WO2006016445A1 - レーダ - Google Patents

レーダ Download PDF

Info

Publication number
WO2006016445A1
WO2006016445A1 PCT/JP2005/010109 JP2005010109W WO2006016445A1 WO 2006016445 A1 WO2006016445 A1 WO 2006016445A1 JP 2005010109 W JP2005010109 W JP 2005010109W WO 2006016445 A1 WO2006016445 A1 WO 2006016445A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
target
differential
doppler
integrated
Prior art date
Application number
PCT/JP2005/010109
Other languages
English (en)
French (fr)
Inventor
Motoi Nakanishi
Toru Ishii
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to DE112005001563T priority Critical patent/DE112005001563T5/de
Priority to JP2006531293A priority patent/JP4197033B2/ja
Publication of WO2006016445A1 publication Critical patent/WO2006016445A1/ja
Priority to US11/649,785 priority patent/US7425917B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/588Velocity or trajectory determination systems; Sense-of-movement determination systems deriving the velocity value from the range measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation

Definitions

  • the present invention relates to a radar that acquires detection information including speed information of a target by transmitting and receiving radio waves.
  • an on-vehicle radar detects a detection range in front of the host vehicle, and measures the position and speed of a target such as another vehicle existing within the detection range.
  • FM-CW radars transmit a transmission signal that repeats an uplink modulation interval in which the frequency gradually increases and a downlink modulation interval in which the frequency gradually decreases, and receives a reception signal including a reflection signal from the target. Based on the frequency spectrum of the beat signal, which is the signal of the frequency difference between the transmission signal and the reception signal, the position and speed of the target relative to the vehicle are obtained.
  • the speed determined by the frequency transition of the beat signal appearing on the frequency spectrum due to the Doppler effect as a relative speed (hereinafter referred to as the "Doppler speed") and a predetermined measurement period.
  • the position of the target can be obtained at each timing, and the moving speed of the target (hereinafter referred to as “differential speed” t) can be obtained by the change in position.
  • the speed information obtained by these two methods has both merits and demerits. If only one of them is used as speed information, problems may arise.
  • the validity of the Doppler velocity data is judged from the differential velocity data, and when the Doppler velocity data is regarded as an abnormal value, it is corrected with the differential velocity data.
  • the differential speed is used as the relative speed of the target when the difference between the Doppler speed and the differential speed is large, and the Doppler speed is used when the difference is small.
  • the Doppler speed is used as the relative speed of the target.
  • Patent Document 1 Japanese Patent No. 2695086
  • Patent Document 2 Japanese Patent Laid-Open No. 07-146358
  • an object of the present invention is to provide a radar that solves the above-described problems and can obtain a relative velocity of a target with higher accuracy.
  • the radar according to the present invention is configured as follows.
  • Electromagnetic wave transmission / reception with respect to a predetermined detection range is repeated at every predetermined measurement cycle to measure the position of the target within the detection range, and the Doppler shift amount force of the electromagnetic wave reflected by the target Target measuring means for measuring the Doppler speed of the target, and differential speed calculating means for determining the differential speed of the target from the amount of change in the position of the target during the measurement period determined by the target measuring means.
  • an integrated speed determining means for obtaining a current integrated speed by weighted averaging the Doppler speed, the differential speed, and the previous integrated speed at the timing of the measurement cycle.
  • the integrated speed determination means calculates a weighting factor for the Doppler speed and the differential speed based on a difference in the Doppler speed with respect to the previous integrated speed and a difference in the differential speed with respect to the previous integrated speed. Shall be set.
  • the integrated speed determination means is the previous integrated speed of the Doppler speed and the differential speed.
  • the weighting coefficient for the speed with the smaller difference from the combined speed is set larger than the weighting coefficient for the speed with the larger difference from the previous integrated speed.
  • the integrated speed determination means sets weight coefficients for two speeds whose values are approximated among the Doppler speed, the differential speed, and the previous integrated speed as weight coefficients for the remaining speeds. It should be set larger than that.
  • a distance measuring means for measuring a distance to a target by means different from the distance measurement by transmission and reception of the electromagnetic wave
  • the differential velocity calculating means is The amount of change in the position of the target during the measurement cycle determined by the distance measuring means shall be obtained as the minute speed of the target.
  • the integrated speed determination means obtains an acceleration from a change in the integrated speed from the previous time to the previous time for each measurement cycle, and the current measurement based on the acceleration. Estimate the speed at the timing and use the estimated speed as the previous integrated speed
  • the integrated speed determining means is the last time the difference between the respective speeds of the Doppler speed, the differential speed, and the integrated speed exceeds a predetermined value.
  • the integration speed is output as the current integration speed.
  • FIG. 1 is a block diagram showing a configuration of a radar common to each embodiment.
  • FIG. 2 is a diagram showing an example of frequency changes of transmission signals and reception signals and frequency changes of upbeat signals and downbeat signals.
  • FIG. 3 Position and Dobbler speed for each target within the detection range common to each embodiment. It is a flowchart which shows the procedure which calculates
  • FIG. 4 is a flowchart showing a procedure for obtaining an integration speed according to the first embodiment.
  • FIG. 5 is a flowchart showing a procedure for obtaining an integration speed according to the second embodiment.
  • FIG. 6 is a flowchart showing another procedure for obtaining the integration speed according to the second embodiment.
  • FIG. 7 is a flowchart showing a procedure for obtaining an integration speed according to the third embodiment.
  • FIG. 8 is a flowchart showing a procedure for obtaining an integration speed according to the fourth embodiment.
  • FIG. 9 is a flowchart showing a procedure for obtaining an integration speed according to the fifth embodiment.
  • FIG. 10 is a flowchart showing a procedure for obtaining an integration speed according to the sixth embodiment.
  • FIG. 11 is a flowchart showing a procedure for obtaining an integration speed according to a seventh embodiment.
  • Fig. 1 is a block diagram showing the configuration of the entire system including the on-vehicle radar and various units connected to it.
  • the part indicated by 20 is the radar front end, which is composed of a control circuit 1, a millimeter wave circuit 2, a scan unit 3, an antenna 4, and so on.
  • the millimeter wave circuit 2 modulates the oscillation frequency with the modulation signal supplied from the control circuit 1 as described later, and outputs the transmission signal to the antenna 4 via the scan unit 3.
  • the received signal is given to the control circuit 1 as an intermediate frequency signal (IF signal).
  • Scan unit 3 For example, the beam direction of the antenna 4 is scanned over a predetermined range by mechanical reciprocation.
  • the control circuit 1 gives a modulation signal to the millimeter wave circuit 2 and obtains the distance and speed of the target based on the IF signal from the millimeter wave circuit 2. Further, the control circuit 1 outputs a control signal to the scan unit 3 and scans the azimuth direction of the detection range by directing the beam of the antenna 4 in a predetermined azimuth to obtain the azimuth of the target.
  • the recognition processing control unit 30 inputs signals from the vehicle speed sensor 10 and other various sensors 11, and detects the vehicle situation of the vehicle and the environment of the road on which the vehicle travels. Then, the target target information is given to the ACC controller 15.
  • the ACC controller 15 performs automatic cruise control based on the target position and speed information given from the control circuit 1 and the own vehicle speed obtained by the vehicle speed sensor 11. For example, control data is given to the engine control unit 16 and the brake control unit 17 so that the distance between the preceding vehicle and the preceding vehicle is always kept constant. It also provides control data for avoiding collisions with targets ahead of the preceding vehicle.
  • the engine control unit 16 and the brake control unit 17 perform engine control and brake control based on control data given from the ACC controller 15.
  • FIG. 2 shows an example of the difference in frequency change between the transmission signal and the reception signal due to the distance and speed of the target.
  • the frequency difference between the transmission signal TX and the reception signal RX when the frequency of the transmission signal TX increases is the upbeat frequency f.
  • the frequency difference between the transmitted signal TX and the received signal RX is the downbeat frequency f. ⁇ ⁇
  • Deviation (time difference DT) force on the time axis of the triangular wave of this transmitted signal ⁇ and received signal RX Corresponds to the round trip time of the radio wave to the target.
  • the shift on the frequency axis between the transmitted signal ⁇ and the received signal RX is the Doppler shift amount DS, which is caused by the relative speed of the target with respect to the antenna.
  • the value of the upbeat frequency f and the downbeat frequency f changes depending on the time difference DT and the Doppler shift amount DS.
  • FIG. 3 is a flowchart showing a processing procedure of the control circuit 1 of the radar front end 20 shown in FIG.
  • the beam is directed to the initial direction under the control of the scan unit 3 (S1).
  • the digital data of the beat signal obtained by the millimeter wave circuit 2 is acquired by a predetermined number of samplings and subjected to FFT processing (S2 ⁇ S3).
  • the frequency spectrum for each beam azimuth in the upstream modulation section and the downstream modulation section is obtained for the detection range having a predetermined width in the azimuth direction.
  • the signal intensity and frequency of each group are obtained (S8).
  • the center direction of a group that spreads in the beam direction and the frequency axis direction is the representative direction
  • the center of the frequency range that extends on the frequency axis in that direction is the representative peak frequency
  • the signal intensity at the representative peak frequency is Signal strength.
  • the distance and speed of each target are obtained from the sum and difference of the peak frequencies of the upbeat signal and the downbeat signal forming a pair (S10).
  • This speed is the Doppler speed Vdop.
  • the position of the target is obtained by polar coordinates expressed by the beam direction and the distance of the target. Alternatively, convert the polar coordinates to X— y Cartesian coordinates to find the target position.
  • the Doppler speed Vdop is obtained as follows.
  • Vdop c -fd / 2fo...
  • the differential velocity Vdiff is obtained as follows.
  • Vdilf (dn-db) / T ⁇ , ⁇ (2)
  • T Measurement period, the repetition period of steps S1 to S10 shown in Fig. 3, that is, the period for scanning the beam once in the azimuth direction of the detection range
  • the relative speed obtained this time based on the relative speed obtained (output) at the previous measurement timing, the Doppler speed and the differential speed is the integrated speed.
  • the weighted average is performed by weighting the respective values of the Doppler speed, the differential speed, and the previous integrated speed at a predetermined ratio.
  • FIG. 4 is a flowchart showing the procedure.
  • the differential velocity Vdiff is obtained for each target (Sl l).
  • the weighting coefficient for the previous integrated speed Vb is W1
  • the weighting coefficient for the Doppler speed Vdop is W2
  • the weighting coefficient for the differential speed Vdiff is W3
  • the weighted average result is obtained as the smoothing speed Vs (S12).
  • ⁇ ⁇ + ⁇ + ⁇ It is.
  • the smoothed relative speed Vs is output as the current integrated speed, and is stored as “previous integrated speed Vb” in preparation for the next measurement (S 13 ⁇ S 14). Repeat the above process. Return.
  • the weighted average is performed at a ratio according to each value of “Doppler speed”, “differential speed”, and “previous integration speed”.
  • the difference between the Doppler speed Vdop and the previous integrated speed Vb is AVbdo
  • the difference between the differential speed Vdiff and the previous integrated speed Vb is ⁇ Vbdi
  • the weighting coefficient Wdiff expressed by the following relationship is the differential speed Vdiff. Obtained as a weighting factor.
  • the weight coefficient Wdop is obtained as a weight coefficient for the differential velocity Vdop (S22 ⁇ S23).
  • a smoothed relative speed Vs is obtained by a weighted average of this Vn and the previous integrated speed Vb (S25). Then, the smoothed relative speed Vs is output as the current measurement result, and Vs is stored as Vb (S26 ⁇ S27). The above processing is repeated.
  • FIG. 6 is a flowchart showing another processing procedure.
  • a differential velocity Vdii3 ⁇ 4 is obtained for each target (S31).
  • the difference AVbd between the Dobbler speed Vdop and the previous integration speed Vb, the difference AVbdi between the differential speed Vdiff and the previous integration speed Vb, and the difference AVdodi between the Dobbler speed Vdop and the differential speed Vdiff The weighting factors Wb, Wdop, Wdill represented by
  • the relative speed Vs is obtained by the weighted average by multiplying the previous integrated speed Vb, the Doppler speed Vdop, and the differential speed Vdiffl by each of the weighting factors (S34). This relative speed Vs is output and stored as Vb (S35 ⁇ S36). This process is repeated.
  • the current integrated speed is obtained by performing weighted averaging of the speed data having the smaller difference between the Dobbler speed and the differential speed from the previous integrated speed and the previous integrated speed.
  • FIG. 7 is a flowchart showing a processing procedure for this.
  • a differential velocity Vdiff is obtained from the moving distance in the measurement cycle and the measurement cycle (S41).
  • a difference ⁇ Vbdi between the differential speed Vdiff and the previous integrated speed Vb and a difference ⁇ Vbdo between the Doppler speed Vdop and the previous integrated speed Vb are obtained (S42).
  • the absolute values of ⁇ Vbdi and ⁇ Vbdo are compared, and if the absolute value of ⁇ Vbdi is larger than the absolute value of ⁇ Vbdo, the integrated speed Vs smoothed by the weighted average of the previous integrated speed Vb and the Doppler speed Vdop. Is obtained (S43 ⁇ S44). If the absolute value of ⁇ Vbdo is larger than the absolute value of ⁇ Vbdi, the smoothing speed Vs is obtained by a weighted average of the previous integrated speed Vb and the differential speed Vdiff (S43 ⁇ S45).
  • step S44 The equation shown in step S44 is
  • Vs (1- ⁇ l) Vb + ⁇ lVdop
  • the previous integration speed Vb is multiplied by a weighting factor of (1 ⁇ 1), and the weighted average is multiplied by a weighting factor of
  • step S45 the equation shown in step S45 is
  • Vs (1- ⁇ 2) Vb + ⁇ 2Vdilf '' (4)
  • the previous integration speed Vb is multiplied by a weighting factor of (1 ⁇ 2)
  • the differential speed Vdiff is multiplied by a weighting factor of ⁇ 2 to be weighted average.
  • both j8 1 and ⁇ 2 are filter coefficients (0 ⁇ 1 ⁇ 1, 0 ⁇ j8 2 ⁇ 1). It means that the larger the ⁇ 1, the greater the Doppler velocity of the current measurement, and the higher the response of the smoothing velocity Vs. Similarly, the larger the j82, the greater the differential speed obtained by this measurement, which means that the response of the smoothing speed Vs increases.
  • the weighting factor for the speed not related to the smaller one of Abdo and Abdi is set to 0.
  • This smoothing speed Vs is output as the current integrated speed (S46), and the value of Vs is stored as Vb in preparation for the next measurement timing (S47).
  • the modulation frequency is increased (the modulation period is shortened) and the frequency displacement width is increased, the component corresponding to the beat frequency distance increases in proportion to the modulation frequency (with respect to the distance change).
  • the Doppler shift frequency does not change. Therefore, the influence on the Doppler speed is larger than the influence on the differential speed. Therefore, when the modulation frequency and the frequency displacement range are set, and the influence of the peak frequency fluctuation is in the relationship of the Doppler speed> the differential speed, the measurement error of the Dobbler speed increases in an environment with many roadside objects.
  • the speed data having a large change with respect to the integrated speed which is the last final measurement result, includes a large error.
  • the Doppler speed and the differential speed the data that shows a value close to the previous integrated speed is adopted and the current integrated speed is estimated.
  • FIG. 8 is a flowchart showing the processing contents of the control circuit 1 shown in FIG.
  • the weight coefficients for the two speed data whose values are approximated are used as the remaining speed data.
  • the weighted average is set larger than the weighting factor for.
  • AVbdi and AVbdo are obtained in the same manner as in step S42 in FIG. Further, the difference AVdodi between the differential velocity Vdiff and the Doppler velocity Vdop is obtained (S52). Then, the absolute value of AVbdi is compared with the absolute value of AVbdo, and the absolute value of AVdodi is compared with the absolute value of AVbdo. If the difference ⁇ Vbdo from Vb is the smallest, the smoothing speed Vs is obtained by weighted averaging using the Doppler speed Vdop and the previous integrated speed Vb (S53 ⁇ S54 ⁇ S55).
  • the differential speed Vd iff and the previous integrated speed Vb are weighted and averaged (S56 ⁇ S57).
  • the differential velocity Vdiff and the Doppler velocity Vdop are weighted averaged (S58).
  • the weight coefficient is set to 0 for speeds not related to the smallest difference between the speeds.
  • the smoothing speed Vs thus obtained is output as the current integrated speed, and Vs is stored as the "previous integrated speed" Vb in preparation for the next measurement timing (S59 ⁇ S60).
  • the current integration speed is obtained by the weighted average of the fractional speed and the Doppler speed.
  • FIG. 9 is a flowchart showing the processing contents of the control circuit 1 shown in FIG.
  • the acceleration is obtained based on the change in the integration speed from the previous time to the previous time in each measurement cycle, and based on the acceleration! /, The integration at the current measurement timing is performed. Guess the speed and treat it as the “previous integration speed”.
  • the previous Doppler speed and the differential speed are close to the previous integrated speed and the weight data is averaged using the speed data of the previous one.
  • Vp Vb + T-Ab--(5)
  • Vb is the previous integration speed
  • T is the measurement cycle
  • Ab is the acceleration at the time of the previous measurement.
  • the absolute values of AVpdi and AVpdo are compared, and if the absolute value of ⁇ Vpdi is greater than the absolute value of ⁇ Vpdo, the weighted average of the predicted value Vp of this time and the Doppler velocity Vdop
  • the integrated speed Vs smoothed by is obtained (S64 ⁇ S65). If the absolute value of ⁇ Vpdo is larger than the absolute value of AVpdi, the smoothing speed Vs is obtained by the weighted average of the predicted value Vp of the current relative speed and the differential speed Vdif f (S64 ⁇ S66).
  • the smoothing speed Vs obtained in this way is output as the current integrated speed (S67).
  • the error due to the acceleration is corrected in consideration of the acceleration of the mobile body (own vehicle) on which the radar is mounted.
  • FIG. 10 is a flowchart showing the processing contents of the control circuit 1 shown in FIG.
  • the differential velocity Vdill is obtained for each target (S71).
  • the vehicle speed Vmob is captured by a vehicle speed sensor such as a vehicle speed pulse sensor (S72). Further, the difference between the current host vehicle speed Vmob (0) and the previous host vehicle speed Vmob (—l) is obtained as AVmop (S73). Then, by subtracting this vehicle speed change ⁇ Vmob from the previous integrated speed Vb, the previous integrated speed Vb is corrected for the acceleration of the own vehicle, and the corrected previous integrated speed Vm is Obtain (S74).
  • the smoothing speed Vs thus obtained is output as the current integrated speed (S79).
  • the current host vehicle speed Vmob (0) is stored as the previous host vehicle speed Vmob (-1) (S80).
  • the previous integration speed is output as is as the current measurement result. If the above threshold value is not exceeded, the two speed data are weighted and averaged as in the case of the first embodiment to obtain the relative speed.
  • the moving distance force in the measurement cycle is also obtained as a differential velocity Vdif 13 ⁇ 4 (S81).
  • AVbdi and AVbdo are obtained in the same manner as in step S42 in FIG. 7 (S82).
  • the previous integrated speed Vb is set as the smoothing speed Vs, that is, the current integrated speed (S83 ⁇ S84 ⁇ S88).
  • the previous integrated speed Vb is set as the smoothing speed Vs (S83 ⁇ S86 ⁇ S88).
  • the smoothing speed Vs is obtained by the weighted average of the Doppler speed Vdop and the previous integrated speed Vb (S85). ). If the absolute value of ⁇ Vbdi is less than or equal to the absolute value of ⁇ Vbdo and less than or equal to the threshold TH2, the smoothing velocity Vs is obtained by the weighted average of the differential velocity Vdiff and the previous integrated velocity Vb (S87). .
  • the smoothing speed Vs obtained in this way is output, and Vs is stored as “previous integrated speed Vb” in preparation for the next measurement (S89 ⁇ S90).
  • the Doppler velocity and the differential velocity both have large errors.
  • the previous integration speed or the acceleration was estimated as shown in the fifth and sixth embodiments.
  • the predicted value of the current relative speed is considered to indicate the value that is closest to the true relative speed.
  • the position changing force of the target during the measurement period obtained by the radar ranging function The force for obtaining the differential velocity
  • the ranging means other than the radar The differential speed is obtained based on the distance measurement data obtained in step (1).
  • an infrared radar when used in combination with an on-vehicle radar, an infrared radar, a stereo camera, an ultrasonic sonar, or the like is used.
  • infrared radar distance measurement is performed based on the high reflection point of a target such as a reflector of another vehicle traveling in front of the vehicle.
  • Stable and accurate differential speed can be obtained.
  • a stereo camera measures distances based on the shape of a target such as another vehicle. However, since the posture of the target does not change abruptly, it is possible to obtain a stable and highly accurate differential speed.

Abstract

 各物標について、計測周期での物標の移動距離から微分速度Vdiffを求め、この微分速度Vdiffと前回出力した統合速度Vb、およびドップラシフト周波数から求めたドップラ速度Vdopに基づいて、それらを加重平均して今回の統合速度Vsを求める。例えば、微分速度Vdiffと前回の統合速度Vbとの差ΔVbdiの絶対値と、ドップラ速度Vdopと前回統合速度Vbとの差ΔVbdoの絶対値とを比較し、ΔVbdoの絶対値よりΔVbdiの絶対値が大きければ、前回の統合速度Vbとドップラ速度Vdopとの加重平均によって平滑化した統合速度Vsを求め、そうでなければ前回の統合速度Vbと微分速度Vdiffとの加重平均により平滑化速度Vsを求める。

Description

明 細 書
レーダ
技術分野
[0001] この発明は電波の送受信により、物標の速度情報を含む探知情報を取得するレー ダに関するものである。
背景技術
[0002] 従来、車載用レーダは自車前方の探知範囲を探知して、その探知範囲内に存在 する他車等の物標の位置と速度を計測する。 FM— CW方式のレーダでは、周波数 が次第に上昇する上り変調区間と周波数が次第に下降する下り変調区間とを繰り返 す送信信号を送信し、物標からの反射信号を含む受信信号を受信して、送信信号と 受信信号との周波数差の信号であるビート信号の周波数スペクトルに基づ!/、て、自 車に対する物標の位置と速度を求める。
[0003] このような FM— CW方式のレーダでは、相対速度としてドッブラ効果による、周波 数スペクトル上に現れるビート信号の周波数遷移によって求まる速度(以下「ドッブラ 速度」という。)と、所定計測周期のタイミング毎に物標の位置を求め、その位置変化 によって求められる物標の移動速度(以下「微分速度」 t 、う。)を求めることができる 。この 2つの方法により求められるそれぞれの速度情報には、一長一短があり、片方 だけを用いて速度情報とすると問題が生じる場合がある。
[0004] 例えば特許文献 1では、ドッブラ速度データの有効性を微分速度データにより判断 し、ドッブラ速度データが異常な値と見なしたとき、微分速度データで補正するように している。具体的には、ドッブラ速度と微分速度の差が大きいときは微分速度、差が 小さいときはドッブラ速度をそれぞれ物標の相対速度として利用する。または、ドッブ ラ速度と微分速度の差が大きいときは前回の相対速度、差が小さいときはドッブラ速 度をそれぞれ物標の相対速度として利用する。
[0005] また、特許文献 2では、ドッブラシフト周波数力 得た速度を微分速度で補正するこ とによって相対速度の精度を高めるようにして!/、る。
特許文献 1:特許第 2695086号公報 特許文献 2:特開平 07— 146358号公報
発明の開示
発明が解決しょうとする課題
[0006] ところが、前方を走行する他車等の反射体内での反射点が急激に変化した場合は 、微分速度はドッブラ速度より精度が低下する。特許文献 1の方法では、ドッブラ速度 と微分速度の差が大きいときに微分速度の方を選択するので、このような場合に大き な誤差が生じることになる。また、ドッブラ速度と微分速度の差が大きいときに、前回 に出力した相対速度を選択する場合、物標の加減速が大きいと、微分速度はドッブ ラ速度より精度が低下するので、このようなときに大きな誤差が生じることになる。
[0007] また、特許文献 2のレーダにぉ 、ては、ガードレール等の反射体が連続して存在す る領域の近傍を物標が移動するような場合、ドッブラ速度 (場合によっては微分速度 にも)に大きな誤差が生じるため、正確な速度情報が得られない。
[0008] そこで、この発明の目的は、前述の問題を解消して、より高精度な物標の相対速度 を求められるようにしたレーダを提供することにある。
課題を解決するための手段
[0009] 上記課題を解決するために、この発明のレーダは次のように構成する。
(1)所定探知範囲に対する電磁波の送受信を所定の計測周期のタイミング毎に繰 り返し行って、前記探知範囲内の物標の位置を計測するとともに、前記物標で反射し た電磁波のドッブラシフト量力 該物標のドッブラ速度を計測する物標計測手段と、 前記物標計測手段により求められた前記物標の前記計測周期間での位置の変化 量から物標の微分速度を求める微分速度算出手段と、
前記計測周期のタイミングで、前記ドッブラ速度、前記微分速度、および前回の統 合速度を加重平均して今回の統合速度を求める統合速度決定手段と、を備えたこと を特徴としている。
[0010] (2)前記統合速度決定手段は、前記前回の統合速度に対する前記ドッブラ速度の 差と、前記前回の統合速度に対する前記微分速度の差とによって前記ドッブラ速度 および前記微分速度に対する重み係数を設定するものとする。
[0011] (3)前記統合速度決定手段は、前記ドッブラ速度と前記微分速度のうち、前回の統 合速度との差が小さ 、方の速度に対する重み係数を、前記前回の統合速度との差 が大きい方の速度に対する重み係数に比べて大きく設定するものとする。
[0012] (4)前記統合速度決定手段は、前記ドッブラ速度、前記微分速度、および前回の 統合速度のうち、値が近似する 2つの速度に対する重み係数を、残りの速度に対す る重み係数に比べて大きく設定するものとする。
[0013] (5) (1)〜(4)において、前記電磁波の送受信による測距とは別の手段により物標 までの距離を測定する測距手段を設け、前記微分速度算出手段を、前記測距手段 により求められた前記計測周期間での前記物標の位置の変化量力 当該物標の微 分速度を求めるものとする。
[0014] (6) (1)〜(5)において、前記統合速度決定手段は、前記計測周期毎の前々回か ら前回への統合速度の変化から加速度を求め、当該加速度に基づいて今回の計測 タイミングでの速度を推測し、当該推測速度を前記前回の統合速度とするものとする
[0015] (7) (1)〜(6)において、前記電磁波の送受信を行う移動体の速度または加速度を 計測する手段を設け、前記統合速度決定手段は、前記計測周期毎の前記移動体の 加速度に基づ 、て、前回の計測タイミング力も今回の計測タイミングまでの前記移動 体の速度変化分だけ前回の統合速度を補正するものとする。
[0016] (8) (1)〜(7)において、前記統合速度決定手段は、前記ドッブラ速度、前記微分速 度、前記統合速度の各速度間のそれぞれの差分が所定値を超えるとき、前回の統 合速度を今回の統合速度として出力するものとする。
発明の効果
[0017] (1)ドッブラ速度、微分速度、および前回の統合速度、というそれぞれ性質の異な つた 3つの速度情報を基に今回の統合速度を決定することによってノイズ等によるラ ンダムに発生する誤差の成分を抑制でき、物標の相対速度の計測精度が高まる。
[0018] (2)前回の統合速度に対するドッブラ速度の差と、前回の統合速度に対する微分 速度の差とに応じてドッブラ速度および微分速度に対する重み係数を設定すること によって、 3つの速度情報のうち、より信頼のおける速度情報に大きな重み係数をか けることができ、その結果相対速度の計測精度が高まる。 [0019] (3)ドッブラ速度と微分速度のうち、前回の統合速度との差が小さい方の速度に対 する重み係数を大きく設定することによって、信頼性の高いものと予想できる速度情 報に対する重み係数が大きくなつて、相対速度の計測精度が高まる。
[0020] (4)ドッブラ速度、微分速度、および前回の統合速度のうち、値が近似する 2つの速 度に対する重み係数を大きく設定することによって、信頼性の低いものと予想される 速度情報によって計測精度が低下することなぐ結果的に相対速度の計測精度が高 まる。
[0021] (5)前記電磁波の送受信による測距とは別の手段により求められた計測周期間で の物標の位置変化力 物標の微分速度を求めることによって、反射体の同一個所( たとえば前方を走行する他車のリフレクタ等)を用いて測距を行うので、微分速度の 時間的なばらつきが小さくなり、相対速度の計測精度を高めることができる。
[0022] (6)統合速度の加速度に基づ!/、て今回の計測タイミングでの速度を推測し、その推 測速度を「前回の統合速度」とすることにより、すなわち「前回の統合速度」を統合速 度の加速度を考慮して補正することにより、物標が加速度をもって移動している場合 にも、より高い計測精度で物標の相対速度を求めることができる。
[0023] (7)計測周期毎の移動体(自車)の加速度に基づ!、て、前回の計測タイミングから 今回の計測タイミングまでの移動体の速度変化分だけ「前回の統合速度」を補正す ることによって、移動体(自車)が加速度をもって移動して 、る場合でも高 、計測精度 で物標の相対速度を求めることができる。
[0024] (8)ドッブラ速度、微分速度、統合速度の各速度間のそれぞれの差分が所定値を 超えるとき、「前回の統合速度」を「今回の統合速度」として出力することによりドッブラ 速度と微分速度が共に比較的大きな誤差をもっている時でも、その影響を受けずに 安定した相対速度を得ることができる。
図面の簡単な説明
[0025] [図 1]各実施形態に共通なレーダの構成を示すブロック図である。
[図 2]送信信号と受信信号の周波数変化およびアップビート信号とダウンビート信号 の周波数変化の例を示す図である。
[図 3]各実施形態に共通な探知範囲内の各物標について、その位置とドッブラ速度 を求める手順を示すフローチャートである。
[図 4]第 1の実施形態に係る統合速度を求めるための手順を示すフローチャートであ る。
[図 5]第 2の実施形態に係る統合速度を求めるための手順を示すフローチャートであ る。
[図 6]第 2の実施形態に係る統合速度を求めるための別の手順を示すフローチャート である。
[図 7]第 3の実施形態に係る統合速度を求めるための手順を示すフローチャートであ る。
[図 8]第 4の実施形態に係る統合速度を求めるための手順を示すフローチャートであ る。
[図 9]第 5の実施形態に係る統合速度を求めるための手順を示すフローチャートであ る。
[図 10]第 6の実施形態に係る統合速度を求めるための手順を示すフローチャートで ある。
[図 11]第 7の実施形態に係る統合速度を求めるための手順を示すフローチャートで ある。
符号の説明
[0026] 4 アンテナ
20-レーダフロントエンド
発明を実施するための最良の形態
[0027] 第 1〜第 7の実施形態に係るレーダについて図 1〜図 4を基に説明する。
図 1は車載用レーダおよびそれに接続される各種ユニットなどを含むシステム全体 の構成を示すブロック図である。図 1において 20で示す部分がレーダフロントエンド であり、制御回路 1、ミリ波回路 2、スキャンユニット 3、アンテナ 4など力 構成している 。ここでミリ波回路 2は、後述するように制御回路 1から与えられる変調信号で発振周 波数を変調し、スキャンユニット 3を経由して送信信号をアンテナ 4へ出力する。また、 受信信号を中間周波信号 (IF信号)として制御回路 1へ与える。スキャンユニット 3は 例えば機械的往復運動により、アンテナ 4のビームの向きを所定範囲に亘つて走査 する。
[0028] 制御回路 1はミリ波回路 2に対して変調信号を与えるとともに、ミリ波回路 2からの IF 信号に基づいて物標の距離と速度を求める。また、制御回路 1はスキャンユニット 3に 対して制御信号を出力して、アンテナ 4のビームを所定方位へ向けることによって探 知範囲の方位方向の走査を行い、物標の方位を求める。
[0029] 認識処理制御部 30は、車速センサ 10や、その他の各種センサ 11からの信号を入 力して、自車の車両状況ゃ自車が走行する道路の環境を検知する。そして、目標物 標の情報を ACCコントローラ 15へ与える。
[0030] ACCコントローラ 15は、制御回路 1から与えられた物標の位置および速度の情報と 車速センサ 11の求めた自車速に基づ 、て自動クルーズ制御を行う。例えば先行車 両との車間距離を常に一定に保つようにエンジンコントロールユニット 16およびブレ ーキコントロールユニット 17に対して制御データを与える。また、先行車両等の前方 の物標との衝突回避のための制御データを与える。
[0031] エンジンコントロールユニット 16およびブレーキコントロールユニット 17は、 ACCコ ントローラ 15から与えられた制御データに基づいてエンジンの制御およびブレーキ の制御を行う。
[0032] 図 2は、物標の距離と速度に起因する、送信信号と受信信号の周波数変化のずれ の例を示して ヽる。送信信号 TXの周波数上昇時における送信信号 TXと受信信号 R Xとの周波数差がアップビートの周波数 f であり、送信信号 TXの周波数下降時にお
BU
ける送信信号 TXと受信信号 RXとの周波数差がダウンビートの周波数 f である。 Δ ί
BD
は周波数偏位幅である。この送信信号 ΤΧと受信信号 RXの三角波の時間軸上のず れ(時間差 DT)力 アンテナ力 物標までの電波の往復時間に相当する。また、送信 信号 ΤΧと受信信号 RXの周波数軸上のずれがドッブラシフト量 DSであり、これはァ ンテナに対する物標の相対速度に起因して生じる。この時間差 DTとドッブラシフト量 DSとによってアップビートの周波数 f とダウンビートの周波数 f の値が変化する。し
BU BD
たがって、このアップビートとダウンビートの周波数を検出することによって、レーダか ら物標までの距離およびレーダに対する物標の相対速度を算出する。 [0033] 図 3は、図 1に示したレーダフロントエンド 20の制御回路 1の処理手順を示すフロー チャートである。まずスキャンユニット 3の制御によって、ビームを初期方位に向ける( S1)。その状態でミリ波回路 2により求められたビート信号のディジタルデータを所定 のサンプリング数だけ取得し、それについて FFT処理する(S2→S3)。
[0034] 続いて、周波数スペクトルの信号強度が鋭い山形に突出する部分を検出し、そのピ ーク周波数およびピーク周波数における信号強度を抽出する(S4)。
[0035] その後、前回の隣接するビーム方位において抽出したピーク周波数およびその信 号強度を参照して、今回のビーム方位におけるピーク周波数と、その信号強度をど のグループに入れるかを判定する(S5)。すなわち、ピーク周波数の周波数差が一定 周波数以内であるものをグノレーピングする。
[0036] その後、ビーム方位をビーム 1本分変位させ、同様の処理を行う (S6→S7→S2→-
•· ) ο
[0037] 以上の処理を最終ビームまで繰り返し行うことによって、方位方向に所定幅広がる 探知範囲について、上り変調区間と下り変調区間についてのビーム方位毎の周波数 スぺクトノレを求める。
[0038] 続、て、各グループの信号強度と周波数を求める(S8)。例えばビーム方位方向と 周波数軸方向に広がるグループの中心方位を代表方位とし、その方位における周 波数軸上に広がる周波数範囲の中心を代表ピーク周波数とし、且つその代表ピーク 周波数における信号強度をそのグループの信号強度とする。
[0039] その後、アップビート信号とダウンビート信号についてそれぞれ求められた各ダル ープのピーク周波数と信号強度に基づいて、同一反射体に起因して生じたものとみ なされるグループ同士をペアリングする(S9)。
[0040] そして、ペアを成すアップビート信号とダウンビート信号のピーク周波数の和と差に よって各物標の距離と速度を求める(S 10)。この速度がドッブラ速度 Vdopである。ま た、ビーム方位と物標の距離によって表される極座標で物標の位置を求める。または 、その極座標を X— yの直角座標に変換して物標の位置を求める。
[0041] ここで、「ドッブラ速度」、「微分速度」、「統合速度」につ 、て説明する。
〈ドッブラ速度〉 まず、ドッブラ速度 Vdopは次のようにして求める。
[0042] Vdop = c -fd/2fo …ひ)
但し、
c :光速
fd:ドッブラシフト周波数
fo :送信周波数
である。
[0043] 〈微分速度〉
微分速度 Vdiffは次のようにして求める。
[0044] Vdilf= (dn-db) /T · ,· (2)
但し、
dn:今回計測された物標までの距離
db:前回計測された物標までの距離
T:計測周期であり、図 3に示したステップ S1〜S10の手順の繰り返し周期、すなわ ちビームを探知範囲の方位方向に 1回分走査する周期
〈統合速度〉
前回の計測タイミングで求めた(出力した)相対速度と上記ドッブラ速度および微分 速度を基にして今回求めた相対速度が統合速度である。
[0045] 《第 1の実施形態》
先ず、第 1の実施形態に係るレーダについて、図 4を基に説明する。
この第 1の実施形態ではドッブラ速度、微分速度、前回の統合速度のそれぞれの 値に対して所定の比率で重み付けして加重平均する。
[0046] 図 4はその手順を示すフローチャートである。まず、各物標について微分速度 Vdiff を求める(Sl l)。そして、前回の統合速度 Vbに対する重み係数を Wl、ドッブラ速度 Vdopに対する重み係数を W2、微分速度 Vdiff〖こ対する重み係数を W3として加重平 均した結果を平滑化速度 Vsとして求める(S 12)。ここで^^丄+^^^+^^ ニ:!でぁる。
[0047] そして、平滑ィ匕された相対速度 Vsを今回の統合速度として出力し、それを次回の 計測に備えて「前回の統合速度 Vb」として記憶する(S 13→S 14)。以上の処理を繰 り返す。
[0048] このようにして 3つの速度データを併用することによって、特にドッブラ速度と微分速 度にノイズ等の影響によってランダムに発生する誤差成分を抑えることができ、相対 速度の計測精度が高まる。
[0049] 《第 2の実施形態》
次に、第 2の実施形態に係るレーダについて、図 5 ·図 6を基に説明する。 この第 2の実施形態では、「ドッブラ速度」、「微分速度」、「前回の統合速度」のそれ ぞれの値に応じた比率で加重平均する。まず各物標につ!/、て微分速度 Vdiff^求め る(S21)。そしてドッブラ速度 Vdopと前回の統合速度 Vbとの差を AVbdo、微分速度 Vdiffと前回の統合速度 Vbとの差を Δ Vbdiとし、次の関係で表される重み係数 Wdiff を微分速度 Vdiff〖こ対する重み係数として求める。同様に重み係数 Wdopを微分速度 Vdopに対する重み係数として求める(S22→S23)。
[0050] そして、微分速度 Vdiffとドッブラ速度 Vdopとの加重平均値 Vnを今回計測された相 対速度の仮データとして求める(S24)。
[0051] 続いてこの Vnと前回の統合速度 Vbとの加重平均により、平滑化した相対速度 Vs を求める(S25)。そしてこの平滑ィ匕した相対速度 Vsを今回の計測結果として出力し 、 Vsを Vbとして記憶する(S26→S27)。以上の処理を繰り返す。
[0052] 図 6は別の処理手順を示すフローチャートである。まず、各物標について微分速度 Vdii¾求める(S31)。続いてドッブラ速度 Vdopと前回の統合速度 Vbとの差分 AVbd o、微分速度 Vdiffと前回の統合速度 Vbとの差分 AVbdi、ドッブラ速度 Vdopと微分速 度 Vdiffとの差分 AVdodiを用いて、次の関係で表される重み係数 Wb,Wdop,Wdillを 求める(S32→S33)。
[0053] そして、前回の統合速度 Vb、ドッブラ速度 Vdop、および微分速度 Vdifflこ対してそ れぞれ上記重み係数をかけて加重平均により相対速度 Vsを求める(S34)。この相 対速度 Vsを出力し、 Vbとして記憶する(S35→S36)。この処理を繰り返す。
[0054] このようにして 3種類の速度データのうち、より信頼のおけるデータに対してより重い 重み係数を付けて加重平均されることになり、相対速度の計測精度を高めることがで きる。 [0055] 《第 3の実施形態》
第 3の実施形態ではドッブラ速度と微分速度のうち前回の統合速度との差が小さい 方の速度データと前回の統合速度とを加重平均することによって今回の統合速度を 求める。
[0056] 図 7はそのための処理手順を示すフローチャートである。
まず各物標について、計測周期での移動距離と計測周期とによって微分速度 Vdiff を求める(S41)。
[0057] 続ヽて、微分速度 Vdiffと前回の統合速度 Vbとの差 Δ Vbdiと、ドッブラ速度 Vdopと 前回の統合速度 Vbとの差 Δ Vbdoをそれぞれ求める(S42)。そして Δ Vbdiと Δ Vbdo の絶対値の大小比較を行い、 Δ Vbdoの絶対値より Δ Vbdiの絶対値が大きければ、 前回の統合速度 Vbとドッブラ速度 Vdopとの加重平均によって平滑化した統合速度 Vsを求める(S43→S44)。また Δ Vbdiの絶対値より Δ Vbdoの絶対値が大きければ 、前回の統合速度 Vbと微分速度 Vdiffとの加重平均により平滑ィヒ速度 Vsを求める(S 43→S45)。
[0058] ステップ S44で示した式は、
Vs= (1 - β l)Vb+ β lVdop · '· (3)
として表されるので、結局前回の統合速度 Vbに対して(1 β 1)の重み係数が掛け られ、ドッブラ速度 Vdopに対して |8 1の重み係数が掛けられて加重平均されることに なる。
[0059] 同様に、ステップ S45に示した式は、
Vs= (1 - β 2)Vb+ β 2Vdilf · '· (4)
として表されるので、結局前回の統合速度 Vbに対して(1 β 2)の重み係数が掛け られ、微分速度 Vdiffに対して β 2の重み係数が掛けられて加重平均されることになる
[0060] ここで j8 1, β 2はいずれもフィルタ係数であり(0く β 1 < 1, 0< j8 2< 1)である。 β 1が大きいほど、今回の計測によるドッブラ速度が大きく反映され、平滑化速度 Vsの 応答性が高まることを意味している。同様に j8 2が大きくなるほど、今回の計測による 微分速度が大きく反映され、平滑ィ匕速度 Vsの応答性が高まることを意味して 、る。 [0061] なお、この実施形態においては、 A bdoと A bdiの小さい方に関係しない速度につい ての重み係数を 0として 、る。
[0062] この平滑ィ匕速度 Vsを今回の統合速度として出力し (S46)、次回の計測タイミング に備えて Vsの値を Vbとして記憶する(S47)。
以上の処理を計測周期毎に繰り返す。
[0063] ここで、「ドッブラ速度」と「微分速度」のそれぞれについて精度低下要因の例を示 す。
[0064] (1)路側物の多 、環境下 (前方を走行する他車がガードレールの脇を走行して 、る ような状況)では、路側物からの反射信号の影響で物標 (他車)から得られるビート信 号のスペクトル形状が変形し、そのピーク周波数が変動する。このため正確なドッブラ シフト周波数が得られな 、場合がある。し力もこのような状況では距離にも誤差が生 じるため、ドッブラ速度、微分速度ともに誤差が生じて、速度の計測精度が悪化する
[0065] ここで、変調周波数を高く (変調周期を短く)すれば、また周波数変位幅を大きくす れば、それらに比例してビート周波数の距離に応じた成分が高くなる(距離変化に対 するビート周波数変化が大きくなる)が、ドッブラシフト周波数は変化しない。よってド ップラ速度への影響が微分速度への影響に比べて大きくなる。そのため、上記変調 周波数と周波数変位幅の設定により、ピーク周波数の変動の影響度が、ドッブラ速度 >微分速度の関係であるとき、上記路側物の多い環境下でドッブラ速度の計測誤差 が大きくなる。
[0066] (2)自動車などのある程度の大きさを持った反射体の場合、自車に対する他車の相 対運動によって反射の中心位置が変動する場合がある。この場合、距離が時間的に 不連続となって微分速度では正確な相対速度が得られない。
[0067] そこで、この第 1の実施形態では、図 7に示したように、前回の最終的な計測結果で ある統合速度に対する変化が大きな速度データは大きな誤差を含んでいるものとみ なして、ドッブラ速度と微分速度の 2つのデータのうち、前回の統合速度に近い値を 示すデータを採用して今回の統合速度を推測により求める。
[0068] このようにしてドッブラ速度と微分速度の 、ずれかが上記 (1)または (2)の例で挙げた 原因などによって誤差が生じても、結果的に相対速度の計測精度を高めることができ る。
[0069] 《第 4の実施形態》
次に、第 4の実施形態に係るレーダの相対速度を求めるための手順を、図 8を基に 説明する。
図 8は図 1に示した制御回路 1の処理内容を示すフローチャートである。この第 2の 実施形態では、「ドッブラ速度」、「微分速度」、「前回の統合速度」の 3つの速度デー タのうち、値が近似する 2つの速度データに対する重み係数を、残りの速度データに 対する重み係数に比べて大きく設定して加重平均を行うものである。
[0070] まず各物標について計測周期での移動距離力 微分速度 Vdiff^求める(S51)。
続いて図 7のステップ S42の場合と同様にして、 AVbdiと AVbdoを求める。さらに、 微分速度 Vdiffとドッブラ速度 Vdopとの差 AVdodiを求める(S52)。そして、 AVbdiの 絶対値と AVbdoの絶対値とを比較し、また、 AVdodiの絶対値と AVbdoの絶対値と を比較し、 3つの速度データの 3つの差分のうちドッブラ速度 Vdopと前回の統合速度 Vbとの差 Δ Vbdoが最も小さければ、そのドッブラ速度 Vdopと前回の統合速度 Vbと を用いて加重平均により平滑ィ匕速度 Vsを求める(S53→S54→S55)。同様に、微 分速度 Vdiffと前回の統合速度 Vbとの差 Δ Vbdiが最も小さければ、その微分速度 Vd iffと前回の統合速度 Vbとで加重平均する(S56→S57)。さらに同様に、微分速度 V diffとドッブラ速度 Vdopとの差 Δ Vdodiが最も小さければ、その微分速度 Vdiffとドッブ ラ速度 Vdopとで加重平均する(S58)。
[0071] なお、この実施形態においては、各速度間の差が最も小さいものに関係しない速 度につ 、ての重み係数を 0として 、る。
[0072] このようにして求めた平滑ィ匕速度 Vsを今回の統合速度として出力し、次回の計測タ イミングに備えて Vsを「前回の統合速度」 Vbとして記憶する(S59→S60)。
[0073] このようにして、信頼性の高!、速度データとみなせる 2つの速度データを基に加重 平均することによって、信頼性の低いデータを利用しないことになるので、大きな誤差 の影響を受けることなぐ相対速度の計測精度が高まる。
[0074] 例えば、物標が加速度をもって移動しているときに連続して不検知が起こった場合 、「前回の統合速度」の値は実際の速度力 徐々に離れていくが、その場合には微 分速度とドッブラ速度との加重平均によって今回の統合速度が求められることになる
[0075] 《第 5の実施形態》
次に、第 5の実施形態に係るデータについて図 9を基に説明する。
図 9は図 1に示した制御回路 1の処理内容を示すフローチャートである。
[0076] この第 5の実施形態では、計測周期毎の前々回から前回への統合速度の変化に 基づ 、てその加速度を求め、その加速度に基づ!/、て今回の計測タイミングでの統合 速度を推測し、それを「前回の統合速度」として扱う。そして、この第 5の実施形態で は第 3の実施形態の場合と同様に、前回ドッブラ速度と微分速度について、前回の 統合速度に近 、方の速度データを採用して加重平均する。
[0077] 図 9に示すように、まず各物標について計測周期での移動距離力 微分速度 Vdiff を求める(S61)。続いて、今回計測される相対速度の予測値 Vpを、
Vp=Vb+T-Ab - -- (5)
により求める。
[0078] ここで Vbは前回の統合速度、 Tは計測周期、 Abは前回計測時の加速度である。
[0079] そして、微分速度 Vdiffと、加速度を考慮した現在の相対速度の予測値 Vpとの差を
AVpdiとして求め、同様にドッブラ速度 Vdopと Vpとの差を AVpdoとして求める(S6
3)。
[0080] その後、 AVpdiと AVpdoの絶対値の大小比較を行い、 Δ Vpdoの絶対値より Δ V pdiの絶対値が大きければ、今回の相対速度の予測値 Vpとドッブラ速度 Vdopとの加 重平均によって平滑ィ匕した統合速度 Vsを求める(S64→S65)。また AVpdiの絶対 値より Δ Vpdoの絶対値が大きければ、今回の相対速度の予測値 Vpと微分速度 Vdif fとの加重平均により平滑化速度 Vsを求める(S64→S66)。
このようにして求めた平滑ィ匕速度 Vsを今回の統合速度として出力する(S67)。
[0081] そして、平滑ィ匕後の今回の計測による相対加速度 Asを、
As=Ab+ y (Vs-Vp) /T · '· (6)
で求める(S68)。但し、 yは平滑ィ匕用のフィルタ係数 (0く γく 1)である。 [0082] その後、次回の計測に備えて、 Asを Abとして記憶し、 Vsを Vbとして記憶する(S69 ) o以上の処理を繰り返す。
[0083] このようにして物標の相対運動が加速度をもって 、る場合でも相対速度の計測精 度を高めることができる。
[0084] 《第 6の実施形態》
次に、第 6の実施形態に係るデータについて図 10を基に説明する。
この第 6の実施形態は、このレーダを搭載した移動体(自車)の加速度を考慮して、 その加速度による誤差分の補正を行うものである。
[0085] 図 10は図 1に示した制御回路 1の処理内容を示すフローチャートである。
まず各物標について微分速度 Vdillを求める(S71)。そして車速パルスセンサなど の車速センサによって自車速 Vmobを取りこむ(S72)。さらに、今回の自車速 Vmob ( 0)と前回の自車速 Vmob (— l)との差を AVmopとして求める(S73)。そして、前回の 統合速度 Vbから、この自車速の変化分 Δ Vmobを減じることによって、前回の統合速 度 Vbに対して自車の加速度分の補正を行い、補正後の前回の統合速度 Vmを求め る(S74)。
[0086] その後、微分速度 Vdiffと、補正後の前回の統合速度 Vmとの差を Δ Vmdiとして求 め、同様にドッブラ速度 Vdopと Vmとの差を Δ Vmdoとして求める(S75)。
[0087] 続いて、 Δ Vmdiと Δ Vmdoの絶対値の大小比較を行い、 Δ Vmdoの絶対値より Δν mdiの絶対値が大きければ、補正後の前回の統合速度 Vmとドッブラ速度 Vdopとの 加重平均によって平滑ィ匕した統合速度 Vsを求める(S76→S77)。また Δ Vmdiの絶 対値より Δ Vmdoの絶対値が大きければ、補正後の前回の統合速度 Vmと微分速度 Vdiffとの加重平均により平滑化速度 Vsを求める(S76→S78)。
このようにして求めた平滑ィ匕速度 Vsを今回の統合速度として出力する(S79)。
[0088] そして、次回の計測に備えて今回の自車速 Vmob (0)を前回の自車速 Vmob (— 1) として記憶する(S80)。
[0089] 《第 7の実施形態》
次に、第 7の実施形態に係るレーダついて、図 11を基に説明する。
この第 7の実施形態では、「ドッブラ速度」、「微分速度」、「前回の統合速度」のうち の 2つの値の差がどの組み合わせにおいても所定のしきい値を超える場合に、前回 の統合速度をそのまま今回の計測結果として出力する。そして、上記しきい値を超え ない場合には、第 1の実施形態の場合と同様にして 2つの速度データを加重平均し て相対速度を求める。
[0090] 図 11に示すように、まず各物標につ 、て計測周期での移動距離力も微分速度 Vdif 1¾求める(S81)。続いて図 7のステップ S42の場合と同様にして、 AVbdiと AVbdo を求める(S82)。そして、 AVbdiの絶対値および AVbdoの絶対値がいずれもしきい 値 TH1を超えるとき、前回の統合速度 Vbを平滑ィ匕速度 Vsすなわち今回の統合速 度とする(S83→S84→S88)。また、 Δ Vbdiの絶対値および Δ Vbdoの絶対値のい ずれもしきい値 TH2を超えるとき、前回の統合速度 Vbを平滑化速度 Vsとする(S83 →S86→S88)。
[0091] Δ Vbdoの絶対値が Δ Vbdiの絶対値以下で、且つしきい値 TH1以下であれば、ド ップラ速度 Vdopと前回の統合速度 Vbとの加重平均によって平滑化速度 Vsを求める (S85)。また、 Δ Vbdiの絶対値が Δ Vbdoの絶対値以下で、且つしきい値 TH2以下 であれば、微分速度 Vdiffと前回の統合速度 Vbとの加重平均により平滑ィヒ速度 Vsを 求める(S87)。
[0092] このようにして求めた平滑ィ匕速度 Vsを出力し、次回の計測に備えて Vsを「前回の 統合速度 Vb」として記憶する(S89→S90)。
[0093] このように「ドッブラ速度」、「微分速度」、「前回の統合速度」の 、ずれもが他の 2つ と大きく異なる値を示している場合には、今回測定された微分速度およびドッブラ速 度は実際の値から大きく離れている可能性が高い。計測周期が充分に短かければ、 その計測周期での物標の相対速度の変化量はあまり大きくない。例えば自動車用レ ーダにおいては、 JISD0802付属書 Aの A.3.2の測定結果によると、緊急ブレーキ時 の減速度の最大値は 7. 9m/s2となっており、 0. Is周期で計測した場合に位置計 測周期間の相対速度の変化量は最大でも 0. 79m/s ( = 2. 8kmZh)程度である。
[0094] また、路側物等の影響で周波数スペクトル上のピーク周波数が変化した場合に、ド ップラ速度と微分速度が共に大きな誤差をもつことになる。このような場合には、前回 の統合速度 (または第 5 ·第 6の実施形態で示したように加速度を考慮して推測した 今回の相対速度の予測値)が最も真の相対速度に近い値を示しているものと考えら れるので、この値を今回の計測結果として出力することによって、今回および次回以 降の計測精度を高く維持できることになる。
[0095] 《第 8の実施形態》
以上に示した各実施形態では、レーダの測距機能により求めた計測周期間の物標 の位置変化力 微分速度を求めるようにした力 この第 8の実施形態では、レーダ以 外の測距手段で得た測距データを基に微分速度を求める。
[0096] ミリ波等の電波を用いるレーダでは、電波の反射の中心点が反射体 (他車)の姿勢 変化により時々刻々と変化する。そのため、その中心位置の変動に伴う速度検知誤 差が微分速度に含まれることになる。
[0097] これに対して、例えば車載用レーダと組み合わせて用いる場合には赤外線レーダ、 ステレオカメラ、超音波ソナ一等を用いる。特に赤外線レーダを用いれば、前方を走 行する他車のリフレクタ等の物標の高反射点を基にして測距するため、測距を行う反 射体内の反射点の位置が常に一定となり、安定で精度の高い微分速度が得られる。 また、ステレオカメラは、他車等の物標の形状を基にして測距するものであるが、物標 の姿勢は急激には変化しないので、やはり安定で精度の高い微分速度が得られる。
[0098] 但し、霧、雨、雪等の天候の影響や、太陽光線等の他の光源の影響、さらには物標 の誤認識等の影響によって上記微分速度に誤差が生じたり、その計測が不能になる こともある。また、ステレオカメラを用いた方式では、カメラの分解能の関係で、遠距離 領域で微分速度を求めるのに充分な計測精度が得られない場合も生じる。このような 場合には、上記レーダ以外の測距手段の微分速度より元々の電波式レーダの微分 速度を採用する方が高精度な相対速度が得られる。従って、上記レーダ以外の測距 手段による微分速度の信頼性低下要因を自動検知して、 V、ずれの微分速度を採用 するかを自動的に切り替えるようにしても良い。

Claims

請求の範囲
[1] 所定探知範囲に対する電磁波の送受信を所定の計測周期のタイミング毎に繰り返 し行って、前記探知範囲内の物標の位置を計測するとともに、前記物標で反射した 電磁波のドッブラシフト量力 該物標のドッブラ速度を計測する物標計測手段と、 前記物標計測手段により求められた前記物標の前記計測周期間での位置の変化 量から物標の微分速度を求める微分速度算出手段と、
前記計測周期のタイミングで、前記ドッブラ速度、前記微分速度、および前回の統 合速度を加重平均して今回の統合速度を求める統合速度決定手段と、
を備えたことを特徴とするレーダ。
[2] 前記統合速度決定手段は、前記前回の統合速度に対する前記ドッブラ速度の差と 、前記前回の統合速度に対する前記微分速度の差とによって前記ドッブラ速度およ び前記微分速度に対する重み係数を設定するものである請求項 1に記載のレーダ。
[3] 前記統合速度決定手段は、前記ドッブラ速度と前記微分速度のうち、前回の統合 速度との差が小さ 、方の速度に対する重み係数を、前記前回の統合速度との差が 大き 、方の速度に対する重み係数に比べて大きく設定するものである請求項 1に記 載のレーダ。
[4] 前記統合速度決定手段は、前記ドッブラ速度、前記微分速度、および前回の統合 速度のうち、値が近似する 2つの速度に対する重み係数を、残りの速度に対する重 み係数に比べて大きく設定するものである請求項 1に記載のレーダ。
[5] 前記電磁波の送受信による測距とは別の手段により、物標までの距離を測定する 測距手段を設け、
前記微分速度算出手段は、前記測距手段により求められた前記計測周期間での 前記物標の位置の変化量から当該物標の微分速度を求めるものである、請求項 1〜 4のうちいずれかに記載のレーダ。
[6] 前記統合速度決定手段は、前記計測周期毎の前々回力 前回への統合速度の変 化から加速度を求め、当該加速度に基づ!、て今回の計測タイミングでの速度を推測 し、当該推測速度を前記前回の統合速度とするものである請求項 1〜5のうちいずれ かに記載のレーダ。
[7] 前記電磁波の送受信を行う移動体の速度または加速度を計測する手段を設け、 前記統合速度決定手段は、前記計測周期毎の前記移動体の加速度に基づいて、 前回の計測タイミング力 今回の計測タイミングまでの前記移動体の速度変化分だ け前回の統合速度を補正するものである請求項 1〜6のうちいずれかに記載のレー ダ。
[8] 前記統合速度決定手段は、前記ドッブラ速度、前記微分速度、前記統合速度の各 速度間のそれぞれの差分が所定値を超えるとき、前回の統合速度を今回の統合速 度として出力するものである請求項 1〜7のうちいずれかに記載のレーダ。
PCT/JP2005/010109 2004-08-10 2005-06-02 レーダ WO2006016445A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112005001563T DE112005001563T5 (de) 2004-08-10 2005-06-02 Radar
JP2006531293A JP4197033B2 (ja) 2004-08-10 2005-06-02 レーダ
US11/649,785 US7425917B2 (en) 2004-08-10 2007-01-05 Radar for detecting the velocity of a target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-233448 2004-08-10
JP2004233448 2004-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/649,785 Continuation US7425917B2 (en) 2004-08-10 2007-01-05 Radar for detecting the velocity of a target

Publications (1)

Publication Number Publication Date
WO2006016445A1 true WO2006016445A1 (ja) 2006-02-16

Family

ID=35839221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010109 WO2006016445A1 (ja) 2004-08-10 2005-06-02 レーダ

Country Status (4)

Country Link
US (1) US7425917B2 (ja)
JP (1) JP4197033B2 (ja)
DE (1) DE112005001563T5 (ja)
WO (1) WO2006016445A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168624A (ja) * 2008-01-16 2009-07-30 Toyota Motor Corp 物体速度検出装置
JP2010236887A (ja) * 2009-03-30 2010-10-21 Mitsubishi Electric Corp レーダ装置
JP2017194369A (ja) * 2016-04-21 2017-10-26 三菱電機株式会社 Fmcwレーダ装置
WO2019181448A1 (ja) * 2018-03-19 2019-09-26 日立オートモティブシステムズ株式会社 レーダ装置
JP7431623B2 (ja) 2020-03-11 2024-02-15 株式会社Subaru 車外環境認識装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4337887B2 (ja) * 2007-02-21 2009-09-30 株式会社デンソー 車載ミリ波レーダ装置
JP4752963B2 (ja) * 2009-08-05 2011-08-17 株式会社デンソー 車両存在報知装置
JP6009788B2 (ja) * 2012-03-21 2016-10-19 富士通テン株式会社 レーダ装置、および、信号処理方法
DE102014217194A1 (de) * 2014-08-28 2016-03-03 Siemens Aktiengesellschaft Verfahren zur Positionsbestimmung eines spurgeführten Fahrzeugs, Anwendung des Verfahrens und System zur Positionsbestimmung eines spurgeführten Fahrzeugs
KR102451286B1 (ko) * 2017-12-07 2022-10-06 주식회사 에이치엘클레무브 타겟 검출 장치 및 방법
US11536831B2 (en) * 2020-06-15 2022-12-27 Gm Cruise Holdings Llc Systems and methods for high velocity resolution high update rate radar for autonomous vehicles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107076A (ja) * 1991-10-14 1993-04-27 Toyota Motor Corp 車両用走行制御装置
JPH07146358A (ja) * 1993-11-25 1995-06-06 Furukawa Electric Co Ltd:The 移動体用レーダ装置
JP2695086B2 (ja) * 1992-02-10 1997-12-24 富士通テン株式会社 レーダ信号処理方式
JP2000108718A (ja) * 1998-10-05 2000-04-18 Denso Corp 車間制御装置及び記録媒体
JP2002006040A (ja) * 2000-06-22 2002-01-09 Honda Motor Co Ltd 物体検知装置
JP2002099907A (ja) * 2000-09-22 2002-04-05 Mazda Motor Corp 物体認識装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338079B2 (ja) * 1972-05-26 1978-10-13
US4024540A (en) * 1976-03-12 1977-05-17 Cincinnati Electronics Corporation Continuous wave FM tone ranging radar with predetection averaging
JPS5439156A (en) * 1977-09-02 1979-03-26 Nippon Soken Distance measuring device loaded on car
GB2204757B (en) * 1983-08-25 1989-06-01 Marconi Co Ltd Radars
US6664920B1 (en) * 1993-11-18 2003-12-16 Raytheon Company Near-range microwave detection for frequency-modulation continuous-wave and stepped frequency radar systems
JP3044524B2 (ja) * 1995-05-23 2000-05-22 本田技研工業株式会社 車両における対照物検知方法
JPH10232281A (ja) * 1997-02-20 1998-09-02 Matsushita Electric Ind Co Ltd Fmcwレーダ装置
US6205391B1 (en) * 1998-05-18 2001-03-20 General Motors Corporation Vehicle yaw control based on yaw rate estimate
JP3720662B2 (ja) * 2000-01-19 2005-11-30 三菱電機株式会社 車載用レーダ装置
JP3995890B2 (ja) * 2001-03-05 2007-10-24 株式会社村田製作所 レーダ
JP3788322B2 (ja) * 2001-05-30 2006-06-21 株式会社村田製作所 レーダ
JP2003270341A (ja) * 2002-03-19 2003-09-25 Denso Corp 車載レーダの信号処理装置,プログラム
JP3983158B2 (ja) * 2002-11-25 2007-09-26 富士通株式会社 電波レーダの信号処理方法
JP4016826B2 (ja) * 2002-12-10 2007-12-05 株式会社デンソー 物標識別方法及び装置、プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107076A (ja) * 1991-10-14 1993-04-27 Toyota Motor Corp 車両用走行制御装置
JP2695086B2 (ja) * 1992-02-10 1997-12-24 富士通テン株式会社 レーダ信号処理方式
JPH07146358A (ja) * 1993-11-25 1995-06-06 Furukawa Electric Co Ltd:The 移動体用レーダ装置
JP2000108718A (ja) * 1998-10-05 2000-04-18 Denso Corp 車間制御装置及び記録媒体
JP2002006040A (ja) * 2000-06-22 2002-01-09 Honda Motor Co Ltd 物体検知装置
JP2002099907A (ja) * 2000-09-22 2002-04-05 Mazda Motor Corp 物体認識装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168624A (ja) * 2008-01-16 2009-07-30 Toyota Motor Corp 物体速度検出装置
JP2010236887A (ja) * 2009-03-30 2010-10-21 Mitsubishi Electric Corp レーダ装置
JP2017194369A (ja) * 2016-04-21 2017-10-26 三菱電機株式会社 Fmcwレーダ装置
WO2019181448A1 (ja) * 2018-03-19 2019-09-26 日立オートモティブシステムズ株式会社 レーダ装置
JPWO2019181448A1 (ja) * 2018-03-19 2021-01-14 日立オートモティブシステムズ株式会社 レーダ装置
JP7203822B2 (ja) 2018-03-19 2023-01-13 日立Astemo株式会社 レーダ装置
JP7431623B2 (ja) 2020-03-11 2024-02-15 株式会社Subaru 車外環境認識装置

Also Published As

Publication number Publication date
US7425917B2 (en) 2008-09-16
JPWO2006016445A1 (ja) 2008-05-01
DE112005001563T5 (de) 2007-07-12
JP4197033B2 (ja) 2008-12-17
US20070109176A1 (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4197033B2 (ja) レーダ
JP3750102B2 (ja) 車載レーダ装置
US6812882B2 (en) Stationary on-road object detection method for use with radar
JP4093109B2 (ja) 車両用レーダ装置
JP4007498B2 (ja) 車載用レーダ装置
US6661370B2 (en) Radar data processing apparatus and data processing method
JP4992367B2 (ja) 物体検出装置、物体検出方法、およびコンピュータが実行するためのプログラム
JP3753652B2 (ja) Fm−cwレーダのミスペアリング判定及び信号処理方法
US10061030B2 (en) In-vehicle apparatus performing an operation based on a distance measured, and in-vehicle system including the in-vehicle apparatus
US9261589B2 (en) Signal processing device, radar device, vehicle control system, and signal processing method
US11099269B2 (en) Radar device for vehicle and target determination method therefor
US20080291078A1 (en) Radar System for Motor Vehicles
US10823846B2 (en) Object detection method and object detection device
US9977126B2 (en) Radar apparatus
JPWO2011158292A1 (ja) 対象物識別装置、及びその方法
US9383440B2 (en) Radar apparatus and signal processing method
US10473760B2 (en) Radar device and vertical axis-misalignment detecting method
JPH08189965A (ja) 車両用レーダ装置
JP2009092410A (ja) レーダ装置、及び物標検出方法
JP2015155807A (ja) レーダ装置、車両制御システム、および、信号処理方法
JP6560307B2 (ja) レーダ装置およびレーダ装置の制御方法
JP2004198438A (ja) 車載レーダ装置
US6683533B1 (en) Inter-vehicle distance measuring system and apparatus measuring time difference between each detection time of same road surface condition
JP2008014956A (ja) 車両用レーダ装置
JP2024060403A (ja) 物体検出装置及び物体検出方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531293

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11649785

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120050015637

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 11649785

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112005001563

Country of ref document: DE

Date of ref document: 20070712

Kind code of ref document: P

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607