative example at this time.
  • an Okuma cam grinder N34
  • the circumferential speed of the grinding wheel rotation is fixed at 60 mZsec and the rotational speed of the two-cam structure is set to 20 rpm, while cutting each other while rotating in the longitudinal direction.
  • the maximum machining speed was measured while changing the longitudinal speed (traverse machining speed) of the steel and observing whether or not the cracks were generated.
  • Table 1 shows the speed results at which cracks occurred in the hard cam structures according to the examples and comparative examples.
  • the her cam structure according to the embodiment formed in the above is excellent in thermal shock resistance and heat resistance in each of the outer peripheral sealing material and the sealing material as the adhesive, whereas in the longitudinal direction.
  • the hard cam structure according to the comparative example formed in a direction substantially perpendicular to the long axis of the formed shape has a seal as an outer peripheral sealing material and adhesive as compared with the her cam structure according to the example. Each material was inferior in thermal shock resistance and heat resistance. Further, the her cam structure according to the reference example in which the sectional area of the herm unit is 25 cm 2 or more was slightly inferior in thermal shock resistance to that of the example.
  • FIG. 1 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention, and (b) is a long axis of the two-cam structure shown in (a). It is a figure which shows a short axis.
  • FIG. 2 (a) is a perspective view schematically showing an example of a her cam unit constituting the her cam structure of the present invention
  • FIG. 2 (b) is a no-cam shown in FIG. 2 (a). It is an AA line sectional view of a unit.
  • FIG. 3 is a cross-sectional view schematically showing a cross section perpendicular to the longitudinal direction of another example of the honeycomb structure of the present invention.
  • Fig. 4 is a cross-sectional view schematically showing a cross section perpendicular to the longitudinal direction of another example of the honeycomb structure of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing a cross section perpendicular to the longitudinal direction of another example of the honeycomb structure of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing an example of an exhaust gas purifying device for a vehicle in which the her cam structure of the present invention is installed.
  • FIG. 7 (a) is a perspective view schematically showing an example of a conventional honeycomb structure, and (b) is a partially enlarged perspective view in which a part of the honeycomb structure shown in (a) is enlarged.
  • FIG. 8 (a) is a perspective view schematically showing an example of a her cam unit constituting a conventional her cam structure, and (b) is a two cam cam shown in (a). It is an AA line sectional view of a unit.

Abstract

本発明は、昇温時にシール材層がダメージを受けにくく、接着強度を維持することができ、物理的な衝撃に対する耐性に富む扁平形状のハニカム構造体を提供することを目的とするものであり、本発明のハニカム構造体は、多数の貫通孔が隔壁を隔てて長手方向に並設された多孔質セラミックを主成分とするハニカムユニットが、シール材層を介して複数個接着された扁平形状のセラミックブロックの外周部にシール材層が設けられたハニカム構造体であって、長手方向に垂直な断面におけるハニカムユニット間のシール材層のパターンが、断面の輪郭を構成する形状の長軸に対して斜め方向に形成されていることを特徴とする。

Description

明 細 書
ハニカム構造体及びその製造方法
技術分野
[0001] 本出願は、 2004年 5月 6日に出願された日本国特許出願 2004—137728号を基礎 出願として優先権主張する出願である。
本発明は、ディーゼルエンジン等の内燃機関カゝら排出される排気ガス中のパティキュ レート等を除去するフィルタや、触媒担体等として用いられるハニカム構造体に関す る。
背景技術
[0002] バス、トラック等の車両や建設機械等の内燃機関力も排出される排気ガス中に含有さ れるスス等のパティキュレートが環境や人体に害を及ぼすことが最近問題となってい る。
そこで、排気ガス中のパティキュレートを捕集して、排気ガスを浄ィ匕するフィルタとして 多孔質セラミック力 なるハ-カム構造体を用いたものが種々提案されて 、る。
[0003] 従来、この種のハ-カム構造体として、多数の貫通孔が隔壁を隔てて長手方向に並 設された炭化珪素力もなる多孔質セラミックを主成分とするハ-カムユニットが、シー ル材層を介して複数個接着されたセラミックブロックの外周部にシール材層が設けら れたハ-カム構造体が知られて!/、る。
[0004] これらのハニカム構造体としては、長手方向に垂直な断面の形状が円形状のものが 大部分であるが、最近では、長手方向に垂直な断面の形状が長円形状 (レーストラッ ク形)、楕円形状、略三角形状、略台形状等からなるハニカム構造体も提案されてい る(例えば、特許文献 1一 4参照)。
[0005] 図 7 (a)は、このようなハ-カム構造体力 なるハ-カムフィルタを模式的に示す斜視 図であり、(b)は、その一部を示す部分拡大斜視図である。また、また、図 8 (a)は、図 7に示したノヽ-カムフィルタを構成するハ-カムユニットの一例を模式的に示す斜視 図であり、(b)は、その A— A線断面図である。
[0006] 図 7 (a)に示すように、ハ-カムフィルタ 100は、炭化珪素等からなるハ-カムユニット 110が、接着剤層 101を介して複数個結束されてセラミックブロック 105を構成し、こ のセラミックブロック 105の周囲にコート層 102が形成されている。このハ-カムフィル タ 100の端面は、長円形状をなしており、長手方向に垂直な断面におけるハニカム ユニット間のシール材層のパターンが、断面の輪郭を構成する形状の長軸に対して ほぼ垂直になるように構成されて!、る。
[0007] ハ-カムユニット 110は、図 8 (a)、(b)に示したように、長手方向に多数の貫通孔 11 1が並設され、貫通孔 111同士を隔てる隔壁 113がフィルタとして機能するようになつ ている。即ち、ハ-カムユニット 110に形成された貫通孔 111は、図 8 (b)に示したよう に、排気ガスの入口側又は出口側の端部のいずれかが封止材 112により目封じされ 、一の貫通孔 111に流入した排気ガスは、必ず貫通孔 111を隔てる隔壁 113を通過 した後、他の貫通孔 111から流出されるようになって 、る。
[0008] このような、長手方向に垂直な断面が楕円形のハニカム構造体を製造する際には、 まず、図 8に示した多孔質のセラミック力 なり、端面が巿松模様となるように目封じさ れたハ-カムユニットを製造した後、これら複数のハ-カムユニットをシール材により 接着し、乾燥することにより、ハ-カムユニット集合体を作製する。
次に、長手方向に垂直な断面が長円形になるように切削を行うが、その際、上記断 面におけるハ-カムユニット間のシール材層のパターン力 断面の輪郭を構成する 形状の長軸に対して垂直な長円が形成されるように切削を行 、、最後に外周にシー ル材層を形成し、乾燥することによりハ-カムフィルタの製造を終了する。
[0009] 上記文献によれば、このような形状のハニカム構造体は、キヤニングに対する耐性( キヤユング強度)の低下を抑制することができる等の効果を有することが記載されて ヽ る。
[0010] しかしながら、図 7に示したハ-カムフィルタは、長手方向に垂直な断面に関し、断面 の輪郭を構成する楕円の長軸に対してほぼ直角にシール材層が形成されており、こ の直角に形成されたシール材層は長さが短!、。
このような形状のハ-カム構造体を内燃機関の排気管に設置した際には、昇温時に 短軸方向に応力が集中しやすくなり、なかでも、この長さが短いシール材層に応力が 集中するため、外周に形成されたコート層としてのシール材層と接着層としてのシー ル材層との継ぎ目の部分がダメージを受けやすぐ接着強度が低下してしまうという 問題があった。
[0011] また、短軸に近い部分では、図 7 (b)に示すように、隔壁 113が薄く形成される部分 が存在し、この部分の強度が低くなつてしまうため、物理的な衝撃に弱ぐ輸送時当 にクラックが発生してしまう場合があるという問題があった。
[0012] さらに、切削加工により断面が楕円形状のものを作製する場合、短軸に近い部分を 切削加工する際には、切削方向に対して直角の部分が存在し、その部分は切削によ り大きな応力が作用するため崩れやすい。そこで、削除すべき部分以外の部分が崩 れないように加工速度を遅くする必要があり、加工時間が長くなり、製造コストが高く つくという問題があった。
[0013] 特許文献 1:特開 2002-273130号公報
特許文献 2:特開 2003— 260322号公報
特許文献 3:国際公開第 03Z078026A1号パンフレット
特許文献 4:特開 2003— 181233号公報
発明の開示
発明が解決しょうとする課題
[0014] 本発明は、上記課題に鑑みてなされたものであり、昇温時にシール材層がダメージ を受けにくぐ接着強度を維持することができ、物理的な衝撃に対する耐性に富む扁 平形状のハニカム構造体を提供することを目的とする。
また、本発明は、扁平形状のハニカム構造体を製造する際、迅速に切削加工等を行 うことができ、効率的に製造することができるハ-カム構造体の製造方法を提供する ことを目的とする。
課題を解決するための手段
[0015] すなわち、本発明のハ-カム構造体は、多数の貫通孔が隔壁を隔てて長手方向に 並設された多孔質セラミックを主成分とするハ-カムユニットが、シール材層を介して 複数個接着された扁平形状のセラミックブロックの外周部にシール材層が設けられた ハ-カム構造体であって、
長手方向に垂直な断面におけるハ-カムユニット間のシール材層のパターン力 断 面の輪郭を構成する形状の長軸に対して斜め方向に形成されていることを特徴とす る。
[0016] 本発明のハ-カム構造体は、このハ-カム構造体を構成するハ-カムユニットの長手 方向に垂直な断面の面積が 25cm2以下であることが望ましぐ長手方向に垂直な断 面におけるハ-カムユニット間のシール材層のパターンと、断面の輪郭を構成する形 状の長軸とがなす角度が 5— 85° の範囲内にあることが望ましい。
[0017] 本発明のハ-カム構造体を構成するハ-カムユニットは、炭化珪素質セラミックから なることが望ましぐ触媒が担持されていることが望ましぐ上記貫通孔は、いずれか の端部で封止されてなることが望まし 、。
[0018] 本発明のハニカム構造体の製造方法は、扁平形状のハニカム構造体を製造する製 造方法であって、
多数の貫通孔が隔壁を隔てて長手方向に並設された多孔質セラミックを主成分とす るハ-カムユニットを、シール材により複数個接着し、乾燥させるハ-カムユニット接 着工程と、
上記ハ-カムユニットがシール材層を介して複数個接着されたノヽ-カムユニット集合 体を、長手方向に垂直な断面におけるハ-カムユニット間のシール材層のパターン 力 断面の輪郭を構成する形状の長軸に対して斜め方向になるように切削加工を施 し、扁平形状のセラミックブロックを作製するセラミックブロック作製工程と
を含むことを特徴とする。
発明の効果
[0019] 本発明のハニカム構造体によれば、長手方向に垂直な断面におけるハニカムュニッ ト間のシール材層のパターン力 断面の輪郭を構成する形状の長軸に対して斜め方 向に形成されており、短軸に近 、内部の接着剤としてのシール材層と外周のコート 層としてのシール材層との間に応力が集中しにく 、ため、昇温時にシール材層がダ メージを受けにくぐ従って、シール材層は、接着強度を維持することができる。 また、隔壁に薄い部分が存在しくいので、物理的な衝撃に対する耐性に富み、耐久 性に優れたノヽ-カム構造体となる。
[0020] また、本発明のハニカム構造体の製造方法によれば、長手方向に垂直な断面にお けるハ-カムユニット間のシール材層のパターン力 断面の輪郭を構成する形状の 長軸に対して斜め方向になるように切削し、扁平形状のセラミックブロックを作製する ので、迅速に切削加工等を行うことができ、効率的にハニカム構造体を製造すること ができる。
[0021] なお、特許文献として記載した特許文献 1には、本発明と同様に、長手方向に垂直 な断面におけるハ-カムユニット間のシール材層のパターン力 断面の輪郭を構成 する形状の長軸に対して斜め方向に形成されたものが記載されている。しかしながら 、上記ハ-カム構造体は、切削加工を行うことにより作製されるものではなぐ様々な 形状のハ-カムユニットを製造し、これらを組み合わせて接着することにより所定形状 のハ-カム構造体を製造する方法をとつており、製造工程が複雑となるという問題が ある。
[0022] また、外周のシール材層がない点で本発明のハ-カム構造体と異なり、アイソスタテ イツク強度が低く、破壊されやす ヽという問題点がある。
さらに、上記ハ-カムユニットの長さ方向に垂直な断面の面積が 55mm角のものであ り、断面積が大きすぎるので、昇温等の際等において、温度均一性を保つのが難しく 、熱衝撃に弱ぐクラック等が発生しやすいという問題がある。
発明を実施するための最良の形態
[0023] 本発明のハ-カム構造体は、多数の貫通孔が隔壁を隔てて長手方向に並設された 多孔質セラミックを主成分とするハ-カムユニットが、シール材層を介して複数個接 着された扁平形状のセラミックブロックの外周部にシール材層が設けられたノヽ-カム 構造体であって、
長手方向に垂直な断面におけるハ-カムユニット間のシール材層のパターン力 断 面の輪郭を構成する形状の長軸に対して斜め方向に形成されていることを特徴とす る。
[0024] 図 1 (a)は、本発明のハ-カム構造体の一例を模式的に示す斜視図であり、 (b)は、( a)に示した上記ハ-カム構造体の長軸と短軸とを示している。図 2 (a)は、本発明の ハ-カム構造体を構成するハ-カムユニットを模式的に示す斜視図であり、(b)は、( a)に示した上記ハ-カムユニットの A— A線断面図である。 [0025] 図 1 (a)に示すように、ハ-カム構造体 10は、炭化珪素等力もなるハ-カムユニット 2 0が、シール材層(接着剤層) 11を介して複数個結束されてセラミックブロック 15を構 成し、このセラミックブロック 15の周囲にシール材層(コート層) 12が形成されている。 このハ-カムフィルタ 10の端面は、長円形(レーストラック形)をなしており、長手方向 に垂直な断面におけるハ-カムユニット間のシール材層のパターン力 断面の輪郭 を構成する形状の長軸に対して斜め方向に形成されて ヽる。
[0026] ハ-カムユニット 20は、図 2 (a)、 (b)に示したように、長手方向に多数の貫通孔 21が 並設され、貫通孔 21同士を隔てる隔壁 23がフィルタとして機能するようになって 、る 。即ち、ハ-カムユニット 20に形成された貫通孔 21は、図 2 (b)に示したように、排気 ガスの入り口側又は出口側の端部のいずれかが封止材 22により目封じされ、一の貫 通孔 21に流入した排気ガスは、必ず貫通孔 21を隔てる隔壁 23を通過した後、他の 貫通孔 21から流出するようになって 、る。
[0027] 本発明では、長手方向に垂直な断面におけるハ-カムユニット 20間のシール材層( 接着剤層) 11のパターンが、断面の輪郭を構成する形状 (長円形状)の長軸に対し て斜め方向に形成されているので、長手方向に垂直な断面におけるハ-カムュ-ッ ト 20間のシール材層(接着剤層) 11とシール材層(コート層) 12とのなす角が斜めで ある部分が多くなる。
[0028] 従来のように、長手方向に垂直な断面におけるハニカムユニット間のシール材層の パターンが、断面の輪郭を構成する形状の長軸に対して垂直に形成されていると、 シール材層(接着剤層) 101とシール材層(コート層) 102とのなす角度が、ほぼ垂直 となる部分が多くなり、両者が接触する面積も小さい。
シール材 (接着材、コート材)とハ-カムユニットとは、熱膨張係数等が異なるので、 昇温の際等には、これらの熱膨張係数の相違に起因してシール材層 (接着剤層) 10 1とシール材層(コート層) 102との間に応力が発生する力 その応力はシール材層 ( コート層) 102に対して垂直に作用し、かつ、両者の接触面積も小さいので、さらにそ の力が大きくなり、シール材層(コート層) 102が破壊されやすくなる(図 7参照)。
[0029] しかしながら、本発明では、長手方向に垂直な断面におけるハ-カムユニット 20間の シール材層(接着剤層) 11のパターン力 シール材層(コート層) 12に対して斜め方 向に形成されている部分が多ぐかつ、シール材層(接着剤層) 11とシール材層(コ ート層) 12との接触面積も大きいので、シール材層(コート層) 12に対して垂直に作 用する力は小さくなり、シール材層(コート層) 12の破壊も発生にくい。
[0030] また、長手方向に垂直な断面におけるハ-カムユニット 20間のシール材層(接着剤 層) 11のパターン力 断面の輪郭を構成する形状の長軸に対して斜め方向に形成さ れているので、ハ-カムユニット 20を構成する隔壁 23との角度も斜めになり、隔壁 23 が切削されても、薄くなるように切削されることはなぐ隔壁 23は、物理的な衝撃に対 する耐性に富み、耐久性に優れたハニカム構造体となる。
[0031] 本発明では、長手方向に垂直な断面におけるハ-カムユニット間のシール材層 11の パターンと、外周パターンの長軸とがなす角度の最小値は、 5° であることが望ましく 、 15° であることがより望ましぐ 30° であることが更に望ましい。また、外周パターン の長軸とがなす角度の最大値は、 85° であることが望ましぐ 75° であることがより望 ましぐ 60° であることが更に望ましい。
長手方向に垂直な断面におけるハ-カムユニット間のシール材層 11のパターンと、 外周パターンの長軸とがなす角度が 5° 未満であるか、 85° を超えると、垂直である 場合との差が殆どなぐシール材層が熱衝撃等によりダメージを受けやすぐ隔壁が 薄く形成される部分が存在し、この部分の強度が低くなつてしまう。
[0032] また、本発明では、ハ-カム構造体を構成するハ-カムユニットの長手方向に垂直な 断面の面積が 25cm2以下であることが望ましい。また、上記断面積は、 1cm2以上で あることが望ましい。
上記ハ-カムユニットの長手方向に垂直な断面の面積が 25cm2以下であると、上記 断面積が小さいので、昇温時等においても、真中付近と周辺部との温度差が余り大 きくならず、熱応力が余り大きくならず、熱衝撃に強い。
[0033] 本発明のハ-カム構造体は、主として多孔質セラミック力もなり、その材料としては、 例えば、窒化アルミニウム、窒化ケィ素、窒化ホウ素、窒化チタン等の窒化物セラミツ ク、炭化珪素、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タングステン等の 炭化物セラミック、アルミナ、ジルコ-ァ、コージユライト、ムライト、シリカ等の酸化物セ ラミック等を挙げることができる。また、ハ-カム構造体 10は、シリコンと炭化珪素との 複合体、チタン酸アルミニウムと 、つた 2種類以上の材料力も形成されて 、るものであ つてもよい。
上記多孔質セラミックの材料としては、耐熱性が大きぐ機械的特性に優れ、かつ、 熱伝導率も大きい炭化珪素質セラミックが望ましい。なお、炭化珪素質セラミックとは 、炭化珪素が 60wt%以上のものをいうものとする。
[0034] ハ-カム構造体 10を製造する際に使用するセラミックの粒径としては特に限定されな いが、後の焼成工程で収縮が少ないものが望ましぐ例えば、 0. 3— 50 /z m程度の 平均粒径を有する粉末 100重量部と、 0. 1-1. 0 m程度の平均粒径を有する粉 末 5— 65重量部とを組み合わせたものが望ま U、。上記粒径のセラミック粉末を上記 配合で混合することで、多孔質セラミックからなる一体型ハ-カム構造体を製造する ことができる。
[0035] なお、ハ-カムユニット 20を構成する封止材 22と隔壁 23とは、同じ多孔質セラミック 力もなることがより望ましい。これにより、両者の接着強度を高くすることができるととも に、封止材 22の気孔率を隔壁 23と同様に調整することで、隔壁 23の熱膨張率と封 止材 22の熱膨張率との整合を図ることができ、製造時や使用時の熱応力によって封 止材 22と隔壁 23との間に隙間が生じたり、封止材 22や封止材 22に接触する部分の 隔壁 23にクラックが発生したりすることを防止することができる。
[0036] 封止材 22は、その熱容量を調整するために、上述のセラミックのほか、金属等を含有 していてもよい。
上記金属としては特に限定されず、例えば、鉄、アルミニウム、金属ケィ素(Si)等を 挙げることができる。これらは、単独で用いてもよぐ 2種以上を併用してもよい。
[0037] 封止材 22の厚さは特に限定されないが、例えば、封止材 22が多孔質炭化珪素から なる場合には、 1一 40mmであることが望ましぐ 3— 20mmであることがより望ましい
[0038] 隔壁 23の厚さは特に限定されないが、望ましい下限は 0. 1mmであり、望ましい上限 は 1. 2mmである。 0. 1mm未満であると、ハ-カム構造体 10の強度が充分でないこ と力ある。 1. 2mmを超えると、入口側貫通孔群 21aを封止する封止材 22と接する部 分の隔壁 23が昇温しに《なるため、封止材 22と隔壁 23との界面付近で熱応力によ りクラックが生じてしまうことがある。
[0039] 本発明のハ-カム構造体 10において、シール材層 11は、ハ-カムユニット 20間に 形成され、複数個のハ-カムユニット 20同士を結束する接着剤として機能するもので あり、一方、シール材層 12は、セラミックブロック 15の外周面に形成され、ノ、二カム構 造体 10を内燃機関の排気通路に設置した際、セラミックブロック 15の外周面力も貫 通孔を通過する排気ガスが漏れ出すことを防止するための封止材として機能するも のである。
なお、ハ-カムユニット 10において、シール材層 11とシール材層 12とは、同じ材料 力もなるものであってもよぐ異なる材料からなるものであってもよい。さらに、シール 材層 11及びシール材層 12が同じ材料カゝらなるものである場合、その材料の配合比 は同じであってもよぐ異なっていてもよい。
[0040] ただし、シール材層 11は、緻密体力もなるものであってもよぐその内部への排気ガ スの流入が可能なように、多孔質体力もなるものであってもよいが、シール材層 12は 、緻密体力もなるものであることが望ましい。シール材層 12は、ハ-カムユニット 10を 内燃機関の排気通路に設置した際、セラミックブロック 15の外周面力も排気ガスが漏 れ出すことを防止する目的で形成されているからである。
シール材層 11の厚みの最小値は、 0. 1mmであることが望ましぐ 0. 2mmであるこ とがより望ましい。また、シール材層 11の厚みの最大値は、 10mmであることが望まし く、 3mmであることがより望ましい。
また、シール材層 12の厚みの最小値は、 0. 1mmであることが望ましい。また、シー ル材層 11の厚みの最大値は、 10mmであることが望ましぐ 4mmであることがより望 ましい。
[0041] シール材層 11及びシール材層 12を構成する材料としては特に限定されず、例えば
、無機ノインダ一と有機バインダーと無機繊維及び Z又は無機粒子とからなるもの等 を挙げることができる。
[0042] 上記無機バインダーとしては、例えば、シリカゾル、アルミナゾル等を挙げることがで きる。これらは、単独で用いてもよぐ 2種以上を併用してもよい。上記無機バインダー のなかでは、シリカゾノレが望ましい。 [0043] 上記有機バインダーとしては、例えば、ポリビュルアルコール、メチルセルロース、ェ チルセルロース、カルボキシメチルセルロース等を挙げることができる。これらは、単 独で用いてもよぐ 2種以上を併用してもよい。上記有機バインダーのなかでは、カル ボキシメチルセルロースが望まし 、。
[0044] 上記無機繊維としては、例えば、シリカ アルミナ、ムライト、アルミナ、シリカ等のセラ ミックファイバ一等を挙げることができる。これらは、単独で用いてもよぐ 2種以上を併 用してもよい。上記無機繊維のなかでは、アルミナファイバー、シリカ一アルミナフアイ バーが望ましい。上記無機繊維の繊維長の下限値は、 5 mが望ましい。また、上記 無機繊維の繊維長の上限値は、 100mmが望ましぐ 100 m力 Sより望ましい。 5 m 未満であると、シール材層の弾性を向上させることができない場合があり、一方、 100 mmを超えると、無機繊維が毛玉のような形成をとりやすくなるため、無機粒子との分 散が悪くなることがある。また、 100 mを超えると、シール材層の厚さを薄くすること が困難になる場合がある。
[0045] 上記無機粒子としては、例えば、炭化物、窒化物等を挙げることができ、具体的には 、炭化珪素、窒化珪素、窒化硼素等力 なる無機粉末又はウイスカ一等を挙げること ができる。これらは、単独で用いてもよぐ 2種以上を併用してもよい。上記無機粒子 のなかでは、熱伝導性に優れる炭化珪素が望ま 、。
さらに、上記シール材ペーストには、必要に応じて酸化物系セラミックを成分とする微 小中空球体であるバルーンや、球状アクリル粒子、グラフアイト等の造孔剤を添加し てもよい。
上記バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバ ルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等 を挙げることができる。これらのなかでは、アルミナバルーンが望ましい。
[0046] ハニカム構造体 10の気孔率は特に限定されないが、望ましい下限は 20%であり、望 ましい上限は 80%である。 20%未満であると、ハ-カム構造体 10がすぐに目詰まり を起こすことがあり、一方、 80%を超えると、ハ-カム構造体 10の強度が低下して容 易に破壊されることがある。
なお、上記気孔率は、例えば、水銀圧入法、アルキメデス法及び走査型電子顕微鏡 (SEM)による測定等の従来公知の方法により測定することができる。
[0047] ハ-カム構造体 10の平均気孔径の望ましい下限は 1 μ mであり、望ましい上限は 10 0 μ mである。 1 μ m未満であると、パティキュレートが容易に目詰まりを起こすことが ある。一方、 100 mを超えると、パティキュレートが気孔を通り抜けてしまい、該パテ ィキュレートを捕集することができず、フィルタとして機能しな ヽことがある。
[0048] 図 1に示したノヽ-カム構造体 10は、長円形 (レーストラック形)である力 本発明のハ 二カム構造体は扁平形状であれば特に限定されず、例えば、図 3に示すような長手 方向に垂直な断面の形状が楕円形等を挙げることができ、さらに、図 4や図 5に示す 形状のものも挙げられる。なお、図 3—図 5において、 31、 41、 51は、内部のシーノレ 材層であり、 32、 42、 52は、外周のシール材層であり、 33、 43、 53は、ノヽ-カムュ- ットである。
[0049] また、本発明のハ-カム構造体では、貫通孔は、ハ-カム構造体の端面全体におい て、長手方向に垂直な断面の面積の総和が相対的に大きくなるように、出口側の端 部が封止材により封止されてなる入口側貫通孔群と、上記断面の面積の総和が相対 的に小さくなるように、入口側の端部が上記封止材により封止されてなる出口側貫通 孔群との 2種類の貫通孔カもなるものであってもよ 、。
[0050] なお、上記入口側貫通孔群と上記出口側貫通孔群との組み合わせとしては、(1)入 口側貫通孔群を構成する個々の貫通孔と、出口側貫通孔群を構成する個々の貫通 孔とで、長手方向に垂直な断面の面積が同じであって、入口側貫通孔群を構成する 貫通孔の数が多い場合、(2)入口側貫通孔群を構成する個々の貫通孔と、出口側 貫通孔群を構成する個々の貫通孔とで、上記断面の面積が異なり、両者の貫通孔の 数も異なる場合、(3)入口側貫通孔群を構成する個々の貫通孔と、出口側貫通孔群 を構成する個々の貫通孔とで、入口側貫通孔群を構成する貫通孔の上記断面の面 積が大きぐ両者の貫通孔の数が同じ場合が含まれる。
また、入口側貫通孔群を構成する貫通孔及び Z又は出口側貫通孔群を構成する貫 通孔は、その形状や長手方向に垂直な断面の面積等が同じ 1種の貫通孔からそれ ぞれ構成されていてもよぐその形状や長手方向に垂直な断面の面積等が異なる 2 種以上の貫通孔からそれぞれ構成されて!、てもよ!/、。 [0051] また、ノ、二カム構造体 10には、排気ガス中の CO、 HC及び NOx等を浄化することが できる触媒が担持されて 、てもよ 、。
このような触媒が担持されていることで、ハ-カム構造体 10は、排気ガス中のパティ キュレートを捕集するフィルタとして機能するとともに、排気ガスに含有される CO、 H C及び NOx等を浄ィ匕するための触媒コンバータとして機能する。
[0052] ハ-カム構造体 10に担持させる触媒としては排気ガス中の CO、 HC及び NOx等を 浄ィ匕することができる触媒であれば特に限定されず、例えば、白金、パラジウム、ロジ ゥム等の貴金属等を挙げることができる。なかでも、白金、ノ ラジウム、ロジウム力もな る、いわゆる三元触媒が望ましい。また、貴金属に加えて助触媒として、アルカリ金属 (元素周期表 1族)、アルカリ土類金属 (元素周期表 2族)、希土類元素 (元素周期表 3族)、遷移金属元素等を担持させてもよい。
[0053] 上記触媒は、ハ-カム構造体 10の気孔の表面に担持されていてもよいし、隔壁 23 上にある厚みをもって担持されていてもよい。また、上記触媒は、隔壁 23の表面及び Z又は気孔の表面に均一に担持されていてもよいし、ある一定の場所に偏って担持 されていてもよい。なかでも、入口側貫通孔群を構成する貫通孔 21内における隔壁 23の表面又は表面付近の気孔の表面に担持されていることが望ましぐこれらの両 方ともに担持されていることがより望ましい。上記触媒とパティキュレートとが接触しや すいため、パティキュレートの燃焼を効率よく行うことができるからである。
[0054] また、ハ-カム構造体 10に上記触媒を付与する際には、予めその表面をアルミナ等 のサポート材により被覆した後に、上記触媒を付与することが望ましい。これにより、 比表面積を大きくして、触媒の分散度を高め、触媒の反応部位を増やすことができる 。また、サポート材によって触媒金属のシンタリングを防止することができるので、触 媒の耐熱性も向上する。カロえて、圧力損失を下げることを可能にする。
[0055] 上記触媒が担持された本発明のハ-カム構造体は、従来公知の触媒付 DPF (ディ ーゼル 'パティキュレート'フィルタ)と同様のガス浄ィ匕装置として機能するものである。 従って、ここでは、本発明の一体型ハ-カム構造体が触媒担持体としても機能する場 合の詳しい説明を省略する。
[0056] 次に本発明のハ-カム構造体の製造方法の一例について説明する。 まず、上述したようなセラミックを主成分とする原料ペーストを用いて押出成形を行い 、四角柱形状のセラミック成形体を作製する。
[0057] 上記原料ペーストとしては特に限定されないが、製造後のハ-カム構造体の気孔率 が 20— 80%となるものが望ましぐ例えば、上述したようなセラミック力もなる粉末に、 ノインダー及び分散媒液等を加えたものを挙げることができる。
[0058] 上記セラミック粉末としては特に限定されず、例えば、コージエライト、アルミナ、シリカ 、ムライト等の酸ィ匕物セラミック、炭化ケィ素、炭化ジルコニウム、炭化チタン、炭化タ ンタル、炭化タングステン等の炭化物セラミック、及び、窒化アルミニウム、窒化ケィ素 、窒化ホウ素、窒化チタン等の窒化物セラミック、炭化珪素と珪素の複合体等の粉末 を挙げることができるが、これらのなかでは、耐熱性が大きぐ機械的特性に優れ、か つ、熱伝導率も大きい炭化ケィ素が好ましい。
[0059] 上記セラミック粉末の粒径は特に限定されないが、後の焼成工程で収縮の少ないも のが好ましぐ例えば、 0. 3— 50 /z m程度の平均粒径を有する粉末 100重量部と 0. 1-1. 0 m程度の平均粒径を有する粉末 5— 65重量部とを組み合わせたものが好 ましい。
[0060] 上記バインダーとしては特に限定されず、例えば、メチルセルロース、カルボキシメチ ルセルロース、ヒドロキシェチルセルロース、ポリエチレングリコール、フエノール榭脂 、エポキシ榭脂等を挙げることができる。
上記バインダーの配合量は、通常、セラミック粉末 100重量部に対して、 1一 10重量 部程度が望ましい。
[0061] 上記分散媒液としては特に限定されず、例えば、ベンゼン等の有機溶媒、メタノール 等のアルコール、水等を挙げることができる。
上記分散媒液は、上記原料ペーストの粘度が一定範囲内となるように適量配合され る。
[0062] これらセラミック粉末、バインダー及び分散媒液は、アトライター等で混合し、ニーダ 一等で充分に混練した後、押出成形される。
[0063] また、上記原料ペーストには、必要に応じて成形助剤を添加してもよい。
上記成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、 脂肪酸石鹼、ポリアルコール等を挙げることができる。
[0064] さらに、上記原料ペーストには、必要に応じて酸ィ匕物系セラミックを成分とする微小中 空球体であるバルーンや、球状アクリル粒子、グラフアイト等の造孔剤を添加してもよ い。
上記バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバ ルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等 を挙げることができる。これらのなかでは、アルミナバルーンが望ましい。
[0065] 次に、上記セラミック成形体を、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧 乾燥機、真空乾燥機、凍結乾燥機等を用いて乾燥させ、セラミック乾燥体とする。次 V、で、入口側貫通孔群の出口側の端部、及び、出口側貫通孔群の入口側の端部に 、封止材となる封止材ペーストを所定量充填し、貫通孔を目封じする。
[0066] 上記封止材ペーストとしては特に限定されないが、後工程を経て製造される封止材 の気孔率が 20— 80%となるものが望ましぐ例えば、上記原料ペーストと同様のもの を用いることができる力 上記原料ペーストで用いたセラミック粉末に、セラミックフアイ バー、上述したような金属力もなる粉末、潤滑剤、溶剤、分散剤、ノ^ンダ一等を添 カロしたものであることがより望ましい。後工程を経て製造される封止材の熱容量を調 整することができるとともに、上記封口処理の途中で封止材ペースト中のセラミック粒 子等が沈降することを防止することができるからである。
上記セラミックファイバ一としては特に限定されず、例えば、シリカ アルミナ、ムライト 、アルミナ、シリカ等力もなるものを挙げることができる。これらは、単独で用いてもよく 、 2種以上を併用してもよい。
[0067] 次に、上記封止材ペーストが充填されたセラミック乾燥体に対して、所定の条件で脱 脂、焼成を行うことにより、多孔質セラミックからなり、その全体が一の焼結体から構成 されたハ-カムユニット 20を製造することができる。
上記セラミック乾燥体の脱脂及び焼成の条件は、従来から多孔質セラミックからなる フィルタを製造する際に用いられている条件を適用することができる。
[0068] ハ-カムユニット 20は、平均粒径の下限が 2 μ m、上限が 150 μ mのセラミック結晶 力もなるものであることが望ましぐ下限が 10 /ζ πι、上限が 70 mがより望ましい。上 記セラミック結晶の平均粒径が 2 m未満であると、ハ-カムユニットの内部に存在す る気孔の気孔径カ 、さくなりすぎ、直ぐに目詰まりを起こすため、フィルタとして機能 することが困難となる。一方、上記セラミック結晶の平均粒径が 150 mを超えると、 その内部に存在する気孔の気孔径が大きくなりすぎ、ハ-カムユニットの強度が低下 してしまうおそれがある。また、所定の割合の開放気孔を有し、平均粒径が 150 m を超えるようなセラミック結晶を有するハ-カムユニットを製造すること自体が余り容易 でない。
また、このようなハ-カムユニットの平均気孔径は 1一 40 μ mであることが望ましい。
[0069] なお、ハ-カムユニットに触媒を担持させる場合には、焼成して得られたセラミック焼 成体の表面に高 、比表面積のアルミナ膜を形成し、このアルミナ膜の表面に助触媒
、及び、白金等の触媒を付与することが望ましい。
[0070] 上記セラミック焼成体の表面にアルミナ膜を形成する方法としては、例えば、 Al(NO
) 等のアルミニウムを含有する金属化合物の溶液をセラミック焼成体に含浸させて
3 3
加熱する方法、アルミナ粉末を含有する溶液をセラミック焼成体に含浸させて加熱す る方法等を挙げることがでさる。
上記アルミナ膜に助触媒を付与する方法としては、例えば、 Ce (NO ) 等の希土類
3 3
元素等を含有する金属化合物の溶液をセラミック焼成体に含浸させて加熱する方法 等を挙げることができる。
上記アルミナ膜に触媒を付与する方法としては、例えば、ジニトロジアンミン白金硝酸 溶液([Pt (NH ) (NO ) ]HNO、白金濃度 4. 53重量%)等をセラミック焼成体に
3 2 2 2 3
含浸させて加熱する方法等を挙げることができる。
[0071] また、本発明のハ-カム構造体では、次に、ハ-カムユニット 20の側面に、シール材 層 11となるシール材ペーストを均一な厚さで塗布してシール材ペースト層を形成し、 このシール材ペースト層の上に、順次他のハ-カムユニット 20を積層する工程を繰り 返し、所定の大きさのハ-カムユニット集合体を作製する。
なお、上記シール材ペーストを構成する材料としては、既に説明しているのでここで はその説明を省略する。
[0072] 次に、このハ-カムユニット集合体を加熱してシール材ペースト層を乾燥、固化させ てシール材層 11とする。
次に、ダイヤモンドカッター等を用い、ハ-カムユニット 20がシール材層 11を介して 複数個接着されたハ-カムユニット集合体を、長手方向に垂直な断面におけるハ- カムユニット 20間のシール材層 11のパターン力 断面の輪郭を構成する形状の長 軸に対して斜め方向になるように切削加工を施し、扁平形状のセラミックブロック 15を 作製する。
[0073] そして、セラミックブロック 15の外周に上記シール材ペーストを用いてシール材層 12 を形成することで、ハ-カムユニット 20がシール材層 11を介して複数個接着された 扁平形状のセラミックブロック 15の外周部にシール材層 12が設けられたノヽ-カム構 造体 10を製造することができる。
[0074] 本発明のハニカム構造体の用途は特に限定されないが、車両の排気ガス浄化装置 に用いることが望ましい。
図 6は、本発明のハ-カム構造体が設置された車両の排気ガス浄ィ匕装置の一例を模 式的に示した断面図である。
[0075] 図 6に示したように、排気ガス浄化装置 70は、主に、ハ-カム構造体 80、ハ-カム構 造体 10の外方を覆うケーシング 71、 ノ、二カム構造体 80とケーシング 71との間に配 置される保持シール材 72から構成されており、ケーシング 71の排気ガスが導入され る側の端部には、エンジン等の内燃機関に連結された導入管 74が接続されており、 ケーシング 71の他端部には、外部に連結された排出管 75が接続されている。なお、 図 6中、矢印は排気ガスの流れを示している。
また、図 6において、ハ-カム構造体 80は、図 1に示したハ-カム構造体 10であって もよぐ図 3— 5に示したハ-カム構造体 30、 40、 50であってもよい。ただし、ケーシ ングは、それぞれの形に合うような形状とする必要がある。
[0076] このような構成力もなる排気ガス浄ィ匕装置 70では、エンジン等の内燃機関から排出さ れた排気ガスは、導入管 74を通ってケーシング 71内に導入され、入口側貫通孔カも ハ-カム構造体内に流入し、隔壁を通過して、この隔壁でパティキュレートが捕集さ れて浄化された後、出口側貫通孔からハニカム構造体外に排出され、排出管 75を 通って外部へ排出されることとなる。 [0077] また、排気ガス浄ィ匕装置 70では、ハ-カム構造体の隔壁に大量のパティキュレート が堆積し、圧力損失が高くなると、ハ-カム構造体の再生処理が行われる。
上記再生処理では、図示しな!ヽ加熱手段を用いて加熱されたガスをハニカム構造体 の貫通孔の内部へ流入させることで、ハ-カム構造体を加熱し、隔壁に堆積したパテ ィキュレートを燃焼除去する。また、ポストインジェクション方式を用いてパティキユレ ートを燃焼除去してもよい。
実施例
[0078] 以下に実施例を掲げ、本発明を更に詳しく説明するが、本発明はこれら実施例のみ に限定されるものではない。
[0079] (実施例 1)
平均粒径 10 mの α型炭化珪素粉末 60重量%と、平均粒径 0. 5 mの α型炭化 珪素粉末 40重量%とを湿式混合し、得られた混合物 100重量部に対して、有機バイ ンダー (メチルセルロース)を 5重量部、水を 10重量部加えて混練して混合組成物を 得た。次に、上記混合組成物に可塑剤と潤滑剤とを少量加えてさらに混練した後、 押出成形を行い、図 2 (a)に示した端面形状と略同様の端面形状の生成形体を作製 した。
[0080] 次に、マイクロ波乾燥機等を用いて上記生成形体を乾燥させ、セラミック乾燥体とし た後、上記生成形体と同様の組成の封止材ペーストを乾燥後の厚さが 1. Ommとな るように所定の貫通孔に充填した。
次いで、再び乾燥機を用いて乾燥させた後、 400°Cで脱脂し、常圧のアルゴン雰囲 気下 2200°C、 3時間で焼成を行うことにより、気孔率が 42%、平均気孔径が 9 m、 その大きさが 34. 3mm X 34. 3mm X 150mm,貫通孔 21の数が 28個 Zcm2隔壁 23の厚さが 0. 40mmで、炭化珪素焼結体からなるハ-カムユニット 20を製造した。 上記ハ-カムユニットの断面積を表 1に示す。表 1に示すように、上記ハ-カムュ-ッ トの断面積は、 11. 8cm2であった。
この後、ハ-カムユニット 20では、図 2 (a)に示すように、巿松模様となるように貫通孔 を封止材により封止した。すなわち、一方の端面を、図 2に示すパターンとなるように 、封止材で封止した際には、他方の端面では、逆のパターンとなるように封止材で封 止した。
[0081] 次に、繊維長 0. 2mmのアルミナファイバー 30重量0 /0、平均粒径 0. 6 μ mの炭化珪 素粒子 21重量%、シリカゾル 15重量%、カルボキシメチルセルロース 5. 6重量%、 及び、水 28. 4重量%を含む耐熱性のシール材ペーストを用いて、ハ-カムユニット 20を多数積層させ、続いて、ダイヤモンドカッターを用いて、図 1に示したようなパタ ーンとなるように切断し、端面の輪郭が長円形のセラミックブロック 15を作製した。 このとき、ハ-カム構造体 10を接着するシール材層 11の厚さが 1. Ommとなるように 調整した。
[0082] 次に、無機繊維としてアルミナシリケートからなるセラミックファイバー(ショット含有率: 3%、繊維長: 0. 1— 100mm) 23. 3重量%、無機粒子として平均粒径 0. 3 mの 炭化珪素粉末 30. 2重量%、無機バインダーとしてシリカゾル (ゾル中の SiOの含有
2 率: 30重量%) 7重量%、有機バインダーとしてカルボキシメチルセルロース 0. 5重 量0 /0及び水 39重量%を混合、混練してシール材ペーストを調製した。
[0083] 次に、上記シール材ペーストを用いて、セラミックブロック 15の外周部にシール材ぺ 一スト層を形成した。そして、このシール材ペースト層を 120°Cで乾燥して、シール材 層 12とし、シール材層の厚さが 0. 2mm、長軸が 200mm X短軸が 100mmの端面 の輪郭が長円形のハ-カム構造体 10を製造した。なお、ハ-カム構造体の長手方 向に垂直な断面の断面積は、 179cm2であり、この断面におけるハ-カムユニット間 のシール材層のパターンと、断面の輪郭を構成する形状の長軸とがなす角度は、 5 ° であった。
なお、このハ-カムユニットの断面積は、最大で 11. 8cm2となっていた。
[0084] (実施例 2— 7、比較例 1一 3)
長手方向に垂直な断面におけるハ-カムユニット間のシール材層のパターンと、断 面の輪郭を構成する形状の長軸とがなす角度、及び、ハニカムユニットの長さ方向に 垂直な最大断面積を表 1に示す値にしたほかは、実施例 1と同様にしてハ-カム構 造体 10を製造した。
[0085] (実施例 8)
長手方向に垂直な断面におけるハ-カムユニット間のシール材層のパターンと、断 面の輪郭を構成する形状の長軸とがなす角度、及び、ハニカムユニットの長さ方向に 垂直な最大断面積を表 1に示す値とし、ハ-カムユニット 20を接着するシール材 (接 着剤)ペーストとして、繊維長 20 mのアルミナファイバー 30重量0 /0、平均粒径 0. 6 /z mの炭化珪素粒子 21重量%、シリカゾル 15重量%、カルボキシメチルセルロース 5. 6重量%、及び、水 28. 4重量%を含む耐熱性のシール材 (接着剤)ペーストを用 いてセラミックブロックを作製し、かつ、外周部シール材ペーストとして、アルミナシリケ ートからなるセラミックファイバー(ショット含有率: 3%、繊維長: 5— 100 m) 23. 3 重量。 /0、平均粒径 0. 3 mの炭化珪素粉末 30. 2重量%、シリカゾル(ゾル中の SiO の含有率: 30重量%) 7重量%、カルボキシメチルセルロース 0. 5重量%及び水 39
2
重量%を含む外周部シール材ペーストを用いてセラミックブロック 15の外周部にシー ル材層を形成したほかは、実施例 1と同様にしてハ-カム構造体 10を製造した。
[0086] (実施例 9一 15、比較例 4一 6)
端面の輪郭を図 3に示す楕円形とするとともに、長手方向に垂直な断面におけるハ 二カムユニット間のシール材層のパターンと、断面の輪郭を構成する形状の長軸とが なす角度、及び、ハ-カムユニットの長さ方向に垂直な最大断面積を表 1に示す値に したほかは、実施例 1と同様にしてハ-カム構造体 30を製造した。
[0087] (実施例 16)
長手方向に垂直な断面におけるハ-カムユニット間のシール材層のパターンと、断 面の輪郭を構成する形状の長軸とがなす角度、及び、ハニカムユニットの長さ方向に 垂直な最大断面積を表 1に示す値とし、ハ-カムユニット 20を接着するシール材 (接 着剤)ペーストとして、繊維長 20 mのアルミナファイバー 30重量0 /0、平均粒径 0. 6 /z mの炭化珪素粒子 21重量%、シリカゾル 15重量%、カルボキシメチルセルロース 5. 6重量%、及び、水 28. 4重量%を含む耐熱性のシール材 (接着剤)ペーストを用 いてセラミックブロックを作製し、かつ、外周部シール材ペーストとして、アルミナシリケ ートからなるセラミックファイバー(ショット含有率: 3%、繊維長: 5— 100 m) 23. 3 重量。 /0、平均粒径 0. 3 mの炭化珪素粉末 30. 2重量%、シリカゾル(ゾル中の SiO の含有率: 30重量%) 7重量%、カルボキシメチルセルロース 0. 5重量%及び水 39
2
重量%を含む外周部シール材ペーストを用いてセラミックブロック 15の外周部にシー ル材層を形成したほかは、実施例 9と同様にしてハ-カム構造体 10を製造した。
[0088] (実施例 17— 23、比較例 7— 9)
端面の輪郭を図 5に示す略台形形状とするとともに、長手方向に垂直な断面におけ るハ-カムユニット間のシール材層のパターンと、断面の輪郭を構成する形状の長軸 とがなす角度、及び、ハ-カムユニットの長さ方向に垂直な最大断面積を表 1に示す 値にしたほかは、実施例 1と同様にしてハ-カム構造体 50を製造した。
[0089] (実施例 24)
長手方向に垂直な断面におけるハ-カムユニット間のシール材層のパターンと、断 面の輪郭を構成する形状の長軸とがなす角度、及び、ハニカムユニットの長さ方向に 垂直な最大断面積を表 1に示す値とし、ハ-カムユニット 20を接着するシール材 (接 着剤)ペーストとして、繊維長 20 mのアルミナファイバー 30重量0 /0、平均粒径 0. 6 /z mの炭化珪素粒子 21重量%、シリカゾル 15重量%、カルボキシメチルセルロース 5. 6重量%、及び、水 28. 4重量%を含む耐熱性のシール材 (接着剤)ペーストを用 いてセラミックブロックを作製し、かつ、外周部シール材ペーストとして、アルミナシリケ ートからなるセラミックファイバー(ショット含有率: 3%、繊維長: 5— 100 m) 23. 3 重量。 /0、平均粒径 0. 3 mの炭化珪素粉末 30. 2重量%、シリカゾル(ゾル中の SiO の含有率: 30重量%) 7重量%、カルボキシメチルセルロース 0. 5重量%及び水 39
2
重量%を含む外周部シール材ペーストを用いてセラミックブロック 15の外周部にシー ル材層を形成したほかは、実施例 17と同様にしてハ-カム構造体 10を製造した。
[0090] (参考例 1一 2)
ハ-カムユニットの長さ方向に垂直な最大断面積を表 1に示す値に変更したほかは、 実施例 1と同様にしてハ-カム構造体 10を製造した。ちなみに、用いたハ-カムュ- ットの長さ方向に垂直な断面の寸法は、参考例 1では、 5. 2cm X 5. 2cm、参考例 2 では、 6. 3cm X 6. 3cmで teつた。
[0091] (評価)
(1)熱衝撃試験 (シール材層外周部)
各実施例及び比較例に係るハニカム構造体を、それぞれ、電気炉にいれて、昇温速 度を変更させて、 700°Cで 30分保持した後、室温(20°C)にゆっくり冷却する熱衝撃 試験を行った。
上記熱衝撃試験は、昇温温度を変更させて、ハ-カム構造体のシール材層(外周部 )にクラックが生じる試験条件を求め、その試験条件での昇温速度をノヽニカム構造体 の耐熱衝撃限界昇温速度とした。実施例及び比較例に係るハニカム構造体の結果 を表 1に示す。
[0092] (2)熱衝撃試験 (シール材層接合部)
各実施例及び比較例に係るハニカム構造体を、それぞれ、電気炉にいれて、昇温速 度を変更(10°CZmin、 20°CZmin)させて、 700°Cで 30分保持した後、室温(20°C) にゆっくり冷却する熱衝撃試験を行った。
上記熱衝撃試験の後に、それぞれのハニカム構造体を中空状の円筒治具内に設置 した。その後、それぞれのハ-カム構造体の略中央部分のハ-カムフィルタを 1本選 択し、そのハ-カムフィルタを、直径 3 lmmのステンレス製の円筒治具によって、押し ぬかれる方向に圧力を加えて、破壊される荷重 (接着強度)を測定し、その結果によ つて、熱衝撃を受けた後のシール材層接合部の押しぬき荷重 (破壊荷重)とした。 この時の実施例及び比較例に係るハ-カム構造体の結果を表 1に示す。
[0093] (3)切削'加工に対する耐加工性
切削装置として、オークマ社製 カム研削機 (N34)を用いた。そして、砥石 SD200 N75MF04,砥石回転の周速を 60mZsecと回転速度を固定した上で、ノ、二カム構 造体の回転数を 20rpmとして互いに回転しながら、長手方向に切削加工していくと きの長手方向の速度(トラバース加工速度)を変更させて、クラック等が発生する力否 かを観察しながら、最高加工速度を測定した。
実施例及び比較例に係るハ-カム構造体のクラックが発生した速度結果を表 1に示 す。
[0094] [表 1] 取大 押しぬき荷重(kg) 限界加工 ハニカム構造体 耐熱衝撃限
断面積 角度
界昇温速度
断面形状 (° ) (熱処理 10°C (熱処理 20°C 速度 kcm:) (°C/min) /min後) /min後) (mm/ mm) 実施例 1 図 1 (長円形状) 11.8 5 10 1500 1000 200 実施例 2 図 1 (長円形状) 11.8 15 15 1600 1400 230 実施例 3 図 1 (長円形状) 11.8 30 18 1650 1450 240 実施例 4 図 1 (長円形状) 11.8 45 20 1700 1500 250 実施例 5 図 1 (長円形状) 11.8 60 18 1650 1450 240 実施例 6 図 1 (長円形状) 11.8 75 15 1600 1400 230 実施例 7 図 1 (長円形状) 11.8 85 10 1500 1000 200 実施例 8 図 1 (長円形状) 11.8 45 20 1700 1500 250 比較例 1 図 1 (長円形状) 11.8 0 5 900 500 185 比較例 2 図 1 (長円形状) 11.8 3 7 1000 600 180 比較例 3 図 1 (長円形状) 11.8 88 7 1000 600 185 実施例 9 図 3 (楕円形状) 11.8 5 10 1500 1000 200 実施例 10 図 3 (楕円形状) 11.8 15 15 1600 1400 230 実施例 11 図 3 (楕円形状) 11.8 30 18 1650 1450 240 実施例 12 図 3 (楕円形状) 11.8 45 20 1700 1500 250 実施例 13 図 3 (楕円形状) 11.8 60 18 1650 1450 240 実施例 14 図 3 (楕円形状) 11.8 75 15 1600 1400 230 実施例 15 図 3 (楕円形状) 11.8 85 10 1500 1000 200 実施例 16 図 3(楕円形状) 11.8 45 20 1700 1500 250 比較例 4 図 3 (楕円形状) 11.8 0 5 900 500 185 比較例 5 図 3 (楕円形状) 11.8 3 7 1000 600 180 比較例 6 図 3 (楕円形状) 11.8 88 7 1000 600 185 実施例 17 図 4(略三角形状) 11.8 5 10 1500 1000 200 実施例 18 図 4(略三角形状) 11.8 15 15 1600 1400 230 実施例 19 図 4(略三角形状) 11.8 30 18 1650 1450 240 実施例 20 図 4(略三角形状) 11.8 45 20 1700 1500 250 実施例 21 図 4(略三角形状) 11.8 60 18 1650 1450 240 実施例 22 図 4(略三角形状) 11.8 75 15 1600 1400 230 実施例 23 図 4(略三角形状) 11.8 85 10 1500 1000 200 実施例 24 図 4(略三角形状) 11.8 45 20 1700 1500 250 比較例 7 図 4(略三角形状) 11.8 0 5 900 500 185 比較例 8 図 4(略三角形状) 11.8 3 7 1000 600 180 比較例 9 図 4(略三角形状) 11.8 88 7 1000 600 185 参考例 1 図 1 (長円形状) 27.0 45 11 1550 1050 245 参考例 2 図 1 (長円形状) 40.0 45 10 1500 1000 240 表 1に示したように、長手方向に垂直な断面におけるハ-カムユニット間のシール材 層のパターンが、断面の輪郭を構成する形状の長軸に対して斜め方向に形成されて いる実施例に係るハ-カム構造体は、外周のシール材、接着材としてのシール材の それぞれにおける耐熱衝撃性及び耐加ェ性に優れて 、たのに対し、長手方向に垂 直な断面におけるハ-カムユニット間のシール材層のパターン力 断面の輪郭を構 成する形状の長軸に対してほぼ垂直方向に形成されている比較例に係るハ-カム 構造体は、実施例に係るハ-カム構造体に比べて外周のシール材、接着材としての シール材のそれぞれにおける耐熱衝撃性及び耐加ェ性に劣っていた。また、ハ-カ ムユニットの断面積が 25cm2以上である参考例に係るハ-カム構造体は、耐熱衝撃 性が実施例のものに比べて若干劣っていた。
図面の簡単な説明
[0096] [図 1] (a)は、本発明のハニカム構造体の一例を模式的に示す斜視図であり、 (b)は 、 (a)に示したノ、二カム構造体の長軸と短軸とを示す図である。
[図 2] (a)は、本発明のハ-カム構造体を構成するハ-カムユニットの一例を模式的 に示す斜視図であり、(b)は、(a)に示したノヽ-カムユニットの A— A線断面図である。
[図 3]本発明のハニカム構造体の別の一例の長手方向に垂直な断面を模式的に示 した断面図である。
[図 4]本発明のハニカム構造体の別の一例の長手方向に垂直な断面を模式的に示 した断面図である。
[図 5]本発明のハニカム構造体の別の一例の長手方向に垂直な断面を模式的に示 した断面図である。
[図 6]本発明のハ-カム構造体が設置された車両の排気ガス浄化装置の一例を模式 的に示した断面図である。
[図 7] (a)は、従来のハニカム構造体の一例を模式的に示す斜視図であり、(b)は、( a)に示したハニカム構造体の一部を拡大した一部拡大斜視図である。
[図 8] (a)は、従来のハ-カム構造体を構成するハ-カムユニットの一例を模式的に 示す斜視図であり、(b)は、(a)に示したノ、二カムユニットの A— A線断面図である。 符号の説明
[0097] 10、 20、 30、 40、 50 集合体型ハ-カム構造体
11、 31、 41、 51 シール材層
12、 32、 42、 52 シール材層
33、 43、 53 ハニカムユニット
15 セラミックブロック ノヽニカムユニット 貫通孔 封止材 隔壁

Claims

請求の範囲
[1] 多数の貫通孔が隔壁を隔てて長手方向に並設された多孔質セラミックを主成分とす るハ-カムユニットが、シール材層を介して複数個接着された扁平形状のセラミックブ ロックの外周部にシール材層が設けられたハニカム構造体であって、
長手方向に垂直な断面におけるハ-カムユニット間のシール材層のパターン力 断 面の輪郭を構成する形状の長軸に対して斜め方向に形成されていることを特徴とす るハ-カム構造体。
[2] 前記ハ-カムユニットの長手方向に垂直な断面の面積が 25cm2以下である請求項 1 記載のハニカム構造体。
[3] 長手方向に垂直な断面におけるハ-カムユニット間のシール材層のパターンと、断 面の輪郭を構成する形状の長軸とがなす角度が 5— 85° の範囲内にある請求項 1 又は 2記載のハ-カム構造体。
[4] 前記ハ-カムユニットは、炭化珪素質セラミック力 なる請求項 1一 3のいずれかに記 載のハ-カム構造体。
[5] 触媒が担持されて 、る請求項 1一 4の 、ずれかに記載のハ-カム構造体。
[6] 前記貫通孔は、いずれかの端部で封止されてなる請求項 1一 5のいずれかに記載の ハニカム構造体。
[7] 扁平形状のハニカム構造体を製造する製造方法であって、
多数の貫通孔が隔壁を隔てて長手方向に並設された多孔質セラミックを主成分とす るハ-カムユニットを、シール材により複数個接着し、乾燥させるハ-カムユニット接 着工程と、
前記ハ-カムユニットがシール材層を介して複数個接着されたノヽ-カムユニット集合 体を、長手方向に垂直な断面におけるハ-カムユニット間のシール材層のパターン 力 断面の輪郭を構成する形状の長軸に対して斜め方向になるように切削加工を施 し、扁平形状のセラミックブロックを作製するセラミックブロック作製工程と
を含むことを特徴とするハニカム構造体の製造方法。
PCT/JP2004/019382 2004-05-06 2004-12-24 ハニカム構造体及びその製造方法 WO2005108328A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE602004014271T DE602004014271D1 (de) 2004-05-06 2004-12-24 Wabenstruktur und herstellungsverfahren dafür
JP2006519313A JPWO2005108328A1 (ja) 2004-05-06 2004-12-24 ハニカム構造体及びその製造方法
PL04801922T PL1626037T3 (pl) 2004-05-06 2004-12-24 Struktura ulowa i sposób jej wytwarzania
EP04801922A EP1626037B1 (en) 2004-05-06 2004-12-24 Honeycomb structure and method for producing the same
US11/092,902 US7846229B2 (en) 2004-05-06 2005-03-30 Honeycomb structural body and manufacturing method thereof
US12/872,102 US7976605B2 (en) 2004-05-06 2010-08-31 Honeycomb structural body and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-137728 2004-05-06
JP2004137728 2004-05-06

Publications (1)

Publication Number Publication Date
WO2005108328A1 true WO2005108328A1 (ja) 2005-11-17

Family

ID=35238194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019382 WO2005108328A1 (ja) 2004-05-06 2004-12-24 ハニカム構造体及びその製造方法

Country Status (10)

Country Link
US (2) US7846229B2 (ja)
EP (1) EP1626037B1 (ja)
JP (1) JPWO2005108328A1 (ja)
KR (1) KR100804933B1 (ja)
CN (1) CN100368345C (ja)
AT (1) ATE397573T1 (ja)
DE (1) DE602004014271D1 (ja)
ES (1) ES2308279T3 (ja)
PL (1) PL1626037T3 (ja)
WO (1) WO2005108328A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136891A (ja) * 2006-11-30 2008-06-19 Ngk Insulators Ltd ハニカム触媒コンバータ
JP2009095827A (ja) * 2007-09-26 2009-05-07 Denso Corp 排ガス浄化フィルタ
US7611764B2 (en) 2003-06-23 2009-11-03 Ibiden Co., Ltd. Honeycomb structure
JP2010227755A (ja) * 2009-03-26 2010-10-14 Ngk Insulators Ltd セラミックハニカム構造体
JPWO2012121331A1 (ja) * 2011-03-10 2014-07-17 日本碍子株式会社 ハニカム構造体
JP2019162576A (ja) * 2018-03-19 2019-09-26 日本碍子株式会社 ハニカム構造体
KR102242492B1 (ko) * 2019-12-03 2021-04-20 한양소재 주식회사 적층식 가변 통공 벌집체, 그를 내장한 복합성형체 및 그 제조방법
CN113316478A (zh) * 2018-11-16 2021-08-27 康宁股份有限公司 堵塞的蜂窝体、挤出模头及其制造方法

Families Citing this family (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2277655T3 (es) * 1999-09-29 2007-07-16 Ibiden Co., Ltd. Filtro en nido de abejas y conjunto de filtros ceramicos.
EP1726796A1 (en) 2002-02-05 2006-11-29 Ibiden Co., Ltd. Honeycomb filter for purifying exhaust gases, adhesive, coating material, and manufacturing method of honeycomb filter for purifying exhaust gases
EP1479882B2 (en) * 2002-02-05 2012-08-22 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination
ATE385281T1 (de) * 2002-03-04 2008-02-15 Ibiden Co Ltd Wabenfilter zur abgasreinigung und abgasreinigungsvorrichtung
ATE376880T1 (de) * 2002-03-22 2007-11-15 Ibiden Co Ltd Herstellungsverfahren eines wabenfilters zur reinigung von abgas
JPWO2003084640A1 (ja) * 2002-04-09 2005-08-11 イビデン株式会社 排気ガス浄化用ハニカムフィルタ
EP2020486A3 (en) * 2002-04-10 2009-04-15 Ibiden Co., Ltd. Honeycomb filter for clarifying exhaust gas
WO2003093658A1 (fr) * 2002-04-11 2003-11-13 Ibiden Co., Ltd. Filtre en nid d'abeille pour clarifier des gaz d'echappement
CN100345611C (zh) * 2002-09-13 2007-10-31 揖斐电株式会社 蜂窝状结构体
JPWO2004024294A1 (ja) * 2002-09-13 2006-01-05 イビデン株式会社 フィルタ
JP4516017B2 (ja) 2003-02-28 2010-08-04 イビデン株式会社 セラミックハニカム構造体
CN100386505C (zh) * 2003-05-06 2008-05-07 揖斐电株式会社 蜂巢式结构体
US8246710B2 (en) * 2003-06-05 2012-08-21 Ibiden Co., Ltd. Honeycomb structural body
ATE361140T1 (de) * 2003-06-23 2007-05-15 Ibiden Co Ltd Wabenstrukturkörper
EP1686107A4 (en) 2003-09-12 2008-12-03 Ibiden Co Ltd FRITTED CERAMIC TABLET AND CERAMIC FILTER
ES2302042T5 (es) * 2003-10-20 2012-10-11 Ibiden Co., Ltd. Estructura de panal
JP4439236B2 (ja) * 2003-10-23 2010-03-24 イビデン株式会社 ハニカム構造体
US7981475B2 (en) * 2003-11-05 2011-07-19 Ibiden Co., Ltd. Manufacturing method of honeycomb structural body, and sealing material
WO2005044422A1 (ja) 2003-11-07 2005-05-19 Ibiden Co., Ltd. ハニカム構造体
ATE432246T1 (de) * 2003-11-12 2009-06-15 Ibiden Co Ltd Keramikstrukturkörper
US7387829B2 (en) * 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
EP1726795A4 (en) * 2004-02-23 2008-03-05 Ibiden Co Ltd WAVE STRUCTURE BODY AND EMISSION CONTROL
CN100419230C (zh) * 2004-04-05 2008-09-17 揖斐电株式会社 蜂窝结构体、蜂窝结构体的制造方法以及废气净化装置
DE102004016690A1 (de) * 2004-04-05 2005-10-27 Arvin Technologies, Inc., Troy Vorrichtung zum Reinigen von Fahrzeugabgasen, insbesondere Dieselrußfilter, und Fahrzeug mit entsprechender Vorrichtung
JPWO2005108328A1 (ja) 2004-05-06 2008-03-21 イビデン株式会社 ハニカム構造体及びその製造方法
CN1969163B (zh) * 2004-08-04 2010-09-29 揖斐电株式会社 烧制炉及使用该烧制炉制造多孔陶瓷部件的方法
WO2006013652A1 (ja) * 2004-08-04 2006-02-09 Ibiden Co., Ltd. 連続焼成炉及びこれを用いた多孔質セラミック部材の製造方法
JPWO2006016430A1 (ja) * 2004-08-10 2008-05-01 イビデン株式会社 焼成炉及び該焼成炉を用いたセラミック部材の製造方法
WO2006025498A1 (ja) * 2004-09-02 2006-03-09 Ibiden Co., Ltd. ハニカム構造体、その製造方法及び排気浄化装置
WO2006035823A1 (ja) * 2004-09-30 2006-04-06 Ibiden Co., Ltd. ハニカム構造体
DE602005019182D1 (de) 2004-09-30 2010-03-18 Ibiden Co Ltd Wabenstruktur
EP1808217B1 (en) * 2004-10-12 2009-07-22 Ibiden Co., Ltd. Ceramic honeycomb structure
EP1818098A4 (en) * 2004-11-26 2008-02-06 Ibiden Co Ltd hONEYCOMB STRUCTURE
JP4870657B2 (ja) * 2005-02-04 2012-02-08 イビデン株式会社 セラミックハニカム構造体およびその製造方法
CN101010266A (zh) * 2005-02-04 2007-08-01 揖斐电株式会社 陶瓷蜂窝结构体
JP2006223983A (ja) * 2005-02-17 2006-08-31 Ibiden Co Ltd ハニカム構造体
CN100453511C (zh) 2005-03-28 2009-01-21 揖斐电株式会社 蜂窝结构体及密封材料
CN101146742B (zh) * 2005-03-30 2013-05-01 揖斐电株式会社 含碳化硅颗粒、制造碳化硅质烧结体的方法、碳化硅质烧结体以及过滤器
JP4937116B2 (ja) * 2005-04-28 2012-05-23 イビデン株式会社 ハニカム構造体
WO2006132011A1 (ja) * 2005-06-06 2006-12-14 Ibiden Co., Ltd. 梱包材及びハニカム構造体の輸送方法
JP5091672B2 (ja) * 2005-06-24 2012-12-05 イビデン株式会社 ハニカム構造体及びその製造方法
WO2006137149A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137150A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
CN101023044B (zh) * 2005-06-24 2010-04-21 揖斐电株式会社 蜂窝结构体
WO2006137164A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137158A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137151A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体、及び、排気ガス浄化装置
JP4863995B2 (ja) * 2005-06-24 2012-01-25 イビデン株式会社 ハニカム構造体
CN100434137C (zh) * 2005-06-24 2008-11-19 揖斐电株式会社 蜂窝结构体
JP4975619B2 (ja) * 2005-06-24 2012-07-11 イビデン株式会社 ハニカム構造体
CN100534617C (zh) * 2005-06-24 2009-09-02 揖斐电株式会社 蜂窝结构体
WO2006137163A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
CN101076404B (zh) * 2005-06-27 2010-05-12 揖斐电株式会社 蜂窝结构体
WO2007000825A1 (ja) * 2005-06-27 2007-01-04 Ibiden Co., Ltd. ハニカム構造体
EP1832565A4 (en) * 2005-08-03 2007-10-17 Ibiden Co Ltd TEMPLATE FOR COOKING SILICON CARBIDE AND PROCESS FOR PRODUCING POROUS SILICON CARBIDE BODY
WO2007023653A1 (ja) * 2005-08-26 2007-03-01 Ibiden Co., Ltd. ハニカム構造体及びその製造方法
WO2007037222A1 (ja) * 2005-09-28 2007-04-05 Ibiden Co., Ltd. ハニカムフィルタ
CN101242937B (zh) * 2005-10-05 2011-05-18 揖斐电株式会社 挤压成形用模具和多孔质陶瓷部件的制造方法
JPWO2007043245A1 (ja) 2005-10-12 2009-04-16 イビデン株式会社 ハニカムユニット及びハニカム構造体
US7959704B2 (en) * 2005-11-16 2011-06-14 Geo2 Technologies, Inc. Fibrous aluminum titanate substrates and methods of forming the same
US20070107395A1 (en) 2005-11-16 2007-05-17 Bilal Zuberi Extruded porous substrate and products using the same
JP5127450B2 (ja) * 2005-11-18 2013-01-23 イビデン株式会社 ハニカム構造体
WO2007074508A1 (ja) * 2005-12-26 2007-07-05 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2007074528A1 (ja) * 2005-12-27 2007-07-05 Ibiden Co., Ltd. 脱脂用治具、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
CN101309883B (zh) * 2006-01-27 2012-12-26 揖斐电株式会社 蜂窝结构体及其制造方法
WO2007086143A1 (ja) * 2006-01-30 2007-08-02 Ibiden Co., Ltd. ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法
WO2007094075A1 (ja) * 2006-02-17 2007-08-23 Ibiden Co., Ltd. 乾燥用治具組立装置、乾燥用治具分解装置、乾燥用治具循環装置、セラミック成形体の乾燥方法、及び、ハニカム構造体の製造方法
WO2007097056A1 (ja) * 2006-02-23 2007-08-30 Ibiden Co., Ltd. ハニカム構造体および排ガス浄化装置
WO2007097004A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. 湿式混合機、湿式混合方法及びハニカム構造体の製造方法
WO2007097000A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. ハニカム成形体用封口装置、封止材ペーストの充填方法、及び、ハニカム構造体の製造方法
WO2007096986A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. 端面加熱装置、ハニカム集合体の端面乾燥方法、及び、ハニカム構造体の製造方法
DE602006002244D1 (de) * 2006-02-28 2008-09-25 Ibiden Co Ltd Trageelement für Trocknung, Trocknungsverfahren eines Presslings mit Wabenstruktur, und Verfahren zur Herstellung eines Wabenkörpers.
WO2007102216A1 (ja) * 2006-03-08 2007-09-13 Ibiden Co., Ltd. 脱脂炉投入装置、及び、ハニカム構造体の製造方法
WO2007102217A1 (ja) * 2006-03-08 2007-09-13 Ibiden Co., Ltd. 焼成体用冷却機、焼成炉、セラミック焼成体の冷却方法、及び、ハニカム構造体の製造方法
WO2007108076A1 (ja) * 2006-03-17 2007-09-27 Ibiden Co., Ltd. 乾燥装置、セラミック成形体の乾燥方法及びハニカム構造体の製造方法
WO2007116529A1 (ja) * 2006-04-11 2007-10-18 Ibiden Co., Ltd. 成形体切断装置、セラミック成形体の切断方法、及び、ハニカム構造体の製造方法
WO2007122680A1 (ja) 2006-04-13 2007-11-01 Ibiden Co., Ltd. 押出成形機、押出成形方法及びハニカム構造体の製造方法
WO2007122707A1 (ja) * 2006-04-19 2007-11-01 Ibiden Co., Ltd. ハニカム構造体の製造方法
EP1849513A3 (en) * 2006-04-20 2007-11-21 Ibiden Co., Ltd. Honeycomb structured body, method for manufacturing the same, casing and exhaust-gas purifying apparatus
WO2007122715A1 (ja) * 2006-04-20 2007-11-01 Ibiden Co., Ltd. ハニカム焼成体の検査方法、及び、ハニカム構造体の製造方法
WO2007122716A1 (ja) * 2006-04-20 2007-11-01 Ibiden Co., Ltd. 搬送装置、及び、ハニカム構造体の製造方法
WO2007129391A1 (ja) * 2006-05-01 2007-11-15 Ibiden Co., Ltd. 焼成用治具組立装置、焼成用治具分解装置、循環装置、セラミック成形体の焼成方法、及び、ハニカム構造体の製造方法
WO2007129399A1 (ja) * 2006-05-08 2007-11-15 Ibiden Co., Ltd. ハニカム構造体の製造方法、ハニカム成形体受取機及びハニカム成形体取出機
DE202006007876U1 (de) * 2006-05-15 2007-09-20 Bauer Technologies Gmbh Optimierung von zellulären Strukturen, insbesondere für die Abgasreinigung von Verbrennungsaggregaten und andere Anwendungsbereiche
WO2007132530A1 (ja) * 2006-05-17 2007-11-22 Ibiden Co., Ltd. ハニカム成形体用端面処理装置、ハニカム成形体の封止方法、及び、ハニカム構造体の製造方法
WO2007138701A1 (ja) * 2006-05-31 2007-12-06 Ibiden Co., Ltd. 把持装置、及び、ハニカム構造体の製造方法
EP1880818A1 (en) * 2006-06-05 2008-01-23 Ibiden Co., Ltd. Method for cutting honeycomb structure
FR2902423B1 (fr) * 2006-06-19 2008-09-12 Saint Gobain Ct Recherches Ciment de jointoiement pour filtre a particules.
FR2902424B1 (fr) * 2006-06-19 2008-10-17 Saint Gobain Ct Recherches Ciment de jointoiement a spheres creuses pour filtre a particules.
PL1875997T3 (pl) * 2006-07-07 2009-08-31 Ibiden Co Ltd Urządzenie do obróbki powierzchni czołowej, sposób obróbki powierzchni czołowej formowanego korpusu o strukturze plastra miodu oraz sposób wytwarzania struktury o kształcie plastra miodu
WO2008032390A1 (fr) * 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille
PL1900709T3 (pl) * 2006-09-14 2010-11-30 Ibiden Co Ltd Sposób wytwarzania korpusu o strukturze plastra miodu i kompozycja materiałowa do wypalanego korpusu o strukturze plastra miodu
WO2008032391A1 (fr) * 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille et composition de matière première pour nid d'abeille calciné
WO2008047404A1 (fr) * 2006-10-16 2008-04-24 Ibiden Co., Ltd. Support de montage pour structure alvéolaire et dispositif d'inspection pour structure alvéolaire
DE102006057280A1 (de) * 2006-12-05 2008-06-12 Robert Bosch Gmbh Durch Extrudieren hergestelltes Filterelement zur Filterung von Abgasen einer Diesel-Brennkraftmaschine
JP5084517B2 (ja) * 2007-01-26 2012-11-28 イビデン株式会社 外周層形成装置
WO2008120291A1 (ja) * 2007-02-28 2008-10-09 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2008105081A1 (ja) * 2007-02-28 2008-09-04 Ibiden Co., Ltd. ハニカムフィルタ
WO2008105082A1 (ja) 2007-02-28 2008-09-04 Ibiden Co., Ltd. ハニカム構造体
WO2008126320A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2008126333A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体
WO2008126334A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
CN101421016B (zh) * 2007-03-30 2012-04-25 揖斐电株式会社 蜂窝结构体和蜂窝结构体的制造方法
JPWO2008126307A1 (ja) * 2007-03-30 2010-07-22 イビデン株式会社 触媒担持体および触媒担持体の製造方法
WO2008126331A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカムフィルタ
WO2008126330A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体
WO2008126332A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカムフィルタ
WO2008126321A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. 排ガス浄化システム
WO2008136078A1 (ja) * 2007-04-20 2008-11-13 Ibiden Co., Ltd. ハニカムフィルタ
JP5150132B2 (ja) * 2007-04-27 2013-02-20 日本碍子株式会社 ハニカムフィルタシステム
KR20100017601A (ko) * 2007-05-04 2010-02-16 다우 글로벌 테크놀로지스 인크. 개선된 허니컴 필터
WO2008139581A1 (ja) * 2007-05-09 2008-11-20 Ibiden Co., Ltd. 炭化ケイ素焼成用原料の製造方法、及び、ハニカム構造体の製造方法
WO2008139608A1 (ja) * 2007-05-14 2008-11-20 Ibiden Co., Ltd. ハニカム構造体及び該ハニカム構造体の製造方法
WO2008149435A1 (ja) * 2007-06-06 2008-12-11 Ibiden Co., Ltd. 焼成用治具及びハニカム構造体の製造方法
WO2008155856A1 (ja) 2007-06-21 2008-12-24 Ibiden Co., Ltd. ハニカム構造体、及び、ハニカム構造体の製造方法
WO2009066388A1 (ja) 2007-11-21 2009-05-28 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法
WO2009101683A1 (ja) 2008-02-13 2009-08-20 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2009101682A1 (ja) 2008-02-13 2009-08-20 Ibiden Co., Ltd. ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
JPWO2009107230A1 (ja) 2008-02-29 2011-06-30 イビデン株式会社 ハニカム構造体用シール材、ハニカム構造体、及び、ハニカム構造体の製造方法
WO2009113159A1 (ja) * 2008-03-11 2009-09-17 イビデン株式会社 排ガス浄化装置
EP2196643B1 (en) 2008-03-24 2011-07-20 Ibiden Co., Ltd. Honeycomb structured body
WO2009118813A1 (ja) 2008-03-24 2009-10-01 イビデン株式会社 ハニカム構造体及びハニカム構造体の製造方法
WO2009118814A1 (ja) * 2008-03-24 2009-10-01 イビデン株式会社 ハニカムフィルタ
AU2009287378B2 (en) 2008-08-27 2014-11-13 Vida Holdings Corp. Ltd. Catalytic converter apparatus
KR101784013B1 (ko) 2008-12-15 2017-10-10 유니프랙스 아이 엘엘씨 세라믹 허니콤 구조체의 스킨 코팅
GB0903262D0 (en) * 2009-02-26 2009-04-08 Johnson Matthey Plc Filter
WO2010099317A2 (en) 2009-02-27 2010-09-02 Donaldson Company, Inc. Filter cartridge; components thereof; and methods
WO2010113586A1 (ja) * 2009-03-31 2010-10-07 日本碍子株式会社 ハニカムフィルタ及びその製造方法
WO2011040402A1 (ja) * 2009-09-29 2011-04-07 日本碍子株式会社 目封止ハニカム構造体の製造方法
US20110076443A1 (en) 2009-09-30 2011-03-31 Ngk Insulators, Ltd. Honeycomb structure and method for manufacturing the same
WO2011042992A1 (ja) * 2009-10-09 2011-04-14 イビデン株式会社 ハニカムフィルタ
WO2011042991A1 (ja) * 2009-10-09 2011-04-14 イビデン株式会社 ハニカムフィルタ
US20110126973A1 (en) * 2009-11-30 2011-06-02 Andrewlavage Jr Edward Francis Apparatus And Method For Manufacturing A Honeycomb Article
JP5771032B2 (ja) * 2010-03-23 2015-08-26 イビデン株式会社 ハニカム構造体
JP2011226444A (ja) * 2010-04-22 2011-11-10 Ibiden Co Ltd 排ガス浄化システム、排ガス浄化システムの製造方法、及び、排ガス浄化システムを用いた排ガス浄化方法
WO2012131913A1 (ja) * 2011-03-29 2012-10-04 イビデン株式会社 排ガス浄化システム及び排ガス浄化方法
KR20150035584A (ko) * 2012-06-27 2015-04-06 다우 글로벌 테크놀로지스 엘엘씨 세라믹 허니콤 필터 내에 다공질 플러그를 제조하는 개선된 방법
RU2628846C2 (ru) * 2012-07-19 2017-08-22 Вайда Холдингз Корп. Лтд. Устройство и способ для снижения противодавления в двигателе
CN103949117A (zh) * 2014-04-30 2014-07-30 西安特种设备检验检测院 一种氮化铝多孔陶瓷过滤元件及其制备方法
CN104147850A (zh) * 2014-07-25 2014-11-19 刘凯 一种硅藻泥多孔复合陶瓷滤芯
US10598068B2 (en) 2015-12-21 2020-03-24 Emissol, Llc Catalytic converters having non-linear flow channels
JP6826858B2 (ja) * 2016-10-11 2021-02-10 日本碍子株式会社 目封止ハニカム構造体
JP6761382B2 (ja) * 2017-07-31 2020-09-23 日本碍子株式会社 ハニカム構造体の製造方法
CN110947261A (zh) * 2018-09-26 2020-04-03 李安琪 一种干气中去除固体颗粒的碳化硅膜过滤器及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096116A (ja) * 1999-09-29 2001-04-10 Ibiden Co Ltd セラミックフィルタ集合体、ハニカムフィルタ
JP2002273130A (ja) 2001-03-22 2002-09-24 Ngk Insulators Ltd ハニカム構造体
JP2003181233A (ja) 2001-08-30 2003-07-02 Ngk Insulators Ltd 高強度ハニカム構造体、その成形方法及びハニカム構造コンバーター
JP2003260322A (ja) 2002-03-08 2003-09-16 Ngk Insulators Ltd ハニカム構造体、その製造方法及び排ガス浄化システム
WO2003078026A1 (fr) 2002-03-15 2003-09-25 Ibiden Co., Ltd. Filtre de ceramique destine au controle de l'emission de gaz d'echappement
JP2003291054A (ja) * 2002-03-29 2003-10-14 Ngk Insulators Ltd ハニカム構造体の製造方法

Family Cites Families (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581630B2 (ja) * 1977-03-12 1983-01-12 日本碍子株式会社 耐熱衝撃性セラミツクハニカム構造体
DK1270202T3 (da) 1996-01-12 2006-08-07 Ibiden Co Ltd Filter til rensning af udstödningsgas
US5930994A (en) 1996-07-02 1999-08-03 Ibiden Co., Ltd. Reverse cleaning regeneration type exhaust emission control device and method of regenerating the same
JP2000167329A (ja) 1998-09-30 2000-06-20 Ibiden Co Ltd 排気ガス浄化装置の再生システム
JP2002530175A (ja) 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
JP4642955B2 (ja) 1999-06-23 2011-03-02 イビデン株式会社 触媒担体およびその製造方法
ES2277655T3 (es) 1999-09-29 2007-07-16 Ibiden Co., Ltd. Filtro en nido de abejas y conjunto de filtros ceramicos.
EP1243335B1 (en) 1999-11-16 2014-03-05 Ibiden Co., Ltd. Catalyst and method for preparation thereof
JP2001329830A (ja) 2000-03-15 2001-11-30 Ibiden Co Ltd 排気ガス浄化フィルタの再生装置及びフィルタ再生方法、排気ガス浄化フィルタの再生プログラム及びそのプログラムを格納する記録媒体
JP3676654B2 (ja) * 2000-07-13 2005-07-27 株式会社荏原製作所 Cod含有水の浄化処理方法および装置
JP2002070531A (ja) 2000-08-24 2002-03-08 Ibiden Co Ltd 排気ガス浄化装置、排気ガス浄化装置のケーシング構造
DE20016803U1 (de) * 2000-09-29 2000-12-28 Heimbach Gmbh Thomas Josef Filtereinrichtung
ATE330111T1 (de) 2001-03-22 2006-07-15 Ibiden Co Ltd Abgasreinigungsvorrichtung
WO2002096827A1 (fr) 2001-05-31 2002-12-05 Ibiden Co., Ltd. Corps fritte ceramique poreux et procede permettant sa production, et filtre a gasoil particulaire
JP4246425B2 (ja) * 2001-10-15 2009-04-02 日本碍子株式会社 ハニカムフィルター
EP1726796A1 (en) 2002-02-05 2006-11-29 Ibiden Co., Ltd. Honeycomb filter for purifying exhaust gases, adhesive, coating material, and manufacturing method of honeycomb filter for purifying exhaust gases
EP1479882B2 (en) 2002-02-05 2012-08-22 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination
ATE385281T1 (de) 2002-03-04 2008-02-15 Ibiden Co Ltd Wabenfilter zur abgasreinigung und abgasreinigungsvorrichtung
ATE376880T1 (de) 2002-03-22 2007-11-15 Ibiden Co Ltd Herstellungsverfahren eines wabenfilters zur reinigung von abgas
EP1491249A4 (en) 2002-03-25 2005-04-13 Ibiden Co Ltd FILTER FOR DECONTAMINATION OF EXHAUST GASES
ATE411095T1 (de) 2002-03-29 2008-10-15 Ibiden Co Ltd Keramikfilter und abgasdekontaminierungseinheit
JPWO2003084640A1 (ja) * 2002-04-09 2005-08-11 イビデン株式会社 排気ガス浄化用ハニカムフィルタ
EP2020486A3 (en) 2002-04-10 2009-04-15 Ibiden Co., Ltd. Honeycomb filter for clarifying exhaust gas
WO2003093658A1 (fr) 2002-04-11 2003-11-13 Ibiden Co., Ltd. Filtre en nid d'abeille pour clarifier des gaz d'echappement
JPWO2004024294A1 (ja) 2002-09-13 2006-01-05 イビデン株式会社 フィルタ
CN100345611C (zh) 2002-09-13 2007-10-31 揖斐电株式会社 蜂窝状结构体
WO2004031101A1 (ja) * 2002-10-07 2004-04-15 Ibiden Co., Ltd. ハニカム構造体
JP4437084B2 (ja) 2002-10-07 2010-03-24 イビデン株式会社 ハニカム構造体
JP4516017B2 (ja) 2003-02-28 2010-08-04 イビデン株式会社 セラミックハニカム構造体
US7556665B2 (en) * 2003-03-19 2009-07-07 Ngk Insulators, Ltd. Honeycomb structure
CN100386505C (zh) 2003-05-06 2008-05-07 揖斐电株式会社 蜂巢式结构体
US8246710B2 (en) 2003-06-05 2012-08-21 Ibiden Co., Ltd. Honeycomb structural body
ATE361140T1 (de) 2003-06-23 2007-05-15 Ibiden Co Ltd Wabenstrukturkörper
KR100865058B1 (ko) 2003-06-23 2008-10-23 이비덴 가부시키가이샤 허니컴 구조체
US8192376B2 (en) * 2003-08-18 2012-06-05 Cardiac Pacemakers, Inc. Sleep state classification
EP1686107A4 (en) 2003-09-12 2008-12-03 Ibiden Co Ltd FRITTED CERAMIC TABLET AND CERAMIC FILTER
JP4439236B2 (ja) 2003-10-23 2010-03-24 イビデン株式会社 ハニカム構造体
US7981475B2 (en) 2003-11-05 2011-07-19 Ibiden Co., Ltd. Manufacturing method of honeycomb structural body, and sealing material
ATE432246T1 (de) 2003-11-12 2009-06-15 Ibiden Co Ltd Keramikstrukturkörper
WO2005064128A1 (ja) 2003-12-25 2005-07-14 Ibiden Co., Ltd. 排気ガス浄化装置および排気ガス浄化装置の再生方法
US7387829B2 (en) 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
EP1726795A4 (en) 2004-02-23 2008-03-05 Ibiden Co Ltd WAVE STRUCTURE BODY AND EMISSION CONTROL
CN100419230C (zh) 2004-04-05 2008-09-17 揖斐电株式会社 蜂窝结构体、蜂窝结构体的制造方法以及废气净化装置
JPWO2005108328A1 (ja) 2004-05-06 2008-03-21 イビデン株式会社 ハニカム構造体及びその製造方法
JP4592695B2 (ja) 2004-05-18 2010-12-01 イビデン株式会社 ハニカム構造体及び排気ガス浄化装置
EP1647790B1 (en) 2004-07-01 2008-08-20 Ibiden Co., Ltd. Method of manufacturing porous ceramic body
EP1818639A4 (en) 2004-08-04 2007-08-29 Ibiden Co Ltd FURNACE AND METHOD FOR PRODUCING A BURNTED POROUS CERAMIC ARTICLE USING THE FUEL
WO2006013652A1 (ja) 2004-08-04 2006-02-09 Ibiden Co., Ltd. 連続焼成炉及びこれを用いた多孔質セラミック部材の製造方法
CN1969163B (zh) 2004-08-04 2010-09-29 揖斐电株式会社 烧制炉及使用该烧制炉制造多孔陶瓷部件的方法
JPWO2006013932A1 (ja) 2004-08-06 2008-05-01 イビデン株式会社 焼成炉及びその焼成炉を用いた多孔質セラミック焼成体の製造方法
JPWO2006016430A1 (ja) 2004-08-10 2008-05-01 イビデン株式会社 焼成炉及び該焼成炉を用いたセラミック部材の製造方法
JPWO2006022131A1 (ja) 2004-08-25 2008-05-08 イビデン株式会社 焼成炉及びその焼成炉を用いた多孔質セラミック焼成体の製造方法
DE602005019182D1 (de) 2004-09-30 2010-03-18 Ibiden Co Ltd Wabenstruktur
WO2006035823A1 (ja) 2004-09-30 2006-04-06 Ibiden Co., Ltd. ハニカム構造体
EP1808217B1 (en) 2004-10-12 2009-07-22 Ibiden Co., Ltd. Ceramic honeycomb structure
EP1818098A4 (en) 2004-11-26 2008-02-06 Ibiden Co Ltd hONEYCOMB STRUCTURE
WO2006070504A1 (ja) 2004-12-28 2006-07-06 Ibiden Co., Ltd. フィルタ及びフィルタ集合体
KR100692942B1 (ko) 2005-02-01 2007-03-12 이비덴 가부시키가이샤 허니컴 구조체
JP4870657B2 (ja) 2005-02-04 2012-02-08 イビデン株式会社 セラミックハニカム構造体およびその製造方法
CN101010266A (zh) 2005-02-04 2007-08-01 揖斐电株式会社 陶瓷蜂窝结构体
JP2006223983A (ja) 2005-02-17 2006-08-31 Ibiden Co Ltd ハニカム構造体
JP4812316B2 (ja) 2005-03-16 2011-11-09 イビデン株式会社 ハニカム構造体
CN100453511C (zh) 2005-03-28 2009-01-21 揖斐电株式会社 蜂窝结构体及密封材料
JPWO2006103811A1 (ja) 2005-03-28 2008-09-04 イビデン株式会社 ハニカム構造体
CN101146742B (zh) 2005-03-30 2013-05-01 揖斐电株式会社 含碳化硅颗粒、制造碳化硅质烧结体的方法、碳化硅质烧结体以及过滤器
WO2006112061A1 (ja) 2005-04-07 2006-10-26 Ibiden Co., Ltd. ハニカム構造体
JP2006289237A (ja) 2005-04-08 2006-10-26 Ibiden Co Ltd ハニカム構造体
JP4937116B2 (ja) 2005-04-28 2012-05-23 イビデン株式会社 ハニカム構造体
WO2006126278A1 (ja) 2005-05-27 2006-11-30 Ibiden Co., Ltd. ハニカム構造体
WO2006132011A1 (ja) 2005-06-06 2006-12-14 Ibiden Co., Ltd. 梱包材及びハニカム構造体の輸送方法
WO2007010643A1 (ja) 2005-07-21 2007-01-25 Ibiden Co., Ltd. ハニカム構造体及び排ガス浄化装置
EP1832565A4 (en) 2005-08-03 2007-10-17 Ibiden Co Ltd TEMPLATE FOR COOKING SILICON CARBIDE AND PROCESS FOR PRODUCING POROUS SILICON CARBIDE BODY
WO2007023653A1 (ja) 2005-08-26 2007-03-01 Ibiden Co., Ltd. ハニカム構造体及びその製造方法
WO2007037222A1 (ja) 2005-09-28 2007-04-05 Ibiden Co., Ltd. ハニカムフィルタ
CN101242937B (zh) 2005-10-05 2011-05-18 揖斐电株式会社 挤压成形用模具和多孔质陶瓷部件的制造方法
JPWO2007043245A1 (ja) 2005-10-12 2009-04-16 イビデン株式会社 ハニカムユニット及びハニカム構造体
JP5127450B2 (ja) 2005-11-18 2013-01-23 イビデン株式会社 ハニカム構造体
JPWO2007058006A1 (ja) 2005-11-18 2009-04-30 イビデン株式会社 ハニカム構造体
US20070187651A1 (en) 2005-12-26 2007-08-16 Kazuya Naruse Method for mixing powder, agitation apparatus, and method for manufacturing honeycomb structured body
WO2007074508A1 (ja) 2005-12-26 2007-07-05 Ibiden Co., Ltd. ハニカム構造体の製造方法
CN101312895A (zh) 2005-12-27 2008-11-26 揖斐电株式会社 搬运装置和蜂窝结构体的制造方法
WO2007074528A1 (ja) 2005-12-27 2007-07-05 Ibiden Co., Ltd. 脱脂用治具、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
CN101309883B (zh) 2006-01-27 2012-12-26 揖斐电株式会社 蜂窝结构体及其制造方法
WO2007086143A1 (ja) 2006-01-30 2007-08-02 Ibiden Co., Ltd. ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法
WO2007094075A1 (ja) 2006-02-17 2007-08-23 Ibiden Co., Ltd. 乾燥用治具組立装置、乾燥用治具分解装置、乾燥用治具循環装置、セラミック成形体の乾燥方法、及び、ハニカム構造体の製造方法
WO2007097056A1 (ja) 2006-02-23 2007-08-30 Ibiden Co., Ltd. ハニカム構造体および排ガス浄化装置
WO2007097000A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. ハニカム成形体用封口装置、封止材ペーストの充填方法、及び、ハニカム構造体の製造方法
WO2007097004A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. 湿式混合機、湿式混合方法及びハニカム構造体の製造方法
WO2007096986A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. 端面加熱装置、ハニカム集合体の端面乾燥方法、及び、ハニカム構造体の製造方法
DE602006002244D1 (de) 2006-02-28 2008-09-25 Ibiden Co Ltd Trageelement für Trocknung, Trocknungsverfahren eines Presslings mit Wabenstruktur, und Verfahren zur Herstellung eines Wabenkörpers.
EP1825979B1 (en) 2006-02-28 2012-03-28 Ibiden Co., Ltd. Manufacturing method of honeycomb structured body
WO2007102216A1 (ja) 2006-03-08 2007-09-13 Ibiden Co., Ltd. 脱脂炉投入装置、及び、ハニカム構造体の製造方法
WO2007102217A1 (ja) 2006-03-08 2007-09-13 Ibiden Co., Ltd. 焼成体用冷却機、焼成炉、セラミック焼成体の冷却方法、及び、ハニカム構造体の製造方法
WO2007108076A1 (ja) 2006-03-17 2007-09-27 Ibiden Co., Ltd. 乾燥装置、セラミック成形体の乾燥方法及びハニカム構造体の製造方法
JP4863904B2 (ja) 2006-03-31 2012-01-25 イビデン株式会社 ハニカム構造体およびその製造方法
WO2007116529A1 (ja) 2006-04-11 2007-10-18 Ibiden Co., Ltd. 成形体切断装置、セラミック成形体の切断方法、及び、ハニカム構造体の製造方法
WO2007122680A1 (ja) 2006-04-13 2007-11-01 Ibiden Co., Ltd. 押出成形機、押出成形方法及びハニカム構造体の製造方法
WO2007122707A1 (ja) 2006-04-19 2007-11-01 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2007122715A1 (ja) 2006-04-20 2007-11-01 Ibiden Co., Ltd. ハニカム焼成体の検査方法、及び、ハニカム構造体の製造方法
WO2007122716A1 (ja) 2006-04-20 2007-11-01 Ibiden Co., Ltd. 搬送装置、及び、ハニカム構造体の製造方法
WO2007129391A1 (ja) 2006-05-01 2007-11-15 Ibiden Co., Ltd. 焼成用治具組立装置、焼成用治具分解装置、循環装置、セラミック成形体の焼成方法、及び、ハニカム構造体の製造方法
WO2007129390A1 (ja) 2006-05-01 2007-11-15 Ibiden Co., Ltd. 脱脂用治具組立装置、脱脂用治具分解装置、脱脂用治具循環装置、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
WO2007129399A1 (ja) 2006-05-08 2007-11-15 Ibiden Co., Ltd. ハニカム構造体の製造方法、ハニカム成形体受取機及びハニカム成形体取出機
WO2007132530A1 (ja) 2006-05-17 2007-11-22 Ibiden Co., Ltd. ハニカム成形体用端面処理装置、ハニカム成形体の封止方法、及び、ハニカム構造体の製造方法
WO2007138701A1 (ja) 2006-05-31 2007-12-06 Ibiden Co., Ltd. 把持装置、及び、ハニカム構造体の製造方法
EP1880818A1 (en) 2006-06-05 2008-01-23 Ibiden Co., Ltd. Method for cutting honeycomb structure
PL1875997T3 (pl) 2006-07-07 2009-08-31 Ibiden Co Ltd Urządzenie do obróbki powierzchni czołowej, sposób obróbki powierzchni czołowej formowanego korpusu o strukturze plastra miodu oraz sposób wytwarzania struktury o kształcie plastra miodu
WO2008032390A1 (fr) 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille
WO2008032391A1 (fr) 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille et composition de matière première pour nid d'abeille calciné
PL1900709T3 (pl) 2006-09-14 2010-11-30 Ibiden Co Ltd Sposób wytwarzania korpusu o strukturze plastra miodu i kompozycja materiałowa do wypalanego korpusu o strukturze plastra miodu
WO2008047404A1 (fr) 2006-10-16 2008-04-24 Ibiden Co., Ltd. Support de montage pour structure alvéolaire et dispositif d'inspection pour structure alvéolaire
JP5084517B2 (ja) 2007-01-26 2012-11-28 イビデン株式会社 外周層形成装置
WO2008099454A1 (ja) 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
WO2008099450A1 (ja) 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
WO2008114335A1 (ja) 2007-02-21 2008-09-25 Ibiden Co., Ltd. 加熱炉及びハニカム構造体の製造方法
WO2008120386A1 (ja) 2007-03-29 2008-10-09 Ibiden Co., Ltd. ハニカム構造体
JP5164575B2 (ja) 2007-03-29 2013-03-21 イビデン株式会社 ハニカム構造体、ハニカム構造体の製造方法、排ガス浄化装置及び排ガス浄化装置の製造方法
ATE532760T1 (de) 2007-03-29 2011-11-15 Ibiden Co Ltd Wabenstruktur und zugehöriges herstellungsverfahren
WO2008126319A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. 多孔質炭化ケイ素焼結体の製造方法
WO2008126320A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2008129691A1 (ja) 2007-03-30 2008-10-30 Ibiden Co., Ltd. ハニカムフィルタ
WO2008139581A1 (ja) 2007-05-09 2008-11-20 Ibiden Co., Ltd. 炭化ケイ素焼成用原料の製造方法、及び、ハニカム構造体の製造方法
WO2008149435A1 (ja) 2007-06-06 2008-12-11 Ibiden Co., Ltd. 焼成用治具及びハニカム構造体の製造方法
WO2008155856A1 (ja) 2007-06-21 2008-12-24 Ibiden Co., Ltd. ハニカム構造体、及び、ハニカム構造体の製造方法
WO2009057213A1 (ja) 2007-10-31 2009-05-07 Ibiden Co., Ltd. ハニカム構造体用梱包体、及び、ハニカム構造体の輸送方法
WO2009066388A1 (ja) 2007-11-21 2009-05-28 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法
WO2009101683A1 (ja) 2008-02-13 2009-08-20 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2009101682A1 (ja) 2008-02-13 2009-08-20 Ibiden Co., Ltd. ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
JPWO2009107230A1 (ja) 2008-02-29 2011-06-30 イビデン株式会社 ハニカム構造体用シール材、ハニカム構造体、及び、ハニカム構造体の製造方法
WO2009118813A1 (ja) 2008-03-24 2009-10-01 イビデン株式会社 ハニカム構造体及びハニカム構造体の製造方法
WO2009118814A1 (ja) 2008-03-24 2009-10-01 イビデン株式会社 ハニカムフィルタ
WO2009118862A1 (ja) 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体の製造方法
JPWO2009118863A1 (ja) 2008-03-27 2011-07-21 イビデン株式会社 断熱層用止め具、焼成炉及び該焼成炉を用いたハニカム構造体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096116A (ja) * 1999-09-29 2001-04-10 Ibiden Co Ltd セラミックフィルタ集合体、ハニカムフィルタ
JP2002273130A (ja) 2001-03-22 2002-09-24 Ngk Insulators Ltd ハニカム構造体
JP2003181233A (ja) 2001-08-30 2003-07-02 Ngk Insulators Ltd 高強度ハニカム構造体、その成形方法及びハニカム構造コンバーター
JP2003260322A (ja) 2002-03-08 2003-09-16 Ngk Insulators Ltd ハニカム構造体、その製造方法及び排ガス浄化システム
WO2003078026A1 (fr) 2002-03-15 2003-09-25 Ibiden Co., Ltd. Filtre de ceramique destine au controle de l'emission de gaz d'echappement
JP2003291054A (ja) * 2002-03-29 2003-10-14 Ngk Insulators Ltd ハニカム構造体の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7611764B2 (en) 2003-06-23 2009-11-03 Ibiden Co., Ltd. Honeycomb structure
JP2008136891A (ja) * 2006-11-30 2008-06-19 Ngk Insulators Ltd ハニカム触媒コンバータ
JP2009095827A (ja) * 2007-09-26 2009-05-07 Denso Corp 排ガス浄化フィルタ
JP4706744B2 (ja) * 2007-09-26 2011-06-22 株式会社デンソー 排ガス浄化フィルタ
JP2010227755A (ja) * 2009-03-26 2010-10-14 Ngk Insulators Ltd セラミックハニカム構造体
JPWO2012121331A1 (ja) * 2011-03-10 2014-07-17 日本碍子株式会社 ハニカム構造体
JP5972257B2 (ja) * 2011-03-10 2016-08-17 日本碍子株式会社 ハニカム構造体
JP2019162576A (ja) * 2018-03-19 2019-09-26 日本碍子株式会社 ハニカム構造体
JP7057691B2 (ja) 2018-03-19 2022-04-20 日本碍子株式会社 ハニカム構造体
CN113316478A (zh) * 2018-11-16 2021-08-27 康宁股份有限公司 堵塞的蜂窝体、挤出模头及其制造方法
CN113316478B (zh) * 2018-11-16 2023-04-28 康宁股份有限公司 堵塞的蜂窝体、挤出模头及其制造方法
KR102242492B1 (ko) * 2019-12-03 2021-04-20 한양소재 주식회사 적층식 가변 통공 벌집체, 그를 내장한 복합성형체 및 그 제조방법

Also Published As

Publication number Publication date
US7846229B2 (en) 2010-12-07
PL1626037T3 (pl) 2008-11-28
KR100804933B1 (ko) 2008-02-20
US20050247038A1 (en) 2005-11-10
EP1626037A1 (en) 2006-02-15
JPWO2005108328A1 (ja) 2008-03-21
CN100368345C (zh) 2008-02-13
DE602004014271D1 (de) 2008-07-17
ATE397573T1 (de) 2008-06-15
EP1626037A4 (en) 2006-06-21
EP1626037B1 (en) 2008-06-04
CN1784370A (zh) 2006-06-07
US7976605B2 (en) 2011-07-12
KR20060056269A (ko) 2006-05-24
ES2308279T3 (es) 2008-12-01
US20100319309A1 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
WO2005108328A1 (ja) ハニカム構造体及びその製造方法
JP4812316B2 (ja) ハニカム構造体
KR100736303B1 (ko) 벌집형 구조체
JP5142532B2 (ja) ハニカム構造体
KR100831836B1 (ko) 벌집형 유닛 및 벌집형 구조체
JP5142529B2 (ja) ハニカム構造体
JP4386830B2 (ja) 排気ガス浄化用ハニカムフィルタ
KR100882401B1 (ko) 벌집형 구조체
JP5001009B2 (ja) セラミックハニカム構造体
JP4932256B2 (ja) セラミック焼結体およびセラミックフィルタ
JP5237630B2 (ja) ハニカム構造体
EP1795261A1 (en) Honeycomb structure
JP4753785B2 (ja) ハニカム構造体
JP2006223983A (ja) ハニカム構造体
WO2005063653A9 (ja) ハニカム構造体
JP2006289237A (ja) ハニカム構造体
JPWO2003093657A1 (ja) 排気ガス浄化用ハニカムフィルタ
WO2006103786A1 (ja) ハニカム構造体およびシール材
KR20070088464A (ko) 벌집형 구조체
JP5184867B2 (ja) ハニカムフィルタ
JP2004188278A (ja) 排気ガス浄化用ハニカムフィルタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004801922

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057010045

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006519313

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048021163

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2004801922

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057010045

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWG Wipo information: grant in national office

Ref document number: 2004801922

Country of ref document: EP