WO2005117807A1 - Dental compositions containing nanozirconia fillers - Google Patents

Dental compositions containing nanozirconia fillers Download PDF

Info

Publication number
WO2005117807A1
WO2005117807A1 PCT/US2005/010410 US2005010410W WO2005117807A1 WO 2005117807 A1 WO2005117807 A1 WO 2005117807A1 US 2005010410 W US2005010410 W US 2005010410W WO 2005117807 A1 WO2005117807 A1 WO 2005117807A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
dental
acid
agents
filler
Prior art date
Application number
PCT/US2005/010410
Other languages
French (fr)
Inventor
Brant U. Kolb
Hoa T. Bui
Jason P. Thalacker
Lani S. Kangas
Joel D. Oxman
Kenneth D. Budd
Jacqueline C. Rolf
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Priority to AU2005249354A priority Critical patent/AU2005249354B2/en
Priority to JP2007527215A priority patent/JP4851454B2/en
Priority to EP05744014A priority patent/EP1771143B1/en
Priority to KR1020067026522A priority patent/KR101166942B1/en
Priority to CA002567036A priority patent/CA2567036A1/en
Priority to CN2005800239473A priority patent/CN1984633B/en
Priority to AT05744014T priority patent/ATE554741T1/en
Publication of WO2005117807A1 publication Critical patent/WO2005117807A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/887Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • A61K6/889Polycarboxylate cements; Glass ionomer cements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/20Protective coatings for natural or artificial teeth, e.g. sealings, dye coatings or varnish
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/30Compositions for temporarily or permanently fixing teeth or palates, e.g. primers for dental adhesives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/919Dental

Definitions

  • the present invention relates to hardenable dental and orthodontic compositions filled with zirconia nanoparticles. More specifically, the invention relates to ionomer and resin modified ionomer compositions containing nanozirconia fillers.
  • the compositions can be used in a variety of applications, for example, as adhesives, cements, restoratives, coatings, and sealants. Background
  • the restoration of decayed dental structures including caries, decayed dentin or decayed enamel is often accomplished by the sequential application of a dental adhesive and then a dental material (e.g., a restorative material) to the relevant dental structures. Similar compositions are used in the bonding of orthodontic appliances (generally utilizing an orthodontic adhesive) to a dental structure.
  • pretreatment processes are used to promote the bonding of adhesives to dentin or enamel.
  • pretreatment steps include etching with, for example, inorganic or organic acids, followed by priming to improve the bonding between the tooth structure and the overlying adhesive.
  • etching with, for example, inorganic or organic acids
  • priming to improve the bonding between the tooth structure and the overlying adhesive.
  • Compositions including fluoroaluminosilicate glass fillers also known as glass ionomer or "GI" compositions are among the most widely used types of dental materials.
  • compositions have a broad range of applications such as filling and restoration of carious lesions; cementing of, for example, a crown, an inlay, a bridge, or an orthodontic band; lining of cavity; core construction; and pit and fissure sealing.
  • glass ionomers There are currently two major classes of glass ionomers.
  • the first class known as conventional glass ionomers, generally contains as main ingredients a homopolymer or copolymer of an ⁇ , ⁇ -unsaturated carboxylic acid, a fluoroaluminosilicate (“FAS”) glass, water, and optionally a chelating agent such as tartaric acid.
  • FAS fluoroaluminosilicate
  • the mixture undergoes self-hardening in the dark due to an ionic acid -base reaction between the acidic repeating units of the polycarboxylic acid and cations leached from the basic glass.
  • the second major class of glass ionomers is known as hybrid glass ionomer or resin-modified glass ionomers ("RMGI"). Like a conventional glass ionomer, an RMGI employs an FAS glass. An RMGI also contains a homopolymer or copolymer of an ⁇ , ⁇ -unsaturated carboxylic acid, an FAS glass, and water; however, the organic portion of an RMGI is different.
  • the polyacid is modified to replace or end-cap some of the acidic repeating units with pendent curable groups and a photoinitiator is added to provide a second cure mechanism.
  • Acrylate or methacrylate groups are typically employed as the pendant curable group.
  • the composition includes a polycarboxylic acid, an acrylate or methacrylate-functional monomer or polymer, and a photoinitiator.
  • the polyacid may optionally be modified to replace or end-cap some of the acidic repeating units with pendent curable groups.
  • a redox or other chemical cure system may be used instead of or in addition to a photoinitiator system.
  • RMGI compositions are usually formulated as powder/liquid or paste/paste systems, and contain water as mixed and applied. They may partially or fully harden in the dark due to the ionic reaction between the acidic repeating units of the polycarboxylic acid and cations leached from the glass, and commercial RMGI products typically also cure on exposure of the cement to light from a dental curing lamp. There are many important benefits provided by glass ionomer compositions.
  • fluoride release from glass ionomers tends to be higher than from other classes of dental compositions such as metal oxide cements, compomer cements, or fluoridated composites, and thus glass ionomers are believed to provide enhanced cariostatic protection.
  • Another advantage of glass ionomer materials is the very good clinical adhesion of such cements to tooth structure, thus providing highly retentive restorations. Since conventional glass ionomers do not need an external curing initiation mode, they can generally be placed in bulk as a filling material in deep restorations, without requiring layering.
  • One of the drawbacks of conventional glass ionomers is that these compositions are somewhat technique sensitive when mixed by hand.
  • capsules provide proper proportions of the powder and liquid components, they still require a capsule activation step to combine the two components followed by mechanical mixing in a dental triturator
  • Conventional glass ionomers may also be quite brittle as evidenced by their relatively low flexural strength. Thus restorations made from conventional glass ionomers tend to be more prone to fracture in load bearing indications.
  • glass ionomers are often characterized by high visual opacity (i.e., cloudiness), especially when they come into contact with water at the initial stage of hardening, resulting in relatively poor aesthetics.
  • Cured RMGIs typically have increased strength properties (e.g., flexural strength), are less prone to mechanical fracture than conventional glass ionomers, and typically require a primer or conditioner for adequate tooth adhesion.
  • Summary The present invention features stable ionomer compositions containing nanozirconia fillers that provide the compositions with improved properties over previous ionomer compositions.
  • the inclusion of one or more nanozirconia fillers provides ionomer systems that are optically translucent and radiopaque.
  • the present invention features a hardenable dental composition
  • a hardenable dental composition comprising a polyacid; an acid-reactive filler; a nanozirconia filler having a plurality of silane-containing molecules attached onto the outer surface of the zirconia particles; and water.
  • the composition further comprises a polymerizable component.
  • the polymerizable component is an ethylenically unsaturated compound, optionally with acid functionality.
  • the polyacid component of the composition typically comprises a polymer having a plurality of acidic repeating groups.
  • the polymer may be substantially free of polymerizable groups, or alternatively it may comprise a plurality of polymerizable groups.
  • the acid-reactive filler is generally selected from metal oxides, glasses, metal salts, and combinations thereof.
  • the acid-reactive filler comprises an FAS glass.
  • ionomer compositions have used reactive glass to impart radiopacity.
  • the composition of the invention comprises less than 50 percent by weight acid-reactive filler, typically an FAS glass.
  • the acid-reactive filler comprises an oxyfluoride material, which is typically nanostructured, e.g., provided in the form of nanoparticles.
  • the acid-reactive oxyfluoride material is non-fused and includes at least one trivalent metal (e.g., aluminum, lanthanum, etc.), oxygen, a fluorine, and at least one alkaline earth metal (e.g. strontium, calcium, barium, etc.).
  • the oxyfluoride material may be in the form of a coating on particles or nanoparticles, such as metal oxide particles (e.g., silica).
  • compositions of the invention may also include one or more optional additives, such as, for example, other fillers, pyrogenic fillers, fluoride sources, whitening agents, anticaries agents (e.g., xylitol), remineralizing agents (e.g., calcium phosphate compounds), enzymes, breath fresheners, anesthetics, clotting agents, acid neutralizers, chemotherapeutic agents, immune response modifiers, medicaments, indicators, dyes, pigments, wetting agents, tartaric acid, chelating agents, surfactants, buffering agents, viscosity modifiers, thixotropes, polyols, antimicrobial agents, anti-inflammatory agents, antifungal agents, stabilizers, agents for treating xerostomia, desensitizers, and combinations thereof.
  • optional additives such as, for example, other fillers, pyrogenic fillers, fluoride sources, whitening agents, anticaries agents (e.g., xylitol), remineralizing
  • compositions of the invention may further include a photoinitiator system and/or a redox cure system. Additionally, the compositions may be provided in the form of a multi-part system in which the various components are divided into two or more separate parts.
  • the composition is a two-part system, such as a paste-paste composition, a paste-liquid composition, a paste-powder composition, or a powder- liquid composition.
  • a paste-paste composition such as a paste-paste composition, a paste-liquid composition, a paste-powder composition, or a powder- liquid composition.
  • one of the features of the present invention is that it provides a radiopaque, optically translucent ionomer composition while using less acid-reactive filler than conventional glass ionomers.
  • compositions according to the invention are useful in a variety of dental and orthodontic applications, including in dental restoratives, dental adhesives, dental cements, cavity liners, orthodontic adhesives, dental sealants, and dental coatings.
  • the compositions may be used to prepare a dental article by hardening to form, for example, dental mill blanks, dental crowns, dental fillings, dental prostheses, and orthodontic devices.
  • the ionomer compositions of the invention exhibit good aesthetics, low visual opacity (generally no more than about 0.50 upon hardening, as determined by the Visual Opacity (MacBeth Values) Test Method described herein), radiopacity, durability, excellent polish, polish retention, and wear properties, and good physical properties including mechanical strengths, e.g., flexural strength, and adhesive strength to tooth structures.
  • the compositions may also provide adhesion to both dentin and enamel without the need for primers, etchants, or preconditioners.
  • the invention provides for easy mixing and convenient dispensing options made possible by formulation of a paste-paste composition.
  • hardenable is meant that the composition can be cured or solidified, e.g. by heating, chemical cross-linking, radiation-induced polymerization or crosslinking, or the like.
  • filler is meant a particulate material suitable for use in the oral environment.
  • Dental fillers generally have an average particle size of at most 100 micrometers.
  • nanozirconia filler is meant a filler comprising zirconia nanoparticles. Typically these nanozirconia fillers comprise non-pyrogenic nanoparticles.
  • paste is meant a soft, viscous mass of solids dispersed in a liquid.
  • acid-reactive filler is meant a filler that chemically reacts in the presence of an acidic component.
  • oxyfluoride is meant a material in which atoms of oxygen and fluorine are bonded to the same atom (e.g., aluminum in an aluminum oxyfluoride). Generally, at least 50% of the fluorine atoms are bonded to an atom bearing an oxygen atom in an oxyfluoride material.
  • nanostructured is meant a material in a form having at least one dimension that is, on average, at most 200 nanometers (e.g., nanosized particles).
  • nanostructured materials refer to materials including, for example, nanoparticles as defined herein below; aggregates of nanoparticles; materials coated on particles, wherein the coatings have an average thickness of at most 200 nanometers; materials coated on aggregates of particles, wherein the coatings have an average thickness of at most 200 nanometers; materials infiltrated in porous structures having an average pore size of at most 200 nanometers; and combinations thereof.
  • Porous structures include, for example, porous particles, porous aggregates of particles, porous coatings, and combinations thereof.
  • nanoparticles is used synonymously with “nanosized particles,” and refers to particles having an average size of at most 200 nanometers.
  • nanoparticle size refers to the diameter of the particle.
  • size refers to the longest dimension of the particle.
  • nanocluster is meant an association of nanoparticles drawn together by relatively weak intermolecular forces that cause them to clump together, i.e. to aggregate. Typically, nanoclusters have an average size of at most 10 micrometers.
  • ethylenically unsaturated compounds with acid functionality is meant to include monomers, oligomers, and polymers having ethylenic unsaturation and acid and/or acid-precursor functionality.
  • Acid-precursor functionalities include, for example, anhydrides, acid halides, and pyrophosphates.
  • dental compositions and dental articles is meant to include orthodontic compositions (e.g., orthodontic adhesives) and orthodontic devices (e.g., orthodontic appliances such as retainers, night guards, brackets, buccal tubes, bands, cleats, buttons, lingual retainers, bite openers, positioners, and the like).
  • the present invention is directed to dental (including orthodontic) compositions, specifically ionomer compositions, e.g., glass ionomer compositions, containing one or more nanozirconia fillers.
  • ionomer compositions e.g., glass ionomer compositions
  • These hardenable compositions further comprise a polyacid, an acid-reactive filler, an optional polymerizable component, and water.
  • the incorporation of one or more nanozirconia fillers into the composition provides for improved properties, including enhanced aesthetics (e.g., low visual opacity), polish retention, and radiopacity as compared to previously known glass ionomer compositions.
  • the hardenable dental compositions of the present invention optionally include a polymerizable component.
  • the polymerizable component can optionally be an ethylenically unsaturated compound with or without acid functionality.
  • the polymerizable component of the present invention can be part of a hardenable resin. These resins are generally thermosetting materials capable ' of being hardened to form a polymer network including, for example, acrylate- functional materials, niethacrylate-functional materials, epoxy-functional materials, vinyl-functional materials, and mixtures thereof.
  • the hardenable resin is made from one or more matrix-forming oligomer, monomer, polymer, or blend thereof.
  • polymerizable materials suitable for use include hardenable organic materials having sufficient strength, hydrolytic stability, and non-toxicity to render them suitable for use in the oral environment.
  • examples of such materials include acrylates, methacrylates, urethanes, carbamoylisocyanurates, epoxies, and mixtures and derivatives thereof.
  • One class of preferred hardenable materials includes materials having polymerizable components with free radically active functional groups. Examples of such materials include monomers having one or more ethylenically unsaturated group, oligomers having one or more ethylenically unsaturated group, polymers having one or more ethylenically unsaturated group, and combinations thereof.
  • suitable polymerizable components for use in the invention contain at least one ethylenically unsaturated bond, and are capable of undergoing addition polymerization.
  • free radically ethylenically unsaturated compounds include, for example, mono-, di- or poly-(meth)acrylates (i.e., acrylates and methacrylates) such as, methyl (meth)acrylate, ethyl acrylate, isopropyl methacrylate, n-hexyl acrylate, stearyl acrylate, allyl acrylate, glycerol triacrylate, ethyleneglycol diacrylate, diethyleneglycol diacrylate, triethyleneglycol dimethacrylate, 1,3- propanediol di(meth)acrylate, trimethylolpropane triacrylate, 1,2,4-butanetriol trimethacrylate, 1,4-cyclohexanediol diacryl
  • Suitable free radically polymerizable compounds include siloxane-functional (meth)acrylates as disclosed, for example, in WO-00/38619 (Guggenberger et al.), WO-01/92271 (Weinmann et al.), WO-01/07444 (Guggenberger et al.), WO-00/42092 (Guggenberger et al.) and fluoropolymer-functional (meth)acrylates as disclosed, for example, in U.S. Pat. No. 5,076,844 (Fock et al.), U.S. Pat. No.
  • hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate and 2- hydroxypropyl (meth)acrylate
  • glycerol mono- or di-(meth)acrylate trimethylolpropane mono- or di-(meth)acrylate
  • pentaerythritol mono-, di-, and tri- (rneth)acrylate sorbitol mono-, di-, tri-, terra-, or penta-(meth)acrylate
  • bisGMA 2,2- bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane
  • Suitable ethylenically unsaturated compounds are also available from a wide variety of commercial sources, such as Sigma-Aldrich, St. Louis, MO. Mixtures of ethylenically unsaturated compounds can be used if desired.
  • the polymerizable component optionally comprises an ethylenically unsaturated compound with acid functionality.
  • the acid functionality includes an oxyacid (i.e., an oxygen-containing acid) of carbon, sulfur, phosphorous, or boron.
  • Such compounds include, for example, ⁇ , ⁇ -unsaturated acidic compounds such as glycerol phosphate monomethacrylates, glycerol phosphate dimethacrylates, hydroxyethyl methacrylate phosphates, citric acid di- or tri-methacrylates, poly(meth)acrylated oligomaleic acid, poly(meth)acrylated polymaleic acid, poly(rneth)acrylated poly(meth)acrylic acid, poly(meth)acrylated polycarboxyl- polyphosphonic acid, poly(meth)acrylated polychlorophosphoric acid, poly(meth)acrylated polysulfonic acid, poly(meth)acrylated polyboric acid, and the like, may be used as components in the hardenable resin system.
  • ⁇ , ⁇ -unsaturated acidic compounds such as glycerol phosphate monomethacrylates, glycerol phosphate dimethacrylates, hydroxyethyl methacrylate phosphates
  • AA:ITA:IEM copolymer of acrylic acid:itaconic acid with pendent methacrylate made by reacting AA:ITA copolymer with sufficient 2- isocyanatoethyl methacrylate to convert a portion of the acid groups of the copolymer to pendent methacrylate groups as described, for example, in Example 11 of U.S. Pat. No. 5,130,347 (Mitra)); and those recited in U.S. Pat. Nos.
  • compositions of the present invention typically include at least 1% by weight, more typically at least 3% by weight, and most typically at least 5% by weight ethylenically unsaturated compounds with acid functionality, based on the total weight of the unfilled composition.
  • compositions of the present invention include at most 50% by weight, more typically at most 40% by weight, and most typically at most 30% by weight ethylenically unsaturated compounds with acid functionality, based on the total weight of the unfilled composition. Partial or complete hardening of the composition may occur through an acid- reactive filler/polyacid reaction (i.e. an acid/base reaction).
  • the composition also contains a photoinitiator system that upon irradiation with actinic radiation initiates the polymerization (or hardening) of the composition.
  • a photoinitiator system that upon irradiation with actinic radiation initiates the polymerization (or hardening) of the composition.
  • Such photopolymerizable compositions can be free radically polymerizable.
  • an initiation system can be selected from systems that initiate polymerization via radiation, heat, or redox/auto- cure chemical reaction.
  • a class of initiators capable of initiating polymerization of free radically active functional groups includes free radical-generating photoinitiators, optionally combined with a photosensitizer or accelerator. Such initiators typically can be capable of generating free radicals for addition polymerization upon exposure to light energy having a wavelength between 200 and 800 nm.
  • Suitable photoinitiators i.e., photoinitiator systems that include one or more compounds
  • for polymerizing free radically photopolymerizable compositions include binary and ternary systems.
  • Typical ternary photoinitiators include an iodonium salt, a photosensitizer, and an electron donor compound as described in U.S. Pat. No. 5,545,676 (Palazzotto et al.).
  • Preferred iodonium salts are the diaryl iodonium salts, e.g., diphenyliodonium chloride, diphenyliodonium hexafluorophosphate, diphenyliodonium tetrafluoroborate, and tolylcumyliodonium tetrakis(pentafluorophenyl) borate.
  • Preferred photosensitizers are monoketones and diketones that absorb some light within a range of about 400 nm to 520 nm (preferably, 450 nm to 500 nm). More preferred compounds are alpha diketones that have some light absorption within a range of 400 nm to 520 nm (even more preferably, 450 to 500 nm).
  • Preferred compounds are camphorquinone, benzil, furil, 3,3,6,6-tetramethylcyclohexanedione, phenanthraquinone, l-phenyl-1,2- propanedione and other l-aryl-2-alkyl-l,2-ethanediones, and cyclic alpha diketones. Most preferred is camphorquinone.
  • Preferred electron donor compounds include substituted amines, e.g., ethyl dimethylaminobenzoate.
  • Other suitable ternary photoinitiator systems useful for photopolymerizing cationically polymerizable resins are described, for example, in U.S. Pat. Publication No.
  • Suitable photoinitiators for polymerizing free radically photopolymerizable compositions include the class of phosphine oxides that typically have a functional wavelength range of 380 nm to 1200 nm.
  • Preferred phosphine oxide free radical initiators with a functional wavelength range of 380 nm to 450 nm are acyl and bisacyl phosphine oxides such as those described in U.S. Pat. Nos.
  • phosphine oxide photoinitiators capable of free- radical initiation when irradiated at wavelength ranges of greater than 380 nm to 450 nm include, for example, bis(2,4,6-trimethylbenzoyl)phenyl phosphine oxide available under the trade designation IRGACURE 819 from Ciba Specialty
  • the phosphine oxide initiator is present in the photopolymerizable composition in catalytically effective amounts, such as from 0.1% by weight to 5% by weight, based on the total weight of the composition.
  • Tertiary amine reducing agents may be used in combination with an acylphosphine oxide.
  • Illustrative tertiary arnines useful in the invention include ethyl 4-(N,N-dimethylamino)benzoate and N,N-dimethylaminoethyl methacrylate.
  • the amine reducing agent is present in the photopolymerizable composition in an amount from 0.1% by weight to 5% by weight, based on the total weight of the composition.
  • Another free-radical initiator system that can alternatively be used in the dental materials of the invention includes the class of ionic dye-counterion complex initiators including a borate anion and a complementary cationic dye.
  • Borate salt photoinitiators are described, for example, in U. S. Pat. Nos. 4,772,530 (Gottschalk et al), 4,954,414 (Adair et al.), 4,874,450 (Gottschalk), 5,055,372 (Shanklin et al.), and 5,057,393 (Shanklin et al.).
  • the hardenable resins of the present invention can include redox cure systems that include a polymerizable component (e.g., an ethylenically unsaturated polymerizable component) and redox agents that include an oxidizing agent and a reducing agent.
  • a polymerizable component e.g., an ethylenically unsaturated polymerizable component
  • redox agents that include an oxidizing agent and a reducing agent.
  • Suitable polymerizable components and redox agents that are useful in the present invention are described in U.S. Pat. Publication No. 2003/0166740 (Mitra et al.) and U.S. Pat. Publication No. 2003/0195273 (Mitra et al.).
  • the reducing and oxidizing agents should react with or otherwise cooperate with one another to produce free-radicals capable of initiating polymerization of the resin system (e.g., the ethylenically unsaturated component).
  • This type of cure is a dark reaction, that is, it is not dependent on the presence of light and can proceed in the absence of light.
  • the reducing and oxidizing agents are preferably sufficiently shelf-stable and free of undesirable colorization to permit their storage and use under typical dental conditions. They should be sufficiently miscible with the resin system (and preferably water-soluble) to permit ready dissolution in (and discourage separation from) the other components of the polymerizable composition.
  • Useful reducing agents include, for example, ascorbic acid, ascorbic acid derivatives, and metal complexed ascorbic acid compounds as described in U.S. Pat. No. 5,501,727 (Wang et al.); amines, especially tertiary amines, such as 4-tert- butyl dimethylaniline; aromatic sulfinic salts, such as p-toluenesulfinic salts and benzenesulfinic salts; thioureas, such as l-ethyl-2-thiourea, tetraethyl thiourea, tetramethyl thiourea, 1,1-dibutyl thiourea, and 1,3-dibutyl thiourea; and mixtures thereof.
  • secondary reducing agents may include cobalt (II) chloride, ferrous chloride, ferrous sulfate, hydrazine, hydroxylamine (depending on the choice of oxidizing agent), salts of a dithionite or sulfite anion, and combinations thereof.
  • the reducing agent is an amine.
  • Suitable oxidizing agents will also be familiar to those skilled in the art, and include, for example, persulfuric acid and salts thereof, such as sodium, potassium, ammonium, cesium, and alkyl ammonium salts.
  • Additional oxidizing agents include, for example, peroxides such as benzoyl peroxides, hydroperoxides such as cumyl hydroperoxide, t-butyl hydroperoxide, and amyl hydroperoxide, as well as salts of transition metals such as cobalt (III) chloride and ferric chloride, cerium (IN) sulfate, perboric acid and salts thereof, permanganic acid and salts thereof, perphosphoric acid and salts thereof, and combinations thereof. It may be desirable to use more than one oxidizing agent or more than one reducing agent. Small quantities of transition metal compounds may also be added to accelerate the rate of redox cure.
  • peroxides such as benzoyl peroxides, hydroperoxides such as cumyl hydroperoxide, t-butyl hydroperoxide, and amyl hydroperoxide
  • salts of transition metals such as cobalt (III) chloride and ferric chloride, cerium (IN) sulfate
  • the reducing and oxidizing agents are present in amounts sufficient to permit an adequate free-radical reaction rate. This can be evaluated by combining all of the ingredients of the hardenable composition except for the filler, and observing whether or not a hardened mass is obtained.
  • the reducing agent is present in an amount of at least 0.01% by weight, and more preferably at least 0.10% by weight, based on the total weight (including water) of the components of the hardenable composition.
  • the reducing agent is present in an amount of no greater than 10% by weight, and more preferably no greater than 5% by weight, based on the total weight (including water) of the components of the polymerizable composition.
  • the oxidizing agent is present in an amount of at least 0.01% by weight, and more preferably at least 0.10% by weight, based on the total weight (mcluding water) of the components of the polymerizable composition.
  • the oxidizing agent is present in an amount of no greater than 10% by weight, and more preferably no greater than 5% by weight, based on the total weight (including water) of the components of the hardenable composition.
  • the reducing or oxidizing agents can be microencapsulated as described, for example, in U.S.
  • heat sources suitable for the dental materials of the invention include inductive, convective, and radiant.
  • Thermal sources should be capable of generating temperatures of at least 40°C and at most 150°C under normal conditions or at elevated pressure. This procedure is preferred for initiating polymerization of materials occurring outside of the oral environment.
  • Yet another alternative class of initiators capable of initiating polymerization of free radically active functional groups in the hardenable resin are those that include free radical-generating thermal initiators. Examples include peroxides (e.g., benzoyl peroxide and lauryl peroxide) and azo compounds (e.g., 2,2-azobis- isobutyronitrile (AIBN)).
  • peroxides e.g., benzoyl peroxide and lauryl peroxide
  • azo compounds e.g., 2,2-azobis- isobutyronitrile (AIBN)
  • Photoinitiator compounds are preferably provided in dental compositions disclosed in the present application in an amount effective to initiate or enhance the rate of cure or hardening of the resin system.
  • Useful photopolymerizable compositions are prepared by simply admixing, under safe light conditions, the components as described above. Suitable inert solvents may be used, if desired, when preparing this mixture. Any solvent that does not react appreciably with the components of the inventive compositions may be used. Examples of suitable solvents include, for example, acetone, dichloromethane, and acetonitrile.
  • compositions of the present invention include at least one polyacid, which may be a non-curable or non-polymerizable polyacid, or a curable or polymerizable polyacid (e.g., a resin-modified polyacid).
  • the polyacid is a polymer having a plurality of acidic repeating units and a plurality of polymerizable groups.
  • the polyacid maybe substantially free of polymerizable groups.
  • the polyacid need not be entirely water soluble, but it should be at least sufficiently water-miscible so that it does not undergo substantial sedimentation when combined with other aqueous components. Suitable polyacids are listed in U.S. Pat. No.
  • the polyacid should have a molecular weight sufficient to provide good storage, handling, and mixing properties.
  • a typical weight average molecular weight is 5,000 to 100,000, evaluated against a polystyrene standard using gel permeation chromatography.
  • the polyacid is a curable or polymerizable resin. That is, it contains at least one ethylenically unsaturated group. Suitable ethylenically unsaturated polyacids are described in U.S. Pat. No.
  • the numbers of acidic groups and ethylenically unsaturated groups are adjusted to provide an appropriate balance of properties in the dental composition.
  • Polyacids in which 10% to 70% of the acidic groups have been replaced with ethylenically unsaturated groups are preferred.
  • the polyacid is hardenable in the presence of, for example, an acid-reactive filler and water, but does not contain ethylenically unsaturated groups. That is, it is an oligomer or polymer of an unsaturated acid.
  • the unsaturated acid is an oxyacid (i.e., an oxygen containing acid) of carbon, sulfur, phosphorous, or boron. More typically, it is an oxyacid of carbon.
  • Such polyacids include, for example, polyalkenoic acids such as homopolymers and copolymers of unsaturated mono-, di-, or tricarboxylic acids.
  • Polyalkenoic acids can be prepared by the homopolymerization and copolymerization of unsaturated aliphatic carboxylic acids, e.g., acrylic acid, 2-choloracrylic acid, 3-choloracrylic acid, 2-bromoacrylic acid, 3-bromoacrylic acid, methacrylic acid, itaconic acid, maleic acid, glutaconic acid, aconitic acid, citraconic acid, mesaconic acid, fumaric acid, and tiglic acid.
  • unsaturated aliphatic carboxylic acids e.g., acrylic acid, 2-choloracrylic acid, 3-choloracrylic acid, 2-bromoacrylic acid, 3-bromoacrylic acid, methacrylic acid, itaconic acid, maleic acid, glutaconic acid, aconitic acid
  • Suitable monomers that can be copolymerized with the unsaturated aliphatic carboxylic acids include, for example, unsaturated aliphatic compounds such as acrylamide, acrylonitrile, vinyl chloride, allyl chloride, vinyl acetate, and 2-hydroxyethyl methacrylate. Ter- and higher polymers may be used if desired. Particularly preferred are the homopolymers and copolymers of acrylic acid.
  • the polyalkenoic acid should be substantially free of unpolymerized monomers. The amount of polyacid should be sufficient to react with the acid-reactive filler and to provide an ionomer composition with desirable hardening properties.
  • the polyacid represents at least 1 wt-%, more typically at least 3 wt-%, and most typically at least 5 wt-%, based on the total weight of the unfilled composition.
  • the polyacid represents at most 90 wt-%, more typically at most 60 wt-%, and most typically at most 30 wt-%, based on the total weight of the unfilled composition.
  • ACID-REACTINE FILLERS Suitable acid-reactive fillers include metal oxides, glasses, and metal salts.
  • Typical metal oxides include barium oxide, calcium oxide, magnesium oxide, and zinc oxide.
  • Typical glasses include borate glasses, phosphate glasses, and fluoroaluminosilicate ("FAS") glasses. FAS glasses are particularly preferred.
  • the FAS glass typically contains sufficient elutable cations so that a hardened dental composition will form when the glass is mixed with the components of the hardenable composition.
  • the glass also typically contains sufficient elutable fluoride ions so that the hardened composition will have cariostatic properties.
  • the glass can be made from a melt containing fluoride, alumina, and other glass- forming ingredients using techniques familiar to those skilled in the FAS glassmaking art.
  • the FAS glass typically is in the form of particles that are sufficiently finely divided so that they can conveniently be mixed with the other cement components and will perform well when the resulting mixture is used in the mouth.
  • the average particle size (typically, diameter) for the FAS glass is no greater than about 12 micrometers, typically no greater than 10 micrometers, and more typically no greater than about 5 micrometers as measured using, for example, a sedimentation analyzer.
  • Suitable FAS glasses will be familiar to those skilled in the art, and are available from a wide variety of commercial sources, and many are found in currently available glass ionomer cements such as those commercially available under the trade designations VLTREMER, VITREBOND, RELY X LUTING CEMENT, RELY X LUTING PLUS CEMENT, PHOTAC-FIL QUICK, KETAC MOLAR and KETAC-FIL PLUS(3M ESPE Dental Products, St. Paul, MN), FUJI II LC and FUJI IX (G-C Dental Industrial Corp., Tokyo, Japan) and CHEMFIL Superior (Dentsply International, York, PA). Mixtures of fillers can be used if desired.
  • the FAS glass can optionally be subjected to a surface treatment.
  • Suitable surface treatments include, but are not limited to, acid washing (e.g., treatment with a phosphoric acid), treatment with a phosphate, treatment with a chelating agent such as tartaric acid, and treatment with a silane or an acidic or basic silanol solution.
  • the pH of the treating solution or the treated glass is adjusted to neutral or near-neutral, as this can increase storage stability of the hardenable composition.
  • the acid-reactive filler comprises a non-fused oxyfluoride material.
  • the oxyfluoride material may include a trivalent metal, oxygen, fluorine, and an alkaline earth metal.
  • the trivalent metal is aluminum, lanthanum, or combinations thereof. More preferably the trivalent metal is aluminum.
  • the alkaline earth metal is strontium, calcium, barium, or combinations thereof.
  • the oxyfluoride material may further include silicon and/or heavy metal (e.g., zirconium, lanthanum, niobium, yttrium, or tantalum), or more specifically, oxides, fluorides and/or oxyfluorides thereof. In some embodiments of the present invention, at least a portion of the oxyfluoride material is nanostructured.
  • Such nanostructured materials include the oxyfluoride material in the form of, for example, nanoparticles, coatings on particles, coatings on aggregates of particles, infiltrate in a porous structure, and combinations thereof. Preferably at least 90% by weight, more preferably at least 95% by weight, and most preferably at least 98% by weight of the oxyfluoride material is nanostructured.
  • suitable oxyfluoride materials and their use in dental compositions is provided in U.S. Patent Application entitled, "Acid Reactive Dental Fillers, Compositions, and Methods," (Attorney Docket No. 58618US002) filed on May 17, 2004.
  • the amount of acid-reactive filler should be sufficient to provide an ionomer composition having desirable mixing and handling properties before hardening and good physical and optical properties after hardening.
  • the reactive filler represents less than about 85% of the total weight of the composition.
  • the acid-reactive filler represents at least 10 wt-%, and more typically at least 20 wt- %, based on the total weight of the composition.
  • the acid-reactive filler represents at most 75 wt-%, and more typically at most 50 wt-%, based on the total weight of the composition.
  • NANOZIRCONIA FILLERS The ionomer compositions of the invention are formulated with nanozirconia fillers. These fillers impart the compositions with radiopacity, allowing for preparation of ionomer compositions that are both radiopaque and optically translucent while using less FAS glass than was previously required. This, in turn, allows for ionomer compositions to be prepared as, for example, as two-part paste- paste systems.
  • Zirconia is a highly radiopaque metal oxide possessing X-ray scattering ability and filler reinforcement properties.
  • Nanozirconia is nanosized crystalline ZrO 2 particles.
  • Such nanozirconia fillers typically have an average particle size of at most 100 nanometers, more typically at most 75 nanometers, even more typically at most 50 nanometers, and most typically at most 20 nanometers. Such nanozirconia fillers typically have an average particle size of at least 2 nanometers and more typically at least 5 nanometers.
  • the primary particles of the nanozirconia fillers can be aggregated or nonaggregated. In certain embodiments, the zirconia nanoparticles have an aggregated size of typically not more than 150 nm, and more typically not more than 100 nm. The very small overall particle size in combination with good dispersion decreases light scattering and gives optically translucent materials.
  • the zirconia nanoparticles are surface modified so they can preferably be dispersed in the dental composition in a nonagglomerated state.
  • Acidic functionalities such as carboxylic acids and phosphonic acids, readily adsorb to the surface of ZrO 2 particles. Adsorption of these types of molecules is, in many instances, a very good means of surface modification.
  • carboxylic acids for instance to give good dispersion and reactivity into composite formulations.
  • a surface modification is needed which will allow the particles to be dispersed but also passivate the surface towards the adsorption of the polyacid.
  • a surface modification using silanes or a combination of silanes and phosphonic acids can passivate the surface and allow the incorporation of nanozirconia into ionomer formulations.
  • ionomer compositions containing surface-modified nanozirconia fillers have been formulated into paste/paste systems with good radiopacity, visual opacity, and good physical properties.
  • the amount of nanozirconia filler should be sufficient to provide an ionomer composition having desirable mixing and handling properties before hardening and good physical and optical properties after hardening.
  • the nanozirconia filler represents at least 0.1 wt-%, more typically at least 10 wt-%, and most typically at least 20 wt-% based on the total weight of the composition.
  • the nanozirconia filler represents at most 80 wt-%, more typically at most 70 wt-%, and most typically at most 60 wt-%, based on the total weight of the composition.
  • the compositions of the present invention can also optionally include one or more other fillers.
  • Such fillers may be selected from one or more of a wide variety of materials suitable for the use in dental and/or orthodontic compositions.
  • the other filler can be an inorganic material. It can also be a crosslinked organic material that is insoluble in the resin component of the composition, and is optionally filled with inorganic filler.
  • the filler should in any event be nontoxic and suitable for use in the mouth.
  • the filler can be radiopaque or radiolucent.
  • the filler typically is substantially insoluble in water.
  • suitable inorganic fillers are naturally occurring or synthetic materials including, but not limited to: quartz; nitrides (e.g., silicon nitride); glasses derived from, for example, Zr, Sr, Ce, Sb, Sn, Ba, Zn, and Al; feldspar; borosilicate glass; kaolin; talc; titania; low Mohs hardness fillers such as those described in U.S. Pat. No.
  • silica particles e.g., submicron pyrogenic silicas such as those available under the trade designations AEROSIL, including "OX 50," “130,” “150” and “200” silicas from Degussa AG, Hanau, Germany and CAB-0-SIL M5 silica from Cabot Corp., Tuscola, IL.
  • suitable organic filler particles include filled or unfilled pulverized polycarbonates, polyepoxides, and the like.
  • Other fillers, including other nanofillers, that may be used in the compositions of the invention are described in a U.S.
  • Suitable non-acid-reactive filler particles are quartz, submicron silica, and non-vitreous microparticles of the type described in U.S. Pat. No. 4,503,169 (Randklev). Mixtures of these non-acid-reactive fillers are also contemplated, as well as combination fillers made from organic and inorganic materials.
  • the surface of the filler particles can also be treated with a coupling agent in order to enhance the dispersion of the filler in the resin and the bond between the filler and the resin.
  • suitable coupling agents include gamma- methacryloxypropyltrimethoxysilane, gamma-mercaptopropyltriethoxysilane, gamma-aminopropyltrimethoxysilane, and the like.
  • Examples of useful silane coupling agents are those available from Crompton Corporation, Naugatuck, CT, as SILQUEST A- 174 and SILQUEST A-1230.
  • SILQUEST A- 174 and SILQUEST A-1230 are examples of useful silane coupling agents.
  • compositions may include at least 1% by weight, more preferably at least 2% by weight, and most preferably at least 5% by weight other filler, based on the total weight of the composition.
  • compositions of the present invention preferably include at most 40% by weight, more preferably at most 20% by weight, and most preferably at most 15% by weight other filler, based on the total weight of the composition.
  • the compositions of the invention contain water.
  • the water can be distilled, deionized, or plain tap water. Typically, deionized water is used.
  • the amount of water should be sufficient to provide adequate handling and mixing properties and to permit the transport of ions, particularly in the filler-acid reaction.
  • water represents at least 2 wt-%, and more preferably at least 5 wt-%, of the total weight of ingredients used to form the composition.
  • water represents no greater than 90 wt-%, and more preferably no greater than 80 . wt-%, of the total weight of ingredients used to form the composition.
  • the hardenable compositions may contain other solvents, cosolvents (e.g., alcohols) or diluents.
  • the hardenable composition of the invention can contain additives such as indicators, dyes, pigments, inhibitors, accelerators, viscosity modifiers, wetting agents, tartaric acid, chelating agents, surfactants, buffering agents, stabilizers, and other similar ingredients that will be apparent to those skilled in the art.
  • medicaments or other therapeutic substances can be optionally added to the dental compositions.
  • Examples include, but are not limited to, fluoride sources, whitening agents, anticaries agents (e.g., xylitol), remineralizing agents (e.g., calcium phosphate compounds), enzymes, breath fresheners, anesthetics, clotting agents, acid neutralizers, chemotherapeutic agents, immune response modifiers, thixotropes, polyols, anti-inflammatory agents, antimicrobial agents, antifungal agents, agents for treating xerostomia, desensitizers, and the like, of the type often used in dental compositions. Combination of any of the above addivites may also be employed. The selection and amount of any one such additive can be selected by one of skill in the art to accomplish the desired result without undue experimentation.
  • fluoride sources whitening agents, anticaries agents (e.g., xylitol), remineralizing agents (e.g., calcium phosphate compounds), enzymes, breath fresheners, anesthetics, clotting
  • the hardenable dental compositions of the present invention can be prepared by combining all the various components using conventional mixing techniques.
  • the compositions may be partially or fully hardened by an ionic reaction between an acid-reactive filler and a polyacid.
  • the compositions may contain a polymerizable component and a photoinitiator and be hardened by photoinitiation, or may be partially or fully hardened by chemical polymerization such as a redox cure system in which the composition contains a free-radical initiator system, e.g., including an oxidizing agent and a reducing agent.
  • the hardenable composition may contain different initiator systems, such that the composition can be both a photopolymerizable and a chemically polymerizable composition, as well as an ionically hardenable composition.
  • the hardenable compositions of the invention can be supplied in a variety of forms including one-part systems and multi-part systems, e.g., two-part powder/liquid, paste/liquid, paste/powder and paste/paste systems. Other forms employing multi-part combinations (i.e., combinations of two or more parts), each of which is in the form of a powder, liquid, gel, or paste are also possible.
  • compositions may be divided up into separate parts in whatever manner is desired; however, the polyacid, acid-reactive filler and water generally would not all be present in the same part, although any two of these may be grouped together in the same part along with any combination of other components.
  • one part typically contains the oxidizing agent and another part typically contains the reducing agent.
  • the reducing agent and oxidizing agent could be combined in the same part of the system if the components are kept separated, for example, through use of microencapsulation.
  • Proper surface treatment of a nanozirconia filler is required to achieve good dispersion in a resin composition, to impart the desired rheological, aesthetic, and strength characteristics to the composition, and to obtain a stable composition, especially in the presence of an acidic component.
  • Silane treatment of zirconia nanoparticles is typically accomplished by the reaction of a silane coupling agent or a combination of silane coupling agents with the zirconia in the form of an aqueous sol.
  • the zirconia sol is typically acidic with a pH of 2-5 and an optional cosolvent can be used.
  • the silane-treated zirconia can be incorporated into a resin system either by solvent removal in the presence of the resin (solvent exchange) or solvent removal followed by dispersion of the isolated solid filler in the resin.
  • a base such as aqueous ammonia
  • this addition of base is made after the heating cycle under acidic conditions.
  • the addition of base maybe made prior to the heating cycle.
  • the zirconia sol is heated with at least two silane coupling agents under acidic conditions (e.g., in the presence of 2-[2-(2- methoxyethoxy)ethoxy] acetic acid (MEEAA)). After cooling, the mixture is added to a dilute aqueous ammonia solution.
  • Other base materials may be used as alternatives to the ammonia solution.
  • the addition to base will generally lead to precipitation of the zirconia solids.
  • the base is believed to facilitate removal of the attached (e.g., adsorbed) acids from the surface of the silane-treated zirconia. Subsequent filtration and washing of the solids allow for further removal of acids.
  • the zirconia is surface treated with high molecular weight nonvolatile acids such as MEEAA. If - high molecular weight acids are not removed after silane treatment, a substantial amount of residual acid maybe incorporated into the final composition, which can lead to undesirable composition properties and decreased composition stability.
  • the silane-treated nanozirconia filler can be redispersed in a solvent and subsequently incorporated into a resin via solvent exchange or typically the solids can be dried to a powder and redispersed into a resin.
  • the nanozirconia fillers can be surface treated with a combination of silane coupling agents to impart desired rheological and physical properties (e.g., visual opacity) to a composition.
  • two-part dental compositions of the present invention can be provided in a dual barrel syringe having a first barrel and a second barrel, wherein the part A resides in the first barrel and the part B resides in the second barrel.
  • two-part dental compositions of the present invention can be provided in a unit-dose capsule.
  • each part of a multi-part dental system can be mixed together using a static mixer.
  • the components of the hardenable composition can be included in a kit, where the contents of the composition are packaged to allow for storage of the components until they are needed.
  • the components of the hardenable compositions can be mixed and clinically applied using conventional techniques.
  • a curing light is generally required for the initiation of photopolymerizable compositions.
  • the compositions can be in the form of composites or restoratives that adhere very well to dentin and/or enamel.
  • a surface conditioner or a primer layer can be used on the tooth tissue on which the hardenable composition is used.
  • compositions e.g., containing a FAS glass or other fluoride-releasing material
  • Some embodiments of the invention may provide glass ionomer cements or adhesives that can be cured in bulk without the application of light or other external curing energy, do not require a pre-treatment, have improved physical properties including improved flexural strength, and have high fluoride release for cariostatic effect.
  • the hardenable dental compositions of the invention are particularly well adapted for use in the form of a wide variety of dental materials. They can be used in prosthodontic cements, which are typically filled compositions (preferably containing greater than about 25 wt-% filler and up to about 60 wt-% filler).
  • restoratives which include composites which are typically filled compositions (preferably containing greater than about 10 wt-% filler and up to about 85 wt-% filler) that are polymerized after being disposed adjacent to a tooth, such as filling materials. They can also be used in prostheses that are shaped and hardened for final use (e.g., as a crown, bridge, veneer, inlay, onlay, or the like), before being disposed adjacent to a tooth. Such preformed articles can be ground or otherwise formed into a custom-fitted shape by the dentist or other user.
  • the hardenable dental composition can be any of a wide variety of materials preferably, the composition is not a surface pre-treatment material (e.g., etchant, primer, bonding agent). Rather, preferably, the hardenable dental composition is a restorative (e.g., composite, filling material or prosthesis), cement, sealant, coating, or orthodontic adhesive.
  • a restorative e.g., composite, filling material or prosthesis
  • cement e.g., cement, sealant, coating, or orthodontic adhesive.
  • Compressive Strength Test Method Compressive strength was evaluated by first injecting a mixed paste-paste test sample into a glass tube having a 4-mm inner diameter. The ends of the glass tube were plugged with silicone plugs. The filled tubes were subjected to 0.275 megapascal (MPa) pressure for 5 minutes, irradiated with a XL 1500 curing light (3M Company) for 60 seconds, and placed in a KULZER UniXS (Kulzer, Inc., Germany) light box for 90 seconds. Five such cured samples were cut to a length of 8 mm and placed in 37°C water for 1 day. Compressive strength was determined according to ISO Standard 7489 using an INSTRON universal tester (Instron Corp., Canton, MA) operated at a crosshead speed of 1 millimeter per minute (mm/min). Results were reported as the average of 5 replicates.
  • MPa megapascal
  • Diametral Tensile Strength (DTS Test Method Diametral tensile strength was measured using the above-described CS procedure, but using samples were cut to a length of 2 mm. Results were reported as the average of 7 replicates.
  • MacBeth Values Visual Opacity Test Method Disc-shaped (1-mm thick x 15-mm diameter) paste samples were cured by exposing them to illumination from a VISILUX 2 curing light (3M Co , St. Paul, MN) for 60 seconds on each side of the disk at a distance of 6 mm. Hardened samples were measured for direct light transmission by measuring transmission of light through the thickness of the disk using a MacBeth transmission densitometer Model TD-903 equipped with a visible light filter, available from MacBeth (MacBeth, Newburgh, NY). Lower MacBeth Values indicate lower visual opacity and greater translucency of a material. The reported values are the average of 3 measurements.
  • Radiopacity Test Method Disc-shaped (1-mm thick x 15-mm diameter) paste test samples were cured by exposing them to illumination from an VISILUX 2 (3M Company) curing light for 60 seconds on each side of the disk at a distance of 6 mm. The cured samples were then evaluated for radiopacity as follows. For radiopacity evaluation, the procedure used followed the ISO-test procedure 4049 (1988). Specifically, cured composite samples were exposed to radiation using a Gendex GX-770 dental X-ray (Milwaukee, WI) unit for 0.73 seconds at 7 milliamps and 70 kV peak voltage at a distance of about 400 millimeters. An aluminum step wedge was positioned during exposure next to the cured disk on the X-ray film.
  • the X-ray negative was developed using an Air Techniques Peri-Pro automatic film processor (Hicksville, NT).
  • a Macbeth densitometer was used to determine the optical density of the sample disk by comparison with the optical densities of the aluminum step wedge.
  • the reported values of optical density are the average of 3 measurements.
  • Example 1 Silane-Treated Nanozirconia (Filler I) Zirconia Sol (800.0 g; 184 g zirconia) and MEEAA (72.08 g) were charged to a 1 -liter round-bottom flask. The water and acid were removed via rotary evaporation to afford a powder (291.36 g) that was further dried in a forced-air oven (90°C) to provide a dried powder (282.49 g). Deionized (DI) water (501.0 g.) was added and the powder redispersed.
  • DI Deionized
  • the resulting dispersion was charged to a 2- liter beaker followed by the addition with stirring of l-methoxy-2-propanol (783 g; Sigma-Aldrich), SILQUEST A-174 (83.7 g) and SILQUEST A-1230 (56.3 g).
  • the resulting mixture was stirred 30 minutes at room temperature and then separated into two quart jars and sealed.
  • the jars were heated to 90°C for 4.0 hours, and the contents concentrated via rotary evaporation to afford a liquid concentrate (621 g).
  • DI water (2400 g) and concentrated ammonia/water (80.0 g; 29% NH 3 ) were charged to a 4-liter beaker followed by the addition over about 5 minutes of the liquid concentrate to afford a white precipitate.
  • the precipitate was recovered by vacuum filtration and washed with DI water.
  • the resulting wet cake was dispersed in l-methoxy-2-propanol (661 g) to afford a dispersion that contained 15.33 weight % silane-treated nanozirconia.
  • the silane-treated nanozirconia filler was designated Filler I (Example 1).
  • the above dispersion (1183 g) was combined with Resin A [HEMA (24.06 g) and PEGDMA-400 (39.59 g)] and the water and alcohol removed via rotary evaporation to afford a translucent paste that contained 80 weight % silane-treated nanozirconia filler (Filler I).
  • the primary and aggregated particle sizes of Filler I were assumed to be the same as in the starting Zirconia Sol, i.e., about 5 nanometers and 50-60 nanometers, respectively.
  • Comparative Example 1 Acid-Treated Nanozirconia (Filler K) Zirconia Sol (30.0 g; 9.39 g zirconia) and MEEAA (3.67 g) were charged to a 100-ml round-bottom flask. The water was removed via rotary evaporation to afford a dried powder (8 g) that was designated Filler K (Comparative Example 1). The dry powder (8 g) was combined with Resin A [HEMA (0.756 g) and PEGDMA-400 (1.244 g)] and speed mixed to afford a translucent, somewhat viscous material that contained approximately 80 weight % acid-treated nanozirconia filler (Filler K).
  • Resin A HEMA (0.756 g) and PEGDMA-400 (1.244 g)
  • Paste A - Paste B Compositions Five first paste compositions (designated with the letter A as Al through A5) were prepared by combining the ingredients (indicated as parts by weight) as listed in Table 1. Filler I and Filler K were added to the compositions as mixtures (about 80% by weight) in Resin A and reported in the Tables on a dry filler parts by weight basis; the Resin A components were reported as part of the HEMA and PEGDMA- 400 components.
  • Two second paste compositions (designated with the letter B as Bl through B2) were prepared by combining the ingredients (indicated as parts by weight) as listed in Table 2.
  • Hardenable compositions (Examples 2-3 and Comparative Examples 2-4) were prepared by spatulating a first paste with a second paste for 25 seconds.
  • the relative parts by weight of pastes utilized and the parts by weight components in the compositions are provided in Table 3.
  • the hardenable compositions were evaluated for Compressive Strength (DS), Diametral Tensile Strength (DTS), Visual Opacity, and Radiopacity, according to the Test Methods described herein and the results are reported in Table 4.
  • Examples 2 and 3 both representing compositions containing silane-treated nanozirconia filler had good radiopacity and excellent Visual Opacity (e.g., MacBeth values less than 0.30), whereas Comparative Examples 2 and 3 (both containing acid-treated nanozirconia filler) had good radiopacity, but much poorer Visual Opacity (e.g., MacBeth values greater than 0.30). Comparative Example 4 lacked a zirconia filler and had a poorer radiopacity value.

Abstract

The present invention features ionomer compositions containing nanozirconia fillers. The compositions can be used in a variety of dental and orthodontic applications, for example, as adhesives, cements, restoratives, coatings and sealants.

Description

DENTAL COMPOSITIONS CONTAINING NANOZIRCONIA FILLERS
Field of the Invention The present invention relates to hardenable dental and orthodontic compositions filled with zirconia nanoparticles. More specifically, the invention relates to ionomer and resin modified ionomer compositions containing nanozirconia fillers. The compositions can be used in a variety of applications, for example, as adhesives, cements, restoratives, coatings, and sealants. Background The restoration of decayed dental structures including caries, decayed dentin or decayed enamel, is often accomplished by the sequential application of a dental adhesive and then a dental material (e.g., a restorative material) to the relevant dental structures. Similar compositions are used in the bonding of orthodontic appliances (generally utilizing an orthodontic adhesive) to a dental structure. Often various pretreatment processes are used to promote the bonding of adhesives to dentin or enamel. Typically, such pretreatment steps include etching with, for example, inorganic or organic acids, followed by priming to improve the bonding between the tooth structure and the overlying adhesive. A variety of dental and orthodontic adhesives, cements, and restoratives are currently available. Compositions including fluoroaluminosilicate glass fillers (also known as glass ionomer or "GI" compositions) are among the most widely used types of dental materials. These compositions have a broad range of applications such as filling and restoration of carious lesions; cementing of, for example, a crown, an inlay, a bridge, or an orthodontic band; lining of cavity; core construction; and pit and fissure sealing. There are currently two major classes of glass ionomers. The first class, known as conventional glass ionomers, generally contains as main ingredients a homopolymer or copolymer of an α,β-unsaturated carboxylic acid, a fluoroaluminosilicate ("FAS") glass, water, and optionally a chelating agent such as tartaric acid. These conventional glass ionomers typically are supplied in powder/liquid formulations that are mixed just before use. The mixture undergoes self-hardening in the dark due to an ionic acid -base reaction between the acidic repeating units of the polycarboxylic acid and cations leached from the basic glass. The second major class of glass ionomers is known as hybrid glass ionomer or resin-modified glass ionomers ("RMGI"). Like a conventional glass ionomer, an RMGI employs an FAS glass. An RMGI also contains a homopolymer or copolymer of an α,β-unsaturated carboxylic acid, an FAS glass, and water; however, the organic portion of an RMGI is different. In one type of RMGI, the polyacid is modified to replace or end-cap some of the acidic repeating units with pendent curable groups and a photoinitiator is added to provide a second cure mechanism. Acrylate or methacrylate groups are typically employed as the pendant curable group. In another type of RMGI, the composition includes a polycarboxylic acid, an acrylate or methacrylate-functional monomer or polymer, and a photoinitiator. The polyacid may optionally be modified to replace or end-cap some of the acidic repeating units with pendent curable groups. A redox or other chemical cure system may be used instead of or in addition to a photoinitiator system. RMGI compositions are usually formulated as powder/liquid or paste/paste systems, and contain water as mixed and applied. They may partially or fully harden in the dark due to the ionic reaction between the acidic repeating units of the polycarboxylic acid and cations leached from the glass, and commercial RMGI products typically also cure on exposure of the cement to light from a dental curing lamp. There are many important benefits provided by glass ionomer compositions.
For example, fluoride release from glass ionomers tends to be higher than from other classes of dental compositions such as metal oxide cements, compomer cements, or fluoridated composites, and thus glass ionomers are believed to provide enhanced cariostatic protection. Another advantage of glass ionomer materials is the very good clinical adhesion of such cements to tooth structure, thus providing highly retentive restorations. Since conventional glass ionomers do not need an external curing initiation mode, they can generally be placed in bulk as a filling material in deep restorations, without requiring layering. One of the drawbacks of conventional glass ionomers is that these compositions are somewhat technique sensitive when mixed by hand. They are typically prepared from a powder component and a liquid component, thus requiring weighing and mixing operations prior to application. The accuracy of such operations depends in part on operator skill and competency. When mixed by hand, the powder component and the liquid component are usually mixed on paper with a spatula. The mixing operation must be carried out within a short period of time, and a skilled technique is needed in order for the material to fully exhibit the desired characteristics (i.e., the performance of the cement can depend on the mixture ratio and the manner and thoroughness of mixing). Alternatively some of these inconveniences and technique sensitivities have been improved by utilization of powder liquid capsule dispensing systems that contain the proper proportion of the powder and liquid components. While capsules provide proper proportions of the powder and liquid components, they still require a capsule activation step to combine the two components followed by mechanical mixing in a dental triturator Conventional glass ionomers may also be quite brittle as evidenced by their relatively low flexural strength. Thus restorations made from conventional glass ionomers tend to be more prone to fracture in load bearing indications. In addition, glass ionomers are often characterized by high visual opacity (i.e., cloudiness), especially when they come into contact with water at the initial stage of hardening, resulting in relatively poor aesthetics. Cured RMGIs typically have increased strength properties (e.g., flexural strength), are less prone to mechanical fracture than conventional glass ionomers, and typically require a primer or conditioner for adequate tooth adhesion. Summary The present invention features stable ionomer compositions containing nanozirconia fillers that provide the compositions with improved properties over previous ionomer compositions. In particular, the inclusion of one or more nanozirconia fillers provides ionomer systems that are optically translucent and radiopaque. The nanozirconia is surface modified with silanes to aid in the incorporation of the nanzirconia into ionomer compositions, which generally contain a polyacid that might otherwise interact with the nanozirconia causing coagulation or aggregation resulting in undesired visual opacity. Accordingly, in one aspect, the present invention features a hardenable dental composition comprising a polyacid; an acid-reactive filler; a nanozirconia filler having a plurality of silane-containing molecules attached onto the outer surface of the zirconia particles; and water. In one embodiment, the composition further comprises a polymerizable component. Generally, the polymerizable component is an ethylenically unsaturated compound, optionally with acid functionality. ' The polyacid component of the composition typically comprises a polymer having a plurality of acidic repeating groups. The polymer may be substantially free of polymerizable groups, or alternatively it may comprise a plurality of polymerizable groups. The acid-reactive filler is generally selected from metal oxides, glasses, metal salts, and combinations thereof. Typically, the acid-reactive filler comprises an FAS glass. Traditionally, ionomer compositions have used reactive glass to impart radiopacity. Incorporation of nanozirconia into the composition may allow for the formulation of radiopaque, optically translucent ionomer compositions while using less acid-reactive filler than previous GI and RMGI compositions. Accordingly, in one embodiment, the composition of the invention comprises less than 50 percent by weight acid-reactive filler, typically an FAS glass. In another embodiment of the invention, the acid-reactive filler comprises an oxyfluoride material, which is typically nanostructured, e.g., provided in the form of nanoparticles. Generally, the acid-reactive oxyfluoride material is non-fused and includes at least one trivalent metal (e.g., aluminum, lanthanum, etc.), oxygen, a fluorine, and at least one alkaline earth metal (e.g. strontium, calcium, barium, etc.). The oxyfluoride material may be in the form of a coating on particles or nanoparticles, such as metal oxide particles (e.g., silica). The compositions of the invention may also include one or more optional additives, such as, for example, other fillers, pyrogenic fillers, fluoride sources, whitening agents, anticaries agents (e.g., xylitol), remineralizing agents (e.g., calcium phosphate compounds), enzymes, breath fresheners, anesthetics, clotting agents, acid neutralizers, chemotherapeutic agents, immune response modifiers, medicaments, indicators, dyes, pigments, wetting agents, tartaric acid, chelating agents, surfactants, buffering agents, viscosity modifiers, thixotropes, polyols, antimicrobial agents, anti-inflammatory agents, antifungal agents, stabilizers, agents for treating xerostomia, desensitizers, and combinations thereof. The compositions of the invention may further include a photoinitiator system and/or a redox cure system. Additionally, the compositions may be provided in the form of a multi-part system in which the various components are divided into two or more separate parts. Typicially, the composition is a two-part system, such as a paste-paste composition, a paste-liquid composition, a paste-powder composition, or a powder- liquid composition. As discussed above, one of the features of the present invention is that it provides a radiopaque, optically translucent ionomer composition while using less acid-reactive filler than conventional glass ionomers. This facilitates the preparation of a two-part, paste-paste composition, which is generally desirable because of the ease of dispensing and mixing of such a system compared to, for example, a powder-liquid system. Compositions according to the invention are useful in a variety of dental and orthodontic applications, including in dental restoratives, dental adhesives, dental cements, cavity liners, orthodontic adhesives, dental sealants, and dental coatings. The compositions may be used to prepare a dental article by hardening to form, for example, dental mill blanks, dental crowns, dental fillings, dental prostheses, and orthodontic devices. The ionomer compositions of the invention exhibit good aesthetics, low visual opacity (generally no more than about 0.50 upon hardening, as determined by the Visual Opacity (MacBeth Values) Test Method described herein), radiopacity, durability, excellent polish, polish retention, and wear properties, and good physical properties including mechanical strengths, e.g., flexural strength, and adhesive strength to tooth structures. Furthermore, the compositions may also provide adhesion to both dentin and enamel without the need for primers, etchants, or preconditioners. In addition, the invention provides for easy mixing and convenient dispensing options made possible by formulation of a paste-paste composition. Other features and advantages of the present invention will be apparent from the following detailed description thereof, and from the claims.
Definitions By "hardenable" is meant that the composition can be cured or solidified, e.g. by heating, chemical cross-linking, radiation-induced polymerization or crosslinking, or the like. By "filler" is meant a particulate material suitable for use in the oral environment. Dental fillers generally have an average particle size of at most 100 micrometers. By "nanozirconia filler" is meant a filler comprising zirconia nanoparticles. Typically these nanozirconia fillers comprise non-pyrogenic nanoparticles. By "paste" is meant a soft, viscous mass of solids dispersed in a liquid. By "acid-reactive filler" is meant a filler that chemically reacts in the presence of an acidic component. By "oxyfluoride" is meant a material in which atoms of oxygen and fluorine are bonded to the same atom (e.g., aluminum in an aluminum oxyfluoride). Generally, at least 50% of the fluorine atoms are bonded to an atom bearing an oxygen atom in an oxyfluoride material. By "nanostructured" is meant a material in a form having at least one dimension that is, on average, at most 200 nanometers (e.g., nanosized particles). Thus, nanostructured materials refer to materials including, for example, nanoparticles as defined herein below; aggregates of nanoparticles; materials coated on particles, wherein the coatings have an average thickness of at most 200 nanometers; materials coated on aggregates of particles, wherein the coatings have an average thickness of at most 200 nanometers; materials infiltrated in porous structures having an average pore size of at most 200 nanometers; and combinations thereof. Porous structures include, for example, porous particles, porous aggregates of particles, porous coatings, and combinations thereof. As used herein "nanoparticles" is used synonymously with "nanosized particles," and refers to particles having an average size of at most 200 nanometers. As used herein for a spherical particle, "size" refers to the diameter of the particle. As used herein for a non-spherical particle, "size" refers to the longest dimension of the particle. By "nanocluster" is meant an association of nanoparticles drawn together by relatively weak intermolecular forces that cause them to clump together, i.e. to aggregate. Typically, nanoclusters have an average size of at most 10 micrometers. The term "ethylenically unsaturated compounds with acid functionality" is meant to include monomers, oligomers, and polymers having ethylenic unsaturation and acid and/or acid-precursor functionality. Acid-precursor functionalities include, for example, anhydrides, acid halides, and pyrophosphates. By "dental compositions and dental articles" is meant to include orthodontic compositions (e.g., orthodontic adhesives) and orthodontic devices (e.g., orthodontic appliances such as retainers, night guards, brackets, buccal tubes, bands, cleats, buttons, lingual retainers, bite openers, positioners, and the like).
Detailed Description The present invention is directed to dental (including orthodontic) compositions, specifically ionomer compositions, e.g., glass ionomer compositions, containing one or more nanozirconia fillers. These hardenable compositions further comprise a polyacid, an acid-reactive filler, an optional polymerizable component, and water. The incorporation of one or more nanozirconia fillers into the composition provides for improved properties, including enhanced aesthetics (e.g., low visual opacity), polish retention, and radiopacity as compared to previously known glass ionomer compositions.
POLYMERIZABLE COMPONENT As mentioned above, the hardenable dental compositions of the present invention optionally include a polymerizable component. The polymerizable component can optionally be an ethylenically unsaturated compound with or without acid functionality. The polymerizable component of the present invention can be part of a hardenable resin. These resins are generally thermosetting materials capable' of being hardened to form a polymer network including, for example, acrylate- functional materials, niethacrylate-functional materials, epoxy-functional materials, vinyl-functional materials, and mixtures thereof. Typically, the hardenable resin is made from one or more matrix-forming oligomer, monomer, polymer, or blend thereof. In certain embodiments where the dental composition disclosed in the present application is a dental composite, polymerizable materials suitable for use include hardenable organic materials having sufficient strength, hydrolytic stability, and non-toxicity to render them suitable for use in the oral environment. Examples of such materials include acrylates, methacrylates, urethanes, carbamoylisocyanurates, epoxies, and mixtures and derivatives thereof. One class of preferred hardenable materials includes materials having polymerizable components with free radically active functional groups. Examples of such materials include monomers having one or more ethylenically unsaturated group, oligomers having one or more ethylenically unsaturated group, polymers having one or more ethylenically unsaturated group, and combinations thereof. In the class of hardenable resins having free radically active functional groups, suitable polymerizable components for use in the invention contain at least one ethylenically unsaturated bond, and are capable of undergoing addition polymerization. Such free radically ethylenically unsaturated compounds include, for example, mono-, di- or poly-(meth)acrylates (i.e., acrylates and methacrylates) such as, methyl (meth)acrylate, ethyl acrylate, isopropyl methacrylate, n-hexyl acrylate, stearyl acrylate, allyl acrylate, glycerol triacrylate, ethyleneglycol diacrylate, diethyleneglycol diacrylate, triethyleneglycol dimethacrylate, 1,3- propanediol di(meth)acrylate, trimethylolpropane triacrylate, 1,2,4-butanetriol trimethacrylate, 1,4-cyclohexanediol diacrylate, pentaerythritol tetra(meth)acrylate, sorbitol hexacrylate, tetrahydrofurfuryl (meth)acrylate, bis[l-(2-acryloxy)]-p- ethoxyphenyldimethylmethane, bis [l-(3 -acryloxy-2-hydroxy)] -p- propoxyphenyldimethylmethane, ethoxylated bisphenol A di(meth)acrylate, and trishydroxyethyl-isocyanurate trimethacrylate; (meth)acrylamides (i.e., acrylamides and methacrylamides) such as (meth)acrylamide, methylene bis-(meth)acrylamide, and diacetone (meth)acrylamide; urethane (meth)acrylates; the bis-(meth)acrylates of polyethylene glycols (preferably of molecular weight 200-500); copolymerizable mixtures of acrylated monomers such as those in U.S. Pat. No. 4,652, 274 (Boettcher et al.); acrylated oligomers such as those of U.S. Pat. No. 4,642,126 (Zador et al.); and vinyl compounds such as styrene, diallyl phthalate, divinyl succinate, divinyl adipate and divinyl phthalate. Other suitable free radically polymerizable compounds include siloxane-functional (meth)acrylates as disclosed, for example, in WO-00/38619 (Guggenberger et al.), WO-01/92271 (Weinmann et al.), WO-01/07444 (Guggenberger et al.), WO-00/42092 (Guggenberger et al.) and fluoropolymer-functional (meth)acrylates as disclosed, for example, in U.S. Pat. No. 5,076,844 (Fock et al.), U.S. Pat. No. 4,356,296 (Griffith et al), EP-0 373 384 (Wagenknecht et al.), EP-0 201 031 (Reiners et al.), and EP-0 201 778 (Reiners et al.). Mixtures of two or more free radically polymerizable compounds can be used if desired. The polymerizable component may also contain hydroxyl groups and free radically active functional groups in a single molecule. Examples of such materials include hydroxyalkyl (meth)acrylates, such as 2-hydroxyethyl (meth)acrylate and 2- hydroxypropyl (meth)acrylate; glycerol mono- or di-(meth)acrylate; trimethylolpropane mono- or di-(meth)acrylate; pentaerythritol mono-, di-, and tri- (rneth)acrylate; sorbitol mono-, di-, tri-, terra-, or penta-(meth)acrylate; and 2,2- bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (bisGMA). Suitable ethylenically unsaturated compounds are also available from a wide variety of commercial sources, such as Sigma-Aldrich, St. Louis, MO. Mixtures of ethylenically unsaturated compounds can be used if desired.
POLYMERIZABLE COMPONENT WITH ACID FUNCTIONALITY When present, the polymerizable component optionally comprises an ethylenically unsaturated compound with acid functionality. Preferably, the acid functionality includes an oxyacid (i.e., an oxygen-containing acid) of carbon, sulfur, phosphorous, or boron. Such compounds include, for example, α,β-unsaturated acidic compounds such as glycerol phosphate monomethacrylates, glycerol phosphate dimethacrylates, hydroxyethyl methacrylate phosphates, citric acid di- or tri-methacrylates, poly(meth)acrylated oligomaleic acid, poly(meth)acrylated polymaleic acid, poly(rneth)acrylated poly(meth)acrylic acid, poly(meth)acrylated polycarboxyl- polyphosphonic acid, poly(meth)acrylated polychlorophosphoric acid, poly(meth)acrylated polysulfonic acid, poly(meth)acrylated polyboric acid, and the like, may be used as components in the hardenable resin system. Certain of these compounds are obtained, for example, as reaction products between isocyanatoalkyl (meth)acrylates and carboxylic acids. Additional compounds of this type having both acid-functional and ethylenically unsaturated components are described in U.S. Pat. Nos. 4,872,936 (Engelbrecht) and 5,130,347 (Mitra). A wide variety of such compounds containing both the ethylenically unsaturated and acid moieties can be used. Mixtures of such compounds can be used if desired. Additional ethylenically unsaturated compounds with acid functionality include, for example, polymerizable bisphosphonic acids as disclosed for example, in U.S.S.N. 10/729,497; AA:ITA:IEM (copolymer of acrylic acid:itaconic acid with pendent methacrylate made by reacting AA:ITA copolymer with sufficient 2- isocyanatoethyl methacrylate to convert a portion of the acid groups of the copolymer to pendent methacrylate groups as described, for example, in Example 11 of U.S. Pat. No. 5,130,347 (Mitra)); and those recited in U.S. Pat. Nos. 4,259,075 (Yamauchi et al.), 4,499,251 (Omura et al.), 4,537,940 (Omura et al.), 4,539,382 (Omura et al.), 5,530,038 (Yamamoto et al.), 6,458,868 (Okada et al), and European Pat. Application Publication Nos. EP 712,622 (Tokuyama Corp.) and EP 1,051,961 (Kuraray Co., Ltd.). When ethylenically unsaturated compounds with acid functionality are present, the compositions of the present invention typically include at least 1% by weight, more typically at least 3% by weight, and most typically at least 5% by weight ethylenically unsaturated compounds with acid functionality, based on the total weight of the unfilled composition. Typically, compositions of the present invention include at most 50% by weight, more typically at most 40% by weight, and most typically at most 30% by weight ethylenically unsaturated compounds with acid functionality, based on the total weight of the unfilled composition. Partial or complete hardening of the composition may occur through an acid- reactive filler/polyacid reaction (i.e. an acid/base reaction). In certain embodiments, the composition also contains a photoinitiator system that upon irradiation with actinic radiation initiates the polymerization (or hardening) of the composition. Such photopolymerizable compositions can be free radically polymerizable.
FREE RADICAL INITIATION SYSTEMS For free radical polymerization (e.g., hardening), an initiation system can be selected from systems that initiate polymerization via radiation, heat, or redox/auto- cure chemical reaction. A class of initiators capable of initiating polymerization of free radically active functional groups includes free radical-generating photoinitiators, optionally combined with a photosensitizer or accelerator. Such initiators typically can be capable of generating free radicals for addition polymerization upon exposure to light energy having a wavelength between 200 and 800 nm. Suitable photoinitiators (i.e., photoinitiator systems that include one or more compounds) for polymerizing free radically photopolymerizable compositions include binary and ternary systems. Typical ternary photoinitiators include an iodonium salt, a photosensitizer, and an electron donor compound as described in U.S. Pat. No. 5,545,676 (Palazzotto et al.). Preferred iodonium salts are the diaryl iodonium salts, e.g., diphenyliodonium chloride, diphenyliodonium hexafluorophosphate, diphenyliodonium tetrafluoroborate, and tolylcumyliodonium tetrakis(pentafluorophenyl) borate. Preferred photosensitizers are monoketones and diketones that absorb some light within a range of about 400 nm to 520 nm (preferably, 450 nm to 500 nm). More preferred compounds are alpha diketones that have some light absorption within a range of 400 nm to 520 nm (even more preferably, 450 to 500 nm). Preferred compounds are camphorquinone, benzil, furil, 3,3,6,6-tetramethylcyclohexanedione, phenanthraquinone, l-phenyl-1,2- propanedione and other l-aryl-2-alkyl-l,2-ethanediones, and cyclic alpha diketones. Most preferred is camphorquinone. Preferred electron donor compounds include substituted amines, e.g., ethyl dimethylaminobenzoate. Other suitable ternary photoinitiator systems useful for photopolymerizing cationically polymerizable resins are described, for example, in U.S. Pat. Publication No. 2003/0166737 (Dede et al.). Other suitable photoinitiators for polymerizing free radically photopolymerizable compositions include the class of phosphine oxides that typically have a functional wavelength range of 380 nm to 1200 nm. Preferred phosphine oxide free radical initiators with a functional wavelength range of 380 nm to 450 nm are acyl and bisacyl phosphine oxides such as those described in U.S. Pat. Nos. 4,298,738 (Lechtken et al.), 4,324,744 (Lechtken et al.), 4,385,109 (Lechtken et al.), 4,710,523 (Lechtken et al.), and 4,737,593 (Ellrich et al.), 6,251,963 (Kohler et al); and EP Application No. 0 173 567 A2 (Ying). Commercially available phosphine oxide photoinitiators capable of free- radical initiation when irradiated at wavelength ranges of greater than 380 nm to 450 nm include, for example, bis(2,4,6-trimethylbenzoyl)phenyl phosphine oxide available under the trade designation IRGACURE 819 from Ciba Specialty
Chemicals, Tarrytown, NY; bis(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl) phosphine oxide available under the trade designation CGI 403 from Ciba Specialty Chemicals; a 25:75 mixture, by weight, of bis(2,6-dimethoxybenzoyl)-2,4,4- trimethylpentyl phosphine oxide and 2-hydroxy-2-methyl-l-phenylpropan-l-one available under the trade designation IRGACURE 1700 from Ciba Specialty Chemicals; a 1:1 mixture, by weight, of bis(2,4,6-trimethylbenzoyl)phenyl phosphine oxide and 2-hydroxy-2-methyl-l-phenylpropane-l-one available under the trade designation DAROCUR 4265 from Ciba Specialty Chemicals; and ethyl 2,4,6-trimethylbenzylphenyl phosphinate available under the trade designation LUCIRLN LR8893X from BASF Corp., Charlotte, NC. Typically, the phosphine oxide initiator is present in the photopolymerizable composition in catalytically effective amounts, such as from 0.1% by weight to 5% by weight, based on the total weight of the composition. Tertiary amine reducing agents may be used in combination with an acylphosphine oxide. Illustrative tertiary arnines useful in the invention include ethyl 4-(N,N-dimethylamino)benzoate and N,N-dimethylaminoethyl methacrylate. When present, the amine reducing agent is present in the photopolymerizable composition in an amount from 0.1% by weight to 5% by weight, based on the total weight of the composition. Useful amounts of other initiators are well known to those of skill in the art. Another free-radical initiator system that can alternatively be used in the dental materials of the invention includes the class of ionic dye-counterion complex initiators including a borate anion and a complementary cationic dye. Borate salt photoinitiators are described, for example, in U. S. Pat. Nos. 4,772,530 (Gottschalk et al), 4,954,414 (Adair et al.), 4,874,450 (Gottschalk), 5,055,372 (Shanklin et al.), and 5,057,393 (Shanklin et al.). The hardenable resins of the present invention can include redox cure systems that include a polymerizable component (e.g., an ethylenically unsaturated polymerizable component) and redox agents that include an oxidizing agent and a reducing agent. Suitable polymerizable components and redox agents that are useful in the present invention are described in U.S. Pat. Publication No. 2003/0166740 (Mitra et al.) and U.S. Pat. Publication No. 2003/0195273 (Mitra et al.). The reducing and oxidizing agents should react with or otherwise cooperate with one another to produce free-radicals capable of initiating polymerization of the resin system (e.g., the ethylenically unsaturated component). This type of cure is a dark reaction, that is, it is not dependent on the presence of light and can proceed in the absence of light. The reducing and oxidizing agents are preferably sufficiently shelf-stable and free of undesirable colorization to permit their storage and use under typical dental conditions. They should be sufficiently miscible with the resin system (and preferably water-soluble) to permit ready dissolution in (and discourage separation from) the other components of the polymerizable composition. Useful reducing agents include, for example, ascorbic acid, ascorbic acid derivatives, and metal complexed ascorbic acid compounds as described in U.S. Pat. No. 5,501,727 (Wang et al.); amines, especially tertiary amines, such as 4-tert- butyl dimethylaniline; aromatic sulfinic salts, such as p-toluenesulfinic salts and benzenesulfinic salts; thioureas, such as l-ethyl-2-thiourea, tetraethyl thiourea, tetramethyl thiourea, 1,1-dibutyl thiourea, and 1,3-dibutyl thiourea; and mixtures thereof. Other secondary reducing agents may include cobalt (II) chloride, ferrous chloride, ferrous sulfate, hydrazine, hydroxylamine (depending on the choice of oxidizing agent), salts of a dithionite or sulfite anion, and combinations thereof. Preferably, the reducing agent is an amine. Suitable oxidizing agents will also be familiar to those skilled in the art, and include, for example, persulfuric acid and salts thereof, such as sodium, potassium, ammonium, cesium, and alkyl ammonium salts. Additional oxidizing agents include, for example, peroxides such as benzoyl peroxides, hydroperoxides such as cumyl hydroperoxide, t-butyl hydroperoxide, and amyl hydroperoxide, as well as salts of transition metals such as cobalt (III) chloride and ferric chloride, cerium (IN) sulfate, perboric acid and salts thereof, permanganic acid and salts thereof, perphosphoric acid and salts thereof, and combinations thereof. It may be desirable to use more than one oxidizing agent or more than one reducing agent. Small quantities of transition metal compounds may also be added to accelerate the rate of redox cure. In some embodiments it maybe preferred to include a secondary ionic salt to enhance the stability of the hardenable composition as described, for example, in U.S. Pat. Publication No. 2003/0195273 (Mitra et al.). The reducing and oxidizing agents are present in amounts sufficient to permit an adequate free-radical reaction rate. This can be evaluated by combining all of the ingredients of the hardenable composition except for the filler, and observing whether or not a hardened mass is obtained. Preferably, the reducing agent is present in an amount of at least 0.01% by weight, and more preferably at least 0.10% by weight, based on the total weight (including water) of the components of the hardenable composition. Preferably, the reducing agent is present in an amount of no greater than 10% by weight, and more preferably no greater than 5% by weight, based on the total weight (including water) of the components of the polymerizable composition. Preferably, the oxidizing agent is present in an amount of at least 0.01% by weight, and more preferably at least 0.10% by weight, based on the total weight (mcluding water) of the components of the polymerizable composition. Preferably, the oxidizing agent is present in an amount of no greater than 10% by weight, and more preferably no greater than 5% by weight, based on the total weight (including water) of the components of the hardenable composition. The reducing or oxidizing agents can be microencapsulated as described, for example, in U.S. Pat. No. 5,154,762 (Mitra et al.). This will generally enhance shelf stability of the polymerizable composition, and if necessary permit packaging the reducing and oxidizing agents together. For example, through appropriate selection of an encapsulant, the oxidizing and reducing agents can be combined with an acid- functional component and optional filler and kept in a storage-stable state. Likewise, through appropriate selection of a water-insoluble encapsulant, the reducing and oxidizing agents can be combined with an FAS glass and water and maintained in a storage-stable state. In a further alternative, heat may be used to initiate the hardening, or polymerization, of free radically active groups. Examples of heat sources suitable for the dental materials of the invention include inductive, convective, and radiant. Thermal sources should be capable of generating temperatures of at least 40°C and at most 150°C under normal conditions or at elevated pressure. This procedure is preferred for initiating polymerization of materials occurring outside of the oral environment. Yet another alternative class of initiators capable of initiating polymerization of free radically active functional groups in the hardenable resin are those that include free radical-generating thermal initiators. Examples include peroxides (e.g., benzoyl peroxide and lauryl peroxide) and azo compounds (e.g., 2,2-azobis- isobutyronitrile (AIBN)). Photoinitiator compounds are preferably provided in dental compositions disclosed in the present application in an amount effective to initiate or enhance the rate of cure or hardening of the resin system. Useful photopolymerizable compositions are prepared by simply admixing, under safe light conditions, the components as described above. Suitable inert solvents may be used, if desired, when preparing this mixture. Any solvent that does not react appreciably with the components of the inventive compositions may be used. Examples of suitable solvents include, for example, acetone, dichloromethane, and acetonitrile.
POLYACΠ) Compositions of the present invention include at least one polyacid, which may be a non-curable or non-polymerizable polyacid, or a curable or polymerizable polyacid (e.g., a resin-modified polyacid). Typically, the polyacid is a polymer having a plurality of acidic repeating units and a plurality of polymerizable groups. In alternative embodiments, the polyacid maybe substantially free of polymerizable groups. The polyacid need not be entirely water soluble, but it should be at least sufficiently water-miscible so that it does not undergo substantial sedimentation when combined with other aqueous components. Suitable polyacids are listed in U.S. Pat. No. 4,209,434 (Wilson et al), column 2, line 62, to column 3, line 6. The polyacid should have a molecular weight sufficient to provide good storage, handling, and mixing properties. A typical weight average molecular weight is 5,000 to 100,000, evaluated against a polystyrene standard using gel permeation chromatography. In one embodiment, the polyacid is a curable or polymerizable resin. That is, it contains at least one ethylenically unsaturated group. Suitable ethylenically unsaturated polyacids are described in U.S. Pat. No. 4,872,936 (Engelbrecht), e.g., at columns 3 and 4, and EP 323 120 Bl (Mitra), e.g., at page 3, line 55 to page 5, line 8. Typically, the numbers of acidic groups and ethylenically unsaturated groups are adjusted to provide an appropriate balance of properties in the dental composition. Polyacids in which 10% to 70% of the acidic groups have been replaced with ethylenically unsaturated groups are preferred. In other embodiments, the polyacid is hardenable in the presence of, for example, an acid-reactive filler and water, but does not contain ethylenically unsaturated groups. That is, it is an oligomer or polymer of an unsaturated acid. Typically, the unsaturated acid is an oxyacid (i.e., an oxygen containing acid) of carbon, sulfur, phosphorous, or boron. More typically, it is an oxyacid of carbon.
Such polyacids include, for example, polyalkenoic acids such as homopolymers and copolymers of unsaturated mono-, di-, or tricarboxylic acids. Polyalkenoic acids can be prepared by the homopolymerization and copolymerization of unsaturated aliphatic carboxylic acids, e.g., acrylic acid, 2-choloracrylic acid, 3-choloracrylic acid, 2-bromoacrylic acid, 3-bromoacrylic acid, methacrylic acid, itaconic acid, maleic acid, glutaconic acid, aconitic acid, citraconic acid, mesaconic acid, fumaric acid, and tiglic acid. Suitable monomers that can be copolymerized with the unsaturated aliphatic carboxylic acids include, for example, unsaturated aliphatic compounds such as acrylamide, acrylonitrile, vinyl chloride, allyl chloride, vinyl acetate, and 2-hydroxyethyl methacrylate. Ter- and higher polymers may be used if desired. Particularly preferred are the homopolymers and copolymers of acrylic acid. The polyalkenoic acid should be substantially free of unpolymerized monomers. The amount of polyacid should be sufficient to react with the acid-reactive filler and to provide an ionomer composition with desirable hardening properties. Typically, the polyacid represents at least 1 wt-%, more typically at least 3 wt-%, and most typically at least 5 wt-%, based on the total weight of the unfilled composition. Typically, the polyacid represents at most 90 wt-%, more typically at most 60 wt-%, and most typically at most 30 wt-%, based on the total weight of the unfilled composition.
ACID-REACTINE FILLERS Suitable acid-reactive fillers include metal oxides, glasses, and metal salts.
Typical metal oxides include barium oxide, calcium oxide, magnesium oxide, and zinc oxide. Typical glasses include borate glasses, phosphate glasses, and fluoroaluminosilicate ("FAS") glasses. FAS glasses are particularly preferred. The FAS glass typically contains sufficient elutable cations so that a hardened dental composition will form when the glass is mixed with the components of the hardenable composition. The glass also typically contains sufficient elutable fluoride ions so that the hardened composition will have cariostatic properties. The glass can be made from a melt containing fluoride, alumina, and other glass- forming ingredients using techniques familiar to those skilled in the FAS glassmaking art. The FAS glass typically is in the form of particles that are sufficiently finely divided so that they can conveniently be mixed with the other cement components and will perform well when the resulting mixture is used in the mouth. Generally, the average particle size (typically, diameter) for the FAS glass is no greater than about 12 micrometers, typically no greater than 10 micrometers, and more typically no greater than about 5 micrometers as measured using, for example, a sedimentation analyzer. Suitable FAS glasses will be familiar to those skilled in the art, and are available from a wide variety of commercial sources, and many are found in currently available glass ionomer cements such as those commercially available under the trade designations VLTREMER, VITREBOND, RELY X LUTING CEMENT, RELY X LUTING PLUS CEMENT, PHOTAC-FIL QUICK, KETAC MOLAR and KETAC-FIL PLUS(3M ESPE Dental Products, St. Paul, MN), FUJI II LC and FUJI IX (G-C Dental Industrial Corp., Tokyo, Japan) and CHEMFIL Superior (Dentsply International, York, PA). Mixtures of fillers can be used if desired. The FAS glass can optionally be subjected to a surface treatment. Suitable surface treatments include, but are not limited to, acid washing (e.g., treatment with a phosphoric acid), treatment with a phosphate, treatment with a chelating agent such as tartaric acid, and treatment with a silane or an acidic or basic silanol solution. Desirably the pH of the treating solution or the treated glass is adjusted to neutral or near-neutral, as this can increase storage stability of the hardenable composition. In another embodiment, the acid-reactive filler comprises a non-fused oxyfluoride material. The oxyfluoride material may include a trivalent metal, oxygen, fluorine, and an alkaline earth metal. Preferably the trivalent metal is aluminum, lanthanum, or combinations thereof. More preferably the trivalent metal is aluminum. Preferably the alkaline earth metal is strontium, calcium, barium, or combinations thereof. In some embodiments of the present invention, the oxyfluoride material may further include silicon and/or heavy metal (e.g., zirconium, lanthanum, niobium, yttrium, or tantalum), or more specifically, oxides, fluorides and/or oxyfluorides thereof. In some embodiments of the present invention, at least a portion of the oxyfluoride material is nanostructured. Such nanostructured materials include the oxyfluoride material in the form of, for example, nanoparticles, coatings on particles, coatings on aggregates of particles, infiltrate in a porous structure, and combinations thereof. Preferably at least 90% by weight, more preferably at least 95% by weight, and most preferably at least 98% by weight of the oxyfluoride material is nanostructured. A description of suitable oxyfluoride materials and their use in dental compositions is provided in U.S. Patent Application entitled, "Acid Reactive Dental Fillers, Compositions, and Methods," (Attorney Docket No. 58618US002) filed on May 17, 2004. The amount of acid-reactive filler should be sufficient to provide an ionomer composition having desirable mixing and handling properties before hardening and good physical and optical properties after hardening. Generally, the reactive filler represents less than about 85% of the total weight of the composition. Typically, the acid-reactive filler represents at least 10 wt-%, and more typically at least 20 wt- %, based on the total weight of the composition. Typically, the acid-reactive filler represents at most 75 wt-%, and more typically at most 50 wt-%, based on the total weight of the composition.
NANOZIRCONIA FILLERS The ionomer compositions of the invention are formulated with nanozirconia fillers. These fillers impart the compositions with radiopacity, allowing for preparation of ionomer compositions that are both radiopaque and optically translucent while using less FAS glass than was previously required. This, in turn, allows for ionomer compositions to be prepared as, for example, as two-part paste- paste systems. Zirconia is a highly radiopaque metal oxide possessing X-ray scattering ability and filler reinforcement properties. Nanozirconia is nanosized crystalline ZrO2 particles. Such nanozirconia fillers typically have an average particle size of at most 100 nanometers, more typically at most 75 nanometers, even more typically at most 50 nanometers, and most typically at most 20 nanometers. Such nanozirconia fillers typically have an average particle size of at least 2 nanometers and more typically at least 5 nanometers. The primary particles of the nanozirconia fillers can be aggregated or nonaggregated. In certain embodiments, the zirconia nanoparticles have an aggregated size of typically not more than 150 nm, and more typically not more than 100 nm. The very small overall particle size in combination with good dispersion decreases light scattering and gives optically translucent materials. In addition, the zirconia nanoparticles are surface modified so they can preferably be dispersed in the dental composition in a nonagglomerated state. Acidic functionalities, such as carboxylic acids and phosphonic acids, readily adsorb to the surface of ZrO2 particles. Adsorption of these types of molecules is, in many instances, a very good means of surface modification. One can use combinations of carboxylic acids for instance to give good dispersion and reactivity into composite formulations. However, for use in ionomer composition, a surface modification is needed which will allow the particles to be dispersed but also passivate the surface towards the adsorption of the polyacid. A surface modification using silanes or a combination of silanes and phosphonic acids can passivate the surface and allow the incorporation of nanozirconia into ionomer formulations. As illustrated by the Examples included herein, ionomer compositions containing surface-modified nanozirconia fillers have been formulated into paste/paste systems with good radiopacity, visual opacity, and good physical properties. The amount of nanozirconia filler should be sufficient to provide an ionomer composition having desirable mixing and handling properties before hardening and good physical and optical properties after hardening. Typically, the nanozirconia filler represents at least 0.1 wt-%, more typically at least 10 wt-%, and most typically at least 20 wt-% based on the total weight of the composition. Typically, the nanozirconia filler represents at most 80 wt-%, more typically at most 70 wt-%, and most typically at most 60 wt-%, based on the total weight of the composition.
OTHER FILLERS In addition to the acid-reactive filler and the nanozirconia filler components, the compositions of the present invention can also optionally include one or more other fillers. Such fillers may be selected from one or more of a wide variety of materials suitable for the use in dental and/or orthodontic compositions. The other filler can be an inorganic material. It can also be a crosslinked organic material that is insoluble in the resin component of the composition, and is optionally filled with inorganic filler. The filler should in any event be nontoxic and suitable for use in the mouth. The filler can be radiopaque or radiolucent. The filler typically is substantially insoluble in water. Examples of suitable inorganic fillers are naturally occurring or synthetic materials including, but not limited to: quartz; nitrides (e.g., silicon nitride); glasses derived from, for example, Zr, Sr, Ce, Sb, Sn, Ba, Zn, and Al; feldspar; borosilicate glass; kaolin; talc; titania; low Mohs hardness fillers such as those described in U.S. Pat. No. 4,695,251 (Randklev); and silica particles (e.g., submicron pyrogenic silicas such as those available under the trade designations AEROSIL, including "OX 50," "130," "150" and "200" silicas from Degussa AG, Hanau, Germany and CAB-0-SIL M5 silica from Cabot Corp., Tuscola, IL). Examples of suitable organic filler particles include filled or unfilled pulverized polycarbonates, polyepoxides, and the like. Other fillers, including other nanofillers, that may be used in the compositions of the invention are described in a U.S. Patent Application entitled, "Dental Compositions Containing Nanofillers and Related Methods," (Attorney Docket No. 59610US002) and a U.S. Patent Application entitled, "Use of Nanoparticles to Adjust Refractive Index of Dental Compositions," (Attorney Docket No. 59611US002) both of which were filed on May 17, 2004. Suitable non-acid-reactive filler particles are quartz, submicron silica, and non-vitreous microparticles of the type described in U.S. Pat. No. 4,503,169 (Randklev). Mixtures of these non-acid-reactive fillers are also contemplated, as well as combination fillers made from organic and inorganic materials. The surface of the filler particles can also be treated with a coupling agent in order to enhance the dispersion of the filler in the resin and the bond between the filler and the resin. The use of suitable coupling agents include gamma- methacryloxypropyltrimethoxysilane, gamma-mercaptopropyltriethoxysilane, gamma-aminopropyltrimethoxysilane, and the like. Examples of useful silane coupling agents are those available from Crompton Corporation, Naugatuck, CT, as SILQUEST A- 174 and SILQUEST A-1230. For some embodiments of the present invention that include other fillers
(e.g., dental restorative compositions), the compositions may include at least 1% by weight, more preferably at least 2% by weight, and most preferably at least 5% by weight other filler, based on the total weight of the composition. For such embodiments, compositions of the present invention preferably include at most 40% by weight, more preferably at most 20% by weight, and most preferably at most 15% by weight other filler, based on the total weight of the composition.
WATER The compositions of the invention contain water. The water can be distilled, deionized, or plain tap water. Typically, deionized water is used. The amount of water should be sufficient to provide adequate handling and mixing properties and to permit the transport of ions, particularly in the filler-acid reaction. Preferably, water represents at least 2 wt-%, and more preferably at least 5 wt-%, of the total weight of ingredients used to form the composition. Preferably, water represents no greater than 90 wt-%, and more preferably no greater than 80 . wt-%, of the total weight of ingredients used to form the composition.
OPTIONAL ADDITIVES Optionally, the hardenable compositions may contain other solvents, cosolvents (e.g., alcohols) or diluents. If desired, the hardenable composition of the invention can contain additives such as indicators, dyes, pigments, inhibitors, accelerators, viscosity modifiers, wetting agents, tartaric acid, chelating agents, surfactants, buffering agents, stabilizers, and other similar ingredients that will be apparent to those skilled in the art. Additionally, medicaments or other therapeutic substances can be optionally added to the dental compositions. Examples include, but are not limited to, fluoride sources, whitening agents, anticaries agents (e.g., xylitol), remineralizing agents (e.g., calcium phosphate compounds), enzymes, breath fresheners, anesthetics, clotting agents, acid neutralizers, chemotherapeutic agents, immune response modifiers, thixotropes, polyols, anti-inflammatory agents, antimicrobial agents, antifungal agents, agents for treating xerostomia, desensitizers, and the like, of the type often used in dental compositions. Combination of any of the above addivites may also be employed. The selection and amount of any one such additive can be selected by one of skill in the art to accomplish the desired result without undue experimentation.
PREPARATION AND USE OF THE COMPOSITIONS The hardenable dental compositions of the present invention can be prepared by combining all the various components using conventional mixing techniques. As discussed above, the compositions may be partially or fully hardened by an ionic reaction between an acid-reactive filler and a polyacid. Optionally, the compositions may contain a polymerizable component and a photoinitiator and be hardened by photoinitiation, or may be partially or fully hardened by chemical polymerization such as a redox cure system in which the composition contains a free-radical initiator system, e.g., including an oxidizing agent and a reducing agent.
Alternatively, the hardenable composition may contain different initiator systems, such that the composition can be both a photopolymerizable and a chemically polymerizable composition, as well as an ionically hardenable composition. The hardenable compositions of the invention can be supplied in a variety of forms including one-part systems and multi-part systems, e.g., two-part powder/liquid, paste/liquid, paste/powder and paste/paste systems. Other forms employing multi-part combinations (i.e., combinations of two or more parts), each of which is in the form of a powder, liquid, gel, or paste are also possible. The various components of the composition maybe divided up into separate parts in whatever manner is desired; however, the polyacid, acid-reactive filler and water generally would not all be present in the same part, although any two of these may be grouped together in the same part along with any combination of other components. Furthermore, in a redox multi-part system, one part typically contains the oxidizing agent and another part typically contains the reducing agent.
However, the reducing agent and oxidizing agent could be combined in the same part of the system if the components are kept separated, for example, through use of microencapsulation. Proper surface treatment of a nanozirconia filler is required to achieve good dispersion in a resin composition, to impart the desired rheological, aesthetic, and strength characteristics to the composition, and to obtain a stable composition, especially in the presence of an acidic component. Silane treatment of zirconia nanoparticles is typically accomplished by the reaction of a silane coupling agent or a combination of silane coupling agents with the zirconia in the form of an aqueous sol. The zirconia sol is typically acidic with a pH of 2-5 and an optional cosolvent can be used. The resulting mixture is typically heated for 3 to 16 hours at 80°C - 90°C, however other times and temperatures can also be used. Upon completion of the heating cycle, the silane-treated zirconia can be incorporated into a resin system either by solvent removal in the presence of the resin (solvent exchange) or solvent removal followed by dispersion of the isolated solid filler in the resin. Optionally, addition of a base such as aqueous ammonia, may be used to raise the pH of sol. Typically, this addition of base is made after the heating cycle under acidic conditions. Optionally, the addition of base maybe made prior to the heating cycle. In a preferred embodiment, the zirconia sol is heated with at least two silane coupling agents under acidic conditions (e.g., in the presence of 2-[2-(2- methoxyethoxy)ethoxy] acetic acid (MEEAA)). After cooling, the mixture is added to a dilute aqueous ammonia solution. Other base materials may be used as alternatives to the ammonia solution. The addition to base will generally lead to precipitation of the zirconia solids. The base is believed to facilitate removal of the attached (e.g., adsorbed) acids from the surface of the silane-treated zirconia. Subsequent filtration and washing of the solids allow for further removal of acids. This removal of acids can be especially beneficial in cases where the zirconia is surface treated with high molecular weight nonvolatile acids such as MEEAA. If - high molecular weight acids are not removed after silane treatment, a substantial amount of residual acid maybe incorporated into the final composition, which can lead to undesirable composition properties and decreased composition stability. Following filtration, the silane-treated nanozirconia filler can be redispersed in a solvent and subsequently incorporated into a resin via solvent exchange or typically the solids can be dried to a powder and redispersed into a resin. The nanozirconia fillers can be surface treated with a combination of silane coupling agents to impart desired rheological and physical properties (e.g., visual opacity) to a composition. In particular, the use of typical reactive silanes, such as SILQUIST A- 174, in combination with hydrophilic silanes, such as SILQUIST A- 1230, may be beneficial for surface-treating nanozirconia fillers for use in ionomer compositions of the present invention that in some embodiments include relatively polar resin systems. In some embodiments, two-part dental compositions of the present invention can be provided in a dual barrel syringe having a first barrel and a second barrel, wherein the part A resides in the first barrel and the part B resides in the second barrel. In other embodiments, two-part dental compositions of the present invention can be provided in a unit-dose capsule. In some embodiments, each part of a multi-part dental system can be mixed together using a static mixer. The components of the hardenable composition can be included in a kit, where the contents of the composition are packaged to allow for storage of the components until they are needed. When used as a dental composition, the components of the hardenable compositions can be mixed and clinically applied using conventional techniques. A curing light is generally required for the initiation of photopolymerizable compositions. The compositions can be in the form of composites or restoratives that adhere very well to dentin and/or enamel. Optionally, a surface conditioner or a primer layer can be used on the tooth tissue on which the hardenable composition is used. The compositions, e.g., containing a FAS glass or other fluoride-releasing material, can also provide very good long-term fluoride release. Some embodiments of the invention may provide glass ionomer cements or adhesives that can be cured in bulk without the application of light or other external curing energy, do not require a pre-treatment, have improved physical properties including improved flexural strength, and have high fluoride release for cariostatic effect. The hardenable dental compositions of the invention are particularly well adapted for use in the form of a wide variety of dental materials. They can be used in prosthodontic cements, which are typically filled compositions (preferably containing greater than about 25 wt-% filler and up to about 60 wt-% filler). They can also be used in restoratives, which include composites which are typically filled compositions (preferably containing greater than about 10 wt-% filler and up to about 85 wt-% filler) that are polymerized after being disposed adjacent to a tooth, such as filling materials. They can also be used in prostheses that are shaped and hardened for final use (e.g., as a crown, bridge, veneer, inlay, onlay, or the like), before being disposed adjacent to a tooth. Such preformed articles can be ground or otherwise formed into a custom-fitted shape by the dentist or other user. Although the hardenable dental composition can be any of a wide variety of materials preferably, the composition is not a surface pre-treatment material (e.g., etchant, primer, bonding agent). Rather, preferably, the hardenable dental composition is a restorative (e.g., composite, filling material or prosthesis), cement, sealant, coating, or orthodontic adhesive. Features and advantages of this invention are further illustrated by the following examples, which are in no way intended to be limiting thereof. The particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention. Unless otherwise indicated, all parts and percentages are on a weight basis, all water is deionized water, and all molecular weights are weight average molecular weight.
EXAMPLES Test Methods
Compressive Strength (CS) Test Method Compressive strength was evaluated by first injecting a mixed paste-paste test sample into a glass tube having a 4-mm inner diameter. The ends of the glass tube were plugged with silicone plugs. The filled tubes were subjected to 0.275 megapascal (MPa) pressure for 5 minutes, irradiated with a XL 1500 curing light (3M Company) for 60 seconds, and placed in a KULZER UniXS (Kulzer, Inc., Germany) light box for 90 seconds. Five such cured samples were cut to a length of 8 mm and placed in 37°C water for 1 day. Compressive strength was determined according to ISO Standard 7489 using an INSTRON universal tester (Instron Corp., Canton, MA) operated at a crosshead speed of 1 millimeter per minute (mm/min). Results were reported as the average of 5 replicates.
Diametral Tensile Strength (DTS Test Method Diametral tensile strength was measured using the above-described CS procedure, but using samples were cut to a length of 2 mm. Results were reported as the average of 7 replicates.
Visual Opacity (MacBeth Values) Test Method Disc-shaped (1-mm thick x 15-mm diameter) paste samples were cured by exposing them to illumination from a VISILUX 2 curing light (3M Co , St. Paul, MN) for 60 seconds on each side of the disk at a distance of 6 mm. Hardened samples were measured for direct light transmission by measuring transmission of light through the thickness of the disk using a MacBeth transmission densitometer Model TD-903 equipped with a visible light filter, available from MacBeth (MacBeth, Newburgh, NY). Lower MacBeth Values indicate lower visual opacity and greater translucency of a material. The reported values are the average of 3 measurements.
Radiopacity Test Method Disc-shaped (1-mm thick x 15-mm diameter) paste test samples were cured by exposing them to illumination from an VISILUX 2 (3M Company) curing light for 60 seconds on each side of the disk at a distance of 6 mm. The cured samples were then evaluated for radiopacity as follows. For radiopacity evaluation, the procedure used followed the ISO-test procedure 4049 (1988). Specifically, cured composite samples were exposed to radiation using a Gendex GX-770 dental X-ray (Milwaukee, WI) unit for 0.73 seconds at 7 milliamps and 70 kV peak voltage at a distance of about 400 millimeters. An aluminum step wedge was positioned during exposure next to the cured disk on the X-ray film. The X-ray negative was developed using an Air Techniques Peri-Pro automatic film processor (Hicksville, NT). A Macbeth densitometer was used to determine the optical density of the sample disk by comparison with the optical densities of the aluminum step wedge. The reported values of optical density (i.e., radiopacity) are the average of 3 measurements.
Abbreviations, Descriptions, and Sources of Materials
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000033_0001
Example 1: Silane-Treated Nanozirconia (Filler I) Zirconia Sol (800.0 g; 184 g zirconia) and MEEAA (72.08 g) were charged to a 1 -liter round-bottom flask. The water and acid were removed via rotary evaporation to afford a powder (291.36 g) that was further dried in a forced-air oven (90°C) to provide a dried powder (282.49 g). Deionized (DI) water (501.0 g.) was added and the powder redispersed. The resulting dispersion was charged to a 2- liter beaker followed by the addition with stirring of l-methoxy-2-propanol (783 g; Sigma-Aldrich), SILQUEST A-174 (83.7 g) and SILQUEST A-1230 (56.3 g). The resulting mixture was stirred 30 minutes at room temperature and then separated into two quart jars and sealed. The jars were heated to 90°C for 4.0 hours, and the contents concentrated via rotary evaporation to afford a liquid concentrate (621 g). DI water (2400 g) and concentrated ammonia/water (80.0 g; 29% NH3) were charged to a 4-liter beaker followed by the addition over about 5 minutes of the liquid concentrate to afford a white precipitate. The precipitate was recovered by vacuum filtration and washed with DI water. The resulting wet cake was dispersed in l-methoxy-2-propanol (661 g) to afford a dispersion that contained 15.33 weight % silane-treated nanozirconia. The silane-treated nanozirconia filler was designated Filler I (Example 1). The above dispersion (1183 g) was combined with Resin A [HEMA (24.06 g) and PEGDMA-400 (39.59 g)] and the water and alcohol removed via rotary evaporation to afford a translucent paste that contained 80 weight % silane-treated nanozirconia filler (Filler I). The primary and aggregated particle sizes of Filler I were assumed to be the same as in the starting Zirconia Sol, i.e., about 5 nanometers and 50-60 nanometers, respectively.
Comparative Example 1: Acid-Treated Nanozirconia (Filler K) Zirconia Sol (30.0 g; 9.39 g zirconia) and MEEAA (3.67 g) were charged to a 100-ml round-bottom flask. The water was removed via rotary evaporation to afford a dried powder (8 g) that was designated Filler K (Comparative Example 1). The dry powder (8 g) was combined with Resin A [HEMA (0.756 g) and PEGDMA-400 (1.244 g)] and speed mixed to afford a translucent, somewhat viscous material that contained approximately 80 weight % acid-treated nanozirconia filler (Filler K). The primary and aggregated particle sizes of Filler K were assumed to be the same as in the starting Zirconia Sol, i.e., about 5 nanometers and 50-60 nanometers, respectively. Examples 2-3 and Comparative Examples 2-4: Paste A - Paste B Compositions Five first paste compositions (designated with the letter A as Al through A5) were prepared by combining the ingredients (indicated as parts by weight) as listed in Table 1. Filler I and Filler K were added to the compositions as mixtures (about 80% by weight) in Resin A and reported in the Tables on a dry filler parts by weight basis; the Resin A components were reported as part of the HEMA and PEGDMA- 400 components.
Figure imgf000035_0001
Two second paste compositions (designated with the letter B as Bl through B2) were prepared by combining the ingredients (indicated as parts by weight) as listed in Table 2.
Figure imgf000036_0001
Hardenable compositions (Examples 2-3 and Comparative Examples 2-4) were prepared by spatulating a first paste with a second paste for 25 seconds. The relative parts by weight of pastes utilized and the parts by weight components in the compositions are provided in Table 3. The hardenable compositions were evaluated for Compressive Strength (DS), Diametral Tensile Strength (DTS), Visual Opacity, and Radiopacity, according to the Test Methods described herein and the results are reported in Table 4.
Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000038_0002
*NT = Not Tested
It can be concluded from the data in Table 4 that Examples 2 and 3 (both representing compositions containing silane-treated nanozirconia filler) had good radiopacity and excellent Visual Opacity (e.g., MacBeth values less than 0.30), whereas Comparative Examples 2 and 3 (both containing acid-treated nanozirconia filler) had good radiopacity, but much poorer Visual Opacity (e.g., MacBeth values greater than 0.30). Comparative Example 4 lacked a zirconia filler and had a poorer radiopacity value.

Claims

What is claimed is:
1. A hardenable dental composition comprising: (a) a polyacid; (b) an acid-reactive filler; (c) water; and (d) a nanozirconia filler comprising: (i) zirconia particles having an outer surface, and (ii) a plurality of silane-containing molecules attached onto the outer surface of the zirconia particles.
2. The composition of claim 1, further comprising a polymerizable component.
3. The composition of claim 1, wherein the nanozirconia filler has an average particle size of no more than about 100 nanometers.
4. The composition of claim 2, wherein the polymerizable component comprises an ethylenically unsaturated compound.
5. The composition of claim 2, wherein the polymerizable component comprises an ethylenically unsaturated compound with acid functionality.
6. The composition of claim 1, wherein the polyacid comprises a polymer having a plurality of acidic repeating groups but is substantially free of polymerizable groups.
7. The composition of claim 6, further comprising a polymerizable component.
8. The composition of claim 1, wherein the polyacid comprises a polymer having a plurality of acidic repeating groups and a plurality of polymerizable groups.
9. The composition of claim 8, further comprising a polymerizable component
10. The composition of claim 1, wherein the acid-reactive filler is selected from the group consisting of metal oxides, glasses, metal salts, and combinations thereof.
11. The composition of claim 10, wherein the acid-reactive filler comprises a fluoroaluminosilicate (FAS) glass.
12. The composition of claim 11, wherein the composition comprises less than 50 weight percent FAS glass.
13. The composition of claim 11 , wherein the composition comprises less than 30 weight percent FAS glass.
14. The composition of claim 11, wherein the composition comprises less than 20 weight percent FAS glass.
15. The composition of claim 10, wherein the acid-reactive filler comprises an oxyfluoride material.
16. The composition of claim 15 , wherein at least 90% by weight of the oxyfluoride material is nanostructured.
17. The composition of claim 5, wherein the acid functionality includes an oxygen-containing acid of carbon, sulfur, phosphorous, or boron.
18. The composition of claim 5, wherein the polyacid and the ethylenically unsaturated compound with acid functionality are the same.
19. The composition of claim 1, wherein the polymerizable component and the polyacid are the same compound.
20. The composition of claim 1 , wherein the nanozirconia filler is substantially free of fumed silica and pyrogenic fillers.
21. The composition of claim 2, further comprising a redox cure system.
22. The composition of claim 2, further comprising a photoinitiator system.
23. The composition of claim 1, further comprising at least one additive selected from the group consisting of other fillers, pyrogenic fillers, fluoride sources, whitening agents, anticaries agents, remineralizing agents, enzymes, breath fresheners, anesthetics, clotting agents, acid neutrahzers, chemotherapeutic agents, immune response modifiers, medicaments, indicators, dyes, pigments, tartaric acid, wetting agents, chelating agents, surfactants, buffering agents, viscosity modifiers, thixotropes, polyols, antimicrobial agents, anti-inflammatory agents, antifungal agents, stabilizers, agents for treating xerostomia, desensitizers, and combinations thereof.
24. The composition of claim 1, wherein the composition is selected from the group consisting of dental restoratives, dental adhesives, dental cements, cavity liners, orthodontic adhesives, dental sealants, and dental coatings.
25. The composition of claim 1, wherein the composition comprises a multi-part composition comprising a first part and a second part, wherein each part can independently be selected from the group consisting of a liquid, paste, gel, or powder.
26. A method of preparing a dental article said method comprising the steps of: (a) providing a dental composition of claim 1 ; and (b) hardening the dental composition to form the dental article.
27. The method of claim 26, wherein the dental article is selected from the group consisting of dental mill blanks, dental crowns, dental fillings, dental prostheses, and orthodontic devices.
28. A multi-part hardenable dental composition comprising: (a) a first part comprising a polyacid; (b) a second part comprising an acid-reactive filler; (a) water present in either or both parts; (b) an optional polymerizable component present in either or both parts; , and (c) a nanozirconia filler present in either or both parts, the zirconia filler comprising: (i) zirconia particles having an outer surface, and (ii) a plurality of silane-containing molecules attached onto the outer surface of the zirconia particles.
PCT/US2005/010410 2004-05-17 2005-03-29 Dental compositions containing nanozirconia fillers WO2005117807A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2005249354A AU2005249354B2 (en) 2004-05-17 2005-03-29 Dental compositions containing nanozirconia fillers
JP2007527215A JP4851454B2 (en) 2004-05-17 2005-03-29 Dental composition containing nano-zirconia filler
EP05744014A EP1771143B1 (en) 2004-05-17 2005-03-29 Dental compositions containing nanozirconia fillers
KR1020067026522A KR101166942B1 (en) 2004-05-17 2005-03-29 Dental compositions containing nanozirconia fillers
CA002567036A CA2567036A1 (en) 2004-05-17 2005-03-29 Dental compositions containing nanozirconia fillers
CN2005800239473A CN1984633B (en) 2004-05-17 2005-03-29 Dental compositions containing nanozirconia fillers
AT05744014T ATE554741T1 (en) 2004-05-17 2005-03-29 DENTAL COMPOSITIONS WITH NANOZIRCONIUM DIOXIDE FILLERS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/847,782 US7649029B2 (en) 2004-05-17 2004-05-17 Dental compositions containing nanozirconia fillers
US10/847,782 2004-05-17

Publications (1)

Publication Number Publication Date
WO2005117807A1 true WO2005117807A1 (en) 2005-12-15

Family

ID=34968322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/010410 WO2005117807A1 (en) 2004-05-17 2005-03-29 Dental compositions containing nanozirconia fillers

Country Status (8)

Country Link
US (1) US7649029B2 (en)
EP (1) EP1771143B1 (en)
JP (1) JP4851454B2 (en)
CN (1) CN1984633B (en)
AT (1) ATE554741T1 (en)
AU (1) AU2005249354B2 (en)
CA (1) CA2567036A1 (en)
WO (1) WO2005117807A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100413486C (en) * 2006-08-18 2008-08-27 陕西科技大学 Prepn. method of carbon fiber biological composite material
CN100431517C (en) * 2006-08-18 2008-11-12 陕西科技大学 Method for preparing fiber reinforced composite material used for artificial tooth base
JP2008303095A (en) * 2007-06-06 2008-12-18 Tokuyama Dental Corp Composite nano zirconia particle, dispersion liquid and curable composition for dental use
WO2012161363A1 (en) * 2011-05-26 2012-11-29 (주) 베리콤 Dental complex composition containing crystallized glass-ceramic
US9463144B2 (en) 2010-11-10 2016-10-11 Brian A. Shukla Adhesive composition suitable for dental uses

Families Citing this family (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44145E1 (en) 2000-07-07 2013-04-09 A.V. Topchiev Institute Of Petrochemical Synthesis Preparation of hydrophilic pressure sensitive adhesives having optimized adhesive properties
ES2331302T3 (en) 2001-05-01 2009-12-29 A.V. Topchiev Institute Of Petrochemical Synthesis HYDROGEL COMPOSITIONS.
US20050215727A1 (en) * 2001-05-01 2005-09-29 Corium Water-absorbent adhesive compositions and associated methods of manufacture and use
US8840918B2 (en) 2001-05-01 2014-09-23 A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences Hydrogel compositions for tooth whitening
US20050113510A1 (en) * 2001-05-01 2005-05-26 Feldstein Mikhail M. Method of preparing polymeric adhesive compositions utilizing the mechanism of interaction between the polymer components
US8541021B2 (en) 2001-05-01 2013-09-24 A.V. Topchiev Institute Of Petrochemical Synthesis Hydrogel compositions demonstrating phase separation on contact with aqueous media
US8206738B2 (en) 2001-05-01 2012-06-26 Corium International, Inc. Hydrogel compositions with an erodible backing member
US20040206932A1 (en) 2002-12-30 2004-10-21 Abuelyaman Ahmed S. Compositions including polymerizable bisphosphonic acids and methods
US20040242729A1 (en) * 2003-05-30 2004-12-02 3M Innovative Properties Company Stabilized particle dispersions containing surface-modified inorganic nanoparticles
US7452924B2 (en) 2003-08-12 2008-11-18 3M Espe Ag Self-etching emulsion dental compositions and methods
PL1689811T3 (en) * 2003-11-14 2019-07-31 Wild River Consulting Group, Llc Enhanced property metal polymer composite
US20090324875A1 (en) * 2003-11-14 2009-12-31 Heikkila Kurt E Enhanced property metal polymer composite
US9105382B2 (en) 2003-11-14 2015-08-11 Tundra Composites, LLC Magnetic composite
US20100280164A1 (en) * 2009-04-29 2010-11-04 Tundra Composites, LLC. Inorganic Composite
JP2007523063A (en) * 2004-01-21 2007-08-16 スリーエム イノベイティブ プロパティズ カンパニー Dental compositions and kits containing bitter inhibitors and related methods
CA2554649C (en) 2004-01-30 2015-10-27 Corium International, Inc. Rapidly dissolving film for delivery of an active agent
US8465284B2 (en) 2004-07-08 2013-06-18 3M Innovative Properties Company Dental methods, compositions, and kits including acid-sensitive dyes
EP1765265B1 (en) * 2004-07-14 2010-10-06 3M Espe Ag Dental composition containing an epoxy functional carbosilane compound
WO2006005365A1 (en) * 2004-07-14 2006-01-19 3M Espe Ag Dental composition containing epoxy functional polymerizable compounds
JP2008505940A (en) 2004-07-14 2008-02-28 スリーエム イーエスピーイー アーゲー Dental composition comprising an unsaturated halogenated aryl alkyl ether component
US20080085494A1 (en) * 2004-07-14 2008-04-10 Mader Roger M Dental Compositions Containing Oxirane Monomers
EP1781724B1 (en) 2004-07-14 2009-07-08 3M Innovative Properties Company Dental compositions containing carbosilane polymers
US7576144B2 (en) * 2004-07-14 2009-08-18 3M Innovative Properties Company Dental compositions containing carbosilane monomers
US20060035997A1 (en) * 2004-08-10 2006-02-16 Orlowski Jan A Curable acrylate polymer compositions featuring improved flexural characteristics
CA2575976A1 (en) 2004-08-11 2006-02-23 3M Innovative Properties Company Self-adhesive compositions including a plurality of acidic compounds
EP1819313B1 (en) 2004-11-16 2010-12-29 3M Innovative Properties Company Dental fillers and compositions including phosphate salts
AU2005306869B2 (en) 2004-11-16 2011-11-10 3M Innovative Properties Company Dental fillers including a phosphorus­containing surface treatment
AU2005306868B2 (en) 2004-11-16 2011-06-09 3M Innovative Properties Company Dental fillers, methods, compositions including a caseinate
EP2832342A3 (en) 2004-11-16 2015-02-11 3M Innovative Properties Company of 3M Center Dental compositions with calcium phosphorus releasing glass
EP1879542A1 (en) * 2005-05-09 2008-01-23 3M Innovative Properties Company Hardenable dental compositions with low polymerization shrinkage
EP1879543B1 (en) 2005-05-09 2012-11-21 3M Innovative Properties Company Dental compositions containing hybrid monomers
US20090012209A1 (en) * 2005-08-05 2009-01-08 Gunther Eckhardt Dental compositions containing a surface-modified filler
US7495054B2 (en) * 2005-09-19 2009-02-24 3M Innovative Properties Company Curable compositions containing dithiane monomers
EP1973587B1 (en) * 2005-12-12 2019-02-06 AllAccem, Inc. Methods and systems for preparing antimicrobial films and coatings
US7776940B2 (en) 2005-12-20 2010-08-17 3M Innovative Properties Company Methods for reducing bond strengths, dental compositions, and the use thereof
US7896650B2 (en) 2005-12-20 2011-03-01 3M Innovative Properties Company Dental compositions including radiation-to-heat converters, and the use thereof
US8026296B2 (en) 2005-12-20 2011-09-27 3M Innovative Properties Company Dental compositions including a thermally labile component, and the use thereof
US9993393B2 (en) 2005-12-29 2018-06-12 3M Innovative Properties Company Dental compositions and initiator systems with polycyclic aromatic component
US8071662B2 (en) 2005-12-29 2011-12-06 3M Innovative Properties Company Dental compositions with surface-treated filler for shelf stability
EP1968527B1 (en) * 2005-12-29 2011-09-07 3M Innovative Properties Company Dental compositions with a water scavenger
EP1849449A1 (en) * 2006-04-26 2007-10-31 3M Innovative Properties Company Filler containing composition and process for production and use thereof
US7981949B2 (en) * 2006-05-23 2011-07-19 3M Innovative Properties Company Curable hydrophilic compositions
EP1881010B1 (en) * 2006-05-31 2010-08-11 3M Innovative Properties Company Polymerizable compositions containing salts of barbituric acid derivatives
US8047843B2 (en) 2006-09-13 2011-11-01 Clark David J Matrix stabilizer devices and a seamless, single load cavity preparation and filling technique
US9539065B2 (en) 2006-10-23 2017-01-10 3M Innovative Properties Company Assemblies, methods, and kits including a compressible material
US20080096150A1 (en) 2006-10-23 2008-04-24 3M Innovative Properties Company Dental articles, methods, and kits including a compressible material
EP2079246A4 (en) * 2006-11-01 2012-08-22 Fujitsu Ltd Wireless communication apparatus and wireless communication method
CN101557791B (en) 2006-12-13 2013-05-22 3M创新有限公司 Methods of using a dental composition having an acidic component and a photobleachable dye
US8263681B2 (en) * 2006-12-28 2012-09-11 3M Innovative Properties Company Dental compositions with natural tooth fluorescence
JP5512280B2 (en) 2006-12-28 2014-06-04 スリーエム イノベイティブ プロパティズ カンパニー Dental filler and method
US20100021869A1 (en) * 2006-12-28 2010-01-28 Abuelyaman Ahmed S (meth)acryloyl-containing materials, compositions, and methods
JP5465537B2 (en) * 2006-12-28 2014-04-09 スリーエム イノベイティブ プロパティズ カンパニー Hard tissue adhesive composition
EP2125026B1 (en) * 2007-02-21 2014-09-24 AllAccem, Inc. Bridged polycyclic compound based compositions for the inhibition and amelioration of disease
WO2008105452A1 (en) * 2007-02-28 2008-09-04 Tokuyama Dental Corporation Adhesive agent for adhesion between alginate impression material for dental applications and impression tray, and kit comprising the adhesive agent
EP2146679B1 (en) * 2007-05-11 2016-01-06 DENTSPLY International Inc. Dental compositions for coating restorations and tooth surfaces
US8153617B2 (en) 2007-08-10 2012-04-10 Allaccem, Inc. Bridged polycyclic compound based compositions for coating oral surfaces in humans
US8153618B2 (en) 2007-08-10 2012-04-10 Allaccem, Inc. Bridged polycyclic compound based compositions for topical applications for pets
US8188068B2 (en) 2007-08-10 2012-05-29 Allaccem, Inc. Bridged polycyclic compound based compositions for coating oral surfaces in pets
JP2011509921A (en) 2007-10-01 2011-03-31 スリーエム イノベイティブ プロパティズ カンパニー Orthodontic composition with polymeric filler
EP2214622B1 (en) * 2007-11-01 2014-12-03 3M Innovative Properties Company Dental compositions and initiator systems with color-stable amine electron donors
US9339352B2 (en) * 2007-12-13 2016-05-17 3M Innovative Properties Company Orthodontic article having partially hardened composition and related method
EP2240540B1 (en) * 2008-01-18 2014-03-12 Wild River Consulting Group, LLC Melt molding polymer composite and method of making and using the same
US9414895B2 (en) 2008-01-29 2016-08-16 David J. Clark Dental matrix devices specific to anterior teeth, and injection molded filling techniques and devices
WO2009129074A1 (en) * 2008-04-18 2009-10-22 3M Innovative Properties Company Dental filling composition comprising acidic polymer compound and method of using the same
WO2009129359A2 (en) * 2008-04-18 2009-10-22 3M Innovative Properties Company Dental filling composition comprising hyperbranched compound
GB0809545D0 (en) * 2008-05-28 2008-07-02 3M Innovative Properties Co Device for dispensing a dental composition
EP2282692B1 (en) 2008-06-03 2013-06-26 3M Innovative Properties Company Mixer for mixing a dental composition
EP2133063A1 (en) * 2008-06-10 2009-12-16 3M Innovative Properties Company Initiator system with biphenylene derivates, method of production and use thereof
WO2009150830A1 (en) * 2008-06-11 2009-12-17 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition and molding
EP2331046A2 (en) * 2008-09-04 2011-06-15 3M Innovative Properties Company Dental composition comprising biphenyl di(meth)acrylate monomer
WO2010039395A2 (en) * 2008-09-30 2010-04-08 3M Innovative Properties Company Orthodontic composition with heat modified minerals
RU2472708C2 (en) * 2008-10-15 2013-01-20 Зм Инновейтив Пропертиз Компани Filler and composite materials with zirconium and silica nanoparticles
WO2010045096A2 (en) * 2008-10-15 2010-04-22 3M Innovative Properties Company Dental compositions with fluorescent pigment
WO2010048067A2 (en) * 2008-10-22 2010-04-29 3M Innovative Properties Company Dental composition comprising biphenyl di(meth)acrylate monomer comprising urethane moieties
WO2010068359A1 (en) 2008-12-11 2010-06-17 3M Innovative Properties Company Surface-treated calcium phosphate particles suitable for oral care and dental compositions
US9296846B2 (en) * 2008-12-18 2016-03-29 The Trustees Of The University Of Pennsylvania Porous polymer coating for tooth whitening
AU2010204986B2 (en) 2009-01-14 2016-06-02 Corium International, Inc. Transdermal administration of tamsulosin
EP2228049B1 (en) * 2009-03-09 2016-11-09 Dentsply DeTrey GmbH Dental composition
CN103168026B (en) 2009-08-28 2016-06-29 3M创新有限公司 Comprise multifunctional cationic Polymerizable ionic liquid and antistatic coating
CN102781921B (en) 2009-08-28 2015-08-12 3M创新有限公司 Comprise the composition of Polymerizable ionic liquid mixture and goods and curing
US8512464B2 (en) * 2009-12-02 2013-08-20 3M Innovative Properties Company Functionalized zirconia nanoparticles and high index films made therefrom
US8853338B2 (en) 2009-12-22 2014-10-07 3M Innovative Properties Company Curable dental compositions and articles comprising polymerizable ionic liquids
BR112012015607B1 (en) 2009-12-22 2021-06-22 3M Innovative Properties Company DENTAL COMPOSITION, DENTAL LAMINATION BLOCK, MANUFACTURING METHOD AND KIT OF SUCH BLOCK
TWI401263B (en) * 2009-12-31 2013-07-11 Far Eastern New Century Corp Copolymer enhancing the wettability of silicone hydrogel, silicone hydrogel composition comprising the same and ocular article made therefrom
WO2011126647A2 (en) 2010-03-31 2011-10-13 3M Innovative Properties Company Polymerizable isocyanurate monomers and dental compositions
BR112012029431A2 (en) 2010-05-18 2017-02-21 3M Innovative Properties Co polymerizable ionic liquid comprising aromatic carboxylate anion
WO2011146326A1 (en) 2010-05-18 2011-11-24 3M Innovative Properties Company Polymerizable ionic liquid compositions
WO2011149631A2 (en) 2010-05-25 2011-12-01 3M Innovative Properties Company Method of surface treating inorganic oxide particles, hardenable dental compositions, surface treated particles, and surface treatment compounds
US9320579B2 (en) * 2010-06-25 2016-04-26 Panasonic Healthcare Holdings Co., Ltd. Dental molded product for milling and manufactual method thereof
BR112013005887B1 (en) 2010-09-15 2018-05-22 3M Innovative Properties Company. Substituted saccharide compounds and dental compositions
EP2444052A1 (en) * 2010-10-19 2012-04-25 Dentsply DeTrey GmbH Dental composition
US20120156650A1 (en) * 2010-12-17 2012-06-21 James R. Glidewell Dental Ceramics, Inc. Dental crown and a method of fabricating and installing such a dental crown in one patient visit
US9480540B2 (en) 2010-12-30 2016-11-01 3M Innovative Properties Company Bondable dental assemblies and methods including a compressible material
US9012531B2 (en) 2011-02-15 2015-04-21 3M Innovative Properties Company Dental compositions comprising mixture of isocyanurate monomer and tricyclodecane monomer
US20120208965A1 (en) 2011-02-15 2012-08-16 3M Innovative Properties Company Addition-fragmentation agents
WO2012112350A2 (en) 2011-02-15 2012-08-23 3M Innovative Properties Company Dental compositions comprising ethylenically unsaturated addition-fragmentation agent
US10370322B2 (en) 2011-02-15 2019-08-06 3M Innovative Properties Company Addition-fragmentation agents
EP2688508A1 (en) 2011-03-24 2014-01-29 3M Innovative Properties Company Dental adhesive comprising a coated polymeric component
US8431626B2 (en) 2011-05-18 2013-04-30 3M Innovative Properties Company Disulfide monomers comprising ethylenically unsaturated norbornyl groups suitable for dental compositions
US8455565B2 (en) 2011-05-18 2013-06-04 3M Innovative Properties Company Disulfide monomers comprising ethylenically unsaturated groups suitable for dental compositions
EP2726049B1 (en) 2011-06-29 2022-08-17 3M Innovative Properties Company Dental compositions comprising a fatty mono(meth)acrylate
US8653190B2 (en) 2011-08-08 2014-02-18 3M Innovative Properties Company Curable cyclic anhydride copolymer/silicone composition
US8980969B2 (en) 2011-08-23 2015-03-17 3M Innovative Properties Company Addition-fragmentation agents
CN103732203B (en) 2011-08-23 2017-05-03 3M创新有限公司 Dental compositions comprising addition-fragmentation agents
US9290682B2 (en) 2011-11-18 2016-03-22 3M Innovative Properties Company Pressure-sensitive adhesive composition
KR101359073B1 (en) * 2012-03-20 2014-02-05 장성욱 Dental filling composition comprising zirconia powder
WO2014074427A1 (en) * 2012-11-12 2014-05-15 3M Innovative Properties Company Addition-fragmentation agents
KR20150082570A (en) 2012-11-12 2015-07-15 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Dental compositions comprising addition-fragmentation agents
TWI499429B (en) * 2012-11-26 2015-09-11 Univ Nat Taiwan Dental bonding agent and coating agent
EP2931756B1 (en) 2012-12-17 2018-08-08 3M Innovative Properties Company Addition-fragmentation oligomers
JP6423801B2 (en) 2013-02-12 2018-11-14 カーボン,インコーポレイテッド Method and apparatus for three-dimensional fabrication
PL2956823T5 (en) 2013-02-12 2019-11-29 Carbon Inc Continuous liquid interphase printing
JP6300899B2 (en) 2013-03-20 2018-03-28 スリーエム イノベイティブ プロパティズ カンパニー High refractive index addition-cleaving agent
EP2986269A1 (en) 2013-04-15 2016-02-24 3M Innovative Properties Company Dental composition containing high refractive index monomers
KR20160010493A (en) 2013-05-14 2016-01-27 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Adhesive composition
EP2803712A1 (en) 2013-05-17 2014-11-19 3M Innovative Properties Company Multilayer Pressure Sensitive Adhesive Assembly
CN105324449B (en) 2013-06-24 2018-05-15 3M创新有限公司 From wet adhesive composition
JP2016527341A (en) 2013-06-24 2016-09-08 スリーエム イノベイティブ プロパティズ カンパニー Self-wetting adhesive composition
WO2015041863A1 (en) 2013-09-20 2015-03-26 3M Innovative Properties Company Trithiocarbonate-containing addition-fragmentation agents
WO2015051095A1 (en) 2013-10-04 2015-04-09 3M Innovative Properties Company Dental mill blank
WO2015057413A1 (en) 2013-10-16 2015-04-23 3M Innovative Properties Company Allyl disulfide-containing addition-fragmentation oligomers
KR20160122820A (en) 2014-02-18 2016-10-24 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Addition-fragmentation oligomers having high refractive index groups
WO2015142546A1 (en) 2014-03-21 2015-09-24 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication with gas injection through carrier
US9289360B2 (en) 2014-04-17 2016-03-22 Dentsply International Inc. Dental composition
US10259171B2 (en) 2014-04-25 2019-04-16 Carbon, Inc. Continuous three dimensional fabrication from immiscible liquids
WO2015195920A1 (en) 2014-06-20 2015-12-23 Carbon3D, Inc. Three-dimensional printing method using increased light intensity and apparatus therefore
WO2015195909A1 (en) 2014-06-20 2015-12-23 Carbon3D, Inc. Three-dimensional printing using tiled light engines
KR20170017941A (en) 2014-06-20 2017-02-15 카본, 인크. Three-dimensional printing with reciprocal feeding of polymerizable liquid
CN114131923A (en) 2014-06-23 2022-03-04 卡本有限公司 Method for producing three-dimensional objects of polyurethane from materials with multiple hardening mechanisms
US11390062B2 (en) 2014-08-12 2022-07-19 Carbon, Inc. Three-dimensional printing with supported build plates
US10653501B2 (en) 2014-10-14 2020-05-19 3M Innovative Properties Company Dental articles and methods of using same
EP3212153A1 (en) 2014-10-31 2017-09-06 3M Innovative Properties Company Dental materials and methods
US10350297B2 (en) 2014-10-31 2019-07-16 3M Innovative Properties Company Dental materials and methods
US20170355132A1 (en) 2014-12-31 2017-12-14 Carbon, Inc. Three-dimensional printing of objects with breathing orifices
WO2016112084A1 (en) 2015-01-06 2016-07-14 Carbon3D, Inc. Build plate for three dimensional printing having a rough or patterned surface
WO2016112090A1 (en) 2015-01-07 2016-07-14 Carbon3D, Inc. Microfluidic devices and methods of making the same
WO2016115236A1 (en) 2015-01-13 2016-07-21 Carbon3D, Inc. Three-dimensional printing with build plates having surface topologies for increasing permeability and related methods
EP3250369B8 (en) 2015-01-30 2020-10-28 Carbon, Inc. Build plates for continuous liquid interface printing having permeable base and adhesive for increasing permeability and related method and apparatus
WO2016123506A1 (en) 2015-01-30 2016-08-04 Carbon3D, Inc. Build plates for continuous liquid interface printing having permeable sheets and related methods, systems and devices
WO2016126779A1 (en) 2015-02-05 2016-08-11 Carbon3D, Inc. Method of additive manufacturing by fabrication through multiple zones
KR20170121213A (en) 2015-02-20 2017-11-01 쓰리엠 이노베이티브 프로퍼티즈 캄파니 The addition-fragmented oligomer
US11000992B2 (en) 2015-02-20 2021-05-11 Carbon, Inc. Methods and apparatus for continuous liquid interface printing with electrochemically supported dead zone
WO2016140888A1 (en) 2015-03-05 2016-09-09 Carbon3D, Inc. Fabrication of three dimensional objects with variable slice thickness
US10391711B2 (en) 2015-03-05 2019-08-27 Carbon, Inc. Fabrication of three dimensional objects with multiple operating modes
JP6659716B2 (en) 2015-03-05 2020-03-04 スリーエム イノベイティブ プロパティズ カンパニー Composite materials with ceramic fibers
US20180029292A1 (en) 2015-03-05 2018-02-01 Carbon, Inc. Continuous liquid interface production with sequential patterned exposure
WO2016145050A1 (en) 2015-03-10 2016-09-15 Carbon3D, Inc. Microfluidic devices having flexible features and methods of making the same
WO2016145182A1 (en) 2015-03-12 2016-09-15 Carbon3D, Inc. Additive manufacturing using polymerization initiators or inhibitors having controlled migration
WO2016149097A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with reduced pressure build plate unit
WO2016149151A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with concurrent delivery of different polymerizable liquids
WO2016149104A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with flexible build plates
EP3294783A1 (en) 2015-05-11 2018-03-21 3M Innovative Properties Company High performance (meth)acrylate adhesive composition
US10800094B2 (en) 2015-09-14 2020-10-13 Carbon, Inc. Light-curable article of manufacture with portions of differing solubility
US11220051B2 (en) 2015-09-25 2022-01-11 Carbon, Inc. Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices
US20180243976A1 (en) 2015-09-30 2018-08-30 Carbon, Inc. Method and Apparatus for Producing Three- Dimensional Objects
EP3156465A1 (en) 2015-10-15 2017-04-19 3M Innovative Properties Company Multilayer pressure sensitive adhesive foam tape for outdooor applications
EP3156466B1 (en) 2015-10-15 2020-11-25 3M Innovative Properties Company Multilayer pressure sensitive adhesive foam tape for outdooor applications
US10647873B2 (en) 2015-10-30 2020-05-12 Carbon, Inc. Dual cure article of manufacture with portions of differing solubility
WO2017078883A1 (en) 2015-11-06 2017-05-11 3M Innovative Properties Company Redox polymerizable composition with photolabile transition metal complexes
CN108348404B (en) 2015-11-06 2021-06-08 3M创新有限公司 Redox polymerizable dental compositions utilizing photolabile transition metal complexes
EP3373887A1 (en) 2015-11-11 2018-09-19 3M Innovative Properties Company Kit of parts for producing a glass ionomer cement, process of production and use thereof
US10836844B2 (en) 2015-12-03 2020-11-17 3M Innovative Properties Company Redox polymerizable composition with photolabile reducing agents
JP7189015B2 (en) 2015-12-22 2022-12-13 カーボン,インコーポレイテッド A Dual Precursor Resin System for Additive Manufacturing Using Dual Cured Resins
US10538031B2 (en) 2015-12-22 2020-01-21 Carbon, Inc. Dual cure additive manufacturing of rigid intermediates that generate semi-rigid, flexible, or elastic final products
WO2017112483A2 (en) 2015-12-22 2017-06-29 Carbon, Inc. Accelerants for additive manufacturing with dual cure resins
WO2017112521A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Production of flexible products by additive manufacturing with dual cure resins
EP3394673A1 (en) 2015-12-22 2018-10-31 Carbon, Inc. Fabrication of compound products from multiple intermediates by additive manufacturing with dual cure resins
US11123920B2 (en) 2016-01-13 2021-09-21 Fujian Institute Of Research On The Structure Of Matter, Chinese Academy Of Science 3D printing apparatus and method
CN108601710A (en) * 2016-02-05 2018-09-28 3M创新有限公司 Including providing the dental composition of the nano-particle of the refringence between polymerizing resin and filler
US10105289B2 (en) 2016-05-26 2018-10-23 Essential Dental Systems, Inc. Biomimetic mineral based endodontic cement composition and uses thereof
CA3024147A1 (en) 2016-05-31 2017-12-07 Northwestern University Method for the fabrication of three-dimensional objects and apparatus for same
WO2018005311A1 (en) 2016-06-29 2018-01-04 3M Innovative Properties Company Polymerizable ionic liquid compositions
US10821667B2 (en) 2016-07-01 2020-11-03 Carbon, Inc. Three-dimensional printing methods for reducing bubbles by de-gassing through build plate
EP3529239B1 (en) 2016-10-20 2023-02-15 3M Innovative Properties Company Photoinitiators with protected carbonyl group
US11135790B2 (en) 2016-11-21 2021-10-05 Carbon, Inc. Method of making three-dimensional object by delivering reactive component for subsequent cure
EP3547988A1 (en) 2016-12-01 2019-10-09 3M Innovative Properties Company Basic core material encapsulated in an inorganic shell suitable for use in biological carrier materials
CN106539694A (en) * 2016-12-09 2017-03-29 苏州纳贝通环境科技有限公司 A kind of hard tooth tissue adhesive and preparation method thereof
US10785288B2 (en) 2017-02-22 2020-09-22 International Business Machines Corporation Deferential support of request driven cloud services
US10239255B2 (en) 2017-04-11 2019-03-26 Molecule Corp Fabrication of solid materials or films from a polymerizable liquid
EP3624753B1 (en) 2017-05-15 2022-03-30 3M Innovative Properties Company Dental adhesive composition, preparation and use thereof
WO2018213074A1 (en) * 2017-05-18 2018-11-22 3M Innovative Properties Company Glass ionomer compositions and methods including water-miscible, silane-treated, nano-sized silica particles
KR102154487B1 (en) 2017-05-24 2020-09-10 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Adhesive article and method of making and using the same
US11135766B2 (en) 2017-06-29 2021-10-05 Carbon, Inc. Products containing nylon 6 produced by stereolithography and methods of making the same
JP6949606B2 (en) * 2017-07-31 2021-10-13 クラレノリタケデンタル株式会社 Manufacturing method of zirconia molded product
US11612548B2 (en) 2017-11-08 2023-03-28 3M Innovative Properties Company Radiopaque dental composition
EP3731797A2 (en) * 2017-12-29 2020-11-04 Yildiz Teknik Universitesi Production of antibacterial and regenerative dental composite using supportive phases (fillers) antibacterial and bioactive properties of which are improved
US11616302B2 (en) 2018-01-15 2023-03-28 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
EP3746775A1 (en) 2018-01-31 2020-12-09 3M Innovative Properties Company Virtual camera array for inspection of manufactured webs
US20200354484A1 (en) 2018-01-31 2020-11-12 3M Innovative Properties Company Photolabile beta-dicarbonyl compounds
TWI794400B (en) 2018-01-31 2023-03-01 美商3M新設資產公司 Infrared light transmission inspection for continuous moving web
EP3746489B1 (en) 2018-01-31 2022-03-30 3M Innovative Properties Company Photolabile barbiturate compounds
CN108186371B (en) * 2018-02-05 2020-09-22 上海御齿台医疗科技有限公司 Adhesive for safe dental implant and preparation method thereof
US11174326B2 (en) 2018-02-20 2021-11-16 The Regents Of The University Of Michigan Polymerization photoinhibitor
US20210085570A1 (en) 2018-05-02 2021-03-25 3M Innovative Properties Company One-part dental adhesive composition for fixing dental composite materials
PL3569622T3 (en) 2018-05-14 2021-05-31 3M Innovative Properties Company Multilayer pressure-sensitive adhesive assembly
EP3569669A1 (en) 2018-05-14 2019-11-20 3M Innovative Properties Company Method of manufacturing an electronic control device
EP3801360A1 (en) 2018-06-06 2021-04-14 3M Innovative Properties Company Hardenable dental compositions comprising basic core material encapsulated in an inorganic shell and dispensing devices therewith
US11552390B2 (en) 2018-09-11 2023-01-10 Rogers Corporation Dielectric resonator antenna system
US20220033345A1 (en) 2018-10-09 2022-02-03 3M Innovative Properties Company Addition-fragmentation agent with pendent amine groups
TWI820237B (en) 2018-10-18 2023-11-01 美商羅傑斯公司 Polymer structure, its stereolithography method of manufacture, and electronic device comprising same
US20210395419A1 (en) 2018-11-14 2021-12-23 3M Innovative Properties Company Storage stable two-component dual cure dental composition
GB2594171A (en) 2018-12-04 2021-10-20 Rogers Corp Dielectric electromagnetic structure and method of making the same
NL2022372B1 (en) 2018-12-17 2020-07-03 What The Future Venture Capital Wtfvc B V Process for producing a cured 3d product
EP3953160A4 (en) 2019-04-09 2023-01-11 Azul 3D, Inc. Methodologies to rapidly cure and coat parts produced by additive manufacturing
JP2022536259A (en) 2019-05-30 2022-08-15 ロジャーズ・コーポレイション Photocurable compositions for stereolithography, stereolithographic methods using the compositions, polymeric components formed by the stereolithographic methods, and devices containing the polymeric components
CN114144487A (en) 2019-07-26 2022-03-04 3M创新有限公司 Method and article for disposing adhesive onto a substrate
WO2021205326A1 (en) 2020-04-08 2021-10-14 3M Innovative Properties Company Curable compositions and methods of using the same
US11482790B2 (en) 2020-04-08 2022-10-25 Rogers Corporation Dielectric lens and electromagnetic device with same
WO2021205324A1 (en) 2020-04-08 2021-10-14 3M Innovative Properties Company Curable compositions and methods of using the same
EP4271322A1 (en) 2020-12-30 2023-11-08 3M Innovative Properties Company Bondable orthodontic assemblies and methods for bonding
EP4308571A1 (en) 2021-03-17 2024-01-24 3M Innovative Properties Company Polymerizable 4,4'-spirobi[chromane]-2,2'-diones and curable compositions including the same
WO2023031719A1 (en) 2021-09-01 2023-03-09 3M Innovative Properties Company Free-radically polymerizable composition, method of polymerizing the same, and polymerized composition
WO2023073444A1 (en) 2021-10-28 2023-05-04 3M Innovative Properties Company Photopolymerizable composition, methods of bonding and sealing, and at least partially polymerized composition
WO2023081745A1 (en) 2021-11-04 2023-05-11 The Procter & Gamble Company Web material structuring belt, method for making structured web material and structured web material made by the method
CA3181019A1 (en) 2021-11-04 2023-05-04 The Procter & Gamble Company Web material structuring belt, method for making and method for using
WO2023081747A1 (en) 2021-11-04 2023-05-11 The Procter & Gamble Company Web material structuring belt, method for making and method for using
WO2023081744A1 (en) 2021-11-04 2023-05-11 The Procter & Gamble Company Web material structuring belt, method for making structured web material and structured web material made by the method
WO2023105315A1 (en) 2021-12-06 2023-06-15 3M Innovative Properties Company Dental compositions
WO2023166342A1 (en) 2022-03-02 2023-09-07 3M Innovative Properties Company Polymerizable compositions including a polymerizable component and a redox initiation system containing a photolabile reducing agent, and a photolabile reducing agent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001030307A1 (en) * 1999-10-28 2001-05-03 3M Innovative Properties Company Dental materials with nano-sized silica particles
WO2003086328A1 (en) * 2002-04-12 2003-10-23 3M Innovative Properties Company Medical compositions containing an ionic salt

Family Cites Families (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1316129A (en) 1969-12-15 1973-05-09 Nat Res Dev Surgical cement
US4209434A (en) * 1972-04-18 1980-06-24 National Research Development Corporation Dental cement containing poly(carboxylic acid), chelating agent and glass cement powder
GB1569021A (en) * 1976-03-17 1980-06-11 Kuraray Co Adhesive cementing agents containing partial phosphonic orphosphonic acid esters
US4070321A (en) * 1976-12-02 1978-01-24 Nalco Chemical Company Process for the preparation of water-in-oil emulsions of water soluble vinyl carboxylic acid polymers and copolymers
DE2830927A1 (en) * 1978-07-14 1980-01-31 Basf Ag ACYLPHOSPHINOXIDE COMPOUNDS AND THEIR USE
DE2909994A1 (en) 1979-03-14 1980-10-02 Basf Ag ACYLPHOSPHINOXIDE COMPOUNDS, THEIR PRODUCTION AND USE
DE2909992A1 (en) * 1979-03-14 1980-10-02 Basf Ag PHOTOPOLYMERIZABLE RECORDING MEASURES, IN PARTICULAR FOR THE PRODUCTION OF PRINTING PLATES AND RELIEF FORMS
US4695251A (en) * 1980-04-07 1987-09-22 Minnesota Mining And Manufacturing Company Orthodontic bracket adhesive and abrasive for removal thereof
US4356296A (en) * 1981-02-25 1982-10-26 The United States Of America As Represented By The Secretary Of The Navy Fluorinated diacrylic esters and polymers therefrom
US4539382A (en) * 1981-07-29 1985-09-03 Kuraray Co., Ltd. Adhesive composition
ES8301593A1 (en) * 1981-11-16 1983-01-01 Union Ind Y Agro Ganader S A U Nucleotide enriched humanized milk and process for its preparation
JPS59135272A (en) * 1983-01-21 1984-08-03 Kuraray Co Ltd Adhesive
US4503169A (en) * 1984-04-19 1985-03-05 Minnesota Mining And Manufacturing Company Radiopaque, low visual opacity dental composites containing non-vitreous microparticles
GR852068B (en) 1984-08-30 1985-12-24 Johnson & Johnson Dental Prod
DE3443221A1 (en) * 1984-11-27 1986-06-05 ESPE Fabrik pharmazeutischer Präparate GmbH, 8031 Seefeld BISACYLPHOSPHINOXIDE, THEIR PRODUCTION AND USE
US4642126A (en) * 1985-02-11 1987-02-10 Norton Company Coated abrasives with rapidly curable adhesives and controllable curvature
DE3516256A1 (en) 1985-05-07 1986-11-13 Bayer Ag, 5090 Leverkusen (METH) ACRYLIC ACID ESTERS AND THEIR USE
DE3516257A1 (en) 1985-05-07 1986-11-13 Bayer Ag, 5090 Leverkusen (METH) ACRYLIC ACID ESTERS AND THEIR USE
US4652274A (en) * 1985-08-07 1987-03-24 Minnesota Mining And Manufacturing Company Coated abrasive product having radiation curable binder
DE3536076A1 (en) * 1985-10-09 1987-04-09 Muehlbauer Ernst Kg POLYMERIZABLE CEMENT MIXTURES
US4772530A (en) * 1986-05-06 1988-09-20 The Mead Corporation Photosensitive materials containing ionic dye compounds as initiators
US4798814A (en) * 1986-09-26 1989-01-17 Minnesota Mining And Manufacturing Company Oxidation resistant alumina-silica articles containing silicon carbide and carbon
US4874450A (en) * 1987-01-29 1989-10-17 The Mead Corporation Laminating transparent or translucent materials using ionic dye-counter ion complexes
JPH0755882B2 (en) * 1987-02-13 1995-06-14 而至歯科工業株式会社 Glass powder for dental glass ionomer cement
CA1323949C (en) * 1987-04-02 1993-11-02 Michael C. Palazzotto Ternary photoinitiator system for addition polymerization
US5078129A (en) * 1987-05-01 1992-01-07 Research Foundation Of State University Of New York Device for stimulating salivation
US4954462A (en) * 1987-06-05 1990-09-04 Minnesota Mining And Manufacturing Company Microcrystalline alumina-based ceramic articles
AU618772B2 (en) * 1987-12-30 1992-01-09 Minnesota Mining And Manufacturing Company Photocurable ionomer cement systems
US4871786A (en) * 1988-10-03 1989-10-03 Minnesota Mining And Manufacturing Company Organic fluoride sources
US4954414A (en) * 1988-11-08 1990-09-04 The Mead Corporation Photosensitive composition containing a transition metal coordination complex cation and a borate anion and photosensitive materials employing the same
US5076844A (en) 1988-12-10 1991-12-31 Goldschmidt AG & GDF Gesellschaft fur Dentale Forschung u. Innovationen GmbH Perfluoroalkyl group-containing (meth-)acrylate esters, their synthesis and use in dental technology
DE3841617C1 (en) 1988-12-10 1990-05-10 Th. Goldschmidt Ag, 4300 Essen, De
US5026902A (en) * 1988-12-10 1991-06-25 Th. Goldschmidt AG & GDF Gesellschaft fur Dentale Forschung u. Innovationen GmbH Dental compsition of perfluoroalkyl group-containing (meth-)acrylate esters
JPH0627047B2 (en) 1988-12-16 1994-04-13 而至歯科工業株式会社 Dental glass ionomer cement composition
US5057393A (en) * 1989-07-10 1991-10-15 The Mead Corporation Dye branched-alkyl borate photoinitiators
GB8924129D0 (en) * 1989-10-26 1989-12-13 Ellis John Polyvinylphosphonic acid glass ionomer cement
US5037579A (en) * 1990-02-12 1991-08-06 Nalco Chemical Company Hydrothermal process for producing zirconia sol
US5055372A (en) * 1990-04-23 1991-10-08 The Mead Corporation Photohardenable composition containing borate salts and ketone initiators
DE4024322A1 (en) * 1990-07-31 1992-02-06 Thera Ges Fuer Patente DEFORMABLE MEASURES AND THEIR USE AS FUEL MATERIAL FOR TOOTH ROOT CHANNELS
DE4105550A1 (en) * 1991-02-22 1992-08-27 Bayer Ag ADHESIVE COMPONENT FOR TREATING THE DENTAL SUBSTANCE
US5332429A (en) * 1991-05-31 1994-07-26 Minnesota Mining And Manufacturing Company Method for treating fluoroaluminosilicate glass
US5154762A (en) * 1991-05-31 1992-10-13 Minnesota Mining And Manufacturing Company Universal water-based medical and dental cement
US5252122B1 (en) * 1991-08-22 1999-12-07 Mion Int Corp Ionic bond between amalgam and glas ionomer
JP2732968B2 (en) * 1991-09-06 1998-03-30 鐘紡株式会社 Dental filling composition
US5367002A (en) 1992-02-06 1994-11-22 Dentsply Research & Development Corp. Dental composition and method
US5227413A (en) * 1992-02-27 1993-07-13 Minnesota Mining And Manufacturing Company Cements from β-dicarbonyl polymers
DE4306997A1 (en) * 1993-03-05 1994-09-08 Thera Ges Fuer Patente Hydrophilized polyethers
US6417244B1 (en) * 1993-04-13 2002-07-09 Southwest Research Institute Metal oxide compositions and methods
US6696585B1 (en) * 1993-04-13 2004-02-24 Southwest Research Institute Functionalized nanoparticles
US6258974B1 (en) * 1993-04-13 2001-07-10 Southwest Research Institute Metal oxide compositions composites thereof and method
US5720805A (en) * 1993-04-13 1998-02-24 Southwest Research Institute Titanium-tin-oxide nanoparticles, compositions utilizing the same, and the method of forming the same
US5372796A (en) 1993-04-13 1994-12-13 Southwest Research Institute Metal oxide-polymer composites
US5883153A (en) * 1993-04-15 1999-03-16 Shofu Inc. Fluoride ion sustained release preformed glass ionomer filler and dental compositions containing the same
JP3452379B2 (en) * 1993-05-18 2003-09-29 大日本塗料株式会社 Preparation method of granular dental cement
US5530038A (en) * 1993-08-02 1996-06-25 Sun Medical Co., Ltd. Primer composition and curable composition
US5501727A (en) * 1994-02-28 1996-03-26 Minnesota Mining And Manufacturing Company Color stability of dental compositions containing metal complexed ascorbic acid
JP3214982B2 (en) * 1994-07-04 2001-10-02 株式会社トクヤマ Inorganic composition
JP3471431B2 (en) * 1994-07-18 2003-12-02 株式会社ジーシー Dental glass ionomer cement composition
EP0712622B1 (en) 1994-11-21 1999-09-01 Tokuyama Corporation Dental composition and kit
DE69617257T2 (en) 1995-09-18 2002-06-13 Minnesota Mining & Mfg COMPONENT SEPARATION SYSTEM WITH CONDENSING MECHANISM
US5694701A (en) 1996-09-04 1997-12-09 Minnesota Mining And Manufacturing Company Coated substrate drying system
US6391286B1 (en) * 1995-11-17 2002-05-21 3M Innovative Properties Company Use of metallofluorocomplexes for dental compositions
US6050815A (en) * 1996-03-15 2000-04-18 3M Innovative Properties Company Precoated dental cement
IL118460A (en) 1996-05-28 1999-09-22 Dead Sea Works Ltd Edible salt mixture
US6136885A (en) * 1996-06-14 2000-10-24 3M Innovative Proprerties Company Glass ionomer cement
US20030180414A1 (en) * 1996-11-27 2003-09-25 Gudas Victor V. Method of controlling release of bitterness inhibitors in chewing gum and gum produced thereby
US5871360A (en) * 1996-12-31 1999-02-16 Gc Corporation Method for restoration of a cavity of a tooth using a resin reinforced type glass ionomer cement
JP4083257B2 (en) * 1997-03-19 2008-04-30 株式会社ジーシー Resin composition for dental filling
DE19711514B4 (en) * 1997-03-19 2006-09-14 3M Espe Ag Triglyceride-containing impression materials
US6262142B1 (en) * 1997-04-02 2001-07-17 Dentsply Research & Development Translucent wear resistant dental enamel material and method
US6353040B1 (en) * 1997-04-02 2002-03-05 Dentsply Research & Development Corp. Dental composite restorative material and method of restoring a tooth
US5965632A (en) * 1997-06-20 1999-10-12 Scientific Pharmaceuticals Inc. Dental cement compositions
US5859089A (en) * 1997-07-01 1999-01-12 The Kerr Corporation Dental restorative compositions
DE19740234B4 (en) * 1997-09-12 2008-07-10 3M Espe Ag Use of polyether-based dental materials for impressions in the dental or dental field
AU752003B2 (en) * 1997-10-03 2002-09-05 Dentsply International Inc. Dental materials having a nanoscale filler
US6693143B2 (en) * 1997-10-03 2004-02-17 Dentsply Detrey Gmbh Dental materials having a nanoscale filler
DE19753456B4 (en) 1997-12-02 2007-01-11 3M Espe Ag Two-component, cationically-curing preparations based on aziridinopolyethers and their use
JPH11228327A (en) * 1998-02-18 1999-08-24 Gc Corp Pasty glass ionomer cement composition for dentistry
IT1299563B1 (en) 1998-07-17 2000-03-16 Giovanni Dolci ODONTOSTOMATOLOGICAL USE OF NANOSTRUCTURED APATITIC BASED MATERIALS
DE69926048T2 (en) 1998-07-20 2006-05-18 Dentsply International Inc. Translucent wear-resistant enamel material and method
DE19832965A1 (en) * 1998-07-22 2000-02-03 Fraunhofer Ges Forschung Spherical ionomer particles and their production
US6312667B1 (en) 1998-11-12 2001-11-06 3M Innovative Properties Company Methods of etching hard tissue in the oral environment
US6669927B2 (en) 1998-11-12 2003-12-30 3M Innovative Properties Company Dental compositions
US6312666B1 (en) 1998-11-12 2001-11-06 3M Innovative Properties Company Methods of whitening teeth
SE9904080D0 (en) * 1998-12-03 1999-11-11 Ciba Sc Holding Ag Fotoinitiatorberedning
PT1139793E (en) * 1998-12-23 2010-01-19 Sinai School Medicine Inhibitors of the bitter taste response
DE19860361A1 (en) * 1998-12-24 2000-06-29 Espe Dental Ag Crosslinkable monomers based on cyclosiloxane, their preparation and their use in polymerizable compositions
DE19860364C2 (en) * 1998-12-24 2001-12-13 3M Espe Ag Polymerizable dental materials based on siloxane compounds capable of curing, their use and manufacture
JP2000217547A (en) 1999-01-27 2000-08-08 Ajinomoto Co Inc Amino acid-containing composition having reduced bitter taste
WO2000058316A1 (en) * 1999-03-31 2000-10-05 Kuraray Co., Ltd. Organophosphorus compounds for dental polymerizable compositions
TWI284540B (en) 1999-05-13 2007-08-01 Kuraray Co Bonding composition suitable to tooth tissue
US6194481B1 (en) 1999-05-19 2001-02-27 Board Of Regents Of The University Of Texas System Mechanically strong and transparent or translucent composites made using zirconium oxide nanoparticles
JP4636656B2 (en) 1999-07-08 2011-02-23 株式会社松風 Dental adhesive composition
DE19934407A1 (en) 1999-07-22 2001-01-25 Espe Dental Ag Novel hydrolyzable and polymerizable silanes are useful in dental applications for the production of filler, cement, crown- and bridging material, blending agents, lacquer, sealers and primers
US6472454B1 (en) * 1999-10-22 2002-10-29 Kerr Corporation Endodontic dental compositions
US6572693B1 (en) * 1999-10-28 2003-06-03 3M Innovative Properties Company Aesthetic dental materials
US6376590B2 (en) * 1999-10-28 2002-04-23 3M Innovative Properties Company Zirconia sol, process of making and composite material
US6730156B1 (en) 1999-10-28 2004-05-04 3M Innovative Properties Company Clustered particle dental fillers
US6387981B1 (en) 1999-10-28 2002-05-14 3M Innovative Properties Company Radiopaque dental materials with nano-sized particles
DE60032858T2 (en) * 1999-11-17 2007-09-06 Kabushiki Kaisha Shofu Dental filling material
DE10026432A1 (en) 2000-05-29 2002-02-14 3M Espe Ag Prepolymer (meth) acrylates with polycyclic or aromatic segments
US6565873B1 (en) * 2000-10-25 2003-05-20 Salvona Llc Biodegradable bioadhesive controlled release system of nano-particles for oral care products
US6613812B2 (en) * 2001-01-03 2003-09-02 3M Innovative Properties Company Dental material including fatty acid, dimer thereof, or trimer thereof
DE10124028B4 (en) 2001-05-16 2010-02-18 3M Espe Ag Self-adhesive dental materials
US6593395B2 (en) 2001-05-16 2003-07-15 Kerr Corporation Dental composition containing discrete nanoparticles
US6942874B2 (en) 2001-05-25 2005-09-13 Linguagen Corp. Nucleotide compounds that block the bitter taste of oral compositions
JP4822617B2 (en) 2001-06-28 2011-11-24 クラレメディカル株式会社 Dental cement composition
US6765038B2 (en) 2001-07-27 2004-07-20 3M Innovative Properties Company Glass ionomer cement
US6620405B2 (en) * 2001-11-01 2003-09-16 3M Innovative Properties Company Delivery of hydrogel compositions as a fine mist
US7173074B2 (en) 2001-12-29 2007-02-06 3M Innovative Properties Company Composition containing a polymerizable reducing agent, kit, and method
US6765036B2 (en) * 2002-01-15 2004-07-20 3M Innovative Properties Company Ternary photoinitiator system for cationically polymerizable resins
CN1319507C (en) 2002-01-31 2007-06-06 3M创新有限公司 Dental pastes, dental articles, and methods
EP1346717B1 (en) 2002-03-19 2007-05-23 Dentsply-Sankin K.K. One-bottle dental bonding composition
US20040197401A1 (en) 2002-06-14 2004-10-07 Calton Gary J Modifying undesirable tastes
JP2004067597A (en) 2002-08-07 2004-03-04 Gc Corp Dental composition
US20040120901A1 (en) * 2002-12-20 2004-06-24 Dong Wu Dental compositions including enzymes and methods
US20040206932A1 (en) 2002-12-30 2004-10-21 Abuelyaman Ahmed S. Compositions including polymerizable bisphosphonic acids and methods
US7223826B2 (en) * 2003-01-30 2007-05-29 3M Innovative Properties Company Amide-functional polymers, compositions, and methods
US20040151691A1 (en) * 2003-01-30 2004-08-05 Oxman Joel D. Hardenable thermally responsive compositions
US20040185013A1 (en) * 2003-01-30 2004-09-23 Burgio Paul A. Dental whitening compositions and methods
JP2007523063A (en) * 2004-01-21 2007-08-16 スリーエム イノベイティブ プロパティズ カンパニー Dental compositions and kits containing bitter inhibitors and related methods
US7090721B2 (en) * 2004-05-17 2006-08-15 3M Innovative Properties Company Use of nanoparticles to adjust refractive index of dental compositions
US7156911B2 (en) * 2004-05-17 2007-01-02 3M Innovative Properties Company Dental compositions containing nanofillers and related methods
US7090722B2 (en) * 2004-05-17 2006-08-15 3M Innovative Properties Company Acid-reactive dental fillers, compositions, and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001030307A1 (en) * 1999-10-28 2001-05-03 3M Innovative Properties Company Dental materials with nano-sized silica particles
WO2003086328A1 (en) * 2002-04-12 2003-10-23 3M Innovative Properties Company Medical compositions containing an ionic salt

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100413486C (en) * 2006-08-18 2008-08-27 陕西科技大学 Prepn. method of carbon fiber biological composite material
CN100431517C (en) * 2006-08-18 2008-11-12 陕西科技大学 Method for preparing fiber reinforced composite material used for artificial tooth base
JP2008303095A (en) * 2007-06-06 2008-12-18 Tokuyama Dental Corp Composite nano zirconia particle, dispersion liquid and curable composition for dental use
US9463144B2 (en) 2010-11-10 2016-10-11 Brian A. Shukla Adhesive composition suitable for dental uses
WO2012161363A1 (en) * 2011-05-26 2012-11-29 (주) 베리콤 Dental complex composition containing crystallized glass-ceramic

Also Published As

Publication number Publication date
EP1771143B1 (en) 2012-04-25
CN1984633B (en) 2011-06-15
AU2005249354A1 (en) 2005-12-15
ATE554741T1 (en) 2012-05-15
US20050256223A1 (en) 2005-11-17
JP4851454B2 (en) 2012-01-11
CA2567036A1 (en) 2005-12-15
EP1771143A1 (en) 2007-04-11
CN1984633A (en) 2007-06-20
JP2007538073A (en) 2007-12-27
AU2005249354B2 (en) 2011-11-10
US7649029B2 (en) 2010-01-19

Similar Documents

Publication Publication Date Title
EP1771143B1 (en) Dental compositions containing nanozirconia fillers
US7156911B2 (en) Dental compositions containing nanofillers and related methods
EP1750650B1 (en) Use of nanoparticles to adjust refractive index of dental compositions
EP1909742B1 (en) Dental compositions containing a surface-modified filler
KR101166942B1 (en) Dental compositions containing nanozirconia fillers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2567036

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007527215

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005249354

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005744014

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067026522

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2005249354

Country of ref document: AU

Date of ref document: 20050329

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005249354

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580023947.3

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067026522

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005744014

Country of ref document: EP