WO2006023002A2 - Compositions for removing halogenated hydrocarbons from contaminated environments - Google Patents

Compositions for removing halogenated hydrocarbons from contaminated environments Download PDF

Info

Publication number
WO2006023002A2
WO2006023002A2 PCT/US2005/020565 US2005020565W WO2006023002A2 WO 2006023002 A2 WO2006023002 A2 WO 2006023002A2 US 2005020565 W US2005020565 W US 2005020565W WO 2006023002 A2 WO2006023002 A2 WO 2006023002A2
Authority
WO
WIPO (PCT)
Prior art keywords
iron
supported reactant
activated carbon
reactant
supported
Prior art date
Application number
PCT/US2005/020565
Other languages
French (fr)
Other versions
WO2006023002A3 (en
Inventor
Scott Noland
Bob Elliott
Original Assignee
Remediation Products, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Remediation Products, Inc. filed Critical Remediation Products, Inc.
Publication of WO2006023002A2 publication Critical patent/WO2006023002A2/en
Publication of WO2006023002A3 publication Critical patent/WO2006023002A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/002Reclamation of contaminated soil involving in-situ ground water treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/104Granular carriers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • B01J35/615
    • B01J35/617
    • B01J35/618
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]

Definitions

  • the present invention relates to compositions and methods for in situ remediation of contaminated environments, and particularly to the remediation of soil and/or groundwater contaminated with halogenated hydrocarbons.
  • Chlorinated solvents such as trichloroethane (TCE) and perchloroethylene (PCE) are used for such purposes as dry cleaning, and as degreasers and cleaners in a variety of industries.
  • Petroleum hydrocarbons commonly found in ground water include the components of gasoline, such as benzene, toluene, ethylbenzene, and xylene.
  • Other common contaminants of ground water include naphthalene and chlorinated solvents.
  • Additional groundwater and soil contaminants comprise polycyclic aromatic hydrocarbons (PAHs) created from combustion, coal coking, petroleum refining and wood-treating operations; and polychlorinated biphenyls (PCBs), once widely used in electrical transformers and capacitors and for a variety of other industrial purposes, pesticides, and herbicides.
  • PAHs polycyclic aromatic hydrocarbons
  • PCBs polychlorinated biphenyls
  • Ex situ and in situ methods have been utilized for the treatment, remediation or disposal of contaminated soil.
  • Ex situ methods generally include permanent removal of the contaminated soil to a secure landfill, incineration, indirect thermal treatment, aeration, venting, and air sparging. Removal of contaminated soil to landfills is no longer an attractive alternative on account of the high excavation, transportation and disposal costs, and because of the potential for residual liability.
  • Incineration and indirect thermal treatment can be achieved either on-site or off-site, but in either case involves excavation, handling and treatment of substantially all of the contaminated soil as well as significant amounts of soil adjacent to the contaminated soil. The soil must then either be transported to the treatment facility or else the treatment apparatus must be installed on-site.
  • Other elaborate and expensive techniques that have been utilized involve excavation and treatment of the contaminated soil using multistep unit operations for separating and recovering the soil from the contaminants.
  • Additional existing clean-up methods and technologies include "pump and treat” methods in which contaminated groundwater is pumped to the surface, cleaned chemically or by passing the groundwater through a bioreactor, and then reinjected into the groundwater. Such a process generally is carried out over a long period of time, typically one to ten years or more.
  • a common remediation treatment for ground water contaminated with chlorinated hydrocarbons involves pumping the water out of the well or aquifer, volatizing the contaminants in an air stripping tower, and returning the decontaminated water to the ground site.
  • a related type of environmental remediation is the "dig and haul” method in which contaminated soils are removed and then treated or land filled.
  • ZVI zero valent iron
  • potassium permanganate potassium permanganate
  • hydrogen peroxide renders the chlorinated hydrocarbon less toxic by reductive dehalogenation, i.e., by replacement of chlorine substituents with hydrogen.
  • reactive walls are constructed by digging a trench across the plume migration path and filling it with iron filings. Sheet piling or some other means of directing the flow of groundwater is used to direct contaminated groundwater through the filing wall.
  • the chlorinated hydrocarbons react with the elemental iron as the groundwater flows through the wall, and ideally, clean water emerges on the down gradient side of the wall.
  • the disadvantage of the wall method lies in the difficulty of introducing large volumes of solid reactive material, such as iron particles, at effective depths. Conventional excavation methods generally limit the practical working depth to about 30 feet, whereas ground water contaminants are found at depths as great as 300 feet.
  • Oxygen release materials are compositions such as intercalated magnesium peroxide that release oxygen slowly and facilitate the aerobic degradation of hydrocarbon contaminants in situ. ORM's are most effective when used to polish up after a mechanical system has flat-lined and are least effective at new sites where no other remedial measures had been implemented. They are disadvantaged in that ORMs are expensive, and large amounts are required for complete oxidation. Additionally, multiple treatments are often required in order to achieve targeted cleanup goals, and up to five years may be needed to complete the process.
  • Hydrogen Release Compound ® is an alternative option for the in situ remediation of chlorinated hydrocarbons under anaerobic conditions via reductive dehalogenation.
  • HRC ® When in contact with subsurface moisture, HRC ® is hydrolyzed, slowly releasing lactic acid.
  • Native anaerobic microbes such as acetogens
  • acetogens metabolize the lactic acid producing consistent low concentrations of dissolved hydrogen.
  • the resulting hydrogen is then used by other subsurface microbes (reductive dehalogenators) to strip the solvent molecules of their chlorine atoms and allow for further biological degradation.
  • HRC® is injected into the affected environment under pressure and each treatment lasts for roughly six to nine months.
  • ORMs HRC ® is expensive, and large amounts are required for complete degradation. Additionally, multiple treatments are always required in order to achieve targeted cleanup goals, and up to five years may be needed to complete the process.
  • the present invention provides compositions and methods for in situ soil and/or groundwater remediation that can reduce contaminant concentrations quickly to regulatory cleanup standards.
  • the compositions and methods work in a variety of soil and groundwater conditions and are applicable for the remediation of a variety of contaminants.
  • the methods and compositions of this invention do not release toxic by-products into the soil, groundwater or air, and have no impact on soil properties or groundwater quality.
  • the compositions of this invention are cost effective in that they remain active for an extended period of time so that only a single treatment is required.
  • one aspect of this invention provides a composition which, when added to a site such as soil and/or groundwater contaminated with one or more halogenated hydrocarbons, adsorbs the halogenated hydrocarbons and reduces them to less innocuous by ⁇ products. More specifically, one embodiment of this invention provides a supported reactant for in situ remediation of soil and/or groundwater contaminated with one or more halogenated hydrocarbon, said supported reactant consisting essentially of an adsorbent impregnated with zero valent iron, wherein the adsorbent is capable of adsorbing the halogenated hydrocarbon contaminants as well as the intermediate by-products resulting from the degradation of the contaminants.
  • the adsorbent is activated carbon.
  • Another aspect of this invention provides a method for the remediation of an environment contaminated with halogenated hydrocarbons, comprising adding a supported reactant of this invention to one or more sites of said contaminated environment, wherein reductive dehalogenation of the halogenated hydrocarbon contaminants is achieved.
  • This invention further provides a bioremediation composition which, when added to water and/or soil contaminated with petroleum or other hydrocarbons, will adsorb hydrocarbons from the soil and/or water and degrade the hydrocarbons.
  • this invention provides a bioremediation composition
  • a bioremediation composition comprising an adsorbent capable of adsorbing said hydrocarbons, a mixture of facultative anaerobes capable of metabolizing said hydrocarbons under sulfate-reduction conditions, a sulfate-containing compound that releases sulfate over a period of time, and a nutrient system for promoting growth of said anaerobes, wherein said nutrient system includes a sulfide scavenging agent.
  • Another aspect of this invention provides a method for the bioremediation of an environment contaminated with hydrocarbons, comprising adding a bioremediation composition of this invention to one or more sites of said contaminated environment, wherein the mixture of facultative anaerobes metabolizes the hydrocarbon contaminants.
  • This invention relates to compositions and methods for in situ remediation of environments such as soil or groundwater contaminated with hydrocarbons or halogenated hydrocarbons.
  • the compositions and methods of this invention can reduce contaminant concentrations quickly to regulatory cleanup standards and work in a variety of soil and groundwater conditions.
  • the methods and compositions of this invention do not release toxic by-products into the soil, groundwater or air, and have no impact on soil properties or groundwater quality.
  • the compositions of this invention remain active for an extended period of time so that only a single treatment is required.
  • the methods and compositions of this invention are applicable for the remediation of a variety of contaminants, and are reasonably cost effective relative to existing remedies.
  • one embodiment of this invention provides a supported reactant for the reductive dehalogenation of halogenated hydrocarbons, wherein the reactant consists essentially of an adsorbent impregnated with zero valent iron, wherein the adsorbent has an affinity for halogenated hydrocarbons.
  • the adsorbent is capable of adsorbing toxic intermediate by-products produced by the reductive dehalogenation of the contaminants (e.g., intermediates such as dichloroethane and vinyl chloride intermediate by ⁇ products of trichloroethane decomposition).
  • the adsorbent thus provides a means for concentrating contaminants into a new matrix where a high surface area of iron is available, as discussed hereinafter in detail.
  • the supported reactants of this invention accomplish treatment of halogenated hydrocarbons in soil and groundwater by degrading halogenated hydrocarbon contaminants and their toxic intermediate by-products into harmless by-products (e.g., ethane, ethene, etc.).
  • the supported reactants of this invention are prepared using an adsorbent having a high surface area per unit weight and a high affinity for halogenated hydrocarbons.
  • Suitable adsorbents for purposes of this invention include, but are not limited to, activated carbon, vermiculite, alumina, and zeolites.
  • activated carbon vermiculite, alumina, and zeolites.
  • the supported reactant consists essentially of activated carbon as the support, wherein the carbon is impregnated with zero valent iron.
  • the activated carbon preferably has a high surface area per unit weight (preferably ranging from 800 to 2000 m 2 /g) and a high affinity for halogenated hydrocarbons.
  • the ability of activated carbon to adsorb organics from water enhances its utility as a support.
  • the activated carbon can trap hydrocarbon contaminants, carbon by itself is not stable over long periods, i.e., it is subject to erosion, etc., in which case the contaminants move with the activated carbon and are not truly trapped and removed.
  • Activated carbon provides an efficient matrix for adsorption of the chlorinated hydrocarbon contaminants.
  • Impregnating the activated carbon with the zero valent iron provides sub-micron deposits of iron within the pore structure of the carbon, thus maximizing the metal's available surface area and placing the metal where the concentration of adsorbed contaminant molecules is the highest. Accordingly, the supported reactant allows efficient contact of the iron with adsorbed chemicals contaminants, since the iron will be in close proximity to the contaminant.
  • the supported reactants of this invention accomplish treatment of chlorinated hydrocarbons in soil and groundwater by degrading these chemicals into harmless by-products.
  • Activated carbons suitable for purposes of this invention are manufactured from a broad spectrum of material, including, but not limited to, coal, coconut shells, peat and wood.
  • the raw material is typically crushed, screened, washed to remove mineral constituents.
  • the material is then activated at high temperatures (typically over 900 °C) in a controlled atmosphere to produce a material having an extensive porous network and a large surface area (e.g., ranging from 1000 to 2000 m Ig).
  • the supported reactants of this invention may be produced with virtually any source of activated carbon. All that is needed are minor adjustments in system design parameters to account for the different forms of carbon.
  • acid- washed carbons are preferred, since the acid wash removes any extraneous metals that may be of environmental concern from the carbon.
  • the surface area of the zero valent iron used in the supported reactant of this invention ranges from about 50 to 400 m 2 /(gm- deposited iron).
  • the weight percent of iron deposited within the carbon matrix ranges from about 1 percent to 20 percent by weight of iron, preferably about 7 to 8 percent by weight of iron.
  • the supported reactant has a total surface area of over 1500 m 2 /g.
  • the iron contained in the supported reactants of this invention is a high purity iron. That is the iron does not contain other metals, in particular heavy metals, which would contaminate groundwater and drinking water beyond limits allowed by the EPA.
  • the iron is at least 99% pure, wherein the concentrations of trace contaminants such as chromium, aluminum, potassium, cesium, zinc, lead, nickel, cadmium, and/or arsenic are less than 5 ppm.
  • a supported reactant of this invention for in situ remediation of soil and/or groundwater contaminated with a halogenated hydrocarbon consists essentially of (i) an adsorbent impregnated with zero valent iron and (ii) a metal hydroxide in an amount sufficient to provide a reactant having a pH greater than 7, wherein the adsorbent is capable of adsorbing the halogenated hydrocarbon.
  • Suitable adsorbents for purposes of this invention include, but are not limited to, activated carbon, vermiculite, alumina, and zeolites.
  • the contaminants are initially adsorbed by the activated carbon and then degraded through a reductive dechlorination mechanism.
  • toxic reaction by-products such as vinyl chloride and czs-dichloroethene are formed during the treatment process.
  • these by-products will react with the iron, they do so at a reduced rate, and concentrations can initially rise. In fact, fairly large accumulations can occur, creating a more acute risk to the environment than that which originally existed.
  • One of the advantages of the supported reactant of this invention is that these toxic by-products are also readily adsorbed by the activated carbon.
  • the supported reactant degrades the intermediate by-products into non-toxic by-products such as ethane, ethene and ethyne.
  • Manufacture of the supported reactants of this invention involves methods that will produce an adsorbent (e.g., activated carbon) impregnated with zero valent iron, which can be achieved using a variety of procedures known to those skilled in the art.
  • One method of producing a supported reactant of this invention comprises mixing the adsorbent with a calculated amount of a hydrated iron salt such as ferric nitrate while warming to melt the hydrated iron salt.
  • the iron can be an iron (II) or an iron (III) salt.
  • the mixture is dried and pyrolyzed to decompose the iron salt to iron oxide, forming an intermediate product (i.e., the activated carbon impregnated with a form of iron oxide).
  • the intermediate product is then subjected to reduction conditions to reduce the iron oxide to elemental iron, thereby producing the activated carbon impregnated with elemental iron.
  • a second method for preparing a supported reactant of this invention involves a slow precipitation of goethite (iron hydrogen oxide) from a solution of an iron salt (e.g., ferrous sulfate) by addition of a dilute sodium bicarbonate solution.
  • the precipitation is carried out with vigorous mixing in a suspension of the activated carbon to provide an intermediate product (i.e., the adsorbent impregnated with a form of iron oxide).
  • This intermediate product is then washed, dried, and finally reduced to convert the iron oxides to elemental iron, thereby producing the activated carbon impregnated with elemental iron.
  • a third method of preparing a supported reactant of this invention involves treatment of the activated carbon with a solution of a water soluble iron salt, such as iron (II/III) sulfate, iron chloride, iron citrate, iron nitrate, or any other suitable water soluble iron salt.
  • a water soluble iron salt such as iron (II/III) sulfate, iron chloride, iron citrate, iron nitrate, or any other suitable water soluble iron salt.
  • the solution can be sprayed onto the carbon or the carbon may be suspended in a measured volume of the iron salt solution sufficient to achieve the desired loading.
  • the suspension is then de-aerated by applied vacuum.
  • the salt impregnated material can be dried and reduced directly, or the material may require neutralization of the salt by the addition of a dilute sodium bicarbonate or sodium hydroxide solution over a period of time, thereby producing iron oxides/hydroxide within the carbon.
  • the iron oxide or iron hydroxide- impregnated activated carbon is then subjected to reducing conditions to reduce the iron oxide or iron hydroxide to zero-valent iron.
  • the effectiveness of the supported reactant can be enhanced by increasing the pH of the supported reactant to a basic pH, such as by adding a small percentage of magnesium hydroxide to the supported reactant to raise the pH above 7.0.
  • the supported reactants of this invention can be applied to treatment of water contaminated with a variety of water miscible or soluble halogenated organic compounds.
  • Chlorinated solvents are particularly common contaminants in aquifers and other subsurface water-containing environments. Contaminants that may be effectively treated include halogenated solvents such as, but not limited to, (TCE), dichloroethylene (DCE), tetrachloroethylene, dichloroethane, trichloroethane, perchloroethene (PCE), vinyl chloride (VC), chloroethane, carbon tetrachloride, chloroform, dichloromethane and methyl chloride.
  • TCE dichloroethylene
  • DCE dichloroethylene
  • tetrachloroethylene dichloroethane
  • trichloroethane perchloroethene
  • PCE perchloroethene
  • VC vinyl chloride
  • chloroethane carbon tetrachlor
  • This invention further provides a method of remediating a site contaminated with halogenated hydrocarbons, comprising injecting a supported reactant of this invention into one or more locations of the contaminated site.
  • contaminated environments that can be treated with a supported reactant of this invention include, but are not limited to, soil, sediment, sand, gravel, groundwater, aquifer material, and landfills.
  • the supported reactant can be injected into multiple sites within an aquifer, as described in Example 3.
  • the application method results in a substantially homogeneous distribution of the supported reactant in the contaminant plume, as opposed to creating a barrier or filled trench as in conventional methods.
  • the remediation method according to the embodiment described in Example 3 using a supported reactant does not rely on groundwater diffusion for effective treatment. Rather, the activated carbon component of the supported reactant concentrates the contaminants within the adsorbent matrix where a high surface area of iron is available, thereby increasing the rate of contaminant degradation. Contaminated ground water in the site subsequently contacts the supported reactant, whereby reductive dehalogenation of the halogenated hydrocarbon compounds is achieved.
  • the supported reactants of this invention provide a number of advantages over conventional remediation products and methods. For example, it rapidly reduces concentrations of contaminants in groundwater so that regulatory standards can be approached or achieved in a short time frame (e.g., within several days or a few weeks, versus several months or years with conventional methods).
  • the supported reactant is non-toxic, does not decompose over time, and toxic degradation by-products are not released, so groundwater quality is protected throughout treatment.
  • the supported reactant has the ability to treat a variety of chlorinated chemicals and is effective in all types of soil and groundwater conditions. It remains active for an extended period of time so that typically only a single treatment is required. The material is easy to use and does not require any special safety controls or equipment for installation.
  • This invention further provides a bioremediation composition for in situ bioremediation of environments contaminated with hydrocarbons.
  • the vast majority of sites contaminated with fuel hydrocarbons are naturally in an anaerobic state.
  • the bioremediation composition of this invention takes advantage of this condition and is designed to promote anaerobic oxidation of hydrocarbons through a sulfate-reduction mechanism.
  • the bioremediation composition of this invention comprises an adsorbent having an affinity for hydrocarbon contaminants, thereby providing a means for concentrating the contaminants and increasing the rate of bioremediation.
  • a bioremediation composition of this invention for in situ bioremediation of an environment contaminated with hydrocarbon comprises an adsorbent capable of adsorbing hydrocarbons, a mixture of two or more species of facultative anaerobes capable of metabolizing said hydrocarbons under sulfate-reduction conditions, a sulfate- containing compound that releases sulfate ions over a period of time, and a nutrient system for metabolism of said facultative anaerobes, wherein said nutrient mixture includes a sulfide scavenging agent.
  • An illustrative example of a bioremediation composition of this invention comprises a mixture of the ingredients listed in Table 1.
  • the adsorbent provides a means for concentrating the mixture of facultative anaerobes at the site of contamination.
  • the adsorbent provides an efficient matrix for adsorbing and thus concentrating the hydrocarbon contaminants.
  • the rate of bioremediation is dramatically increased relative to rates obtained using conventional methods.
  • the adsorbent is activated carbon, which has a high affinity for hydrocarbons.
  • activated carbon has an affinity for facultative anaerobes, which is advantageous for in situ bioremediation where growth of the anaerobes is desired.
  • the mixture of facultative anaerobes comprises hydrocarbon degraders that metabolize the hydrocarbon contaminants under sulfate-reduction conditions.
  • a facultative anaerobe is a microbe such as bacteria and fungi that can switch between aerobic and anaerobic types of metabolism. Under anaerobic conditions, they grow by fermentation or anaerobic respiration. Further, since oxygen is not toxic to facultative anaerobes, the facultative anaerobes used in the composition of this invention are not sensitive to the low levels of oxygen frequently found at contaminated sites.
  • the mixture of facultative anaerobes comprises symbiotic facultative anaerobes that work in concert with each other. That is, one type of facultative anaerobe will break down a hydrocarbon contaminant to a first intermediate, and another type of facultative anaerobe will break down the first intermediate to a second intermediate or final by-product, etc.
  • the mixture of facultative anaerobes includes at least one anaerobe that is a sulfate-reducing bacteria.
  • sulfate-reducing bacteria are distributed widely in nature where anoxic conditions prevail. For example, such bacteria have been found in sewage, polluted water, sediment of lakes, sea and marine muds, oil wells, and the like.
  • the composition of the present invention is designed to dramatically increase the activity of naturally occurring sulfate-reducing bacteria by introducing cultured bacteria into the contaminated environment.
  • an aqueous suspension of the adsorbent is blended with the mixture of facultative anaerobes that includes bacteria specifically cultured for degradation of hydrocarbons.
  • This mixture is stirred for a short period of time prior to injecting into the contaminated site to ensure all micronutrients have dissolved to provide a homogeneous mixture.
  • this pre-mixing provides the cultured bacteria with an advantage over indigenous bacteria, maximizing the opportunity for the cultured bacteria to predominate.
  • the compositions of this invention provide a means for removing hydrocarbon contaminants in a much shorter time period.
  • the cultured bacteria will comprise a multiple species or strains of bacteria.
  • the species or strains of bacteria are advantageously derived from Pseudomonas, Phenylobacterium, Stenotrophomonas, Gluconobacter, Agrohacterium, Vibrio, Acinetobacter, or Micrococcus, yeasts or other genera can also be employed.
  • Exemplary bacterial strains include Pseudomonas pseudoalkaligenes, Phenylobacterium immobile, Stenotrophomonas maltophilia, Gluconobacter cerinus, Agrobacterium radiobacter or Pseudomonas alcaligenes.
  • the bioremediation composition of this invention metabolizes hydrocarbon contaminants under sulfate-reduction conditions, wherein some or all of the facultative anaerobes reduce sulfate to hydrogen sulfide and metabolize (oxidize) at least some hydrocarbon contaminants in the process.
  • the bioremediation composition of this invention includes a sulfate-containing compound.
  • the sulfate-containing compound has a low water solubility and is non-toxic.
  • gypsum calcium sulfate
  • gypsum calcium sulfate
  • gypsum acts as a "time released" source of sulfate ions, which is advantageous since the mixture of facultative anaerobes consumes the hydrocarbon contaminants over a period of time.
  • non-toxic refers to standards set forth for drinking water standards as regulated by the United States Environmental Protection Agency and defined by the Occupational Health and Safety Administration.
  • a suitable nutrient system for the facultative anaerobes includes a nitrogen source such as an ammonium salt, and a phosphorus source such as an alkali metal phosphate compound.
  • the micronutrient source does not contain sand, gravel, fillers, or other insoluble products found in commercial fertilizers.
  • a suitable micronutrient source for purposes of this invention contains nitrogen (e.g., 24 percent by weight as ammonia and ammonium nitrate in a ratio of about 2:1), phosphorus (e.g., 10 percent by weight as ammonium phosphate), potassium (e.g., 2 percent by weight as potassium chloride), sulfur (e.g., 5 percent by weight as ammonium sulfate), and iron (e.g., 2 percent by weight as ferrous sulfate).
  • the nutrient system also includes a sulfide scavenging agent.
  • the sulfide scavenging agent is a ferrous iron salt such as iron sulfate.
  • the bioremediation composition After injection into the contaminated soil or groundwater, the bioremediation composition rapidly reduces concentrations of the hydrocarbon contaminants in soil and/or groundwater. Hydrocarbon contaminant molecules are adsorbed by the composition and are thus co-located together with the cultured facultative anaerobes in the pores of the adsorbent matrix. The hydrocarbon contaminant concentration within the adsorbent matrix thus becomes substantially higher than that which existed in the soil or groundwater. As a result, rates of degradation are significantly faster than rates commonly observed using current technology. As adsorbed contaminants are degraded, active sites become available to adsorb fresh contaminant, and the cycle is repeated until the microcosm runs out of food (i.e., hydrocarbons).
  • By-products of sulfate reduction include carbon dioxide, water, a variety of fermentation products such as light alcohols (ethanol, propyl alcohol, isopropyl alcohol, butyl alcohol, etc.) and hydrogen sulfide.
  • a sulfide scavenging agent e.g., iron sulfate
  • an iron salt can scavenge hydrogen sulfide and form insoluble iron sulfide, thus preventing toxic levels of hydrogen sulfide from accumulating.
  • transient concentrations of hydrogen sulfide are maintained well below regulatory thresholds, protecting groundwater quality.
  • the mixture of facultative anaerobes included in the composition of this invention is capable of biodegrading various aliphatic, aromatic and polycyclic aromatic hydrocarbons.
  • the compositions can be used to biodegrade aromatic hydrocarbons present in gasoline such as benzene, toluene, ethylbenzene, and xylenes.
  • polycyclic aromatic hydrocarbons that can be biodegraded using the bioremediation composition of this invention generally include any of the various aromatic compounds containing multiple ring structures.
  • Some of the most toxic (carcinogenic) aromatic hydrocarbons (polycyclic aromatics) are fairly resistant to bioremediation, requiring long periods of time for assimilation, but they are tightly held by activated carbon.
  • Polycyclic aromatic hydrocarbons are generally present in and derived from fossil fuels, especially coal and petroleum. Relatively high concentrations of polycyclic aromatic hydrocarbons are found in coal-tar pitch, petroleum and coal-tar naphtha, and various other high-boiling point petroleum fractions, as well as various products derived therefrom including roofing pitch, sealants, road tars, asphalts, pipe coatings, water-proofing materials, dyes, pesticides, paint additives and wood preservatives. A single large spill of such materials containing high concentrations of polycyclic aromatic hydrocarbons can result in serious contamination requiring rapid remedial action.
  • various fuels such as kerosene and gasoline, or other substances containing low concentrations of polycyclic aromatic hydrocarbons can have a cumulative effect.
  • Potential applications of the invention include soil bioremediation at manufactured gas plant sites, coke oven sites, petroleum refineries, fuel depots, gas stations, and other industrial sites.
  • the facultative anaerobes and adsorbent are mixed with water for a short period of time prior to application to allow the facultative anaerobes to inhabit the pores of the adsorbent matrix prior to injection into the contaminated environment.
  • the "adsorbent microcosm" is pre-inhabited by large numbers of facultative anaerobes tailored for rapid assimilation of fuel hydrocarbons, optimizing the opportunity of such anaerobes to dominate the "sulfate-reducing" niche over indigenous microbes.
  • This invention further provides a method for bioremediation of a site contaminated with hydrocarbons, comprising injecting a bioremediation composition of this invention at or within one or more locations of the contaminated site.
  • contaminated environments that can be treated with a bioremediation composition of this invention include, but are not limited to, soil, sediment, sand, gravel, groundwater, aquifer material, and landfills.
  • the bioremediation composition can be injected into multiple sites within an aquifer, as described in Example 3. According to the method described in Example 3, the method of applying numerous injections throughout the contaminant plume provides a substantially homogenous distribution of the bioremediation composition.
  • Example 3 does not rely on groundwater movement for effective removal of the contaminants, but rather the bioremediation composition adsorbs and decomposes the contaminant throughout the plume.
  • the method of this invention is capable of remediating contaminated soil in a matter of weeks or months rather than requiring a number of years for substantially complete remediation as with conventional methods that involve the use of reactive sheets.
  • bioremediation compositions of this invention provide several advantages over conventional methods and compositions for bioremediation. For example, regulatory cleanup standards can be approached very quickly compared to current techniques. The time required is dependant on soil type with silty/clay soils taking a longer period of time. In high conductivity soils (sandy or gravely soils), a 99 percent reduction in the concentration of contaminants can be achieved in a matter of days.
  • bioremediation composition Another advantage of the bioremediation composition is that contaminants are fully degraded into non-toxic products such as carbon dioxide, water and methane. Further, the bioremediation product is non-toxic. Accordingly, no toxic by-products are generated, the impact to groundwater as a consequence of composition installation is incidental, and no drinking or groundwater standards are normally exceeded at any time during treatment. Soil and groundwater contamination may be treated simultaneously, and the compositions are easy to install using equipment commonly found throughout the industry.
  • a measured amount of activated carbon is mixed with an associated amount of hydrated ferric nitrate calculated to provide the desired weight percentage of elemental iron in the final product.
  • the iron salt is typically moist and on warming easily melts, so that a uniform mixture results. As the mixture is stirred, it is warmed to roughly 50°C to melt the salt. If necessary, a small amount of water may be added to produce a mixture having a creamy consistency. The mixture is then dried at a temperature of from 90 to 110 0 C so that the mixture can be crushed to a free flowing granular powder. Some decomposition of the nitrate salt occurs during this process.
  • the dried powder is then loaded into a furnace and heated in accordance with a temperature program while maintaining reducing conditions throughout. Initially, the temperature is slowly raised to 150 to 200°C to completely dry the reactant and continue degradation of the iron nitrate. The temperature continues to increase, and at 300°C, the nitrate salt is completely decomposed into oxide.
  • a reducing gas such as methane gas or hydrogen gas is introduced into the furnace atmosphere and the temperature is raised to from 550 to 800°C, completely reducing the oxide to elemental iron.
  • Methane gas is safer to use than hydrogen and therefore is preferred.
  • the theoretical amount of water is typically formed upon complete reduction of the oxide as the temperature rises to between 400 and 450°C when 100% hydrogen or methane is used.
  • Final properties of the reactant are influenced by the ultimate reducing temperature. For example, when the reactant is reduced at temperatures below 700°C and then exposed to the air after cooling, an exothermic reaction may occur, oxidizing a portion of the reduced iron. However, when the final reduction is carried out at a high temperature, for example between about 700 and 800°C, the reactant is stable and exposure to the air has no effect. If reduction is completed at a temperature of less than 450°C, the material can be pyrophoric. At reduction temperatures between about 450 and 700 0 C, various reactant activities can be obtained.
  • the dried powder is loaded into a furnace and heated in accordance with a temperature program while maintaining reducing conditions throughout. Initially, the temperature is slowly raised to 150 to 200°C to completely dry the reactant and continue degradation of the iron oxide and iron hydroxide. The temperature continues to increase, and at 300°C, the nitrate salt is completely decomposed into oxide.
  • a reducing gas such as methane gas or hydrogen gas is introduced into the furnace atmosphere and the temperature is raised to from 550 to 800°C, completely reducing the oxide to elemental iron. Methane gas is safer to use than hydrogen and therefore is preferred.
  • the theoretical amount of water is typically formed upon complete reduction of the oxide as the temperature rises to between 400 and 45O 0 C when 100% hydrogen or methane is used.
  • Small diameter injection rods are driven to targeted depths (e.g., 5 - 150 feet). The depth will depend on the power of the drill rig and the hardness of the soil. Hydraulically powered direct-push drill rigs are used to pound/push the injection rod to the desired depths, and then withdraw it about 6 inches to open up a small void below the injection point.
  • a premixed aqueous suspension of a supported reactant or bioremediation composition of this invention is injected under pressure down the rod. Pressure is allowed to build in the formation, and slurry begins to flow out into the formation.
  • a second (fresh) batch of the suspension can be prepared, a new injection rod installed, and the process repeated. Treatment in this fashion is continued throughout the plume, reducing concentrations of contaminants in the groundwater concentrations as treatment progresses. If one could view a cross-section of the formation, the treatment regime is intended to create a three-dimensional network of material, dispersed randomly and fairly uniformly throughout the treated formation.

Abstract

The present invention provides a supported reactant for in situ remediation of soil and/or groundwater contaminated with a halogenated hydrocarbon consisting essentially of an adsorbent impregnated with zero valent iron, wherein the adsorbent is capable of adsorbing the halogenated hydrocarbon. In one embodiment, the adsorbent is activated carbon.

Description

COMPOSITIONS FOR REMOVING HALOGENATED HYDROCARBONS FROM CONTAMINATED ENVIRONMENTS
PRIORITY APPLICATION
[0001] The present application claims priority of U.S. Patent Application Serial No.
10/917,188 filed August 11, 2004, which is incorporated herein in its entirety.
BACKGROUND OF THE INVENTION
1. Field of the Invention:
[0002] The present invention relates to compositions and methods for in situ remediation of contaminated environments, and particularly to the remediation of soil and/or groundwater contaminated with halogenated hydrocarbons.
2. Description of the State of Art:
[0003] With increased concerns over protecting the environment and public health and safety, the identification and removal of contaminant materials in the environment, and especially from the groundwater supply, has become one of the most important environmental concerns today. Years of unregulated dumping of hazardous materials have severely contaminated the groundwater in many areas, creating significant health concerns and causing extensive damage to the local ecosystem. As a result, in recent years significant emphasis has been placed upon the clean-up and remediation of contaminated groundwater and the environment surrounding dump sites, which has lead to the creation of a new industry of environmental clean-up and remediation. However, conventional technologies currently being used for remediation for contaminated sites often are very expensive, can require years to perform, and are not always effective.
[0004] Because of the widespread use of both chlorinated solvents and petroleum hydrocarbons, contaminated ground water has been found in many sites around the world. Chlorinated solvents, such as trichloroethane (TCE) and perchloroethylene (PCE), are used for such purposes as dry cleaning, and as degreasers and cleaners in a variety of industries. Petroleum hydrocarbons commonly found in ground water include the components of gasoline, such as benzene, toluene, ethylbenzene, and xylene. Other common contaminants of ground water include naphthalene and chlorinated solvents. Additional groundwater and soil contaminants comprise polycyclic aromatic hydrocarbons (PAHs) created from combustion, coal coking, petroleum refining and wood-treating operations; and polychlorinated biphenyls (PCBs), once widely used in electrical transformers and capacitors and for a variety of other industrial purposes, pesticides, and herbicides.
[0005] Various ex situ and in situ methods have been utilized for the treatment, remediation or disposal of contaminated soil. Ex situ methods generally include permanent removal of the contaminated soil to a secure landfill, incineration, indirect thermal treatment, aeration, venting, and air sparging. Removal of contaminated soil to landfills is no longer an attractive alternative on account of the high excavation, transportation and disposal costs, and because of the potential for residual liability. Incineration and indirect thermal treatment can be achieved either on-site or off-site, but in either case involves excavation, handling and treatment of substantially all of the contaminated soil as well as significant amounts of soil adjacent to the contaminated soil. The soil must then either be transported to the treatment facility or else the treatment apparatus must be installed on-site. Other elaborate and expensive techniques that have been utilized involve excavation and treatment of the contaminated soil using multistep unit operations for separating and recovering the soil from the contaminants.
[0006] Additional existing clean-up methods and technologies include "pump and treat" methods in which contaminated groundwater is pumped to the surface, cleaned chemically or by passing the groundwater through a bioreactor, and then reinjected into the groundwater. Such a process generally is carried out over a long period of time, typically one to ten years or more. A common remediation treatment for ground water contaminated with chlorinated hydrocarbons involves pumping the water out of the well or aquifer, volatizing the contaminants in an air stripping tower, and returning the decontaminated water to the ground site. A related type of environmental remediation is the "dig and haul" method in which contaminated soils are removed and then treated or land filled.
[0007] The biggest problem with pump and treat systems is that, over time, they become more and more inefficient, so that stable residual concentrations become established. When this happens, the system is said to be "flat-lined" and very little further benefit is obtained. In addition, channeling often occurs so that large pockets of contamination are left behind, and rebound frequently occurs after the pumps are turned off.
[0008] A wide variety of materials and methods have been evaluated for in situ remediation of chlorinated hydrocarbons, including zero valent iron (ZVI), potassium permanganate, and hydrogen peroxide. ZVI renders the chlorinated hydrocarbon less toxic by reductive dehalogenation, i.e., by replacement of chlorine substituents with hydrogen. In this method, reactive walls are constructed by digging a trench across the plume migration path and filling it with iron filings. Sheet piling or some other means of directing the flow of groundwater is used to direct contaminated groundwater through the filing wall. The chlorinated hydrocarbons react with the elemental iron as the groundwater flows through the wall, and ideally, clean water emerges on the down gradient side of the wall. The disadvantage of the wall method lies in the difficulty of introducing large volumes of solid reactive material, such as iron particles, at effective depths. Conventional excavation methods generally limit the practical working depth to about 30 feet, whereas ground water contaminants are found at depths as great as 300 feet.
[0009] Oxygen release materials (ORMs) are compositions such as intercalated magnesium peroxide that release oxygen slowly and facilitate the aerobic degradation of hydrocarbon contaminants in situ. ORM's are most effective when used to polish up after a mechanical system has flat-lined and are least effective at new sites where no other remedial measures had been implemented. They are disadvantaged in that ORMs are expensive, and large amounts are required for complete oxidation. Additionally, multiple treatments are often required in order to achieve targeted cleanup goals, and up to five years may be needed to complete the process.
[0010] Hydrogen Release Compound® (HRC) is an alternative option for the in situ remediation of chlorinated hydrocarbons under anaerobic conditions via reductive dehalogenation. When in contact with subsurface moisture, HRC® is hydrolyzed, slowly releasing lactic acid. Indigenous anaerobic microbes (such as acetogens) metabolize the lactic acid producing consistent low concentrations of dissolved hydrogen. The resulting hydrogen is then used by other subsurface microbes (reductive dehalogenators) to strip the solvent molecules of their chlorine atoms and allow for further biological degradation. HRC® is injected into the affected environment under pressure and each treatment lasts for roughly six to nine months. Like ORMs, HRC® is expensive, and large amounts are required for complete degradation. Additionally, multiple treatments are always required in order to achieve targeted cleanup goals, and up to five years may be needed to complete the process.
[0011] Another emerging clean-up technology is "bioremediation," in which natural or genetically engineered microorganisms are applied to contaminated sites such as groundwater, soils or rocks. In this technique, specialized strains of bacteria are developed which metabolize various hydrocarbons such as gasoline, crude oil, or other hydrocarbon- based contaminates and gradually reduce them to carbon dioxide and water. However, such bacterial remediation requires that the bacteria and the hydrocarbon be brought into intimate contact under conditions in which the bacteria will act to metabolize the hydrocarbons. This requires extensive labor and effort to spread the bacteria on the soil and then to continually work and rework the contaminated area, turning and tilling the soil, until such time as the bacteria have been brought substantially into contact with all of the contaminated hydrocarbon particles. An additional drawback has been the ineffective spreading of injected bacteria due to clogging around the wells due to adsorption and growth of the bacteria about the wells.
[0012] The above-described technologies share one or more of the following drawbacks. (1) Long periods of time are required for sustained reduction in contaminant concentrations to be realized. (2) Although reductions can be realized, regulatory cleanup standards or goals for soil and groundwater are seldom attained. (3) Performance is inconsistent and highly dependent on site conditions and contaminant levels. (4) With respect to active systems, contaminants are often removed from one formation (groundwater for example) and then released into another, such as air. As a result, contaminants are not destroyed, just moved from one place to another. (5) With respect to passive systems for treatment of chlorinated solvents, by-products are often released that are more toxic than the original contaminants, creating a transient condition more egregious than what existed before treatment.
[0013] There is still a need for remediation processes to effectively clean up soil and/or groundwater contaminated with hydrocarbons, and/or halogenated hydrocarbons, that is rapid, cost effective, and does not release toxic by-products into the soil, air or groundwater.
SUMMARY OF THE INVENTION
[0014] The present invention provides compositions and methods for in situ soil and/or groundwater remediation that can reduce contaminant concentrations quickly to regulatory cleanup standards. The compositions and methods work in a variety of soil and groundwater conditions and are applicable for the remediation of a variety of contaminants. The methods and compositions of this invention do not release toxic by-products into the soil, groundwater or air, and have no impact on soil properties or groundwater quality. The compositions of this invention are cost effective in that they remain active for an extended period of time so that only a single treatment is required.
[0015] Accordingly, one aspect of this invention provides a composition which, when added to a site such as soil and/or groundwater contaminated with one or more halogenated hydrocarbons, adsorbs the halogenated hydrocarbons and reduces them to less innocuous by¬ products. More specifically, one embodiment of this invention provides a supported reactant for in situ remediation of soil and/or groundwater contaminated with one or more halogenated hydrocarbon, said supported reactant consisting essentially of an adsorbent impregnated with zero valent iron, wherein the adsorbent is capable of adsorbing the halogenated hydrocarbon contaminants as well as the intermediate by-products resulting from the degradation of the contaminants. In one embodiment, the adsorbent is activated carbon. [0016] Another aspect of this invention provides a method for the remediation of an environment contaminated with halogenated hydrocarbons, comprising adding a supported reactant of this invention to one or more sites of said contaminated environment, wherein reductive dehalogenation of the halogenated hydrocarbon contaminants is achieved. [0017] This invention further provides a bioremediation composition which, when added to water and/or soil contaminated with petroleum or other hydrocarbons, will adsorb hydrocarbons from the soil and/or water and degrade the hydrocarbons. More specifically, this invention provides a bioremediation composition comprising an adsorbent capable of adsorbing said hydrocarbons, a mixture of facultative anaerobes capable of metabolizing said hydrocarbons under sulfate-reduction conditions, a sulfate-containing compound that releases sulfate over a period of time, and a nutrient system for promoting growth of said anaerobes, wherein said nutrient system includes a sulfide scavenging agent.
[0018] Another aspect of this invention provides a method for the bioremediation of an environment contaminated with hydrocarbons, comprising adding a bioremediation composition of this invention to one or more sites of said contaminated environment, wherein the mixture of facultative anaerobes metabolizes the hydrocarbon contaminants. [0019] Additional advantages and novel features of this invention shall be set forth in part in the description and examples that follow, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by the practice of the invention. The objects and the advantages of the invention may be realized and attained by means of the instrumentalities and in combinations particularly pointed out in the appended claims. DETAILED DESCRIPTION OF THE INVENTION
[0020] This invention relates to compositions and methods for in situ remediation of environments such as soil or groundwater contaminated with hydrocarbons or halogenated hydrocarbons. The compositions and methods of this invention can reduce contaminant concentrations quickly to regulatory cleanup standards and work in a variety of soil and groundwater conditions. The methods and compositions of this invention do not release toxic by-products into the soil, groundwater or air, and have no impact on soil properties or groundwater quality. The compositions of this invention remain active for an extended period of time so that only a single treatment is required. The methods and compositions of this invention are applicable for the remediation of a variety of contaminants, and are reasonably cost effective relative to existing remedies.
[0021] More specifically, one embodiment of this invention provides a supported reactant for the reductive dehalogenation of halogenated hydrocarbons, wherein the reactant consists essentially of an adsorbent impregnated with zero valent iron, wherein the adsorbent has an affinity for halogenated hydrocarbons. In addition, the adsorbent is capable of adsorbing toxic intermediate by-products produced by the reductive dehalogenation of the contaminants (e.g., intermediates such as dichloroethane and vinyl chloride intermediate by¬ products of trichloroethane decomposition). The adsorbent thus provides a means for concentrating contaminants into a new matrix where a high surface area of iron is available, as discussed hereinafter in detail. The supported reactants of this invention accomplish treatment of halogenated hydrocarbons in soil and groundwater by degrading halogenated hydrocarbon contaminants and their toxic intermediate by-products into harmless by-products (e.g., ethane, ethene, etc.).
[0022] The supported reactants of this invention are prepared using an adsorbent having a high surface area per unit weight and a high affinity for halogenated hydrocarbons. Suitable adsorbents for purposes of this invention include, but are not limited to, activated carbon, vermiculite, alumina, and zeolites. Thus, while the method of preparing the supported reactants of this invention is described utilizing activated carbon as the adsorbent, it is to be understood that the methods and supported reactants of this invention are not limited to this adsorbent.
[0023] In one non-limiting embodiment, the supported reactant consists essentially of activated carbon as the support, wherein the carbon is impregnated with zero valent iron. The activated carbon preferably has a high surface area per unit weight (preferably ranging from 800 to 2000 m2/g) and a high affinity for halogenated hydrocarbons. The ability of activated carbon to adsorb organics from water enhances its utility as a support. However, while the activated carbon can trap hydrocarbon contaminants, carbon by itself is not stable over long periods, i.e., it is subject to erosion, etc., in which case the contaminants move with the activated carbon and are not truly trapped and removed. Activated carbon provides an efficient matrix for adsorption of the chlorinated hydrocarbon contaminants. Impregnating the activated carbon with the zero valent iron provides sub-micron deposits of iron within the pore structure of the carbon, thus maximizing the metal's available surface area and placing the metal where the concentration of adsorbed contaminant molecules is the highest. Accordingly, the supported reactant allows efficient contact of the iron with adsorbed chemicals contaminants, since the iron will be in close proximity to the contaminant. The supported reactants of this invention accomplish treatment of chlorinated hydrocarbons in soil and groundwater by degrading these chemicals into harmless by-products.
[0024] Activated carbons suitable for purposes of this invention are manufactured from a broad spectrum of material, including, but not limited to, coal, coconut shells, peat and wood. The raw material is typically crushed, screened, washed to remove mineral constituents. The material is then activated at high temperatures (typically over 900 °C) in a controlled atmosphere to produce a material having an extensive porous network and a large surface area (e.g., ranging from 1000 to 2000 m Ig). The supported reactants of this invention may be produced with virtually any source of activated carbon. All that is needed are minor adjustments in system design parameters to account for the different forms of carbon. When the product is used for remediation of groundwater, acid- washed carbons are preferred, since the acid wash removes any extraneous metals that may be of environmental concern from the carbon.
[0025] With activated carbon, available surface areas for adsorption preferably range from about 800 m2/gm to 2000 m2/gm. Some loss of carbon surface area may occur during the impregnation process, but testing has shown that the loss is not significant when measured by adsorption isotherms. In one embodiment, the surface area of the zero valent iron used in the supported reactant of this invention ranges from about 50 to 400 m2/(gm- deposited iron). The weight percent of iron deposited within the carbon matrix ranges from about 1 percent to 20 percent by weight of iron, preferably about 7 to 8 percent by weight of iron. In one embodiment, the supported reactant has a total surface area of over 1500 m2/g.
[0026] The iron contained in the supported reactants of this invention is a high purity iron. That is the iron does not contain other metals, in particular heavy metals, which would contaminate groundwater and drinking water beyond limits allowed by the EPA. Preferably, the iron is at least 99% pure, wherein the concentrations of trace contaminants such as chromium, aluminum, potassium, cesium, zinc, lead, nickel, cadmium, and/or arsenic are less than 5 ppm.
[0027] In another embodiment, a supported reactant of this invention for in situ remediation of soil and/or groundwater contaminated with a halogenated hydrocarbon, consists essentially of (i) an adsorbent impregnated with zero valent iron and (ii) a metal hydroxide in an amount sufficient to provide a reactant having a pH greater than 7, wherein the adsorbent is capable of adsorbing the halogenated hydrocarbon. Suitable adsorbents for purposes of this invention include, but are not limited to, activated carbon, vermiculite, alumina, and zeolites.
[0028] As described above, the contaminants are initially adsorbed by the activated carbon and then degraded through a reductive dechlorination mechanism. However, toxic reaction by-products such as vinyl chloride and czs-dichloroethene are formed during the treatment process. In conventional remediation systems, even though these by-products will react with the iron, they do so at a reduced rate, and concentrations can initially rise. In fact, fairly large accumulations can occur, creating a more acute risk to the environment than that which originally existed. One of the advantages of the supported reactant of this invention is that these toxic by-products are also readily adsorbed by the activated carbon. As a result, little if any by-product escapes from the carbon matrix and groundwater quality is protected throughout the cleanup lifecycle. Further, the supported reactant degrades the intermediate by-products into non-toxic by-products such as ethane, ethene and ethyne.
[0029] Manufacture of the supported reactants of this invention involves methods that will produce an adsorbent (e.g., activated carbon) impregnated with zero valent iron, which can be achieved using a variety of procedures known to those skilled in the art. One method of producing a supported reactant of this invention comprises mixing the adsorbent with a calculated amount of a hydrated iron salt such as ferric nitrate while warming to melt the hydrated iron salt. The iron can be an iron (II) or an iron (III) salt. The mixture is dried and pyrolyzed to decompose the iron salt to iron oxide, forming an intermediate product (i.e., the activated carbon impregnated with a form of iron oxide). The intermediate product is then subjected to reduction conditions to reduce the iron oxide to elemental iron, thereby producing the activated carbon impregnated with elemental iron.
[0030] A second method for preparing a supported reactant of this invention involves a slow precipitation of goethite (iron hydrogen oxide) from a solution of an iron salt (e.g., ferrous sulfate) by addition of a dilute sodium bicarbonate solution. The precipitation is carried out with vigorous mixing in a suspension of the activated carbon to provide an intermediate product (i.e., the adsorbent impregnated with a form of iron oxide). This intermediate product is then washed, dried, and finally reduced to convert the iron oxides to elemental iron, thereby producing the activated carbon impregnated with elemental iron.
[0031] A third method of preparing a supported reactant of this invention involves treatment of the activated carbon with a solution of a water soluble iron salt, such as iron (II/III) sulfate, iron chloride, iron citrate, iron nitrate, or any other suitable water soluble iron salt. The solution can be sprayed onto the carbon or the carbon may be suspended in a measured volume of the iron salt solution sufficient to achieve the desired loading. In a preferred embodiment, the suspension is then de-aerated by applied vacuum. Depending on the chosen process for final reduction, the salt impregnated material can be dried and reduced directly, or the material may require neutralization of the salt by the addition of a dilute sodium bicarbonate or sodium hydroxide solution over a period of time, thereby producing iron oxides/hydroxide within the carbon. In the latter case, the iron oxide or iron hydroxide- impregnated activated carbon is then subjected to reducing conditions to reduce the iron oxide or iron hydroxide to zero-valent iron.
[0032] In one embodiment, the effectiveness of the supported reactant can be enhanced by increasing the pH of the supported reactant to a basic pH, such as by adding a small percentage of magnesium hydroxide to the supported reactant to raise the pH above 7.0.
[0033] The supported reactants of this invention can be applied to treatment of water contaminated with a variety of water miscible or soluble halogenated organic compounds. Chlorinated solvents are particularly common contaminants in aquifers and other subsurface water-containing environments. Contaminants that may be effectively treated include halogenated solvents such as, but not limited to, (TCE), dichloroethylene (DCE), tetrachloroethylene, dichloroethane, trichloroethane, perchloroethene (PCE), vinyl chloride (VC), chloroethane, carbon tetrachloride, chloroform, dichloromethane and methyl chloride. Other classes of contaminants that may be effectively treated include brominated methanes, brominated ethanes, brominated ethenes, fluorochloromethanes, fluorochloroethanes, fluorochloroethenes, polychlorinated biphenyls (PCBs), and pesticides.
[0034] This invention further provides a method of remediating a site contaminated with halogenated hydrocarbons, comprising injecting a supported reactant of this invention into one or more locations of the contaminated site. Illustrative examples of contaminated environments that can be treated with a supported reactant of this invention include, but are not limited to, soil, sediment, sand, gravel, groundwater, aquifer material, and landfills. For example, in one embodiment the supported reactant can be injected into multiple sites within an aquifer, as described in Example 3. In this embodiment, the application method results in a substantially homogeneous distribution of the supported reactant in the contaminant plume, as opposed to creating a barrier or filled trench as in conventional methods. Thus, the remediation method according to the embodiment described in Example 3 using a supported reactant does not rely on groundwater diffusion for effective treatment. Rather, the activated carbon component of the supported reactant concentrates the contaminants within the adsorbent matrix where a high surface area of iron is available, thereby increasing the rate of contaminant degradation. Contaminated ground water in the site subsequently contacts the supported reactant, whereby reductive dehalogenation of the halogenated hydrocarbon compounds is achieved.
[0035] The supported reactants of this invention provide a number of advantages over conventional remediation products and methods. For example, it rapidly reduces concentrations of contaminants in groundwater so that regulatory standards can be approached or achieved in a short time frame (e.g., within several days or a few weeks, versus several months or years with conventional methods). In addition, the supported reactant is non-toxic, does not decompose over time, and toxic degradation by-products are not released, so groundwater quality is protected throughout treatment. The supported reactant has the ability to treat a variety of chlorinated chemicals and is effective in all types of soil and groundwater conditions. It remains active for an extended period of time so that typically only a single treatment is required. The material is easy to use and does not require any special safety controls or equipment for installation. [0036] This invention further provides a bioremediation composition for in situ bioremediation of environments contaminated with hydrocarbons. The vast majority of sites contaminated with fuel hydrocarbons are naturally in an anaerobic state. The bioremediation composition of this invention takes advantage of this condition and is designed to promote anaerobic oxidation of hydrocarbons through a sulfate-reduction mechanism. In addition, the bioremediation composition of this invention comprises an adsorbent having an affinity for hydrocarbon contaminants, thereby providing a means for concentrating the contaminants and increasing the rate of bioremediation.
[0037] Accordingly, a bioremediation composition of this invention for in situ bioremediation of an environment contaminated with hydrocarbon comprises an adsorbent capable of adsorbing hydrocarbons, a mixture of two or more species of facultative anaerobes capable of metabolizing said hydrocarbons under sulfate-reduction conditions, a sulfate- containing compound that releases sulfate ions over a period of time, and a nutrient system for metabolism of said facultative anaerobes, wherein said nutrient mixture includes a sulfide scavenging agent.
[0038] An illustrative example of a bioremediation composition of this invention comprises a mixture of the ingredients listed in Table 1.
TABLE 1
Figure imgf000012_0001
[0039] The adsorbent provides a means for concentrating the mixture of facultative anaerobes at the site of contamination. In addition, the adsorbent provides an efficient matrix for adsorbing and thus concentrating the hydrocarbon contaminants. As a result, the rate of bioremediation is dramatically increased relative to rates obtained using conventional methods. In one embodiment, the adsorbent is activated carbon, which has a high affinity for hydrocarbons. In addition, activated carbon has an affinity for facultative anaerobes, which is advantageous for in situ bioremediation where growth of the anaerobes is desired.
[0040] The mixture of facultative anaerobes comprises hydrocarbon degraders that metabolize the hydrocarbon contaminants under sulfate-reduction conditions. A facultative anaerobe is a microbe such as bacteria and fungi that can switch between aerobic and anaerobic types of metabolism. Under anaerobic conditions, they grow by fermentation or anaerobic respiration. Further, since oxygen is not toxic to facultative anaerobes, the facultative anaerobes used in the composition of this invention are not sensitive to the low levels of oxygen frequently found at contaminated sites. In one embodiment, the mixture of facultative anaerobes comprises symbiotic facultative anaerobes that work in concert with each other. That is, one type of facultative anaerobe will break down a hydrocarbon contaminant to a first intermediate, and another type of facultative anaerobe will break down the first intermediate to a second intermediate or final by-product, etc.
[0041] In one embodiment, the mixture of facultative anaerobes includes at least one anaerobe that is a sulfate-reducing bacteria. Generally, sulfate-reducing bacteria are distributed widely in nature where anoxic conditions prevail. For example, such bacteria have been found in sewage, polluted water, sediment of lakes, sea and marine muds, oil wells, and the like. In one embodiment, the composition of the present invention is designed to dramatically increase the activity of naturally occurring sulfate-reducing bacteria by introducing cultured bacteria into the contaminated environment. Rather than depending on indigenous bacteria to inhabit the injected adsorbent, an aqueous suspension of the adsorbent is blended with the mixture of facultative anaerobes that includes bacteria specifically cultured for degradation of hydrocarbons. This mixture is stirred for a short period of time prior to injecting into the contaminated site to ensure all micronutrients have dissolved to provide a homogeneous mixture. In addition, this pre-mixing provides the cultured bacteria with an advantage over indigenous bacteria, maximizing the opportunity for the cultured bacteria to predominate. By not relying on indigenous bacteria to decompose the hydrocarbon contaminants, the compositions of this invention provide a means for removing hydrocarbon contaminants in a much shorter time period.
[0042] Commercial cultured mixtures of facultative anaerobes vary over a considerable range and the amount added will depend on the source and whether it is a dry, mineral-based product, or if it is a liquid concentrate. Regardless of the source, a sufficient amount of the facultative anaerobe mixture is added so that a targeted suspension concentration of 5 to 10 million CFU (colony forming units) per milliliter is obtained.
[0043] In general, the cultured bacteria will comprise a multiple species or strains of bacteria. The species or strains of bacteria are advantageously derived from Pseudomonas, Phenylobacterium, Stenotrophomonas, Gluconobacter, Agrohacterium, Vibrio, Acinetobacter, or Micrococcus, yeasts or other genera can also be employed. Exemplary bacterial strains include Pseudomonas pseudoalkaligenes, Phenylobacterium immobile, Stenotrophomonas maltophilia, Gluconobacter cerinus, Agrobacterium radiobacter or Pseudomonas alcaligenes.
[0044] As discussed above, the bioremediation composition of this invention metabolizes hydrocarbon contaminants under sulfate-reduction conditions, wherein some or all of the facultative anaerobes reduce sulfate to hydrogen sulfide and metabolize (oxidize) at least some hydrocarbon contaminants in the process. Thus, decomposition of hydrocarbons under sulfate-reduction conditions requires a source of sulfate ions. Accordingly, the bioremediation composition of this invention includes a sulfate-containing compound. Preferably the sulfate-containing compound has a low water solubility and is non-toxic. An illustrative example of a suitable sulfate-containing compound is gypsum (calcium sulfate), which is a non-toxic, naturally occurring compound found in soil. Since gypsum has a low solubility in water, it breaks down over time to provide a slow release of sulfate ions, thus a low but persistent level of sulfate can be maintained during bioremediation using a composition of this invention. In this manner, gypsum acts as a "time released" source of sulfate ions, which is advantageous since the mixture of facultative anaerobes consumes the hydrocarbon contaminants over a period of time. As long as there is an adequate supply of dissolved sulfate, the activity of the facultative anaerobes will be optimized. Accordingly, any non-toxic sulfate-containing compound that releases sulfate ions in a manner similar to gypsum is suitable for purposes of this invention. As used herein, "nontoxic" refers to standards set forth for drinking water standards as regulated by the United States Environmental Protection Agency and defined by the Occupational Health and Safety Administration.
[0045] Low levels of micronutrients, which are needed to support growth of the cultured facultative anaerobes, are mixed in with the other components of the bioremediation composition. A suitable nutrient system for the facultative anaerobes includes a nitrogen source such as an ammonium salt, and a phosphorus source such as an alkali metal phosphate compound. Preferably, the micronutrient source does not contain sand, gravel, fillers, or other insoluble products found in commercial fertilizers. One example of a suitable micronutrient source for purposes of this invention contains nitrogen (e.g., 24 percent by weight as ammonia and ammonium nitrate in a ratio of about 2:1), phosphorus (e.g., 10 percent by weight as ammonium phosphate), potassium (e.g., 2 percent by weight as potassium chloride), sulfur (e.g., 5 percent by weight as ammonium sulfate), and iron (e.g., 2 percent by weight as ferrous sulfate). The nutrient system also includes a sulfide scavenging agent. In one embodiment, the sulfide scavenging agent is a ferrous iron salt such as iron sulfate.
[0046] After injection into the contaminated soil or groundwater, the bioremediation composition rapidly reduces concentrations of the hydrocarbon contaminants in soil and/or groundwater. Hydrocarbon contaminant molecules are adsorbed by the composition and are thus co-located together with the cultured facultative anaerobes in the pores of the adsorbent matrix. The hydrocarbon contaminant concentration within the adsorbent matrix thus becomes substantially higher than that which existed in the soil or groundwater. As a result, rates of degradation are significantly faster than rates commonly observed using current technology. As adsorbed contaminants are degraded, active sites become available to adsorb fresh contaminant, and the cycle is repeated until the microcosm runs out of food (i.e., hydrocarbons).
[0047] By-products of sulfate reduction include carbon dioxide, water, a variety of fermentation products such as light alcohols (ethanol, propyl alcohol, isopropyl alcohol, butyl alcohol, etc.) and hydrogen sulfide. In a typical installation, elevated concentrations of hydrogen sulfide do not occur because a sulfide scavenging agent (e.g., iron sulfate) is incorporated as one of the micronutrients. For example, an iron salt can scavenge hydrogen sulfide and form insoluble iron sulfide, thus preventing toxic levels of hydrogen sulfide from accumulating. Thus, transient concentrations of hydrogen sulfide are maintained well below regulatory thresholds, protecting groundwater quality.
[0048] The mixture of facultative anaerobes included in the composition of this invention is capable of biodegrading various aliphatic, aromatic and polycyclic aromatic hydrocarbons. For example, the compositions can be used to biodegrade aromatic hydrocarbons present in gasoline such as benzene, toluene, ethylbenzene, and xylenes. Examples of polycyclic aromatic hydrocarbons that can be biodegraded using the bioremediation composition of this invention generally include any of the various aromatic compounds containing multiple ring structures. Some of the most toxic (carcinogenic) aromatic hydrocarbons (polycyclic aromatics) are fairly resistant to bioremediation, requiring long periods of time for assimilation, but they are tightly held by activated carbon. Polycyclic aromatic hydrocarbons are generally present in and derived from fossil fuels, especially coal and petroleum. Relatively high concentrations of polycyclic aromatic hydrocarbons are found in coal-tar pitch, petroleum and coal-tar naphtha, and various other high-boiling point petroleum fractions, as well as various products derived therefrom including roofing pitch, sealants, road tars, asphalts, pipe coatings, water-proofing materials, dyes, pesticides, paint additives and wood preservatives. A single large spill of such materials containing high concentrations of polycyclic aromatic hydrocarbons can result in serious contamination requiring rapid remedial action. Additionally, various fuels, such as kerosene and gasoline, or other substances containing low concentrations of polycyclic aromatic hydrocarbons can have a cumulative effect. Potential applications of the invention include soil bioremediation at manufactured gas plant sites, coke oven sites, petroleum refineries, fuel depots, gas stations, and other industrial sites.
[0049] As described, in the preparation of a bioremediation composition of this invention, the facultative anaerobes and adsorbent are mixed with water for a short period of time prior to application to allow the facultative anaerobes to inhabit the pores of the adsorbent matrix prior to injection into the contaminated environment. As a result, the "adsorbent microcosm" is pre-inhabited by large numbers of facultative anaerobes tailored for rapid assimilation of fuel hydrocarbons, optimizing the opportunity of such anaerobes to dominate the "sulfate-reducing" niche over indigenous microbes.
[0050] This invention further provides a method for bioremediation of a site contaminated with hydrocarbons, comprising injecting a bioremediation composition of this invention at or within one or more locations of the contaminated site. Illustrative examples of contaminated environments that can be treated with a bioremediation composition of this invention include, but are not limited to, soil, sediment, sand, gravel, groundwater, aquifer material, and landfills. For example, in one embodiment the bioremediation composition can be injected into multiple sites within an aquifer, as described in Example 3. According to the method described in Example 3, the method of applying numerous injections throughout the contaminant plume provides a substantially homogenous distribution of the bioremediation composition. Thus, the method described in Example 3 does not rely on groundwater movement for effective removal of the contaminants, but rather the bioremediation composition adsorbs and decomposes the contaminant throughout the plume. As a result, the method of this invention is capable of remediating contaminated soil in a matter of weeks or months rather than requiring a number of years for substantially complete remediation as with conventional methods that involve the use of reactive sheets.
[0051] The bioremediation compositions of this invention provide several advantages over conventional methods and compositions for bioremediation. For example, regulatory cleanup standards can be approached very quickly compared to current techniques. The time required is dependant on soil type with silty/clay soils taking a longer period of time. In high conductivity soils (sandy or gravely soils), a 99 percent reduction in the concentration of contaminants can be achieved in a matter of days.
[0052] Another advantage of the bioremediation composition is that contaminants are fully degraded into non-toxic products such as carbon dioxide, water and methane. Further, the bioremediation product is non-toxic. Accordingly, no toxic by-products are generated, the impact to groundwater as a consequence of composition installation is incidental, and no drinking or groundwater standards are normally exceeded at any time during treatment. Soil and groundwater contamination may be treated simultaneously, and the compositions are easy to install using equipment commonly found throughout the industry.
[0053] The invention is further illustrated by the following non-limiting examples.
AU scientific and technical terms have the meanings as understood by one with ordinary skill in the art. The specific examples which follow illustrate the methods in which the compositions of the present invention may be prepared and are not to be construed as limiting the invention in sphere or scope. The methods may be adapted to variation in order to produce compositions embraced by this invention but not specifically disclosed. Further, variations of the methods to produce and use the same compositions in somewhat different fashion will be evident to one skilled in the art.
EXAMPLE 1 Preparation of a supported reactant by low temperature decomposition of metal nitrates
[0054] A measured amount of activated carbon is mixed with an associated amount of hydrated ferric nitrate calculated to provide the desired weight percentage of elemental iron in the final product. The iron salt is typically moist and on warming easily melts, so that a uniform mixture results. As the mixture is stirred, it is warmed to roughly 50°C to melt the salt. If necessary, a small amount of water may be added to produce a mixture having a creamy consistency. The mixture is then dried at a temperature of from 90 to 1100C so that the mixture can be crushed to a free flowing granular powder. Some decomposition of the nitrate salt occurs during this process.
[0055] The dried powder is then loaded into a furnace and heated in accordance with a temperature program while maintaining reducing conditions throughout. Initially, the temperature is slowly raised to 150 to 200°C to completely dry the reactant and continue degradation of the iron nitrate. The temperature continues to increase, and at 300°C, the nitrate salt is completely decomposed into oxide.
[0056] Once the nitrate is completely degraded into oxide, a reducing gas such as methane gas or hydrogen gas is introduced into the furnace atmosphere and the temperature is raised to from 550 to 800°C, completely reducing the oxide to elemental iron. Methane gas is safer to use than hydrogen and therefore is preferred. The theoretical amount of water is typically formed upon complete reduction of the oxide as the temperature rises to between 400 and 450°C when 100% hydrogen or methane is used.
[0057] Final properties of the reactant are influenced by the ultimate reducing temperature. For example, when the reactant is reduced at temperatures below 700°C and then exposed to the air after cooling, an exothermic reaction may occur, oxidizing a portion of the reduced iron. However, when the final reduction is carried out at a high temperature, for example between about 700 and 800°C, the reactant is stable and exposure to the air has no effect. If reduction is completed at a temperature of less than 450°C, the material can be pyrophoric. At reduction temperatures between about 450 and 7000C, various reactant activities can be obtained.
EXAMPLE 2 Preparation of a supported reactant by a precipitation procedure
[0058] An appropriate amount of hydrated iron sulfate is dissolved in deionized water in a tank with stirring, and a measured amount of activated carbon is added. Stirring is continued after the addition is complete and a vacuum is applied to the tank to de-aerate the carbon. Once the carbon is de-aerated, a sufficient amount of a dilute solution of sodium bicarbonate is slowly added to initiate precipitation of goethite and other iron oxides onto the suspended carbon. Pressurizing the tank during addition of the bicarbonate can enhance the impregnation process. After the addition of bicarbonate is completed, mixing is continued for several more hours. The process is complete when testing of an aliquot for ferrous iron is negative. The slurry is then washed with deionized water and filtered several times. Finally, the collected reactant is dried at 11O0C. At this point, the carbon is impregnated with iron oxides and is ready for reduction.
[0059] The dried powder is loaded into a furnace and heated in accordance with a temperature program while maintaining reducing conditions throughout. Initially, the temperature is slowly raised to 150 to 200°C to completely dry the reactant and continue degradation of the iron oxide and iron hydroxide. The temperature continues to increase, and at 300°C, the nitrate salt is completely decomposed into oxide. A reducing gas such as methane gas or hydrogen gas is introduced into the furnace atmosphere and the temperature is raised to from 550 to 800°C, completely reducing the oxide to elemental iron. Methane gas is safer to use than hydrogen and therefore is preferred. The theoretical amount of water is typically formed upon complete reduction of the oxide as the temperature rises to between 400 and 45O0C when 100% hydrogen or methane is used.
EXAMPLE 3 Application of a composition of this invention
[0060] Small diameter (e.g., about 0.75 to 2 inches in diameter) injection rods are driven to targeted depths (e.g., 5 - 150 feet). The depth will depend on the power of the drill rig and the hardness of the soil. Hydraulically powered direct-push drill rigs are used to pound/push the injection rod to the desired depths, and then withdraw it about 6 inches to open up a small void below the injection point. A premixed aqueous suspension of a supported reactant or bioremediation composition of this invention is injected under pressure down the rod. Pressure is allowed to build in the formation, and slurry begins to flow out into the formation. No attempt is made to control the path of fluid flow, but rather the objective is to achieve a substantially homogeneous distribution of the suspension within the formation. The suspension tends to emanate outward in all directions from the base of the injection, and the average or effective radius of influence is controlled by the amount of fluid pumped into the rod.
[0061] After injection of the first batch of the suspension, a second (fresh) batch of the suspension can be prepared, a new injection rod installed, and the process repeated. Treatment in this fashion is continued throughout the plume, reducing concentrations of contaminants in the groundwater concentrations as treatment progresses. If one could view a cross-section of the formation, the treatment regime is intended to create a three-dimensional network of material, dispersed randomly and fairly uniformly throughout the treated formation.
[0062] Many treatment technologies, ZVI for example, only work well when installed in groundwater (saturated soils) and is not effective for treatment of vadose zone (unsaturated) soils. Because activated carbon is very effective at adsorbing organic compounds from vapor streams, the compositions of this invention are able to perform nearly as well when installed in the vadose zone. As a result the products can be used equally well for treatment of contaminated soils and groundwater.
[0063] The foregoing description is considered as illustrative only of the principles of the invention. The words "comprise," "comprising," "include," "including," and "includes" when used in this specification and in the following claims are intended to specify the presence of one or more stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, or groups thereof. Furthermore, since a number of modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and process shown described above. Accordingly, all suitable modifications and equivalents may be resorted to falling within the scope of the invention as defined by the claims that follow.

Claims

CLAIMSWhat is claimed is:
1. A supported reactant for in situ remediation of soil and/or groundwater contaminated with one or more halogenated hydrocarbons, consisting essentially of an adsorbent impregnated with zero valent iron having a purity of at least 99%, wherein the activated carbon is capable of adsorbing the halogenated hydrocarbon contaminants.
2. The supported reactant of claim 1, wherein said adsorbent is activated carbon.
3. The supported reactant of claim 2, wherein said activated carbon has a surface area between about 800 and 2000 m2/g.
4. The supported reactant of claim 1, wherein said supported reactant has a surface area of at least 1500 m2/g.
5. The supported reactant of claim 1, wherein said halogenated hydrocarbon is selected from the group consisting of halogenated aliphatic hydrocarbons, halogenated aromatic hydrocarbons, and halogenated polycyclic hydrocarbons.
6. The supported reactant of claim 1, wherein said iron is iron powder, turnings, or chips.
7. The supported reactant of claim 1 , wherein the exposed surface area of said iron is between about 50 and 400 m2/g.
8. The supported reactant of claim 1 , wherein said supported reactant comprises between about 1 and 20 percent by weight of said iron.
9. The supported reactant of claim 7, wherein said supported reactant comprises between about 2 and 8 percent by weight of said iron.
10. The supported reactant of claim 2, produced by the method comprising: mixing said activated carbon with a hydrated iron salt; warming said mixture to melt said hydrated iron salt, thereby forming a homogeneous mixture; pyrolyzing said homogeneous mixture at a temperature sufficient to reduce said iron salt to iron oxide, thereby provide said activated carbon impregnated with said iron oxide; and subjecting said iron oxide-impregnated activated carbon to reducing conditions to reduce said iron to zero-valent iron.
11. The supported reactant of claim 10, wherein said hydrated iron salt is ferric nitrate.
12. The supported reactant of claim 10, wherein said pyrolyzing conditions comprise heating said mixture to a temperature between about 150 to 300°C.
13. The supported reactant of claim 10, wherein said reducing conditions comprise heating said iron-oxide impregnated carbon to a temperature between about 450 and 800°C.
14. A supported reactant for in situ remediation of soil and/or ground water contaminated with one or more halogenated hydrocarbons, consisting essentially of (i) an adsorbent impregnated with zero valent iron having a purity of at least 99% and (ii) a metal hydroxide in an amount sufficient to provide a reactant having a pH greater than 7, wherein the adsorbent is capable of adsorbing the halogenated hydrocarbon contaminants.
15. The supported reactant of claim 14, wherein the adsorbent is activated carbon.
16. The supported reactant of claim 15, wherein said activated carbon has a surface area between about 800 and 2000 m2/g.
17. The supported reactant of claim 14, wherein said supported reactant has a surface area of at least 1500 m2/g.
18. The supported reactant of claim 14, wherein said halogenated hydrocarbon is selected from the group consisting of halogenated aliphatic hydrocarbons, halogenated aromatic hydrocarbons, and halogenated polycyclic hydrocarbons.
19. The supported reactant of claim 14, wherein said iron is iron powder, turnings, or chips.
20. The supported reactant of claim 14, wherein the exposed surface area of said iron is between about 50 and 400 m2/g.
21. The supported reactant of claim 14, wherein said supported reactant comprises between about 1 and 20 percent by weight of said iron.
22. The supported reactant of claim 21, wherein said supported reactant comprises between about 2 and 8 percent by weight of said iron.
23. The supported reactant of claim 2, produced by the method comprising: dissolving a known amount of a water soluble iron salt in deionized water to form a solution; spraying said solution onto a measured amount of activated carbon in an amount that will produce impregnated activated carbon having a desired loading of zero valent iron; drying said impregnated activated carbon; and subjecting said impregnated activated carbon to reducing conditions to reduce iron salt to zero-valent iron.
24. The supported reactant of claim 2, produced by the method comprising: dissolving a known amount of hydrated iron salt in deionized water to form a solution; suspending a known amount of said activated carbon in the solution; de-aerating the suspension by applied vacuum; adding a dilute sodium bicarbonate solution or sodium hydroxide solution to the suspension over a period of time to initiate neutralization and precipitation of iron oxides onto said suspended activated carbon to provide said carbon impregnated with iron oxides or iron hydroxides; collecting said iron oxide- or iron hydroxide-impregnated carbon; and subjecting said iron oxide- or iron hydroxide-impregnated activated carbon to reducing conditions to reduce said iron oxide or iron hydroxide to zero-valent iron.
PCT/US2005/020565 2004-08-11 2005-06-13 Compositions for removing halogenated hydrocarbons from contaminated environments WO2006023002A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/917,188 US8097559B2 (en) 2002-07-12 2004-08-11 Compositions for removing halogenated hydrocarbons from contaminated environments
US10/917,188 2004-08-11

Publications (2)

Publication Number Publication Date
WO2006023002A2 true WO2006023002A2 (en) 2006-03-02
WO2006023002A3 WO2006023002A3 (en) 2006-09-14

Family

ID=35968003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/020565 WO2006023002A2 (en) 2004-08-11 2005-06-13 Compositions for removing halogenated hydrocarbons from contaminated environments

Country Status (2)

Country Link
US (5) US8097559B2 (en)
WO (1) WO2006023002A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009106567A1 (en) * 2008-02-27 2009-09-03 Basf Se Method for the production of iron-doped carbons
CN105854797A (en) * 2016-04-11 2016-08-17 中国矿业大学 Preparation method and application of nanometer zero-valence bimetal-supported functional charcoal
US9663387B2 (en) 2011-12-22 2017-05-30 3M Innovative Properties Company Filtration medium comprising a metal sulfide
CN107585833A (en) * 2017-10-09 2018-01-16 北京林业大学 The preparation method and application of zeroth order cobalt activated carbon base catalysed particulate electrode
CN108905972A (en) * 2018-07-23 2018-11-30 成都清境环境科技有限公司 A kind of adsorbent for heavy metal and its preparation method and application
CN108905971A (en) * 2018-07-23 2018-11-30 厦门量研新材料科技有限公司 A kind of high-valence state metal ion adsorbent and its preparation method and application
CN110369708A (en) * 2019-07-26 2019-10-25 山东大学 A kind of method that aging is modified the preparation method of Zero-valent Iron and is modified Zero-valent Iron degradating chloro organic pollutant using aging

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8097559B2 (en) 2002-07-12 2012-01-17 Remediation Products, Inc. Compositions for removing halogenated hydrocarbons from contaminated environments
US7402132B2 (en) * 2005-04-29 2008-07-22 Matthews Jack W Treating hazardous materials
BRPI0617476B8 (en) * 2005-10-20 2016-09-13 Fmc Corp oxidation method of a contaminant present in an environment
US20100036189A1 (en) * 2006-11-30 2010-02-11 Environmental Biotechnology Crc Pty Limited Process for the capture and dehalogenation of halogenated hydrocarbons
US20090105371A1 (en) * 2007-10-17 2009-04-23 Stephanie Luster-Teasley Controlled release remediation system and composition
US20130058724A1 (en) * 2009-10-14 2013-03-07 The Administrators Of The Tulane Educational Fund Novel multifunctional materials for in-situ environmental remediation of chlorinated hydrocarbons
JP2012189649A (en) * 2011-03-08 2012-10-04 Sumitomo Chemical Co Ltd Polarization film
EP2794057B1 (en) * 2011-12-22 2018-10-03 3M Innovative Properties Company Method for removing chloramine with a filtration medium comprising a metal-containing particulate
US8766030B2 (en) 2012-07-25 2014-07-01 Innovative Environmental Technologies, Inc. Utilization of ferric ammonium citrate for in situ remediation of chlorinated solvents
CN102897889B (en) * 2012-10-29 2014-04-16 同济大学 Method and device for purifying cadmium in waste water through nano zero-valent iron
US8480903B1 (en) 2012-11-16 2013-07-09 Jesse Clinton Taylor, III Systems and methods for in-situ contaminant remediation
CN103191742B (en) * 2013-04-11 2015-04-29 济南市供排水监测中心 Carbon material loaded nano zero valence metal catalyst and preparation method and application thereof
CN105164057A (en) * 2013-05-10 2015-12-16 创新环境技术公司 Chemical oxidation and biological attenuation process for the treatment of contaminated media
US10011503B2 (en) 2014-07-22 2018-07-03 Corning Incorporated Method for making activated carbon-supported transition metal-based nanoparticles
US10512957B2 (en) * 2013-08-02 2019-12-24 Regenesis Bioremediation Products Colloidal agents for aquifer and metals remediation
WO2015110286A1 (en) * 2014-01-23 2015-07-30 Koninklijke Philips N.V. Light diffuser, led lamp arrangement using the same, and manufacturing method
US9776898B2 (en) * 2014-02-14 2017-10-03 Regenesis Bioremediation Products Treatment of aquifer matrix back diffusion
US20150258589A1 (en) * 2014-03-14 2015-09-17 Peroxychem, Llc Treatment of contaminated soil and water
KR101601589B1 (en) * 2015-01-09 2016-03-08 현대자동차주식회사 An agent containing microorganism to remove malodor from a painting booth, and a method of removing malodor using thereof
US10479711B2 (en) 2016-05-05 2019-11-19 Remediation Products, Inc. Composition with a time release material for removing halogenated hydrocarbons from contaminated environments
US11548802B2 (en) 2016-05-05 2023-01-10 Remediation Products, Inc. Composition with a time release material for removing halogenated hydrocarbons from contaminated environments
US10583472B2 (en) 2016-05-19 2020-03-10 Remediation Products, Inc. Bioremediation composition with a time release material for removing hydrocarbons from contaminated environments
CN106166474B (en) * 2016-08-17 2019-05-14 华南理工大学 A kind of specific regulatory control nano zero valence iron corrosion product and the method for reinforcing nano zero valence iron adsorption of Low Concentration arsenic
PL3500349T3 (en) 2016-08-22 2022-03-28 Remediation Products, Inc. Bioremediation composition with time-release materials for removing energetic compounds from contaminated environments
US10676376B2 (en) 2016-09-29 2020-06-09 Ecolab Usa Inc. Modification of iron-based media for water treatment
CN107235561B (en) * 2017-08-04 2020-01-07 南京大学 Permeable reaction wall composite material for groundwater polycyclic aromatic hydrocarbon pollution remediation and preparation method thereof
CN109225221A (en) * 2018-10-24 2019-01-18 南京理工大学 The preparation method of charcoal load Zero-valent Iron catalysis material
CN109607822B (en) * 2018-12-25 2022-03-08 河海大学 Eco-friendly composite material for in-situ treatment of arsenic in rivers and lakes and preparation method and application thereof
CN109511304A (en) * 2018-12-29 2019-03-26 青岛冠中生态股份有限公司 A kind of superelevation height above sea level cuproaurite Abandoned Land of Mine answers method for green
US11123779B2 (en) * 2019-02-18 2021-09-21 Tersus Environmental Llc Method and a chemical composition for accelerated in situ biochemical remediation
US11491522B2 (en) 2019-02-18 2022-11-08 Tersus Environmental Llc Zero-valent metal suspension in non-aqueous phase for water remediation
CN112934176A (en) * 2021-02-02 2021-06-11 暨南大学 Zero-valent iron-manganese composite modified activated carbon and preparation method and application thereof
CN113121004A (en) * 2021-04-06 2021-07-16 湖南大学 Method for removing sulfadimidine in water body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5975798A (en) * 1997-09-02 1999-11-02 Ars Technologies, Inc. In-situ decontamination of subsurface waste using distributed iron powder
US5986161A (en) * 1998-08-24 1999-11-16 Akae; Yukoh Methods for neutralizing/detoxifying and stably fixing/solidifying hazardous compounds
US20040007524A1 (en) * 2002-07-12 2004-01-15 Scott Noland Compositions for removing hydrocarbons and halogenated hydrocarbons from contaminated environments

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803033A (en) 1971-12-13 1974-04-09 Awt Systems Inc Process for removal of organic contaminants from a fluid stream
JPS5982233A (en) * 1982-11-01 1984-05-12 Hitachi Ltd Operating method of unloader
US4478954A (en) * 1983-05-23 1984-10-23 Standard Oil Company (Indiana) Synthesis gas reaction
US4713343A (en) * 1985-08-29 1987-12-15 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Biodegradation of halogenated aliphatic hydrocarbons
GB8926853D0 (en) 1989-11-28 1990-01-17 Gillham Robert W Cleaning halogenated contaminants from water
US5057227A (en) 1990-10-09 1991-10-15 University Of South Carolina Method for in-situ removal of hydrocarbon contaminants from groundwater
DE69102405T2 (en) * 1990-12-13 1994-09-29 Mitsubishi Gas Chemical Co Activated carbon substance, manufacturing process and application.
GB2255087B (en) 1991-04-25 1995-06-21 Robert Winston Gillham System for cleaning contaminated water
DE4121697C2 (en) * 1991-06-29 1994-05-05 Pero Kg Process for the recovery of solvents adsorbed in an adsorber
US5337540A (en) * 1991-07-18 1994-08-16 Maxim Inc. Compact balloon inflater and loader apparatus and method
DK0614400T3 (en) * 1991-11-27 1999-11-22 Calgon Carbon Corp Chromium-free, impregnated, activated, universal respirator carbon for adsorption of toxic gases and / or vapors
TW222251B (en) * 1992-04-09 1994-04-11 Takeda Chemical Industries Ltd
CA2079282C (en) 1992-09-28 2000-09-19 Alan George Seech Composition and method for dehalogenation and degradation of halogenated organic contaminants
US5403809A (en) 1992-12-21 1995-04-04 W. R. Grace & Co.-Conn. Composite inorganic supports containing carbon for bioremediation
US6008028A (en) 1993-03-31 1999-12-28 Microbial And Aquatic Treatment Systems Compositions of constructed microbial mats
EP0646642A3 (en) 1993-09-30 1995-08-16 Canon Kk Microorganism-holding carrier and method for remediation of soil employing the carrier.
GB9408124D0 (en) 1994-04-23 1994-06-15 Univ Waterloo Electrically-enhanced degradation of organic contaminants using zero-valent metals
US5427944A (en) 1994-05-24 1995-06-27 Lee; Sunggyu Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil
US5733067A (en) 1994-07-11 1998-03-31 Foremost Solutions, Inc Method and system for bioremediation of contaminated soil using inoculated support spheres
US5618427A (en) 1995-02-13 1997-04-08 W. R. Grace & Co.-Conn. Composition and method for degradation of nitroaromatic contaminants
US5833855A (en) 1996-01-05 1998-11-10 Auburn University Situ bioremediation of contaminated groundwater
US5750036A (en) 1996-04-22 1998-05-12 General Electric Company Composition and method for ground water remediation
US6242663B1 (en) 1998-01-15 2001-06-05 Penn State Research Foundation Powerful reductant for decontamination of groundwater and surface streams
US6337019B1 (en) 1998-11-02 2002-01-08 Fatemeh Razavi-Shirazi Biological permeable barrier to treat contaminated groundwater using immobilized cells
ITMI20012509A1 (en) * 2001-11-29 2003-05-29 Agroqualita S R L MICROGRANULAR COMPOSITION WITH COMBINED ACTION FERTILIZER AND PHYTOPROTECTIVE
US8097559B2 (en) * 2002-07-12 2012-01-17 Remediation Products, Inc. Compositions for removing halogenated hydrocarbons from contaminated environments

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5975798A (en) * 1997-09-02 1999-11-02 Ars Technologies, Inc. In-situ decontamination of subsurface waste using distributed iron powder
US5986161A (en) * 1998-08-24 1999-11-16 Akae; Yukoh Methods for neutralizing/detoxifying and stably fixing/solidifying hazardous compounds
US20040007524A1 (en) * 2002-07-12 2004-01-15 Scott Noland Compositions for removing hydrocarbons and halogenated hydrocarbons from contaminated environments

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009106567A1 (en) * 2008-02-27 2009-09-03 Basf Se Method for the production of iron-doped carbons
US9663387B2 (en) 2011-12-22 2017-05-30 3M Innovative Properties Company Filtration medium comprising a metal sulfide
CN105854797A (en) * 2016-04-11 2016-08-17 中国矿业大学 Preparation method and application of nanometer zero-valence bimetal-supported functional charcoal
CN107585833A (en) * 2017-10-09 2018-01-16 北京林业大学 The preparation method and application of zeroth order cobalt activated carbon base catalysed particulate electrode
CN107585833B (en) * 2017-10-09 2020-09-18 北京林业大学 Preparation method and application of zero-valent cobalt activated carbon-based catalytic particle electrode
CN108905972A (en) * 2018-07-23 2018-11-30 成都清境环境科技有限公司 A kind of adsorbent for heavy metal and its preparation method and application
CN108905971A (en) * 2018-07-23 2018-11-30 厦门量研新材料科技有限公司 A kind of high-valence state metal ion adsorbent and its preparation method and application
CN108905971B (en) * 2018-07-23 2021-01-26 厦门量研新材料科技有限公司 High-valence metal ion adsorbent and preparation method and application thereof
CN108905972B (en) * 2018-07-23 2021-01-29 成都清境环境科技有限公司 Heavy metal ion adsorbent and preparation method and application thereof
CN110369708A (en) * 2019-07-26 2019-10-25 山东大学 A kind of method that aging is modified the preparation method of Zero-valent Iron and is modified Zero-valent Iron degradating chloro organic pollutant using aging
CN110369708B (en) * 2019-07-26 2021-07-20 山东大学 Preparation method of aging modified zero-valent iron and method for degrading chlorinated organic pollutants by using aging modified zero-valent iron

Also Published As

Publication number Publication date
US8097559B2 (en) 2012-01-17
US8618021B2 (en) 2013-12-31
US20160136702A1 (en) 2016-05-19
WO2006023002A3 (en) 2006-09-14
US20050006306A1 (en) 2005-01-13
US10000394B2 (en) 2018-06-19
US20120114852A1 (en) 2012-05-10
US20180297871A1 (en) 2018-10-18
US9352987B2 (en) 2016-05-31
US20140091254A1 (en) 2014-04-03
US10737959B2 (en) 2020-08-11

Similar Documents

Publication Publication Date Title
US10737959B2 (en) Compositions for removing hydrocarbons and halogenated hydrocarbons from contaminated environments
CA2492116C (en) Compositions for removing hydrocarbons and halogenated hydrocarbons from contaminated environments
CA3026305C (en) Composition with a time release material for removing halogenated hydrocarbons from contaminated environments
AU2017267936B2 (en) Bioremediation composition with a time release material for removing hydrocarbons from contaminated environments
US20230159363A1 (en) Composition with a time release material for removing halogenated hydrocarbons from contaminated environments
Ojha et al. Various remediation measures for groundwater contamination

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase