WO2006000600A1 - Universal turbine for the collection or axial generation of kinetic energy in fluids - Google Patents

Universal turbine for the collection or axial generation of kinetic energy in fluids Download PDF

Info

Publication number
WO2006000600A1
WO2006000600A1 PCT/ES2005/000301 ES2005000301W WO2006000600A1 WO 2006000600 A1 WO2006000600 A1 WO 2006000600A1 ES 2005000301 W ES2005000301 W ES 2005000301W WO 2006000600 A1 WO2006000600 A1 WO 2006000600A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
blades
turbine
fluids
kinetic energy
Prior art date
Application number
PCT/ES2005/000301
Other languages
Spanish (es)
French (fr)
Inventor
Manuel Torres Olivares
Original Assignee
Manuel Torres Olivares
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manuel Torres Olivares filed Critical Manuel Torres Olivares
Publication of WO2006000600A1 publication Critical patent/WO2006000600A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/04Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/023Blade-carrying members, e.g. rotors of the screw type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention is framed between the systems for collecting kinetic energy from fluids for conversion into mechanical energy, or between those systems whose function is the inverse process, generating kinetic energy in fluids from the use of mechanical energy. Using in both cases rotation mechanisms with axial fluid treatment.
  • the solidity of the rotor in all these systems is a factor that: either is neglected and underutilized for mechanical and structural reasons or is oversized and distorting due to inapplication of the physical principles of aerodynamics and hydrodynamics.
  • the first group is the majority and is distinguished because the ratio or percentage of rotor strength is less than one unit or 100%, respectively, according to the criteria used to express the relationship, although this percentage varies depending on the type of fluid because of the differences in density between liquids and gases and the diameter of the rotor.
  • the propeller propellers of the boats have a percentage of solidity that can be between 25% and 50% while with the wind turbines the percentage of the surface of the blades with respect to the area swept by these in the rotor to which they belong It usually varies between 3% and 5%.
  • the rotors of the gas turbines for electric generation, the turbines used in jet propulsion engines and some devices that have not achieved a reasonable degree of viability are included; from the well-known Leonardo da Vinci autogyro to US patents 1504259; US 2320451, US 1814175 inspired by the same idea, or the patent mentioned above US 3441088.
  • the excess of solidity ratio on the unit implies a proportional reduction of the power already delivered or received by the rotor, power that is lost by the resistance exerted by the flow itself on the rotor when processed for a second or even more times.
  • Another consideration that is related to the previous one is the connection between the type of current (laminar or turbulent), and the performance of the rotor in said current, specifically, at the ends of the blades or blades furthest from the center of the rotor.
  • the rotor blades or propeller be in turn jointly connected to the conduit with which it will rotate together to prevent a space or light between turbulence and reflux that results in turbulence or reflux, that is, inversion of the direction of flow Effect suffered by conventional systems of confined rotors, which must leave a safety space so that the blades or blades can rotate without damage to the casing.
  • the following consideration is a simple reminder that the power of a machine, delivering or capturing energy from a fluid, is not measured by the way of performing the work, for example, with more or less torque or more or less speed of rotation, but by the speed in which said work is carried out, that is, by the actual flow of processed fluid.
  • the turbine described below as a general model is composed of: - A rotor, which comprises a rigid tubular structure, which can optionally be cylindrical, conical, or toroidal, in which the ends corresponding to their respective bases are open to allow the axial inlet and outlet of the flow.
  • the horizontal, vertical, or oblique working position of the rotor's geometric axis of rotation will depend on whether the direction of the flow is in turn, horizontal, vertical or oblique respectively.
  • helical blades are placed equal to each other with a laminar profile.
  • the blades are joined by one of its ends to the inner face of the tubular surface so that its position determines the angle of passage of the propeller.
  • At these points of attachment is located what forms the root of the blade (the opposite of what happens in traditional systems where the root is in the axis that is located in the center of the rotor).
  • the other end can go together in the geometric center of rotation to the other blades to achieve greater robustness, but without a mechanical drive shaft in that center.
  • This end of the blade is connected, when opting for a toroidal structure, to the outer face of the inner tube of the toroid, resulting in a ring-shaped annular space.
  • the surface projected by the blades must be in all options equal to the area of their sweeping in their rotation movement, that is to say the ratio or percentage of solidity of the rotor has to be equal to one or one hundred percent respectively. This percentage must be kept constant, for which four parameters can be combined, as a convenience, according to the needs: rotor diameter, pitch angle of the blades, number of blades, and rotor depth, the latter concept that coincides with the height in the cylindrical coordinates.
  • the equality of the blades between them affects all its dimensions, both its radial length, its depth, the thickness or the angle of passage that describes its roots.
  • the leading edges and trailing edges of all the blades are aligned in the same rotation planes of the inlet and outlet rotor respectively.
  • the equidistant angular position between the blades ensures that from a frontal perspective, the leading edge of a blade coincides with the projection of the leading edge of the leading blade and thus concatenated to the set of blades that make up the rotor.
  • the propeller formed by the root of the blades must be regular, that is, the pitch angle has of being constant along the conduit from the leading edge to the trailing edge.
  • the propeller For rotors in which it is optionally decided that the tubular duct does not maintain a constant sweeping area, the propeller must have a variable, increasing or decreasing pitch angle as appropriate, proportional and inverse to the evolution of the duct, to maintain the Same processing capacity of the fluid flow at the rotor inlet and outlet.
  • the helicoids formed by the blades are surfaces generated from straight lines that move with two uniform and simultaneous movements: one of translation continuously supported by the geometric axis of the circular duct and another of rotation, continually resting on the helix curve.
  • the lines correspond to the lines of the blades that radially join the periphery of the conduit with its geometric center, within the same transverse or rotation plane, said lines coinciding with what are the respective leading edges of each of You praise them.
  • the helical shape of the blades has as a result, that the strings (lines that connect the leading edge with the trailing edge) of the blade have a different length depending on the radial point taken as a reference, being maximum at the root of the blade or end located on the inner periphery of the duct and its minimum length being in the center or geometric axis of rotation. Consequence of this are blades with a twisted surface in which the angle of draft, formed by the rope with respect to the plane of rotation, varies progressively from least to greatest from the most peripheral profile of the blade to the profile closest to the center of the rotor, where ideally it is ninety degrees.
  • This progression regardless of the draft angle optionally chosen for the design of the blade profile at the end in contact with the periphery, must be constant and proportional to the radial length that separates it from the center.
  • torsion is established with the same criterion of progression in the draft angle, taking as reference the ninety degrees that it must have in the theoretical center of rotation, although the maximum angle It would be the result at the radial distance where the internal tubular element of the toroid is located, which is where the cut is made that interrupts the progression.
  • the laminar shape of the blades means that their two faces are longitudinally parallel and there is a small separation between them.
  • a thinness that will depend on the type of materials used (metal, plastic, fibers, composites ...), the diameter of the rotor and the purpose to be given, but in principle, having its root on the periphery of the rotor and having the possibility of being united in the center to the other praises their resistance is favorably increased with respect to the traditional systems that have their roots in the axis of rotation as the only point of attachment.
  • the laminar form together with the elimination of all the central elements of the traditional systems axis, core, cap, shaft supports and longitudinal sections of the blades or blades with greater thickness in the center than at the ends
  • the union of the root of the blades to the tubular conduit will be carried out by the most appropriate technique among those existing depending on the type of materials used, the size of the different components and the destination for which it is projected, so it can, without limitation use a system of casting, welding, anchoring by recessing, by screws or rivets. In any case, the fixation must ensure that between the root of the blade and the inner surface of the tube it does not leave a free space or light where the fluid can circulate, resulting in a tight connection.
  • the tubular structure of the rotor must be rigid to withstand the radial, axial or tangential loads received or transmitted by / to the blades without deformation, withstanding the tensile and torsional forces in the perimeter transmission system, as well as the gravitational forces and those generated by the pressure exerted by the fixing mechanism to the housing.
  • This rigidity is achieved, in conjunction with the blades themselves, increasing proportionally to the supported forces, the thickness of the perimeter surface of the duct with solid material or by lattice paths where they are joined by crossed ribs in a space hollow and closed the perimeters of two concentric circular ducts of different diameter.
  • the rotor on its outer face houses the seats where the bearings that attach it to the housing or the treads where the freewheels are pressed are fitted if this is the chosen fixing procedure; In addition to the countries that correspond to it depending on the perimeter transmission system chosen.
  • Said parts and without limitation with respect to the forms of transmission can be: an enveloping ring with a surface that allows adequate contact with a friction wheel, receiver or transmitter of the rotational force; a toothed crown adapted to the shape and placement of the pinion receiver or transmitter of the force of rotation in the transmission by gears; a band or groove that allows the rotor to act as a pulley when it is a belt drive; or serve as a housing for permanent magnets in the case of an electromagnetic transmission system, in which the turbine rotor would simultaneously act as the rotor of a multipolar generator.
  • the housing is another of the turbine components whose shape is conditioned to the type of fluid to be processed and the purpose pursued by it.
  • the housing is internally bearing bearings interposed between it and the rotor, or optionally a set of freewheels that contact the external tubular surface of the rotor around its perimeter fulfill the same task.
  • an appropriate design of the housing together with a suitable turbine rotation system can cause it to be transformed into a good orientation instrument, for example, at the helm of a ship or on a wind vane with which a self-orientation is achieved. precise and rapid turbine in the direction of the wind, as can be seen in the specific embodiment of this invention.
  • the following are included: - Place the supports and mooring elements of the turbine to the place where it works, either a fixed element (eg tower, platform, wall, etc.) or an element mobile (Ex: aircraft fuselage, boat hull, etc.) - Protect the rotor and transmission elements from external agents other than the fluid itself, such as rain, snow, dust, etc.
  • the concrete structure of the carcass it will depend, as is the case with the rotor, on the materials used, the size of the turbine, the number of functions to be fulfilled, as well as the relevance granted to some with respect to others. In any case, the current development of the technique allows multiple possibilities for its execution.
  • the characteristics of the turbine object of the invention are set out in a generic manner, an embodiment with which some of the technical problems raised in the treatment of fluids and the solutions that with the present invention can be understood can be explained in detail below. They offer showing that the recommended turbine is more advantageous than the existing ones.
  • the concrete application consists of a wind turbine that uses the turbine object of the invention to transform the kinetic energy of the wind into rotational mechanical energy and this in turn into electrical energy.
  • This wind turbine is not included in the groups that result from the different classifications made; either depending on the layout of the axis of rotor: horizontal or vertical, since it lacks the axis itself; or the situation of the rotor with respect to the tower: windward or leeward, since it is neither in front nor behind but above the tower.
  • the placement of the turbine on the tower with the windward rotor inlet and leeward outlet has the following advantages over the conventional wind turbine: - While in conventional ones, the center of gravity of the rotor is outside the tower, which obliges to compensate with the weight of the gondola with a position that blocks the axial direction of the flow, or an oversize of bearings and bearings, in the proposed wind turbine the center of gravity of the rotor and of the entire turbine remain within the tower of lift. - The position of the rotor on the tower eliminates the shadow effect of the tower produced in the wind turbines compared, which gives a more regular turning movement, without power jumps.
  • the passive self-orientation system is based on the conicity resulting from the design of the turbine housing in combination with the eccentric position it occupies with respect to the turning point in the tower, to which it is connected by a turntable This is achieved by having the carcass frontally have a greater wind contact area in the back than in the previous one and laterally the leeward area is larger than the windward area. Any change in the wind direction will automatically produce, by balancing pressures, a reorientation of the turbine to the new direction. For cases in which the chosen transmission system produces torque, said effect would be annulled by increasing asymmetrically and in an amount proportional to said force, the rear front area of the housing on the opposite side to which the direction of rotation or torque.
  • the perimeter transmission system allows wind turbines of a certain size to dispense with the multiplier box or simplify it considerably. Due to the differential relationship between the diameter of the rotor transmitting element and the diameter of the receiving element, the direct transfer of rotational energy has in itself a multiplier effect, regardless of the option used: gears, pulleys, friction and electromagnetism. In addition, except for this last option, the twisting problems of the cables are eliminated. power during reorientation processes because the wind turbine is in a fixed position.
  • - Figure 1 shows in perspective a tubular rotor with a trunk-conical shape with four blades, variable pitch angle, and a solidity of one hundred percent.
  • - Figure 2 shows in perspective a five-blade toroidal cylindrical tubular rotor, of constant pitch angle and solidity of one hundred percent.
  • - Figure 3 shows a front view of the wind turbine and lift tower, highlighting the rolling elements.
  • - Figure 4 is a side view of the wind turbine and lift tower, highlighting rolling and rotating elements.
  • - Figure 5 shows a three-dimensional perspective of the wind turbine with sectioned housing and rotor.
  • - Figure 6 shows in detail a three-dimensional perspective of the rotating platform of the wind turbine installed in the tower.
  • the wind turbine comprises a functional assembly that is rotatably self-orientated in the upper part of a support column (1), conical with the top part finished in the form of a cup (2).
  • the functional set consists of the turbine that is the object of the invention (3) formed by a rotor (4) and a housing (5) that surrounds it.
  • the turbine is attached to the tower (1) through a rotating platform (6) that is fixedly attached to the housing.
  • the rotor (4) with the tubular element with internal lattice structure (7) has an internal face of cylindrical shape and in its external face a central cylindrical part (8) of larger diameter is combined with two equal conical sections (9) that join the cylindrical part with the anterior and posterior ends of smaller diameter.
  • the conical sections act as tread or braking bands on which press the freewheels (10) or the rotor brakes (38) respectively.
  • the freewheels (10) are formed by eight sets of pairs of wheels, distributed equally between the two treads.
  • the active element or transmission motor consisting of a perimeter groove (11) that acts as a pulley to accommodate the transmitter belt (12) is installed in solidarity with the rotor.
  • the blades (40) are coupled, with a constant pitch angle of forty-five degrees and with a draft angle that increases from the root of the blade, where it is equal to the pitch angle, to the geometric center of rotation where it is approximately ninety degrees.
  • the depth or depth of the blades is equal to its radial length.
  • the housing (5) whose body also has a lattice structure (7), forms a block in which they can be distinguished: in front an ovoid annular collecting area (13) flared, smooth surface and with a low and eccentric position with respect to the center of the rotor, in its back a diffuser area (14) of similar characteristics to the previous one but with an inverted position, and a third area (15) in which the most advanced part to windward is joined externally with the most delayed part to leeward forming a conicity that is more pronounced in the back at its medium and low height than in the high.
  • the housing (5) houses inside the free wheels (10) in their respective supports (16), the mechanical brakes of the rotor (38) and the anchorage to the rotating platform; and outside, the lightning rod (17) located at the highest rear part of the housing and the vane (18) that wedge-shaped joins the upper part of the housing, at the height of the center of the tower, with the "Lightning rod.
  • the rotating platform (6) is embedded internally and externally in the upper part of the tower in the shape of a cup (2) joining it by several sets of wheels (19) arranged in a circular way in three different rolling planes.
  • the wheels are joined together to the platform by a bar frame (20) On the same platform and integral to it, coinciding with the center of the tower, the converter-multiplier box (21) is fixed.
  • a pinion of greater diameter (22) is integral with its horizontal axis (23) at one of its ends;
  • the shaft is fixed by a bearing (39) and its respective bearing to one of the side walls of the box. Attached to the horizontal axis (23) and integral with it, it is located on the outside of the box, the polein (24) receiving the force of the transmitter belt (12).
  • the shaft (23) that crosses the pole is fixed at its other end to the housing by means of a bearing and bearing.
  • the other conical pinion (25) of smaller diameter meshes with the previous pinion (22) in the upper part of the housing joining in solidarity with the fast axis (26) of vertical position.
  • This axis is fixed at its upper end to the upper wall of the box by means of a bearing and bearing (39), as is the case in the lower wall of the box (39).
  • the inside of the box contains lubricant (27).
  • the rapid axis (26) descends vertically until it is telescopically crimped by a grooved contour on a hollow shaft (29) at the other end of which joins a cardan mechanism (30), from which a third rigidly fixed vertical axis (31) starts to the tower by means of an anti-oscillation support (32).
  • Said last axis transmits its rotation movement to a conventional generator installed at the base of the tower, in which, due to its standard character, there is no more detail.
  • the locking system of the self-orientation mechanism of the turbine consisting of chocks that are placed between the wheels of the turntable and the tower on which they rotate; as well as the brushes (33) that make the connection between the wiring (34) that comes down from the lightning rod (17) through the housing and a friction ring (36) installed in the tower that is the one that would communicate the electric shock with the conduction that along the tower descends to land.
  • the transmitter belt (12) is tensioned by a pole (37) which, interposed in its trajectory in the lower part of the rotor, presses on it in a regulated and constant manner.
  • a pole (37) which, interposed in its trajectory in the lower part of the rotor, presses on it in a regulated and constant manner.
  • the wind turbine depending on its size can be carried out in modules for easy transport and assembly, combining materials that give the whole lightness and resistance. Size that will also condition the forms of access for maintenance or repairs.
  • the industrial uses to which this turbine can be used can be classified into two groups, those aimed at capturing kinetic energy from fluids and those intended to generate or deliver kinetic energy.
  • the first group the following could be mentioned: - Wind turbines, aerobombas, or any other application derived from the capture of kinetic energy from the wind, such as through cyclonic plants in their various possibilities.
  • - In the extraction of kinetic energy from liquids as a hydraulic turbine in waterfalls or sea currents.
  • - In the extraction of kinetic energy from the thermal expansion of gases such as gas turbines, steam turbines, thermal, nuclear or other power plants.
  • the second group the following can be listed in a generic way: - Fans, compressors, extractors. - Air thrusters for aircraft of any type. - Hydraulic thrusters in boats of any nature.

Abstract

The invention relates to a universal turbine for the collection or axial generation of kinetic energy in fluids. The invention comprises a tubular-type rotor in which identically-dimensioned helical blades are fixed at equidistant angular positions, with a torsion therein resulting from the combined radial differences in the blade angle with the deviation from the pitch angle thereof and with a projected area, said assembly conferring total solidity on the rotor. The invention also comprises a frame which surrounds the rotor, such as to maintain same in a determined position, while facilitating the treatment of the fluid with a peripheral transmission mechanism, said frame being fixed to the support element by means of supports. The invention is suitable for a wide range of applications including for the construction of an aerogenerator.

Description

DESCRIPCIÓNDESCRIPTION
a.- Titulo. Turbina Universal de captación o generación axial de energía cinética en fluidos.a.- Title. Universal turbine for the acquisition or axial generation of kinetic energy in fluids.
b.- Sector de Ia técnica. La presente invención se encuadra entre los sistemas de captación de energía cinética de fluidos para su conversión en energía mecánica, o bien, entre aquellos sistemas cuya función es el proceso inverso, generando energía cinética en fluidos a partir de la utilización de energía mecánica. Usándose en ambos casos mecanismos de rotación con tratamiento axial del fluido.b.- Technical sector. The present invention is framed between the systems for collecting kinetic energy from fluids for conversion into mechanical energy, or between those systems whose function is the inverse process, generating kinetic energy in fluids from the use of mechanical energy. Using in both cases rotation mechanisms with axial fluid treatment.
c- Estado de la técnica. La practica totalidad de las maquinas que actualmente existen para desarrollar las funciones mencionadas están formadas básicamente, por hélices de una o varias palas o alabes de diseño o disposición helicoidal fijados a un eje motor en torno al cual giran, y a través de las cuales circula axialmente el flujo. Esto puede apreciarse en nuestro entorno con independencia de que el fluido procesado sea líquido o gas. Atendiendo a la función activa de la maquina podrían enumerarse multitud de ejemplos; los propulsores de hélice de los barcos, los ventiladores y extractores de aire, los rotores de los helicópteros, las hélices de las aeronaves o las turbinas de reacción con cascadas de alabes. Atendiendo a su función pasiva, o receptora de energía, podemos fijarnos en: las turbinas de hélice o tipo Kaplan de las centrales hidroeléctricas y en todos los aerorotores de eje horizontal que han existido hasta nuestros días; desde los tradicionales molinos de viento y aerobombas a los modernos aerogeneradores de palas con perfiles aerodinámicos. La característica mencionada de transmitir la fuerza a través de un eje tiene lugar indistintamente a que el propio rotor trabaje de forma abierta en la vena del fluido, o que lo haya confinado en el interior de un conducto, pero separado de este. No obstante, dentro del estado de la técnica y a pesar de su escasa presencia, merecen una mención especial aquellos mecanismos que como ocurre en las patentes US 3441088 y US 5765990 son excepción, dado que la transmisión no se realiza a través de un eje situado en el centro del rotor, sino de forma perimetral, para lo cual las palas o alabes que forman la hélice están entubadas, es decir, unidas solidariamente a un tubo o aro envolvente con el que giran, y no meramente confinadas en dicho envolvente. La otra característica común a casi todos estos sistemas hace referencia a la solidez del rotor. Este concepto es usado aquí, al igual que se acepta de forma generalizada, como la relación existente entre la superficie proyectada de las alabes o palas y el área descrita por la mismas en su movimiento de rotación. Pues bien, según nuestra opinión, la solidez del rotor en todos estos sistemas es un factor que: o bien es desatendido e infrautilizado por razones mecánicas y estructurales o bien es sobredimensionado y distorsionador por inaplicación de los principios físicos de aerodinámica e hidrodinámica. El primer grupo es el mayoritario y se distingue porque el ratio o porcentaje de solidez del rotor es inferior a la unidad o al 100%, respectivamente, según el criterio utilizado para expresar la relación, si bien este porcentaje varia en función del tipo de fluido a causa de las diferencias de densidad entre líquidos y gases y del diámetro del rotor. Como simple referencia las hélices propulsoras de las embarcaciones tienen un porcentaje de solidez que puede estar entre el 25% y el 50% mientras que con los aerogeneradores el porcentaje de la superficie de las palas respecto al área barrida por estas en el rotor al que pertenecen suele variar entre el 3% y el 5%. En el grupo donde el ratio de solidez es superior a la unidad se incluyen los rotores de las turbinas de gas para generación eléctrica, las turbinas utilizadas en motores de propulsión aérea por reacción y algunos ingenios que no han logrado un razonable grado de viabilidad; desde el conocido autogiro de Leonardo da Vinci a las patentes US 1504259; US 2320451 , US 1814175 inspiradas en la misma idea, o la patente mencionada anteriormente US 3441088. En resumen podría decirse que por un lado el estado actual de la técnica en esta materia y de forma predominante es resultado de un sometimiento o subordinación de la aerodinámica e hidrodinámica a la concepción mecánica, preconcebida y condicionadora, de la transmisión por eje. Y por otro lado, cuando la transmisión mecánica no se ha realizado a través de un eje en el rotor, lo que ha faltado ha sido una aplicación correcta de los principios de la mecánica de fluidos. Dando lugar a unos mecanismos cuyo diseño genera importantes ineficiencias y problemas de diferente naturaleza. Algunos de los cuales quedan expuestos en el fundamento y desarrollo del invento que se presenta como solución alternativa.c- State of the art. Almost all of the machines that currently exist to perform the aforementioned functions are basically formed by propellers of one or more blades or blades of design or helical arrangement fixed to a motor axis around which they rotate, and through which it circulates axially the flow. This can be seen in our environment regardless of whether the processed fluid is liquid or gas. According to the active function of the machine, many examples could be listed; ship propeller thrusters, fans and air extractors, helicopter rotors, aircraft propellers or jet turbines with blade cascades. In view of its passive function, or energy receptor, we can look at: the turbine turbines or Kaplan type of hydroelectric power plants and in all the horizontal axis airplanes that have existed until today; from the traditional windmills and aerobombas to the modern wind turbines of blades with aerodynamic profiles. The aforementioned characteristic of transmitting the force through an axis occurs interchangeably with the rotor itself working openly in the fluid vein, or having confined it inside a duct, but separated from it. However, within the state of the art and despite its low presence, those mechanisms that, as in the case of US 3441088 and US 5765990 are exceptions, since the transmission is not carried out through an axis located in the center of the rotor, but perimetrically, for which the blades or blades that form the propeller are piped, that is, united in solidarity with a tube or hoop with which they rotate, and not merely confined in said envelope. The other characteristic common to almost all these systems refers to the solidity of the rotor. This concept is used here, as is widely accepted, as the relationship between the projected surface of the blades or blades and the area described by them in their rotational movement. Well, in our opinion, the solidity of the rotor in all these systems is a factor that: either is neglected and underutilized for mechanical and structural reasons or is oversized and distorting due to inapplication of the physical principles of aerodynamics and hydrodynamics. The first group is the majority and is distinguished because the ratio or percentage of rotor strength is less than one unit or 100%, respectively, according to the criteria used to express the relationship, although this percentage varies depending on the type of fluid because of the differences in density between liquids and gases and the diameter of the rotor. As a simple reference the propeller propellers of the boats have a percentage of solidity that can be between 25% and 50% while with the wind turbines the percentage of the surface of the blades with respect to the area swept by these in the rotor to which they belong It usually varies between 3% and 5%. In the group where the strength ratio is higher than the unit, the rotors of the gas turbines for electric generation, the turbines used in jet propulsion engines and some devices that have not achieved a reasonable degree of viability are included; from the well-known Leonardo da Vinci autogyro to US patents 1504259; US 2320451, US 1814175 inspired by the same idea, or the patent mentioned above US 3441088. In summary it could be said that on the one hand the current state of the art in this matter and predominantly is the result of a subjugation or subordination of aerodynamics and hydrodynamics to the mechanical, preconceived and conditioning conception of axle transmission. And on the other hand, when the mechanical transmission has not been carried out through an axis in the rotor, what has been missing has been a correct application of the principles of fluid mechanics. Giving rise to mechanisms whose design generates important inefficiencies and problems of different nature. Some of which are exposed in the foundation and development of the invention that is presented as an alternative solution.
d.-Explicación. Los principios teóricos en los que se basa el invento y a los que nos remitimos para posibles aclaraciones son los propios de la física en el campo de la dinámica. De forma general conforme a las tres leyes fundamentales establecidas por Newton, y mas concretamente, respecto a la dinámica de fluidos en las aportaciones en esta materia de autores como Bernouilli, D'alembert, Reynolds o Betz. No obstante creemos conveniente exponer algunas consideraciones que justifican las características del presente invento: 1.- Desde el punto de vista de la energía cinética, ya sea captada o generada, todos los fluidos tienen en común que su potencia es una función de: la densidad, el área que intercepta o al que se somete el flujo, o la velocidad instantánea del mismo. Por lo cual es razonable que el diseño geométrico del mecanismo receptor o generador de esa energía sea bastante similar para todos los fluidos y por supuesto, comprendiendo, que la diferente naturaleza de los distintos fluidos y la función concreta que se busque conseguir con ellos exige algunas adaptaciones en las formas o añadir componentes complementarios sobre los elementos y configuración esenciales. 2.- Si la potencia del flujo para igual densidad y velocidad esta en función del área interceptada o barrida por el rotor, es evidente que, por una parte, la potencia crecerá según aumente dicho área, y por otra, que la potencia máxima extraíble o entregable tendrá lugar cuando el rotor intercepte o cubra plenamente el cien por cien del área en cuestión, y no simplemente lo barra. Entendiendo este porcentaje, no como una garantía de consecución automática por si mismo y de manera aislada, sino como una condición sin la cual el óptimo no seria posible. Este postulado, que teóricamente es irrefutable, ha sido aparcado u olvidado y a menudo contradicho por una extrapolación equivocada de la teoría del disco actuador de Betz. Efectivamente, este autor formuló su teoría sobre una idealización de un modelo de turbina con rotor bidimensional, lo que hace imposible su traslación literal a la realidad dado que cualquier rotor precisa de un diseño, espacialmente, de geometría tridimensional para poder transformar energía cinética en rotacional o viceversa. Un hipotético rotor bidimensional, sea cual sea su solidez, simplemente bloquearía el flujo, no pudiendo entregar o captar nada de energía a/de la vena de fluido. Lo que no ocurre en los rotores tridimensionales, aunque tenga una solidez del cien por cien como puede comprobarse en el presente invento. La afirmación de que la solidez del rotor ha de ser del cien por cien se justifica por dos razones: Una solidez menor implica no alcanzar el óptimo teórico, no solo porque se desaprovecha la parte de la vena del fluido que no contacta con las palas o alabes, sino que además, por cubrir solo parcialmente el área que barren se producen grandes perturbaciones en la corriente que restan potencia. Esto es así porque el flujo que se cuela por los espacios no cubiertos tiende a seguir la dirección que trae, paralela al eje de rotación, mientras que la parte de flujo interceptado por las palas en su movimiento de rotación sufre un cambio oblicuo en la dirección. Consecuencia natural de esta intersección de flujos de diferentes direcciones son las turbulencias que se aprecian en la estela post rotor. La segunda razón que justifica el que la solidez del rotor ha de ser necesariamente del cien por cien se refiere a su exigencia como limite porcentual máximo. Un rotor, con independencia que su función sea captación o entrega de energía de/a un fluido, con un ratio de solidez superior a la unidad supondría que parte de la superficie del rotor quedaría solapada por el mismo, es decir, tendría un área de contacto teórico con el flujo mayor al área de barrido. Este fenómeno del solapamiento en el argot marino de las embarcaciones a vela produce el efecto que se conoce con el término desventar. Ahora bien, al contrario de lo que ocurre en esta alusión aclaratoria, donde el solapamiento de velamen, aun siendo inútil, no suele restar potencia, en el caso del rotor, el exceso de ratio de solidez sobre la unidad supone una minoración proporcional de la potencia ya entregada o recibida por el rotor, potencia que se pierde por la resistencia que ejerce el propio flujo en el rotor al ser procesado por segunda o incluso más veces. Otra consideración que tiene relación con la anterior es la conexión existente entre el tipo de corriente (laminar o turbulenta), y la actuación del rotor en dicha corriente, en concreto, en los extremos de las alabes o palas mas alejadas del centro del rotor. El principio de que el mejor aprovechamiento de potencia por un rotor tiene lugar cuando el fluido procesado tiene carácter laminar y las líneas de corriente son paralelas y, perpendiculares al plano de rotación del rotor; es correcto, sin embargo, la única forma de aplicar íntegramente esta norma en la realidad es confinando el fluido, a su paso por el rotor, en un conducto tubular, de tal modo que el fluido que entra en contacto con la superficie de las alabes o palas del rotor no pueda comunicarse con el fluido que en ese punto circula libremente por el exterior de dicho conducto, de lo contrario, y debido a diferencias de presión, se producirán turbulencias, entre otras, aquellas conocidas como vórtices de punta de pala, que no son otra cosa que el efecto de un equilibrio de diferentes presiones donde parte del flujo transforma su dirección axial en otra de carácter radial. Ahora bien, confinar el flujo exige que las alabes o hélice del rotor estén a su vez solidariamente unidas al conducto con el que girara conjuntamente para evitar que entre conducto y rotor quede un espacio o luz que produzca turbulencias o reflujos, es decir, inversión del sentido del flujo. Efecto que sufren los sistemas convencionales de rotores confinados, que han de dejar un espacio de seguridad para que las palas o alabes puedan girar sin daños en el tubo envolvente. La siguiente consideración es un simple recordatorio de que la potencia de una máquina, entregando o captando energía de un fluido, no se mide por la forma de realizar el trabajo, por ejemplo, con más o menos par o más o menos velocidad de giro, sino por la rapidez en que se realiza dicho trabajo, es decir, por el caudal real de fluido procesado. Lo que está condicionado a la interrelación de factores como el diámetro del rotor; el número, perfil, ángulo de calado y ángulo de paso de las alabes o palas; a la solidez del rotor; al régimen de revoluciones a la que trabaje; y a la existencia y capacidad de posibles colectores y difusores; entre otros. Esta puntualización está motivada porque la tendencia general ha sido la de diseñar máquinas en las que se ha primado un elevado número de revoluciones del rotor y un alto coeficiente de velocidad especifica λ (relación entre la velocidad de punta de pala y la velocidad con la cual el flujo incide en el rotor), sobre el resto de los factores que intervienen en la potencia de la maquina.d.-Explanation. The theoretical principles on which the invention is based and to which we refer for possible clarifications are those of physics in the field of dynamics. In general, according to the three fundamental laws established by Newton, and more specifically, regarding the dynamics of fluids in the contributions in this matter by authors such as Bernouilli, D'alembert, Reynolds or Betz. However, we believe it is convenient to present some considerations that justify the characteristics of the present invention: 1.- From the point of view of kinetic energy, whether captured or generated, all fluids have in common that their power is a function of: density , the area that intercepts or to which the flow is subjected, or the instantaneous velocity thereof. Therefore, it is reasonable that the geometric design of the receiver or generator mechanism of that energy is quite similar for all fluids and of course, understanding, that the different nature of the different fluids and the specific function sought with them requires some adaptations in the forms or add complementary components on the essential elements and configuration. 2.- If the power of the flow for the same density and speed is a function of the area intercepted or swept by the rotor, it is evident that, on the one hand, the power will increase as said area increases, and on the other, that the maximum removable power or deliverable will take place when the rotor fully intercepts or fully covers one hundred percent of the area in question, and does not simply sweep it. Understanding this percentage, not as a guarantee of automatic achievement by itself and in isolation, but as a condition without which the optimum would not be possible. This postulate, which theoretically is irrefutable, has been parked or forgotten and often contradicted by a wrong extrapolation of Betz's drive disk theory. Indeed, this author formulated his theory about an idealization of a two-dimensional rotor turbine model, which makes its literal translation impossible to reality since any rotor requires a spatially three-dimensional design to transform kinetic energy into rotational or vice versa. A hypothetical two-dimensional rotor, whatever its solidity, would simply block the flow, unable to deliver or capture any energy to / from the fluid vein. What does not happen in three-dimensional rotors, although it has a solidity of one hundred percent as can be seen in the present invention. The affirmation that the solidity of the rotor must be one hundred percent is justified for two reasons: A lower solidity implies not reaching the theoretical optimum, not only because the part of the vein of the fluid that does not contact the blades is wasted or praise, but also, because only partially cover the area they sweep there are large disturbances in the current that reduce power. This is because the flow that sneaks through the uncovered spaces tends to follow the direction it brings, parallel to the axis of rotation, while the part of the flow intercepted by the blades in its rotation movement undergoes an oblique change in the direction . Natural consequence of this intersection of flows from different directions is the turbulence that can be seen in the post rotor wake. The second reason that justifies the fact that the solidity of the rotor must necessarily be one hundred percent refers to its requirement as a maximum percentage limit. A rotor, regardless of whether its function is to capture or deliver energy from / to a fluid, with a solidity ratio higher than the unit would mean that part of the rotor surface would be overlapped by it, that is, it would have an area of theoretical contact with the greater flow to the scanning area. This phenomenon of overlap in sea slang of sailboats produces the effect that is known with the Desventar term. However, contrary to what happens in this explanatory allusion, where the overlap of the canopy, even if it is useless, does not usually reduce power, in the case of the rotor, the excess of solidity ratio on the unit implies a proportional reduction of the power already delivered or received by the rotor, power that is lost by the resistance exerted by the flow itself on the rotor when processed for a second or even more times. Another consideration that is related to the previous one is the connection between the type of current (laminar or turbulent), and the performance of the rotor in said current, specifically, at the ends of the blades or blades furthest from the center of the rotor. The principle that the best use of power by a rotor takes place when the processed fluid has a laminar character and the current lines are parallel and, perpendicular to the plane of rotation of the rotor; It is correct, however, the only way to fully apply this rule in reality is to confine the fluid, as it passes through the rotor, in a tubular conduit, such that the fluid that comes into contact with the surface of the blades or rotor blades cannot communicate with the fluid that circulates freely outside of said duct at that point, otherwise, and due to pressure differences, turbulence will occur, among others, those known as blade tip vortices, which are nothing other than the effect of a balance of different pressures where part of the flow transforms its axial direction into a radial one. However, confining the flow requires that the rotor blades or propeller be in turn jointly connected to the conduit with which it will rotate together to prevent a space or light between turbulence and reflux that results in turbulence or reflux, that is, inversion of the direction of flow Effect suffered by conventional systems of confined rotors, which must leave a safety space so that the blades or blades can rotate without damage to the casing. The following consideration is a simple reminder that the power of a machine, delivering or capturing energy from a fluid, is not measured by the way of performing the work, for example, with more or less torque or more or less speed of rotation, but by the speed in which said work is carried out, that is, by the actual flow of processed fluid. What is conditioned to the interrelation of factors such as the diameter of the rotor; the number, profile, draft angle and pitch angle of the blades or blades; to the solidity of the rotor; to the speed regime you work with; and the existence and capacity of possible collectors and diffusers; among others. This point is motivated because the general tendency has been to design machines in which a high number of rotor revolutions and a high specific speed coefficient λ (ratio between blade tip speed and speed with which the flow affects the rotor), on the rest of the factors that intervene in the power of the machine.
Basándonos en los principios físicos y considerandos teóricos aludidos, creemos que la turbina objeto de la invención, con un rotor en el que se combinan de manera diferente los factores que determinan la potencia, resulta más eficiente que los convencionales y resuelve la mayoría de sus problemas. La turbina que se describe a continuación como modelo general se compone de: -Un rotor, que comprende una estructura tubular rígida, que opcionalmente pude ser cilindrica, troncocónica, o toroidal, en la que los extremos correspondientes a sus bases respectivas están abiertas para permitir la entrada y salida axial del flujo. La posición de trabajo horizontal, vertical, u oblicua del eje geométrico de rotación del rotor dependerá de que la dirección del flujo sea a su vez, horizontal, vertical u oblicua respectivamente. En el interior de la estructura tubular mencionada van colocadas dos o mas alabes helicoidales iguales entre sí de perfil laminar. Las alabes están unidas por uno de sus extremos a la cara interna de la superficie tubular de tal forma que su posición determine el ángulo de paso de la hélice. En estos puntos de sujeción está situada lo que forma la raíz del alabe (lo contrario de lo que ocurre en los sistemas tradicionales donde la raíz se encuentra en el eje que se sitúa en el centro del rotor). El otro extremo puede ir unido en el centro geométrico de rotación a las otras alabes para conseguir una mayor robustez, pero sin que en dicho centro exista un eje mecánico motriz. Este extremo del alabe va unido, cuando se opta por una estructura toroidal, a la cara extema del tubo interno del toroide, resultando del conjunto un espacio anular alabeado. La superficie proyectada por las alabes, en su conjunto y con independencia de su número, ha de ser en todas las opciones igual al área de barrido de las mismas en su movimiento de rotación, es decir el ratio o porcentaje de solidez del rotor ha de ser igual a uno o al cien por cien respectivamente. Este porcentaje debe mantenerse constante, para lo cual pueden combinarse, a conveniencia, en función de las necesidades cuatro parámetros: diámetro del rotor, ángulo de paso de las alabes, número de alabes, y profundidad del rotor, concepto este último que coincide con la altura en las coordenadas cilindricas. La igualdad de las alabes entre si afecta a todas sus dimensiones, tanto a su longitud radial, como a su profundidad, al grosor o al ángulo de paso que describen sus raíces. Y también a su posición relativa en el rotor, esto es, los bordes de ataque y bordes de fuga de todas las alabes están alineadas en los mismos planos de giro del rotor de entrada y salida respectivamente. La posición angular equidistante entre las alabes consigue que desde una perspectiva frontal, el borde de ataque de un alabe coincida con la proyección del borde de fuga del alabe anterior y así de manera concatenada para el conjunto de alabes que componen el rotor. Para rotores en los que el conducto tubular mantenga una sección, transversal al eje de rotación, de área constante, como puede ser un cilindro, la hélice formada por la raíz de las alabes ha de ser regular, es decir, el ángulo de paso ha de ser constante a lo largo del conducto desde el borde de ataque al borde de fuga. Para rotores en los que opcionalmente se decida que el conducto tubular no mantenga un área de barrido constante, la hélice habrá de tener un ángulo de paso variable, creciente o decreciente según el caso, proporcional e inverso a la evolución del conducto, para mantener la misma capacidad de procesado del caudal del fluido en la entrada y salida del rotor. Las helicoides formadas por las alabes son unas superficies engendradas a partir de unas rectas que se mueven con dos movimientos uniformes y simultáneos: uno de traslación apoyado continuamente en el eje geométrico del conducto circular y otro de rotación, apoyándose continuamente sobre la curva hélice. En las que las rectas corresponden a las líneas de las alabes que unen radialmente la periferia del conducto con su centro geométrico, dentro de un mismo plano transversal o de rotación, coincidiendo dichas líneas con lo que son los bordes de ataque respectivos de cada una de las alabes. La forma helicoidal de las alabes tiene como resultados, que las cuerdas (líneas que unen borde de ataque con borde de fuga) del alabe tengan una longitud distinta dependiendo del punto radial que se tome como referencia, siendo máxima en la raíz del alabe o extremo situado en la periferia interna del conducto y estando su longitud mínima en el centro o eje geométrico de rotación. Consecuencia de esto son unas alabes con una superficie torsionada en la que el ángulo de calado, formado por la cuerda con respecto al plano de rotación, varia progresivamente de menor a mayor desde el perfil mas periférico del alabe hasta el perfil mas próximo al centro del rotor, donde idealmente es de noventa grados. Esta progresión, con independencia del ángulo de calado elegido opcionalmente para el diseño del perfil de las alabes en el extremo en contacto con la periferia, habrá de ser constante y proporcional a la longitud radial que lo separa del centro. En el supuesto de que se opte por un rotor toroidal, la torsión se establece con el mismo criterio de progresión en el ángulo de calado, tomando como referencia los noventa grados que ha de tener en el centro teórico de rotación, si bien el ángulo máximo seria el resultante a la distancia radial donde se encuentre el elemento tubular interno del toroide, que es donde se realiza el corte que interrumpe la progresión. La forma laminar de las alabes significa que sus dos caras longitudinalmente son paralelas y entre ellas existe una separación pequeña. Una delgadez que dependerá del tipo de materiales utilizados (metal, plástico, fibras, compuestos...), del diámetro del rotor y la finalidad que se le vaya a dar, pero en principio, al tener su raíz en la periferia del rotor y tener la posibilidad de estar unida en el centro a las demás alabes su resistencia se ve favorablemente incrementada respecto a los sistemas tradicionales que tienen su raíz en el eje de rotación como único punto de sujeción. Por otra parte, la forma laminar junto a la eliminación de todos los elementos centrales de los sistemas tradicionales (eje, núcleo, capacete, soportes del eje y secciones longitudinales de las palas o alabes con mayor grosor en el centro que en los extremos), es preferible porque favorece la dirección axial del flujo y elimina problemas como el de cavitación, cuando el fluido procesado es un liquido. La unión de la raíz de las alabes al conducto tubular se realizara por la técnica mas apropiada entre las existentes en función del tipo de materiales utilizados, el tamaño de los diferentes componentes y el destino para el que se proyecte, así puede, sin carácter limitativo utilizarse un sistema de fundición, de soldadura, de anclaje por empotramiento, por tornillos o remaches. En todo caso la fijación ha de lograr que entre la raíz del alabe y la superficie interna del tubo no deje un espacio libre o luz por donde pueda circular el fluido, resultando una unión hermética. La estructura tubular del rotor ha de ser rígida para soportar sin deformación las cargas radiales, axiales o tangenciales recibidas o transmitidas por/a las alabes, soportando las fuerzas de tracción y torsión incidentes en el sistema perimetral de transmisión, así como las fuerzas gravitacionales y aquellas generadas por la presión ejercida por el mecanismo de fijación a la carcasa. Esta rigidez, sin carácter limitativo, se consigue, en unión con las propias alabes, aumentando proporcionalmente a las fuerzas soportadas, el grosor de la superficie perimetral del conducto con material macizo o bien mediante trazados en celosía donde se unan por costillas cruzadas en un espacio hueco y cerrado los perímetros de dos conductos circulares concéntricos de diferente diámetro. Por otra parte, el rotor en su cara externa aloja los asientos donde se encajan los rodamientos que la unen a la carcasa o las bandas de rodadura donde presionen las ruedas libres si este es el procedimiento de fijación elegido; además de las paites que le correspondan en función del sistema de transmisión perimetral escogido. Dichas partes y sin carácter limitativo respecto a las formas de transmisión pueden ser: un anillo envolvente con una superficie que permita el contacto adecuado con una rueda de fricción, receptora o transmisora de la fuerza de rotación; una corona dentada adaptada a la forma y colocación del piñón receptor o transmisor de la fuerza de giro en la transmisión por engranajes; una banda o acanaladura que permita al rotor actuar como polea cuando se trata de una transmisión por correa; o servir de alojamiento a los imanes permanentes en el caso que se opte por un sistema de transmisión electromagnético, en el cual el rotor de la turbina actuaría simultáneamente como rotor de un generador multipolar.Based on the physical principles and theoretical considerations referred to, we believe that the turbine object of the invention, with a rotor in which the factors that determine the power are combined differently, is more efficient than conventional ones and solves most of its problems . The turbine described below as a general model is composed of: - A rotor, which comprises a rigid tubular structure, which can optionally be cylindrical, conical, or toroidal, in which the ends corresponding to their respective bases are open to allow the axial inlet and outlet of the flow. The horizontal, vertical, or oblique working position of the rotor's geometric axis of rotation will depend on whether the direction of the flow is in turn, horizontal, vertical or oblique respectively. Inside the mentioned tubular structure two or more helical blades are placed equal to each other with a laminar profile. The blades are joined by one of its ends to the inner face of the tubular surface so that its position determines the angle of passage of the propeller. At these points of attachment is located what forms the root of the blade (the opposite of what happens in traditional systems where the root is in the axis that is located in the center of the rotor). The other end can go together in the geometric center of rotation to the other blades to achieve greater robustness, but without a mechanical drive shaft in that center. This end of the blade is connected, when opting for a toroidal structure, to the outer face of the inner tube of the toroid, resulting in a ring-shaped annular space. The surface projected by the blades, as a whole and regardless of their number, must be in all options equal to the area of their sweeping in their rotation movement, that is to say the ratio or percentage of solidity of the rotor has to be equal to one or one hundred percent respectively. This percentage must be kept constant, for which four parameters can be combined, as a convenience, according to the needs: rotor diameter, pitch angle of the blades, number of blades, and rotor depth, the latter concept that coincides with the height in the cylindrical coordinates. The equality of the blades between them affects all its dimensions, both its radial length, its depth, the thickness or the angle of passage that describes its roots. And also to its relative position in the rotor, that is, the leading edges and trailing edges of all the blades are aligned in the same rotation planes of the inlet and outlet rotor respectively. The equidistant angular position between the blades ensures that from a frontal perspective, the leading edge of a blade coincides with the projection of the leading edge of the leading blade and thus concatenated to the set of blades that make up the rotor. For rotors in which the tubular duct maintains a section, transverse to the axis of rotation, of constant area, such as a cylinder, the propeller formed by the root of the blades must be regular, that is, the pitch angle has of being constant along the conduit from the leading edge to the trailing edge. For rotors in which it is optionally decided that the tubular duct does not maintain a constant sweeping area, the propeller must have a variable, increasing or decreasing pitch angle as appropriate, proportional and inverse to the evolution of the duct, to maintain the Same processing capacity of the fluid flow at the rotor inlet and outlet. The helicoids formed by the blades are surfaces generated from straight lines that move with two uniform and simultaneous movements: one of translation continuously supported by the geometric axis of the circular duct and another of rotation, continually resting on the helix curve. In which the lines correspond to the lines of the blades that radially join the periphery of the conduit with its geometric center, within the same transverse or rotation plane, said lines coinciding with what are the respective leading edges of each of You praise them. The helical shape of the blades has as a result, that the strings (lines that connect the leading edge with the trailing edge) of the blade have a different length depending on the radial point taken as a reference, being maximum at the root of the blade or end located on the inner periphery of the duct and its minimum length being in the center or geometric axis of rotation. Consequence of this are blades with a twisted surface in which the angle of draft, formed by the rope with respect to the plane of rotation, varies progressively from least to greatest from the most peripheral profile of the blade to the profile closest to the center of the rotor, where ideally it is ninety degrees. This progression, regardless of the draft angle optionally chosen for the design of the blade profile at the end in contact with the periphery, must be constant and proportional to the radial length that separates it from the center. In the event that a toroidal rotor is chosen, torsion is established with the same criterion of progression in the draft angle, taking as reference the ninety degrees that it must have in the theoretical center of rotation, although the maximum angle It would be the result at the radial distance where the internal tubular element of the toroid is located, which is where the cut is made that interrupts the progression. The laminar shape of the blades means that their two faces are longitudinally parallel and there is a small separation between them. A thinness that will depend on the type of materials used (metal, plastic, fibers, composites ...), the diameter of the rotor and the purpose to be given, but in principle, having its root on the periphery of the rotor and having the possibility of being united in the center to the other praises their resistance is favorably increased with respect to the traditional systems that have their roots in the axis of rotation as the only point of attachment. On the other hand, the laminar form together with the elimination of all the central elements of the traditional systems (axis, core, cap, shaft supports and longitudinal sections of the blades or blades with greater thickness in the center than at the ends), It is preferable because it favors the axial direction of the flow and eliminates problems such as cavitation, when the processed fluid is a liquid. The union of the root of the blades to the tubular conduit will be carried out by the most appropriate technique among those existing depending on the type of materials used, the size of the different components and the destination for which it is projected, so it can, without limitation use a system of casting, welding, anchoring by recessing, by screws or rivets. In any case, the fixation must ensure that between the root of the blade and the inner surface of the tube it does not leave a free space or light where the fluid can circulate, resulting in a tight connection. The tubular structure of the rotor must be rigid to withstand the radial, axial or tangential loads received or transmitted by / to the blades without deformation, withstanding the tensile and torsional forces in the perimeter transmission system, as well as the gravitational forces and those generated by the pressure exerted by the fixing mechanism to the housing. This rigidity, without limitation, is achieved, in conjunction with the blades themselves, increasing proportionally to the supported forces, the thickness of the perimeter surface of the duct with solid material or by lattice paths where they are joined by crossed ribs in a space hollow and closed the perimeters of two concentric circular ducts of different diameter. On the other hand, the rotor on its outer face houses the seats where the bearings that attach it to the housing or the treads where the freewheels are pressed are fitted if this is the chosen fixing procedure; In addition to the countries that correspond to it depending on the perimeter transmission system chosen. Said parts and without limitation with respect to the forms of transmission can be: an enveloping ring with a surface that allows adequate contact with a friction wheel, receiver or transmitter of the rotational force; a toothed crown adapted to the shape and placement of the pinion receiver or transmitter of the force of rotation in the transmission by gears; a band or groove that allows the rotor to act as a pulley when it is a belt drive; or serve as a housing for permanent magnets in the case of an electromagnetic transmission system, in which the turbine rotor would simultaneously act as the rotor of a multipolar generator.
-La carcasa, es otro de los componentes de la turbina cuya forma esta condicionada al tipo de fluido a procesar y a la finalidad perseguida por esta. Como elemento envolvente del rotor tubular cumple tres funciones: a) Alojar en su interior al rotor constrifiéndolo a una posición fija en la que este solo puede rotar sobre si mismo, desplazándose para cualquier otra posición conforme lo haga la carcasa. Para ello la carcasa es portadora en su parte interna de rodamientos interpuestos entre esta y el rotor, u opcionalmente de un juego de ruedas libres que contactando con la superficie tubular externa del rotor en el entorno de su perímetro cumplen el mismo cometido. Albergar los mecanismos de transmisión para su ensamblaje con los que correspondan al rotor, en función del sistema de transmisión opcionalmente elegido: ruedas de fricción, piñones, poleas, o incluso el bobinado para el supuesto de que la carcasa actuara además como estator de generador en un sistema de transmisión electromagnético. b) Incrementar el rendimiento de la turbina desde el punto de vista hidrodinámico o aerodinámico, dependiendo del tipo de fluido donde se desenvuelva. Lo que se consigue: -Con una superficie exterior de contornos suaves. -Facilitando la entrada y salida del fluido en el rotor mediante embocaduras abocinadas colectoras y difusoras respectivamente, cuya misión no es tanto aumentar el caudal que reciba el rotor, como hacen algunos mecanismos en forma de embudo actualmente existentes, para lo cual seria mas eficaz aumentar el diámetro del rotor, sino mas bien convertir las superficies y perfiles que pudieran generar una resistencia parasitaria, en unos contornos útiles que reconduzcan el fluido para su aprovechamiento energético. Además de homogeneizar la velocidad y presión axial del fluido en todo el área de barrido del rotor, tanto a la entrada como a la salida, de forma que el rotor trabaje redondo, sin vibraciones ni oscilaciones indeseadas, eliminando, por ejemplo, los problemas de esta naturaleza que sufren los aero generadores convencionales de palas y eje horizontal con el efecto conocido como cortadura del viento (variación de la velocidad del viento con la altura). -Por otra parte favoreciendo la corriente del fluido, ya sea en el contorno exterior de la turbina para una adecuada confluencia de flujos tras la turbina o sellando total o parcialmente el espacio que separa rotor y carcasa para que no se produzca circulación de fluido entre ellos. Además un diseño apropiado de la carcasa junto a un sistema de giro adecuado de la turbina puede hacer que aquella se transforme en un buen instrumento de orientación, por ejemplo, en el timón de un barco o en una veleta con la que se consiga una autoorientación precisa y rápida de la turbina a la dirección del viento, como puede apreciarse en el modo de realización concreto que se hace de este invento. c) En la tercera función de la carcasa se engloban: - Alojar los soportes y elementos de amarre de la turbina al lugar donde esta trabaja, ya sea un elemento fijo (Ej: torre, plataforma, muro, etc..) o un elemento móvil (Ej: fuselaje de aeronave, casco de embarcación, etc..) - Proteger al rotor y elementos de transmisión de agentes externos que no sean el propio fluido, como pueden ser la lluvia, la nieve, el polvo, etc.. cuando el fluido procesado es el aire; u objetos a la deriva como bloques de hielo, o incluso animales acuáticos cuando el fluido donde ha de trabajar es el agua. Así como servir de elemento de seguridad para que el hombre o animales (peces o aves) no sufran daños en el caso de que por su proximidad pudieran contactar con el mismo. - Ubicar los mecanismos que en función de la finalidad de la turbina o utilidades complementarias pudieran instalarse como podrían ser un pararrayos, elementos de medición, paneles solares, carteles publicitarios, etc..-The housing is another of the turbine components whose shape is conditioned to the type of fluid to be processed and the purpose pursued by it. As an enveloping element of the tubular rotor it fulfills three functions: a) Place the rotor inside it by building it to a fixed position where it can only rotate on itself, moving to any other position as the case does. For this, the housing is internally bearing bearings interposed between it and the rotor, or optionally a set of freewheels that contact the external tubular surface of the rotor around its perimeter fulfill the same task. Housing the transmission mechanisms for assembly with those corresponding to the rotor, depending on the optionally chosen transmission system: friction wheels, pinions, pulleys, or even winding in the event that the housing also acts as a generator stator in An electromagnetic transmission system. b) Increase the performance of the turbine from the hydrodynamic or aerodynamic point of view, depending on the type of fluid in which it operates. What is achieved: -With an outer surface with smooth contours. -Facilitating the entry and exit of the fluid in the rotor by means of flares, manifolds and diffusers respectively, whose mission is not so much to increase the flow that the rotor receives, as do some funnel-shaped mechanisms currently existing, for which it would be more effective to increase the diameter of the rotor, but rather convert the surfaces and profiles that could generate a parasitic resistance, into useful contours that redirect the fluid for its energy use. In addition to homogenizing the speed and axial pressure of the fluid throughout the rotor sweep area, both at the entrance and at the exit, so that the rotor works round, without vibrations or unwanted oscillations, eliminating, for example, the problems of this nature suffered by conventional aero blade generators and horizontal axis with the effect known as wind shear (variation of wind speed with height). -On the other hand, favoring the flow of the fluid, either in the outer contour of the turbine for an adequate confluence of flows after the turbine or by totally or partially sealing the space that separates rotor and housing so that fluid circulation between them does not occur . Furthermore, an appropriate design of the housing together with a suitable turbine rotation system can cause it to be transformed into a good orientation instrument, for example, at the helm of a ship or on a wind vane with which a self-orientation is achieved. precise and rapid turbine in the direction of the wind, as can be seen in the specific embodiment of this invention. c) In the third function of the housing, the following are included: - Place the supports and mooring elements of the turbine to the place where it works, either a fixed element (eg tower, platform, wall, etc.) or an element mobile (Ex: aircraft fuselage, boat hull, etc.) - Protect the rotor and transmission elements from external agents other than the fluid itself, such as rain, snow, dust, etc. when the processed fluid is air; or drifting objects such as blocks of ice, or even aquatic animals when the fluid where you work is water. As well as serving as a security element so that the man or animals (fish or birds) do not suffer damage in the event that due to their proximity they could contact it. - Locate the mechanisms that depending on the purpose of the turbine or complementary utilities could be installed as they could be a lightning rod, measuring elements, solar panels, advertising posters, etc.
En cuanto a la estructura concreta que tiene la carcasa dependerá como ocurre con el rotor, de los materiales utilizados, el tamaño de la turbina, el número de funciones que ha de cumplir así como la relevancia que se otorgue a unas respecto a otras. En cualquier caso, el desarrollo actual de la técnica permite múltiples posibilidades para su ejecución. Expuestas de forma genérica las características de la turbina objeto de la invención, a continuación se explica en detalle un modo de realización con el que se pueden comprender algunos de los problemas técnicos planteados en el tratamiento de fluidos y las soluciones que con el presente invento se ofrecen mostrando que la turbina preconizada resulta mas ventajosa que las existentes en la actualidad. La aplicación concreta consiste en un aerogenerador que se sirve de la turbina objeto de la invención para trasformar la energía cinética del viento en energía mecánica rotacional y esta a su vez en energía eléctrica. Para facilitar su descripción se utiliza la terminología que es usual en el sector de la aerogeneracion, mencionándose únicamente algunos de los problemas, resueltos por esta invención, que sufren los aerogeneradores de eje horizontal tripalas orientadas a barlovento, que son los que de forma mayoritaria están presentes en toda la geografía. Primeramente queremos puntualizar que este aerogenerador no precisa de un sistema convencional para su sustentación, puede instalarse sobre una plataforma giratoria, en el suelo, sobre la cubierta de una embarcación o en el tejado de un edificio, entre otros muchos lugares, lo cual es ya una primera ventaja importante. Aquí no obstante y a pesar de requerir un diseño mas acorde a sus características, se va a utilizar como soporte una torre tubular troncocónica convencional con una ligera modificación en su extremo superior, donde termina en forma de copa. Este aerogenerador no es incluible dentro de los grupos que resultan de las distintas clasificaciones realizadas; ya sean en función de la disposición del eje de rotor: horizontal o vertical, pues este carece de eje propiamente dicho; o de la situación del rotor con respecto a la torre: barlovento o sotavento, ya que el mismo no se encuentra ni delante ni detrás sino sobre la torre. Como descripción general previa podría decirse que se trata de un aerogenerador de los denominados lentos, de rotor tubular, sin eje, con alabes que sustituyen a las palas, con boca de entrada de rotor a barlovento y salida a sotavento, con sistema pasivo de autoorientación y con sistema de transmisión perimetral de fuerza, del que aquí se presenta como opción la transmisión mediante correa y poleas, aunque una alternativa interesante puede ser la electromagnética, convirtiendo el rotor eólico simultáneamente en rotor de generador, utilizando imanes permanentes. El calificativo de lento le es aplicable con las salvedades de que la velocidad especifica en nuestro caso hace referencia a la raíz del alabe y no a la punta de pala como es habitual, y que, el ratio entre velocidad especifica y velocidad del viento, en nuestro caso siempre estará entre cero y uno. Las ventajas aerodinámicas y mecánicas de carecer de eje ya quedaron expuestas. La sustitución de palas por alabes evita problemas de distinta naturaleza: - Estructurales; en los aerogeneradores convencionales debido al peso de las palas y su régimen de trabajo con una elevada velocidad de giro, los materiales están sometidos a importantes fuerzas inerciales (centrífugas, giroscópicas y estáticas), y cargas cíclicas (cortadura del viento y sombra de la torre), que no existen en el que aquí se describe, por ser mas ligeras y de diferente configuración. - Acústicos; ese elevado coeficiente de velocidad especifica en los aerogeneradores convencionales, con valores de ocho o diez, provoca un ruido intenso y audible a distancias considerables, lo que no se produce en el modelo propuesto. - De seguridad; especialmente para algunas especies de aves que en pleno vuelo son abatidas por las palas. Esto no ocurre en nuestro caso porque su forma de funcionamiento y la ausencia de elementos salientes en el rotor y su confinamiento en el espacio cerrado de la carcasa envolvente lo hace inofensivo. - Visuales; Se considera que el factor que hace que un aerogenerador destaque mas negativamente en un paisaje es el movimiento de las palas y los reflejos de la luz solar o proyección de sombra que estas producen de forma intermitente. Con el modelo propuesto se eliminan estos problemas desde la mayoría de los ángulos de observación y se aminoran considerablemente en el resto. La colocación de la turbina sobre la torre con boca de entrada del rotor a barlovento y salida a sotavento tiene con respecto al aerogenerador convencional comparado las siguientes ventajas: - Mientras en los convencionales, el centro de gravedad del rotor queda fuera de la torre, lo que obliga a compensarlo con el peso de la góndola con una posición que bloquea la dirección axial del flujo, o una sobredimensión de rodamientos y cojinetes, en el aerogenerador propuesto el centro de gravedad del rotor y de toda la turbina quedan dentro de la torre de sustentación. - La posición del rotor sobre la torre elimina el efecto sombra de la torre producida en los aerogeneradores comparados, lo que da un movimiento de giro mas regular, sin saltos de potencia. - Para rotores con el mismo área de barrido y tomando como referencia la altura al centro del rotor, el sistema propuesto necesita una torre mas baja que el aerogenerador comparado, en una distancia equivalente a la longitud del radio del rotor. Lo que implica considerables ahorros en costes. - Se elimina la necesidad de crear una desalineación permanente del rotor, con un ángulo de inclinación del eje, para evitar, por seguridad, que la pala pueda golpear a la torre a su paso por esta. Con nuestro modelo el eje geométrico de rotación siempre mantiene una posición horizontal, paralela a la dirección del viento.As for the concrete structure of the carcass, it will depend, as is the case with the rotor, on the materials used, the size of the turbine, the number of functions to be fulfilled, as well as the relevance granted to some with respect to others. In any case, the current development of the technique allows multiple possibilities for its execution. The characteristics of the turbine object of the invention are set out in a generic manner, an embodiment with which some of the technical problems raised in the treatment of fluids and the solutions that with the present invention can be understood can be explained in detail below. They offer showing that the recommended turbine is more advantageous than the existing ones. The concrete application consists of a wind turbine that uses the turbine object of the invention to transform the kinetic energy of the wind into rotational mechanical energy and this in turn into electrical energy. To facilitate its description, the terminology that is usual in the aerogeneration sector is used, mentioning only some of the problems, solved by this invention, suffered by wind turbine oriented horizontal axis wind turbines, which are the ones that are mostly present throughout the geography. First of all we want to point out that this wind turbine does not need a conventional system for its support, it can be installed on a rotating platform, on the ground, on the deck of a boat or on the roof of a building, among many other places, which is already A first important advantage. Here, however, and despite requiring a design more in line with its characteristics, a conventional conical tubular tower with a slight modification at its upper end will be used as support, where it ends in a cup. This wind turbine is not included in the groups that result from the different classifications made; either depending on the layout of the axis of rotor: horizontal or vertical, since it lacks the axis itself; or the situation of the rotor with respect to the tower: windward or leeward, since it is neither in front nor behind but above the tower. As a previous general description it could be said that it is a wind turbine of the so-called slow ones, with a tubular rotor, without a shaft, with blades that replace the blades, with a windward rotor inlet and leeward outlet, with passive self-orientation system and with a perimeter force transmission system, of which the transmission by belt and pulleys is presented here as an option, although an interesting alternative may be the electromagnetic one, converting the wind rotor simultaneously into a generator rotor, using permanent magnets. The qualifier of slow is applicable with the caveats that the specific speed in our case refers to the root of the blade and not to the blade tip as usual, and that, the ratio between specific speed and wind speed, in Our case will always be between zero and one. The aerodynamic and mechanical advantages of lacking an axis have already been exposed. The replacement of blades with blades avoids problems of a different nature: - Structural; In conventional wind turbines due to the weight of the blades and their working regime with a high speed of rotation, the materials are subject to significant inertial forces (centrifugal, gyroscopic and static), and cyclic loads (wind cut and tower shadow ), which do not exist in the one described here, because they are lighter and of different configuration. - Acoustics; This high specific speed coefficient in conventional wind turbines, with values of eight or ten, causes an intense and audible noise over considerable distances, which is not produced in the proposed model. - Of security; especially for some species of birds that in flight are shot down by the shovels. This does not happen in our case because its way of operation and the absence of protruding elements in the rotor and its confinement in the enclosed space of the enclosure makes it harmless. - Visuals; It is considered that the factor that makes a wind turbine stand out more negatively in a landscape is the movement of the blades and the reflections of sunlight or shadow projection that they produce intermittently. With the proposed model, these problems are eliminated from most of the observation angles and considerably reduced in the rest. The placement of the turbine on the tower with the windward rotor inlet and leeward outlet has the following advantages over the conventional wind turbine: - While in conventional ones, the center of gravity of the rotor is outside the tower, which obliges to compensate with the weight of the gondola with a position that blocks the axial direction of the flow, or an oversize of bearings and bearings, in the proposed wind turbine the center of gravity of the rotor and of the entire turbine remain within the tower of lift. - The position of the rotor on the tower eliminates the shadow effect of the tower produced in the wind turbines compared, which gives a more regular turning movement, without power jumps. - For rotors with the same scanning area and taking the height of the center of the rotor as a reference, the proposed system requires a lower tower than the wind turbine compared, at a distance equivalent to the length of the rotor radius. Which implies considerable cost savings. - The need to create a permanent misalignment of the rotor, with an angle of inclination of the axis, is eliminated to avoid, for safety, that the blade can hit the tower as it passes through it. With our model the geometric axis of rotation always maintains a horizontal position, parallel to the wind direction.
El sistema pasivo de autoorientación está basado en la conicidad resultante del diseño de la carcasa de la turbina en combinación con la posición excéntrica que ocupa respecto al punto de giro en la torre, a la cual esta unida mediante una plataforma giratoria. Esto se consigue haciendo que frontalmente la carcasa tenga un área de contacto con el viento mayor en la parte posterior que en la anterior y lateralmente que el área a sotavento sea mayor que el área situada a barlovento. Cualquier cambio en la dirección del viento producirá automáticamente, por equilibrio de presiones, una reorientación de la turbina a la nueva dirección. Para los casos en que el sistema de transmisión elegido produzca torque, dicho efecto se anularía aumentando asimétricamente y en cuantía proporcional a dicha fuerza, el área frontal posterior de la carcasa del lado contrario al que tienda el sentido de giro o torque. Las ventajas del sistema pasivo de autoorientación respecto al utilizado en el aerogenerador comparado es que por su simplicidad no precisa de motores de orientación, ni de fuente de energía para los mismos. Tampoco depende de sistemas complejos de medición y control que puedan fallar, no ser exactos o ser lentos y que en cualquier caso nunca consiguen una reorientación en tiempo real, lo que tiene como consecuencia inmediata la existencia temporal de ángulo de guiñada, donde el plano de giro de las palas del rotor no es perpendicular a la dirección del viento, con el correspondiente desaprovechamiento de la energía del viento. Esta ventaja de los sistemas pasivos de orientación, de reacción rápida y en tiempo real es considerado en los aerogeneradores de palas, mas bien, un gran inconveniente, debido a que las cargas giroscópicas originadas por reorientaciones bruscas pueden dañar las palas u otros elementos del aerogenerador. Algo que no ocurre en el aerogenerador propuesto, donde gracias al diseño y posición de la turbina puede utilizarse un sistema pasivo de autoorientación con todas sus ventajas de, sencillez, bajo mantenimiento, autonomía y economicidad. El sistema de transmisión perimetral permite para aerogeneradores de cierto tamaño prescindir de la caja multiplicadora o simplificarla considerablemente. Debido a la relación diferencial entre el diámetro del elemento transmisor del rotor y el diámetro del elemento receptor, la transferencia directa de energía rotacional tiene en si misma un efecto multiplicador, con independencia de la opción utilizada: engranajes, poleas, fricción y electromagnetismo. Además salvo para esta última opción se eliminan los problemas de retorcimiento de los cables de potencia durante los procesos de reorientación por encontrarse el aerogenerador en una posición fija.The passive self-orientation system is based on the conicity resulting from the design of the turbine housing in combination with the eccentric position it occupies with respect to the turning point in the tower, to which it is connected by a turntable This is achieved by having the carcass frontally have a greater wind contact area in the back than in the previous one and laterally the leeward area is larger than the windward area. Any change in the wind direction will automatically produce, by balancing pressures, a reorientation of the turbine to the new direction. For cases in which the chosen transmission system produces torque, said effect would be annulled by increasing asymmetrically and in an amount proportional to said force, the rear front area of the housing on the opposite side to which the direction of rotation or torque. The advantages of the passive self-orientation system with respect to the one used in the comparator wind turbine is that due to its simplicity it does not require orientation motors, nor the power source for them. Nor does it depend on complex measurement and control systems that may fail, not be exact or slow and that in any case never achieve a real-time reorientation, which has the immediate consequence of the temporary existence of yaw angle, where the plane of Rotation of the rotor blades is not perpendicular to the wind direction, with the corresponding waste of wind energy. This advantage of passive orientation systems, of fast reaction and in real time is considered in the wind turbines of blades, rather, a great inconvenience, because the gyroscopic loads caused by abrupt reorientations can damage the blades or other elements of the wind turbine . Something that does not happen in the proposed wind turbine, where thanks to the design and position of the turbine a passive self-orientation system can be used with all its advantages of simplicity, low maintenance, autonomy and economics. The perimeter transmission system allows wind turbines of a certain size to dispense with the multiplier box or simplify it considerably. Due to the differential relationship between the diameter of the rotor transmitting element and the diameter of the receiving element, the direct transfer of rotational energy has in itself a multiplier effect, regardless of the option used: gears, pulleys, friction and electromagnetism. In addition, except for this last option, the twisting problems of the cables are eliminated. power during reorientation processes because the wind turbine is in a fixed position.
e.- Descripción de los dibujose.- Description of the drawings
- La figura 1 muestra en perspectiva un rotor tubular de forma tronco-cónica con cuatro alabes, ángulo de paso variable, y una solidez del cien por cien. - La figura 2 muestra en perspectiva un rotor tubular cilindrico toroidal de cinco alabes, de ángulo de paso constante y solidez del cien por cien. - La figura 3 muestra una vista frontal de la turbina eólica y torre de sustentación, destacándose los elementos rodantes. - La figura 4 es una vista lateral de la turbina eólica y torre de sustentación, destacándose elementos rodantes y giratorios. - La figura 5 muestra una perspectiva tridimensional de la turbina eólica con carcasa y rotor seccionados. - La figura 6 muestra en detalle una perspectiva tridimensional de la plataforma giratoria de la turbina eólica instalada en la torre.- Figure 1 shows in perspective a tubular rotor with a trunk-conical shape with four blades, variable pitch angle, and a solidity of one hundred percent. - Figure 2 shows in perspective a five-blade toroidal cylindrical tubular rotor, of constant pitch angle and solidity of one hundred percent. - Figure 3 shows a front view of the wind turbine and lift tower, highlighting the rolling elements. - Figure 4 is a side view of the wind turbine and lift tower, highlighting rolling and rotating elements. - Figure 5 shows a three-dimensional perspective of the wind turbine with sectioned housing and rotor. - Figure 6 shows in detail a three-dimensional perspective of the rotating platform of the wind turbine installed in the tower.
f.- Modo de realización de la invenciónf.- Embodiment of the invention
El aerogenerador comprende un conjunto funcional que se dispone de manera giratoriamente autoorientable en la parte superior de una columna de sustentación (1), troncocónica con la parte superior terminada en forma de copa (2). El conjunto funcional consta de la turbina que es el objeto de la invención (3) formada por un rotor (4) y una carcasa (5) que lo envuelve. La turbina queda unida a la torre (1) a través de una plataforma giratoria (6) que esta fijada solidariamente a la carcasa. El rotor (4) con el elemento tubular con estructura interior en celosía (7), tiene una cara interna de forma cilindrica y en su cara externa se combina una parte cilindrica (8) central de mayor diámetro con dos secciones cónicas iguales (9) que unen la parte cilindrica con los extremos anterior y posterior de menor diámetro. Las secciones cónicas actúan como bandas de rodadura o de frenado sobre las que presionan las ruedas libres (10) o los frenos del rotor (38) respectivamente. Las ruedas libres (10) están formadas por ocho juegos de pares de ruedas, repartidos por igual entre las dos bandas de rodadura. En la parte cilindrica central va instalado solidariamente con el rotor el elemento activo o motor de la transmisión consistente en una acanaladura perimetral (11) que actúa de polea para acoger la correa (12) transmisora. En la cara interna del rotor van acoplados ocho alabes (40) iguales, con un ángulo de paso constante de cuarenta y cinco grados y con un ángulo de calado que aumenta desde la raíz del alabe, donde es igual al ángulo de paso, hasta el centro geométrico de rotación donde es aproximadamente de noventa grados. El calado o profundidad de las alabes es igual a su longitud radial. El resto de características responden a las mencionadas de forma general, resultando un rotor con una solidez del cien por cien. La carcasa (5) cuyo cuerpo también tiene una estructura en celosía (7), forma un bloque en el que se pueden distinguir: delante un área colectora anular ovoide (13) abocinada, de superficie lisa y con una posición baja y excéntrica respecto al centro del rotor, en su parte posterior un área difusora ( 14) de similares características a la anterior pero con posición invertida, y un tercer área (15) en la que se une externamente la parte mas adelantada a barlovento con la parte mas retrasada a sotavento formando una conicidad que es más pronunciada en la parte posterior a su altura media y baja que en la alta. Mecánicamente la carcasa (5) aloja en su interior las ruedas libres (10) en sus respectivos soportes (16), los frenos mecánicos del rotor (38) y los anclaje a la plataforma giratoria; y en su exterior, el pararrayos (17) situado en la parte trasera mas alta de la carcasa y la veleta (18) que en forma de cuña une la parte superior de la carcasa, a la altura del centro de la torre, con el "pararrayos. La plataforma giratoria (6) queda empotrada interna y externamente en la parte superior de la torre con forma de copa (2) uniéndose a esta por varios conjuntos de ruedas (19) dispuestas de forma circular en tres planos de rodadura diferentes. Las ruedas están unidas entre si y a la plataforma por un tramazón de barras (20). En la misma plataforma y solidaria a ella, coincidiendo con el centro de la torre, va fijada la caja conversora-multiplicadora (21). En el interior de la caja van montados dos pifiones cónicos que engranan entre si. Un piñón de mayor diámetro (22) es solidario con su eje (23) horizontal en uno de los extremos de este; el eje queda fijado mediante un rodamiento (39) y su respectivo cojinete a una de las paredes laterales de la caja. Unido al eje horizontal (23) y solidario a el se encuentra en el exterior de la caja, el polein (24) receptor de la fuerza de la correa transmisora (12). El eje (23) que atraviesa el polein queda fijado en su otro extremo a la carcasa mediante rodamiento y cojinete. El otro piñón cónico (25) de menor diámetro engrana con el piñón (22) anterior en la parte superior de la caja uniéndose solidariamente al eje rápido (26) de posición vertical. Este eje esta fijado en su extremo superior a la pared superior de la caja mediante rodamiento y cojinete (39), al igual que ocurre en la pared inferior de la caja (39). El interior de la caja contiene lubricante (27). El eje rápido (26) desciende verticalmente hasta engarzarse telescópicamente mediante un contorno estriado en un eje hueco (29) en cuyo otro extremo se une a un mecanismo cardan (30), a partir del cual parte un tercer eje vertical (31) fijado rígidamente a la torre mediante un soporte antioscilaciones (32). Dicho ultimo eje transmite su movimiento de rotación a un generador convencional instalado en la base de la torre, en el que, por su carácter estándar no se abunda en mas detalles. También en la plataforma giratoria se encuentra el sistema de blocaje del mecanismo de auto orientación de la turbina consistente en unos calzos que se colocan entre las ruedas de la plataforma giratoria y la torre sobre la que giran; así como las escobillas (33) que hacen de conexión entre el cableado (34) que baja del pararrayos (17) por la carcasa y un aro rozante (36) instalado en la torre que es el que comunicaría la descarga eléctrica con la conducción que a lo largo de la torre desciende a tierra.The wind turbine comprises a functional assembly that is rotatably self-orientated in the upper part of a support column (1), conical with the top part finished in the form of a cup (2). The functional set consists of the turbine that is the object of the invention (3) formed by a rotor (4) and a housing (5) that surrounds it. The turbine is attached to the tower (1) through a rotating platform (6) that is fixedly attached to the housing. The rotor (4) with the tubular element with internal lattice structure (7), has an internal face of cylindrical shape and in its external face a central cylindrical part (8) of larger diameter is combined with two equal conical sections (9) that join the cylindrical part with the anterior and posterior ends of smaller diameter. The conical sections act as tread or braking bands on which press the freewheels (10) or the rotor brakes (38) respectively. The freewheels (10) are formed by eight sets of pairs of wheels, distributed equally between the two treads. In the central cylindrical part, the active element or transmission motor consisting of a perimeter groove (11) that acts as a pulley to accommodate the transmitter belt (12) is installed in solidarity with the rotor. In the inner face of the rotor eight equal blades (40) are coupled, with a constant pitch angle of forty-five degrees and with a draft angle that increases from the root of the blade, where it is equal to the pitch angle, to the geometric center of rotation where it is approximately ninety degrees. The depth or depth of the blades is equal to its radial length. The rest of the characteristics respond to those mentioned in a general way, resulting in a rotor with a solidity of one hundred percent. The housing (5) whose body also has a lattice structure (7), forms a block in which they can be distinguished: in front an ovoid annular collecting area (13) flared, smooth surface and with a low and eccentric position with respect to the center of the rotor, in its back a diffuser area (14) of similar characteristics to the previous one but with an inverted position, and a third area (15) in which the most advanced part to windward is joined externally with the most delayed part to leeward forming a conicity that is more pronounced in the back at its medium and low height than in the high. Mechanically, the housing (5) houses inside the free wheels (10) in their respective supports (16), the mechanical brakes of the rotor (38) and the anchorage to the rotating platform; and outside, the lightning rod (17) located at the highest rear part of the housing and the vane (18) that wedge-shaped joins the upper part of the housing, at the height of the center of the tower, with the "Lightning rod. The rotating platform (6) is embedded internally and externally in the upper part of the tower in the shape of a cup (2) joining it by several sets of wheels (19) arranged in a circular way in three different rolling planes. The wheels are joined together to the platform by a bar frame (20) On the same platform and integral to it, coinciding with the center of the tower, the converter-multiplier box (21) is fixed. Inside the box are mounted two conical pifiones that mesh with each other. A pinion of greater diameter (22) is integral with its horizontal axis (23) at one of its ends; The shaft is fixed by a bearing (39) and its respective bearing to one of the side walls of the box. Attached to the horizontal axis (23) and integral with it, it is located on the outside of the box, the polein (24) receiving the force of the transmitter belt (12). The shaft (23) that crosses the pole is fixed at its other end to the housing by means of a bearing and bearing. The other conical pinion (25) of smaller diameter meshes with the previous pinion (22) in the upper part of the housing joining in solidarity with the fast axis (26) of vertical position. This axis is fixed at its upper end to the upper wall of the box by means of a bearing and bearing (39), as is the case in the lower wall of the box (39). The inside of the box contains lubricant (27). The rapid axis (26) descends vertically until it is telescopically crimped by a grooved contour on a hollow shaft (29) at the other end of which joins a cardan mechanism (30), from which a third rigidly fixed vertical axis (31) starts to the tower by means of an anti-oscillation support (32). Said last axis transmits its rotation movement to a conventional generator installed at the base of the tower, in which, due to its standard character, there is no more detail. Also on the turntable is the locking system of the self-orientation mechanism of the turbine consisting of chocks that are placed between the wheels of the turntable and the tower on which they rotate; as well as the brushes (33) that make the connection between the wiring (34) that comes down from the lightning rod (17) through the housing and a friction ring (36) installed in the tower that is the one that would communicate the electric shock with the conduction that along the tower descends to land.
La correa transmisora (12) es tensada por un polein (37) que interpuesto en la trayectoria de esta en la parte baja del rotor, presiona sobre ella de forma regulada y constante. Constructivamente el aerogenerador dependiendo de su tamaño puede realizarse en módulos para su fácil transporte y montaje, combinando materiales que den al conjunto ligereza y resistencia. Tamaño que condicionara igualmente las formas de acceso para mantenimiento o reparaciones.The transmitter belt (12) is tensioned by a pole (37) which, interposed in its trajectory in the lower part of the rotor, presses on it in a regulated and constant manner. Constructively the wind turbine depending on its size can be carried out in modules for easy transport and assembly, combining materials that give the whole lightness and resistance. Size that will also condition the forms of access for maintenance or repairs.
g.-Aplicación industrialg.-Industrial application
Los usos industriales a los que puede destinarse la presente turbina pueden clasificarse en dos grupos, los dirigidos a captar energía cinética de los fluidos y los destinados a generar o entregar energía cinética. En el primer grupo podrían mencionarse: - Los aerogeneradores, aerobombas, o cualquier otra aplicación derivada de la captación de energía cinética del viento como puede ser a través de centrales ciclónicas en sus diversas posibilidades. - En la extracción de energía cinética de los líquidos como turbina hidráulica en saltos de agua o corrientes marinas. - En la extracción de energía cinética a 'partir de la expansión térmica de los gases como en turbinas de gas, turbinas de vapor, en centrales térmicas, nucleares o de otros tipos. En el segundo grupo pueden enumerarse de forma genérica los siguientes: - Ventiladores, compresores, extractores. - Propulsores aéreos para aeronaves de cualquier tipo. - Propulsores hidráulicos en embarcaciones de cualquier naturaleza. The industrial uses to which this turbine can be used can be classified into two groups, those aimed at capturing kinetic energy from fluids and those intended to generate or deliver kinetic energy. In the first group, the following could be mentioned: - Wind turbines, aerobombas, or any other application derived from the capture of kinetic energy from the wind, such as through cyclonic plants in their various possibilities. - In the extraction of kinetic energy from liquids as a hydraulic turbine in waterfalls or sea currents. - In the extraction of kinetic energy from the thermal expansion of gases such as gas turbines, steam turbines, thermal, nuclear or other power plants. In the second group the following can be listed in a generic way: - Fans, compressors, extractors. - Air thrusters for aircraft of any type. - Hydraulic thrusters in boats of any nature.

Claims

REIVINDICACIONES
L- Turbina Universal de captación o generación axial de energía cinética en fluidos, del tipo que comprende un conjunto formado por un rotor tubular en el que van fijadas internamente alabes helicoidales; una carcasa que envuelve al rotor y lo mantiene en una determinada posición; con mecanismo de transmisión perimetral, y con soportes de fijación al elemento portante caracterizada porque el rotor presenta una solidez del cien por cien.L- Universal turbine for the acquisition or axial generation of kinetic energy in fluids, of the type comprising an assembly formed by a tubular rotor in which helical blades are fixed internally; a housing that wraps the rotor and keeps it in a certain position; with perimeter transmission mechanism, and with support brackets to the bearing element characterized in that the rotor has a solidity of one hundred percent.
2. Turbina Universal de captación o generación axial de energía cinética en fluidos, en todo de acuerdo con la primera reivindicación caracterizada porque los alabes helicoidales presentan una superficie torsionada con un ángulo de calado que evoluciona de menor a mayor, de forma constante y proporcional a la longitud radial, desde la raíz hasta el centro de rotación, donde el ángulo de calado es de noventa grados.2. Universal turbine for the acquisition or axial generation of kinetic energy in fluids, in all according to the first claim characterized in that the helical blades have a twisted surface with a draft angle that evolves from minor to greater, in a constant and proportional way to the radial length, from the root to the center of rotation, where the draft angle is ninety degrees.
3. Turbina Universal de captación o generación axial de energía cinética en fluidos, en todo de acuerdo con la primera y segunda reivindicaciones caracterizada porque el ángulo de paso formado por la raíz de las alabes esta determinado por las características del conducto en que estas están fijadas, siendo el ángulo de paso constante cuando el área de barrido del conducto rotórico se mantiene constante y siendo el ángulo de paso variable, disminuyendo o aumentando de forma proporcional e inversa a la evolución creciente o decreciente del área de barrido en el conducto rotórico 3. Universal turbine for the acquisition or axial generation of kinetic energy in fluids, in all according to the first and second claims characterized in that the angle of passage formed by the root of the blades is determined by the characteristics of the duct in which they are fixed , the angle of passage being constant when the sweeping area of the rotary duct is kept constant and the angle of passage being variable, decreasing or increasing proportionally and inversely to the increasing or decreasing evolution of the sweeping area in the rotary conduit
PCT/ES2005/000301 2004-06-16 2005-05-27 Universal turbine for the collection or axial generation of kinetic energy in fluids WO2006000600A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200401476A ES2257155B1 (en) 2004-06-16 2004-06-16 UNIVERSAL TURBINE OF CAPITAL OR AXIAL GENERATION OF KINETIC ENERGY IN FLUIDS.
ESP200401476 2004-06-16

Publications (1)

Publication Number Publication Date
WO2006000600A1 true WO2006000600A1 (en) 2006-01-05

Family

ID=35781573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000301 WO2006000600A1 (en) 2004-06-16 2005-05-27 Universal turbine for the collection or axial generation of kinetic energy in fluids

Country Status (2)

Country Link
ES (1) ES2257155B1 (en)
WO (1) WO2006000600A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK179043B1 (en) * 2008-01-31 2017-10-16 Maja Weg Samsing Gear Propeller

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US952969A (en) * 1909-04-01 1910-03-22 Charles A Whelan Water-motor.
US2656809A (en) * 1951-06-25 1953-10-27 James W Frasure Combination rudder and propulsion device
US4000955A (en) * 1975-09-22 1977-01-04 Kiyoshi Tokutomi Fan with wide curved blades
FR2693240A1 (en) * 1992-07-02 1994-01-07 Sardou Max Converter to produce movement of air from mechanical energy, - includes central core with members coupling this core to motor and blades formed with helicoidal shape lying between inner and outer helicoidal side edges
US5765990A (en) * 1997-04-15 1998-06-16 Jones; Byron O. Wind wheel for the generation of electrical energy
WO2004002817A1 (en) * 2002-06-29 2004-01-08 Triton Developments (Uk) Limited Rotor assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US952969A (en) * 1909-04-01 1910-03-22 Charles A Whelan Water-motor.
US2656809A (en) * 1951-06-25 1953-10-27 James W Frasure Combination rudder and propulsion device
US4000955A (en) * 1975-09-22 1977-01-04 Kiyoshi Tokutomi Fan with wide curved blades
FR2693240A1 (en) * 1992-07-02 1994-01-07 Sardou Max Converter to produce movement of air from mechanical energy, - includes central core with members coupling this core to motor and blades formed with helicoidal shape lying between inner and outer helicoidal side edges
US5765990A (en) * 1997-04-15 1998-06-16 Jones; Byron O. Wind wheel for the generation of electrical energy
WO2004002817A1 (en) * 2002-06-29 2004-01-08 Triton Developments (Uk) Limited Rotor assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK179043B1 (en) * 2008-01-31 2017-10-16 Maja Weg Samsing Gear Propeller

Also Published As

Publication number Publication date
ES2257155A1 (en) 2006-07-16
ES2257155B1 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
ES2626269T3 (en) Rotor apparatus
ES2347356T3 (en) DEVICE AND INSTALLATION FOR THE GENERATION OF REGENERATIVE AND RENEWABLE ENERGY FROM WIND.
EP1715181B1 (en) Magnus type wind power generator
US10138866B2 (en) Fluid power generation method and fluid power generation device
US9863398B2 (en) Wind-powered rotor and energy generation method using said rotor
ES2463118T3 (en) Conical hollow helical turbine for energy transduction
ES2862156T3 (en) Fluid redirection structure
AU2005243553A1 (en) Wind turbine rotor projection
ES2748702T3 (en) Rotor blade for wind turbine
WO2011018651A2 (en) Turbine
US9879651B2 (en) Vane device for a turbine apparatus
WO2017055649A1 (en) Device for converting the kinetic energy of waves, water flows or wind into mechanical energy
ES2257155B1 (en) UNIVERSAL TURBINE OF CAPITAL OR AXIAL GENERATION OF KINETIC ENERGY IN FLUIDS.
WO2000046498A1 (en) Improved hydraulic and/or wind generator
US20170350254A1 (en) Energy Conversion Device
US20110070083A1 (en) Streamlined Wind Turbine Optimized for Laminar Layer
US20100295314A1 (en) Floating wind turbine
TW202233958A (en) Wind power generator installable on moving body
ES2897543T3 (en) wind power system
JP2007120451A (en) Windmill with rotary blade shaft orthogonal to output shaft
ES2514990B2 (en) Airflow acceleration system for wind turbines
ES2932385A1 (en) Power generation system based on bladed turbines defined by conical or spherical helical curves (Machine-translation by Google Translate, not legally binding)
ES2401801T3 (en) Wind turbine
KR20140102459A (en) The case of vertical-axis wind-blades part for the use of Vertical-Axis Wind Turbine(VAWT)
WO2012113412A1 (en) Method for producing electric power and aerodynamic power station for carrying out said method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase