WO2006042162A1 - Gas sensitive apparatus - Google Patents

Gas sensitive apparatus Download PDF

Info

Publication number
WO2006042162A1
WO2006042162A1 PCT/US2005/036252 US2005036252W WO2006042162A1 WO 2006042162 A1 WO2006042162 A1 WO 2006042162A1 US 2005036252 W US2005036252 W US 2005036252W WO 2006042162 A1 WO2006042162 A1 WO 2006042162A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor elements
electrode
group
contacts
electrodes
Prior art date
Application number
PCT/US2005/036252
Other languages
French (fr)
Inventor
Harry Edward Betsill
Original Assignee
E.I. Dupont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E.I. Dupont De Nemours And Company filed Critical E.I. Dupont De Nemours And Company
Priority to EP05803660A priority Critical patent/EP1805508A1/en
Priority to CN2005800341664A priority patent/CN101036048B/en
Priority to JP2007535859A priority patent/JP5054530B2/en
Publication of WO2006042162A1 publication Critical patent/WO2006042162A1/en
Priority to HK08102647.5A priority patent/HK1111763A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/128Microapparatus

Definitions

  • This invention relates to a gas-sensitive apparatus for gas analysis, which apparatus is particularly, but not exclusively, useful for the analysis of automotive exhaust emissions, or the emissions from other internal combustion engines.
  • the apparatus is particularly advantageous in view of its applicability to the detection or quantitative determination of individual gases present in a mixture, its compact size, and its low power consumption.
  • an automotive engine it is advantageous to be able to detect the presence or concentration of the various components in the exhaust gas stream.
  • Such analysis and measurement can be used for controlling the operation of the engine, with a view toward optimizing the amounts of injected fuel and air. If the engine can be provided with an optimal composition of the fuel/air mixture during all operating conditions, the fuel consumption and the harmful emissions from the engine can be minimized.
  • gas analysis and measurement can also play a role in the diagnosis of the automotive catalytic converter.
  • the fuel and oxygen levels in the exhaust gas stream should generally lie within certain ranges tor the optimum performance of the catalytic converter.
  • gases are typically present in an automotive engine exhaust stream, including, for example, oxygen, nitrogen oxide compounds (NOx) , carbon monoxide, sulfur oxides (SOx) , hydrogen sulfide (H 2 S) , hydrocarbons, ammonia, hydrogen and water.
  • NOx nitrogen oxide compounds
  • SOx sulfur oxides
  • H 2 S hydrogen sulfide
  • hydrocarbons ammonia, hydrogen and water.
  • Numerous products are known that are intended to analyze a stream of gas using a gas sensor device.
  • a typical gas sensor device employs as sensor element (s) one or more chemo/electro-active materials, each of which is a material that will exhibit a change in an electrical property upon exposure to a gas.
  • a complicating factor in the process of analyzing and measuring the wide variety of gaseous components in a mixture such as exhaust gas is that the signal from one particular sensor element can be influenced by its exposure to gases other the gas (es) for which its signal is intended to serve as the desired analytical data.
  • gases other the gas (es) for which its signal is intended to serve as the desired analytical data For example, a material selected as a sensor to respond to NOx, apart from detecting the presence or concentration of a nitrogen oxide compound, may also be sensitive to the presence of oxygen or a hydrocarbon.
  • This difficulty has been addressed by simultaneously using a plurality of different types of sensor elements to generate enough data to permit separation of those signals that are accurately reflective of the presence of an analyte gas from those that are the unavoidable result of the cross-sensitivity of the different sensor elements to the total population of gases.
  • a gas sensor device constructed with a plurality of different sensor elements to address such problem of cross-sensitivity may, however, be subject to size limitations depending on the nature of its deployment. If the gas sensor device will be used for automotive purposes, it will be subject to very strict ana demanding size limitations. Many currently known automotive gas sensors, such as that described for example in U.S. Patent 5,556,526, must be small enough to pass through a circle having a diameter of no more than 100 mm, if not smaller. On-board automotive diagnostics is, however, not the only use for a gas analyzer having compact size as hand-held devices for monitoring all varieties of toxic and hazardous gaseous materials are becoming increasingly important.
  • the present invention meets this need as it provides a gas sensitive apparatus for use as a component in a gas sensor device that permits the construction of a device containing a desirably high number of sensor elements and yet meeting virtually all applicable size limitations for use for automotive purposes or in other desired industrial settings.
  • the use of the gas sensitive apparatus of this invention in a gas sensor device is, of course, not limited to the automotive industry.
  • One particular advantage of this invention is that it provides, in a gas sensitive apparatus, a space- saving arrangement for a large number of sensor elements, and the electrodes (such as printed electrodes) that are associated therewith.
  • Another advantage of this invention is that it provides in a gas sensitive apparatus a space-saving arrangement for a plurality of conductors that are sufficient in number to carry pulse and signal inputs and outputs to and from the many sensor elements.
  • the present invention enables the discrimination of very low concentrations of a wide variety of components in a gas mixture under conditions of virtually any size limitation.
  • the gas sensitive apparatus is incorporated into a gas sensor device that is installed in an automotive vehicle or any other desired type of industrial equipment.
  • One embodiment of this invention is a gas sensitive apparatus that may be passed through a circle having a diameter of no more than about 100 mm; and that includes (a) four or more sensor elements, and (b) two or more electrodes that each contacts two or more sensor elements.
  • Another embodiment of this invention is a gas-sensitive apparatus that includes (a) four or more sensor elements, (b) a first electrode that contacts at least one member of a first group of sensor elements, and (c) a second electrode that contacts at least one member of the first group of sensor elements and at least one member of a second group of sensor elements, wherein no member of the first group of sensor elements is a member of the second group of sensor elements.
  • Figure 1 is a schematic drawing of a multiplexed circuit connecting electrodes to sensor elements.
  • Figure 2 is a schematic drawing of a multiplexed circuit connecting electrodes to sensor elements.
  • Figure 3 is a schematic drawing of a multiplexed circuit connecting electrodes to sensor elements.
  • Figure 4 shows a layout of a heater on a substrate in an apparatus for analyzing a mixture of gases .
  • the same numbering for the features shown in Figure 1 is continued in Figure 2 where those same features are also shown in Figure 2.
  • the same numbering for the features shown in Figures 1 and 2 is continued in Figure 3 where those same features are also shown in Figure 3.
  • One embodiment of this invention is an apparatus for analyzing a mixture of gases, such as those contained in the exhaust gas of an internal combustion engine, wherein the apparatus may contain a plurality of sensor elements.
  • the sensor elements may be mounted on a substrate such as a unitary body or a multi-layer laminate for detecting specific gases contained in the mixture, and generating signals based thereon.
  • a substrate that is a unitary body is fabricated from a material such as alumina or zirconia as one solid piece of stock and is not fabricated by building up a plurality of discrete layers.
  • a multi- layered laminate by contrast is fabricated by the assembly of a plurality of layers that are bonded together by treatment with heat and pressure.
  • the substrate is typically planar in shape such that its cross section forms a rectangle in which the length or one dimension exceeds the other by 500% or more.
  • the substrate may have other shapes, however, such that its cross section forms a rectangular rectangle in which the length of one dimension exceeds the other by less 500%, or the cross section has a trapezoidal, circular or oval shape.
  • gas sensor elements which may constitute an array of individually electrically responsive solid state sensor elements mounted in relation to the gas input and output means so that an input flow of the gas mixture is passed over all the gas sensor elements substantially simultaneously. It is preferred, but not required, that at least one sensor element is provided for each one of the individual gases in the mixture to be analyzed. As noted above, however, additional sensor elements are also provided to cross check the signals resulting from the sensitivity of an individual element to more than one gas, and this may require a large number of sensor elements.
  • the apparatus may also include heater for heating the substrate, such as a heating plate or wire mounted on or in the substrate. The heater is powered by a voltage source connected to the heating plate or wire.
  • the sensor elements may, for example, be prepared from metal oxide semiconductors. Electrical signals resulting from the interaction of gas and sensor surface are extracted as outputs and processed by an analyzer to detect the presence or concentration of various gaseous components in the mixture. Those determinations or computations are achieved by means of a look-up table or by an algorithm-controlled calculator function, or a more sophisticated, deconvolution or neural network technique.
  • the small size of the apparatus of this invention permits the sensor device to be placed close enough to the source from which the gas is generated that there is no significant change in the composition of the gas mixture between the time at which it is generated and the time at which it contacts the gas sensitive apparatus that is part of the sensor device.
  • the sensor elements may be prepared from chemo/electro-active materials, as described below, and may be placed on one or more surfaces of the substrate.
  • the electrodes may be prepared from metals such as gold, platinum or palladium or a mixture of two or more thereof, and may be placed on or within the substrate. Sensor elements and electrodes on the surface of a substrate may be applied by any of a variety of printing techniques as described below. Electrodes may be placed within a substrate by providing layers of "green" tape, one or more of which contain electrodes, and laminating the layers together to form a multi-layer laminate.
  • FIG. 1 A plurality of sensor elements 2 is provided on a substrate 4.
  • a plurality of electrodes 6 connects tne various sensor elements 2 with contact terminals 8. Electrodes are available to enable completion of an electrical circuit through each sensor element.
  • the contact terminals make contact with conductors (not shown) to enable passing electrical pulses to, and receiving signals from, the various sensor elements 2.
  • the signals are routed to a microprocessor for handling as described below.
  • electrodes are shown crossing each other, that is accomplished by a dielectric layer in between the crossovers.
  • the gas sensitive apparatus of this invention may be passed through a circle having a diameter of no more than about 100 mm, preferably no more than about 50 mm, more preferably no more than about 25 mm, and most preferably no more than about 18 mm.
  • the apparatus may, for example, have four or more sensor elements, and two or more electrodes that each contacts two or more sensor elements.
  • Electrode A 10 contacts Sensor Elements A-I 12 and A-2 14
  • Electrode B 16 contacts Sensor Elements B-I 18 and B-2 20.
  • Electrodes A 10 and B 12 each contacts different sensor elements.
  • B-3 24 are individually optional. Although shown in Figure 1, either or both may or may not be included in the apparatus depending on the estimated difficulty of the gas analysis task at hand, which will indicate the number of sensor elements needed to accomplish resolution of the gas mixture at the desired level of detail. If Sensor Elements A-3 22 and B-3 24 are present as shown, Electrode C 26 and Electrode D 28 will also be present as shown. If either or both of Sensor Elements A-3 22 and B-3 24 are not present, the corresponding electrode will also not be present. If Sensor Element A-3 22 is present as shown, a circuit may be completed through it using Electrodes A 10 and C 26, and a circuit may be completed through other sensor elements in an analogous manner using the electrodes adjacent to them, respectively, as shown in the various drawings hereof.
  • Electrode A 10 contacts three sensor elements.
  • Sensor Element B-3 24 it may be seen that Electrode B 16 contacts three sensor elements. Electrodes A 10 and B 16 in those cases contact different sensor elements.
  • Electrode E 30 contacts Sensor Elements E-I 32 and E-2 34, and is thus a third electrode that contacts two or more sensor elements. Electrode E 30 contacts different sensor elements that either of Electrodes A 10 and B 16.
  • Sensor Element E-3 36 is optional, and, although shown in Figure 2, may or may not be included in the apparatus. If Sensor Element E-3 36 is present as shown, Electrode F 38 will also be present as shown. If Sensor Element E-3 36 is not present, Electrode F 38 will also not be present. If Sensor Element E-3 36 is present as shown, Electrode E 30 is a third electrode that contacts three sensor elements. Electrode E 30 in such instance also contacts different sensor elements that either of Electrodes A 10 and B 16.
  • Electrode G 40 contacts Sensor Elements G-I 42 and G-2 44, and is thus a fourth electrode that contacts two or more sensor elements. Electrode G 40 contacts different sensor elements that any of Electrodes A 10, B 16 and E 30.
  • Sensor Element G-3 46 is optional, and, although shown in Figure 3, may or may not be included in the apparatus. If Sensor Element G-3 46 is present as shown, Electrode H 48 will also be present as shown. If Sensor Element G-3 46 is not present, Electrode H 48 will also not be present. If Sensor Element G-3 46 is present as shown, Electrode G 40 is a fourth electrode that contacts three sensor elements. Electrode G 40 in such instance also contacts different sensor elements that any of Electrodes A 10, B 16 and E 30.
  • Electrode J 50 contacts Sensor Elements B-2 20 and E-2 34
  • Electrode K 52 contacts Sensor Elements A-I 12, B-I 18 and E-I 32.
  • Electrode K 52 contacts Sensor Elements A-I 12, B-I 18, E-I 32 and G-I 42.
  • Electrodes A 10, B 16, E 30, G 40, J 50 and K 52 may thus each be described as an electrode that contacts two or more sensor elements.
  • Electrodes A 10, B 16, E 30, G 40 and K 52 may each be described as an electrode that contacts three or more sensor elements
  • Electrode K 52 may be described as an electrode that contacts four sensor elements.
  • FIG. 4 shows an example of a layout for a heater.
  • a heater 54 on a surface of a substrate 4 is connected to electrodes 56, which are in turn connected to contact terminals 58.
  • the heater may, for example, be a heating plate, may be made of metals such as gold, platinum or palladium or a mixture of two or more thereof, and may be deposited by printing or other known techniques.
  • sensor elements may be located on one or more surfaces of a substrate. Particularly in the case of a multi-layer laminate, sensor elements may be located on two or more surfaces.
  • the materials that are used as the sensor elements may be deposited on different layers of "green" tape before the various layers are assembled into the final, cured laminate that constitutes the substrate.
  • the layers on which the sensor elements are located become surfaces of the substrate. Electrodes may be deposited on the same layers as the sensor elements, or may be deposited on layers that are on the interior of the substrate and that thus do not become surfaces. Electrodes may thus be located on one, two or more of the surfaces of the substrate, or on none of the surfaces.
  • each of the embodiments as shown in Figures 1, 2 and 3 may be located on a surface of a substrate.
  • the substrate may thus contain in total 6 or more, 8 or more, 10 or more or 12 or more sensor elements.
  • FIG. 5 A further alternative embodiment is shown in Figure 5, in which the same numbering for the features shown in Figure 1 is continued in Figure 5 where those same features are also shown in Figure 5.
  • Sensor Element A-I 12 is contacted by a first electrode, Electrode A 10, and a second electrode, Electrode K 52.
  • Sensor Element A-2 14 is also contacted by Electrode A 10
  • Sensor Element B-I 18 is also contacted by Electrode K 52.
  • Electrode A 10 thus contacts at least one member of the group consisting of Sensor Elements A-I 12, A-2 14 and A-3 22; as does Electrode K 52.
  • Sensor Element B-2 20 is not contacted by Electrode K 52, Electrode K 52 nevertheless also contacts at least one member of the group consisting of Sensor Elements B-I 18, B-2 20 and B-3 24.
  • No member of the group consisting of Sensor Elements A-I 12, A-2 14 and A-3 22 is a member of the group consisting of Sensor Elements B-I 18, B-2 20 and B-3 24.
  • Electrode A not only contacts more than one member of the group consisting of Sensor Elements A-I 12, A-2 14 and A-3 22, it contacts each member of that group.
  • FIG. 6 A further alternative embodiment is shown in Figure 6, in which the apparatus contains sensor elements and electrodes in addition to those described in the embodiment as shown in Figure 5.
  • the same numbering for the features shown in Figure 5 is continued in Figure 6 where those same features are also shown in Figure 6.
  • Electrode K 52 contacts Sensor Element E-I 32, and thus contacts at least one member of the group consisting of Sensor Elements E-I 32, E-2 34 and E-3 36.
  • No member of the group consisting of Sensor Elements E-I 32, E-2 34 and E-3 36 is a member of either of the groups consisting respectively of Sensor Elements A-I 12, A-2 14 and A-3 22; and B-I 18, B-2 20 and B-3 24.
  • Electrode B 16 contacts Sensor Elements B-I 18 and B-2 20, and it thus may be seen in Figure 6 that Electrode B 16 contacts at least one member of the group consisting of Sensor Elements B-I 18, B-2 20 and B-3 24. It may also be seen, however, that Electrode B 16 contacts more than one member of that group, and actually contacts each member of that group.
  • a fourth electrode, Electrode J 50 contacts at least one member of the group consisting of Sensor Elements B-I 18, B-2 20 and B-3, and at least one member of the group consisting of Sensor Elements E-I 32, E-2 34 and E-3 36.
  • Electrode E 30 contacts at least one memfier of the group consisting of Sensor Elements E-I 32, E-2 34 and E-3 36. It may also be seen, however, that Electrode E 30 contacts more than one member of that group, and actually contacts each member of that group.
  • Electrode K 52 contacts at least one member of the group consisting of Sensor Elements G-I 42, G-2 44 and G-3 46.
  • No member the group consisting of Sensor Elements G-I 42, G-2 44 and G-3 46 is a member of any of the groups consisting, respectively, of Sensor Elements A-I 12, A-2 14 and A-3 22; B-I 18, B-2 20 and B-3 24; and E-I 32, E-2 34 and E-3 36.
  • a sixth electrode, Electrode G 40 also contacts at least one member of the group consisting of Sensor Elements G-I 42, G-2 44 and G-3 46. It may also be seen, however, that Electrode G 40 contacts more than one member of that group, and actually contacts each member of that group.
  • these groups of sensor elements may be located on one surface of a substrate, and a heater, as described above, may be located on another surface of the substrate.
  • electrodes will be located on both surfaces of the substrate. There may be at least twice as many, or at least three times as many, electrodes on a first surface of the substrate as there are on the second surface.
  • sensor elements may be located on one or more surfaces of a substrate. Particularly in the case of a multi-layer laminate, sensor elements may also be located on two or more surfaces. As a result, there may be 4 or more, 6 or more, 8 or more or 10 or more sensor elements on one, two or more surfaces of a substrate.
  • the substrate may thus contain in total 6 or more, 8 or more, 10 or more or 12 or more sensor elements. Electrodes may Joe deposited on the same surfaces as the sensor elements, or may be located on the interior of the substrate. Electrodes may thus be located on one, two or more of the surfaces of the substrate, or on none of the surfaces.
  • the apparatus of this invention is stated or described as comprising, including, containing or having certain features, integers and/or components, it is to be understood, unless the statement or description explicitly provides to the contrary, that one or more components other than those explicitly stated or described may be present in the apparatus.
  • the apparatus of this invention may be stated or described as consisting essentially of certain components, in which embodiment components that would materially alter the principle of operation or the distinguishing characteristics of the apparatus are not present therein.
  • the apparatus of this invention may be stated or described as consisting of certain components, in which embodiment components other than those as stated are not present therein.

Abstract

Disclosed herein is a gas sensitive apparatus that is useful in view of its applicability to the detection or quantitative determination of individual gases present in a gas mixture, and is advantageous in view of its compact size, and its low power consumption. It comprises four or more sensor elements, and two or more electrodes.

Description

TITLE GAS SENSITIVE APPARATUS
This application claims the benefit of U.S. Provisional Application No. 60/617,246, filed on October 7, 2004, which is incorporated in its entirety as a part hereof for all purposes.
Technical Field
This invention relates to a gas-sensitive apparatus for gas analysis, which apparatus is particularly, but not exclusively, useful for the analysis of automotive exhaust emissions, or the emissions from other internal combustion engines. The apparatus is particularly advantageous in view of its applicability to the detection or quantitative determination of individual gases present in a mixture, its compact size, and its low power consumption.
Background In an automotive engine, it is advantageous to be able to detect the presence or concentration of the various components in the exhaust gas stream. Such analysis and measurement can be used for controlling the operation of the engine, with a view toward optimizing the amounts of injected fuel and air. If the engine can be provided with an optimal composition of the fuel/air mixture during all operating conditions, the fuel consumption and the harmful emissions from the engine can be minimized. In addition to engine control, gas analysis and measurement can also play a role in the diagnosis of the automotive catalytic converter. The fuel and oxygen levels in the exhaust gas stream should generally lie within certain ranges tor the optimum performance of the catalytic converter.
A variety of gases are typically present in an automotive engine exhaust stream, including, for example, oxygen, nitrogen oxide compounds (NOx) , carbon monoxide, sulfur oxides (SOx) , hydrogen sulfide (H2S) , hydrocarbons, ammonia, hydrogen and water. Numerous products are known that are intended to analyze a stream of gas using a gas sensor device. A typical gas sensor device employs as sensor element (s) one or more chemo/electro-active materials, each of which is a material that will exhibit a change in an electrical property upon exposure to a gas.
A complicating factor in the process of analyzing and measuring the wide variety of gaseous components in a mixture such as exhaust gas is that the signal from one particular sensor element can be influenced by its exposure to gases other the gas (es) for which its signal is intended to serve as the desired analytical data. For example, a material selected as a sensor to respond to NOx, apart from detecting the presence or concentration of a nitrogen oxide compound, may also be sensitive to the presence of oxygen or a hydrocarbon. This difficulty has been addressed by simultaneously using a plurality of different types of sensor elements to generate enough data to permit separation of those signals that are accurately reflective of the presence of an analyte gas from those that are the unavoidable result of the cross-sensitivity of the different sensor elements to the total population of gases.
A gas sensor device constructed with a plurality of different sensor elements to address such problem of cross-sensitivity may, however, be subject to size limitations depending on the nature of its deployment. If the gas sensor device will be used for automotive purposes, it will be subject to very strict ana demanding size limitations. Many currently known automotive gas sensors, such as that described for example in U.S. Patent 5,556,526, must be small enough to pass through a circle having a diameter of no more than 100 mm, if not smaller. On-board automotive diagnostics is, however, not the only use for a gas analyzer having compact size as hand-held devices for monitoring all varieties of toxic and hazardous gaseous materials are becoming increasingly important.
When constructing a size-limited gas sensor, there is consequently an inevitable tension between the desire to utilize as many different sensor elements in the device as possible, and the need for the sensor device to meet the applicable size limitation. Each separate sensor element raises considerations of not only the space occupied by the element itself, but the location and arrangement of the conductors, connectors and cabling that carry the input and output pulses and signals necessary to operate all of the sensor elements that are contained in the sensor device. This has resulted in a need to develop components for the device, such as a gas sensitive apparatus, that enable increasing the number of sensor elements that can be used in the sensor device while maintaining the size of the device within permitted limits.
The present invention meets this need as it provides a gas sensitive apparatus for use as a component in a gas sensor device that permits the construction of a device containing a desirably high number of sensor elements and yet meeting virtually all applicable size limitations for use for automotive purposes or in other desired industrial settings. The use of the gas sensitive apparatus of this invention in a gas sensor device is, of course, not limited to the automotive industry. One particular advantage of this invention is that it provides, in a gas sensitive apparatus, a space- saving arrangement for a large number of sensor elements, and the electrodes (such as printed electrodes) that are associated therewith. Another advantage of this invention is that it provides in a gas sensitive apparatus a space-saving arrangement for a plurality of conductors that are sufficient in number to carry pulse and signal inputs and outputs to and from the many sensor elements. By incorporating a large number of sensor elements in a compact, small- sized gas sensitive apparatus, the present invention enables the discrimination of very low concentrations of a wide variety of components in a gas mixture under conditions of virtually any size limitation. The gas sensitive apparatus is incorporated into a gas sensor device that is installed in an automotive vehicle or any other desired type of industrial equipment. These and other advantages are more particularly described below.
Summary of Various Embodiments of the Invention One embodiment of this invention is a gas sensitive apparatus that may be passed through a circle having a diameter of no more than about 100 mm; and that includes (a) four or more sensor elements, and (b) two or more electrodes that each contacts two or more sensor elements.
Another embodiment of this invention is a gas- sensitive apparatus that includes (a) four or more sensor elements, (b) a first electrode that contacts at least one member of a first group of sensor elements, and (c) a second electrode that contacts at least one member of the first group of sensor elements and at least one member of a second group of sensor elements, wherein no member of the first group of sensor elements is a member of the second group of sensor elements.
Description of the Drawings
Figure 1 is a schematic drawing of a multiplexed circuit connecting electrodes to sensor elements.
Figure 2 is a schematic drawing of a multiplexed circuit connecting electrodes to sensor elements. Figure 3 is a schematic drawing of a multiplexed circuit connecting electrodes to sensor elements.
Figure 4 shows a layout of a heater on a substrate in an apparatus for analyzing a mixture of gases . The same numbering for the features shown in Figure 1 is continued in Figure 2 where those same features are also shown in Figure 2. The same numbering for the features shown in Figures 1 and 2 is continued in Figure 3 where those same features are also shown in Figure 3.
Detailed Description
One embodiment of this invention is an apparatus for analyzing a mixture of gases, such as those contained in the exhaust gas of an internal combustion engine, wherein the apparatus may contain a plurality of sensor elements. The sensor elements may be mounted on a substrate such as a unitary body or a multi-layer laminate for detecting specific gases contained in the mixture, and generating signals based thereon. A substrate that is a unitary body is fabricated from a material such as alumina or zirconia as one solid piece of stock and is not fabricated by building up a plurality of discrete layers. A multi- layered laminate by contrast is fabricated by the assembly of a plurality of layers that are bonded together by treatment with heat and pressure. The substrate is typically planar in shape such that its cross section forms a rectangle in which the length or one dimension exceeds the other by 500% or more. The substrate may have other shapes, however, such that its cross section forms a rectangular rectangle in which the length of one dimension exceeds the other by less 500%, or the cross section has a trapezoidal, circular or oval shape.
In the gas sensitive apparatus, multiple gas sensor elements are used, which may constitute an array of individually electrically responsive solid state sensor elements mounted in relation to the gas input and output means so that an input flow of the gas mixture is passed over all the gas sensor elements substantially simultaneously. It is preferred, but not required, that at least one sensor element is provided for each one of the individual gases in the mixture to be analyzed. As noted above, however, additional sensor elements are also provided to cross check the signals resulting from the sensitivity of an individual element to more than one gas, and this may require a large number of sensor elements. The apparatus may also include heater for heating the substrate, such as a heating plate or wire mounted on or in the substrate. The heater is powered by a voltage source connected to the heating plate or wire.
Electrical conductivity changes in the sensor elements are caused by electrochemical interactions of the solid surfaces of the sensor elements with adsorbed gas species. The sensor elements may, for example, be prepared from metal oxide semiconductors. Electrical signals resulting from the interaction of gas and sensor surface are extracted as outputs and processed by an analyzer to detect the presence or concentration of various gaseous components in the mixture. Those determinations or computations are achieved by means of a look-up table or by an algorithm-controlled calculator function, or a more sophisticated, deconvolution or neural network technique.
By placing a large number of sensor elements on one or more surfaces of a substrate, by multiplexing the pulse and signal input and output lines, and by providing a common amplifier unit and analyzer unit, an analysis of the different gas components in a gas mixture is made possible with a suitably small sensor device. The small size of the apparatus of this invention permits the sensor device to be placed close enough to the source from which the gas is generated that there is no significant change in the composition of the gas mixture between the time at which it is generated and the time at which it contacts the gas sensitive apparatus that is part of the sensor device.
A large number of sensor elements in the apparatus of this invention are accommodated by a multiplexed, space-saving layout of the sensor elements and the electrodes through which pulses and signals flow to and from the sensor elements. The sensor elements may be prepared from chemo/electro-active materials, as described below, and may be placed on one or more surfaces of the substrate. The electrodes may be prepared from metals such as gold, platinum or palladium or a mixture of two or more thereof, and may be placed on or within the substrate. Sensor elements and electrodes on the surface of a substrate may be applied by any of a variety of printing techniques as described below. Electrodes may be placed within a substrate by providing layers of "green" tape, one or more of which contain electrodes, and laminating the layers together to form a multi-layer laminate.
One particular embodiment of a space-saving layout of sensor elements and electrodes may be seen in Figure 1. A plurality of sensor elements 2 is provided on a substrate 4. A plurality of electrodes 6 connects tne various sensor elements 2 with contact terminals 8. Electrodes are available to enable completion of an electrical circuit through each sensor element. The contact terminals make contact with conductors (not shown) to enable passing electrical pulses to, and receiving signals from, the various sensor elements 2. The signals are routed to a microprocessor for handling as described below.
Where because of multiplexing, electrodes are shown crossing each other, that is accomplished by a dielectric layer in between the crossovers.
The gas sensitive apparatus of this invention may be passed through a circle having a diameter of no more than about 100 mm, preferably no more than about 50 mm, more preferably no more than about 25 mm, and most preferably no more than about 18 mm.
In one embodiment, the apparatus may, for example, have four or more sensor elements, and two or more electrodes that each contacts two or more sensor elements. For example, Electrode A 10 contacts Sensor Elements A-I 12 and A-2 14, and Electrode B 16 contacts Sensor Elements B-I 18 and B-2 20. As may be seen, Electrodes A 10 and B 12 each contacts different sensor elements.
Sensor Element A-3 22 and Sensor Element
B-3 24 are individually optional. Although shown in Figure 1, either or both may or may not be included in the apparatus depending on the estimated difficulty of the gas analysis task at hand, which will indicate the number of sensor elements needed to accomplish resolution of the gas mixture at the desired level of detail. If Sensor Elements A-3 22 and B-3 24 are present as shown, Electrode C 26 and Electrode D 28 will also be present as shown. If either or both of Sensor Elements A-3 22 and B-3 24 are not present, the corresponding electrode will also not be present. If Sensor Element A-3 22 is present as shown, a circuit may be completed through it using Electrodes A 10 and C 26, and a circuit may be completed through other sensor elements in an analogous manner using the electrodes adjacent to them, respectively, as shown in the various drawings hereof.
In the embodiment, in which Sensor Element A-3 22 is present, it may be seen that Electrode A 10 contacts three sensor elements. Similarly, in the embodiment, in which Sensor Element B-3 24 is present, it may be seen that Electrode B 16 contacts three sensor elements. Electrodes A 10 and B 16 in those cases contact different sensor elements.
An alternative embodiment is shown in Figure 2, in which the apparatus contains sensor elements and electrodes in addition to those described in the embodiment as shown in Figure 1. The same numbering for the features shown in Figure 1 is continued in Figure 2 where those same features are also shown in Figure 2. In Figure 2, Electrode E 30 contacts Sensor Elements E-I 32 and E-2 34, and is thus a third electrode that contacts two or more sensor elements. Electrode E 30 contacts different sensor elements that either of Electrodes A 10 and B 16.
Sensor Element E-3 36 is optional, and, although shown in Figure 2, may or may not be included in the apparatus. If Sensor Element E-3 36 is present as shown, Electrode F 38 will also be present as shown. If Sensor Element E-3 36 is not present, Electrode F 38 will also not be present. If Sensor Element E-3 36 is present as shown, Electrode E 30 is a third electrode that contacts three sensor elements. Electrode E 30 in such instance also contacts different sensor elements that either of Electrodes A 10 and B 16.
A further alternative embodiment is shown in Figure 3, in which the apparatus contains sensor elements and electrodes in addition to those described in the embodiment as shown in Figure 2. The same numbering for the features shown in Figure 2 is continued in Figure 3 where those same features are also shown in Figure 3. In Figure 3, Electrode G 40 contacts Sensor Elements G-I 42 and G-2 44, and is thus a fourth electrode that contacts two or more sensor elements. Electrode G 40 contacts different sensor elements that any of Electrodes A 10, B 16 and E 30.
Sensor Element G-3 46 is optional, and, although shown in Figure 3, may or may not be included in the apparatus. If Sensor Element G-3 46 is present as shown, Electrode H 48 will also be present as shown. If Sensor Element G-3 46 is not present, Electrode H 48 will also not be present. If Sensor Element G-3 46 is present as shown, Electrode G 40 is a fourth electrode that contacts three sensor elements. Electrode G 40 in such instance also contacts different sensor elements that any of Electrodes A 10, B 16 and E 30.
Referring to Figure 2, it may be seen that Electrode J 50 contacts Sensor Elements B-2 20 and E-2 34, and that Electrode K 52 contacts Sensor Elements A-I 12, B-I 18 and E-I 32. Referring to Figure 3, it may be seen that Electrode K 52 contacts Sensor Elements A-I 12, B-I 18, E-I 32 and G-I 42. Electrodes A 10, B 16, E 30, G 40, J 50 and K 52 may thus each be described as an electrode that contacts two or more sensor elements. Moreover, Electrodes A 10, B 16, E 30, G 40 and K 52 may each be described as an electrode that contacts three or more sensor elements, and Electrode K 52 may be described as an electrode that contacts four sensor elements.
In the apparatus of this invention, when sensor elements are located on a surface of a substrate as described above, it is possible if desired to locate a heater on another surface of the substrate. Figure 4 shows an example of a layout for a heater. In Figure 4, a heater 54 on a surface of a substrate 4 is connected to electrodes 56, which are in turn connected to contact terminals 58. The heater may, for example, be a heating plate, may be made of metals such as gold, platinum or palladium or a mixture of two or more thereof, and may be deposited by printing or other known techniques.
When sensor elements are located on one surface of a substrate, and a heater is located on another surface of the substrate, there will be in the apparatus of the invention electrodes on both surfaces of the substrate. As shown by comparing Figures 1 through 3 with Figure 4, it is seen that there may be at least twice as many, or at least three times as many, electrodes on a first surface of the substrate as there are on the second surface.
As described above, in the apparatus of this invention, sensor elements may be located on one or more surfaces of a substrate. Particularly in the case of a multi-layer laminate, sensor elements may be located on two or more surfaces. The materials that are used as the sensor elements may be deposited on different layers of "green" tape before the various layers are assembled into the final, cured laminate that constitutes the substrate. The layers on which the sensor elements are located become surfaces of the substrate. Electrodes may be deposited on the same layers as the sensor elements, or may be deposited on layers that are on the interior of the substrate and that thus do not become surfaces. Electrodes may thus be located on one, two or more of the surfaces of the substrate, or on none of the surfaces. Moreover, as sensor elements may be located on one, two or more surfaces of the substrate, each of the embodiments as shown in Figures 1, 2 and 3 may be located on a surface of a substrate. As a result, there may be 4 or more, 6 or more, 8 or more or 10 or more sensor elements on one, two or more surfaces of a substrate. The substrate may thus contain in total 6 or more, 8 or more, 10 or more or 12 or more sensor elements.
A further alternative embodiment is shown in Figure 5, in which the same numbering for the features shown in Figure 1 is continued in Figure 5 where those same features are also shown in Figure 5. In Figure 5, Sensor Element A-I 12 is contacted by a first electrode, Electrode A 10, and a second electrode, Electrode K 52. Sensor Element A-2 14 is also contacted by Electrode A 10, and Sensor Element B-I 18 is also contacted by Electrode K 52. Electrode A 10 thus contacts at least one member of the group consisting of Sensor Elements A-I 12, A-2 14 and A-3 22; as does Electrode K 52. Although Sensor Element B-2 20 is not contacted by Electrode K 52, Electrode K 52 nevertheless also contacts at least one member of the group consisting of Sensor Elements B-I 18, B-2 20 and B-3 24. No member of the group consisting of Sensor Elements A-I 12, A-2 14 and A-3 22 is a member of the group consisting of Sensor Elements B-I 18, B-2 20 and B-3 24.
It may also be seen in Figure 5 that Electrode A not only contacts more than one member of the group consisting of Sensor Elements A-I 12, A-2 14 and A-3 22, it contacts each member of that group.
A further alternative embodiment is shown in Figure 6, in which the apparatus contains sensor elements and electrodes in addition to those described in the embodiment as shown in Figure 5. The same numbering for the features shown in Figure 5 is continued in Figure 6 where those same features are also shown in Figure 6. In Figure 6, Electrode K 52 contacts Sensor Element E-I 32, and thus contacts at least one member of the group consisting of Sensor Elements E-I 32, E-2 34 and E-3 36. No member of the group consisting of Sensor Elements E-I 32, E-2 34 and E-3 36 is a member of either of the groups consisting respectively of Sensor Elements A-I 12, A-2 14 and A-3 22; and B-I 18, B-2 20 and B-3 24.
A third electrode, Electrode B 16, contacts Sensor Elements B-I 18 and B-2 20, and it thus may be seen in Figure 6 that Electrode B 16 contacts at least one member of the group consisting of Sensor Elements B-I 18, B-2 20 and B-3 24. It may also be seen, however, that Electrode B 16 contacts more than one member of that group, and actually contacts each member of that group. A fourth electrode, Electrode J 50, contacts at least one member of the group consisting of Sensor Elements B-I 18, B-2 20 and B-3, and at least one member of the group consisting of Sensor Elements E-I 32, E-2 34 and E-3 36.
A further alternative embodiment is shown in Figure 7, in which the apparatus contains sensor elements and electrodes in addition to those described in the embodiment as shown in Figure 6. The same numbering for the features shown in Figure 6 is continued in Figure 7 where those same features are also shown in Figure 7. In Figure 7, a fifth electrode, Electrode E 30, contacts at least one memfier of the group consisting of Sensor Elements E-I 32, E-2 34 and E-3 36. It may also be seen, however, that Electrode E 30 contacts more than one member of that group, and actually contacts each member of that group.
Electrode K 52 contacts at least one member of the group consisting of Sensor Elements G-I 42, G-2 44 and G-3 46. No member the group consisting of Sensor Elements G-I 42, G-2 44 and G-3 46 is a member of any of the groups consisting, respectively, of Sensor Elements A-I 12, A-2 14 and A-3 22; B-I 18, B-2 20 and B-3 24; and E-I 32, E-2 34 and E-3 36. A sixth electrode, Electrode G 40 also contacts at least one member of the group consisting of Sensor Elements G-I 42, G-2 44 and G-3 46. It may also be seen, however, that Electrode G 40 contacts more than one member of that group, and actually contacts each member of that group.
As is true of other embodiments this apparatus, some or all of these groups of sensor elements may be located on one surface of a substrate, and a heater, as described above, may be located on another surface of the substrate. In such case, electrodes will be located on both surfaces of the substrate. There may be at least twice as many, or at least three times as many, electrodes on a first surface of the substrate as there are on the second surface.
Also as described above, sensor elements may be located on one or more surfaces of a substrate. Particularly in the case of a multi-layer laminate, sensor elements may also be located on two or more surfaces. As a result, there may be 4 or more, 6 or more, 8 or more or 10 or more sensor elements on one, two or more surfaces of a substrate. The substrate may thus contain in total 6 or more, 8 or more, 10 or more or 12 or more sensor elements. Electrodes may Joe deposited on the same surfaces as the sensor elements, or may be located on the interior of the substrate. Electrodes may thus be located on one, two or more of the surfaces of the substrate, or on none of the surfaces.
Other descriptions of the apparatus of this invention, and of methods of use thereof, may be found in U.S. Application No. SN 09/977,791, filed on October 15, 2001, and in U.S. Application No. SN 10/117,472, filed on April 5, 2002, each of which is incorporated in its entirety as a part hereof for all purposes.
Where the apparatus of this invention is stated or described as comprising, including, containing or having certain features, integers and/or components, it is to be understood, unless the statement or description explicitly provides to the contrary, that one or more components other than those explicitly stated or described may be present in the apparatus. In an alternative embodiment, however, the apparatus of this invention may be stated or described as consisting essentially of certain components, in which embodiment components that would materially alter the principle of operation or the distinguishing characteristics of the apparatus are not present therein. In a further alternative embodiment, the apparatus of this invention may be stated or described as consisting of certain components, in which embodiment components other than those as stated are not present therein.
Where the indefinite article "a" or "an" is used with respect to a statement or description of the presence of a component in the apparatus of this invention, it is to be understood, unless the statement or description explicitly provides to the contrary, that the use of such indefinite article does not limit the presence of the component in the apparatus to one in number.

Claims

CLAIMSWhat is claimed is:
1. A gas sensitive apparatus that may be passed through a circle having a diameter of no more than about 100 mm; and that comprises (a) four or more sensor elements, and (b) two or more electrodes that each contacts two or more sensor elements.
2. An apparatus according to Claim 1 that comprises three or more electrodes that each contacts two or more sensor elements.
3. An apparatus according to Claim 2 wherein each electrode contacts different sensor elements.
4. An apparatus according to Claim 1 that comprises four or more electrodes that each contacts two or more sensor elements.
5. An apparatus according to Claim 4 wherein each electrode contacts different sensor elements.
6. An apparatus according to Claim 1 that comprises five or more electrodes that each contacts two or more sensor elements.
7. An apparatus according to Claim 1 that comprises six electrodes that each contacts two or more sensor elements.
8. An apparatus according to Claim 1 wherein one or more electrodes each contacts three or more sensor elements.
9. An apparatus according to Claim 1 wherein two or more electrodes each contacts three or more sensor elements.
10. An apparatus according to Claim 1 that comprises three or more electrodes wherein each electrode contacts three or more sensor elements.
11. An apparatus according to Claim 1 that comprises four or more electrodes wherein each electrode contacts three or more sensor elements .
12. An apparatus according to Claim 1 wherein an electrode contacts at least four sensor elements.
13. An apparatus according to Claim 1 that comprises first and second surfaces, wherein both the first and second surfaces comprise electrodes, and there are at least twice as many electrodes on the first surface as there are on the second surface.
14. An apparatus according to Claim 13 wherein there are at least three times as many electrodes on the first surface as there are on the second surface.
15. An apparatus according to Claim 1 that comprises six or more sensor elements.
16. An apparatus according to Claim 1 further comprising a heater.
17. An apparatus according to Claim 1 that is a unitary body.
18. An apparatus according to Claim 1 that is a multi-layer laminate.
19. An apparatus according to Claim 1 that has a plurality of surfaces, and wherein sensor elements are located on more than one of the surfaces.
20. An apparatus according to Claim 19 wherein at least four sensor elements are located on each of two surfaces.
21. An apparatus according to Claim 19 wherein electrodes are located at least one of the surfaces.
22. An apparatus according to Claim 19 wherein no surface contains an electrode.
23. A gas-sensitive apparatus comprising (a) four or more sensor elements, (b) a first electrode that contacts at least one member of a first group of sensor elements, and (c) a second electrode that contacts at least one member of the first group of sensor elements and at least one member of a second group of sensor elements, wherein no member of the first group of sensor elements is a member of the second group of sensor elements.
24. An apparatus according to Claim 23 wherein the first electrode contacts more than one member of the first group of sensor elements.
25. An apparatus according to Claim 23 wherein the first electrode contacts each member of the first group of sensor elements.
26. An apparatus according to Claim 23 that comprises a third group of sensor elements wherein the second electrode contacts at least one member of the third group of sensor elements.
27. An apparatus according to Claim 26 wherein no member of the first group of sensor elements is a member of the third group of sensor elements.
28. An apparatus according to Claim 26 wherein no member of the second group of sensor elements is a member of the third group of sensor elements .
29. An apparatus according to Claim 23 further comprising a third electrode that contacts at least one member of the second group of sensor elements .
30. An apparatus according to Claim 29 wherein the third electrode contacts more than one member of the second group of sensor elements.
31. An apparatus according to Claim 29 wherein the third electrode contacts each member of the second group of sensor elements.
32. An apparatus according to Claim 26 further comprising a fourth electrode that contacts at least one member of the second group of sensor elements, and at least one member of the third group of sensor elements.
33. An apparatus according to Claim 26 further comprising a fifth electrode that contacts at least one member of the third group of sensor elements.
34. An apparatus according to Claim 33 wherein the fifth electrode contacts more than one member of the third group of sensor elements.
35. An apparatus according to Claim 33 wherein the fifth electrode contacts each member of the third group of sensor elements .
36. An apparatus according to Claim 26 that comprises a fourth group of sensor elements wherein the second electrode contacts at least one member of a fourth group of sensor elements, and no member of the first group of sensor elements is a member of the fourth group of sensor elements.
37. An apparatus according to Claim 37 wherein no member of the second group of sensor elements is a member of the fourth group of sensor elements.
38. An apparatus according to Claim 37 wherein no member of the third group of sensor elements is a member of the fourth group of sensor elements.
39. An apparatus according to Claim 37 further comprising a sixth electrode that contacts at least one member of the fourth group of sensor elements.
40. An apparatus according to Claim 40 wherein the sixth electrode contacts more than one member of the fourth group of sensor elements.
41. An apparatus according to Claim 40 wherein the sixth electrode contacts each member of the fourth group of sensor elements.
42. An apparatus according to Claim 23 that comprises at least 6 sensor elements.
43. An apparatus according to Claim 23 that comprises at least 8 sensor elements.
44. An apparatus according to Claim 23 that is a unitary body.
45. An apparatus according to Claim 23 that is a multi-layer laminate.
46. An apparatus according to Claim 23 that has a plurality of surfaces, and wherein sensor elements are located on more than one of the surfaces.
47. An apparatus according to Claim 47 wherein at least four sensor elements are located on each of two surfaces.
48. An apparatus according to Claim 47 wherein electrodes are located at least one surface.
49. An apparatus according to Claim 47 wherein no surface contains an electrode.
PCT/US2005/036252 2004-10-07 2005-10-06 Gas sensitive apparatus WO2006042162A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05803660A EP1805508A1 (en) 2004-10-07 2005-10-06 Gas sensitive apparatus
CN2005800341664A CN101036048B (en) 2004-10-07 2005-10-06 Gas sensitive apparatus
JP2007535859A JP5054530B2 (en) 2004-10-07 2005-10-06 Gas detector
HK08102647.5A HK1111763A1 (en) 2004-10-07 2008-03-06 Gas sensitive apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61724604P 2004-10-07 2004-10-07
US60/617,246 2004-10-07

Publications (1)

Publication Number Publication Date
WO2006042162A1 true WO2006042162A1 (en) 2006-04-20

Family

ID=35478685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/036252 WO2006042162A1 (en) 2004-10-07 2005-10-06 Gas sensitive apparatus

Country Status (7)

Country Link
US (1) US8236246B2 (en)
EP (1) EP1805508A1 (en)
JP (1) JP5054530B2 (en)
KR (1) KR20070069189A (en)
CN (1) CN101036048B (en)
HK (1) HK1111763A1 (en)
WO (1) WO2006042162A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763208B2 (en) * 2003-11-12 2010-07-27 E.I. Du Pont De Nemours And Company System and method for sensing and analyzing gases
DE102005059434A1 (en) * 2005-12-13 2007-06-14 Robert Bosch Gmbh Sensor element for determining different gas fractions in a sample gas
KR101912900B1 (en) * 2017-01-17 2018-10-29 울산과학기술원 Multi-channel resistance-type gas sensor system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007435A (en) 1973-07-30 1977-02-08 Tien Tseng Ying Sensor device and method of manufacturing same
US4457161A (en) 1980-10-09 1984-07-03 Hitachi, Ltd. Gas detection device and method for detecting gas
US5556526A (en) 1994-03-24 1996-09-17 Nippondenso Co., Ltd. Gas sensor having enhanced external connectivity characteristics
US5605612A (en) 1993-11-11 1997-02-25 Goldstar Electron Co., Ltd. Gas sensor and manufacturing method of the same
US20040013571A1 (en) 2000-10-16 2004-01-22 Morris Patricia A. Method and apparatus for analyzing mixtures of gases
US11747202B2 (en) 2020-01-07 2023-09-05 Hamamatsu Photonics K.K. Spectrometer module

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151503A (en) 1977-10-05 1979-04-24 Ford Motor Company Temperature compensated resistive exhaust gas sensor construction
US4353316A (en) * 1978-11-01 1982-10-12 Opelika Manufacturing Corporation Sheet production system with hem expander
US4234542A (en) 1979-01-29 1980-11-18 Bendix Autolite Corporation Thin coat temperature compensated resistance oxide gas sensor
US4225842A (en) 1979-07-25 1980-09-30 Bendix Autolite Corporation Resistance type oxygen sensor
US4347732A (en) 1980-08-18 1982-09-07 Leary David J Gas monitoring apparatus
US4387359A (en) 1981-01-21 1983-06-07 Bendix Autolite Corporation Titania oxygen sensor with chrome oxide compensator
US4387259A (en) * 1981-07-16 1983-06-07 Mobil Oil Corporation Selective alkylation of aromatic hydrocarbons using a mixed ethylene/propylene alkylation agent
US4542640A (en) 1983-09-15 1985-09-24 Clifford Paul K Selective gas detection and measurement system
US4535316A (en) 1984-03-26 1985-08-13 Allied Corporation Heated titania oxygen sensor
US4911982A (en) 1985-02-08 1990-03-27 E.C.C. America Inc. Surface treated layered lattice silicates and resultant products
JPH0672861B2 (en) 1986-08-04 1994-09-14 日本碍子株式会社 NOx sensor
US4847783A (en) 1987-05-27 1989-07-11 Richard Grace Gas sensing instrument
GB8927567D0 (en) 1989-12-06 1990-02-07 Gen Electric Co Plc Detection of chemicals
DE4002429A1 (en) * 1990-01-27 1991-08-01 Philips Patentverwaltung Light and X=ray sensor matrix in thin-film technique
ES2129446T3 (en) 1991-04-05 1999-06-16 British Gas Plc GAS SENSORS BASED ON TIN OXIDE.
EP0527258B1 (en) 1991-08-14 1995-10-25 Siemens Aktiengesellschaft Gas sensor array for the detection of individual gas components in a gas mixture
US5239273A (en) * 1991-11-20 1993-08-24 Numa Technologies, Inc. Digital demodualtor using signal processor to evaluate period measurements
JPH0643128A (en) * 1992-07-23 1994-02-18 Riken Corp Sensor unit
US5426934A (en) 1993-02-10 1995-06-27 Hitachi America, Ltd. Engine and emission monitoring and control system utilizing gas sensors
SE513477C2 (en) 1993-11-08 2000-09-18 Volvo Ab Sensor for detecting nitric oxide compounds
DE4341632C2 (en) 1993-12-07 1998-07-16 Heraeus Electro Nite Int Method and device for testing and regulating motor vehicles
DE4408361C2 (en) 1994-03-14 1996-02-01 Bosch Gmbh Robert Electrochemical sensor for determining the oxygen concentration in gas mixtures
DE4408504A1 (en) 1994-03-14 1995-09-21 Bosch Gmbh Robert Sensor for determining the concentration of gas components in gas mixtures
US5879526A (en) 1994-11-08 1999-03-09 Robert Bosch Gmbh Electrochemical measuring sensor for determining nitrogen oxides in gas mixtures
US5571401A (en) 1995-03-27 1996-11-05 California Institute Of Technology Sensor arrays for detecting analytes in fluids
WO2000000808A2 (en) 1998-06-09 2000-01-06 California Institute Of Technology Colloidal particles used in sensing arrays
US6170318B1 (en) 1995-03-27 2001-01-09 California Institute Of Technology Methods of use for sensor based fluid detection devices
US5574401A (en) * 1995-06-02 1996-11-12 Analog Devices, Inc. Large common mode input range CMOS amplifier
GB9512929D0 (en) 1995-06-24 1995-08-30 Sun Electric Uk Ltd Multi-gas sensor systems for automatic emissions measurement
US5554273A (en) 1995-07-26 1996-09-10 Praxair Technology, Inc. Neural network compensation for sensors
DE19549147C2 (en) 1995-12-29 1998-06-04 Siemens Ag Gas sensor
US6084418A (en) 1996-02-28 2000-07-04 Denso Corporation Method for accurately detecting sensor element resistance
JPH1068346A (en) 1996-06-21 1998-03-10 Ngk Insulators Ltd Control method for engine exhaust gas system
US5776601A (en) 1996-10-28 1998-07-07 General Motors Corporation Titania exhaust gas oxygen sensor
EP0851222A1 (en) 1996-12-31 1998-07-01 Corning Incorporated Metal oxide semiconductor catalyst hydrocarbon sensor
US5832411A (en) 1997-02-06 1998-11-03 Raytheon Company Automated network of sensor units for real-time monitoring of compounds in a fluid over a distributed area
EP1074833A1 (en) 1997-03-21 2001-02-07 Ngk Spark Plug Co., Ltd Method and apparatus for measuring NOx gas concentration
US6082176A (en) 1997-06-13 2000-07-04 Ngk Spark Plug Co., Ltd. NOx-concentration detecting apparatus
US6085576A (en) 1998-03-20 2000-07-11 Cyrano Sciences, Inc. Handheld sensing apparatus
GB9823428D0 (en) 1998-10-26 1998-12-23 Capteur Sensors & Analysers Materials for solid-state gas sensors
US6890715B1 (en) 1999-08-18 2005-05-10 The California Institute Of Technology Sensors of conducting and insulating composites
CA2423235A1 (en) * 2000-10-16 2002-04-25 E.I. Du Pont De Nemours And Company Method and apparatus for analyzing mixtures of gases
KR101100530B1 (en) 2002-04-05 2011-12-30 이 아이 듀폰 디 네모아 앤드 캄파니 Method and apparatus for controlling a gas-emitting process and related devices
JP4050593B2 (en) * 2002-11-01 2008-02-20 日本特殊陶業株式会社 Gas sensor element and gas sensor using the same
WO2004086021A2 (en) 2003-03-26 2004-10-07 E.I. Dupont De Nemours And Company Apparatus for analyzing mixtures of gases
US7763208B2 (en) 2003-11-12 2010-07-27 E.I. Du Pont De Nemours And Company System and method for sensing and analyzing gases

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007435A (en) 1973-07-30 1977-02-08 Tien Tseng Ying Sensor device and method of manufacturing same
US4457161A (en) 1980-10-09 1984-07-03 Hitachi, Ltd. Gas detection device and method for detecting gas
US5605612A (en) 1993-11-11 1997-02-25 Goldstar Electron Co., Ltd. Gas sensor and manufacturing method of the same
US5556526A (en) 1994-03-24 1996-09-17 Nippondenso Co., Ltd. Gas sensor having enhanced external connectivity characteristics
US20040013571A1 (en) 2000-10-16 2004-01-22 Morris Patricia A. Method and apparatus for analyzing mixtures of gases
US11747202B2 (en) 2020-01-07 2023-09-05 Hamamatsu Photonics K.K. Spectrometer module

Also Published As

Publication number Publication date
CN101036048B (en) 2011-04-20
HK1111763A1 (en) 2008-08-15
CN101036048A (en) 2007-09-12
KR20070069189A (en) 2007-07-02
EP1805508A1 (en) 2007-07-11
US20060108220A1 (en) 2006-05-25
JP2008516239A (en) 2008-05-15
JP5054530B2 (en) 2012-10-24
US8236246B2 (en) 2012-08-07

Similar Documents

Publication Publication Date Title
US6238536B1 (en) Arrangement for analysis of exhaust gases
EP0769693B1 (en) Method and sensing device for measuring predetermined gas component in measurement gas
US4457161A (en) Gas detection device and method for detecting gas
EP0831322B1 (en) Gas sensor
EP0990144B1 (en) Integrated ceramic exhaust gas sensors
EP2009433A1 (en) Catalytic combustion type gas sensor, detection device and compensating device
US6579435B2 (en) Gas sensor
CN1166943C (en) Nitrogen oxide detector
US8940144B2 (en) Sensor element and method for determining gas components in gas mixtures, and use thereof
US20070289870A1 (en) Ammonia Gas Sensor With Dissimilar Electrodes
US5985673A (en) Method for regeneration of a sensor
US5985118A (en) Solid electrolyte gas concentration detector
US20090065370A1 (en) Ammonia gas sensor method and device
US20050063873A1 (en) Apparatus for analyzing mixtures of gases
US8236246B2 (en) Gas sensitive apparatus
US6406181B1 (en) Temperature sensor
US20060208916A1 (en) Components for gas sensor device
KR100696980B1 (en) Semiconductor type thick film gas sensor device, and apparatus for measuring performance of a gas sensor device
Wiegleb Physical-Chemical Gas Sensors
GB2342171A (en) Handheld sensing apparatus
Fleischer et al. Markets and industrialisation of low-power gas sensors based on work function measurements

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007535859

Country of ref document: JP

Ref document number: 200580034166.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005803660

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077010190

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005803660

Country of ref document: EP