WO2006058384A1 - Membrane post treatment - Google Patents

Membrane post treatment Download PDF

Info

Publication number
WO2006058384A1
WO2006058384A1 PCT/AU2005/001820 AU2005001820W WO2006058384A1 WO 2006058384 A1 WO2006058384 A1 WO 2006058384A1 AU 2005001820 W AU2005001820 W AU 2005001820W WO 2006058384 A1 WO2006058384 A1 WO 2006058384A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
ultrafiltration membrane
linkable component
microfiltration
membrane
Prior art date
Application number
PCT/AU2005/001820
Other languages
French (fr)
Inventor
Daniel Mullette
Original Assignee
Siemens Water Technologies Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2004906947A external-priority patent/AU2004906947A0/en
Application filed by Siemens Water Technologies Corp. filed Critical Siemens Water Technologies Corp.
Priority to EP05813412A priority Critical patent/EP1827664B1/en
Priority to AU2005312347A priority patent/AU2005312347B2/en
Priority to JP2007543655A priority patent/JP2008521598A/en
Priority to AT05813412T priority patent/ATE511915T1/en
Priority to US11/720,700 priority patent/US7867417B2/en
Priority to NZ555302A priority patent/NZ555302A/en
Priority to CA002588675A priority patent/CA2588675A1/en
Priority to CN2005800436397A priority patent/CN101084057B/en
Publication of WO2006058384A1 publication Critical patent/WO2006058384A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking

Definitions

  • the invention relates to the treatment of polymeric materials to enhance their chemical properties in ultrafiltration and microfiltration applications.
  • the invention relates to the treatment of porous polymeric membranes to increase water permeability without loss of other desirable membrane characteristics.
  • Synthetic polymeric membranes are well known in the field of ultrafiltration and microfiltration for a variety of applications including desalination, gas separation, filtration and dialysis.
  • the properties of the membranes vary depending on the morphology of the membrane i.e. properties such as symmetry, pore shape, pore size and the chemical nature of the polymeric material used to form the membrane.
  • Different membranes can be used for specific separation processes, including microfiltration, ultrafiltration and reverse osmosis.
  • Microfiltration and ultrafiltration are pressure driven processes and are distinguished by the size of the particle or molecule that the membrane is capable of retaining or passing.
  • Microfiltration can remove very fine colloidal particles in the micrometer and submicrometer range. As a general rule, microfiltration can filter particles down to 0.05 ⁇ m, whereas ultrafiltration can retain particles as small as 0.01 ⁇ m and smaller. Reverse osmosis operates on an even smaller scale.
  • Microporous phase inversion membranes are particularly well suited to the application of removal of viruses and bacteria.
  • a large surface area is needed when a large filtrate flow is required.
  • a commonly used technique to minimize the size of the apparatus used is to form a membrane in the shape of a hollow porous fibre.
  • a large number of these hollow fibres (up to several thousand) are bundled together and housed in modules.
  • the fibres act in parallel to filter a solution for purification, generally water, which flows in contact with the outer surface of all the fibres in the module. By applying pressure, the water is forced into the central channel, or lumen, of each of the fibres while the microcontaminants remain trapped outside the fibres. The filtered water collects inside the fibres and is drawn off through the ends.
  • the fibre module configuration is a highly desirable one as it enables the modules to achieve a very high surface area per unit volume. hi addition to the arrangement of fibres in a module, it is also necessary for the polymeric fibres themselves to possess the appropriate microstructure to allow microfiltration to occur.
  • the microstructure of ultrafiltration and microfiltration membranes is asymmetric, that is, the pore size gradient across the membrane is not homogeneous, but rather varies in relation to the cross-sectional distance within the membrane.
  • Hollow fibre membranes are preferably asymmetric membranes possessing tightly bunched small pores on one or both outer surfaces and larger more open pores towards the inside edge of the membrane wall.
  • This microstructure has been found to be advantageous as it provides a good balance between mechanical strength and filtration efficiency.
  • the chemical properties of the membrane are also important.
  • the hydrophilic or hydrophobic nature of a membrane is one such important property.
  • Hydrophobic surfaces are defined as “water hating” and hydrophilic surfaces as “water loving”. Many of the polymers used to cast porous membranes are hydrophobic polymers. Water can be forced through a hydrophobic membrane by use of sufficient pressure, but the pressure needed is very high (150-300 psi), and a membrane may be damaged at such pressures and generally does not become wetted evenly.
  • Hydrophobic microporous membranes are typically characterised by their excellent chemical resistance, biocompatibility, low swelling and good separation performance. Thus, when used in water filtration applications, hydrophobic membranes need to be hydrophilised or "wet out” to allow water permeation. Some hydrophilic materials are not suitable for microfiltration and ultrafiltration membranes that require mechanical strength and thermal stability since water molecules can play the role of plasticizers.
  • PTFE poly(tetrafluoroethylene)
  • PE polyethylene
  • PP polypropylene
  • PVDF poly(vinylidene fluoride)
  • Microporous synthetic membranes are particularly suitable for use in hollow fibres and are produced by phase inversion.
  • at least one polymer is dissolved in an appropriate solvent and a suitable viscosity of the solution is achieved.
  • the polymer solution can be cast as a film or hollow fibre, and then immersed in precipitation bath such as water. This causes separation of the homogeneous polymer solution into a solid polymer and liquid solvent phase.
  • the precipitated polymer forms a porous structure containing a network of uniform pores. Production parameters that affect the membrane structure and properties include the polymer concentration, the precipitation media and temperature and the amount of solvent and non-solvent in the polymer solution.
  • Hollow fibre ultrafiltration and microfiltration membranes are generally produced by either diffusion induced phase separation (the DIPS process) or by thermally induced phase separation (the TIPS process).
  • the TIPS process is described in more detail in PCT AU94/00198 (WO 94/17204) AU 653528, the contents of which are incorporated herein by reference.
  • the quickest procedure for forming a microporous system is thermal precipitation of a two component mixture, in which the solution is formed by dissolving a thermoplastic polymer in a solvent which will dissolve the polymer at an elevated temperature but will not do so at lower temperatures.
  • a solvent is often called a latent solvent for the polymer.
  • the solution is cooled and, at a specific temperature which depends upon the rate of cooling, phase separation occurs and the polymer rich phase separates from the solvent.
  • Microporous polymeric ultrafiltration and microfiltration membranes have been made from PVdF which incorporate a hydrophilising copolymer to render the membrane hydrophilic. While these copolymers do impart a degree of hydrophilicity to otherwise hydrophobic membranes, membranes formed from mixed polymers usually have a lower water permeability than equivalent hydrophobic PVdF membranes formed without copolymer. Further, in some cases, the hydrophilising components can be leached from the membrane over time.
  • the invention provides a method of improving the permeability of porous polymeric membrane which includes a cross linkable component, said method including the step of treating said hydrophilic porous polymeric membrane with a cross linking agent.
  • the porous polymeric membrane is a hydrophilic porous polymeric membrane.
  • the cross linkable component is a hydrophilic cross linkable component.
  • prior art examples involving crosslinking of one or more membrane components typically have permeability going down when a cross-linkable component is used.
  • the methods of the prior art usually describe depositing a cross-linkable component onto the surface of the membrane and cross-linking it rather than having it incorporated into the dope mixture, where it is cast with the other membrane forming components into a membrane.
  • the cross-linkable and non-crosslinkable components are preferably intimately mixed.
  • the invention provides a method of forming a hydrophilic polymeric microfiltration or ultrafiltration membrane including: i) preparing a polymeric microfiltration or ultrafiltration membrane which contains a component which is cross-linkable; and ii) treating said polymeric microfiltration or ultrafiltration membrane with a crosslinking agent to cross-link said cross-linkable component
  • the polymeric microfiltration or ultrafiltration membrane also includes a hydrophobic and/or not crosslinkable component.
  • the hydrophilic cross-linkable component is any hydrophilic cross linkable component capable of free radical cross linking. More preferably, the cross linkable component is capable of cross linking under oxidative conditions. Even more particularly preferred are components capable of crosslinking in the presence of hydroxyl radicals.
  • Suitable cross linkable components include monomers, oligomers, polymers and copolymers of one or more of the following: vinyl pyrrolidone, vinyl acetate, vinyl alcohol, vinyl methyl ether, vinyl ethyl ether, acrylic acid, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate propyl methacrylate, butyl methacrylate and maleic anhydride.
  • the cross linkable component may be added at various stages in the preparation of the polymer, but are usually incorporated by addition into the polymer dope in membranes prior to casting. Alternatively, the cross linkable component may be added as a coating/lumen or quench during membrane formation. They may be added in any amount, from an amount constituting the whole of the membrane or substantially the whole of the membrane down to an amount which produces only a minimal attenuation of the hydrophilicity/hydrophobicity balance.
  • the hydrophobic and/or non-cross linkable component is any polymer or copolymer of oxidation resistant material. Any polymer resistant to base attack containing one or more of the following monomers may be used: chlorotrifluoroethylene, vinyl fluoride, vinyl chloride; vinylidene fluoride/ vinylidene chloride/; hexafluoropropylene, ethylene- chlorotrifluoroethlyene, tetrafluoroethylene.
  • a non crosslinkable component is PVdF.
  • Chemical crosslinking is preferred.
  • Particularly preferred as a method of cross linking is treating the polymeric ultrafiltration or micro filtration membrane with a hydroxyl radical. The hydroxyl radical may be prepared by any known source.
  • hydroxyl radicals may, for example, be by way of an aqueous solution of Ferric chloride/hydrogen peroxide/sodium hydrogensulfate, by aqueous acidified hydrogen peroxide, by aqueous organic peroxy acids such as peracetic acid or by aqueous hydrogen peroxide under ultraviolet radiation, or by a combination of hydrogen peroxide and ozone, with or without UV radiation at any pH in the range 2-9.
  • the membranes are treated with a solution of hydroxyl radicals prepared from an aqueous solution of transition metal catalyst in conjunction with hydrogen peroxide at a pH of 2-9, with or without UV radiation.
  • the transition metal catalyst is a mixture of iron Il/iron III.
  • the treatment may involve soaking, filtering or recirculating to cross-link the crosslinkable compound to the polymer matrix.
  • UV light may be used if desired.
  • the process also includes a step of leaching unbound excess copolymer.
  • the excess unbound copolymer can be washed out with water or any other suitable solvent, for a predetermined time or to a predetermined level of leachate. It is possible that some cross linked material will be washed out, ie some oligomeric and lower polymeric material not fully embedded in the matrix of non-crosslinkable and/or hydrophobic polymer.
  • the invention provides a method of functionalising a polymeric microfiltration or ultrafiltration membrane including: i) preparing a polymeric microfiltration or ultrafiltration membrane which contains a component which is cross-linkable; ii) treating said polymeric microfiltration or ultrafiltration membrane with a hydroxyl radical to cross-link said cross-linkable component; and iii) leaching, where present, any unbound cross linked or unbound cross-linkable component.
  • the invention provides a method of increasing the permeability of a polymeric microfiltration or ultrafiltration membrane including: i) preparing a polymeric microfiltration or ultrafiltration membrane which contains a component which is cross-linkable; ii) treating said polymeric microfiltration or ultrafiltration membrane with a hydroxyl radical to cross-link said cross-linkable component; and iii) leaching, where present, any unbound cross linked or unbound cross-linkable component.
  • the invention provides a porous polymeric microfiltration or ultrafiltration membrane including a cross-linked hydrophilic polymer or copolymer.
  • the cross-linked hydrophilic polymer or copolymer is integrated into a matrix of a porous microfiltration or ultrafiltration membrane also includes a non cross-linked and/or hydrophobic component.
  • the membranes of the present invention are asymmetric membranes, which have a large pore face and a small pore face, and a pore size gradient which runs across the membrane cross section.
  • the membranes may be flat sheet, or more preferably, hollow fibre membranes.
  • the invention provides a hydrophilic membrane prepared according to the present invention for use in the microfiltration and ultrafiltration of water and wastewater.
  • the invention provides a hydrophilic membrane prepared according to the present invention for use as an affinity membrane.
  • the invention provides a hydrophilic membrane prepared according to the present invention for use as protein adsorption.
  • the invention provides a hydrophilic membrane prepared according to the present invention for use in processes requiring bio-compatible functionalised membranes.
  • hydrophilic is relative and is used in the context of a refers to compound which when added to a base membrane component render the overall membrane more hydrophilic than if the membrane did not contain that compound.
  • the present invention can be carried out upon any polymeric microfiltration or ultrafiltration membrane which contains cross linkable moieties, monomers, oligomers, polymers and copolymers which are capable of cross linking to produce a hydrophilised membrane.
  • Membranes of the present invention possess the properties expected of hydrophihc membranes. However, unlike other hydrophilised membranes, they show an improved permeability and decreased pressure losses for filtration of any type, but in particular water filtration. This makes them suitable for applications such as filtration of surface water, ground water, secondary effluent and the like, or for use in membrane bioreactors.
  • the cross linking is carried out by hydroxyl radicals generated from an aqueous solution of transition metal ions, in conjunction with hydrogen peroxide under acidic conditions. These conditions are sometimes described as producing Fenton's reagent.
  • the transition metal ions are iron II and/or iron III.
  • the acidic conditions are a pH of between about pH 2-6.
  • Any transition metal can be used, not just iron. Molybdenum, chromium, cobalt are also preferred. Any aqueous metal ion or complex that can easily be reduced/oxidised can be used as the catalyst system for the cleaning method of the present invention. Combinations of transition metal ions may also be used, and may be from a variety of sources, and can be supplemented with additional ions or species as necessary.
  • the solution of hydroxyl radicals is prepared from an aqueous solution of M (n+) and/or M (n+1)+ (for example, an iron II and/or iron III system) in conjunction with hydrogen peroxide at a low pH.
  • M (n+) and/or M (n+1)+ for example, an iron II and/or iron III system
  • M ⁇ + -* and/or M ⁇ n+1 ⁇ + an appropriate equilibrium between the two species will be reached.
  • ferrous or ferric species it is possible to start with either ferrous or ferric species, to get an identical catalyst system.
  • Other practicalities may dictate one over the other, for instance, when the metal is iron, preferably iron II species are used to start the reaction because they tend to be more soluble than any corresponding iron III species.
  • the possibility of undissolved iron III salts is reduced when starting from a solution of iron ⁇ .
  • the invention will be described with respect to iron II and iron III, but it will be understood to apply to any system where hydroxyl radicals are generated.
  • the general scheme for preparing hydroxyl radicals by the redox catalyst/peroxide/H + system of the present invention is as shown below. The reaction of either iron II or iron III with hydrogen peroxide is possible, generating the complementary iron species.
  • the hydroxyl radical is a strong oxidant, having a relative oxidation power over twice that of chlorine, and being second only to F- in oxidative strength.
  • the individual redox catalyst/peroxide/H + reagent components may be added to the cross linkable membrane together, or preferably separately, directly to the water which surrounds the fibre membranes. Typically, a concentration less than 300ppm of Fe can be used. Concentrations as low as
  • reaction time to achieve the desired degree of crosslinking is longer, for example, in excess of 24hrs.
  • Preferred concentrations are between 50-5000ppm FeSO 4 , and more preferably 300-1200ppm.
  • Reaction times vary depending on the amount of cross linkable agent present and the concentration of hydroxyl radical available, as well as the temperature. Typical reaction times to achieve cross linking are from 0.5-24 hrs but more preferably 2-4hrs.
  • Peroxide concentrations between 100-20000ppm, more preferably between 400- lOOOOppm and more preferably 1000-5000ppm can be used. It is also preferable to have the ratio of Fe:H 2 O 2 between 1 :4 and 1 :7.5, and more preferably between 1 :5-l :25. Preferably pH is in the range 2-6, more preferably 3-5.
  • a typical the redox catalyst/peroxide/H + system of the present invention had a concentration of 0.12wt% FeSO 4 at pH2, and a peroxide concentration of between 5000ppm and 9000ppm.
  • the H 2 O 2 can be added all at once, however, it is usually preferred if the H 2 O 2 is added over the period of the reaction. For example, in the case of a 4000ppm H 2 O 2 concentration for a duration of 4 hours, H 2 O 2 would be added at approximately lOOOppm per hour.
  • Sodium hydrogen sulphate can be used to control the pH.
  • any acid can be used, provided that the pH is in a suitable range.
  • Citric acid or sulfuric acid can be used, either alone or buffered with a base, for example, NaOH, to get the desired pH.
  • the pH is controlled by a sulfuric/caustic combination or sulfuric/sodium hydrogen sulfate combination, hi highly preferred embodiments, pH is controlled by the use of citric acid, either alone or in combination with other species.
  • Chloride ions can be present, e.g. in the form of FeCl 3 or HCl.
  • microfiltration/ultrafiltration membrane containing PVdF and uncross-linked PVP was immersed in an aqueous solution of ferric chloride/hydrogen peroxide and sodium hydrogensulfate and allowed to contact the stirred solution at room temperature for 4 hours before being removed and rinsed with distilled deionized water. The washing was continued until no further material leached out in the wash.
  • the crosslinkable component is preferably PVP.
  • the crosslinkable component is preferably present in the membrane in an amount of 0.1-10wt%, more preferably 2-7wt%. It is highly preferable if the crosslinkable component is 0.1-10wt% PVP, more preferably 2-7wt% PVP.
  • the only property of the membrane which is substantially affected by the method of the present invention is permeability.
  • PVDF membranes containing a cross-linkable component were treated with solutions of lwt% H 2 O 2 or Fenton's reagent.
  • the Fenton's reagent had the concentration as follows:
  • Fenton's reagent as a crosslinking agent showed that after 1 hour, a 30 % increase in permeability was obtained, with only a slight reduction in the break extension (from 179% to 169%), so the membrane was still highly flexible.
  • Membranes made according to the present invention possess improved porosity and permeability properties, increasing the ability of the membrane to filter water.
  • the membranes according to the present invention retain equivalent pore size, good pH (acid and base) and oxidation (Chlorine) resistant properties of the unmodified membranes in a filtration process.
  • the present invention provides improved permeability or porosity without sacrificing pore size or mechanical integrity.

Abstract

Hydrophilic porous polymeric membranes with high permeabilities, and processes for the preparation thereof are disclosed. Membranes may be prepared by including a preferably hydrophilic cross-linkable component such as PVP (either by inclusion into the polymer dope prior to casting, or coating or quenching cast membranes); and treating the polymeric microfiltration or ultrafiltration membrane with a crosslmking agent to cross-link said cross- linkable component. Preferred cross-linking agents include Fenton's reagent.

Description

MEMBRANE POST TREATMENT
TECHNICAL FIELD
The invention relates to the treatment of polymeric materials to enhance their chemical properties in ultrafiltration and microfiltration applications. In particular, the invention relates to the treatment of porous polymeric membranes to increase water permeability without loss of other desirable membrane characteristics.
BACKGROUND ART
The following discussion is not to be construed as an admission with regard to the state of the common general knowledge of those skilled in the art. Synthetic polymeric membranes are well known in the field of ultrafiltration and microfiltration for a variety of applications including desalination, gas separation, filtration and dialysis. The properties of the membranes vary depending on the morphology of the membrane i.e. properties such as symmetry, pore shape, pore size and the chemical nature of the polymeric material used to form the membrane. Different membranes can be used for specific separation processes, including microfiltration, ultrafiltration and reverse osmosis. Microfiltration and ultrafiltration are pressure driven processes and are distinguished by the size of the particle or molecule that the membrane is capable of retaining or passing. Microfiltration can remove very fine colloidal particles in the micrometer and submicrometer range. As a general rule, microfiltration can filter particles down to 0.05μm, whereas ultrafiltration can retain particles as small as 0.01 μm and smaller. Reverse osmosis operates on an even smaller scale.
Microporous phase inversion membranes are particularly well suited to the application of removal of viruses and bacteria. A large surface area is needed when a large filtrate flow is required. A commonly used technique to minimize the size of the apparatus used is to form a membrane in the shape of a hollow porous fibre. A large number of these hollow fibres (up to several thousand) are bundled together and housed in modules. The fibres act in parallel to filter a solution for purification, generally water, which flows in contact with the outer surface of all the fibres in the module. By applying pressure, the water is forced into the central channel, or lumen, of each of the fibres while the microcontaminants remain trapped outside the fibres. The filtered water collects inside the fibres and is drawn off through the ends.
The fibre module configuration is a highly desirable one as it enables the modules to achieve a very high surface area per unit volume. hi addition to the arrangement of fibres in a module, it is also necessary for the polymeric fibres themselves to possess the appropriate microstructure to allow microfiltration to occur.
Desirably, the microstructure of ultrafiltration and microfiltration membranes is asymmetric, that is, the pore size gradient across the membrane is not homogeneous, but rather varies in relation to the cross-sectional distance within the membrane. Hollow fibre membranes are preferably asymmetric membranes possessing tightly bunched small pores on one or both outer surfaces and larger more open pores towards the inside edge of the membrane wall.
This microstructure has been found to be advantageous as it provides a good balance between mechanical strength and filtration efficiency.
As well as the microstructure, the chemical properties of the membrane are also important. The hydrophilic or hydrophobic nature of a membrane is one such important property.
Hydrophobic surfaces are defined as "water hating" and hydrophilic surfaces as "water loving". Many of the polymers used to cast porous membranes are hydrophobic polymers. Water can be forced through a hydrophobic membrane by use of sufficient pressure, but the pressure needed is very high (150-300 psi), and a membrane may be damaged at such pressures and generally does not become wetted evenly.
Hydrophobic microporous membranes are typically characterised by their excellent chemical resistance, biocompatibility, low swelling and good separation performance. Thus, when used in water filtration applications, hydrophobic membranes need to be hydrophilised or "wet out" to allow water permeation. Some hydrophilic materials are not suitable for microfiltration and ultrafiltration membranes that require mechanical strength and thermal stability since water molecules can play the role of plasticizers.
Currently, poly(tetrafluoroethylene) (PTFE), polyethylene (PE)5 polypropylene (PP) and poly(vinylidene fluoride) (PVDF) are the most popular and available hydrophobic membrane materials. However, the search continues for membrane materials which will provide better chemical stability and performance while retaining the desired physical properties required to allow the membranes to be formed and worked in an appropriate manner. In particular, it is desirable to render membranes more hydrophilic to allow for greater filtration performance.
Microporous synthetic membranes are particularly suitable for use in hollow fibres and are produced by phase inversion. In this process, at least one polymer is dissolved in an appropriate solvent and a suitable viscosity of the solution is achieved. The polymer solution can be cast as a film or hollow fibre, and then immersed in precipitation bath such as water. This causes separation of the homogeneous polymer solution into a solid polymer and liquid solvent phase. The precipitated polymer forms a porous structure containing a network of uniform pores. Production parameters that affect the membrane structure and properties include the polymer concentration, the precipitation media and temperature and the amount of solvent and non-solvent in the polymer solution. These factors can be varied to produce microporous membranes with a large range of pore sizes (from less than 0.1 to 20μm), and possess a variety of chemical, thermal and mechanical properties. Hollow fibre ultrafiltration and microfiltration membranes are generally produced by either diffusion induced phase separation (the DIPS process) or by thermally induced phase separation (the TIPS process).
The TIPS process is described in more detail in PCT AU94/00198 (WO 94/17204) AU 653528, the contents of which are incorporated herein by reference. The quickest procedure for forming a microporous system is thermal precipitation of a two component mixture, in which the solution is formed by dissolving a thermoplastic polymer in a solvent which will dissolve the polymer at an elevated temperature but will not do so at lower temperatures. Such a solvent is often called a latent solvent for the polymer. The solution is cooled and, at a specific temperature which depends upon the rate of cooling, phase separation occurs and the polymer rich phase separates from the solvent.
Microporous polymeric ultrafiltration and microfiltration membranes have been made from PVdF which incorporate a hydrophilising copolymer to render the membrane hydrophilic. While these copolymers do impart a degree of hydrophilicity to otherwise hydrophobic membranes, membranes formed from mixed polymers usually have a lower water permeability than equivalent hydrophobic PVdF membranes formed without copolymer. Further, in some cases, the hydrophilising components can be leached from the membrane over time.
Previous attempts to hydrophilise membranes formed from principally hydrophobic material have involved preparing hydrophobic membranes and subsequently coating these with a suitable hydrophilic material. More advanced forms of this process have involved attempts to chemically bond the hydrophilic coating to the hydrophobic membrane substrate by processes such as cross-linking. While these processes do lead to the introduction of a hydrophilic membrane in most cases, they suffer from the drawback that the resultant membranes often have reduced permeability. That is, previous attempts to hydrophilise membranes by crosslinking have led to reduced membrane permeabilities.
Additional attempts have involved the preparation of polymeric blends containing a hydrophilic reactable component, followed by reaction of the component subsequent to membrane formation. Again, these have resulted in porous polymeric membranes with some desired properties, however, such process result in porous polymeric membranes which are generally of low permeability hi the present case the inventors have sought to find a way to hydrophilise membranes made from normally hydrophobic polymer such PVdF to enhance the range of applications in which they may be used, while at the same time, retaining or improving upon the performance properties of the membrane, such the good intrinsic resistance of hydrophobic materials to chemical, physical and mechanical degradation and more particularly, to retain or enhance the water permeability of the membrane.
It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative, particularly in terms of methods ofproduction.
DESCRIPTION OF THE INVENTION
In a first aspect, the invention provides a method of improving the permeability of porous polymeric membrane which includes a cross linkable component, said method including the step of treating said hydrophilic porous polymeric membrane with a cross linking agent.
Preferably, the porous polymeric membrane is a hydrophilic porous polymeric membrane. Preferably the cross linkable component is a hydrophilic cross linkable component. As stated, prior art examples involving crosslinking of one or more membrane components typically have permeability going down when a cross-linkable component is used. Further, the methods of the prior art usually describe depositing a cross-linkable component onto the surface of the membrane and cross-linking it rather than having it incorporated into the dope mixture, where it is cast with the other membrane forming components into a membrane. The cross-linkable and non-crosslinkable components are preferably intimately mixed.
According to a second aspect, the invention provides a method of forming a hydrophilic polymeric microfiltration or ultrafiltration membrane including: i) preparing a polymeric microfiltration or ultrafiltration membrane which contains a component which is cross-linkable; and ii) treating said polymeric microfiltration or ultrafiltration membrane with a crosslinking agent to cross-link said cross-linkable component
Preferably, the polymeric microfiltration or ultrafiltration membrane also includes a hydrophobic and/or not crosslinkable component. Preferably, the hydrophilic cross-linkable component is any hydrophilic cross linkable component capable of free radical cross linking. More preferably, the cross linkable component is capable of cross linking under oxidative conditions. Even more particularly preferred are components capable of crosslinking in the presence of hydroxyl radicals. Examples of suitable cross linkable components include monomers, oligomers, polymers and copolymers of one or more of the following: vinyl pyrrolidone, vinyl acetate, vinyl alcohol, vinyl methyl ether, vinyl ethyl ether, acrylic acid, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate propyl methacrylate, butyl methacrylate and maleic anhydride.
Especially preferred are poly(vinyl pyrrolidone), poly(vinyl acetate) or copolymers of vinyl pyrrolidone and vinyl acetate. The cross linkable component may be added at various stages in the preparation of the polymer, but are usually incorporated by addition into the polymer dope in membranes prior to casting. Alternatively, the cross linkable component may be added as a coating/lumen or quench during membrane formation. They may be added in any amount, from an amount constituting the whole of the membrane or substantially the whole of the membrane down to an amount which produces only a minimal attenuation of the hydrophilicity/hydrophobicity balance.
Preferably, the hydrophobic and/or non-cross linkable component is any polymer or copolymer of oxidation resistant material. Any polymer resistant to base attack containing one or more of the following monomers may be used: chlorotrifluoroethylene, vinyl fluoride, vinyl chloride; vinylidene fluoride/ vinylidene chloride/; hexafluoropropylene, ethylene- chlorotrifluoroethlyene, tetrafluoroethylene. Particularly preferred as a non crosslinkable component is PVdF. Chemical crosslinking is preferred. Particularly preferred as a method of cross linking is treating the polymeric ultrafiltration or micro filtration membrane with a hydroxyl radical. The hydroxyl radical may be prepared by any known source. The generation of hydroxyl radicals may, for example, be by way of an aqueous solution of Ferric chloride/hydrogen peroxide/sodium hydrogensulfate, by aqueous acidified hydrogen peroxide, by aqueous organic peroxy acids such as peracetic acid or by aqueous hydrogen peroxide under ultraviolet radiation, or by a combination of hydrogen peroxide and ozone, with or without UV radiation at any pH in the range 2-9.
Most preferred is treating the membranes with a solution of hydroxyl radicals prepared from an aqueous solution of transition metal catalyst in conjunction with hydrogen peroxide at a pH of 2-9, with or without UV radiation. Preferably the transition metal catalyst is a mixture of iron Il/iron III.
The treatment may involve soaking, filtering or recirculating to cross-link the crosslinkable compound to the polymer matrix. UV light may be used if desired.
Preferably, after crosslinking, the process also includes a step of leaching unbound excess copolymer. The excess unbound copolymer can be washed out with water or any other suitable solvent, for a predetermined time or to a predetermined level of leachate. It is possible that some cross linked material will be washed out, ie some oligomeric and lower polymeric material not fully embedded in the matrix of non-crosslinkable and/or hydrophobic polymer.
According to a third aspect, the invention provides a method of functionalising a polymeric microfiltration or ultrafiltration membrane including: i) preparing a polymeric microfiltration or ultrafiltration membrane which contains a component which is cross-linkable; ii) treating said polymeric microfiltration or ultrafiltration membrane with a hydroxyl radical to cross-link said cross-linkable component; and iii) leaching, where present, any unbound cross linked or unbound cross-linkable component.
According to a fourth aspect, the invention provides a method of increasing the permeability of a polymeric microfiltration or ultrafiltration membrane including: i) preparing a polymeric microfiltration or ultrafiltration membrane which contains a component which is cross-linkable; ii) treating said polymeric microfiltration or ultrafiltration membrane with a hydroxyl radical to cross-link said cross-linkable component; and iii) leaching, where present, any unbound cross linked or unbound cross-linkable component.
According to a fifth aspect the invention provides a porous polymeric microfiltration or ultrafiltration membrane including a cross-linked hydrophilic polymer or copolymer.
Preferably, the cross-linked hydrophilic polymer or copolymer is integrated into a matrix of a porous microfiltration or ultrafiltration membrane also includes a non cross-linked and/or hydrophobic component.
Preferably, the membranes of the present invention are asymmetric membranes, which have a large pore face and a small pore face, and a pore size gradient which runs across the membrane cross section. The membranes may be flat sheet, or more preferably, hollow fibre membranes.
In another aspect, the invention provides a hydrophilic membrane prepared according to the present invention for use in the microfiltration and ultrafiltration of water and wastewater.
In another aspect, the invention provides a hydrophilic membrane prepared according to the present invention for use as an affinity membrane. hi another aspect, the invention provides a hydrophilic membrane prepared according to the present invention for use as protein adsorption.
In another aspect, the invention provides a hydrophilic membrane prepared according to the present invention for use in processes requiring bio-compatible functionalised membranes.
The term "hydrophilic" is relative and is used in the context of a refers to compound which when added to a base membrane component render the overall membrane more hydrophilic than if the membrane did not contain that compound.
BEST METHOD OF PERFORMING THE INVENTION
As mentioned above, the present invention can be carried out upon any polymeric microfiltration or ultrafiltration membrane which contains cross linkable moieties, monomers, oligomers, polymers and copolymers which are capable of cross linking to produce a hydrophilised membrane. Membranes of the present invention possess the properties expected of hydrophihc membranes. However, unlike other hydrophilised membranes, they show an improved permeability and decreased pressure losses for filtration of any type, but in particular water filtration. This makes them suitable for applications such as filtration of surface water, ground water, secondary effluent and the like, or for use in membrane bioreactors.
Preferably, the cross linking is carried out by hydroxyl radicals generated from an aqueous solution of transition metal ions, in conjunction with hydrogen peroxide under acidic conditions. These conditions are sometimes described as producing Fenton's reagent.
Preferably the transition metal ions are iron II and/or iron III. Preferably, the acidic conditions are a pH of between about pH 2-6.
Any transition metal can be used, not just iron. Molybdenum, chromium, cobalt are also preferred. Any aqueous metal ion or complex that can easily be reduced/oxidised can be used as the catalyst system for the cleaning method of the present invention. Combinations of transition metal ions may also be used, and may be from a variety of sources, and can be supplemented with additional ions or species as necessary.
It has been found that a number of polymeric membranes, including PVdF, have a good resistance to hydroxyl radicals. This is surprising because polymeric membranes such as PVdF are not very stable with respect to ozone, and hydroxyl radicals are considered more powerful oxidising agents than ozone, for example in cleaning organics from fouled membranes. Without wishing to be bound by theory, it is possible that the reason for this may be due to the short lifetime of hydroxyl radicals.
In one preferred embodiment, the solution of hydroxyl radicals is prepared from an aqueous solution of M(n+) and/or M(n+1)+ (for example, an iron II and/or iron III system) in conjunction with hydrogen peroxide at a low pH. Starting with either M^+-* and/or M^n+1^+, an appropriate equilibrium between the two species will be reached. For instance, it is possible to start with either ferrous or ferric species, to get an identical catalyst system. Other practicalities may dictate one over the other, for instance, when the metal is iron, preferably iron II species are used to start the reaction because they tend to be more soluble than any corresponding iron III species. Thus, the possibility of undissolved iron III salts is reduced when starting from a solution of iron π.
The invention will be described with respect to iron II and iron III, but it will be understood to apply to any system where hydroxyl radicals are generated. The general scheme for preparing hydroxyl radicals by the redox catalyst/peroxide/H+ system of the present invention is as shown below. The reaction of either iron II or iron III with hydrogen peroxide is possible, generating the complementary iron species.
Fe2+ + H2O2 Fe3+ + Off +HO-
Fe3+ + H2O2 Fe2+ + OOH + H+
Overall:
2 H2 O2 H2O + HO' + OOH
The hydroxyl radical is a strong oxidant, having a relative oxidation power over twice that of chlorine, and being second only to F- in oxidative strength.
The individual redox catalyst/peroxide/H+ reagent components may be added to the cross linkable membrane together, or preferably separately, directly to the water which surrounds the fibre membranes. Typically, a concentration less than 300ppm of Fe can be used. Concentrations as low as
15-20ppm Fe are efficacious, but the reaction time to achieve the desired degree of crosslinking is longer, for example, in excess of 24hrs. Preferred concentrations are between 50-5000ppm FeSO4, and more preferably 300-1200ppm. Reaction times vary depending on the amount of cross linkable agent present and the concentration of hydroxyl radical available, as well as the temperature. Typical reaction times to achieve cross linking are from 0.5-24 hrs but more preferably 2-4hrs.
Peroxide concentrations between 100-20000ppm, more preferably between 400- lOOOOppm and more preferably 1000-5000ppm can be used. It is also preferable to have the ratio of Fe:H2O2 between 1 :4 and 1 :7.5, and more preferably between 1 :5-l :25. Preferably pH is in the range 2-6, more preferably 3-5.
A typical the redox catalyst/peroxide/H+ system of the present invention had a concentration of 0.12wt% FeSO4 at pH2, and a peroxide concentration of between 5000ppm and 9000ppm.
The H2O2 can be added all at once, however, it is usually preferred if the H2O2 is added over the period of the reaction. For example, in the case of a 4000ppm H2O2 concentration for a duration of 4 hours, H2O2 would be added at approximately lOOOppm per hour.
Sodium hydrogen sulphate (NaHSO4) can be used to control the pH. Alternatively, any acid can be used, provided that the pH is in a suitable range. Citric acid or sulfuric acid can be used, either alone or buffered with a base, for example, NaOH, to get the desired pH. In one preferred embodiment, the pH is controlled by a sulfuric/caustic combination or sulfuric/sodium hydrogen sulfate combination, hi highly preferred embodiments, pH is controlled by the use of citric acid, either alone or in combination with other species. Chloride ions can be present, e.g. in the form of FeCl3 or HCl.
The microfiltration/ultrafiltration membrane containing PVdF and uncross-linked PVP was immersed in an aqueous solution of ferric chloride/hydrogen peroxide and sodium hydrogensulfate and allowed to contact the stirred solution at room temperature for 4 hours before being removed and rinsed with distilled deionized water. The washing was continued until no further material leached out in the wash.
The crosslinkable component is preferably PVP. The crosslinkable component is preferably present in the membrane in an amount of 0.1-10wt%, more preferably 2-7wt%. It is highly preferable if the crosslinkable component is 0.1-10wt% PVP, more preferably 2-7wt% PVP.
As illustrated in the table and examples below, the only property of the membrane which is substantially affected by the method of the present invention is permeability.
Thus, it is possible to improve the permeability (flux) of the membrane without sacrificing the pore size or mechanical integrity. This is achieved by cross-linking and also some leaching of the "cross-linkable component", as explained earlier.
The following examples illustrate the difference in permeability between the unmodified The improved properties of membranes containing components cross-linked via hydroxyl radicals are illustrated in the following examples.
PVDF membranes containing a cross-linkable component were treated with solutions of lwt% H2O2 or Fenton's reagent. The Fenton's reagent had the concentration as follows:
0.12wt% FeSO4JH2O O. lwt% NaHSO4
0.9wt% H2O2 The method for treating the membranes was as follows:
1. Wash membranes in RO water ( 1 hr)
2. Immerse membranes in treatment solution for specified time 3. Rinse membranes in RO water (lhr)
4. Immerse membranes in 20wt% glycerol (aqueous)
5. Dry membranes at room temperature The results are given in Table 1. Peroxide treatment to effect crosslinking increased permeability by about 20%, with only a slight reduction in break extension.
The use of Fenton's reagent as a crosslinking agent showed that after 1 hour, a 30 % increase in permeability was obtained, with only a slight reduction in the break extension (from 179% to 169%), so the membrane was still highly flexible.
Longer treatment with Fenton's led to a loss in break extension, down to around 120%, which is nevertheless quite flexible. There was however a dramatic increase in the permeability - around a 200% increase in permeability over the untreated membrane.
There was otherwise no change in the morphology of the membranes resulting from either the Fenton' s or peroxide cross-linking procedures.
TABLE l
Figure imgf000012_0001
The following illustrates the cross-linking ability of hydroxy! radicals.
Samples of PVP K90 (10wt%) and PVP K120 (9.3wt%) were dissolved separately in RO water adjusted to pH 2 using NaHSO4. FeCl2 (0.04wt%) was added and the solution was thoroughly mixed. H2O2 (0.32wt%) was then added to the mixture, and a gel was immediately formed upon addition. This experiment was repeated with PVP K120 solutions ranging from 2.5- 20wt%, but replacing FeCl2 with FeSO4JH2O. Insoluble gel was formed in each case with the exception of 2.5wt% solution. It is believed that this concentration is too low as the sole component in a solution to form an insoluble gel. However the solution visibly increased in viscosity, suggesting some cross-linking is occurring. Membranes made according to the present invention possess improved porosity and permeability properties, increasing the ability of the membrane to filter water. However, the membranes according to the present invention retain equivalent pore size, good pH (acid and base) and oxidation (Chlorine) resistant properties of the unmodified membranes in a filtration process.
The present invention provides improved permeability or porosity without sacrificing pore size or mechanical integrity.
While the invention has been described with reference to particular embodiments, it will be understood by those skilled in the art that the inventive concept disclosed herein is not limited only to those specific embodiments disclosed.

Claims

THECLAIMSOFTHEINVENTIONAREASFOLLOWS:-
1. A method of forming a hydrophilic polymeric microfiltration or ultrafiltration membrane including the steps of: i) preparing a polymeric microfiltration or ultrafiltration membrane which contains a cross- linkable component; and ii) treating said polymeric microfiltration or ultrafiltration membrane with a crosslinking agent to cross-link said cross-linkable component.
2. A method according to claim 1 wherein the cross linkable component is a hydrophilic cross-linkable component.
3. A method according to claim 2 wherein the hydrophilic cross-linkable component is capable of free radical cross linking.
4. A method according to claim 2 wherein the hydrophilic cross-linkable component is capable of cross-linking under oxidative conditions.
5. A method according to claim 2 wherein the hydrophilic cross-linkable component is capable of cross-linking in the presence of hydroxyl radicals.
6. A method according to any one of the preceding claims wherein the cross linkable component is selected from the group consisting of monomers, oligomers, polymers and copolymers of one or more of the following: vinyl pyrrolidone, vinyl acetate, vinyl alcohol, vinyl methyl ether, vinyl ethyl ether, acrylic acid, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate propyl methacrylate, butyl methacrylate and maleic anhydride.
7. A method according to any one of the preceding claims wherein the cross linkable component is selected from poly( vinyl pyrrolidone), poly(vinyl acetate) or copolymers of vinyl pyrrolidone and vinyl acetate.
8. A method according to any one of the preceding claims wherein the cross linkable component is incorporated into the polymer dope prior to casting as a porous polymeric microfiltration or ultrafiltration membrane, and the porous polymeric microfiltration or ultrafiltration membrane is then treated with a cross-linking agent to cross-link said cross- linkable component.
9. A method according to any one of claims 1 to 8 wherein a porous polymeric microfiltration or ultrafiltration membrane is treated with a coating, a lumen forming fluid or a quench containing a cross-linkable component during membrane formation, and then treated with a cross-linking agent to cross-link said cross-linkable component.
10. A method according to any one of the preceding claims wherein the cross-linkable component is added in an amount which produces only a minimal attenuation of the hydrophilicity/hydrophobicity balance of the membrane.
11. A method according to any one of the preceding claims wherein the polymeric microfiltration or ultrafiltration membrane includes a hydrophobic component.
12. A method according to any one of the preceding claims wherein the polymeric microfiltration or ultrafiltration membrane includes a non-crosslinkable component.
13. A method according to any one of claims 11 or 12 wherein the hydrophobic and/or non- cross linkable component is a polymer or copolymer of oxidation resistant material.
14. A method according to any one of claims 11 to 13 wherein the hydrophobic and/or non- cross linkable component is a polymer or copolymer resistant to base attack.
15. A method according to any one of claims 11 to 14 wherein the hydrophobic and/or non- cross linkable component contains one or more of the following monomers: chlorotrifluoroethylene, vinyl fluoride, vinyl chloride; vinylidene fluoride/ vinylidene chloride/; hexafluoropropylene, ethylene-chlorotrifluoroethlyene, tetrafluoroethylene.
16. A method according to claim 15 wherein the hydrophobic and/or non-cross linkable component is PVdF.
17. A method according to any one of the preceding claims wherein cross linking is by treating the polymeric ultrafiltration or microfiltration membrane with a hydroxyl radical.
18. A method according to claim 17 wherein the hydroxyl radical is generated by of an aqueous solution of Ferric chloride/hydrogen peroxide/sodium hydrogensulfate.
19. A method according to claim 17 wherein the hydroxyl radical is generated by aqueous acidified hydrogen peroxide.
20. A method according to claim 17 wherein the hydroxyl radical is generated by an aqueous organic peroxy acid.
21. A method according to claim 17 wherein the hydroxyl radical is generated by peracetic acid.
22. A method according to claim 17 wherein the hydroxyl radical is generated by aqueous hydrogen peroxide under ultraviolet radiation.
23. A method according to claim 17 wherein the hydroxyl radicals are generated by a combination of hydrogen peroxide and ozone, with or without UV radiation at any pH in the range 2-9.
24. A method according to claim 17 including treating the membranes with a solution of hydroxyl radicals prepared from an aqueous solution of transition metal catalyst in conjunction with hydrogen peroxide at a pH of 2-9.
25. A method according to claim 24 further comprising applying UV radiation.
26. A method according to claim 24 wherein the transition metal catalyst is a mixture of iron II/iron III.
27. A method according to claim 24 involving one or more of soaking, filtering or recirculating to cross-link the crosslinkable compound to the polymer matrix.
28. A method according to any one of the preceding claims further including, after crosslinking, the step of leaching unbound excess copolymer, where present, from the porous polymeric microfiltration or ultrafiltration membrane.
29. A method according to claim 28 wherein the excess unbound copolymer, where present, is leached with water or any other suitable solvent, for a predetermined time or to a predetermined level of leachate.
30. A method of functionalising a polymeric microfiltration or ultrafiltration membrane including: i) preparing a polymeric microfiltration or ultrafiltration membrane which contains a component which is cross-linkable; ii) treating said polymeric microfiltration or ultrafiltration membrane with a hydroxyl radical to cross-link said cross-linkable component; and iii) leaching, where present, any unbound cross linked or unbound cross-linkable component.
31. A method according to claim 30 wherein polymeric microfiltration or ultrafiltration membrane which contains a cross linkable component is prepared from a polymer dope comprising a cross-linkable component
32. A method according to claim 29 wherein polymeric microfiltration or ultrafiltration membrane which contains a cross linkable component is prepared by treating a cast polymeric microfiltration or ultrafiltration membrane with a cross-linkable component
33. A method of increasing the permeability of a polymeric microfiltration or ultrafiltration membrane including: i) preparing a polymeric microfiltration or ultrafiltration membrane which contains a component which is cross-linkable; ii) treating said polymeric microfiltration or ultrafiltration membrane with a hydroxyl radical to cross-link said cross-linkable component; and iii) leaching, where present, any unbound cross linked or unbound cross-linkable component.
34. A method according to claim 33 wherein polymeric microfiltration or ultrafiltration membrane which contains a cross linkable component is prepared from a polymer dope comprising a cross-linkable component
35. A method according to claim 34 wherein polymeric microfiltration or ultrafiltration membrane which contains a cross linkable component is prepared by treating a cast polymeric microfiltration or ultrafiltration membrane with a cross-linkable component
36. A porous polymeric microfiltration or ultrafiltration membrane including a cross-linked hydrophilic polymer or copolymer.
37. A porous polymeric microfiltration or ultrafiltration membrane according to claim 36 wherein the cross-linked hydrophilic polymer or copolymer is integrated into a matrix of a porous microfiltration or ultrafiltration membrane also includes a non cross-linked and/or hydrophobic component.
38. A porous polymeric microfiltration or ultrafiltration membrane according to claim 36 or 37 which is an asymmetric membrane, having a large pore face and a small pore face, and a pore size gradient which runs across the membrane cross section.
39. A porous polymeric microfiltration or ultrafiltration membrane according to any one of claims 36 to 38 in the form of a flat sheet.
40. A porous polymeric microfiltration or ultrafiltration membrane according to any one of claim 36 to 38 in the form of hollow fibre membranes.
41. A porous polymeric microfiltration or ultrafiltration membrane according to any one of claims 36 to 40 for use in the microfiltration and ultrafiltration of water and wastewater.
42. A porous polymeric microfiltration or ultrafiltration membrane according to any one of claims 36 to 40 for use as an affinity membrane.
43. A porous polymeric microfiltration or ultrafiltration membrane according to any one of claims 36 to 40 for use as protein adsorption.
44. A porous polymeric microfiltration or ultrafiltration membrane according to any one of claims 36 to 40 for use in processes requiring bio-compatible functionalised membranes.
PCT/AU2005/001820 2004-12-03 2005-12-02 Membrane post treatment WO2006058384A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP05813412A EP1827664B1 (en) 2004-12-03 2005-12-02 Membrane post treatment
AU2005312347A AU2005312347B2 (en) 2004-12-03 2005-12-02 Membrane post treatment
JP2007543655A JP2008521598A (en) 2004-12-03 2005-12-02 Membrane post-treatment
AT05813412T ATE511915T1 (en) 2004-12-03 2005-12-02 MEMBRANE AFTERTREATMENT
US11/720,700 US7867417B2 (en) 2004-12-03 2005-12-02 Membrane post treatment
NZ555302A NZ555302A (en) 2004-12-03 2005-12-02 Post treatment of microfiltration membranes with hyfrogen peroxide and a transition metal catalyst
CA002588675A CA2588675A1 (en) 2004-12-03 2005-12-02 Membrane post treatment
CN2005800436397A CN101084057B (en) 2004-12-03 2005-12-02 Membrane post treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2004906947 2004-12-03
AU2004906947A AU2004906947A0 (en) 2004-12-03 Membrane post treatment

Publications (1)

Publication Number Publication Date
WO2006058384A1 true WO2006058384A1 (en) 2006-06-08

Family

ID=36564686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2005/001820 WO2006058384A1 (en) 2004-12-03 2005-12-02 Membrane post treatment

Country Status (11)

Country Link
US (1) US7867417B2 (en)
EP (1) EP1827664B1 (en)
JP (1) JP2008521598A (en)
KR (1) KR20070089981A (en)
CN (1) CN101084057B (en)
AT (1) ATE511915T1 (en)
CA (1) CA2588675A1 (en)
ES (1) ES2365928T3 (en)
MY (1) MY141919A (en)
NZ (1) NZ555302A (en)
WO (1) WO2006058384A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1893676A1 (en) * 2005-06-20 2008-03-05 Siemens Water Technologies Corp. Cross linking treatment of polymer membranes
US7867417B2 (en) 2004-12-03 2011-01-11 Siemens Water Technologies Corp. Membrane post treatment
US8057574B2 (en) 2003-07-08 2011-11-15 Siemens Industry, Inc. Membrane post treatment
AU2006261581B2 (en) * 2005-06-20 2012-03-15 Evoqua Water Technologies Llc Cross linking treatment of polymer membranes
US8524794B2 (en) 2004-07-05 2013-09-03 Siemens Industry, Inc. Hydrophilic membranes
CN104645837A (en) * 2013-11-25 2015-05-27 乐天化学株式会社 Polymer resin composition for preparing hollow fiber membrane, preparation method of hollow fiber membrane, and hollow fiber membrane
AU2013273670B2 (en) * 2009-12-14 2015-11-05 3M Innovative Properties Company Microperforated polymeric film and methods of making and using the same
US9238203B2 (en) 2009-12-14 2016-01-19 3M Innovative Properties Company Microperforated polymeric film and methods of making and using the same
US9630151B2 (en) 2015-03-31 2017-04-25 Pall Corporation Hydrophilically modified fluorinated membrane (V)
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101068612B (en) * 2004-10-13 2010-12-15 3M创新有限公司 Method for preparing hydrophilic polyethersulfone membrane
EP2332639A1 (en) * 2008-09-19 2011-06-15 Toray Industries, Inc. Separation membrane, and method for producing same
CN101966433B (en) * 2010-09-19 2012-09-26 大连先路科技发展有限公司 Hydrophilic modification method of ultrafiltration membrane
US9242876B2 (en) 2011-04-15 2016-01-26 William Marsh Rice University Methods, systems and membranes for separation of organic compounds from liquid samples
CN102240510B (en) * 2011-05-18 2013-10-09 浙江大学 Method for preparing super-hydrophilic polyvinylidene fluoride membrane
EP2529826A1 (en) * 2011-05-31 2012-12-05 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Membrane filtration system comprising a deformable side wall
US9174173B2 (en) 2011-09-09 2015-11-03 University Of Kentucky Research Foundation Chemical processing cell with nanostructured membranes
WO2015146469A1 (en) * 2014-03-26 2015-10-01 株式会社クラレ Hollow fiber membrane, and method for producing hollow fiber membrane
CN105133307A (en) * 2015-09-09 2015-12-09 长春工业大学 Method for enhancing physical properties of electrostatic spinning nanofiber membrane by chemical crosslinking
CA3054030A1 (en) 2017-03-06 2018-09-13 Tangent Company Llc Home sewage treatment system
US10646829B2 (en) 2017-06-22 2020-05-12 Teledyne Scientific & Imaging, Llc High flux, chlorine resistant coating for sulfate removal membranes

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0261734A1 (en) * 1986-09-23 1988-03-30 X-Flow B.V. A process for the preparation of hydrophilic membranes and such membranes
EP0419396A1 (en) * 1989-09-05 1991-03-27 Dow Danmark A/S Hydrophilic membrane for use in ultrafiltration and method of preparation
DE4007383A1 (en) * 1990-03-08 1991-09-12 Seitz Filter Werke Hydraulic micro:filtration membrane of polysulphone prepn. - by casting film from soln. of polysulphone contg. polyvinyl-pyrrolidone then crosslinking latter in alkali bath
US5049275A (en) 1990-06-15 1991-09-17 Hoechst Celanese Corp. Modified microporous structures
JPH05131124A (en) * 1991-11-11 1993-05-28 Nitto Denko Corp Production of hydrophilic fluoroplastic porous membrane
EP0550798A1 (en) * 1991-10-04 1993-07-14 Kawasumi Laboratories, Inc. Polysulfone hollow fibre membrane
US5354587A (en) * 1993-11-15 1994-10-11 W. L. Gore & Associates, Inc. Hydrophilic compositions with increased thermal and solvent resistance
WO2000043115A1 (en) * 1999-01-21 2000-07-27 Ebara Corporation Ethylene-vinyl alcohol hollow fiber membranes
US6113794A (en) * 1999-01-25 2000-09-05 Kumar; Ashwani Composite solvent resistant nanofiltration membranes
KR20020031017A (en) * 2000-10-21 2002-04-26 김우영 An automatic or manual opening and closing ventilating fan
WO2002038256A1 (en) * 2000-11-13 2002-05-16 Usf Filtration And Separations Group Inc. Modified membranes
GB2390042A (en) * 2002-06-24 2003-12-31 Saehan Ind Inc Membrane comprising cross-linked polyfunctional epoxy compound
FR2850297A1 (en) * 2003-01-29 2004-07-30 Aquasource Production of membranes for nanofiltration, ultrafiltration or microfiltration modules comprises persulfate treatment of a membrane comprising a hydrophobic polymer blended or coated with a hydrophilic polymer
US20040195172A1 (en) * 2003-04-01 2004-10-07 Yeh Eshan B. Hydrophilic membrane and process for making the same
WO2005002712A1 (en) * 2003-07-08 2005-01-13 U.S. Filter Wastewater Group, Inc. Membrane post treatment

Family Cites Families (292)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1994135A (en) * 1933-12-18 1935-03-12 John Schrott Diaper
US2732357A (en) 1949-11-25 1956-01-24 Suspensions of polymeric chlorotri-
US2658045A (en) 1951-03-05 1953-11-03 Gen Aniline & Film Corp Polyvinyl pyrrolidone gels and process of producing the same
BE608328A (en) * 1960-09-19
NL137371C (en) 1963-08-02
US3556305A (en) * 1968-03-28 1971-01-19 Amicon Corp Composite membrane and process for making same
US3625827A (en) 1968-09-27 1971-12-07 Monsanto Co Water-soluble polymer-enzyme products
US3693406A (en) 1970-01-26 1972-09-26 Air Intake Renu Method for inspecting filters
US3708071A (en) * 1970-08-05 1973-01-02 Abcor Inc Hollow fiber membrane device and method of fabricating same
US3744642A (en) * 1970-12-30 1973-07-10 Westinghouse Electric Corp Interface condensation desalination membranes
US3654147A (en) * 1971-03-16 1972-04-04 Biospherics Inc Nitrate removal from sewage
US3864289A (en) 1971-04-07 1975-02-04 Koratec Inc Preparation of cellulosic semi-permeable membranes
US3728256A (en) * 1971-06-22 1973-04-17 Abcor Inc Crossflow capillary dialyzer
FR2236537B1 (en) 1973-07-11 1977-12-23 Rhone Poulenc Ind
US3876738A (en) * 1973-07-18 1975-04-08 Amf Inc Process for producing microporous films and products
US3992301A (en) 1973-11-19 1976-11-16 Raypak, Inc. Automatic flushing system for membrane separation machines such as reverse osmosis machines
US3968192A (en) 1974-04-19 1976-07-06 The Dow Chemical Company Method of repairing leaky hollow fiber permeability separatory devices
IT1040274B (en) 1975-07-30 1979-12-20 Consiglio Nazionale Ricerche PROCEDURE FOR PREPARATION OF ANISOTROPIC MEMBRANES SUPPORTED FOR REVERSE OSMOSIS BASED ON SYNTHETIC POLYAMIDES
US4192750A (en) * 1976-08-09 1980-03-11 Massey-Ferguson Inc. Stackable filter head unit
US4247498A (en) * 1976-08-30 1981-01-27 Akzona Incorporated Methods for making microporous products
US4203848A (en) * 1977-05-25 1980-05-20 Millipore Corporation Processes of making a porous membrane material from polyvinylidene fluoride, and products
US4519909A (en) * 1977-07-11 1985-05-28 Akzona Incorporated Microporous products
US4193780A (en) * 1978-03-20 1980-03-18 Industrial Air, Inc. Air filter construction
MX152562A (en) 1978-05-15 1985-08-29 Pall Corp IMPROVEMENTS TO THE PROCEDURE FOR PREPARING ALCOHOL INSOLUBLE, HYDROPHILIC AND UNCOATED POLYAMIDE RESIN MEMBRANES
JPS5535910A (en) 1978-09-06 1980-03-13 Teijin Ltd Permselectivity composite membrane and preparation thereof
US4188817A (en) * 1978-10-04 1980-02-19 Standard Oil Company (Indiana) Method for detecting membrane leakage
JPS5554004A (en) 1978-10-18 1980-04-21 Teijin Ltd Selective permeable membrane and its manufacturing
BE874961A (en) * 1979-03-20 1979-09-20 Studiecentrum Kernenergi PROCESS FOR PREPARING A MEMBRANE, THEREFORE PREPARED MEMBRANE, ELECTROCHEMICAL CELL WITH SUCH MEMBRANE AND USING SUCH ELECTROchemical cell
US4218324A (en) 1979-05-03 1980-08-19 Textron, Inc. Filter element having removable filter media member
US4248648A (en) * 1979-07-18 1981-02-03 Baxter Travenol Laboratories, Inc. Method of repairing leaks in a hollow capillary fiber diffusion device
JPS5695304A (en) 1979-12-28 1981-08-01 Teijin Ltd Perm selective composite membrane and its production
US4629563B1 (en) 1980-03-14 1997-06-03 Memtec North America Asymmetric membranes
DE3026718A1 (en) 1980-07-15 1982-02-04 Akzo Gmbh, 5600 Wuppertal HOLLOW FIBER MEMBRANE FOR PLASMA SEPARATION
JPS5770144A (en) * 1980-10-17 1982-04-30 Asahi Glass Co Ltd Organic solution of fluorinated copolymer containing carboxyl group
US4384474A (en) * 1980-10-30 1983-05-24 Amf Incorporated Method and apparatus for testing and using membrane filters in an on site of use housing
US4354443A (en) 1980-11-10 1982-10-19 Dason International Products Inc. Afghan construction and method
JPS57102202A (en) * 1980-12-18 1982-06-25 Toyobo Co Ltd Fluid separator
JPS6059933B2 (en) 1981-05-22 1985-12-27 工業技術院長 Polymer membrane with maleic anhydride residues
US4702840A (en) 1982-02-05 1987-10-27 Pall Corporation Charge modified polyamide membrane
US4707266A (en) 1982-02-05 1987-11-17 Pall Corporation Polyamide membrane with controlled surface properties
US4812235A (en) * 1982-03-29 1989-03-14 Hr Textron, Inc. Filter element assembly replaceable mesh pack
US4540490A (en) 1982-04-23 1985-09-10 Jgc Corporation Apparatus for filtration of a suspension
US4431545A (en) * 1982-05-07 1984-02-14 Pall Corporation Microporous filter system and process
WO1983003984A1 (en) 1982-05-13 1983-11-24 Gerhard Kunz Method for the treatment of a liquid phase, particularly method for desalting aqueous solutions, as well as device for its implementation
JPS5952507A (en) * 1982-06-03 1984-03-27 デ−・エル・エム・ドクトル・ミユラ−・アクチエンゲゼルシヤフト Apparatus for continuously concentrating suspension
JPS5875301A (en) 1982-07-09 1983-05-07 Junkosha Co Ltd Transmission line
GB2132366B (en) 1982-12-27 1987-04-08 Brunswick Corp Method and device for testing the permeability of membrane filters
CA1221645A (en) 1983-02-28 1987-05-12 Yoshihiro Okano Filtration apparatus using hollow fiber-membrane
GB8313635D0 (en) * 1983-05-17 1983-06-22 Whatman Reeve Angel Plc Porosimeter
US4636296A (en) * 1983-08-18 1987-01-13 Gerhard Kunz Process and apparatus for treatment of fluids, particularly desalinization of aqueous solutions
DE3333834A1 (en) 1983-09-20 1985-04-04 Herberts Gmbh, 5600 Wuppertal METHOD FOR THE PRODUCTION OF VARNISH RESIN AND ELECTRIC DIVING VARNISH COATING AGENT THEREOF
US4650586A (en) * 1983-09-26 1987-03-17 Kinetico, Inc. Fluid treatment system
US4756875A (en) 1983-09-29 1988-07-12 Kabushiki Kaisha Toshiba Apparatus for filtering water containing radioactive substances in nuclear power plants
EP0160014B1 (en) 1983-09-30 1993-01-07 Memtec Limited Cleaning of filters
US4888115A (en) 1983-12-29 1989-12-19 Cuno, Incorporated Cross-flow filtration
US4609465A (en) 1984-05-21 1986-09-02 Pall Corporation Filter cartridge with a connector seal
DE3568946D1 (en) 1984-07-09 1989-04-27 Millipore Corp Improved electrodeionization apparatus and method
JPS6125903U (en) * 1984-07-24 1986-02-15 株式会社 伊藤鉄工所 filtration equipment
DE3428307A1 (en) 1984-08-01 1986-02-13 Filterwerk Mann & Hummel Gmbh, 7140 Ludwigsburg DISPLAY DEVICE FOR THE POLLUTION LEVEL OF SUCTION AIR FILTERS
US5192478A (en) * 1984-10-22 1993-03-09 The Dow Chemical Company Method of forming tubesheet for hollow fibers
US4618533A (en) * 1984-11-30 1986-10-21 Millipore Corporation Porous membrane having hydrophilic surface and process
US5198162A (en) * 1984-12-19 1993-03-30 Scimat Limited Microporous films
GB2168981B (en) 1984-12-27 1988-07-06 Asahi Chemical Ind Porous fluorine resin membrane and process for preparation thereof
US4931186A (en) 1985-03-05 1990-06-05 Memtec Limited Concentration of solids in a suspension
US5024762A (en) 1985-03-05 1991-06-18 Memtec Limited Concentration of solids in a suspension
US4642182A (en) * 1985-03-07 1987-02-10 Mordeki Drori Multiple-disc type filter with extensible support
WO1986005705A1 (en) * 1985-03-28 1986-10-09 Memtec Limited Cooling hollow fibre cross-flow separators
US4704324A (en) * 1985-04-03 1987-11-03 The Dow Chemical Company Semi-permeable membranes prepared via reaction of cationic groups with nucleophilic groups
ATE53510T1 (en) 1985-04-10 1990-06-15 Memtec Ltd VARIABLE VOLUME FILTER OR CONCENTRATOR.
CA1247329A (en) 1985-05-06 1988-12-28 Craig J. Brown Fluid treatment process and apparatus
JPS61274709A (en) 1985-05-29 1986-12-04 Ebara Corp Hollow yarn membrane filter apparatus
US4660411A (en) * 1985-05-31 1987-04-28 Reid Philip L Apparatus for measuring transmission of volatile substances through films
JPS6238205A (en) * 1985-08-12 1987-02-19 Daicel Chem Ind Ltd Semi-permeable membrane for separation
US4656865A (en) * 1985-09-09 1987-04-14 The Dow Chemical Company System for analyzing permeation of a gas or vapor through a film or membrane
US4876006A (en) 1985-10-08 1989-10-24 Ebara Corporation Hollow fiber filter device
DE3546091A1 (en) * 1985-12-24 1987-07-02 Kernforschungsz Karlsruhe CROSS-CURRENT MICROFILTER
US4779448A (en) 1986-01-28 1988-10-25 Donaldson Company, Inc. Photoelectric bubble detector apparatus and method
JPH0742861B2 (en) 1986-03-10 1995-05-15 ヤマハ発動機株式会社 Internal combustion engine intake system
US4774132A (en) 1986-05-01 1988-09-27 Pall Corporation Polyvinylidene difluoride structure
DE3617724A1 (en) * 1986-05-27 1987-12-03 Akzo Gmbh METHOD FOR DETERMINING THE BLOW POINT OR THE BIGGEST PORE OF MEMBRANES OR FILTER MATERIALS
FR2600265B1 (en) * 1986-06-20 1991-09-06 Rhone Poulenc Rech DRY AND HYDROPHILIC SEMI-PERMEABLE MEMBRANES BASED ON VINYLIDENE POLYFLUORIDE
US4670145A (en) 1986-07-08 1987-06-02 E. I. Du Pont De Nemours And Company Multiple bundle fluid separation apparatus
ES2014516A6 (en) 1986-07-11 1990-07-16 Mentec Ltd Cleaning of filters.
JPH01501046A (en) * 1986-09-04 1989-04-13 メムテック・リミテッド How to clean hollow fiber filters
US4876012A (en) 1986-09-12 1989-10-24 Memtec Limited Hollow fibre filter cartridge and header
US5094750A (en) * 1986-09-12 1992-03-10 Memtec Limited Hollow fibre filter cartridge and header
DE3636583A1 (en) 1986-10-28 1988-05-05 Draegerwerk Ag METHOD FOR PRODUCING A HOLLOW FIBER FABRIC EXCHANGE MODULE AND MODULE PRODUCED BY THIS METHOD
US5019260A (en) 1986-12-23 1991-05-28 Pall Corporation Filtration media with low protein adsorbability
US4846970A (en) 1987-06-22 1989-07-11 Osmonics, Inc. Cross-flow filtration membrane test unit
WO1989000879A1 (en) * 1987-07-30 1989-02-09 Toray Industries, Inc. Porous polymetrafluoroethylene membrane, separating apparatus using same, and process for their production
US4784771A (en) 1987-08-03 1988-11-15 Environmental Water Technology, Inc. Method and apparatus for purifying fluids
JPH01144409A (en) 1987-09-18 1989-06-06 Pennwalt Corp Hydrophylic sequence copolymer of vinylidene fluoride and n-alkylacrylamide and its production
US5221478A (en) 1988-02-05 1993-06-22 The Dow Chemical Company Chromatographic separation using ion-exchange resins
US4904426A (en) * 1988-03-31 1990-02-27 The Dow Chemical Company Process for the production of fibers from poly(etheretherketone)-type polymers
US5147553A (en) 1988-05-04 1992-09-15 Ionics, Incorporated Selectively permeable barriers
US4886601A (en) 1988-05-31 1989-12-12 Japan Organo Co., Ltd. Column filter using bundles of long fibers
US5075065A (en) 1988-08-01 1991-12-24 Chemical Fabrics Corporation Method for manufacturing of cast films at high productivity
US5043113A (en) 1988-08-05 1991-08-27 Hoechst Celanese Corp. Process for formation of halogenated polymeric microporous membranes having improved strength properties
DE3829766A1 (en) 1988-09-01 1990-03-22 Akzo Gmbh METHOD FOR PRODUCING MEMBRANES
US4963304A (en) 1988-09-26 1990-10-16 The Dow Chemical Company Process for preparing microporous membranes
US4999038A (en) * 1989-02-07 1991-03-12 Lundberg Bo E H Filter unit
DE3904544A1 (en) 1989-02-15 1990-08-16 Fraunhofer Ges Forschung POLYMINE MEMBRANES BASED ON POLYVINYLIDENE FLUORIDE, METHOD FOR THE PRODUCTION AND USE THEREOF
US5032282A (en) 1989-04-14 1991-07-16 Aligena Ag Solvent-stable semipermeable composite membranes
NL8901090A (en) 1989-04-28 1990-11-16 X Flow Bv METHOD FOR MANUFACTURING A MICROPOROUS MEMBRANE AND SUCH MEMBRANE
US5005430A (en) * 1989-05-16 1991-04-09 Electric Power Research Institute, Inc. Automated membrane filter sampler
US5138870A (en) 1989-07-10 1992-08-18 Lyssy Georges H Apparatus for measuring water vapor permeability through sheet materials
DE3923128A1 (en) 1989-07-13 1991-01-24 Akzo Gmbh FLAX OR CAPILLARY MEMBRANE BASED ON A HOMOGENEOUS MIXTURE OF POLYVINYLIDE FLUORIDE AND OF A SECOND, BY CHEMICAL IMPROVEMENT, HYDROPHILIBLABLE POLYMERS
US5015275A (en) * 1989-07-14 1991-05-14 The Dow Chemical Company Isotropic microporous syndiotactic polystyrene membranes and processes for preparing the same
DE3926059C2 (en) 1989-08-07 1998-01-29 Basf Ag Phosphonomethylated polyvinylamines, process for their preparation and their use
DE69029850D1 (en) * 1989-09-29 1997-03-13 Memtec Ltd COLLECTION LINE FOR FILTER CARTRIDGES
US5227063A (en) 1989-10-03 1993-07-13 Zenon Environmental Inc. Tubular membrane module
US5158721A (en) 1989-11-30 1992-10-27 Millipore Corporation Porous membrane formed from interpenetrating polymer network having hydrophilic surface
US5079272A (en) * 1989-11-30 1992-01-07 Millipore Corporation Porous membrane formed from interpenetrating polymer network having hydrophilic surface
US5066375A (en) 1990-03-19 1991-11-19 Ionics, Incorporated Introducing and removing ion-exchange and other particulates from an assembled electrodeionization stack
ES2126571T3 (en) * 1990-04-20 1999-04-01 Usf Filtration Limited MICROPOROUS MODULAR FILTER ASSEMBLIES.
US5017292A (en) * 1990-05-10 1991-05-21 Millipore Corporation Membrane, process and system for isolating virus from solution
US5364527A (en) 1990-06-20 1994-11-15 Heinz Zimmermann Apparatus and process for treating water
DE4117281C2 (en) 1990-06-29 1996-02-22 Gore Enterprise Holdings Inc Hydrophilized, microporous membrane made of polytetrafluoroethylene and process for its production
US5104546A (en) * 1990-07-03 1992-04-14 Aluminum Company Of America Pyrogens separations by ceramic ultrafiltration
US5639373A (en) 1995-08-11 1997-06-17 Zenon Environmental Inc. Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US5104535A (en) * 1990-08-17 1992-04-14 Zenon Environmental, Inc. Frameless array of hollow fiber membranes and module containing a stack of arrays
US5182019A (en) * 1990-08-17 1993-01-26 Zenon Environmental Inc. Cartridge of hybrid frameless arrays of hollow fiber membranes and module containing an assembly of cartridges
US5248424A (en) 1990-08-17 1993-09-28 Zenon Environmental Inc. Frameless array of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
JP2904564B2 (en) * 1990-08-31 1999-06-14 オルガノ株式会社 Method of scrubbing filtration tower using hollow fiber membrane
FR2666245B1 (en) 1990-08-31 1992-10-23 Lyonnaise Eaux METHOD FOR CONTROLLING THE OPERATING MODES OF AN AUTOMATIC WATER FILTRATION APPARATUS ON TUBULAR MEMBRANES.
JP2858913B2 (en) 1990-09-26 1999-02-17 オルガノ株式会社 Filtration method using hollow fiber membrane
USH1045H (en) * 1990-11-19 1992-05-05 The United States Of America As Represented By The Secretary Of The Army Air bubble leak detection test device
US5069065A (en) 1991-01-16 1991-12-03 Mobil Oil Corporation Method for measuring wettability of porous rock
GB2253572B (en) 1991-02-11 1994-12-14 Aljac Engineering Limited Flow device in fluid circuits
DE59209198D1 (en) * 1991-03-06 1998-03-26 Sartorius Gmbh METHOD FOR THE SURFACE MODIFICATION OF MOLDED BODIES DESIGNED AS A MICROPOROUS MEMBRANE, MOLDED BODIES PRODUCED THEREFORE AND THE USE THEREOF FOR ADSORPTIVE FABRIC SEPARATION
DK0510328T3 (en) * 1991-03-07 1996-02-05 Kubota Kk Apparatus for treating activated sludge
FR2674448B1 (en) 1991-03-26 1994-03-25 Dumez Lyonnaise Eaux METHOD FOR CLEANING MESOPOROUS TUBULAR MEMBRANES OF ULTRAFILTRATION.
DE4113420A1 (en) 1991-04-25 1992-10-29 Bayer Ag Hollow polyacrylonitrile fibres, useful for membrane processes - mfd. by dry-wet or wet spinning from special spinning solns. contg. PAN and non-solvent etc., with simultaneous extrusion of core fluid
DE4117422C1 (en) 1991-05-28 1992-11-12 Willi Prof. Dr.-Ing. 7432 Bad Urach De Dettinger Monitoring contamination level of filter, partic. for hydraulic fluids - in which signal is produced which correlates with quotient of two pressure differences and evaluating device produces signal to change filter when quotient reaches given value
DE4119040C2 (en) 1991-06-10 1997-01-02 Pall Corp Method and device for testing the operating state of filter elements
US5211823A (en) 1991-06-19 1993-05-18 Millipore Corporation Process for purifying resins utilizing bipolar interface
US5137633A (en) 1991-06-26 1992-08-11 Millipore Corporation Hydrophobic membrane having hydrophilic and charged surface and process
AU671803B2 (en) 1991-08-07 1996-09-12 Siemens Industry, Inc. Concentration of solids in a suspension using hollow fibre membranes
US5135663A (en) 1991-10-18 1992-08-04 Loctite Corporation Method of treating (meth)acrylic monomer-containing wastewater
US5137631A (en) 1991-10-22 1992-08-11 E. I. Du Pont De Nemours And Company Multiple bundle permeator
WO1993013489A1 (en) 1991-12-24 1993-07-08 Sierra Semiconductor Corporation An anti-aliasing method for polynomial curves using integer arithmetics
US5198116A (en) * 1992-02-10 1993-03-30 D.W. Walker & Associates Method and apparatus for measuring the fouling potential of membrane system feeds
DE69316325T2 (en) * 1992-02-12 1998-05-28 Mitsubishi Rayon Co HOLLOW FIBER MEMBRANE MODULE
US5411663A (en) 1992-03-20 1995-05-02 Micron Separations, Inc. Alcohol-insoluble nylon microporous membranes
EP0592066B1 (en) 1992-05-01 1997-09-03 Memtec Japan Limited Apparatus for testing membrane filter integrity
DE69305742T2 (en) 1992-05-18 1997-04-10 Minntech Corp HOLLOW FIBER FILTER CARTRIDGE AND METHOD FOR THE PRODUCTION THEREOF
DE4217335C2 (en) 1992-05-26 1996-01-18 Seitz Filter Werke Hydrophilic membrane and process for its manufacture
US5269084A (en) 1992-07-07 1993-12-14 Saxon Incorporated Photographic greeting card
EP0581168B1 (en) * 1992-07-22 1996-10-02 Mitsubishi Rayon Co., Ltd. Hydrophobic porous membranes, process for the manufacture thereof and their use
CA2100643A1 (en) * 1992-08-14 1994-02-15 Guido Sartori Fluorinated polyolefin membranes for aromatics/saturates separation
US5275766A (en) * 1992-10-30 1994-01-04 Corning Incorporate Method for making semi-permeable polymer membranes
ES2149218T3 (en) 1992-11-02 2000-11-01 Usf Filtration Ltd TEST SYSTEM FOR HOLLOW FIBER MODULES.
US5320760A (en) 1992-12-07 1994-06-14 E. I. Du Pont De Nemours And Company Method of determining filter pluggage by measuring pressures
US5288324A (en) * 1992-12-18 1994-02-22 Shaneyfelt Jack L Multi-color powder coat paint recovery apparatus
US5401401A (en) * 1993-01-13 1995-03-28 Aquaria Inc. Hang on tank canister filter
US5543465A (en) 1993-03-19 1996-08-06 Gambro Dialysatoren Gmbh & Co. Process for the production of hydrophilic membranes
US5389260A (en) * 1993-04-02 1995-02-14 Clack Corporation Brine seal for tubular filter
US5361625A (en) 1993-04-29 1994-11-08 Ylvisaker Jon A Method and device for the measurement of barrier properties of films against gases
US5297420A (en) * 1993-05-19 1994-03-29 Mobil Oil Corporation Apparatus and method for measuring relative permeability and capillary pressure of porous rock
FR2705734B1 (en) 1993-05-25 1995-06-30 Snecma Method and device for improving the safety of fluid filters.
US5419816A (en) 1993-10-27 1995-05-30 Halox Technologies Corporation Electrolytic process and apparatus for the controlled oxidation of inorganic and organic species in aqueous solutions
JP3586873B2 (en) * 1993-10-29 2004-11-10 株式会社パイオラックス Guide wire and its manufacturing method
FR2713220B1 (en) * 1993-11-30 1996-03-08 Omnium Traitement Valorisa Installation of water purification with submerged filter membranes.
US5403479A (en) * 1993-12-20 1995-04-04 Zenon Environmental Inc. In situ cleaning system for fouled membranes
JP3160140B2 (en) 1993-12-22 2001-04-23 オルガノ株式会社 Filtration device using hollow fiber module
JPH07313850A (en) 1994-05-30 1995-12-05 Kubota Corp Method for backward washing immersion-type ceramic membrane separator
US5491023A (en) * 1994-06-10 1996-02-13 Mobil Oil Corporation Film composition
US5531900A (en) 1994-07-07 1996-07-02 University Of Arizona Modification of polyvinylidene fluoride membrane and method of filtering
CN1077804C (en) 1994-07-28 2002-01-16 米利波尔公司 Porous composite membrane and making process
US5451317A (en) 1994-09-08 1995-09-19 Kubota Corporation Solid-liquid separator
AUPM800694A0 (en) 1994-09-09 1994-10-06 Memtec Limited Cleaning of hollow fibre membranes
US5470469A (en) 1994-09-16 1995-11-28 E. I. Du Pont De Nemours And Company Hollow fiber cartridge
FR2726568B1 (en) 1994-11-08 1996-12-06 Atochem Elf Sa POLYMER MIXTURES COMPRISING A HALOGEN POLYMER AND COMPATIBILIZED BY A GRAFT ALIPHATIC POLYESTER
DE19503060A1 (en) 1995-02-01 1996-08-08 Henkel Ecolab Gmbh & Co Ohg Cleaning procedure for membrane filters
US6355730B1 (en) * 1995-06-30 2002-03-12 Toray Industries, Inc. Permselective membranes and methods for their production
US5906742A (en) 1995-07-05 1999-05-25 Usf Filtration And Separations Group Inc. Microfiltration membranes having high pore density and mixed isotropic and anisotropic structure
US5725769A (en) * 1995-07-18 1998-03-10 Bend Research, Inc. Solvent-resistant microporous polymide membranes
US6656356B2 (en) 1998-10-09 2003-12-02 Zenon Environmental Inc. Aerated immersed membrane system
KR20050046718A (en) 1995-08-11 2005-05-18 제논 인바이런멘탈 인코포레이티드 Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces
US6193890B1 (en) * 1995-08-11 2001-02-27 Zenon Environmental Inc. System for maintaining a clean skein of hollow fibers while filtering suspended solids
US5944997A (en) 1995-08-11 1999-08-31 Zenon Environmental Inc. System for maintaining a clean skein of hollow fibers while filtering suspended solids
US6685832B2 (en) * 1995-08-11 2004-02-03 Zenon Environmental Inc. Method of potting hollow fiber membranes
RU2119817C1 (en) 1995-10-23 1998-10-10 Акционерное общество открытого типа "Полимерсинтез" Porous fluorocarbon membrane, method of its preparation, and cartridge filter based on this membrane
FR2741280B1 (en) * 1995-11-22 1997-12-19 Omnium Traitement Valorisa METHOD FOR CLEANING A FILTER SYSTEM OF THE SUBMERSIBLE MEMBRANE TYPE
US6074718A (en) 1996-02-06 2000-06-13 Koch Membrane Systems, Inc. Self supporting hollow fiber membrane and method of construction
US6077435A (en) 1996-03-15 2000-06-20 Usf Filtration And Separations Group Inc. Filtration monitoring and control system
EP0814116A1 (en) * 1996-06-19 1997-12-29 Hüls Aktiengesellschaft Hydrophilic coating of polymeric substrate surfaces
US6318555B1 (en) 1996-06-27 2001-11-20 Kimberly-Clark Worldwide, Inc. Flexible packaging bag with visual display feature
US5958243A (en) 1996-07-11 1999-09-28 Zenon Environmental Inc. Apparatus and method for membrane filtration with enhanced net flux
US5981614A (en) 1996-09-13 1999-11-09 Adiletta; Joseph G. Hydrophobic-oleophobic fluoropolymer compositions
USD390726S (en) * 1996-10-15 1998-02-17 Arvans Robert S Plate carrier
JP3686918B2 (en) 1996-10-16 2005-08-24 森村興産株式会社 Filtration device for solid-liquid separation of sewage, wastewater, etc.
USD396046S (en) 1996-10-24 1998-07-14 Allen Scheel Steer device for an outboard motor
WO1999067013A1 (en) 1996-12-10 1999-12-29 Asahi Kasei Kogyo Kabushiki Kaisha Porous polyvinylidene fluoride resin film and process for producing the same
AUPO412596A0 (en) 1996-12-10 1997-01-09 Memtec America Corporation Improved microporous membrane filtration assembly
US6045899A (en) * 1996-12-12 2000-04-04 Usf Filtration & Separations Group, Inc. Highly assymetric, hydrophilic, microfiltration membranes having large pore diameters
NZ336455A (en) 1996-12-20 2001-04-27 Usf Filtration & Separations A method for cleaning porous membranes using a gas bubble system
US6146747A (en) 1997-01-22 2000-11-14 Usf Filtration And Separations Group Inc. Highly porous polyvinylidene difluoride membranes
USD396726S (en) 1997-02-06 1998-08-04 Abc Group Combined air intake manifold and filter
US6048454A (en) * 1997-03-18 2000-04-11 Jenkins; Dan Oil filter pack and assembly
US6107397A (en) * 1997-03-24 2000-08-22 Basf Aktiengesellschaft Aqueous copolymer dispersions of water-soluble monomers with N-vinyl groups and hydrophobic monomers
AUPO709797A0 (en) * 1997-05-30 1997-06-26 Usf Filtration And Separations Group Inc. Predicting logarithmic reduction values
US6354444B1 (en) * 1997-07-01 2002-03-12 Zenon Environmental Inc. Hollow fiber membrane and braided tubular support therefor
US5914039A (en) * 1997-07-01 1999-06-22 Zenon Environmental Inc. Filtration membrane with calcined α-alumina particles therein
US6641733B2 (en) 1998-09-25 2003-11-04 U. S. Filter Wastewater Group, Inc. Apparatus and method for cleaning membrane filtration modules
US6083393A (en) 1997-10-27 2000-07-04 Pall Corporation Hydrophilic membrane
US6039872A (en) * 1997-10-27 2000-03-21 Pall Corporation Hydrophilic membrane
US6723758B2 (en) * 1997-11-12 2004-04-20 Ballard Power Systems Inc. Graft polymeric membranes and ion-exchange membranes formed therefrom
USD400890S (en) 1997-12-03 1998-11-10 Gambardella C Bruce Automotive manifold
JP3866399B2 (en) 1997-12-16 2007-01-10 住友重機械工業株式会社 Membrane filtration device and operation method thereof
US6838400B1 (en) * 1998-03-23 2005-01-04 International Business Machines Corporation UV absorbing glass cloth and use thereof
JP3682897B2 (en) * 1998-04-24 2005-08-17 東洋濾紙株式会社 High strength hydrophilic polyvinylidene fluoride porous membrane and method for producing the same
DE29906389U1 (en) 1998-04-30 1999-06-17 Cramer Weberei Heek Nienborg G Multi-layer textile building material
US6280626B1 (en) 1998-08-12 2001-08-28 Mitsubishi Rayon Co., Ltd. Membrane separator assembly and method of cleaning the assembly utilizing gas diffuser underneath the assembly
US6096213A (en) 1998-08-14 2000-08-01 3M Innovative Properties Company Puncture-resistant polyolefin membranes
TWI222895B (en) * 1998-09-25 2004-11-01 Usf Filtration & Separations Apparatus and method for cleaning membrane filtration modules
US6550747B2 (en) * 1998-10-09 2003-04-22 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
BR9914376A (en) 1998-10-09 2001-08-07 Zenon Environmental Inc Cycling aeration system for submerged membrane modules
WO2000026334A1 (en) 1998-10-30 2000-05-11 Metrex Research Corporation Simultaneous cleaning and decontaminating compositions and methods
JP2002530188A (en) * 1998-11-23 2002-09-17 ゼノン、エンバイロンメンタル、インコーポレーテッド Filtration of water using immersion membrane
CA2290053C (en) 1999-11-18 2009-10-20 Zenon Environmental Inc. Immersed membrane module and process
JP4107453B2 (en) 1998-11-26 2008-06-25 旭化成ケミカルズ株式会社 Hollow fiber membrane cartridge
US6156200A (en) 1998-12-08 2000-12-05 Usf Filtration & Separations Group, Inc. Gas-scrubbed hollow fiber membrane module
DE19959916A1 (en) * 1998-12-30 2000-07-20 Henkel Chile Sa Aqueous polymer dispersion, useful for adhesives and coatings, contains organic and/or inorganic filler particles and organic polymer particles that are formed in presence of at least one filler
JP2000254459A (en) 1999-03-05 2000-09-19 Sumitomo Heavy Ind Ltd Method for washing solid-liquid separation element and solid-liquid separator
US6770202B1 (en) 1999-04-14 2004-08-03 Pall Corporation Porous membrane
AUPP985099A0 (en) 1999-04-20 1999-05-13 Usf Filtration And Separations Group Inc. Membrane filtration manifold system
US6322703B1 (en) 1999-04-20 2001-11-27 Asahi Kasei Kabushiki Kaisha Method for purifying aqueous suspension
US6221247B1 (en) * 1999-06-03 2001-04-24 Cms Technology Holdings, Inc. Dioxole coated membrane module for ultrafiltration or microfiltration of aqueous suspensions
JP2000342932A (en) 1999-06-04 2000-12-12 Mitsubishi Rayon Co Ltd Potting method for separation membrane
US6277512B1 (en) 1999-06-18 2001-08-21 3M Innovative Properties Company Polymer electrolyte membranes from mixed dispersions
US6214231B1 (en) * 1999-08-27 2001-04-10 Zenon Environmental Inc. System for operation of multiple membrane filtration assemblies
US6761013B2 (en) 1999-11-08 2004-07-13 Kimberly-Clark Worldwide, Inc. Packaging article and method
US6423784B1 (en) 1999-12-15 2002-07-23 3M Innovative Properties Company Acid functional fluoropolymer membranes and method of manufacture
BR0017048A (en) 1999-12-22 2002-11-05 Metabasis Therapeutics Inc Phosphonate bisamidate prodrugs
KR100752245B1 (en) 1999-12-28 2007-08-29 카나자와 히토시 Method of modifying polymeric material and use thereof
US6315895B1 (en) 1999-12-30 2001-11-13 Nephros, Inc. Dual-stage hemodiafiltration cartridge
US6635179B1 (en) 1999-12-30 2003-10-21 Nephros, Inc. Sterile fluid filtration cartridge and method for using same
USD478913S1 (en) 2000-02-24 2003-08-26 Usf Filtration And Separations Group, Inc. Manifold header
US6440303B2 (en) 2000-03-02 2002-08-27 Chapin Manufacturing, Inc. Fluid filter
WO2001066474A2 (en) 2000-03-08 2001-09-13 Zenon Environmental Inc. Membrane module for gas transfer and membrane supported biofilm process
AUPQ680100A0 (en) 2000-04-10 2000-05-11 Usf Filtration And Separations Group Inc. Hollow fibre restraining system
US6337018B1 (en) * 2000-04-17 2002-01-08 The Dow Chemical Company Composite membrane and method for making the same
AU142387S (en) 2000-05-31 2000-11-27 Evoqua Water Tech Llc Manifold header cap
EP1166871A1 (en) 2000-06-21 2002-01-02 Fuji Photo Film B.V. Photocalytic sheet of film and its manufacturing process
JP2002034126A (en) * 2000-07-19 2002-01-31 Yazaki Corp Wiring unit
AUPR064800A0 (en) * 2000-10-09 2000-11-02 Usf Filtration And Separations Group Inc. Improved membrane filtration system
AUPR094600A0 (en) 2000-10-23 2000-11-16 Usf Filtration And Separations Group Inc. Fibre membrane arrangement
US6635104B2 (en) 2000-11-13 2003-10-21 Mcmaster University Gas separation device
US6705465B2 (en) * 2000-11-15 2004-03-16 Kimberly-Clark Worldwide, Inc. Package for feminine care articles
MXPA01011393A (en) * 2000-11-30 2004-05-21 Rohm & Haas Redox system and process.
US20020078665A1 (en) 2000-12-21 2002-06-27 Salman Nabil Enrique Portable packaging device and method for forming individually packaged articles
ITMI20010421A1 (en) 2001-03-01 2002-09-02 Ausimont Spa SEMI-PERMEABLE SEMI-CRYSTALLINE FLUOROPOLYMER Porous MEMBRANES
US6596167B2 (en) * 2001-03-26 2003-07-22 Koch Membrane Systems, Inc. Hydrophilic hollow fiber ultrafiltration membranes that include a hydrophobic polymer and a method of making these membranes
JP4409112B2 (en) * 2001-03-30 2010-02-03 株式会社クラレ Method for producing polyvinyl acetate resin emulsion
AUPR421501A0 (en) 2001-04-04 2001-05-03 U.S. Filter Wastewater Group, Inc. Potting method
DE60236696D1 (en) 2001-04-27 2010-07-22 Millipore Corp New coated membranes and other articles
US20040085300A1 (en) 2001-05-02 2004-05-06 Alec Matusis Device and method for selecting functions based on intrinsic finger features
US6595167B2 (en) * 2001-05-22 2003-07-22 Mtd Products Inc Internal combustion engine and method of making the same
AUPR584301A0 (en) 2001-06-20 2001-07-12 U.S. Filter Wastewater Group, Inc. Membrane polymer compositions
AUPR692401A0 (en) 2001-08-09 2001-08-30 U.S. Filter Wastewater Group, Inc. Method of cleaning membrane modules
US6721529B2 (en) * 2001-09-21 2004-04-13 Nexpress Solutions Llc Release agent donor member having fluorocarbon thermoplastic random copolymer overcoat
JP4426163B2 (en) * 2001-10-02 2010-03-03 ユニ・チャーム株式会社 Individual package for absorbent articles and method for producing the same
JP3770145B2 (en) * 2001-10-23 2006-04-26 東レ株式会社 Method for producing semipermeable membrane and dialyzer using the semipermeable membrane
US6790912B2 (en) 2001-12-11 2004-09-14 3M Innovative Properties Company Extrudable fluoropolymer blends
US6890435B2 (en) 2002-01-28 2005-05-10 Koch Membrane Systems Hollow fiber microfiltration membranes and a method of making these membranes
US7247238B2 (en) 2002-02-12 2007-07-24 Siemens Water Technologies Corp. Poly(ethylene chlorotrifluoroethylene) membranes
US6811696B2 (en) * 2002-04-12 2004-11-02 Pall Corporation Hydrophobic membrane materials for filter venting applications
US6851259B2 (en) * 2002-06-12 2005-02-08 The Aerospace Corporation Inflatable ablation gas cell structure system
US6994867B1 (en) * 2002-06-21 2006-02-07 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing L-arginine
AU2003301399B2 (en) * 2002-10-18 2006-07-06 Asahi Kasei Medical Co., Ltd. Microporous hydrophilic membrane
US20040092901A1 (en) 2002-11-11 2004-05-13 Ronald Wayne Reece Diaper changing kit
JP2004230280A (en) 2003-01-30 2004-08-19 Toray Ind Inc Production method for hydrophilic polyvinylidene fluoride-based resin porous membrane
US20040167489A1 (en) 2003-02-14 2004-08-26 Kellenberger Stanley R. Compact absorbent article
US20040159584A1 (en) 2003-02-18 2004-08-19 Ke Liu Mini-CPO providing hydrogen for hydrogen desulfurization of hydrocarbon feeds
US20040167493A1 (en) 2003-02-21 2004-08-26 Sca Hygiene Products Ab Arrangement and method for applying elastic element to a material web
DE60301322T2 (en) * 2003-02-28 2006-06-08 3M Innovative Properties Co., St. Paul A fluoropolymer dispersion containing no or little fluorine-containing low molecular weight wetting agent
US20050131368A2 (en) 2003-03-04 2005-06-16 Diaperoos, Llc Vacuum-packed diaper
KR20050109556A (en) 2003-03-13 2005-11-21 가부시끼가이샤 구레하 Porous membrane of vinylidene fluoride resin and process for producing the same
CN1552507A (en) 2003-05-27 2004-12-08 天津膜天膜工程技术有限公司 Method and apparatus for primary shaping composite or modified hollow fibre membrane
CN1816384A (en) 2003-07-04 2006-08-09 阿克佐诺贝尔股份有限公司 Cleaning of filtration membranes with peroxides
US20050015052A1 (en) * 2003-07-17 2005-01-20 Michelle Klippen Compression packed absorbent article
US20050063895A1 (en) 2003-09-23 2005-03-24 Martin Perry L. Production of potassium monopersulfate triple salt using oleum
US20050142280A1 (en) * 2003-10-20 2005-06-30 Kim Kwon I. System and method for synthesizing a polymer membrane
EP1533325B1 (en) 2003-11-17 2011-10-19 3M Innovative Properties Company Aqueous dispersions of polytetrafluoroethylene having a low amount of fluorinated surfactant
JP4533618B2 (en) 2003-11-25 2010-09-01 アムテック株式会社 Disinfectant cleaning composition
KR100562050B1 (en) 2004-03-30 2006-03-17 한국화학연구원 New crosslinked polyvinyl alcohol-based membranes and their Preparation Process
JP2008505197A (en) 2004-07-05 2008-02-21 シーメンス・ウォーター・テクノロジーズ・コーポレーション Hydrophilic membrane
CN101068612B (en) 2004-10-13 2010-12-15 3M创新有限公司 Method for preparing hydrophilic polyethersulfone membrane
EP1662268A1 (en) 2004-11-30 2006-05-31 "VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK", afgekort "V.I.T.O." System and method for measuring fuel cell voltage
AU2005312347B2 (en) 2004-12-03 2010-03-25 Evoqua Water Technologies Llc Membrane post treatment
ES2365928T3 (en) 2004-12-03 2011-10-13 Siemens Industry, Inc. POST-MEMBRANE TREATMENT.

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0261734A1 (en) * 1986-09-23 1988-03-30 X-Flow B.V. A process for the preparation of hydrophilic membranes and such membranes
EP0419396A1 (en) * 1989-09-05 1991-03-27 Dow Danmark A/S Hydrophilic membrane for use in ultrafiltration and method of preparation
DE4007383A1 (en) * 1990-03-08 1991-09-12 Seitz Filter Werke Hydraulic micro:filtration membrane of polysulphone prepn. - by casting film from soln. of polysulphone contg. polyvinyl-pyrrolidone then crosslinking latter in alkali bath
US5049275A (en) 1990-06-15 1991-09-17 Hoechst Celanese Corp. Modified microporous structures
EP0550798A1 (en) * 1991-10-04 1993-07-14 Kawasumi Laboratories, Inc. Polysulfone hollow fibre membrane
JPH05131124A (en) * 1991-11-11 1993-05-28 Nitto Denko Corp Production of hydrophilic fluoroplastic porous membrane
US5354587A (en) * 1993-11-15 1994-10-11 W. L. Gore & Associates, Inc. Hydrophilic compositions with increased thermal and solvent resistance
WO2000043115A1 (en) * 1999-01-21 2000-07-27 Ebara Corporation Ethylene-vinyl alcohol hollow fiber membranes
US6113794A (en) * 1999-01-25 2000-09-05 Kumar; Ashwani Composite solvent resistant nanofiltration membranes
KR20020031017A (en) * 2000-10-21 2002-04-26 김우영 An automatic or manual opening and closing ventilating fan
WO2002038256A1 (en) * 2000-11-13 2002-05-16 Usf Filtration And Separations Group Inc. Modified membranes
GB2390042A (en) * 2002-06-24 2003-12-31 Saehan Ind Inc Membrane comprising cross-linked polyfunctional epoxy compound
FR2850297A1 (en) * 2003-01-29 2004-07-30 Aquasource Production of membranes for nanofiltration, ultrafiltration or microfiltration modules comprises persulfate treatment of a membrane comprising a hydrophobic polymer blended or coated with a hydrophilic polymer
US20040195172A1 (en) * 2003-04-01 2004-10-07 Yeh Eshan B. Hydrophilic membrane and process for making the same
WO2005002712A1 (en) * 2003-07-08 2005-01-13 U.S. Filter Wastewater Group, Inc. Membrane post treatment

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; Class A88, AN 1991-274759, XP008095742 *
DATABASE WPI Derwent World Patents Index; Class A88, AN 1993-208365, XP008095741 *
DATABASE WPI Derwent World Patents Index; Class A88, AN 2004-595733, XP008095735 *
DATABASE WPI Derwent World Patents Index; Class A97, AN 2003-136636, XP008095736 *
DATABASE WPI Derwent World Patents Index; Class P34, AN 1993-220625, XP008095740 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8057574B2 (en) 2003-07-08 2011-11-15 Siemens Industry, Inc. Membrane post treatment
US8262778B2 (en) 2003-07-08 2012-09-11 Siemens Industry, Inc. Membrane post treatment
US8524794B2 (en) 2004-07-05 2013-09-03 Siemens Industry, Inc. Hydrophilic membranes
US7867417B2 (en) 2004-12-03 2011-01-11 Siemens Water Technologies Corp. Membrane post treatment
AU2006261581B2 (en) * 2005-06-20 2012-03-15 Evoqua Water Technologies Llc Cross linking treatment of polymer membranes
EP1893676A4 (en) * 2005-06-20 2010-05-26 Siemens Water Tech Corp Cross linking treatment of polymer membranes
EP1893676A1 (en) * 2005-06-20 2008-03-05 Siemens Water Technologies Corp. Cross linking treatment of polymer membranes
AU2013273670B2 (en) * 2009-12-14 2015-11-05 3M Innovative Properties Company Microperforated polymeric film and methods of making and using the same
US9238203B2 (en) 2009-12-14 2016-01-19 3M Innovative Properties Company Microperforated polymeric film and methods of making and using the same
AU2013273668B2 (en) * 2009-12-14 2016-05-12 3M Innovative Properties Company Microperforated polymeric film and methods of making and using the same
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
CN104645837A (en) * 2013-11-25 2015-05-27 乐天化学株式会社 Polymer resin composition for preparing hollow fiber membrane, preparation method of hollow fiber membrane, and hollow fiber membrane
US9630151B2 (en) 2015-03-31 2017-04-25 Pall Corporation Hydrophilically modified fluorinated membrane (V)
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Also Published As

Publication number Publication date
JP2008521598A (en) 2008-06-26
MY141919A (en) 2010-07-30
KR20070089981A (en) 2007-09-04
US20090230053A1 (en) 2009-09-17
US7867417B2 (en) 2011-01-11
CN101084057A (en) 2007-12-05
EP1827664A4 (en) 2008-07-30
ATE511915T1 (en) 2011-06-15
CN101084057B (en) 2013-10-23
EP1827664B1 (en) 2011-06-08
ES2365928T3 (en) 2011-10-13
CA2588675A1 (en) 2006-06-08
EP1827664A1 (en) 2007-09-05
NZ555302A (en) 2010-11-26

Similar Documents

Publication Publication Date Title
US7867417B2 (en) Membrane post treatment
CA2530805C (en) Membranes containing poly(vinyl methyl ether) and hydrophilisation of membranes using poly(vinyl methyl ether)
EP1773477B1 (en) Hydrophilic membranes
JP6174808B2 (en) Surface-modified separation membrane and surface modification method for separation membrane
EP1901835B1 (en) Monopersulfate treatment of membranes
US20080214687A1 (en) Cross Linking Treatment of Polymer Membranes
JP2008521598A5 (en)
AU2005312347B2 (en) Membrane post treatment
JP2002346560A (en) Method for treating water and membrane for water treatment
AU2006261581B2 (en) Cross linking treatment of polymer membranes
AU2004253197B2 (en) Membrane post treatment
AU2005259840B2 (en) Hydrophilic membranes
AU2006269753A1 (en) Monopersulfate treatment of membranes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 555302

Country of ref document: NZ

Ref document number: 2588675

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005312347

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005813412

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11720700

Country of ref document: US

Ref document number: 2007543655

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4441/DELNP/2007

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2005312347

Country of ref document: AU

Date of ref document: 20051202

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005312347

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580043639.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077015005

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005813412

Country of ref document: EP