WO2006041794A2 - A system and method for creating a spectrum agile wireless multi-hopping network - Google Patents

A system and method for creating a spectrum agile wireless multi-hopping network Download PDF

Info

Publication number
WO2006041794A2
WO2006041794A2 PCT/US2005/035552 US2005035552W WO2006041794A2 WO 2006041794 A2 WO2006041794 A2 WO 2006041794A2 US 2005035552 W US2005035552 W US 2005035552W WO 2006041794 A2 WO2006041794 A2 WO 2006041794A2
Authority
WO
WIPO (PCT)
Prior art keywords
nodes
network
spectrum
bands
availability information
Prior art date
Application number
PCT/US2005/035552
Other languages
French (fr)
Other versions
WO2006041794A3 (en
Inventor
Pertti O. Alapuranen
Original Assignee
Meshnetworks, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meshnetworks, Inc. filed Critical Meshnetworks, Inc.
Priority to DE112005002480T priority Critical patent/DE112005002480B4/en
Publication of WO2006041794A2 publication Critical patent/WO2006041794A2/en
Publication of WO2006041794A3 publication Critical patent/WO2006041794A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to a system and method for creating a spectrum agile wireless multi-hopping network, such as a wireless ad-hoc peer-to-peer multi- hopping network. More particularly, the present invention relates to a system and method for creating a spectrum agile multi-hopping network that can respond to conditions affecting spectrum, such as FCC rulings or business related agreements on spectrum licensing related to a location or other measurable parameters of the network.
  • Wireless communication networks such as mobile wireless telephone networks
  • These wireless communications networks are commonly referred to as “cellular networks", because the network infrastructure is arranged to divide the service area into a plurality of regions called “cells”.
  • a terrestrial cellular network includes a plurality of interconnected base stations, or base nodes, that are distributed geographically at designated locations throughout the service area.
  • Each base node includes one or more transceivers that are capable of transmitting and receiving electromagnetic signals, such as radio frequency (RF) communications signals, to and from mobile user nodes, such as wireless telephones, located within the coverage area.
  • the communications signals include, for example, voice data that has been modulated according to a desired modulation technique and transmitted as data packets.
  • network nodes transmit and receive data packet communications in a multiplexed format, such as time-division multiple access (TDMA) format, code-division multiple access (CDMA) format, or frequency- division multiple access (EDMA) format, which enables a single transceiver at a first node to communicate simultaneously with several other nodes in its coverage area.
  • TDMA time-division multiple access
  • CDMA code-division multiple access
  • EDMA frequency- division multiple access
  • More sophisticated ad-hoc networks are also being developed which, in addition to enabling mobile nodes to communicate with each other as in a conventional ad-hoc network, further enable the mobile nodes to access a fixed network and thus communicate with other mobile nodes, such as those on the public switched telephone network (PSTN), and on other networks such as the Internet. Details of these advanced types of ad-hoc networks are described in U.S. Patent Application Serial No. 09/897,790 entitled "Ad Hoc Peer-to-Peer Mobile Radio Access System Interfaced to the PSTN and Cellular Networks", filed on June 29, 2001, in U.S. Patent Application Serial No.
  • the radios or nodes of the network are spectrum agile or, in other words, be capable of operating at different radio frequency spectrums.
  • Spectrum agility is particularly important when spectrum licensing is tied to location coordinates. For example, some frequency spectrum may be available in one town while not available for use in other. Additionally, a certain frequency spectrum may be available only during certain times of day or may be not available due to licensing agreements. This situation can happen if licensed spectrum is dedicated for certain use, for example, for emergency use but can be licensed during non emergency times for commercial use. [0006] Accordingly, a need exists for a system and method that enables a wireless communication network to be spectrum agile.
  • the present invention thus provides a system and method for creating a spectrum agile wireless multi-hopping network, such as a wireless ad-hoc peer-to- peer multi-hopping network.
  • the multi-hopping network can respond to conditions affecting spectrum, such as FCC rulings or business related agreements on spectrum licensing related to a location or other measurable parameters of the network.
  • the system and method employs the operations of storing information pertaining to respective spectrum availability based on respective conditions, and providing the spectrum availability information to the nodes of the network, such as stationary or mobile nodes of a multi-hopping wireless ad-hoc peer-to-peer network, so that the nodes can communicate over one of the frequency spectrums indicated by the spectrum availability information when a respective condition exists, and so that the nodes can communicate over another one of the frequency spectrums indicated by the spectrum availability information when another respective condition exists.
  • the spectrum availability information can be provided to the nodes via a beacon signal received by the nodes within the broadcast range of the source transmitting the beacon signal.
  • the spectrum availability information includes at least one of the following: available spectrum bands; power levels for the bands; location where bands are available; cost of using the frequency bands; the traffic for which the bands can be used; time interval for license update time limits for using the bands; and transmission power.
  • Each node stores a portion of the spectrum availability information.
  • the respective conditions which govern the spectrum that the nodes use include at least one of the following: location of a node; time of day; power limit; spectrum; cost; and bandwidth.
  • Figure 1 is a block diagram of an example ad-hoc wireless communications network including a plurality of nodes employing a system and method in accordance with an embodiment of the present invention.
  • Figure 2 is a block diagram illustrating an example of a mobile node employed in the network shown in Fig. 1.
  • FIG. 1 is a block diagram illustrating an example of an ad-hoc packet- switched wireless communications network 100 employing an embodiment of the present invention.
  • the network 100 includes a plurality of mobile wireless user terminals 102-1 through 102-n (referred to generally as nodes 102 or mobile nodes 102), and can, but is not required to, include a fixed network 104 having a plurality of access points 106-1, 106-2, ...106-n (referred to generally as nodes 106 or access points 106), for providing nodes 102 with access to the fixed network 104.
  • the fixed network 104 can include, for example, a core local access network (LAN), and a plurality of servers and gateway routers to provide network nodes with access to other networks, such as other ad-hoc networks, the public switched telephone network (PSTN) and the Internet.
  • the network 100 further can include a plurality of fixed routers 107-1 through 107-n (referred to generally as nodes 107 or fixed routers 107) for routing data packets between other nodes 102, 106 or 107. It is noted that for purposes of this discussion, the nodes discussed above can be collectively referred to as "nodes 102, 106 and 107", or simply "nodes”.
  • the nodes 102, 106 and 107 are capable of communicating with each other directly, or via one or more other nodes 102, 106 or 107 operating as a router or routers for packets being sent between nodes, as described in U.S. Patent Application Serial Nos. 09/897,790, 09/815,157 and 09/815,164, referenced above.
  • each node 102, 106 and 107 includes a transceiver, or modem 108, which is coupled to an antenna 110 and is capable of receiving and transmitting signals, such as packetized signals, to and from the node 102, 106 or 107, under the control of a controller 112.
  • the packetized data signals can include, for example, voice, data or multimedia information, and packetized control signals, including node update information.
  • Each node 102, 106 and 107 further includes a memory 114, such as a random access memory (RAM) that is capable of storing, among other things, routing information pertaining to itself and other nodes in the network 100.
  • a memory 114 such as a random access memory (RAM) that is capable of storing, among other things, routing information pertaining to itself and other nodes in the network 100.
  • certain nodes, especially mobile nodes 102 can include a host 116 which may consist of any number of devices, such as a notebook computer terminal, mobile telephone unit, mobile data unit, or any other suitable device.
  • Each node 102, 106 and 107 also includes the appropriate hardware and software to perform Internet Protocol (IP) and Address Resolution Protocol (ARP), the purposes of which can be readily appreciated by one skilled in the art.
  • IP Internet Protocol
  • ARP Address Resolution Protocol
  • TCP transmission control protocol
  • UDP user datagram protocol
  • the radios or nodes 102, 106 and 107 of the network 100 are spectrum agile or, in other words, be capable of operating at different radio frequency spectrums.
  • an embodiment of the present invention enables the network 100 to be spectrum agile to respond to limits on spectrum that can occur due to, for example, FCC rulings or business related agreements on spectrum licensing related to a location or other measurable parameters of a system.
  • the location can be determined by GEO coordinates, latitude and longitude, or the relative radial distance from a node to another node, such as an IAP (Intelligent Access Point).
  • the nodes 102, 106 and 107 of wireless multi-hopping network 100 communicate with fixed infrastructure such as core LAN 104 and/or with other mobile or fixed nodes 102, 106 or 107.
  • a method for informing spectrum usage rules to nodes in a multi-hopping network such as network 100 may require that each node is able to compute information that can be used as a key for accessing a database that contains the rules for spectrum usage.
  • These rules can contain one or more of the following: available spectrum (bands), which can be frequency and bandwidths; power levels for the bands; location where bands are available; cost of using the frequency bands; the traffic for which the bands can be used; time interval for license update time limits for using the bands; or power or any other parameter that has a time attribute.
  • the key to the database can be one or more of the following: GEO location; time of day; power limit; spectrum (frequency band); cost; and bandwidth.
  • Information pertaining to these rules and keys can be stored in a distributed or centralized database.
  • the memory 114 of each IAP 106 can contain a copy of a database that is relevant for the region where the IAP 106 is located.
  • the memory 114 of certain nodes 102 or 107 can also contain a copy of the database that is relevant for the respective regions where the nodes 102 and 107 are present.
  • the database may contain information of licensed bands that can be used and how often the license data has to be updated for the use.
  • the expiration time for a commercial license can be only minutes so that every node 102 and 107 has to access the database of the IAP 106 with which it is associated to see if an emergency situation is occurring.
  • the cost of using the band can be related to commercial licensing agreements.
  • the network 100 can use the band for communication, there is a data volume dependent cost that has to be paid to the actual owner of the spectrum. This rule allows the nodes 102, 106 and 107 to avoid costly spectrum that can be also capacity limited.
  • the GEO location information can be used to access the database so that a node, such as a mobile node 102, can verify if it is allowed to use a certain frequency in its current location.
  • the GEO location information may be actual (x,y,z) coordinates, longitude and latitude, or simply a radial distance from a base station (e.g., an IAP 106) or a cell site. This allows for use of the spectrum in area where some sensitive equipment is using the same band. For example, the node 102 would not be permitted to use a certain spectrum near military or other sensitive installations where the communication by the node 102 might interfere with communication equipment at those installations.
  • a multi-hopping network such as network 100 has additional problems in accessing the database since some devices, such as mobile nodes 102, may have no direct connection to server that provides the information. Also, efficient distribution of the information has to occur in order for the nodes 102 to be aware of the spectrum that they are able to use. [0023]
  • One technique according to an embodiment of the present invention for providing efficient distribution of the information is to include information pertaining to the availability and accessibility of the information related to spectrum rules in a beacon signal that can be transmitted, for example, by an IAP 106.
  • the beacon signal is broadcast to some neighborhood of nodes 102 with preset power to cover a desired area.
  • the beacon signal can include information identifying the availability of the band that a node, such as a mobile node 102, can access to obtain the rule information, or information about the availability of the band. If mobile node 102 can receive this beacon signal, the mobile node 102 thus knows that the band over which the beacon signal was sent is available, and by decoding the information in the beacon signal the node 102 can determine for what use the band is available. Alternatively, the information related to spectrum rules can be distributed to the nodes (e.g., nodes 102 and 107) via a broadcast flood as can be appreciated by one skilled in the art.
  • the beacon can be used to enable nodes, such as mobile nodes 102 or wireless routers 107, to indicate the availability of the rule data to other neighboring nodes 102 or 107.
  • nodes such as mobile nodes 102 or wireless routers 107
  • This capability is beneficial because, as discussed above, a node 102 or 107 may have to access the server through multiple hops.
  • Each mobile node 102 and router 107 in the network 100 can thus contain a relevant piece of the database in its memory 114 and can share it with its neighboring nodes via, for example, routing advertisements or other messages.
  • the authentication of this information can be done using a shared secret model, that is, the confidential information is preprogrammed into the memory 114 of each node 102, 106 and 107.
  • the authentication process is used to confirm that the data is valid.
  • Such authentication methods used by the network 100 can include the use of symmetric or asymmetric keys.
  • a symmetric key system is an encryption system in which the sender and receiver of a message share a single, common key that is used to encrypt and decrypt the message.
  • Asymmetric or public-key cryptography differs from conventional cryptography in that key material is bound to a single user. The key material is divided into two components: a private key, to which only the user has access, and a public key, which may be published or distributed on request. [0025]
  • the cost associated to spectrum information can be used also to avoid using resources that are financially expensive to the user, operator or some other entity.
  • a fast spectrum license revocation technique can be performed using a beacon signal or by flooding a data packet indicating resource revocation through the network 100 as soon as one node 102, 106 or 107 receives information about the revocation. For example, if one node (e.g., a node 102) receives revocation information from an IAP 106, for example, the node 102 propagates this revocation information through the network 100 using a data packet flood or beacon signal. This ability is useful, for example, in emergency situations when the purpose of the spectrum usage changes abruptly.

Abstract

A system and method for creating a spectrum agile wireless multi-hopping network, such as a wireless ad-hoc peer-to-peer multi-hopping network. The spectrum agile multi-hopping network that can respond to conditions affecting spectrum, such as FCC rulings or business related agreements on spectrum licensing related to a location or other measurable parameters of the network.

Description

A SYSTEM AND METHOD FOR CREATING A SPECTRUM AGILE WIRELESS MULTI-HOPPING NETWORK
BACKGROUND OF THE INVENTION
Field of the Invention:
[0001] The present invention relates to a system and method for creating a spectrum agile wireless multi-hopping network, such as a wireless ad-hoc peer-to-peer multi- hopping network. More particularly, the present invention relates to a system and method for creating a spectrum agile multi-hopping network that can respond to conditions affecting spectrum, such as FCC rulings or business related agreements on spectrum licensing related to a location or other measurable parameters of the network.
Description of the Related Art:
[0002] Wireless communication networks, such as mobile wireless telephone networks, have become increasingly prevalent over the past decade. These wireless communications networks are commonly referred to as "cellular networks", because the network infrastructure is arranged to divide the service area into a plurality of regions called "cells". A terrestrial cellular network includes a plurality of interconnected base stations, or base nodes, that are distributed geographically at designated locations throughout the service area. Each base node includes one or more transceivers that are capable of transmitting and receiving electromagnetic signals, such as radio frequency (RF) communications signals, to and from mobile user nodes, such as wireless telephones, located within the coverage area. The communications signals include, for example, voice data that has been modulated according to a desired modulation technique and transmitted as data packets. As can be appreciated by one skilled in the art, network nodes transmit and receive data packet communications in a multiplexed format, such as time-division multiple access (TDMA) format, code-division multiple access (CDMA) format, or frequency- division multiple access (EDMA) format, which enables a single transceiver at a first node to communicate simultaneously with several other nodes in its coverage area. [0003] In recent years, a type of mobile communications network known as an "ad- hoc" network has been developed. In this type of network, each mobile node is capable of operating as a base station or router for the other mobile nodes, thus eliminating the need for a fixed infrastructure of base stations.
[0004] More sophisticated ad-hoc networks are also being developed which, in addition to enabling mobile nodes to communicate with each other as in a conventional ad-hoc network, further enable the mobile nodes to access a fixed network and thus communicate with other mobile nodes, such as those on the public switched telephone network (PSTN), and on other networks such as the Internet. Details of these advanced types of ad-hoc networks are described in U.S. Patent Application Serial No. 09/897,790 entitled "Ad Hoc Peer-to-Peer Mobile Radio Access System Interfaced to the PSTN and Cellular Networks", filed on June 29, 2001, in U.S. Patent Application Serial No. 09/815,157 entitled "Time Division Protocol for an Ad-Hoc, Peer-to-Peer Radio Network Having Coordinating Channel Access to Shared Parallel Data Channels with Separate Reservation Channel", filed on March 22, 2001, and in U.S. Patent Application Serial No. 09/815,164 entitled "Prioritized-Routing for an Ad-Hoc, Peer-to-Peer, Mobile Radio Access System", filed on March 22, 2001, the entire content of each being incorporated herein by reference.
[0005] As can be appreciated from the nature of wireless mobile communication networks such as those discussed above, it is desirable for the radios or nodes of the network to be spectrum agile or, in other words, be capable of operating at different radio frequency spectrums. Spectrum agility is particularly important when spectrum licensing is tied to location coordinates. For example, some frequency spectrum may be available in one town while not available for use in other. Additionally, a certain frequency spectrum may be available only during certain times of day or may be not available due to licensing agreements. This situation can happen if licensed spectrum is dedicated for certain use, for example, for emergency use but can be licensed during non emergency times for commercial use. [0006] Accordingly, a need exists for a system and method that enables a wireless communication network to be spectrum agile.
SUMMARY OF THE INVENTION
[0007] The present invention thus provides a system and method for creating a spectrum agile wireless multi-hopping network, such as a wireless ad-hoc peer-to- peer multi-hopping network. The multi-hopping network can respond to conditions affecting spectrum, such as FCC rulings or business related agreements on spectrum licensing related to a location or other measurable parameters of the network. [0008] The system and method employs the operations of storing information pertaining to respective spectrum availability based on respective conditions, and providing the spectrum availability information to the nodes of the network, such as stationary or mobile nodes of a multi-hopping wireless ad-hoc peer-to-peer network, so that the nodes can communicate over one of the frequency spectrums indicated by the spectrum availability information when a respective condition exists, and so that the nodes can communicate over another one of the frequency spectrums indicated by the spectrum availability information when another respective condition exists. The spectrum availability information can be provided to the nodes via a beacon signal received by the nodes within the broadcast range of the source transmitting the beacon signal.
[0009] The spectrum availability information includes at least one of the following: available spectrum bands; power levels for the bands; location where bands are available; cost of using the frequency bands; the traffic for which the bands can be used; time interval for license update time limits for using the bands; and transmission power. Each node stores a portion of the spectrum availability information. The respective conditions which govern the spectrum that the nodes use include at least one of the following: location of a node; time of day; power limit; spectrum; cost; and bandwidth. BRIEF DESCRIPTION OF THE DRAWINGS
[0010] These and other objects, advantages and novel features of the invention will be more readily appreciated from the following detailed description when read in conjunction with the accompanying drawings, in which:
[0011] Figure 1 is a block diagram of an example ad-hoc wireless communications network including a plurality of nodes employing a system and method in accordance with an embodiment of the present invention; and
[0012] Figure 2 is a block diagram illustrating an example of a mobile node employed in the network shown in Fig. 1.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0013] Figure 1 is a block diagram illustrating an example of an ad-hoc packet- switched wireless communications network 100 employing an embodiment of the present invention. Specifically, the network 100 includes a plurality of mobile wireless user terminals 102-1 through 102-n (referred to generally as nodes 102 or mobile nodes 102), and can, but is not required to, include a fixed network 104 having a plurality of access points 106-1, 106-2, ...106-n (referred to generally as nodes 106 or access points 106), for providing nodes 102 with access to the fixed network 104. The fixed network 104 can include, for example, a core local access network (LAN), and a plurality of servers and gateway routers to provide network nodes with access to other networks, such as other ad-hoc networks, the public switched telephone network (PSTN) and the Internet. The network 100 further can include a plurality of fixed routers 107-1 through 107-n (referred to generally as nodes 107 or fixed routers 107) for routing data packets between other nodes 102, 106 or 107. It is noted that for purposes of this discussion, the nodes discussed above can be collectively referred to as "nodes 102, 106 and 107", or simply "nodes".
[0014] As can be appreciated by one skilled in the art, the nodes 102, 106 and 107 are capable of communicating with each other directly, or via one or more other nodes 102, 106 or 107 operating as a router or routers for packets being sent between nodes, as described in U.S. Patent Application Serial Nos. 09/897,790, 09/815,157 and 09/815,164, referenced above.
[0015] As shown in Figure 2, each node 102, 106 and 107 includes a transceiver, or modem 108, which is coupled to an antenna 110 and is capable of receiving and transmitting signals, such as packetized signals, to and from the node 102, 106 or 107, under the control of a controller 112. The packetized data signals can include, for example, voice, data or multimedia information, and packetized control signals, including node update information.
[0016] Each node 102, 106 and 107 further includes a memory 114, such as a random access memory (RAM) that is capable of storing, among other things, routing information pertaining to itself and other nodes in the network 100. As further shown in Figure 2, certain nodes, especially mobile nodes 102, can include a host 116 which may consist of any number of devices, such as a notebook computer terminal, mobile telephone unit, mobile data unit, or any other suitable device. Each node 102, 106 and 107 also includes the appropriate hardware and software to perform Internet Protocol (IP) and Address Resolution Protocol (ARP), the purposes of which can be readily appreciated by one skilled in the art. The appropriate hardware and software to perform transmission control protocol (TCP) and user datagram protocol (UDP) may also be included.
[0017] As discussed above, it is desirable for the radios or nodes 102, 106 and 107 of the network 100 to be spectrum agile or, in other words, be capable of operating at different radio frequency spectrums. As will now be described, an embodiment of the present invention enables the network 100 to be spectrum agile to respond to limits on spectrum that can occur due to, for example, FCC rulings or business related agreements on spectrum licensing related to a location or other measurable parameters of a system. The location can be determined by GEO coordinates, latitude and longitude, or the relative radial distance from a node to another node, such as an IAP (Intelligent Access Point).
[0018] As discussed above, the nodes 102, 106 and 107 of wireless multi-hopping network 100 communicate with fixed infrastructure such as core LAN 104 and/or with other mobile or fixed nodes 102, 106 or 107. A method for informing spectrum usage rules to nodes in a multi-hopping network such as network 100 may require that each node is able to compute information that can be used as a key for accessing a database that contains the rules for spectrum usage. These rules can contain one or more of the following: available spectrum (bands), which can be frequency and bandwidths; power levels for the bands; location where bands are available; cost of using the frequency bands; the traffic for which the bands can be used; time interval for license update time limits for using the bands; or power or any other parameter that has a time attribute. The key to the database can be one or more of the following: GEO location; time of day; power limit; spectrum (frequency band); cost; and bandwidth.
[0019] Information pertaining to these rules and keys can be stored in a distributed or centralized database. For example, the memory 114 of each IAP 106 can contain a copy of a database that is relevant for the region where the IAP 106 is located. Also, the memory 114 of certain nodes 102 or 107 can also contain a copy of the database that is relevant for the respective regions where the nodes 102 and 107 are present. For example, the database may contain information of licensed bands that can be used and how often the license data has to be updated for the use. For example, if the 4.9 GHz band is licensed for commercial use during non-emergency times, then the expiration time for a commercial license can be only minutes so that every node 102 and 107 has to access the database of the IAP 106 with which it is associated to see if an emergency situation is occurring.
[0020] Alternatively, the cost of using the band can be related to commercial licensing agreements. For example, although the network 100 can use the band for communication, there is a data volume dependent cost that has to be paid to the actual owner of the spectrum. This rule allows the nodes 102, 106 and 107 to avoid costly spectrum that can be also capacity limited.
[0021] The GEO location information can be used to access the database so that a node, such as a mobile node 102, can verify if it is allowed to use a certain frequency in its current location. The GEO location information may be actual (x,y,z) coordinates, longitude and latitude, or simply a radial distance from a base station (e.g., an IAP 106) or a cell site. This allows for use of the spectrum in area where some sensitive equipment is using the same band. For example, the node 102 would not be permitted to use a certain spectrum near military or other sensitive installations where the communication by the node 102 might interfere with communication equipment at those installations.
[0022] As can be further appreciated by one skilled in the art, a multi-hopping network such as network 100 has additional problems in accessing the database since some devices, such as mobile nodes 102, may have no direct connection to server that provides the information. Also, efficient distribution of the information has to occur in order for the nodes 102 to be aware of the spectrum that they are able to use. [0023] One technique according to an embodiment of the present invention for providing efficient distribution of the information is to include information pertaining to the availability and accessibility of the information related to spectrum rules in a beacon signal that can be transmitted, for example, by an IAP 106. The beacon signal is broadcast to some neighborhood of nodes 102 with preset power to cover a desired area. The beacon signal can include information identifying the availability of the band that a node, such as a mobile node 102, can access to obtain the rule information, or information about the availability of the band. If mobile node 102 can receive this beacon signal, the mobile node 102 thus knows that the band over which the beacon signal was sent is available, and by decoding the information in the beacon signal the node 102 can determine for what use the band is available. Alternatively, the information related to spectrum rules can be distributed to the nodes (e.g., nodes 102 and 107) via a broadcast flood as can be appreciated by one skilled in the art. [0024] In addition, in a multi hopping network 100, the beacon can be used to enable nodes, such as mobile nodes 102 or wireless routers 107, to indicate the availability of the rule data to other neighboring nodes 102 or 107. This capability is beneficial because, as discussed above, a node 102 or 107 may have to access the server through multiple hops. Each mobile node 102 and router 107 in the network 100 can thus contain a relevant piece of the database in its memory 114 and can share it with its neighboring nodes via, for example, routing advertisements or other messages. The authentication of this information can be done using a shared secret model, that is, the confidential information is preprogrammed into the memory 114 of each node 102, 106 and 107. The authentication process is used to confirm that the data is valid. Such authentication methods used by the network 100 can include the use of symmetric or asymmetric keys. A symmetric key system is an encryption system in which the sender and receiver of a message share a single, common key that is used to encrypt and decrypt the message. Asymmetric or public-key cryptography differs from conventional cryptography in that key material is bound to a single user. The key material is divided into two components: a private key, to which only the user has access, and a public key, which may be published or distributed on request. [0025] Furthermore, the cost associated to spectrum information can be used also to avoid using resources that are financially expensive to the user, operator or some other entity. Additionally, a fast spectrum license revocation technique can be performed using a beacon signal or by flooding a data packet indicating resource revocation through the network 100 as soon as one node 102, 106 or 107 receives information about the revocation. For example, if one node (e.g., a node 102) receives revocation information from an IAP 106, for example, the node 102 propagates this revocation information through the network 100 using a data packet flood or beacon signal. This ability is useful, for example, in emergency situations when the purpose of the spectrum usage changes abruptly.
[0026] Although only a few exemplary embodiments of the present invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims.

Claims

What is claimed is:
1. A method for creating a spectrum agile wireless multi-hopping network including a plurality of nodes, the method comprising: storing information pertaining to respective spectrum availability based on respective conditions; and providing the spectrum availability information to the nodes so that the nodes can communicate over one of the frequency spectrums indicated by the spectrum availability information when a respective condition exists, and so that the nodes can communicate over another one of the frequency spectrums indicated by the spectrum availability information when another respective condition exists.
2. A method as claimed in claim 1, wherein: the providing step provides the spectrum availability information to the nodes via a beacon signal received by the nodes within the broadcast range of the source transmitting the beacon signal.
3. A method as claimed in claim 2, wherein: the providing step is performed by one of the nodes operating as an access point to enable the nodes to access a portion of the spectrum agile wireless multi- hopping network or another different network.
4. A method as claimed in claim 1, wherein: the spectrum availability information includes at least one of the following: available spectrum bands; power levels for the bands; location where bands are available; cost of using the frequency bands; the traffic for which the bands can be used; time interval for license update time limits for using the bands; and transmission power.
5. A method as claimed in claim 1, further comprising: controlling some of the nodes to store a portion of the spectrum availability information.
6. A method as claimed in claim 5, wherein: each of said some of the nodes is an access point node which operates to enable the nodes to access a portion of the spectrum agile wireless multi-hopping network or another different network.
7. A method as claimed in claim 1, wherein: the respective conditions include at least one of the following: location of a node; time of day; power limit; spectrum; cost; and bandwidth.
8. A method as claimed in claim 1, wherein: the network is a wireless ad-hoc peer-to-peer communication network.
9. A method as claimed in claim 1, wherein: some of the nodes are mobile.
10. A method as claimed in claim 1, wherein: the providing step provides the spectrum availability information to the nodes via a broadcast flood received by the nodes.
11. A spectrum agile wireless multi -hopping network, comprising: a plurality of nodes, adapted to communicate in the network, at least one of the nodes being adapted to store information pertaining to respective spectrum availability based on respective conditions; and said at least one of the nodes being further adapted to provide the spectrum availability information to the nodes so that the nodes can communicate over one of the frequency spectrums indicated by the spectrum availability information when a respective condition exists, and so that the nodes can communicate over another one of the frequency spectrums indicated by the spectrum availability information when another respective condition exists.
12. A network as claimed in claim 11, wherein: said at least one of the nodes is adapted to provide the spectrum availability information to the nodes via a beacon signal received by the nodes within the broadcast range of the source transmitting the beacon signal.
13. A network as claimed in claim 12, wherein: said at least one of the nodes further is adapted to operate as an access point to enable the nodes to access a portion of the spectrum agile wireless multi-hopping network or another different network.
14. A network as claimed in claim 11, wherein: the spectrum availability information includes at least one of the following: available spectrum bands; power levels for the bands; location where bands are available; cost of using the frequency bands; the traffic for which the bands can be used; time interval for license update time limits for using the bands; and transmission power.
15. A network as claimed in claim 11, wherein: each of a plurality of the nodes is adapted to store a portion of the spectrum availability information.
16. A network as claimed in claim 15, wherein: said each of the nodes are access point nodes which enable the nodes to access a portion of the spectrum agile wireless multi-hopping network or another different network.
17. A network as claimed in claim 11, wherein: the respective conditions include at least one of the following: location of a node; time of day; power limit; spectrum; cost; and bandwidth.
18. A network as claimed in claim 1, wherein: the network is a wireless ad-hoc peer-to-peer communication network, and the nodes communicate in the wireless ad-hoc peer-to-peer communication network.
19. A network as claimed in claim 11, wherein: some of the nodes are mobile.
20. A network as claimed in claim 11, wherein: said at least one of the nodes provides the spectrum availability information to the nodes via a broadcast flood received by the nodes.
PCT/US2005/035552 2004-10-07 2005-10-03 A system and method for creating a spectrum agile wireless multi-hopping network WO2006041794A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112005002480T DE112005002480B4 (en) 2004-10-07 2005-10-03 A system and method for generating a spectrum-agile wireless multi-hopping network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/959,336 2004-10-07
US10/959,336 US7167463B2 (en) 2004-10-07 2004-10-07 System and method for creating a spectrum agile wireless multi-hopping network

Publications (2)

Publication Number Publication Date
WO2006041794A2 true WO2006041794A2 (en) 2006-04-20
WO2006041794A3 WO2006041794A3 (en) 2006-11-23

Family

ID=36145222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/035552 WO2006041794A2 (en) 2004-10-07 2005-10-03 A system and method for creating a spectrum agile wireless multi-hopping network

Country Status (4)

Country Link
US (1) US7167463B2 (en)
KR (1) KR100923175B1 (en)
DE (1) DE112005002480B4 (en)
WO (1) WO2006041794A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060089099A1 (en) * 2004-10-26 2006-04-27 Buchwald Gregory J Method and apparatus for allowing communication units to utilize non-licensed spectrum
WO2007000744A1 (en) 2005-06-28 2007-01-04 Koninklijke Philips Electronics, N.V. A handshaking method and apparatus for ofdm systems with unknown sub-channel availability
US7627326B1 (en) * 2005-10-14 2009-12-01 At&T Corp. Spectrum management system for municipal spectrum using guided cognitive radio
KR101129825B1 (en) * 2005-11-04 2012-03-27 인하대학교 산학협력단 Method for selecting dynamic frequency of a wireless communication system using cognitive radio scheme
EP1992114B1 (en) * 2006-01-11 2012-11-07 QUALCOMM Incorporated Method and apparatus for sharing bandwidth between a wide area network and local area peer-to-peer network
US8811369B2 (en) * 2006-01-11 2014-08-19 Qualcomm Incorporated Methods and apparatus for supporting multiple communications modes of operation
US8374623B2 (en) 2006-07-21 2013-02-12 Microsoft Corporation Location based, software control of mobile devices
US8223699B2 (en) * 2007-03-30 2012-07-17 Motorola Solutions, Inc. Method and apparatus for detecting and identifying spectrum opportunities
US20090100260A1 (en) * 2007-05-09 2009-04-16 Gunasekaran Govindarajan Location source authentication
US20090275286A1 (en) * 2008-04-30 2009-11-05 Motorola, Inc. Utilization of cognitive radios with mobile virtual private network (mvpn) solutions
US8595501B2 (en) * 2008-05-09 2013-11-26 Qualcomm Incorporated Network helper for authentication between a token and verifiers
US8014337B2 (en) * 2008-10-27 2011-09-06 Motorola Solutions, Inc. Method and system for wireless multi-hopping communication
US8848914B2 (en) * 2008-11-18 2014-09-30 Qualcomm Incorporated Spectrum authorization and related communications methods and apparatus
WO2010074624A1 (en) * 2008-12-23 2010-07-01 Telefonaktiebolaget L M Ericsson (Publ) A method and an arrangement for determining an admission control threshold
EP3188525B1 (en) 2014-08-28 2020-05-06 Sony Corporation Communication control device, communication control method and program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287384A (en) * 1992-10-15 1994-02-15 Lxe Inc. Frequency hopping spread spectrum data communications system
US5887022A (en) * 1996-06-12 1999-03-23 Telecommunications Research Laboratories Peer-peer frequency hopping spread spectrum wireless system
US20020080855A1 (en) * 2000-12-27 2002-06-27 Kabushiki Kaisha Toshiba Method and apparatus for performing wireless communication using spread spectrum-frequency hopping
US20030050070A1 (en) * 2001-03-14 2003-03-13 Alex Mashinsky Method and system for dynamic spectrum allocation and management
US6594302B1 (en) * 1999-08-13 2003-07-15 Intel Corporation Fixed frequency transceiver for use in a frequency hopping system
US20030202494A1 (en) * 2002-04-26 2003-10-30 Drews Paul C. Establishing an ad hoc network
US20040087310A1 (en) * 2002-07-31 2004-05-06 Williamson Matthew Murray Allocation of communications frequency spectrum
US20040198363A1 (en) * 2003-01-13 2004-10-07 Ray Zinn Wireless device and method using frequency hopping and sweep modes

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910521A (en) * 1981-08-03 1990-03-20 Texas Instruments Incorporated Dual band communication receiver
US4494192A (en) 1982-07-21 1985-01-15 Sperry Corporation High speed bus architecture
JPS59115633A (en) * 1982-12-22 1984-07-04 Toshiba Corp Information transmitting system
US4675863A (en) * 1985-03-20 1987-06-23 International Mobile Machines Corp. Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels
US4747130A (en) * 1985-12-17 1988-05-24 American Telephone And Telegraph Company, At&T Bell Laboratories Resource allocation in distributed control systems
US4736371A (en) * 1985-12-30 1988-04-05 Nec Corporation Satellite communications system with random multiple access and time slot reservation
US4742357A (en) * 1986-09-17 1988-05-03 Rackley Ernie C Stolen object location system
GB2229064B (en) * 1987-06-11 1990-12-12 Software Sciences Limited An area communications system
US5210846B1 (en) * 1989-05-15 1999-06-29 Dallas Semiconductor One-wire bus architecture
US5555425A (en) * 1990-03-07 1996-09-10 Dell Usa, L.P. Multi-master bus arbitration system in which the address and data lines of the bus may be separately granted to individual masters
US6359872B1 (en) * 1997-10-28 2002-03-19 Intermec Ip Corp. Wireless personal local area network
US5068916A (en) * 1990-10-29 1991-11-26 International Business Machines Corporation Coordination of wireless medium among a plurality of base stations
US5241542A (en) * 1991-08-23 1993-08-31 International Business Machines Corporation Battery efficient operation of scheduled access protocol
US5369748A (en) * 1991-08-23 1994-11-29 Nexgen Microsystems Bus arbitration in a dual-bus architecture where one bus has relatively high latency
US5231634B1 (en) * 1991-12-18 1996-04-02 Proxim Inc Medium access protocol for wireless lans
US5392450A (en) * 1992-01-08 1995-02-21 General Electric Company Satellite communications system
US5896561A (en) * 1992-04-06 1999-04-20 Intermec Ip Corp. Communication network having a dormant polling protocol
FR2690252B1 (en) * 1992-04-17 1994-05-27 Thomson Csf METHOD AND SYSTEM FOR DETERMINING THE POSITION AND ORIENTATION OF A MOBILE, AND APPLICATIONS.
US5233604A (en) * 1992-04-28 1993-08-03 International Business Machines Corporation Methods and apparatus for optimum path selection in packet transmission networks
GB9304638D0 (en) * 1993-03-06 1993-04-21 Ncr Int Inc Wireless data communication system having power saving function
US5696903A (en) 1993-05-11 1997-12-09 Norand Corporation Hierarchical communications system using microlink, data rate switching, frequency hopping and vehicular local area networking
US5317566A (en) * 1993-08-18 1994-05-31 Ascom Timeplex Trading Ag Least cost route selection in distributed digital communication networks
US5631897A (en) * 1993-10-01 1997-05-20 Nec America, Inc. Apparatus and method for incorporating a large number of destinations over circuit-switched wide area network connections
US5857084A (en) * 1993-11-02 1999-01-05 Klein; Dean A. Hierarchical bus structure access system
US5412654A (en) * 1994-01-10 1995-05-02 International Business Machines Corporation Highly dynamic destination-sequenced destination vector routing for mobile computers
JP2591467B2 (en) * 1994-04-18 1997-03-19 日本電気株式会社 Access method
US5502722A (en) * 1994-08-01 1996-03-26 Motorola, Inc. Method and apparatus for a radio system using variable transmission reservation
US5614914A (en) * 1994-09-06 1997-03-25 Interdigital Technology Corporation Wireless telephone distribution system with time and space diversity transmission for determining receiver location
JP3043958B2 (en) * 1994-09-29 2000-05-22 株式会社リコー Network communication method by wireless communication
US6029217A (en) * 1994-10-03 2000-02-22 International Business Machines Corporation Queued arbitration mechanism for data processing system
DE69433872T2 (en) * 1994-10-26 2005-07-14 International Business Machines Corp. Medium access control scheme for wireless local area networks with interleaved variable length time division frames
US5618045A (en) * 1995-02-08 1997-04-08 Kagan; Michael Interactive multiple player game system and method of playing a game between at least two players
US5555540A (en) * 1995-02-17 1996-09-10 Sun Microsystems, Inc. ASIC bus structure
US5796741A (en) * 1995-03-09 1998-08-18 Nippon Telegraph And Telephone Corporation ATM bus system
US5572528A (en) * 1995-03-20 1996-11-05 Novell, Inc. Mobile networking method and apparatus
US5886992A (en) * 1995-04-14 1999-03-23 Valtion Teknillinen Tutkimuskeskus Frame synchronized ring system and method
US5517491A (en) * 1995-05-03 1996-05-14 Motorola, Inc. Method and apparatus for controlling frequency deviation of a portable transceiver
US5623495A (en) * 1995-06-15 1997-04-22 Lucent Technologies Inc. Portable base station architecture for an AD-HOC ATM lan
US5822309A (en) * 1995-06-15 1998-10-13 Lucent Technologies Inc. Signaling and control architecture for an ad-hoc ATM LAN
US5781540A (en) * 1995-06-30 1998-07-14 Hughes Electronics Device and method for communicating in a mobile satellite system
GB2303763B (en) * 1995-07-26 2000-02-16 Motorola Israel Ltd Communications system and method of operation
GB9517943D0 (en) * 1995-09-02 1995-11-01 At & T Corp Radio communication device and method
US6132306A (en) * 1995-09-06 2000-10-17 Cisco Systems, Inc. Cellular communication system with dedicated repeater channels
US6192053B1 (en) * 1995-09-07 2001-02-20 Wireless Networks, Inc. Enhanced adjacency detection protocol for wireless applications
US5615212A (en) * 1995-09-11 1997-03-25 Motorola Inc. Method, device and router for providing a contention-based reservation mechanism within a mini-slotted dynamic entry polling slot supporting multiple service classes
US5805593A (en) * 1995-09-26 1998-09-08 At&T Corp Routing method for setting up a service between an origination node and a destination node in a connection-communications network
US5805842A (en) * 1995-09-26 1998-09-08 Intel Corporation Apparatus, system and method for supporting DMA transfers on a multiplexed bus
US5701294A (en) 1995-10-02 1997-12-23 Telefonaktiebolaget Lm Ericsson System and method for flexible coding, modulation, and time slot allocation in a radio telecommunications network
US5717689A (en) * 1995-10-10 1998-02-10 Lucent Technologies Inc. Data link layer protocol for transport of ATM cells over a wireless link
US5920821A (en) * 1995-12-04 1999-07-06 Bell Atlantic Network Services, Inc. Use of cellular digital packet data (CDPD) communications to convey system identification list data to roaming cellular subscriber stations
US5991279A (en) 1995-12-07 1999-11-23 Vistar Telecommunications Inc. Wireless packet data distributed communications system
US5878036A (en) * 1995-12-20 1999-03-02 Spartz; Michael K. Wireless telecommunications system utilizing CDMA radio frequency signal modulation in conjunction with the GSM A-interface telecommunications network protocol
KR100197407B1 (en) * 1995-12-28 1999-06-15 유기범 Communication bus architecture between process in the full electronic switching system
US5680392A (en) * 1996-01-16 1997-10-21 General Datacomm, Inc. Multimedia multipoint telecommunications reservation systems
US5684794A (en) * 1996-01-25 1997-11-04 Hazeltine Corporation Validation of subscriber signals in a cellular radio network
US5706428A (en) * 1996-03-14 1998-01-06 Lucent Technologies Inc. Multirate wireless data communication system
US5652751A (en) * 1996-03-26 1997-07-29 Hazeltine Corporation Architecture for mobile radio networks with dynamically changing topology using virtual subnets
US5796732A (en) * 1996-03-28 1998-08-18 Cisco Technology, Inc. Architecture for an expandable transaction-based switching bus
US5805977A (en) * 1996-04-01 1998-09-08 Motorola, Inc. Method and apparatus for controlling transmissions in a two-way selective call communication system
US5943322A (en) * 1996-04-24 1999-08-24 Itt Defense, Inc. Communications method for a code division multiple access system without a base station
US5787080A (en) * 1996-06-03 1998-07-28 Philips Electronics North America Corporation Method and apparatus for reservation-based wireless-ATM local area network
US5845097A (en) 1996-06-03 1998-12-01 Samsung Electronics Co., Ltd. Bus recovery apparatus and method of recovery in a multi-master bus system
SE518132C2 (en) * 1996-06-07 2002-08-27 Ericsson Telefon Ab L M Method and apparatus for synchronizing combined receivers and transmitters in a cellular system
US5774876A (en) * 1996-06-26 1998-06-30 Par Government Systems Corporation Managing assets with active electronic tags
US6067297A (en) * 1996-06-28 2000-05-23 Symbol Technologies, Inc. Embedded access point supporting communication with mobile unit operating in power-saving mode
US5844905A (en) 1996-07-09 1998-12-01 International Business Machines Corporation Extensions to distributed MAC protocols with collision avoidance using RTS/CTS exchange
US5909651A (en) * 1996-08-02 1999-06-01 Lucent Technologies Inc. Broadcast short message service architecture
US5987011A (en) 1996-08-30 1999-11-16 Chai-Keong Toh Routing method for Ad-Hoc mobile networks
US6044062A (en) * 1996-12-06 2000-03-28 Communique, Llc Wireless network system and method for providing same
US5903559A (en) * 1996-12-20 1999-05-11 Nec Usa, Inc. Method for internet protocol switching over fast ATM cell transport
US5877724A (en) * 1997-03-25 1999-03-02 Trimble Navigation Limited Combined position locating and cellular telephone system with a single shared microprocessor
US6052594A (en) * 1997-04-30 2000-04-18 At&T Corp. System and method for dynamically assigning channels for wireless packet communications
US5881095A (en) * 1997-05-01 1999-03-09 Motorola, Inc. Repeater assisted channel hopping system and method therefor
US5870350A (en) * 1997-05-21 1999-02-09 International Business Machines Corporation High performance, high bandwidth memory bus architecture utilizing SDRAMs
US6240294B1 (en) * 1997-05-30 2001-05-29 Itt Manufacturing Enterprises, Inc. Mobile radio device having adaptive position transmitting capabilities
GB2326065B (en) * 1997-06-05 2002-05-29 Mentor Graphics Corp A scalable processor independent on-chip bus
US6108738A (en) * 1997-06-10 2000-08-22 Vlsi Technology, Inc. Multi-master PCI bus system within a single integrated circuit
US6405049B2 (en) * 1997-08-05 2002-06-11 Symbol Technologies, Inc. Portable data terminal and cradle
US5987033A (en) 1997-09-08 1999-11-16 Lucent Technologies, Inc. Wireless lan with enhanced capture provision
US6163699A (en) 1997-09-15 2000-12-19 Ramot University Authority For Applied Research And Industrial Development Ltd. Adaptive threshold scheme for tracking and paging mobile users
US6067291A (en) * 1997-09-23 2000-05-23 Lucent Technologies Inc. Wireless local area network with enhanced carrier sense provision
US6034542A (en) * 1997-10-14 2000-03-07 Xilinx, Inc. Bus structure for modularized chip with FPGA modules
US5936953A (en) * 1997-12-18 1999-08-10 Raytheon Company Multi-mode, multi-channel communication bus
US6047330A (en) * 1998-01-20 2000-04-04 Netscape Communications Corporation Virtual router discovery system
US6065085A (en) * 1998-01-27 2000-05-16 Lsi Logic Corporation Bus bridge architecture for a data processing system capable of sharing processing load among a plurality of devices
US6130881A (en) * 1998-04-20 2000-10-10 Sarnoff Corporation Traffic routing in small wireless data networks
US6078566A (en) * 1998-04-28 2000-06-20 Genesys Telecommunications Laboratories, Inc. Noise reduction techniques and apparatus for enhancing wireless data network telephony
US6222463B1 (en) * 1998-06-25 2001-04-24 Lucent Technologies, Inc. Vehicle communication network
US6400751B1 (en) * 1998-07-01 2002-06-04 Itt Manufacturing Enterprises, Inc. Adaptive frequency sharing method and apparatus
US6064626A (en) * 1998-07-31 2000-05-16 Arm Limited Peripheral buses for integrated circuit
US6304556B1 (en) * 1998-08-24 2001-10-16 Cornell Research Foundation, Inc. Routing and mobility management protocols for ad-hoc networks
US6115580A (en) * 1998-09-08 2000-09-05 Motorola, Inc. Communications network having adaptive network link optimization using wireless terrain awareness and method for use therein
US6208870B1 (en) * 1998-10-27 2001-03-27 Lucent Technologies Inc. Short message service notification forwarded between multiple short message service centers
US6285892B1 (en) * 1998-11-24 2001-09-04 Philips Electronics North America Corp. Data transmission system for reducing terminal power consumption in a wireless network
US6104712A (en) * 1999-02-22 2000-08-15 Robert; Bruno G. Wireless communication network including plural migratory access nodes
US6147975A (en) 1999-06-02 2000-11-14 Ac Properties B.V. System, method and article of manufacture of a proactive threhold manager in a hybrid communication system architecture
US6275707B1 (en) * 1999-10-08 2001-08-14 Motorola, Inc. Method and apparatus for assigning location estimates from a first transceiver to a second transceiver
US6327300B1 (en) 1999-10-25 2001-12-04 Motorola, Inc. Method and apparatus for dynamic spectrum allocation
US6349210B1 (en) * 1999-11-12 2002-02-19 Itt Manufacturing Enterprises, Inc. Method and apparatus for broadcasting messages in channel reservation communication systems
US6349091B1 (en) * 1999-11-12 2002-02-19 Itt Manufacturing Enterprises, Inc. Method and apparatus for controlling communication links between network nodes to reduce communication protocol overhead traffic
US6222504B1 (en) * 2000-01-14 2001-04-24 Omnipoint Corporation Adjustable antenna mount with rotatable antenna brackets for PCS and other antennas
US6907228B1 (en) * 2001-08-21 2005-06-14 Nortel Networks Limited Allocating carrier frequencies for communicating beacon control signaling
KR100465208B1 (en) * 2002-04-02 2005-01-13 조광선 System, Apparatus, and Method for Wireless Mobile Communication in association with Mobile AD-HOC Network Support
US20050250468A1 (en) * 2004-05-09 2005-11-10 Wei Lu Open wireless architecture for fourth generation mobile communications
JP4447416B2 (en) * 2004-09-22 2010-04-07 株式会社エヌ・ティ・ティ・ドコモ Multiband mobile communication system and transmitter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287384A (en) * 1992-10-15 1994-02-15 Lxe Inc. Frequency hopping spread spectrum data communications system
US5887022A (en) * 1996-06-12 1999-03-23 Telecommunications Research Laboratories Peer-peer frequency hopping spread spectrum wireless system
US6594302B1 (en) * 1999-08-13 2003-07-15 Intel Corporation Fixed frequency transceiver for use in a frequency hopping system
US20020080855A1 (en) * 2000-12-27 2002-06-27 Kabushiki Kaisha Toshiba Method and apparatus for performing wireless communication using spread spectrum-frequency hopping
US20030050070A1 (en) * 2001-03-14 2003-03-13 Alex Mashinsky Method and system for dynamic spectrum allocation and management
US20030202494A1 (en) * 2002-04-26 2003-10-30 Drews Paul C. Establishing an ad hoc network
US20040087310A1 (en) * 2002-07-31 2004-05-06 Williamson Matthew Murray Allocation of communications frequency spectrum
US20040198363A1 (en) * 2003-01-13 2004-10-07 Ray Zinn Wireless device and method using frequency hopping and sweep modes

Also Published As

Publication number Publication date
KR100923175B1 (en) 2009-10-22
DE112005002480B4 (en) 2011-12-22
US7167463B2 (en) 2007-01-23
KR20070060154A (en) 2007-06-12
US20060077938A1 (en) 2006-04-13
DE112005002480T5 (en) 2007-08-23
WO2006041794A3 (en) 2006-11-23

Similar Documents

Publication Publication Date Title
KR100923175B1 (en) A system and method for creating a spectrum agile wireless multi-hopping network
KR100532150B1 (en) Communique wireless subscriber device for a celluar communication network
CN102160338B (en) Systems and method for quality of service control over multiple accesses
US20060114853A1 (en) Dual mode, dual band wireless communication network and a method for using the same
Khelil et al. On the suitability of device-to-device communications for road traffic safety
US20040141522A1 (en) Communications protocol for wireless lan harmonizing the ieee 802.11a and etsi hiperla/2 standards
KR101008791B1 (en) Extensible authentication protocol over local area networkeapol proxy in a wireless network for node to node authentication
KR20050038029A (en) Pre-negotiated quality of service
Mancuso et al. Protocol to access white-space (paws) databases: Use cases and requirements
US20080009288A1 (en) Radio Network With Parallel Transmission and a Method of Forwarding a Signal in a Radio Network
Shah et al. DDH-MAC: a novel dynamic de-centralized hybrid mac protocol for cognitive radio networks
US8600349B2 (en) Methods and systems for obscuring network topologies
WO2013012140A1 (en) Method and apparatus for transceiving a contact verification signal regarding available channels in a plurality of locations in a wireless communication system
Rajpoot et al. Cross-layer design based hybrid MAC protocol for cognitive radio network
Soleimani et al. D2D scheme for vehicular safety applications in LTE advanced network
Ishizu et al. TV white space database for coexistence of primary-secondary and secondary-secondary systems in mesh networking
Minhas et al. The role of ad hoc networks in mobile telecommunication
Shinde et al. An Opportunistic Coexistence Analysis of LTE and Wi-Fi in Unlicensed 5 GHz Frequency Band
Kim et al. Cross‐layer scheduling for multi‐users in cognitive multi‐radio mesh networks
US20220286864A1 (en) Shared Spectrum Access For Private Radio Networks
Jia et al. In‐band bootstrapping in database‐driven multi‐hop cognitive radio networks
Bernardos et al. IEEE 802.11 standards
Noguet et al. TVWS as an Emerging Application of Cognitive Radio
Triantafyllopoulou et al. Position paper on FP7 research directions in CR and the European standardization priorities–initial version
Patil Internet Engineering Task Force (IETF) A. Mancuso, Ed. Request for Comments: 6953 Google Category: Informational S. Probasco

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050024806

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077010209

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112005002480

Country of ref document: DE

Date of ref document: 20070823

Kind code of ref document: P

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607