WO2006071443A1 - Fluorochemical containing low adhesion backsize - Google Patents

Fluorochemical containing low adhesion backsize Download PDF

Info

Publication number
WO2006071443A1
WO2006071443A1 PCT/US2005/043493 US2005043493W WO2006071443A1 WO 2006071443 A1 WO2006071443 A1 WO 2006071443A1 US 2005043493 W US2005043493 W US 2005043493W WO 2006071443 A1 WO2006071443 A1 WO 2006071443A1
Authority
WO
WIPO (PCT)
Prior art keywords
release
group
meth
polymer
acrylate
Prior art date
Application number
PCT/US2005/043493
Other languages
French (fr)
Inventor
James P. Dizio
David J. Kinning
George G. I. Moore
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Priority to EP05852656.7A priority Critical patent/EP1831269B1/en
Publication of WO2006071443A1 publication Critical patent/WO2006071443A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1818C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • C08L33/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2848Three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions

Definitions

  • the invention relates to release compositions useful in release layers of release articles (for example, release liners) and adhesive articles (for example, pressure sensitive adhesive tapes (PSA)).
  • release articles for example, release liners
  • adhesive articles for example, pressure sensitive adhesive tapes (PSA)
  • Polymeric release materials are known to be used in release layers in release articles (for example, release liners) and adhesive articles (for example, adhesive tapes) in order to provide a surface from which an adhesive can be easily and cleanly removed.
  • release articles for example, release liners
  • adhesive articles for example, adhesive tapes
  • the release coating is expected to reproducibly provide an appropriate unwind force throughout the lifetime of the tape roll, and to not deleteriously affect the adhesive.
  • GB 870,022 describes the use of copolymers prepared from octadecyl aery late, acrylonitrile, acrylic acid, and methyl acrylate for tape release coatings.
  • the use of polymers or copolymers containing fluoroalkyl side groups has also been disclosed (U.S. Pat. No. 3,318,852). It has been found that the perfluoroalkyl groups need to contain at least 6 carbon atoms, and preferably at least 8 carbon atoms, in order for the polymer to provide sufficiently low unwind forces for tape rolls.
  • certain perfluorooctyl-containing compounds may tend to bioacummulate in living organisms, raising concerns about their use.
  • the release coating is expected to provide moderate unwind force, between about 10 - 40 N/dm. If the unwind force is too low, the tape roll may inadvertently unwind under its own weight, and if the unwind force is too high, the tape roll will be difficult to unwind. In addition, the unwind force should be relatively stable over the lifetime of the roll.
  • Another common requirement for masking tapes is that the release coating on the tape backside should provide good wetting and anchorage of both water and solvent based paints.
  • masking tapes have good holding power to their own backing.
  • one piece of masking tape may be used to attach a drape onto another piece of masking tape, that is, overtaping, that had been placed onto the surface to establish a paint line.
  • improving one of these masking tape property requirements can result in a deterioration of another property.
  • a release coating that can provide easier and more stable release must be employed; however, such release coatings may not provide good paint wetting/anchorage or sufficient holding power to backing. In such cases, a compromise in overall release coating performance features must be reached.
  • One commonly used method of forming a release layer is to coat the release material from an organic solvent-based solution onto a substrate. After the solution has been applied to the substrate, the solvent is evaporated leaving behind a relatively uniform coating of the release material. As environmental regulations tighten, release materials that can be processed using organic solvent-free processes are more desirable.
  • the invention provides a water-based release coating composition comprising a mixture of
  • R f represents a perfluorinated aliphatic group having 3 or 4 carbon atoms
  • X is an organic divalent linking group
  • R represents a hydrogen or methyl group
  • b. from about 40 to about 70 wt% of an alkyl (meth)acrylate, wherein the alkyl group contains from 16 to 22 carbon atoms, c. from about 3 to about 20 wt% of (meth)acrylic acid, d. from about 20 to about 40 wt% acrylonitrile, and e. from 0 to about 15 wt% of vinyl monomer, other than those of a. through d., wherein the sum of a. through e. equals 100%; and B. from 0 to about 95 wt% of an extender polymer, wherein the sum of A. and B. is 100% and weight percent is based on the total amount of solids in the composition.
  • the invention provides an adhesive article comprising a backing having first and second surfaces, an adhesive on at least a portion of the first surface of the backing, and a water-based release composition as described herein on at least a portion of the second surface of the backing.
  • (meth)acrylic or (meth)acrylate refers to both acrylic or acrylate monomers and methacrylic/methacrylate monomers.
  • Blending of the release polymer with an inexpensive polymer emulsion extender is an option to further improve tape properties, such as paint wetting and flaking resistance, and to lower the cost of the release coating.
  • Some of the advantages of the water-based release compositions of the invention include that the compositions: maintain desired release force; permit adhesives to exhibit relatively high peel forces at relatively low peel rates leading to improved overtaping and holding power to backing; provide good paint wetting and paint flaking resistance; and maintain re-adhesion strength with little or no release composition transfer to the adhesive.
  • the water-based release compositions of the invention contain (A.) from about 5 to about 100, in another embodiment, 15 to 50, wt% of a polymer or copolymer comprising the reaction product of (a.) from about 1 to about 15, in other embodiments, 10 to 15, 1 to 10, 5 to 10, and 1 to 5, wt% of a fluorinated monomer selected from the group consisting of monomers according to the general formula I:
  • Rf represents a perfluorinated aliphatic group having 3 or 4 carbon atoms
  • X is an organic divalent linking group
  • R represents a hydrogen or methyl group
  • the linking group X links the perfluoroaliphatic group Rf to the free radically polymerizable group.
  • Linking group X is generally non fluorinated and in some embodiments, contains from 1 to about 20 carbon atoms.
  • X can optionally contain oxygen, nitrogen, or sulfur containing groups or a combination thereof, and X is free of functional groups that substantially interfere with free-radical polymerization (for example, polymerizable olefinic double bonds, thiols, and other such functionality known to those skilled in the art).
  • suitable linking groups X include straight chain, branched chain or cyclic alkylene, arylene, aralkylene, sulfonyl, sulfoxy, sulfonamide, carbonamido, carbonyloxy, urethanylene, ureylene, and combinations thereof such as sulfonamidoalkylene.
  • fluorinated monomers include:
  • Fluorinated monomer concentrations of less than 1% in polymer A do not result in a significant increase in holding power to the backing (that is, increase in peel force at low peel rates).
  • Examples of useful (b.) alkyl (meth)acrylates, wherein the alkyl group contains from 16 to 22 carbon atoms include octadecyl acrylate, octadecyl methacrylate, and behenyl acrylate and combinations thereof.
  • Examples of useful (e.) other vinyl monomers which may be copolymerized in small amounts into the copolymer include alkyl (meth)acrylates, wherein the alkyl group contains from 1 to about 8 carbon atoms, including methyl (meth)acrylate, butyl (meth)acrylate, iso-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate and combinations thereof. Additional examples of other vinyl monomers include styrene and vinyl acetate and combinations thereof.
  • the water-based release compositions of the invention contain (B.) from 0 to about
  • extender polymer 95, in another embodiment, 50 to 85, wt% of extender polymer.
  • Extender polymers tend to reduce cost while improving paint wetting and flaking resistance.
  • Useful extender polymers are in the form of polymeric emulsions.
  • suitable polymer emulsions include those based on polyvinyl acetate (for example, VINAC 884 available from Air Products Inc., Allentown, Pa.), vinyl acetate/ethylene copolymers (for example, AIRFLEX 100HS, also available from Air Products), acrylic polymers (for example, HYCAR 26138 available from Noveon Inc., Cleveland, OH, and RHOPLEX GL-618 available from Rohm & Haas, Philadelphia, PA), and styrene/acrylic copolymers (for example, VANCRYL 989 available from Air Products) and combinations thereof.
  • polyvinyl acetate for example, VINAC 884 available from Air Products Inc., Allentown, Pa.
  • Alkyl (meth)acrylate concentrations of less than 40 wt% and acrylonitrile concentrations of less than 20 wt% in polymer (A.) may result in release forces that are higher than desired.
  • Alkyl (meth)acrylate concentrations higher than 70 wt% and acrylonitrile concentrations of higher than 35 wt% can result in poor paint wetting and poor paint flaking resistance.
  • such compositions are difficult to invert into water. Inversion of similar compositions are described in U.S. Pat. No. 3,011,988.
  • Polymers having a (meth) acrylic acid content of less than 3% are difficult to invert into water, while higher (meth) acrylic acid content can increase the polymer's hydrophilicity, resulting in poor release stability under high humidity conditions.
  • the release compositions of the present invention may contain other additives such as wetting agents and defoamers.
  • Adhesives useful in the present invention as the adhesive layer are preferably pressure sensitive adhesives. They are normally tacky at room temperature and can be adhered to a surface by application of, at most, light finger pressure.
  • the adhesives useful in the invention may generally be based on general compositions of polyacrylate; polyvinyl ether; rubber such as natural rubber; polyisoprene; polychloroprene; butyl rubber; polyisobutylene; butadiene-acrylonitrile polymer, thermoplastic elastomer, and styrene-butadiene polymer; poly-alpha-olefm; amorphous polyolefin; silicone; ethylene-containing copolymer such as ethylene vinyl acetate; polyurethane; polyamide; epoxy; polyvinylpyrrolidone and vinylpyrrolidone copolymers; polyesters; and mixtures of the above. Additionally, the adhesives can contain additives such as tackif ⁇ ers, plasticizers, fillers, antioxidants, stabilizers, pigments, curatives, and solvents.
  • pressure sensitive adhesives based on tackified natural rubber are often desired.
  • Backings suitable for use with the release coatings of the invention may be utilized in the practice of the present invention.
  • Such backing can be treated or untreated paper such as crepe, rope tissue, repulpable tissue, and kraft; woven fabric such as cotton, rayon, polyester, glass, and nylon; polymeric film such as cellophane, acetate, polyester, vinyl, polyvinyl chloride, polypropylene, polyethylene, and polyimide; nonwoven fabric such as a polymer scrim or web; foil such as aluminum, stainless steel, and lead; foam such as open and closed cell polyethylene, polyvinyl chloride, polyurethane, and polychbroprene; rubber, such as neoprene; metallized film, or combinations of the above, that is, laminates.
  • the backings can be compounded further with fibers, fillers, plasticizers, pigments, stabilizers, antioxidants, or mixtures thereof.
  • the backings may be a single layer or of multilayer construction.
  • the backings may additionally bear a primer layer or be surface treated, for example, corona treated, to promote adhesion of other components to it.
  • crepe paper backings used for masking tapes may be coated with a barrier layer prior to application of the release layer.
  • An example of a barrier coat includes RHOPLEX GL-618 acrylic polymer emulsion, commercially available from Rohm & Haas, Philadelphia, PA.
  • a primer layer may be applied onto the other side of the crepe paper to improve adhesion of the adhesive to backing.
  • Release coating compositions of the invention can be applied to suitable backings by conventional coating techniques such as, for example, wire-wound rod, direct gravure, offset gravure, reverse roll, air-knife, and trailing blade coating.
  • the coatable compositions of the invention may contain from about 1 to about 15 percent by weight solids in water.
  • the adhesive articles of the invention generally comprise an adhesive composition on at least a portion of one surface of a backing and a water-based release composition on at least a portion of the other surface of the backing.
  • the adhesive articles of the invention may be in the form of a sheet, multilayer sheets or stack or pad of sheets, or in the form of a roll, for example, a tape roll.
  • This peel adhesion test is similar to the test method described in ASTM D 3330-90 except that the stainless steel substrate was replaced by a glass substrate.
  • a 24 mm wide strip of Tape 1 was adhered to the release layer of a release coated backing, prepared as described in the Examples below, using a 2-kilogram (kg) hard rubber roller passed back and forth twice over the strip.
  • the assembly was allowed to dwell for 1 week at RT (room temperature) or for 1 day at 50 °C (heat aged). Samples were prepared for release testing by attaching the non- release side of the backing layer (KC S-90104) to a glass plate using Tape 2.
  • the release force was measured using an IMASS slip/peel tester (Model 3M90, commercially available from Instrumentors Inc., Strongsville, OH) at a peel angle of 180° and a peel rate of 2.3 m/minute (90 in./minute).
  • Re-adhesion values were measured by taking the tapes peeled from the release surface and rolling them onto a clean glass plate. The re-adhesion samples were then peeled on the IMASS slip/peel tester (Model 3M90) at a peel angle of 180° and a peel rate of 2.3 m/minute (90 in./minute).
  • Samples were prepared for testing by brushing PD-30 Royal Blue Enamel paint onto the release-coated side of the KC S-90104 backing layer using a 2.54 cm (1 in.) wide natural boar bristle brush (Part no. 1500, commercially available from Dalco Enterprises, Inc., New Brighton, MN).
  • the brush was dipped into the enamel paint until half of the bristle length was immersed into the paint.
  • One side of the brush was wiped on the edge of the paint container to remove excess paint, and the brush was then used to deposit the paint onto the release-coated side of the backing layer with about 6 strokes back and forth.
  • the painted area was about 3.8 cm (1.5 in.) wide and about 30.5 cm (12 in.) long.
  • the samples were visually examined and de- wetting of the sample by the paint was recorded as "Yes” if the surface was de-wetted by the paint and "No” if the surface was not de-wetted by the paint.
  • the samples were allowed to dry for about 16 hours at 22 °C (72 0 F) and 50% relative humidity.
  • a 2.54 cm (1 in.) width piece was cut with a slitter from each sample. Tape 2 was placed on the unpainted side of the cut piece and the cut piece was placed on a glass plate and rolled down with 2 passes of a rubber roller.
  • the bonded assembly dwelled at room temperature for about one minute and was peeled at a 180° peel angle using an IMASS slip/peel tester (Model 3M90) at a rate of 2.3 m/minute (90 in./minute). The samples were visually examined and the percent of paint flaking was estimated.
  • IMASS slip/peel tester Model 3M90
  • MeFBSEA was prepared by essentially following the procedure described in U.S. Pat. No. 6,664,354 (Savu et al.) Example 2, Part A & B.
  • FC-I solvent-based polymer solution 6.66 g of the FC-I solvent-based polymer solution were added to a glass vial containing a TEFLON stir bar. 0.5 g triethylamine, 4.0 g isopropyl alcohol, and 18 g deionized water were added to the glass vial, in the order stated, with stirring. The open vial was placed on a combination stir/hot plate, and heated, to drive off the ethyl acetate, isopropyl alcohol and excess triethylamine, until the temperature of the dispersion reached 98 °C. The concentration of the inverted water-based dispersion of FC-I was measured to be 12 wt% solids.
  • FC-I inverted water-based dispersion of FC-I was further diluted with deionized water to 6% by wt. solids and then 0.01 wt% SILWET L-77, based on the solids content of FC-I, was added to form Release Material 1.
  • Release Material 1 prepared above was coated over the RHOPLEX GL-618 using a #6 coating rod. The release-coated sample was then dried for 2 minutes at 150 "C to provide a release coated backing.
  • the release coated backing was tested for Release Force, Re-adhesion, Paint De- wetting and Flaking, and 180° Peel Adhesion using the test methods described above. The results are shown in Tables 1 and 2.
  • MeFBSEMA was prepared by essentially following the procedure described in
  • FC-2 solvent-based polymer solution 6.66 g of the FC-2 solvent-based polymer solution were added to a glass vial containing a TEFLON stir bar. 0.5 g triethylamine, 4.0 g isopropyl alcohol, and 18 g deionized water were added, in the order stated, with stirring. The open vial was placed on a combination stir/hot plate, and heated, to drive off the ethyl acetate, isopropyl alcohol and excess triethylamine, until the temperature of the dispersion reached 98 °C. The concentration of the inverted water-based dispersion of FC-2 was measured to be 12 wt%. solids.
  • FC-2 inverted water-based dispersion of FC-2 was further diluted with deionized water to 6% by wt. solids and then 0.01 wt% SILWET L-77, based on total solids content of FC-2, was added to form Release Material 2.
  • a release coated backing was prepared according to the procedure of Example 1 except that Release Material 2 was used in place of Release Material 1.
  • the release coated backing was tested for Release Force, Re-adhesion, Paint De- wetting and Flaking, and 180° Peel Adhesion using the test methods described above. The results are shown in Tables 1 and 2.
  • FC-I /AIRFLEX IOOHS mixture was further diluted with deionized water to 6% by wt. solids and then 0.01 wt% SILWET L-77, based on total solids content of FC- 1/AIRFLEX IOOHS mixture, was added to form Release Material 3.
  • a release coated backing was prepared according to the procedure of Example 1 except that Release Material 3 was used in place of Release Material 1.
  • the release coated backing was tested for Release Force, Re-adhesion, Paint De- wetting and Flaking, and 180° Peel Adhesion using the test methods described above. The results are shown in Tables 1 and 2.
  • FC-2/AIRFLEX IOOHS mixture was further diluted with deionized water to 6% by wt. solids and then 0.01 wt% SILWET L-77, based on total solids content of FC- 2/AIRFLEX IOOHS mixture, was added to form Release Material 4.
  • a release coated backing was prepared according to the procedure of Example 1 except that Release Material 4 was used in place of Release Material 1.
  • the release coated backing was tested for Release Force, Re-adhesion, Paint De- wetting and Flaking, and 180° Peel Adhesion using the test methods described above. The results are shown in Tables 1 and 2.
  • a separate 22-liter flask equipped with an agitator, temperature controller, condenser, nitrogen inlet and vacuum regulator was charged with 3000 g of above prepared 29.3% AP-I solvent-based solution, 6380 g deionized water and 122 g triethyl amine.
  • the resulting dispersion was subjected to vacuum strip from 300 to 85 mm Hg and 35 °C to 55 °C to strip off ethyl acetate. After the solvent stopped coming off, heating and vacuum strip were stopped.
  • the % solids of the resulting somewhat hazy inverted water- based dispersion of AP-I was measured to be 12% and the pH was measured to be 7.90.
  • the inverted water-based dispersion of AP-I was diluted with water to 6% by wt. solids and then 0.01 wt% SILWET L-77, based on total solids content of AP-I, was added to form Release Material C-I .
  • a release coated backing was prepared according to the procedure of Example 1 except that Release Material C-I was used in place of Release Material 1.
  • the release coated backing was tested for Release Force, Re-adhesion, Paint De- wetting and Flaking, and 180° Peel Adhesion using the test methods described above. The results are shown in Tables 1 and 2.
  • the AP-I /AIRFLEX IOOHS mixture was further diluted with deionized water to 6% by wt. solids and then 0.01 wt% SILWET L-77, based on total solids content of AP- 1/AIRFLEX IOOHS mixture, was added to form Release Material C-2.
  • a release coated backing was prepared according to the procedure of Example 1 except that Release Material C-2 was used in place of Release Material 1.
  • the release coated backing was tested for Release Force, Re-adhesion, Paint De- wetting and Flaking, and 180° Peel Adhesion using the test methods described above. The results are shown in Tables 1 and 2.

Abstract

In one aspect, the invention provides a water-based release coating composition comprising a mixture of (A.) from about 5 to about 100 wt% of a polymer comprising the reaction product of (a.) from 1 to about 15 wt% of a fluorinated monomer selected from the group consisting of monomers according to the general formula: Rf-X-OC(O)-C(R)=CH2, wherein Rf represents a perfluorinated aliphatic group having 3 or 4 carbon atoms, X is an organic divalent linking group, and R represents a hydrogen or methyl group, (b.) from about 40 to about 70 wt% of an alkyl (meth)acrylate, wherein the alkyl group contains from 16 to 22 carbon atoms, (c.) from about 3 to about 20 wt% of (meth)acrylic acid, (d.) from about 20 to about 40 wt% acrylonitrile, and (e.) from 0 to about 15 wt% of vinyl monomer, other than acrylonitrile, wherein the sum of (a.) through (e.) equals 100%; and (B.) from 0 to about 95 wt% of an extender polymer, wherein the sum of (A.) and (B.) is 100% and wt% is based on the total amount of solids in the composition.

Description

FLUOROCHEMICAL CONTAINING LOW ADHESION BACKSIZE
Background The invention relates to release compositions useful in release layers of release articles (for example, release liners) and adhesive articles (for example, pressure sensitive adhesive tapes (PSA)).
Polymeric release materials are known to be used in release layers in release articles (for example, release liners) and adhesive articles (for example, adhesive tapes) in order to provide a surface from which an adhesive can be easily and cleanly removed. For example, it is known to apply a polymeric release material to the back surface of an adhesive tape (for example, masking tape) in order to allow the tape to be provided in roll form and to be easily and conveniently dispensed by unwinding the roll. The release coating is expected to reproducibly provide an appropriate unwind force throughout the lifetime of the tape roll, and to not deleteriously affect the adhesive.
The Handbook of Pressure Sensitive Adhesive Technology, 2nd Ed., D. Satas Ed., Van Nostrand Reinhold, N. Y., 1989, Chapter 23, describes polymers which may be used as release agents for PSA tapes. Various polymers of lower critical surface tension such as silicones, fluorine containing polymers, and long alkyl side chain polymers are useful as release coatings. Long alkyl side chain polymers generally contain 16-20 carbon atoms in the alkyl side chains, and can be used to prepare release coatings that provide medium release forces which are especially desirable for PSA tapes. For example, GB 870,022 describes the use of copolymers prepared from octadecyl aery late, acrylonitrile, acrylic acid, and methyl acrylate for tape release coatings. The use of polymers or copolymers containing fluoroalkyl side groups has also been disclosed (U.S. Pat. No. 3,318,852). It has been found that the perfluoroalkyl groups need to contain at least 6 carbon atoms, and preferably at least 8 carbon atoms, in order for the polymer to provide sufficiently low unwind forces for tape rolls. However, it has been reported that certain perfluorooctyl-containing compounds may tend to bioacummulate in living organisms, raising concerns about their use. Recently, it has been found that perfluorobutyl-containing compounds are eliminated from the body much more effectively. In the case of masking tapes, the release coating is expected to provide moderate unwind force, between about 10 - 40 N/dm. If the unwind force is too low, the tape roll may inadvertently unwind under its own weight, and if the unwind force is too high, the tape roll will be difficult to unwind. In addition, the unwind force should be relatively stable over the lifetime of the roll. Another common requirement for masking tapes is that the release coating on the tape backside should provide good wetting and anchorage of both water and solvent based paints. Poor paint wetting and anchorage can result in paint flaking when the masking tape is removed from the substrate, thereby ruining the appearance of the freshly painted surface. Still another common requirement for masking tapes is that they have good holding power to their own backing. For example, in a paint- draping situation, one piece of masking tape may be used to attach a drape onto another piece of masking tape, that is, overtaping, that had been placed onto the surface to establish a paint line. Typically, improving one of these masking tape property requirements can result in a deterioration of another property. For example, in the case of a more aggressive PSA, a release coating that can provide easier and more stable release must be employed; however, such release coatings may not provide good paint wetting/anchorage or sufficient holding power to backing. In such cases, a compromise in overall release coating performance features must be reached.
One commonly used method of forming a release layer is to coat the release material from an organic solvent-based solution onto a substrate. After the solution has been applied to the substrate, the solvent is evaporated leaving behind a relatively uniform coating of the release material. As environmental regulations tighten, release materials that can be processed using organic solvent-free processes are more desirable.
Summary
In one aspect, the invention provides a water-based release coating composition comprising a mixture of
A. from about 5 to about 100 wt% of a polymer comprising the reaction product of a. from 1 to about 15 wt% of a fluorinated monomer selected from the group consisting of monomers according to the general formula: RrX-OC(O)-C(R)-CH2
wherein Rf represents a perfluorinated aliphatic group having 3 or 4 carbon atoms, X is an organic divalent linking group, and R represents a hydrogen or methyl group, b. from about 40 to about 70 wt% of an alkyl (meth)acrylate, wherein the alkyl group contains from 16 to 22 carbon atoms, c. from about 3 to about 20 wt% of (meth)acrylic acid, d. from about 20 to about 40 wt% acrylonitrile, and e. from 0 to about 15 wt% of vinyl monomer, other than those of a. through d., wherein the sum of a. through e. equals 100%; and B. from 0 to about 95 wt% of an extender polymer, wherein the sum of A. and B. is 100% and weight percent is based on the total amount of solids in the composition.
In another aspect, the invention provides an adhesive article comprising a backing having first and second surfaces, an adhesive on at least a portion of the first surface of the backing, and a water-based release composition as described herein on at least a portion of the second surface of the backing.
Detailed Description As used herein:
"(meth)acrylic or (meth)acrylate" refers to both acrylic or acrylate monomers and methacrylic/methacrylate monomers. Surprisingly, it has been found that the copolymerization of relatively small amounts of fluorochemical comonomers, having short 3-4 carbon perfluoroalkyl groups, into alkyl (meth)acrylate based release polymers has been found to provide improved holding power to backing without significantly increasing the release force or sacrificing paint wetting or paint flaking resistance. Such release polymers are therefore ideal for use as masking tape release coatings. Holding power to backing failures tend to be a low rate peel phenomenon, therefore increasing the peel force provided by the release coating at low peel rates results in improved holding power to backing performance.
Blending of the release polymer with an inexpensive polymer emulsion extender is an option to further improve tape properties, such as paint wetting and flaking resistance, and to lower the cost of the release coating.
Some of the advantages of the water-based release compositions of the invention include that the compositions: maintain desired release force; permit adhesives to exhibit relatively high peel forces at relatively low peel rates leading to improved overtaping and holding power to backing; provide good paint wetting and paint flaking resistance; and maintain re-adhesion strength with little or no release composition transfer to the adhesive.
The water-based release compositions of the invention contain (A.) from about 5 to about 100, in another embodiment, 15 to 50, wt% of a polymer or copolymer comprising the reaction product of (a.) from about 1 to about 15, in other embodiments, 10 to 15, 1 to 10, 5 to 10, and 1 to 5, wt% of a fluorinated monomer selected from the group consisting of monomers according to the general formula I:
RrX-OC(O)-C(R)=CH2,
wherein Rf represents a perfluorinated aliphatic group having 3 or 4 carbon atoms, X is an organic divalent linking group, and R represents a hydrogen or methyl group, (b.) about 40 to about 70, in other embodiments, 45 to 60, wt% alkyl (meth)acrylate, wherein the alkyl group contains from 16 to 22 carbon atoms, (c.) from about 3 to about 20, in other embodiments, 8 to 12, wt% of (meth)acrylic acid, (d.) from about 20 to about 40, in other embodiments, 25 to 35, wt% acrylonitrile, and (e.) from 0 to about 15 wt% of vinyl monomer, other than those of (a.) through (d.) above, wherein the sum of (a.) through (e.) equals 100%.
The fluorinated monomer can be described generally as having the formula I: Rf-X- OC(O)-C(R)=CH2, wherein Rf represents a perfluorinated aliphatic group having 3 or 4 carbon atoms, X is an organic divalent linking group, and R represents a hydrogen or methyl group. The linking group X links the perfluoroaliphatic group Rf to the free radically polymerizable group. Linking group X is generally non fluorinated and in some embodiments, contains from 1 to about 20 carbon atoms. X can optionally contain oxygen, nitrogen, or sulfur containing groups or a combination thereof, and X is free of functional groups that substantially interfere with free-radical polymerization (for example, polymerizable olefinic double bonds, thiols, and other such functionality known to those skilled in the art). Examples of suitable linking groups X include straight chain, branched chain or cyclic alkylene, arylene, aralkylene, sulfonyl, sulfoxy, sulfonamide, carbonamido, carbonyloxy, urethanylene, ureylene, and combinations thereof such as sulfonamidoalkylene.
Specific examples of fluorinated monomers include:
CF3CF2CF2CF2CH2CH2OCOCR1=CH2; CF3CF2CF2CF2CH2OCOCR1=CH2; CF3CF2CF2CF2SO2N(CH3)CH2CH2OCOCR1=CH2; CF3CF2CF2CF2SO2N(C2H5)CH2CH2OCOCR1-CH2; CF3CF2CF2CF2SO2N(CH3)CH2CH(CH3)OCOCR1=CH2; and
(CF3)2CFCF2SO2N(CH3)CH2CH2OCOCR1=CH2, wherein R1 is hydrogen or methyl.
If the above fluorinated monomer concentrations are too high, the release force may become excessive, and paint wetting and flaking resistance can suffer.
Another specific example is shown below as formula II:
C4F9SO
Figure imgf000006_0001
as described in U.S. Publication No. 2005/0143541 Al.
If the above fluorinated monomer concentrations of formula II are too high, the release force may become too low, and paint wetting and flaking resistance can suffer.
Fluorinated monomer concentrations of less than 1% in polymer A do not result in a significant increase in holding power to the backing (that is, increase in peel force at low peel rates). Examples of useful (b.) alkyl (meth)acrylates, wherein the alkyl group contains from 16 to 22 carbon atoms, include octadecyl acrylate, octadecyl methacrylate, and behenyl acrylate and combinations thereof.
Examples of useful (e.) other vinyl monomers which may be copolymerized in small amounts into the copolymer include alkyl (meth)acrylates, wherein the alkyl group contains from 1 to about 8 carbon atoms, including methyl (meth)acrylate, butyl (meth)acrylate, iso-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate and combinations thereof. Additional examples of other vinyl monomers include styrene and vinyl acetate and combinations thereof. The water-based release compositions of the invention contain (B.) from 0 to about
95, in another embodiment, 50 to 85, wt% of extender polymer. Extender polymers tend to reduce cost while improving paint wetting and flaking resistance. Useful extender polymers are in the form of polymeric emulsions. Examples of suitable polymer emulsions include those based on polyvinyl acetate (for example, VINAC 884 available from Air Products Inc., Allentown, Pa.), vinyl acetate/ethylene copolymers (for example, AIRFLEX 100HS, also available from Air Products), acrylic polymers (for example, HYCAR 26138 available from Noveon Inc., Cleveland, OH, and RHOPLEX GL-618 available from Rohm & Haas, Philadelphia, PA), and styrene/acrylic copolymers (for example, VANCRYL 989 available from Air Products) and combinations thereof. Alkyl (meth)acrylate concentrations of less than 40 wt% and acrylonitrile concentrations of less than 20 wt% in polymer (A.) may result in release forces that are higher than desired. Alkyl (meth)acrylate concentrations higher than 70 wt% and acrylonitrile concentrations of higher than 35 wt% can result in poor paint wetting and poor paint flaking resistance. In addition, such compositions are difficult to invert into water. Inversion of similar compositions are described in U.S. Pat. No. 3,011,988.
Polymers having a (meth) acrylic acid content of less than 3% are difficult to invert into water, while higher (meth) acrylic acid content can increase the polymer's hydrophilicity, resulting in poor release stability under high humidity conditions.
Extender polymer concentrations beyond about 95 wt% can increase the release force and any tape roll could be difficult to unwind. The release compositions of the present invention may contain other additives such as wetting agents and defoamers.
Adhesives Adhesives useful in the present invention as the adhesive layer are preferably pressure sensitive adhesives. They are normally tacky at room temperature and can be adhered to a surface by application of, at most, light finger pressure.
The adhesives useful in the invention may generally be based on general compositions of polyacrylate; polyvinyl ether; rubber such as natural rubber; polyisoprene; polychloroprene; butyl rubber; polyisobutylene; butadiene-acrylonitrile polymer, thermoplastic elastomer, and styrene-butadiene polymer; poly-alpha-olefm; amorphous polyolefin; silicone; ethylene-containing copolymer such as ethylene vinyl acetate; polyurethane; polyamide; epoxy; polyvinylpyrrolidone and vinylpyrrolidone copolymers; polyesters; and mixtures of the above. Additionally, the adhesives can contain additives such as tackifϊers, plasticizers, fillers, antioxidants, stabilizers, pigments, curatives, and solvents.
A general description of useful pressure-sensitive adhesives may be found in Encyclopedia of Polymer Science and Engineering, Vol. 13, Wiley-Interscience Publishers (New York, 1988) and Encyclopedia of Polymer Science and Technology, Vol. 1, Interscience Publishers (New York, 1964).
Additional description of useful pressure-sensitive adhesives may be found in Handbook of Pressure Sensitive Adhesive Technology, Second Edition, Van Nostrand Reinhold Publishers (New York, 1989).
For masking tapes, pressure sensitive adhesives based on tackified natural rubber are often desired.
Backings
Backings suitable for use with the release coatings of the invention may be utilized in the practice of the present invention. Such backing can be treated or untreated paper such as crepe, rope tissue, repulpable tissue, and kraft; woven fabric such as cotton, rayon, polyester, glass, and nylon; polymeric film such as cellophane, acetate, polyester, vinyl, polyvinyl chloride, polypropylene, polyethylene, and polyimide; nonwoven fabric such as a polymer scrim or web; foil such as aluminum, stainless steel, and lead; foam such as open and closed cell polyethylene, polyvinyl chloride, polyurethane, and polychbroprene; rubber, such as neoprene; metallized film, or combinations of the above, that is, laminates. The backings can be compounded further with fibers, fillers, plasticizers, pigments, stabilizers, antioxidants, or mixtures thereof. The backings may be a single layer or of multilayer construction.
The backings may additionally bear a primer layer or be surface treated, for example, corona treated, to promote adhesion of other components to it. For example, crepe paper backings used for masking tapes may be coated with a barrier layer prior to application of the release layer. An example of a barrier coat includes RHOPLEX GL-618 acrylic polymer emulsion, commercially available from Rohm & Haas, Philadelphia, PA. In addition, a primer layer may be applied onto the other side of the crepe paper to improve adhesion of the adhesive to backing. Release coating compositions of the invention can be applied to suitable backings by conventional coating techniques such as, for example, wire-wound rod, direct gravure, offset gravure, reverse roll, air-knife, and trailing blade coating. Generally, the coatable compositions of the invention may contain from about 1 to about 15 percent by weight solids in water. The adhesive articles of the invention generally comprise an adhesive composition on at least a portion of one surface of a backing and a water-based release composition on at least a portion of the other surface of the backing. The adhesive articles of the invention may be in the form of a sheet, multilayer sheets or stack or pad of sheets, or in the form of a roll, for example, a tape roll.
Examples
These examples are merely for illustrative purposes only and are not meant to be limiting on the scope of the appended claims. All parts, percentages, ratios, etc. in the examples and the rest of the specification are by weight unless indicated otherwise. Table of Abbreviations
Figure imgf000010_0001
Test Methods
Release Force and Re-adhesion Testing
This peel adhesion test is similar to the test method described in ASTM D 3330-90 except that the stainless steel substrate was replaced by a glass substrate.
A 24 mm wide strip of Tape 1 was adhered to the release layer of a release coated backing, prepared as described in the Examples below, using a 2-kilogram (kg) hard rubber roller passed back and forth twice over the strip.
The assembly was allowed to dwell for 1 week at RT (room temperature) or for 1 day at 50 °C (heat aged). Samples were prepared for release testing by attaching the non- release side of the backing layer (KC S-90104) to a glass plate using Tape 2.
The release force was measured using an IMASS slip/peel tester (Model 3M90, commercially available from Instrumentors Inc., Strongsville, OH) at a peel angle of 180° and a peel rate of 2.3 m/minute (90 in./minute). Re-adhesion values were measured by taking the tapes peeled from the release surface and rolling them onto a clean glass plate. The re-adhesion samples were then peeled on the IMASS slip/peel tester (Model 3M90) at a peel angle of 180° and a peel rate of 2.3 m/minute (90 in./minute).
Paint De-wetting and Flaking Test
Samples were prepared for testing by brushing PD-30 Royal Blue Enamel paint onto the release-coated side of the KC S-90104 backing layer using a 2.54 cm (1 in.) wide natural boar bristle brush (Part no. 1500, commercially available from Dalco Enterprises, Inc., New Brighton, MN). The brush was dipped into the enamel paint until half of the bristle length was immersed into the paint. One side of the brush was wiped on the edge of the paint container to remove excess paint, and the brush was then used to deposit the paint onto the release-coated side of the backing layer with about 6 strokes back and forth. The painted area was about 3.8 cm (1.5 in.) wide and about 30.5 cm (12 in.) long. The samples were visually examined and de- wetting of the sample by the paint was recorded as "Yes" if the surface was de-wetted by the paint and "No" if the surface was not de-wetted by the paint. The samples were allowed to dry for about 16 hours at 22 °C (72 0F) and 50% relative humidity. A 2.54 cm (1 in.) width piece was cut with a slitter from each sample. Tape 2 was placed on the unpainted side of the cut piece and the cut piece was placed on a glass plate and rolled down with 2 passes of a rubber roller. The bonded assembly dwelled at room temperature for about one minute and was peeled at a 180° peel angle using an IMASS slip/peel tester (Model 3M90) at a rate of 2.3 m/minute (90 in./minute). The samples were visually examined and the percent of paint flaking was estimated.
180° Peel Adhesion This peel adhesion test is similar to the test method described in ASTM D 3330-90.
24 mm wide by about 20 mm long strips of Tape 1 were adhered to the release coated backings, prepared as described in the Examples below, using a 2-kilogram roller passed back and forth twice over each strip. The assembly was then attached to a glass plate using Tape 2, allowed to dwell at room temperature for about one minute, and Tape 1 was peeled at 180° peel adhesion using an IMASS slip/peel tester (Model 3M90) at a peel rate of 0.51 cm/minute (0.2 in./minute), 1.0 cm/minute (0.4 in./minute), 2.0 cm/minute (0.8 in./minute), 8.1 cm/minute (3.2 in./minute), 32.5 cm/minute (12.8 in./minute) or 2.3 m/minute (90 in./minute), as specified in the Examples, over various data collection times: 23 seconds for peel rates 0.51, 1.0, 2.0, and 8.1 cm/minute; 10 seconds for peel rate 32.5 cm/minute; and 5 seconds for peel rate 2.3 m/minute. Two or three measurements were taken at each peel rate; the reported peel adhesion value is an average of the measurements.
Example 1 Preparation of Release Material 1
MeFBSEA was prepared by essentially following the procedure described in U.S. Pat. No. 6,664,354 (Savu et al.) Example 2, Part A & B.
5.40 g ODA, 3.24 g ACN, 1.20 g AA, 0.36 g MA, 1.80 g MeFBSEA, 28.0 g ethyl acetate, and 0.072 g VAZO 67 were placed in a 4 oz. bottle. The bottle was purged with nitrogen, capped and tumbled in a water bath at 65 °C. After 24 hours, an additional 0.048 g of VAZO 67 was added to the bottle, which was placed back into the 65 0C water bath for another 48 hours to form a solvent solution of polymer FC-I .
6.66 g of the FC-I solvent-based polymer solution were added to a glass vial containing a TEFLON stir bar. 0.5 g triethylamine, 4.0 g isopropyl alcohol, and 18 g deionized water were added to the glass vial, in the order stated, with stirring. The open vial was placed on a combination stir/hot plate, and heated, to drive off the ethyl acetate, isopropyl alcohol and excess triethylamine, until the temperature of the dispersion reached 98 °C. The concentration of the inverted water-based dispersion of FC-I was measured to be 12 wt% solids. The inverted water-based dispersion of FC-I was further diluted with deionized water to 6% by wt. solids and then 0.01 wt% SILWET L-77, based on the solids content of FC-I, was added to form Release Material 1.
Preparation of Release Coated Backing RHOPLEX GL-618 was diluted with deionized water to 35% by wt. solids content and coated onto KC S-90104 paper backing layer using a #6 coating rod. The coated paper was dried for 2 minutes at 100 ° C.
Release Material 1 prepared above was coated over the RHOPLEX GL-618 using a #6 coating rod. The release-coated sample was then dried for 2 minutes at 150 "C to provide a release coated backing.
The release coated backing was tested for Release Force, Re-adhesion, Paint De- wetting and Flaking, and 180° Peel Adhesion using the test methods described above. The results are shown in Tables 1 and 2.
Example 2
Preparation of Release Material 2
MeFBSEMA was prepared by essentially following the procedure described in
U.S. Pat. No. 6,664,354 (Savu et al.), Example 2, Part A & B, except using methacrylic acid instead of acrylic acid. 6.00 g ODA, 3.24 g ACN, 1.20 g AA, 0.36 g MA, 1.20 g MeFBSEMA, 28.0 g ethyl acetate, and 0.072 g VAZO 67 were placed in a 4 oz. bottle. The bottle was purged with nitrogen, capped and tumbled in a water bath at 65 0C. After 24 hours, an additional 0.048 g of VAZO 67 was added to the bottle, which was placed back into the 65 0C water bath for another 48 hours to form a solvent-based solution of polymer FC-2.
6.66 g of the FC-2 solvent-based polymer solution were added to a glass vial containing a TEFLON stir bar. 0.5 g triethylamine, 4.0 g isopropyl alcohol, and 18 g deionized water were added, in the order stated, with stirring. The open vial was placed on a combination stir/hot plate, and heated, to drive off the ethyl acetate, isopropyl alcohol and excess triethylamine, until the temperature of the dispersion reached 98 °C. The concentration of the inverted water-based dispersion of FC-2 was measured to be 12 wt%. solids.
The inverted water-based dispersion of FC-2 was further diluted with deionized water to 6% by wt. solids and then 0.01 wt% SILWET L-77, based on total solids content of FC-2, was added to form Release Material 2.
Preparation of Release Coated Backing
A release coated backing was prepared according to the procedure of Example 1 except that Release Material 2 was used in place of Release Material 1.
The release coated backing was tested for Release Force, Re-adhesion, Paint De- wetting and Flaking, and 180° Peel Adhesion using the test methods described above. The results are shown in Tables 1 and 2.
Example 3
Preparation of Release Material 3
100 parts by wt. of 12% FC-I inverted water-based dispersion and 51 parts by wt. 55% (as received) AIRFLEX IOOHS emulsion were shaken together in a vial.
The FC-I /AIRFLEX IOOHS mixture was further diluted with deionized water to 6% by wt. solids and then 0.01 wt% SILWET L-77, based on total solids content of FC- 1/AIRFLEX IOOHS mixture, was added to form Release Material 3. Preparation of Release Coated Backing
A release coated backing was prepared according to the procedure of Example 1 except that Release Material 3 was used in place of Release Material 1.
The release coated backing was tested for Release Force, Re-adhesion, Paint De- wetting and Flaking, and 180° Peel Adhesion using the test methods described above. The results are shown in Tables 1 and 2.
Example 4
Preparation of Release Material 4 100 parts by wt. of 12% FC-2 inverted water-based dispersion and 51 parts by wt.
55% (as received) AIRFLEX IOOHS emulsion were shaken together in a vial.
The FC-2/AIRFLEX IOOHS mixture was further diluted with deionized water to 6% by wt. solids and then 0.01 wt% SILWET L-77, based on total solids content of FC- 2/AIRFLEX IOOHS mixture, was added to form Release Material 4.
Preparation of Release Coated Backing
A release coated backing was prepared according to the procedure of Example 1 except that Release Material 4 was used in place of Release Material 1.
The release coated backing was tested for Release Force, Re-adhesion, Paint De- wetting and Flaking, and 180° Peel Adhesion using the test methods described above. The results are shown in Tables 1 and 2.
Comparative Example 1
Preparation of Release Material C-I A 22-liter flask equipped with an agitator, temperature controller with three heat lamps, condenser, nitrogen inlet and vacuum regulator was charged with 1451 g ODA solution (62.4% ODA in ethyl acetate), 452.4 g ACN, 156 g AA, 46.8 g MA, 23.4 g VAZO 67 and 3094 g ethyl acetate. The resulting mixture was heated to 65 0C while stirring. The reaction was carried out for 36 hours to form a solvent-based solution of polymer AP-I. The % solids were measured to be 29.3%. A separate 22-liter flask equipped with an agitator, temperature controller, condenser, nitrogen inlet and vacuum regulator was charged with 3000 g of above prepared 29.3% AP-I solvent-based solution, 6380 g deionized water and 122 g triethyl amine. The resulting dispersion was subjected to vacuum strip from 300 to 85 mm Hg and 35 °C to 55 °C to strip off ethyl acetate. After the solvent stopped coming off, heating and vacuum strip were stopped. The % solids of the resulting somewhat hazy inverted water- based dispersion of AP-I was measured to be 12% and the pH was measured to be 7.90.
The inverted water-based dispersion of AP-I was diluted with water to 6% by wt. solids and then 0.01 wt% SILWET L-77, based on total solids content of AP-I, was added to form Release Material C-I .
A release coated backing was prepared according to the procedure of Example 1 except that Release Material C-I was used in place of Release Material 1.
The release coated backing was tested for Release Force, Re-adhesion, Paint De- wetting and Flaking, and 180° Peel Adhesion using the test methods described above. The results are shown in Tables 1 and 2.
Comparative Example 2
Preparation of Release Material C-2
100 parts by wt. of 12% AP-I inverted water-based dispersion and 51 parts by wt. 55% AIRFLEX 100HS emulsion were shaken together in a vial.
The AP-I /AIRFLEX IOOHS mixture was further diluted with deionized water to 6% by wt. solids and then 0.01 wt% SILWET L-77, based on total solids content of AP- 1/AIRFLEX IOOHS mixture, was added to form Release Material C-2.
Preparation of Release Coated Backing
A release coated backing was prepared according to the procedure of Example 1 except that Release Material C-2 was used in place of Release Material 1.
The release coated backing was tested for Release Force, Re-adhesion, Paint De- wetting and Flaking, and 180° Peel Adhesion using the test methods described above. The results are shown in Tables 1 and 2.
Figure imgf000017_0001
Table 2
Figure imgf000017_0002
Foreseeable modifications and alterations of this invention will be apparent to those skilled in the art without departing from the scope and spirit of this invention. This invention should not be restricted to the embodiments that are set forth in this application for illustrative purposes.

Claims

What is claimed is:
1. A release polymer consisting of the reaction product of
(a) from 1 to about 15 wt% of a fluorinated monomer selected from the group consisting of monomers according to the general formula:
RrX-OC(O)-C(R)=CH2
wherein Rf represents a perfluorinated aliphatic group having 3 or 4 carbon atoms, X is an organic divalent linking group, and R represents a hydrogen or methyl group;
(b) from about 40 to about 70 wt% of an alkyl (meth)acrylate, wherein the alkyl group contains from 16 to 22 carbon atoms;
(c) from about 3 to about 20 wt% of (meth)acrylic acid; (d) from about 20 to about 40 wt% acrylonitrile; and
(e) from 0 to about 15 wt% of vinyl monomer, other than those of (a) through (d). 2.
2. The release polymer according to claim 1, wherein Rf has 4 carbon atoms.
3. The release polymer according to claim 1, wherein X is selected from the group consisting of alkylene, arylene, aralkylene, sulfonyl, sulfoxy, sulfonamide, carbonamido, carbonyloxy, urethanylene, ureylene, and combinations thereof.
4. The release polymer according to claim 1, wherein X is sulfonamidoalkylene.
5. The release polymer according to claim 1, wherein the alkyl (meth)acrylate is selected from the group consisting of octadecyl acrylate, octadecyl methacrylate, behenyl acrylate and combinations thereof.
6. The release polymer according to claim 1, wherein the vinyl monomer is selected from the group consisting of methyl (meth)acrylate, butyl (meth)acrylate, iso-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, styrene, vinyl acetate, and combinations thereof.
7. The release polymer according to claim 1, wherein the fluorinated monomer is present in an amount of from about 1 to about 10 weight percent.
8. The release polymer according to claim 1, wherein the alky l(meth)acry late is present in an amount of from about 45 to about 60 wt%.
9. The release polymer according to claim 1 , wherein the (meth)acrylic acid is present in an amount of from about 8 to about 12 wt%.
10. The release polymer according to claim 1 , wherein the acrylonitrile is present in an amount of from about 25 to about 35 wt%.
11. A water-based release composition comprising water and solids, wherein the solids comprise a release polymer consisting of the reaction product of (a) from 1 to about 15 wt% of a fluorinated monomer selected from the group consisting of monomers according to the general formula:
RrX-OC(O)-C(R)=CH2
wherein Rf represents a perfluorinated aliphatic group having 3 or 4 carbon atoms, X is an organic divalent linking group, and R represents a hydrogen or methyl group;
(b) from about 40 to about 70 wt% of an alkyl (meth)acrylate, wherein the alkyl group contains from 16 to 22 carbon atoms; (c) from about 3 to about 20 wt% of (meth)acrylic acid;
(d) from about 20 to about 40 wt% acrylonitrile; and (e) from 0 to about 15 wt% of vinyl monomer, other than those of (a) through (d).
12. The water-based release composition of claim 11 , wherein the solids further comprise extender polymer.
13. The composition according to claim 12, wherein the extender polymer is an emulsion containing a material selected from the group consisting of polyvinyl acetate, vinyl acetate/ethylene copolymers, acrylic polymers, styrene/acrylic copolymers, and combinations thereof.
14. The water-based release composition of claim 13 , wherein the composition comprises 1 to 15% by weight solids.
15. The water-based release composition of claim 14, wherein the solids comprise 15- 50% by weight of the release polymer and 50 to 85% by weight of the extender polymer.
16. The composition according to claim 15 further comprising an additive, optionally wherein the additive is selected from the group consisting of wetting agents, defoamers, and combinations thereof.
17. The composition according to claim 15, wherein the sum of the weight percent release polymer and the weight percent of the extender polymer is 100%.
18. An adhesive article comprising a backing having first and second surfaces; an adhesive on at least a portion of the first surface of the backing; and a release composition on at least a portion of the second surface of the backing, wherein the release composition comprises a release polymer consisting of the reaction product of (a) from 1 to about 15 wt% of a fluorinated monomer selected from the group consisting of monomers according to the general formula:
RrX-OC(O)-C(R)=CH2
wherein Rf represents a perfluorinated aliphatic group having 3 or 4 carbon atoms, X is an organic divalent linking group, and R represents a hydrogen or methyl group;
(b) from about 40 to about 70 wt% of an alkyl (meth)acrylate, wherein the alkyl group contains from 16 to 22 carbon atoms;
(c) from about 3 to about 20 wt% of (meth)acrylic acid;
(d) from about 20 to about 40 wt% acrylonitrile; and
(e) from 0 to about 15 wt% of vinyl monomer, other than those of (a) through (d).
19. The adhesive article of claim 18, wherein the release composition comprises 15- 50% by weight of the release polymer and 50 to 85% by weight of an extender polymer.
20. The adhesive article according to claim 19, wherein the adhesive article is in the form of a multi-layer sheet or a roll.
21. The adhesive article according to claim 19, wherein the backing comprises a material selected from the group consisting of treated paper, untreated paper, cotton, rayon, polyester, glass, nylon, cellophane, acetate, polyester, vinyl, polyvinyl chloride, polypropylene, polyethylene, and polyimide, aluminum, stainless steel, lead, open and closed cell polyethylene, open and closed cell polyvinyl chloride, open and closed cell polyurethane, open and closed cell polychloroprene, rubber, metallized film, and combinations thereof.
22. The adhesive article according to claim 19, wherein the adhesive comprises a material selected from the group consisting of polyacrylates, polyvinyl ether, natural rubber, isoprene, polychloroprene, butyl rubber, polyisobutylene, butadiene-acrylonitrile polymer, thermoplastic elastomer, styrene-butadiene polymer, poly-alpha-olefϊn, amorphous polyolefin, silicone, ethylene vinyl acetate, ethyl ethylacrylate, ethyl methacrylate, polyurethane, polyamide, epoxy, polyvinylpyrrolidone, vinylpyrroliione copolymers, polyesters, and mixtures thereof.
23. The adhesive article according to claim 19 in the form of a tape.
24. The adhesive article according to claim 23, wherein the backing comprises treated crepe paper.
25. The adhesive article according to claim 24 wherein the adhesive is a pressure sensitive adhesive.
26. The adhesive article according to claim 25, wherein the backing has a primer layer on a first surface of the backing.
PCT/US2005/043493 2004-12-28 2005-12-01 Fluorochemical containing low adhesion backsize WO2006071443A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05852656.7A EP1831269B1 (en) 2004-12-28 2005-12-01 Fluorochemical containing low adhesion backsize

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/027,602 2004-12-28
US11/027,602 US7253241B2 (en) 2004-12-28 2004-12-28 Fluorochemical containing low adhesion backsize

Publications (1)

Publication Number Publication Date
WO2006071443A1 true WO2006071443A1 (en) 2006-07-06

Family

ID=36130051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/043493 WO2006071443A1 (en) 2004-12-28 2005-12-01 Fluorochemical containing low adhesion backsize

Country Status (3)

Country Link
US (1) US7253241B2 (en)
EP (1) EP1831269B1 (en)
WO (1) WO2006071443A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705590A (en) * 2013-11-05 2016-06-22 纳幕尔杜邦公司 Compositions for surface treatments
CN110218288A (en) * 2019-05-24 2019-09-10 广东锐涂精细化工有限公司 A kind of Si modification Diamond Search waterborne polyester acrylic resin and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004012324T2 (en) * 2003-12-31 2009-03-19 3M Innovative Properties Co., St. Paul WATER- AND OIL-REPELLENT FLUOROACRYLATE
US7291688B2 (en) * 2004-12-28 2007-11-06 3M Innovative Properties Company Fluoroacrylate-mercaptofunctional copolymers
US7345123B2 (en) * 2004-12-28 2008-03-18 3M Innovative Properties Company Fluoroacrylate-multifunctional acrylate copolymer compositions
TWI340161B (en) * 2005-01-19 2011-04-11 Lg Chemical Ltd Acrylic pressure-sensitive adhesive composition with good re-workability,adhesive sheet,and method of preparing the sheet
US11649382B2 (en) * 2014-09-26 2023-05-16 Ahlstrom Oyj Biodegradable cellulose fiber-based substrate, its manufacturing process, and use in an adhesive tape
CN104263290B (en) * 2014-10-11 2016-05-04 安吉登冠竹木开发有限公司 A kind of environmental protection binding agent for bamboo fiber products
CN112625625B (en) * 2020-12-09 2022-04-22 安徽腾龙泵阀制造有限公司 Preparation method of low-temperature adhesive for low-temperature pump activated carbon adsorption material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3318852A (en) * 1965-04-05 1967-05-09 Minnesota Mining & Mfg Fluorine-containing polymers
EP0712046A1 (en) * 1994-10-13 1996-05-15 Minnesota Mining And Manufacturing Company Substrate having release agent/adhesive mixture coated thereon
EP1329548A1 (en) * 2002-01-21 2003-07-23 3M Innovative Properties Company Method of treatment of a textile or non-woven substrate to render same water and oil repellent

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3011988A (en) * 1957-05-21 1961-12-05 Minnesota Mining & Mfg Acrylic tetrapolymer, aqueous dispersion thereof and article coated therewith
GB870022A (en) 1959-06-23 1961-06-07 Minnesota Mining & Mfg Improvements in adhesive tapes
US3282905A (en) * 1961-05-03 1966-11-01 Du Pont Fluorine containing esters and polymers thereof
BE634770A (en) * 1961-05-03
US3398182A (en) * 1962-06-22 1968-08-20 Minnesota Mining & Mfg Fluorocarbon urethane compounds
FR1468301A (en) 1965-02-15 1967-02-03 American Cyanamid Co Mixture of transparent polymers more particularly intended for plasters and laminates
US3413226A (en) * 1966-05-09 1968-11-26 Lubrizol Corp Fluorine-containing copolymers
US4321404A (en) * 1980-05-20 1982-03-23 Minnesota Mining And Manufacturing Company Compositions for providing abherent coatings
FR2483447A1 (en) * 1980-06-03 1981-12-04 Ugine Kuhlmann COMPOSITION AND METHOD FOR PROTECTING MATERIALS AGAINST SOIL
US4513059A (en) * 1982-02-02 1985-04-23 Permacel Release coating composition
JPS61148208A (en) 1984-12-21 1986-07-05 Kuraray Co Ltd Polyvinyl ester based polymer having fluorine-containing group
US4792444A (en) * 1985-06-14 1988-12-20 Kao Corporation Cosmetic comprising fluoroalkyl (meth)acrylate copolymers
US5144056A (en) * 1985-12-03 1992-09-01 Atochem Fluorinated acrylic monomers as hydrophobic and oleophobic agents
FR2590895B1 (en) 1985-12-03 1988-01-15 Atochem FLUORINATED ACRYLIC MONOMERS, DERIVATIVE POLYMERS AND THEIR APPLICATION AS HYDROPHOBIC AND OLEOPHOBIC AGENTS
US5115059A (en) * 1988-10-31 1992-05-19 Conoco Inc. Terpolymers of alkyl acrylates or methacrylates, an olefinically unsaturated homo or heterocyclic-nitrogen compound and an allyl acrylate or methacrylate
DE3934543A1 (en) * 1989-10-17 1991-04-18 Bayer Ag PERFLUORALKYL GROUPS CONTAINING COPOLYMERISATE / II
DE3935859A1 (en) * 1989-10-27 1991-05-02 Bayer Ag DISPERSIONS OF PERFLUORAL CYL GROUPS CONTAINING COPOLYMERISATE
US6048952A (en) * 1991-07-10 2000-04-11 3M Innovative Properties Company Perfluoroalkyl halides and derivatives
DE69310815T2 (en) * 1992-07-03 1997-08-28 Asahi Glass Co Ltd Monomers containing polyfluorohydrocarbon groups, their polymers and the uses of these polymers
US5446118A (en) * 1994-08-11 1995-08-29 W. L. Gore & Associates, Inc. Fluorinated acrylic monomers containing urethane groups and their polymers
JP3399107B2 (en) * 1994-09-05 2003-04-21 ダイキン工業株式会社 Antifouling agent composition having water and oil repellency
DE4441982A1 (en) * 1994-11-25 1996-05-30 Bayer Ag Oil, water and dirt-repellent substrates and fluorine-containing agents
US6265060B1 (en) * 1995-03-15 2001-07-24 Imation Corp. Magnetic recording medium incorporating fluorine-containing, solvent-soluble vinyl copolymer having no vinyl chloride or vinylidene chloride components
US5725789A (en) * 1995-03-31 1998-03-10 Minnesota Mining And Manufacturing Company Aqueous oil and water repellent compositions
US5672651A (en) 1995-10-20 1997-09-30 Minnesota Mining And Manufacturing Company Durable repellent fluorochemical compositions
JP3707177B2 (en) 1996-12-20 2005-10-19 ユニマテック株式会社 Process for producing fluoroalkyl group-containing allylurethane copolymer aqueous emulsion and water / oil repellent / antifouling agent using the copolymer aqueous emulsion
JP3982012B2 (en) * 1997-01-30 2007-09-26 ダイキン工業株式会社 Novel compositions and treatment agents
US6001923A (en) * 1997-03-27 1999-12-14 Pilkington Aerospace Inc. Transparent fluorinated polyurethane coating compositions and methods of use thereof
US6500439B1 (en) * 1997-06-04 2002-12-31 Daikin Industries, Ltd. Copolymer for cosmetics
ATE313605T1 (en) * 1997-07-08 2006-01-15 Arkema COATING MATERIAL
US6121143A (en) * 1997-09-19 2000-09-19 3M Innovative Properties Company Abrasive articles comprising a fluorochemical agent for wafer surface modification
US6238798B1 (en) * 1999-02-22 2001-05-29 3M Innovative Properties Company Ceramer composition and composite comprising free radically curable fluorochemical component
JP4855616B2 (en) * 1999-10-27 2012-01-18 スリーエム イノベイティブ プロパティズ カンパニー Fluorochemical sulfonamide surfactant
JP2001279578A (en) * 2000-03-30 2001-10-10 Daikin Ind Ltd Water- and oil-repelling treatment on textile product
EP1338637A4 (en) * 2000-09-21 2008-03-05 Daikin Ind Ltd Aqueous dispersion of water- and oil-repellent and process for the production thereof
WO2002072727A1 (en) 2001-03-09 2002-09-19 Daikin Industries, Ltd. Water-and-oil repellant composition with improved suitability for cold cure
US6803109B2 (en) * 2001-03-09 2004-10-12 3M Innovative Properties Company Water-and oil-repellency imparting urethane oligomers comprising perfluoroalkyl moieties
KR100889714B1 (en) * 2001-04-13 2009-03-23 아사히 가라스 가부시키가이샤 Water-and-oil repellant composition
US6482911B1 (en) 2001-05-08 2002-11-19 3M Innovative Properties Company Fluoroalkyl polymers containing a cationogenic segment
US6689854B2 (en) * 2001-08-23 2004-02-10 3M Innovative Properties Company Water and oil repellent masonry treatments
US7056846B2 (en) 2001-12-04 2006-06-06 3M Innovative Properties Company Repellent fluorochemical compositions
US6890360B2 (en) * 2001-12-17 2005-05-10 3M Innovative Properties Company Fluorochemical urethane composition for treatment of fibrous substrates
US20040147188A1 (en) * 2003-01-28 2004-07-29 3M Innovative Properties Company Fluorochemical urethane composition for treatment of fibrous substrates
US7081545B2 (en) 2003-12-31 2006-07-25 3M Innovative Properties Company Process for preparing fluorochemical monoisocyanates
DE602004012324T2 (en) 2003-12-31 2009-03-19 3M Innovative Properties Co., St. Paul WATER- AND OIL-REPELLENT FLUOROACRYLATE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3318852A (en) * 1965-04-05 1967-05-09 Minnesota Mining & Mfg Fluorine-containing polymers
EP0712046A1 (en) * 1994-10-13 1996-05-15 Minnesota Mining And Manufacturing Company Substrate having release agent/adhesive mixture coated thereon
EP1329548A1 (en) * 2002-01-21 2003-07-23 3M Innovative Properties Company Method of treatment of a textile or non-woven substrate to render same water and oil repellent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705590A (en) * 2013-11-05 2016-06-22 纳幕尔杜邦公司 Compositions for surface treatments
CN110218288A (en) * 2019-05-24 2019-09-10 广东锐涂精细化工有限公司 A kind of Si modification Diamond Search waterborne polyester acrylic resin and preparation method thereof
CN110218288B (en) * 2019-05-24 2021-10-19 广东锐涂精细化工有限公司 Silicon-modified zero-VOC (volatile organic compound) water-based polyester acrylic resin and preparation method thereof

Also Published As

Publication number Publication date
EP1831269A1 (en) 2007-09-12
US20060141246A1 (en) 2006-06-29
US7253241B2 (en) 2007-08-07
EP1831269B1 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
EP1831318A1 (en) Water-based release coating containing fluorochemical
EP1831269B1 (en) Fluorochemical containing low adhesion backsize
EP1230314B1 (en) Release coating formulation providing low adhesion release surfaces for pressure sensitive adhesives
US5602202A (en) Methods of using acrylate-containing polymer blends
JP3679128B2 (en) Acrylate-containing polymer blend
EP2062955B2 (en) Aqueous pressure-sensitive adhesive composition and utilization thereof
JP3877670B2 (en) Adhesive tape or sheet
US6352766B1 (en) Self-associating low adhesion backsize material
JP5350332B2 (en) Adhesive products
US11649378B2 (en) Internal incorporation of hydrocarbon tackifiers in water-based (meth)acrylate adhesive compositions, reaction mixtures, methods, and articles
EP0596642A2 (en) Aqueous release coating composition
JP4108499B2 (en) Water-dispersed pressure-sensitive adhesive composition and pressure-sensitive adhesive product
CN107771201B (en) Pressure sensitive adhesive comprising (meth) acrylic polymer and amino acid crosslinker
Yang et al. Studies on the water resistance of acrylic emulsion pressure-sensitive adhesives (PSAs)
JP4731405B2 (en) Water-dispersed pressure-sensitive adhesive composition and pressure-sensitive adhesive product
EP2062954B1 (en) Aqueous pressure-sensitive adhesive composition and use thereof
JPS5814471B2 (en) Removable adhesive composition
AU592430B2 (en) Pressure sensitive adhesives and manufactured articles
JPS58187476A (en) Pressure-sensitive adhesive composition
CN108431162B (en) Primer composition and articles made therefrom
US20050101723A1 (en) Curable adhesive compositions
MXPA97010254A (en) Polymeric mixtures containing acryl

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005852656

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005852656

Country of ref document: EP