WO2006065444A3 - Fabrication of strained heterojunction structures - Google Patents

Fabrication of strained heterojunction structures Download PDF

Info

Publication number
WO2006065444A3
WO2006065444A3 PCT/US2005/041889 US2005041889W WO2006065444A3 WO 2006065444 A3 WO2006065444 A3 WO 2006065444A3 US 2005041889 W US2005041889 W US 2005041889W WO 2006065444 A3 WO2006065444 A3 WO 2006065444A3
Authority
WO
WIPO (PCT)
Prior art keywords
layer
grown
silicon
template
multilayer
Prior art date
Application number
PCT/US2005/041889
Other languages
French (fr)
Other versions
WO2006065444A2 (en
Inventor
Donald E Savage
Michelle M Roberts
Max G Lagally
Original Assignee
Wisconsin Alumni Res Found
Donald E Savage
Michelle M Roberts
Max G Lagally
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wisconsin Alumni Res Found, Donald E Savage, Michelle M Roberts, Max G Lagally filed Critical Wisconsin Alumni Res Found
Priority to JP2007546681A priority Critical patent/JP5342143B2/en
Priority to EP05849194A priority patent/EP1834348A4/en
Publication of WO2006065444A2 publication Critical patent/WO2006065444A2/en
Publication of WO2006065444A3 publication Critical patent/WO2006065444A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76256Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques using silicon etch back techniques, e.g. BESOI, ELTRAN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6835Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during build up manufacturing of active devices

Abstract

Growth of multilayer films is carried out in a manner which allows close control of the strain in the grown layers and complete release of the grown films to allow mounting of the released multilayer structures on selected substrates. A layer of material, such as silicon-germanium, is grown onto a template layer, such as silicon, of a substrate having a sacrificial layer on which the template layer is formed. The grown layer has a lattice mismatch with the template layer so that it is strained as deposited. A top layer of crystalline material, such as silicon, is grown on the alloy layer to form a multilayer structure with the grown layer and the template layer. The sacrificial layer is preferentially etched away to release the multilayer structure from the sacrificial layer, relaxing the grown layer and straining the crystalline layers interfaced with it.
PCT/US2005/041889 2004-12-16 2005-11-18 Fabrication of strained heterojunction structures WO2006065444A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007546681A JP5342143B2 (en) 2004-12-16 2005-11-18 Manufacture of strained heterojunction structures
EP05849194A EP1834348A4 (en) 2004-12-16 2005-11-18 Fabrication of strained heterojunction structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/014,574 2004-12-16
US11/014,574 US7229901B2 (en) 2004-12-16 2004-12-16 Fabrication of strained heterojunction structures

Publications (2)

Publication Number Publication Date
WO2006065444A2 WO2006065444A2 (en) 2006-06-22
WO2006065444A3 true WO2006065444A3 (en) 2009-04-09

Family

ID=36588335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/041889 WO2006065444A2 (en) 2004-12-16 2005-11-18 Fabrication of strained heterojunction structures

Country Status (4)

Country Link
US (2) US7229901B2 (en)
EP (1) EP1834348A4 (en)
JP (1) JP5342143B2 (en)
WO (1) WO2006065444A2 (en)

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112129A1 (en) * 2004-05-13 2005-11-24 Fujitsu Limited Semiconductor device and process for fabricating same, and process for producing semiconductor substrate
EP2650906A3 (en) 2004-06-04 2015-02-18 The Board of Trustees of the University of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US7521292B2 (en) 2004-06-04 2009-04-21 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US8217381B2 (en) * 2004-06-04 2012-07-10 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US7799699B2 (en) * 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US7943491B2 (en) 2004-06-04 2011-05-17 The Board Of Trustees Of The University Of Illinois Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp
WO2007083570A1 (en) * 2006-01-16 2007-07-26 Matsushita Electric Industrial Co., Ltd. Method for producing semiconductor chip, and field effect transistor and method for manufacturing same
US7354809B2 (en) 2006-02-13 2008-04-08 Wisconsin Alumi Research Foundation Method for double-sided processing of thin film transistors
EP1991723A2 (en) 2006-03-03 2008-11-19 The Board Of Trustees Of The University Of Illinois Methods of making spatially aligned nanotubes and nanotube arrays
US7777290B2 (en) * 2006-06-13 2010-08-17 Wisconsin Alumni Research Foundation PIN diodes for photodetection and high-speed, high-resolution image sensing
US7772060B2 (en) * 2006-06-21 2010-08-10 Texas Instruments Deutschland Gmbh Integrated SiGe NMOS and PMOS transistors
US7648853B2 (en) * 2006-07-11 2010-01-19 Asm America, Inc. Dual channel heterostructure
US7960218B2 (en) * 2006-09-08 2011-06-14 Wisconsin Alumni Research Foundation Method for fabricating high-speed thin-film transistors
KR101610885B1 (en) 2007-01-17 2016-04-08 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Optical systems fabricated by printing-based assembly
FR2914783A1 (en) * 2007-04-03 2008-10-10 St Microelectronics Sa METHOD FOR MANUFACTURING CONCENTRATING GRADIENT DEVICE AND CORRESPONDING DEVICE.
US7453107B1 (en) * 2007-05-04 2008-11-18 Dsm Solutions, Inc. Method for applying a stress layer to a semiconductor device and device formed therefrom
US7531854B2 (en) * 2007-05-04 2009-05-12 Dsm Solutions, Inc. Semiconductor device having strain-inducing substrate and fabrication methods thereof
US7807520B2 (en) * 2007-06-29 2010-10-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8803195B2 (en) * 2007-08-02 2014-08-12 Wisconsin Alumni Research Foundation Nanomembrane structures having mixed crystalline orientations and compositions
US20090127541A1 (en) * 2007-11-19 2009-05-21 Intel Corporation Reducing defects in semiconductor quantum well heterostructures
US20110170180A1 (en) * 2008-02-07 2011-07-14 Kevin Thomas Turner Electrostatic deformable mirror using unitary membrane
US8293608B2 (en) * 2008-02-08 2012-10-23 Freescale Semiconductor, Inc. Intermediate product for a multichannel FET and process for obtaining an intermediate product
JP5743553B2 (en) 2008-03-05 2015-07-01 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Stretchable and foldable electronic devices
US8470701B2 (en) * 2008-04-03 2013-06-25 Advanced Diamond Technologies, Inc. Printable, flexible and stretchable diamond for thermal management
US7776642B2 (en) * 2008-05-15 2010-08-17 Wisconsin Alumni Research Foundation Quantum-well photoelectric device assembled from nanomembranes
WO2009155122A2 (en) * 2008-05-30 2009-12-23 Alta Devices, Inc. Epitaxial lift off stacks and methods
US8602707B2 (en) * 2008-05-30 2013-12-10 Alta Devices, Inc. Methods and apparatus for a chemical vapor deposition reactor
US8946683B2 (en) * 2008-06-16 2015-02-03 The Board Of Trustees Of The University Of Illinois Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
US8372726B2 (en) 2008-10-07 2013-02-12 Mc10, Inc. Methods and applications of non-planar imaging arrays
US8097926B2 (en) * 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
EP2349440B1 (en) 2008-10-07 2019-08-21 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
KR20110069852A (en) * 2008-10-10 2011-06-23 알타 디바이씨즈, 인크. Continuous feed chemical vapor deposition
US9064810B2 (en) * 2008-10-10 2015-06-23 Alta Devices, Inc. Mesa etch method and composition for epitaxial lift off
US9068278B2 (en) * 2008-12-08 2015-06-30 Alta Devices, Inc. Multiple stack deposition for epitaxial lift off
TW201030802A (en) * 2008-12-17 2010-08-16 Alta Devices Inc Tape-based epitaxial lift off apparatuses and methods
CN102414837B (en) 2009-02-27 2016-04-20 奥塔装置公司 For depositing the tiling substrate with extension stripping process
US8217410B2 (en) * 2009-03-27 2012-07-10 Wisconsin Alumni Research Foundation Hybrid vertical cavity light emitting sources
TWI592996B (en) 2009-05-12 2017-07-21 美國伊利諾大學理事會 Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
US20120119332A1 (en) * 2009-06-12 2012-05-17 Petar Branko Atanackovic Process for producing a semiconductor-on-sapphire article
WO2011041727A1 (en) 2009-10-01 2011-04-07 Mc10, Inc. Protective cases with integrated electronics
US9834860B2 (en) * 2009-10-14 2017-12-05 Alta Devices, Inc. Method of high growth rate deposition for group III/V materials
US11393683B2 (en) 2009-10-14 2022-07-19 Utica Leaseco, Llc Methods for high growth rate deposition for forming different cells on a wafer
FR2953640B1 (en) * 2009-12-04 2012-02-10 S O I Tec Silicon On Insulator Tech METHOD FOR MANUFACTURING A SEMICONDUCTOR TYPE STRUCTURE ON INSULATION, WITH REDUCED ELECTRICAL LOSSES AND CORRESPONDING STRUCTURE
KR101221871B1 (en) * 2009-12-07 2013-01-15 한국전자통신연구원 method for manufacturing semiconductor device
US10441185B2 (en) 2009-12-16 2019-10-15 The Board Of Trustees Of The University Of Illinois Flexible and stretchable electronic systems for epidermal electronics
US9936574B2 (en) 2009-12-16 2018-04-03 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
WO2011084450A1 (en) 2009-12-16 2011-07-14 The Board Of Trustees Of The University Of Illinois Electrophysiology in-vivo using conformal electronics
DE102010001420A1 (en) * 2010-02-01 2011-08-04 Robert Bosch GmbH, 70469 III-V semiconductor solar cell
KR101724273B1 (en) 2010-03-17 2017-04-07 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 implantable biomedical devices on bioresorbable substrates
US9442285B2 (en) 2011-01-14 2016-09-13 The Board Of Trustees Of The University Of Illinois Optical component array having adjustable curvature
JP5810718B2 (en) * 2011-03-18 2015-11-11 富士ゼロックス株式会社 Silicon layer transfer substrate and semiconductor substrate manufacturing method
WO2012158709A1 (en) 2011-05-16 2012-11-22 The Board Of Trustees Of The University Of Illinois Thermally managed led arrays assembled by printing
JP2014523633A (en) 2011-05-27 2014-09-11 エムシー10 インコーポレイテッド Electronic, optical and / or mechanical devices and systems and methods of manufacturing these devices and systems
US8934965B2 (en) 2011-06-03 2015-01-13 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
EP2786644B1 (en) 2011-12-01 2019-04-10 The Board of Trustees of the University of Illionis Transient devices designed to undergo programmable transformations
US8492245B1 (en) 2012-02-07 2013-07-23 Wisconsin Alumni Research Foundation Methods for making thin layers of crystalline materials
JP2015521303A (en) 2012-03-30 2015-07-27 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシ An electronic device that can be attached to the surface and can be attached to an accessory
US9142400B1 (en) 2012-07-17 2015-09-22 Stc.Unm Method of making a heteroepitaxial layer on a seed area
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
US9006785B2 (en) 2013-01-28 2015-04-14 Wisconsin Alumni Research Foundation Doped and strained flexible thin-film transistors
JP6078920B2 (en) * 2013-02-13 2017-02-15 国立大学法人広島大学 Thin film forming method, and semiconductor substrate and electronic device manufactured using the same
US9570609B2 (en) 2013-11-01 2017-02-14 Samsung Electronics Co., Ltd. Crystalline multiple-nanosheet strained channel FETs and methods of fabricating the same
US9484423B2 (en) 2013-11-01 2016-11-01 Samsung Electronics Co., Ltd. Crystalline multiple-nanosheet III-V channel FETs
US9472535B2 (en) 2013-11-08 2016-10-18 Wisconsin Alumni Research Foundation Strain tunable light emitting diodes with germanium P-I-N heterojunctions
US20150308013A1 (en) * 2014-04-29 2015-10-29 Rubicon Technology, Inc. Method of producing free-standing net-shape sapphire
US9190329B1 (en) * 2014-05-20 2015-11-17 International Business Machines Corporation Complex circuits utilizing fin structures
US10057983B1 (en) * 2014-06-13 2018-08-21 Verily Life Sciences Llc Fabrication methods for bio-compatible devices using an etch stop and/or a coating
US9647098B2 (en) 2014-07-21 2017-05-09 Samsung Electronics Co., Ltd. Thermionically-overdriven tunnel FETs and methods of fabricating the same
KR101628197B1 (en) 2014-08-22 2016-06-09 삼성전자주식회사 Method of fabricating the semiconductor device
US9209301B1 (en) 2014-09-18 2015-12-08 Soitec Method for fabricating semiconductor layers including transistor channels having different strain states, and related semiconductor layers
US9219150B1 (en) 2014-09-18 2015-12-22 Soitec Method for fabricating semiconductor structures including fin structures with different strain states, and related semiconductor structures
US9391163B2 (en) 2014-10-03 2016-07-12 International Business Machines Corporation Stacked planar double-gate lamellar field-effect transistor
US9711414B2 (en) 2014-10-21 2017-07-18 Samsung Electronics Co., Ltd. Strained stacked nanosheet FETS and/or quantum well stacked nanosheet
US10032912B2 (en) 2014-12-31 2018-07-24 Stmicroelectronics, Inc. Semiconductor integrated structure having an epitaxial SiGe layer extending from silicon-containing regions formed between segments of oxide regions
TWI723993B (en) * 2015-05-11 2021-04-11 美商應用材料股份有限公司 Horizontal gate all around and finfet device isolation
EP3304130B1 (en) 2015-06-01 2021-10-06 The Board of Trustees of the University of Illinois Alternative approach to uv sensing
CN107851208B (en) 2015-06-01 2021-09-10 伊利诺伊大学评议会 Miniaturized electronic system with wireless power supply and near field communication capability
US9660032B2 (en) * 2015-06-22 2017-05-23 International Business Machines Corporation Method and apparatus providing improved thermal conductivity of strain relaxed buffer
US9548361B1 (en) 2015-06-30 2017-01-17 Stmicroelectronics, Inc. Method of using a sacrificial gate structure to make a metal gate FinFET transistor
US9679899B2 (en) * 2015-08-24 2017-06-13 Stmicroelectronics, Inc. Co-integration of tensile silicon and compressive silicon germanium
US9607990B2 (en) * 2015-08-28 2017-03-28 International Business Machines Corporation Method to form strained nFET and strained pFET nanowires on a same substrate
FR3041812A1 (en) * 2015-09-30 2017-03-31 Commissariat Energie Atomique PROCESS FOR FORMING A SEMICONDUCTOR PORTION BY EPITAXIAL GROWTH ON A CONSTRAINED PORTION
FR3041811B1 (en) * 2015-09-30 2017-10-27 Commissariat Energie Atomique METHOD FOR PRODUCING A SEMICONDUCTOR STRUCTURE COMPRISING A CONSTRAINED PORTION
US9735175B2 (en) * 2015-10-09 2017-08-15 International Business Machines Corporation Integrated circuit with heterogeneous CMOS integration of strained silicon germanium and group III-V semiconductor materials and method to fabricate same
CN106611793B (en) * 2015-10-21 2021-07-06 三星电子株式会社 Strain stacked nanosheet FET and/or quantum well stacked nanosheet
US10925543B2 (en) 2015-11-11 2021-02-23 The Board Of Trustees Of The University Of Illinois Bioresorbable silicon electronics for transient implants
US9466672B1 (en) * 2015-11-25 2016-10-11 International Business Machines Corporation Reduced defect densities in graded buffer layers by tensile strained interlayers
US9905649B2 (en) 2016-02-08 2018-02-27 International Business Machines Corporation Tensile strained nFET and compressively strained pFET formed on strain relaxed buffer
US9793398B1 (en) * 2016-08-02 2017-10-17 International Business Machines Corporation Fabrication of a strained region on a substrate
CN108946656A (en) * 2017-05-25 2018-12-07 联华电子股份有限公司 Semiconductor fabrication process
US10176991B1 (en) * 2017-07-06 2019-01-08 Wisconsin Alumni Research Foundation High-quality, single-crystalline silicon-germanium films
US10103238B1 (en) * 2017-07-18 2018-10-16 Globalfoundries Inc. Nanosheet field-effect transistor with full dielectric isolation
US10553679B2 (en) * 2017-12-07 2020-02-04 International Business Machines Corporation Formation of self-limited inner spacer for gate-all-around nanosheet FET
US20190275565A1 (en) * 2018-03-06 2019-09-12 GM Global Technology Operations LLC Method of selectively removing a contaminant from an optical component
US10903035B2 (en) 2018-03-12 2021-01-26 Wisconsin Alumni Research Foundation High-frequency vacuum electronic device
FR3082998B1 (en) * 2018-06-25 2021-01-08 Commissariat Energie Atomique DEVICE AND METHODS FOR TRANSFERRING CHIPS FROM A SOURCE SUBSTRATE TO A DESTINATION SUBSTRATE
US20220115609A1 (en) * 2018-12-10 2022-04-14 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts Nanoelectronic device and method for producing thereof
US10665669B1 (en) 2019-02-26 2020-05-26 Globalfoundries Inc. Insulative structure with diffusion break integral with isolation layer and methods to form same
US20230352606A1 (en) * 2020-04-27 2023-11-02 Oussama Moutanabbir Short-wave infrared and mid-wave infrared optoelectronic device and methods for manufacturing the same
WO2022047247A1 (en) * 2020-08-28 2022-03-03 Utica Leaseco, Llc Systems and methods for supplying an etchant in a gaseous state during epitaxial lift-off (flo) processing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981400A (en) * 1997-09-18 1999-11-09 Cornell Research Foundation, Inc. Compliant universal substrate for epitaxial growth
US6690043B1 (en) * 1999-11-26 2004-02-10 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US20040253792A1 (en) * 2003-06-13 2004-12-16 International Business Machines Corporation Strained-silicon-on-insulator single-and double-gate MOSFET and method for forming the same

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846931A (en) 1988-03-29 1989-07-11 Bell Communications Research, Inc. Method for lifting-off epitaxial films
US4883561A (en) 1988-03-29 1989-11-28 Bell Communications Research, Inc. Lift-off and subsequent bonding of epitaxial films
US5073230A (en) 1990-04-17 1991-12-17 Arizona Board Of Regents Acting On Behalf Of Arizona State University Means and methods of lifting and relocating an epitaxial device layer
US5206749A (en) * 1990-12-31 1993-04-27 Kopin Corporation Liquid crystal display having essentially single crystal transistors pixels and driving circuits
US5528397A (en) 1991-12-03 1996-06-18 Kopin Corporation Single crystal silicon transistors for display panels
US5465009A (en) 1992-04-08 1995-11-07 Georgia Tech Research Corporation Processes and apparatus for lift-off and bonding of materials and devices
US5344517A (en) 1993-04-22 1994-09-06 Bandgap Technology Corporation Method for lift-off of epitaxial layers and applications thereof
US5461243A (en) 1993-10-29 1995-10-24 International Business Machines Corporation Substrate for tensilely strained semiconductor
JP3372158B2 (en) * 1996-02-09 2003-01-27 株式会社東芝 Semiconductor device and manufacturing method thereof
US5906951A (en) 1997-04-30 1999-05-25 International Business Machines Corporation Strained Si/SiGe layers on insulator
US6515751B1 (en) * 1999-03-11 2003-02-04 Cornell Research Foundation Inc. Mechanically resonant nanostructures
US6816301B1 (en) * 1999-06-29 2004-11-09 Regents Of The University Of Minnesota Micro-electromechanical devices and methods of manufacture
JP2003506883A (en) 1999-08-10 2003-02-18 シリコン ジェネシス コーポレイション Cleavage process for manufacturing multi-layer substrates with low implant dose
US6214733B1 (en) 1999-11-17 2001-04-10 Elo Technologies, Inc. Process for lift off and handling of thin film materials
JP3607194B2 (en) * 1999-11-26 2005-01-05 株式会社東芝 Semiconductor device, semiconductor device manufacturing method, and semiconductor substrate
US6602613B1 (en) 2000-01-20 2003-08-05 Amberwave Systems Corporation Heterointegration of materials using deposition and bonding
US6573126B2 (en) 2000-08-16 2003-06-03 Massachusetts Institute Of Technology Process for producing semiconductor article using graded epitaxial growth
JP3536817B2 (en) * 2000-12-20 2004-06-14 株式会社日本自動車部品総合研究所 Semiconductor dynamic quantity sensor and method of manufacturing the same
US6774010B2 (en) 2001-01-25 2004-08-10 International Business Machines Corporation Transferable device-containing layer for silicon-on-insulator applications
US6410371B1 (en) 2001-02-26 2002-06-25 Advanced Micro Devices, Inc. Method of fabrication of semiconductor-on-insulator (SOI) wafer having a Si/SiGe/Si active layer
US6603156B2 (en) 2001-03-31 2003-08-05 International Business Machines Corporation Strained silicon on insulator structures
US6940089B2 (en) 2001-04-04 2005-09-06 Massachusetts Institute Of Technology Semiconductor device structure
US6858888B2 (en) 2001-11-26 2005-02-22 Wisconsin Alumni Research Foundation Stress control of semiconductor microstructures for thin film growth
JP2003249641A (en) * 2002-02-22 2003-09-05 Sharp Corp Semiconductor substrate, manufacturing method therefor and semiconductor device
US6562703B1 (en) * 2002-03-13 2003-05-13 Sharp Laboratories Of America, Inc. Molecular hydrogen implantation method for forming a relaxed silicon germanium layer with high germanium content
JP2004039735A (en) * 2002-07-01 2004-02-05 Fujitsu Ltd Semiconductor substrate and its manufacturing method
JP2004103805A (en) * 2002-09-09 2004-04-02 Sharp Corp Semiconductor substrate, method of manufacturing the same and semiconductor device
US6878611B2 (en) * 2003-01-02 2005-04-12 International Business Machines Corporation Patterned strained silicon for high performance circuits
JP4306266B2 (en) * 2003-02-04 2009-07-29 株式会社Sumco Manufacturing method of semiconductor substrate
JP4371668B2 (en) * 2003-02-13 2009-11-25 三菱電機株式会社 Semiconductor device
DE10318284A1 (en) * 2003-04-22 2004-11-25 Forschungszentrum Jülich GmbH Process for producing a strained layer on a substrate and layer structure
US7355253B2 (en) * 2003-08-22 2008-04-08 International Business Machines Corporation Strained-channel Fin field effect transistor (FET) with a uniform channel thickness and separate gates
US7923782B2 (en) * 2004-02-27 2011-04-12 International Business Machines Corporation Hybrid SOI/bulk semiconductor transistors
EP2650906A3 (en) 2004-06-04 2015-02-18 The Board of Trustees of the University of Illinois Methods and devices for fabricating and assembling printable semiconductor elements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981400A (en) * 1997-09-18 1999-11-09 Cornell Research Foundation, Inc. Compliant universal substrate for epitaxial growth
US6690043B1 (en) * 1999-11-26 2004-02-10 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US20040253792A1 (en) * 2003-06-13 2004-12-16 International Business Machines Corporation Strained-silicon-on-insulator single-and double-gate MOSFET and method for forming the same

Also Published As

Publication number Publication date
EP1834348A2 (en) 2007-09-19
EP1834348A4 (en) 2009-12-23
US20060134893A1 (en) 2006-06-22
JP2008525998A (en) 2008-07-17
US7973336B2 (en) 2011-07-05
US7229901B2 (en) 2007-06-12
US20080296615A1 (en) 2008-12-04
JP5342143B2 (en) 2013-11-13
WO2006065444A2 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
WO2006065444A3 (en) Fabrication of strained heterojunction structures
WO2009155122A3 (en) Epitaxial lift off stacks and methods
WO2006135662A3 (en) Perovskite-based thin film structures on miscut semiconductor substrates
WO2008091910A3 (en) Composite wafers having bulk-quality semiconductor layers
WO2007025062A3 (en) Photovoltaic template
WO2005010964A3 (en) Silicon crystallization using self-assembled monolayers
WO2006016914A3 (en) Methods for nanowire growth
TW200729343A (en) Method for fabricating controlled stress silicon nitride films
TW200605163A (en) Fabrication of crystalline materials over substrates
WO2003096385A3 (en) Silicon-on-insulator structures and methods
WO2005101465A3 (en) Method and system for lattice space engineering
WO2005091370A8 (en) Method for manufacturing integrated circuit
WO2007098215A8 (en) Method for growth of semipolar (al,in,ga,b)n optoelectronic devices
WO2012040075A3 (en) Non-planar device having uniaxially strained fin and method of making same
WO2004006327A3 (en) Transfer of a thin layer from a wafer comprising a buffer layer
WO2007002028A3 (en) Layer growth using metal film and/or islands
WO2007133271A3 (en) Methods for oriented growth of nanowires on patterned substrates
WO2009005825A8 (en) Methods for fabricating thin film iii-v compound solar cell
WO2003069658A3 (en) Strained si based layer made by uhv-cvd, and devices therein
WO2010100386A3 (en) Method and device for the automated manufacture of at least one elongate composite material part with one or more layers
WO2007139765A3 (en) Semiconductor-on-diamond devices and associated methods
WO2007103249A3 (en) Methods of forming thermoelectric devices using islands of thermoelectric material and related structures
SG145706A1 (en) Method and structure for fabricating iii-v nitride layers on silicon substrates
CA2712148A1 (en) Method for producing a laminated body having a1-based group-iii nitride single crystal layer, laminated body produced by the method, method for producing a1-based group-iii nitride single crystal substrate employing the laminated body, and aluminum nitride single crystal substrate
WO2009007907A3 (en) Single crystal growth on a mis-matched substrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007546681

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005849194

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005849194

Country of ref document: EP