WO2005122389A1 - Verfahren zum betrieb einer kraftwerksanlage - Google Patents

Verfahren zum betrieb einer kraftwerksanlage Download PDF

Info

Publication number
WO2005122389A1
WO2005122389A1 PCT/EP2005/052666 EP2005052666W WO2005122389A1 WO 2005122389 A1 WO2005122389 A1 WO 2005122389A1 EP 2005052666 W EP2005052666 W EP 2005052666W WO 2005122389 A1 WO2005122389 A1 WO 2005122389A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
network
speed
shaft train
shaft
Prior art date
Application number
PCT/EP2005/052666
Other languages
English (en)
French (fr)
Inventor
Rolf Althaus
Original Assignee
Alstom Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Ltd filed Critical Alstom Technology Ltd
Publication of WO2005122389A1 publication Critical patent/WO2005122389A1/de
Priority to US11/635,632 priority Critical patent/US7566992B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the invention relates to a method for operating a power plant according to the preamble of claim 1.
  • the power output of the relaxation machine can be adapted to the power requirement of the network by different throttling of the inflowing storage fluid or, if necessary, by a different power of a combustion system.
  • An electric motor that drives the compressor and a generator that is driven by the expansion machine are rigid, that is frequency-synchronized, connected to the electricity network.
  • the expansion machine and the compressor are thus operated at a constant speed.
  • a turbine used as a relaxation machine and / or a turbocompressor are then operated at different mass flows away from their best operating point.
  • the throttling of the compressor inflow is very lossy.
  • the generator can only be connected to the grid and deliver power after the expansion machine has accelerated to grid-synchronous speed.
  • the essence of the invention is therefore to operate a power plant, which comprises a power-absorbing shaft train and a power-transmitting shaft train, in such a way that in a steady-state operating state at least one of the shaft trains is operated at a network-asynchronous speed, with, in contrast, approximately half-speed Machines, the ratio between the frequency of the AC network and the speed of the shaft train is an integer.
  • a power plant which comprises a power-absorbing shaft train and a power-transmitting shaft train, in such a way that in a steady-state operating state at least one of the shaft trains is operated at a network-asynchronous speed, with, in contrast, approximately half-speed Machines, the ratio between the frequency of the AC network and the speed of the shaft train is an integer.
  • at least one electrical machine which is operated at a network-asynchronous speed, is connected to the electricity network.
  • the invention is characterized in that the speed of an electrical machine is changed while it is connected to the electricity network.
  • the power consumption or output of the entire power plant can be adapted very efficiently to the requirements of the electricity network.
  • the method according to the invention makes it possible to react very quickly to changes in the performance requirements. This is particularly possible if between the electrical Machine and the electricity network a means for changing the frequency is arranged, for example a static frequency converter, so-called static frequency converter, SFC.
  • the power-consuming shaft train comprises a motor and a compressor.
  • the compressor By means of the motor, the compressor is driven and a storage fluid, in particular air, is compressed and conveyed into a storage volume. Power is drawn from the electricity network.
  • the power consumption is regulated by changing the speed.
  • the speed control of a compressor is much more efficient than, for example, throttle control or even blow-off control.
  • the compressed storage fluid is stored in the storage volume and is available for work-related relaxation in a relaxation machine.
  • the power-emitting shaft train comprises, for example, a relaxation machine, for example a turbine, and a generator.
  • a relaxation machine for example a turbine
  • a generator In order to feed power into the electricity network, compressed storage fluid is removed from the storage volume and expanded in the relaxation machine to perform work, and the generator is thus driven.
  • the power output of the generator is in turn regulated via the speed of the shaft train.
  • the power consumption and / or power output of the power plant is regulated by changing the speed of at least one of the shaft trains, and thereby adapted to the requirements of the electricity network.
  • the speed of the power-transmitting shaft train is increased and the power requirement increases If the power requirement drops, the speed of the power-transmitting shaft train is reduced, the generator being continuously connected to the network.
  • the speed of the power-absorbing shaft train is reduced when the power requirement increases and the speed of the power-consuming shaft train increased, the motor is continuously connected to the network.
  • power is additionally drawn from the network and a storage fluid contained in the storage volume is heated. This means that you can react very quickly to falling network power requirements.
  • the heating power drawn from the network is increased, the speed and thus the power consumption of the power-consuming shaft train is increased, and the heating power is reduced again. It is also possible to increase the heating power taken from the network when the power requirement of the network falls in power mode, to successively reduce the speed and thus the power output of the power-emitting shaft, and to reduce the heating power again.
  • FIG. 1 shows a power plant which is suitable for carrying out the method according to the invention.
  • the power plant comprises a power-consuming shaft 1, a power-transmitting shaft 2, and a storage volume 3.
  • a compressor 11 and a drive motor 12 are arranged on a common shaft 13 on the power-consuming shaft.
  • a relaxation machine 21 and a generator 22 are arranged on a common shaft 23 on the output shaft. It is in no way imperative that all machines arranged on a shaft train are arranged on a common shaft; Clutches or gears, for example, can be arranged in the shaft train without further ado, which enable the machines of a shaft train to be operated at different speeds.
  • the power plant shown can be operated in a power grid 50 both in a power-absorbing and in a power-dissipating manner.
  • the power consumption of the compressor 11 is greater than the power output of the expansion machine 21, and in the other operating case the power output of the expansion machine 21 is greater than the power consumption of the compressor 11.
  • Power is taken from the electricity network 50 by the motor 12. This drives the compressor 11, which compresses air and conveys it into the storage volume 3.
  • a non-return element 14 and a shut-off element 15 are arranged between the compressor and the storage volume. Compressed fluid can be supplied from the storage volume 3 to the expansion machine 21 via a shut-off and control element 25. This is relieved of work while flowing through the expansion machine, and thus the generator 22 is driven, which supplies power to the electricity network 50.
  • a combustion chamber 24 makes it possible to supply heat to the fluid flowing into the expansion machine beforehand. So that will be The enthalpy gradient available for specific masses and thus the mass flow-specific work during relaxation is greater. If firing is carried out appropriately upstream of the expansion machine, the exhaust gas flowing out of the expansion machine generally has a high temperature.
  • An exhaust gas heat exchanger 26 is therefore arranged, which extracts residual heat from the fluid flowing out of the expansion machine 21. This residual heat can be used, for example, for district heating, for generating steam for driving a steam turbine, for process purposes, and the like.
  • a heat exchanger can also be arranged, in which heat is supplied to the storage fluid. Furthermore, a device for supplying heat to the storage fluid can also be omitted entirely.
  • the electrical machines 12 and 22 are operated in synchronism with the network, that is, the speed of the electrical machines corresponds to the frequency of the AC network 50.
  • the power plant is operated such that the mass flow conveyed by the compressor 11 equals that in the expansion machine 21 is mass flow.
  • the power plant can continue to be operated in charging mode, the mass flow conveyed by the compressor 11 being greater than the mass flow passed through the expansion machine 21.
  • the net power output of the power plant drops.
  • the power consumption of the compressor 11 is greater than the power output of the expansion machine 21.
  • the power consumption of the compressor 11 is reduced, as a result of which the net power output of the power plant increases.
  • the mass flow through the expansion machine 21 is then greater than that conveyed by the compressor, in such a way that the storage volume 3 is emptied.
  • This is the discharge operating state of the power plant.
  • the power plant shown is therefore able to understand the power requirements of the electricity network to a large extent, from power operation to operation with a power withdrawal by on the one hand the power consumption of the compressor and on the other hand the power output of the expansion machine is changed independently of one another.
  • a heating device 31 is also arranged in the storage volume 3. By means of the heating device 31, power can be drawn from the network 50 with very high gradients. The ability to understand rapid changes in the load requirements of an electricity network in both directions, with increasing power requirements as well as with decreasing power requirements, represents a not inconsiderable competitive advantage in liberalized electricity markets.
  • turbomachines such as the turbine 21 used as a relaxation machine and in particular one Turbocompressor 11 can be changed particularly efficiently by varying the speed.
  • speed control of the associated machines requires asynchronous operation of the machines. Therefore, frequency conversion devices, for example static frequency converters, SFC, 41, 42 are arranged between the motor 12 and the generator 22, on the one hand, and the electricity network 50, on the other hand, which make it possible for the electrical machines 12 and 22 to be operated at a grid-asynchronous speed even in power operation operate.
  • the power plant shown is operated in such a way that the speed of the power-transmitting shaft train 2 is increased and / or the speed of the power-consuming shaft train 1 is reduced as the power requirement of the electricity network increases. If the power requirement of the electricity network falls, the speed of the power-transmitting shaft train 2 is reduced and / or the speed of the power-consuming shaft train 1 is increased.
  • the net power output of the power plant can be both positive, that is, power is delivered to the network, and negative, with the total power being consumed from the network.
  • Another possibility for influencing the power consumption of the power plant system is represented by the heating device 31.
  • the Control element 43 put the heating device 31 into operation or increases its output, which takes up power from the electricity network, and heats the fluid stored in the storage volume, and thus increases the pressure of the fluid in the storage volume 3.
  • the change in the heating power can take place almost instantaneously, whereas the change in the speed of the shaft strands can take place quickly, but not as quickly as desired, due to the inertia and the control requirements. It is therefore an embodiment of the invention to increase the power of the heating device 31 almost suddenly in the event of a rapidly decreasing power requirement of the electricity network 50.
  • the speed of the power-consuming shaft train 1 is then increased and / or the speed of the power-transmitting shaft train 2 is reduced.
  • the heating power of the heating device 31 is then reduced to the extent that this changes the power balance of the electrical machines 12 and 22, the net power output of which is reduced. It is of course also possible to continuously operate the heating device 31 in order to preheat the storage fluid for the expansion machine. With an increasing power requirement of the network, the power consumption of the heating device can then be quickly reduced. In a next step, the speed of the power-transmitting shaft train 2 is then increased and / or the speed of the power-consuming shaft train 1 is reduced. The heating output can then be gradually increased again.

Abstract

Eine Kraftwerksanlage umfasst einen leistungsaufnehmenden Wellenstrang (1), auf welchem ein Motor (12) und ein Verdichter (11) angeordnet sind, sowie einen leistungsabgebenden Wellenstrang (2), auf welchem ein Generator (22) und eine Entspannungsmaschine (21) angeordnet sind. Der Verdichter fördert ein komprimiertes Fluid in ein Speichervolumen (3). Das komprimierte Speicherfluid wird in der Entspannungsmaschine (21) arbeitsleistend entspannt. Der Generator (22) sowie der Motor (12) sind mit dem Elektrizitätsnetz (50) über Frequenzwandler (41, 42) verbunden. Dies ermöglicht es, die elektrischen Maschinen (12, 22) mit einer Netz-asynchronen Drehzahl zu betreiben. Gemäss der Erfindung wird die Netto-Leistungsabgabe der Kraftwerksanlage an die Anforderungen des Elektrizitätsnetzes angepasst, indem die Drehzahl wenigstens eines der Wellenstränge (1, 2) verändert wird.

Description

Beschreibung
Verfahren zum Betrieb einer Kraftwerksanlage
Technisches Gebiet
[0001] Die Erfindung betrifft ein Verfahren zum Betrieb einer Kraftwerksanlage gemass dem Oberbegriff des Anspruchs 1.
Stand der Technik
[0002] Im Stand der Technik sind beispielsweise in der US 2003/0131599 Luftspeicherkraftwerke bekannt geworden, bei denen in Zeiten geringer Elektrizitätsnachfrage ein Verdichter Luft komprimiert und in ein Speichervolumen fördert. Die dort gespeicherte Luft wird in Zeiten hoher Elektrizitätsnachfrage in einer Entspannungsmaschine, beispielsweise einer Turbine, arbeitsleistend entspannt. Die Entspannungsmaschine treibt dabei einen Generator an, welcher Leistung in ein Elektrizitätsnetz liefert. Derartige Kraftwerksanlagen eignen sich vorzüglich zur Regulierung der Leistungsaufnahme bzw. -abgäbe eines Elektrizitätsnetzes. Im Ladebetrieb, in dem der Verdichter betrieben wird, kann die Leistungsaufnahme des Verdichters durch eine Drosselung vermindert und somit an eine steigende Leistungsanforderung des Netzes angepasst werden. Im Leistungsbetrieb, in dem die Eπtspannungsmaschine betrieben wird, kann die Leistungsabgabe der Entspannungsmaschine durch eine unterschiedliche Drosselung des zuströmenden Speicherfluides oder gegebenenfalls durch eine unterschiedliche Leistung einer Feuerungsanlage an die Leistungsanforderung des Netzes angepasst werden. Ein zum Antrieb des Verdichters dienender Elektromotor und ein von der Entspannungsmaschine angetriebener Generator sind starr, das heisst frequenzsynchrbn, mit dem Elektrizitätsnetz verbunden. Die Entspannungsmaschine und der Verdichter werden somit mit konstanter Drehzahl betrieben. Eine als Entspannungsmaschine verwendete Turbine und/oder ein Turboverdichter werden dann bei unterschiedlichen Massenströmen abseits ihres besten Betriebspunktes betrieben. Weiterhin ist die Drosselung der Verdichterzuströmung stark verlustbehaftet. Zu beachten ist weiterhin, dass der Generator erst nach einem Beschleunigen der Expansionsmaschine auf netzsynchrone Drehzahl auf das Netz aufgeschaltet werden und Leistung liefern kann.
Darstellung der Erfindung
[0003] Es ist daher eine Aufgabe der vorliegenden Erfindung, ein Verfahren der eingangs genannten Art anzugeben, welches die Nachteile des Standes der Technik vermeidet.
[0004] Dies wird erreicht mit dem Verfahren gemass dem Patentanspruch 1.
[0005] Kern der Erfindung ist es also, eine Kraftwerksanlage, die einen leistungsaufnehmenden Wellenstrang und einen leistungsabgebenden Wellenstrang umfasst, so zu betreiben, dass in einem stationären Betriebszustand wenigstens einer der Wellenstränge mit einer Netzasynchronen Drehzahl betrieben wird, wobei, im Unterschied etwa zu halbtourigen Maschinen, das Verhältnis zwischen der Frequenz des Wechselstromnetzes und der Drehzahl des Wellenstrangs unganzzahlig ist. Während dieses stationären Betriebs befindet sich wenigstens eine elektrische Maschine, welche mit einer Netz-asynchronen Drehzahl betrieben wird, in Verbindung mit dem Elektrizitätsnetz. In einer Ausführungsvariante zeichnet sich die Erfindung dadurch aus, dass die Drehzahl einer elektrischen Maschine verändert wird, während diese mit dem Elektrizitätsnetz in Verbindung ist. Mit dem erlϊndungsgemässen Verfahren kann die Leistungsaufnahme bzw. Leistungsabgabe eines Wellenstrangs über dessen Drehzahl auf besonders effiziente Weise geregelt werden. Die Leistungsaufnahme beziehungsweise Leistungsabgabe der gesamten Kraftwerksanlage kann auf diese Weise sehr effizient den Anforderungen des Elektrizitätsnetzes angepasst werden. Weiterhin ist es mit dem erfindungsgemässen Verfahren möglich, sehr schnell auf Veränderungen der Leistungsanforderungen zu reagieren. Dies ist insbesondere dann möglich, wenn zwischen der elektrischen Maschine und dem Elektrizitätsnetz ein Mittel zur Veränderung der Frequenz angeordnet ist, beispielsweise ein statischer Frequenzkonverter, sogenannter Static Frequency Converter, SFC.
[0006] In einer Ausführungsform der Erfindung umfasst der leistungsaufnehmende Wellenstrang einen Motor und einen Verdichter. Mittels des Motors wird der Verdichter angetrieben, und ein Speicherfluid, insbesondere Luft, verdichtet und in ein Speichervolumen gefördert. Dabei wird Leistung aus dem Elektrizitätsnetz aufgenommen. Die Leistungsaufnahme wird durch eine Veränderung der Drehzahl geregelt. Die Drehzahlregelung eines Verdichters ist dabei wesentlich effizienter als beispielsweise eine Drosselregelung oder gar eine Abblaseregelung. Das verdichtete Speicherfluid wird in dem Speichervolumen gespeichert und steht zur arbeitsleistenden Entspannung in einer Entspannungsmaschine zur Verfügung.
[0007] Der leistungsabgebende Wellenstrang umfasst beispielsweise eine Entspannungsmaschine, zum Beispiel eine Turbine, und einen Generator. Um Leistung in das Elektrizitätsnetz einzuspeisen, wird komprimiertes Speicherfluid aus dem Speichervolumen entnommenen, in der Entspannungsmaschine arbeitsleistend entspannt, und damit der Generator angetrieben. Die Leistungsabgabe des Generators wird erfindungsgemäss wiederum über die Drehzahl des Wellenstrangs geregelt.
[0008] Die Leistungsaufnahme und/oder Leistungsabgabe der Kraftwerksanlage wird durch die Veränderung der Drehzahl wenigstens eines der Wellenstränge geregelt, und dadurch an die Anforderungen des Elektrizitätsnetzes angepasst.
[0009] In einer Variante des erfindungsgemässen Verfahrens, welche insbesondere bei einer positiven Leistungsanforderung seitens des Netzes, also im Leistungsbetrieb der Kraftwerksanlage, in dem Leistung an das Netz abgegeben wird, Anwendung findet, wird bei einer steigenden Leistungsanforderung die Drehzahl des leistungsabgebenden Wellenstrangs erhöht und bei sinkender Leistungsanforderung die Drehzahl des leistungsabgebenden Wellenstrangs vermindert, wobei der Generator fortwährend mit dem Netz verbunden ist. In einer zweiten Variante des erfindungsgemässen Verfahrens, welche insbesondere bei einer negativen Leistungsanforderung seitens des Netzes, wobei Leistung aus dem Netz entnommen wird, Anwendung findet, insbesondere im Ladebetrieb der Kraftwerksanlage, wird bei einer steigenden Leistungsanforderung die Drehzahl des leistungsaufnehmenden Wellenstrangs vermindert und bei sinkender Leistungsanforderung die Drehzahl des leistungsaufnehmenden Wellenstrangs erhöht, wobei der Motor fortwährend mit dem Netz verbunden ist.
[0010] In einer weiteren Ausführungsform des erfindungsgemässen Verfahrens wird zusätzlich aus dem Netz Leistung entnommen und ein in dem Speichervolumen enthaltenes Speicherfluid geheizt. Damit kann sehr schnell auf eine sinkende Leistungsanforderung des Netzes reagiert werden. In einer Ausführungsform wird bei einer sinkenden Leistungsanforderung des Netzes die dem Netz entnommene Heizleistung erhöht, die Drehzahl und damit die Leistungsaufnahme des leistungsaufnehmenden Wellenstrangs erhöht, und die Heizleistung wieder vermindert. Ebenso ist es möglich, bei einer sinkenden Leistungsanforderung des Netzes im Leistungsbetrieb die dem Netz entnommene Heizleistung zu erhöhen, die Drehzahl und damit die Leistungsabgabe des leistungsabgebenden Wellenstrangs sukzessive zu vermindern, und die Heizleistung wieder zu vermindern.
[0011] Weitere mögliche Varianten des erfindungsgemässen Verfahrens sowie Ausführungsformen von zur Durchführung des Verfahrens geeigneten Kraftwerksanlagen erschliessen sich dem Fachmann anhand des nachfolgend beschriebenen Ausführungsbeispiels.
Kurze Beschreibung der Zeichnung
[0012] Die Erfindung wird nachfolgend anhand eines in der Zeichnung illustrierten Ausführungsbeispiels näher erläutert. [0013] Die einzige Figur zeigt eine Kraftwerksanlage, welche zur Durchführung des erfindungsgemässen Verfahrens geeignet ist. [0014] Das Ausführungsbeispiel und die Figur sind erläuternd zu verstehen, und sollen nicht zu einer Einschränkung des in den Ansprüchen gekennzeichneten Erfindungsgegenstandes herangezogen werden.
Wege zur Ausführung der Erfindung
[0015] In Figur 1 ist eine zur Durchführung des erfindungsgemässen Verfahrens geeignete Kraftwerksanlage dargestellt. Die Kraftwerksanlage umfasst einen leistungsaufnehmenden Wellenstrang 1 , einen leistungsabgebenden Wellenstrang 2, und ein Speichervolumen 3. Auf dem leistungsaufnehmenden Wellenstrang sind auf einer gemeinsamen Welle 13 ein Verdichter 11 und einen Antriebsmotor 12 angeordnet. Auf dem leistungsabgebenden Wellenstrang sind auf einer gemeinsamen Welle 23 eine Entspannungsmaschine 21 und ein Generator 22 angeordnet. Es ist keineswegs zwingend, dass alle auf einem Wellenstrang angeordneten Maschinen auf einer gemeinsamen Welle angeordnet sind; ohne weiteres können in dem Wellenstrang beispielsweise Kupplungen angeordnet sein, oder Getriebe, welche einen Betrieb der Maschinen eines Wellenstrangs mit voneinander verschiedenen Drehzahlen ermöglichen. Die dargestellte Kraftwerksanlage kann in einem Elektrizitätsnetz 50 sowohl leistungsaufnehmend als auch leistungsabgebend betrieben werden. Dabei ist einmal die Leistungsaufnahme des Verdichters 11 grösser als.. Leistungsabgabe der Entspannungsmaschine 21 , und im anderen Betriebsfall ist die Leistungsabgabe der Entspannungsmaschine 21 grösser als Leistungsaufnahme des Verdichters 11. Von dem Motor 12 wird Leistung aus dem Elektrizitätsnetz 50 aufgenommen. Damit wird der Verdichter 11 angetrieben, welcher Luft komprimiert und in das Speichervolumen 3 fördert. Dabei sind zwischen dem Verdichter und dem Speichervolumen ein Rückschlagorgan 14 und ein Absperrorgan 15 angeordnet. Über ein Absperr- und Stellorgan 25 kann komprimiertes Fluid aus dem Speichervolumen 3 der Entspannungsmaschine 21 zugeführt werden. Dieses wird beim Durchströmen der Entspannungsmaschine arbeitsleistend entspannt, und damit wird der Generator 22 angetriebenen, welcher eine Leistung ins Elektrizitätsnetz 50 liefert. Eine Brennkammer 24 ermöglicht es, dem der Entspannungsmaschine zuströmenden Fluid vorgängig der Entspannung Wärme zuzuführen. Damit wird das massenspezifisch zur Verfügung stehende Enthalpiegefälle und damit die massenstromspezifisch geleistete Arbeit bei der Entspannung grösser. Wenn stromauf der Entspannungsmaschine entsprechend gefeuert wird, so weist das aus der Entspannungsmaschine abströmende Abgas im Allgemeinen eine hohe Temperatur auf. Daher ist ein Abgaswärmetauscher 26 angeordnet, welcher dem aus der Entspannungsmaschine 21 abströmenden Fluid Restwärme entzieht. Diese Restwärme kann beispielsweise für eine Fernheizung, zur Dampferzeugung für den Antrieb einer Dampfturbine, für Prozesszwecke, und dergleichen verwendet werden. Anstelle der Brennkammer 24 kann auch ein Wärmetauscher angeordnet sein, in welchem dem Speicherfluid Wärme zugeführt wird. Weiterhin kann eine Vorrichtung zur Wärmezufuhr zum Speicherfluid auch ganz weggelassen sein. In einer Betriebsvariante für die dargestellte Kraftwerksanlage werden die elektrischen Maschinen 12 und 22 netzsynchron betrieben, das heisst, die Drehzahl der elektrischen Maschinen entspricht der Frequenz des Wechselstromnetzes 50. In einer Betriebsvariante wird die Kraftwerksanlage so betrieben, dass der vom Verdichter 11 geförderte Massenstrom gleich dem in der Entspannungsmaschine 21 durchgesetzten Massenstrom ist. Die Kraftwerksanlage kann weiterhin im Ladebetrieb betrieben werden, wobei der vom Verdichter 11 geförderte Massenstrom grösser als der durch die Entspannungsmaschine 21 durchgesetzte Massenstrom ist. Dabei sinkt die Netto-Leistungsabgabe der Kraftwerksanlage. In einem Betriebszustand ist die Leistungsaufnahme des Verdichters 11 grösser als Leistungsabgabe der Entspannungsmaschine 21. In einem anderen Betriebszustand wird die Leistungsaufnahme des Verdichters 11 vermindert, wodurch die Netto-Leistungsabgabe der Kraftwerksanlage steigt. Im Allgemeinen ist dann der durch die Entspannungsmaschine 21 durchgesetzte Massenstrom grösser als der vom Verdichter geförderte, derart, dass das Speichervolumen 3 entleert wird. Dies ist der Entladebetriebszustand der Kraftwerksanlage. Die dargestellte Kraftwerksanlage ist demzufolge in der Lage, Leistungsanforderungen des Elektrizitätsnetzes in einem hohen Umfang nachzuvollziehen, vom Leistungsbetrieb bis zum Betrieb mit einer Leistungsentnahme, indem einerseits die Leistungsaufnahme des Verdichters und andererseits die Leistungsabgabe der Entspannungsmaschine unabhängig voneinander geändert wird. Im Speichervolumen 3 ist weiterhin eine Heizvorrichtung 31 angeordnet. Mittels der Heizvorrichtung 31 kann mit sehr hohen Gradienten Leistung aus dem Netz 50 abgenommen werden. Die Fähigkeit, schnelle Änderungen der Lastanforderung eines Elektrizitätsnetzes in beide Richtungen, bei steigender Leistungsanforderung wie auch bei sinkender Leistungsanforderung, nachvollziehen zu können, stellt in liberalisierten Strommärkten einen nicht unerheblichen Wettbewerbsvorteil dar. Die Leistung von Turbomaschinen wie der als Entspannungsmaschine verwendeten Turbine 21 und insbesondere eines Turboverdichters 11 kann besonders effizient durch die Variation der Drehzahl geändert werden. Weil das Elektrizitätsnetz 50 aber mit einer festen Netzfrequenz arbeitet, erfordert eine Drehzahlregelung der damit verbundenen Maschinen einen asynchronen Betrieb der Maschinen. Daher sind zwischen dem Motor 12 und dem Generator 22 einerseits und dem Elektrizitätsnetz 50 andererseits Frequenzwandlungsvorrichtungen, zum Beispiel statische Frequenzkonverter, SFC, 41, 42 angeordnet, welche es ermöglichen, die elektrischen Maschinen 12 und 22 auch im Leistungsbetrieb bei einer netz-asynchronen Drehzahl zu betreiben. Erfindungsgemäss wird die dargestellte Kraftwerksanlage so betrieben, dass bei einer steigenden Leistungsanforderung des Elektrizitätsnetzes die Drehzahl des leistungsabgebenden Wellenstrangs 2 erhöht wird und/oder die Drehzahl des leistungsaufnehmenden Welleπstrangs 1 vermindert wird. Bei einer sinkenden Leistungsanforderung des Elektrizitätsnetzes wird die Drehzahl des leistungsabgebenden Wellenstrangs 2 vermindert und/oder die Drehzahl des leistungsaufnehmenden Wellenstrangs 1 erhöht. Die Netto- Leistungsabgabe der Kraftwerksanlage kann dabei sowohl positiv sein, wobei also Leistung an das Netz abgegeben wird, als auch negativ, wobei in der Summe Leistung aus dem Netz aufgenommen wird. Eine weitere Möglichkeit, die Leistungsaufnahme der Kraftwerksanlage zu beeinflussen, stellt die Heizvorrichtung 31 dar. Wenn die Leistungsanforderung des Netzes sehr schnell sinkt, wird über das Steuerelement 43 die Heizvorrichtung 31 in Betrieb genommen oder deren Leistung erhöht, welche Leistung aus dem Elektrizitätsnetz aufnimmt, und das im Speichervolumen gespeicherte Fluid erwärmt, und damit den Druck des Fluides im Speichervolumen 3 erhöht. Die Änderung der Heizleistung kann nahezu augenblicklich erfolgen, wohingegen die Änderung der Drehzahl der Wellenstränge aufgrund der Trägheit und der regelungstechnischen Anforderungen zwar schnell, aber nicht beliebig schnell, erfolgen kann. Es ist daher eine Ausführungsform der Erfindung, bei einer schnell sinkenden Leistungsanforderung des Elektrizitätsnetzes 50 die Leistung der Heizvorrichtung 31 fast schlagartig zu erhöhen. In einem nächsten Schritt wird dann die Drehzahl des leistungsaufnehmenden Wellenstrangs 1 erhöht und/oder die Drehzahl des leistungsabgebenden Wellenstrangs 2 vermindert. In dem Masse, wie sich hierdurch die Leistungsbilanz der elektrischen Maschinen 12 und 22 verändert, deren Netto-Leistungsabgabe also vermindert wird, wird dann die Heizleistung der Heizvorrichtung 31 zurückgefahren. Ebenso ist es natürlich möglich, die Heizvorrichtung 31 fortwährend zu betreiben, um das Speicherfluid für die Entspannungsmaschine vorzuwärmen. Bei einer steigenden Leistungsanforderung des Netzes kann dann die Leistungsaufnahme der Heizvorrichtung schnell vermindert werden. In einem nächsten Schritt wird dann die Drehzahl des leistungsabgebenden Wellenstrangs 2 erhöht und/oder die Drehzahl des leistungsaufnehmenden Wellenstrangs 1 vermindert. Sukzessive kann die Heizleistung dann wieder erhöht werden. Im Lichte der oben erläuterten Ausführungsbeispiele und der Patentansprüche erschliessen sich dem Fachmann weitere Ausführungsformen des erfindungsgemässen Betriebsverfahrens, welche keineswegs an die beispielhaft dargestellte Kraftwerksanlage gekoppelt sind. [0017]
Bezugszeichenliste
[0018] 1 leistungsaufnehmender Wellenstrang
[0019] 2 leistungsabgebender Wellenstrang
[0020] 3 Speichervolumen
[0021] 11 Verdichter
[0022] 12 elektrische Maschine, Motor
[0023] 13 Welle
[0024] 14 Rückschlagorgan
[0025] 15 Regel- und/oder Absperrorgan
[0026] 21 Entspannungsmaschine, Turbine
[0027] 22 elektrische Maschine, Generator
[0028] 23 Welle
[0029] 24 Brennkammer
[0030] 25 Regel- und/oder Absperrorgan
[0031] 31 Heizvorrichtung
[0032] 41 Frequenzwandler, statischer Frequenzkonverter, SFC
[0033] 42 Frequenzwandler, statischer Frequenzkonverter, SFC
[0034] 43 Heizleistungs-Steuereinheit
[0035] 50 Elektrizitätsnetz

Claims

Ansprüche
1. Verfahren zum Betrieb einer Kraftwerksanlage in einem Wechselstromnetz (50), welche Kraftwerksanlage einen leistungsaufnehmenden Wellenstrang (1) und einen leistungsabgebenden Wellenstrang (2) umfasst, dadurch gekennzeichnet, dass wenigstens einer der Wellenstränge, insbesondere in einem stationären Betriebszustand, mit einer Netz-asynchronen Drehzahl betrieben wird, wobei das Verhältnis zwischen der Frequenz des Wechselstromnetzes und der Drehzahl des Wellenstrangs unganzzahlig ist.
2. Verfahren gemass Anspruch 1 , wobei der leistungsaufnehmende Wellenstrang (1) einen Motor (12) und einen Verdichter (11) umfasst.
3. Verfahren gemass Anspruch 2, umfassend, den Verdichter (11 ) anzutreiben und ein Speicherfluid, insbesondere Luft, zu verdichten und in ein Speichervolumen (3) zu fördern.
4. Verfahren gemass einem der vorstehenden Ansprüche, wobei der leistungsabgebende Wellenstrang (23) eine Entspannungsmaschine (21) und einen Generator (22) umfasst.
5. Verfahren gemass Anspruch 4, umfassend, ein komprimiertes Speicherfluid, insbesondere Luft, aus einem Speichervolumen zu entnehmen, das Speicherfluid in der Entspannungsmaschine arbeitsleistend zu entspannen, und den Generator anzutreiben.
6. Verfahren gemass einem der vorstehenden Ansprüche, gekennzeichnet dadurch, die Leistungsaufnahme und/oder Leistungsabgabe der Kraftwerksanlage durch die Veränderung der Drehzahl wenigstens eines der Wellenstränge zu regeln.
7. Verfahren gemass Anspruch 6, gekennzeichnet dadurch, bei steigender Leistungsanforderung seitens des Netzes die Drehzahl des leistungsabgebenden Wellenstrangs zu erhöhen, und bei sinkender Leistungsanforderung seitens des Netzes die Drehzahl des leistungsabgebenden Wellenstrangs zu vermindern, wobei der Generator fortwährend mit dem Netz verbunden ist.
8. Verfahren gemass einem der Ansprüche 6 oder 7, gekennzeichnet dadurch, bei steigender Leistungsanforderung seitens des Netzes die Drehzahl des leistungsaufnehmenden Wellenstrangs (1) zu vermindern, und bei sinkender Leistungsanforderung seitens des Netzes die Drehzahl des leistungsaufnehmenden Wellenstrangs (1) zu erhöhen, wobei der Motor (12) fortwährend mit dem Netz (50) verbunden ist.
9. Verfahren gemass einem der vorstehenden Ansprüche, umfassend, aus dem Netz (50) Leistung zu entnehmen und ein in einem Speichervolumen (3) enthaltenes Speicherfluid zu heizen.
10. Verfahren gemass Anspruch 9, gekennzeichnet dadurch, bei sinkender Leistungsanforderung des Netzes die dem Netz entnommene Heizleistung zu erhöhen, die Drehzahl des leistungsaufnehmenden Wellenstrangs zu erhöhen, und die Heizleistung wieder zu vermindern.
11. Verfahren gemass Anspruch 9, gekennzeichnet dadurch, bei sinkender Leistungsanforderung des Netzes die dem Netz entnommene Heizleistung zu erhöhen, die Drehzahl des leistungsabgebenden Wellenstrangs zu vermindern, und die Heizleistung wieder zu vermindern.
12. Verfahren gemass einem der Ansprüche 10 oder 11 , umfassend, die Heizleistung auf Null zu vermindern.
PCT/EP2005/052666 2004-06-11 2005-06-09 Verfahren zum betrieb einer kraftwerksanlage WO2005122389A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/635,632 US7566992B2 (en) 2004-06-11 2006-12-08 Method and apparatus for operation of a power station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004028530.6A DE102004028530B4 (de) 2004-06-11 2004-06-11 Verfahren zum Betrieb einer Kraftwerksanlage
DE102004028530.6 2004-06-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/635,632 Continuation US7566992B2 (en) 2004-06-11 2006-12-08 Method and apparatus for operation of a power station

Publications (1)

Publication Number Publication Date
WO2005122389A1 true WO2005122389A1 (de) 2005-12-22

Family

ID=34978630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/052666 WO2005122389A1 (de) 2004-06-11 2005-06-09 Verfahren zum betrieb einer kraftwerksanlage

Country Status (3)

Country Link
US (1) US7566992B2 (de)
DE (1) DE102004028530B4 (de)
WO (1) WO2005122389A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2489840A1 (de) * 2010-12-08 2012-08-22 Ago Ag Energie + Anlagen Energiespeicher und Verfahren zu dessen Betrieb
WO2013124504A1 (es) * 2012-02-23 2013-08-29 Prextor Systems, S.L. Tecnología caes de ciclo combinado (ccc)
FR3034813A1 (fr) * 2015-04-13 2016-10-14 Ifp Energies Now Systeme et procede de stockage et de recuperation d'energie par air comprime avec chauffage a volume constant
CN107534315A (zh) * 2015-05-18 2018-01-02 株式会社神户制钢所 压缩空气储能发电方法及压缩空气储能发电装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267443B2 (en) 2009-05-08 2016-02-23 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9354618B2 (en) 2009-05-08 2016-05-31 Gas Turbine Efficiency Sweden Ab Automated tuning of multiple fuel gas turbine combustion systems
US8437941B2 (en) 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9671797B2 (en) 2009-05-08 2017-06-06 Gas Turbine Efficiency Sweden Ab Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications
US8146354B2 (en) 2009-06-29 2012-04-03 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8196395B2 (en) 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8247915B2 (en) * 2010-03-24 2012-08-21 Lightsail Energy, Inc. Energy storage system utilizing compressed gas
US8436489B2 (en) * 2009-06-29 2013-05-07 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
GB201018227D0 (en) * 2010-10-28 2010-12-15 Doosan Power Systems Ltd Control system and method for power plant
DE102013206992A1 (de) * 2013-04-18 2014-10-23 Siemens Aktiengesellschaft Bereitstellung negativer Regelleistung durch eine Gasturbine
US20140368045A1 (en) * 2013-06-17 2014-12-18 Ronald David Conry Power Management and Energy Storage Method
CN103775207B (zh) * 2014-01-29 2016-06-08 华北电力大学(保定) 一种稳定运行的绝热压缩空气蓄能发电方法
JP6614878B2 (ja) * 2014-12-25 2019-12-04 株式会社神戸製鋼所 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
FI128013B (en) * 2015-11-18 2019-07-31 Finno Energy Oy SYSTEM AND METHOD FOR PRODUCTION OF POWER
US11721980B2 (en) 2021-11-15 2023-08-08 Kalindha Rashmi LLC Power generation system employing power amplifying thermo-mechanical inverter technology

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE956247C (de) * 1944-05-27 1957-01-17 Siemens Ag Anordnung zur selbsttaetigen gleichmaessigen bzw. verhaeltnisgleichen Strom- und Lastverteilung auf mehrere zueinander parallel arbeitende Asynchronmaschinen mit Drehstromerregermaschinen
DE2415269A1 (de) * 1974-03-29 1975-10-16 Kraftanlagen Ag Antrieb grosser arbeitsmaschinen
DE4213023A1 (de) * 1992-04-21 1993-10-28 Asea Brown Boveri Verfahren zum Betrieb eines Gasturbogruppe

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593202A (en) * 1981-05-06 1986-06-03 Dipac Associates Combination of supercritical wet combustion and compressed air energy storage
US5039933A (en) * 1990-09-10 1991-08-13 John Dong Two-sided induction generator with both stator and rotor windings connected in parallel
US5685155A (en) * 1993-12-09 1997-11-11 Brown; Charles V. Method for energy conversion
JP2611185B2 (ja) * 1994-09-20 1997-05-21 佐賀大学長 エネルギー変換装置
US6134124A (en) * 1999-05-12 2000-10-17 Abb Power T&D Company Inc. Universal distributed-resource interface
WO2003030341A2 (en) * 2001-10-01 2003-04-10 Colley Bruce H Induction generator power supply
US6745569B2 (en) * 2002-01-11 2004-06-08 Alstom Technology Ltd Power generation plant with compressed air energy system
WO2003106828A2 (en) * 2002-06-18 2003-12-24 Ingersoll-Rand Energy Systems Corporation Microturbine engine system
US6751959B1 (en) * 2002-12-09 2004-06-22 Tennessee Valley Authority Simple and compact low-temperature power cycle
US6954004B2 (en) * 2003-01-23 2005-10-11 Spellman High Voltage Electronics Corporation Doubly fed induction machine
US6955050B2 (en) * 2003-12-16 2005-10-18 Active Power, Inc. Thermal storage unit and methods for using the same to heat a fluid
US7038330B2 (en) * 2004-04-23 2006-05-02 Rwe Piller Gmbh Protection for wind power station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE956247C (de) * 1944-05-27 1957-01-17 Siemens Ag Anordnung zur selbsttaetigen gleichmaessigen bzw. verhaeltnisgleichen Strom- und Lastverteilung auf mehrere zueinander parallel arbeitende Asynchronmaschinen mit Drehstromerregermaschinen
DE2415269A1 (de) * 1974-03-29 1975-10-16 Kraftanlagen Ag Antrieb grosser arbeitsmaschinen
DE4213023A1 (de) * 1992-04-21 1993-10-28 Asea Brown Boveri Verfahren zum Betrieb eines Gasturbogruppe

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2489840A1 (de) * 2010-12-08 2012-08-22 Ago Ag Energie + Anlagen Energiespeicher und Verfahren zu dessen Betrieb
WO2013124504A1 (es) * 2012-02-23 2013-08-29 Prextor Systems, S.L. Tecnología caes de ciclo combinado (ccc)
US9816437B2 (en) 2012-02-23 2017-11-14 Prextor Systems, S.L. Combined cycle CAES technology (CCC)
FR3034813A1 (fr) * 2015-04-13 2016-10-14 Ifp Energies Now Systeme et procede de stockage et de recuperation d'energie par air comprime avec chauffage a volume constant
WO2016166095A1 (fr) * 2015-04-13 2016-10-20 IFP Energies Nouvelles Systeme et procede de stockage et de recuperation d'energie par air comprime avec chauffage a volume constant
US10480409B2 (en) 2015-04-13 2019-11-19 IFP Energies Nouvelles Compressed air energy storage and recovery system and method with constant volume heating
CN107534315A (zh) * 2015-05-18 2018-01-02 株式会社神户制钢所 压缩空气储能发电方法及压缩空气储能发电装置
CN107534315B (zh) * 2015-05-18 2020-12-11 株式会社神户制钢所 压缩空气储能发电方法及压缩空气储能发电装置

Also Published As

Publication number Publication date
US7566992B2 (en) 2009-07-28
DE102004028530B4 (de) 2015-05-21
DE102004028530A1 (de) 2006-01-05
US20070255459A1 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
WO2005122389A1 (de) Verfahren zum betrieb einer kraftwerksanlage
EP1917428B1 (de) Verfahren zum betrieb einer kraftwerksanlage mit einem druckspeicher
EP2115274B1 (de) Verfahren zum betrieb einer kraftwerksanlage
DE112004001587B4 (de) Kraftwerksanlage und Verfahren zum Betrieb
EP2071157B1 (de) Verfahren zur Regelung einer Gasturbine in einem Kraftwerk
EP1828549B1 (de) Kraftwerksanlage
EP2122129B1 (de) Kraftwerksanlage sowie verfahren zu deren betrieb
EP2480762B1 (de) Kraftwerksanlage mit Überlast-Regelventil
DE102007007913A1 (de) Verfahren zum Betrieb einer Kraftwerksanlage
EP3004591A2 (de) Wärmepumpe mit einer in einem kreislauf geschalteten ersten thermischen fluidenergie-maschine und zweiten thermischen fluidenergie-maschine
DE102004007482A1 (de) Kraftwerksanlage
EP1795725A1 (de) Gasturbine mit Kühlluftkühlung
DE10236324A1 (de) Verfahren zum Kühlen von Turbinenschaufeln
WO2006084809A1 (de) Verfahren zum start einer druckspeicheranlage, und druckspeicheranlage
DE10236326A1 (de) Gasspeicherkraftanlage
EP1753940A1 (de) Verfahren zum betrieb einer kraftwerksanlage, und kraftwerksanlage
AT12639U1 (de) Elektrisches Kraftwerk
DE102012015104A1 (de) Fahrzeugtriebwerk, Fahrzeug mit diesem Fahrzeugtriebwerk und Verfahren zum Betrieb dieses Fahrzeugtriebswerkes
WO2004005685A1 (de) Verfahren zum betrieb einer kraftspeicher-krafterzeugungsanlage
DE2044644C3 (de) Gasturbinenanlage zum Antrieb eines Hochofenwindverdichters
DE102004034657A1 (de) Kraftwerksanlage
WO2010018194A2 (de) Kraftwerksanlage zum wahlweisen betrieb in stromnetzen mit unterschiedlicher netzfrequenz
EP2805026B1 (de) Turbinensystem mit drei an einem zentralen getriebe angekoppelten turbinen und verfahren zum betreiben einer arbeitsmaschine
DE967201C (de) Anlage zur Erzeugung von Druckluft
WO2004006409A2 (de) Verfahren zur leistungsanpassung in einem elektrizitätsnetz

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11635632

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11635632

Country of ref document: US