WO2006077970A1 - 燃料電池システムおよびその起動方法 - Google Patents

燃料電池システムおよびその起動方法 Download PDF

Info

Publication number
WO2006077970A1
WO2006077970A1 PCT/JP2006/300857 JP2006300857W WO2006077970A1 WO 2006077970 A1 WO2006077970 A1 WO 2006077970A1 JP 2006300857 W JP2006300857 W JP 2006300857W WO 2006077970 A1 WO2006077970 A1 WO 2006077970A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell system
secondary battery
mode
energy
Prior art date
Application number
PCT/JP2006/300857
Other languages
English (en)
French (fr)
Inventor
Masatsugu Oishi
Yasuyuki Muramatsu
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to JP2006553969A priority Critical patent/JP5191129B2/ja
Priority to EP06712082.4A priority patent/EP1845574B1/en
Priority to US11/814,630 priority patent/US8206858B2/en
Publication of WO2006077970A1 publication Critical patent/WO2006077970A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • H01M8/04194Concentration measuring cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04328Temperature; Ambient temperature of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04708Temperature of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04716Temperature of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04947Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/31Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for starting of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system and a driving method thereof, and more particularly to a fuel cell system including a secondary battery electrically connected to the fuel cell and a starting method thereof.
  • Fuel cells take time to reach a temperature at which sufficient power can be generated at room temperature, and power generation output is low at low temperatures. For this reason, when starting the fuel cell system, energy for driving the auxiliary machinery and the like is obtained from means other than the fuel cell, and the fuel cell system cannot be started up without means for supplying energy other than the fuel cell. Also, even if the fuel cell system has a secondary battery that supplies energy, for example, if the secondary battery power energy cannot be sufficiently supplied until the fuel cell reaches a temperature at which it can sufficiently generate power, the fuel cell There is a problem starting the system.
  • Patent Document 1 A fuel cell system having a secondary battery is disclosed in Patent Document 1, for example.
  • the secondary battery supplies power to the load when the system is started, and during that time, when the warm-up state of the fuel cell is detected and it is determined that the fuel cell is sufficiently warmed up, the fuel cell And a load are connected, and a technique is disclosed in which power is supplied from the fuel cell to the load.
  • Patent Document 1 JP-A-9-231991
  • the main object of the present invention is to store the energy stored in the secondary battery when the system is started.
  • An object is to provide a fuel cell system and a method for starting the fuel cell system, which can set a start mode suitable for the first time and cause no trouble in starting.
  • a fuel cell system connected to a load, the fuel cell, a secondary battery electrically connected to the fuel cell, and data relating to stored energy of the secondary battery. And determining the start-up mode of the fuel cell system to be one of a plurality of modes having different energy consumptions based on the obtained data relating to the stored energy of the secondary battery.
  • a fuel cell system is provided comprising a determination means.
  • a method of starting a fuel cell system that includes a fuel cell and a secondary battery that is electrically connected to the fuel cell, and that is connected to a load. Obtain data related to the energy stored in the battery, and based on the obtained data related to the energy stored in the secondary battery, determine the startup mode of the fuel cell system as one of a plurality of modes with different energy consumption. There is provided a method for starting a fuel cell system, which operates the fuel cell system according to a determined mode.
  • the start-up mode of the fuel cell system is determined based on the data related to the stored energy of the secondary battery, and the fuel cell system is operated according to the determined start-up mode.
  • the fuel cell system is operated according to the determined start-up mode.
  • the startup mode of the fuel cell system is determined based on the data relating to the stored energy of the secondary battery and at least one threshold value for determining the startup mode of the fuel cell system.
  • the optimal start-up mode of the fuel cell system can be determined.
  • the threshold value includes a first threshold value corresponding to energy required for starting the fuel cell system, and the fuel cell system is based on the data related to the stored energy of the secondary battery and the first threshold value. Determine whether the power to start. For example, if the energy storage energy data is stored energy itself, and the first threshold is the energy required to start the fuel cell system, the stored energy of the secondary battery is stored. If it is greater than or equal to the first threshold value, the fuel cell system is started.On the other hand, if the stored energy of the secondary battery is less than the first threshold value, it is determined that the fuel cell system cannot be started. Stop startup. This avoids unnecessary energy consumption.
  • the threshold value includes a second threshold value corresponding to normal energy necessary for starting the fuel cell system in the normal mode, and includes the second threshold value and the data related to the storage energy of the secondary battery. Based on this, it is determined whether to start the fuel cell system in the normal mode or the low consumption mode. For example, if the data related to stored energy is stored energy itself and the second threshold value is the normal energy itself required to start the fuel cell system in the normal mode, the stored energy of the secondary battery may be greater than or equal to the second threshold value. For example, the fuel cell system is started in the normal mode. On the other hand, if the energy stored in the secondary battery is less than the second threshold, the fuel cell system is started in the low consumption mode. In this way, the fuel cell system is activated in a mode corresponding to the stored energy of the secondary battery.
  • a third threshold value corresponding to the sum of the normal energy required to start the fuel cell system in the normal mode and the load energy required to normally drive the load is further used. Based on the data related to the storage energy of the secondary battery and the third threshold value, it is determined whether or not the load is normally driven, and the load is driven in a mode other than the normal drive force or normal drive according to the determination result.
  • the energy storage energy data is the energy storage energy itself and the third threshold is the sum of the normal energy load and the load energy energy
  • the load if the storage energy of the secondary battery is greater than or equal to the third threshold value, the load
  • the load if the energy stored in the secondary battery is less than the third threshold, the load is in a mode other than the normal drive, that is, the mode that drives the load in a limited manner by limiting the energy consumed by the load, Drive with. In this way, the load is driven to the extent possible according to the stored energy of the secondary battery.
  • the fuel cell system when the fuel cell system is started in the low consumption mode, it is determined whether or not the connection between the fuel cell and the secondary battery is to be released as compared with the case where the fuel cell system is started in the normal mode.
  • Set the specified voltage of the fuel cell to a low value and set the fuel based on the output voltage It is determined whether or not to cancel the connection between the battery and the secondary battery.
  • an aqueous solution tank that stores an aqueous fuel solution supplied to the fuel cell is used, and when the fuel cell system is started in the low consumption mode, the amount of the aqueous solution in the aqueous solution tank is not controlled. In this case, for example, it is not necessary to drive the pump, and power consumption can be suppressed.
  • the fuel cell when the fuel cell system is started in the low consumption mode, the fuel cell is supplied with a higher concentration of the aqueous fuel solution than when the fuel cell system is started in the normal mode to start power generation. In this case, the crossover increases and the efficiency decreases, but the temperature rise of the fuel cell is accelerated and the required time to the target temperature can be shortened.
  • control for reducing the amount of the aqueous solution in the aqueous solution tank is not performed.
  • the output of the air pump is made smaller than that in the normal mode. Start power generation. In this case, the power consumption of the air pump can be reduced.
  • the air when an air pump that supplies air containing oxygen to the fuel cell and an aqueous solution pump that supplies an aqueous fuel solution to the fuel cell are used and the fuel cell system is started in a low-consumption mode, the air also, reduce the flow rate of the aqueous fuel solution and drive the air pump and aqueous solution pump alternately. In this way, the air pump and aqueous solution pump must not be driven simultaneously! /, Thereby reducing the power consumption of the air pump and aqueous solution pump and storing the secondary battery. Reduction of electric energy can be suppressed.
  • the fuel cell system when the fuel cell system is started in the low consumption mode, the fuel cell system is connected to a load when the output voltage of the fuel cell becomes equal to or higher than the voltage of the secondary battery.
  • the predetermined temperature the temperature that is the threshold for releasing the no-load operation in the normal mode
  • the no-load operation of the fuel cell can be canceled.
  • the time for no-load operation can be shortened, and the temperature raising time to the target temperature can be shortened.
  • the output voltage of the fuel cell at the same fuel cell temperature is made smaller than when the fuel cell system is started in the normal mode. As a result, the output current from the fuel cell can be increased and the secondary battery can be charged quickly.
  • the drive of the load is switched to the normal drive if the energy storage energy of the secondary battery becomes equal to or higher than the energy corresponding to the third threshold value.
  • the load can be driven in a mode according to the amount of charge of the secondary battery.
  • the fuel aqueous solution itself has a large! / Heat capacity, so that sufficient output of the fuel cell is sufficient to raise the temperature of the fuel aqueous solution. It takes time to get Therefore, the present invention is suitably used for a fuel cell system that generates power by supplying an aqueous fuel solution to the fuel cell.
  • the present invention is suitably used for transportation equipment that requires a reduction in the capacity of a secondary battery when a fuel cell system is mounted.
  • the present invention is preferably used when at least one of the loads is a motor of a transportation device.
  • data related to stored energy is not limited to stored energy itself, but has a one-to-one relationship with stored energy (for example, mutual conversion between stored energy, voltage, current). Etc.
  • “Energy required to start the fuel cell system” means that the fuel cell temperature is required to reach a temperature (target temperature) at which the fuel cell system can be started and the fuel cell can sufficiently generate power (target temperature).
  • Energy! [0026]
  • the "threshold value corresponding to energy” is not limited to energy itself, but has a one-to-one correspondence with energy (for example, mutual conversion between energy, voltage, It may be a current or the like.
  • the "normal mode” refers to a mode in which the fuel cell system is operated without restricting the operation of elements such as auxiliary machinery at the time of startup.
  • the "low consumption mode” refers to a mode in which the fuel cell system is operated by restricting the operation of elements such as auxiliary machinery at the time of startup, and energy consumption is smaller than that in the normal mode.
  • Load energy refers to the energy normally required to drive the load until the fuel cell temperature reaches a temperature (target temperature) at which the fuel cell can sufficiently generate power (target temperature).
  • Normal driving refers to driving without limitation.
  • FIG. 1 is an illustrative view showing a main part of a fuel cell system according to the present invention.
  • FIG. 2 is a perspective view showing a state in which a fuel cell system is mounted on a motorcycle frame.
  • FIG. 3 is an illustrative view showing a main part of the fuel cell system.
  • FIG. 4 is a block diagram showing an electrical configuration of the fuel cell system.
  • FIG. 5 (a) is a graph showing the change over time in the fuel cell temperature after the start of the fuel cell system, and (b) is the correspondence between the fuel cell temperature at the start of the fuel cell system and the required time to the target temperature. It is a graph which shows a relationship.
  • FIG. 6 is a circuit diagram showing a voltage control unit.
  • FIG. 7 is a flowchart showing an example of main operations at the start of the fuel cell system.
  • FIG. 8 is a graph for explaining a case where the fuel cell system is started in the low consumption mode but the vehicle is not driven.
  • FIG. 9 is a graph for explaining a case where the fuel cell system is normally started and the vehicle is driven in a limited manner. 10) A graph for explaining a case where the fuel cell system is normally started and the vehicle is normally driven.
  • FIG. 11 is a graph showing an example of limiting the output of a vehicle, where (a) shows the case where the maximum current of the motor is limited, and (b) shows the case where the maximum output of the motor is limited.
  • FIG. 12 is a graph showing that the required stored energy of the secondary battery varies depending on the temperature at the start of the fuel cell system.
  • FIG. 13 is a flowchart showing the operation when the fuel cell system is started in the low consumption mode but the vehicle is not driven.
  • FIG. 14 is a flowchart showing the operation when the fuel cell system is activated in the normal mode and the vehicle is driven in a limited manner.
  • FIG. 15 is a flowchart showing the operation when the fuel cell system is started in the normal mode and the vehicle is normally driven.
  • FIG. 16 is a flowchart showing the operation at the start of power generation.
  • FIG. 17 is a flowchart showing processing for determining an alarm level.
  • FIG. 18 is a flowchart showing a process for controlling the amount of aqueous solution in the aqueous solution tank.
  • FIG. 19 is a flowchart showing a process for controlling the concentration of a methanol aqueous solution.
  • FIG. 20 is a flowchart showing a process for reducing the amount of aqueous solution in the aqueous solution tank.
  • FIG. 21 is a flowchart showing a process for controlling an aqueous solution pump and an air pump.
  • FIG. 22 is a flowchart showing a process for controlling the output voltage of the fuel cell.
  • FIG. 23 (a) is a graph showing the temperature of the fuel cell and the output voltage of the fuel cell with respect to the operating time in the normal mode, and (b) is the temperature of the fuel cell and the fuel cell with respect to the operating time in the low consumption mode. It is a graph which shows an output voltage.
  • FIG. 24 is an illustrative view for explaining another embodiment of the present invention.
  • a fuel cell system 10 is configured as a direct methanol fuel cell system. Since the direct methanol fuel cell system does not require a reformer, it can be suitably used for devices that require portability or devices that require downsizing.
  • the fuel cell system 10 is used for a motorcycle which is an example of transportation equipment.
  • FIG. 2 only the vehicle frame 200 is shown for a motorcycle. In FIG. 2, the left side is the front of the vehicle and the right side is the rear of the vehicle.
  • the fuel cell system 10 is disposed along the body frame 200.
  • motorcycles are referred to as vehicles as necessary.
  • the fuel cell system 10 includes a fuel cell 12.
  • Fuel cell 12 A fuel in which a plurality of fuel cells including a solid polymer membrane electrolyte 12a and an anode (fuel electrode) 12b and a force sword (air electrode) 12c sandwiching the electrolyte 12a from both sides are connected (stacked) in series It is configured as a battery cell stack.
  • the fuel cell system 10 also includes a fuel tank 14 containing high-concentration methanol fuel (an aqueous solution containing about 5% methanol), and the fuel tank 14 is connected via a fuel supply pipe 16. Is connected to an aqueous solution tank 18 containing methanol aqueous solution S. A fuel pump 20 is inserted in the fuel supply pipe 16, and the fuel pump 20 drives the methanol fuel F in the fuel tank 14 to the aqueous solution tank 18. Supplied.
  • methanol fuel an aqueous solution containing about 5% methanol
  • a level sensor 15 is attached to the fuel tank 14, and the level of the methanol fuel F in the fuel tank 14 is detected.
  • a level sensor 22 is attached to the aqueous solution tank 18 to detect the level of the aqueous methanol solution S in the aqueous solution tank 18. By detecting the liquid level with the level sensors 15 and 22, the amount of liquid in the tank can be detected. The same applies to the level sensor 54 described later.
  • the aqueous solution tank 18 is connected to the anode 12 b of the fuel cell 12 via the aqueous solution pipe 24.
  • An aqueous solution pump 26, a radiator 28 functioning as a heat exchanger, and an aqueous solution filter 30 are inserted into the aqueous solution pipe 24 in this order from the upstream side.
  • a cooling fan 32 for cooling the radiator 28 is disposed in the vicinity of the radiator 28.
  • the aqueous methanol solution S in the aqueous solution tank 18 is sent to the anode 12b by the aqueous solution pump 26, cooled by the radiator 28 as necessary, further purified by the aqueous solution filter 30, and supplied to the anode 12b.
  • an air pump 34 is connected to the force sword 12 c of the fuel cell 12 via an air side pipe 36, and an air filter 38 is inserted into the air side pipe 36. Accordingly, air containing oxygen (oxidant) from the air pump 34 is purified by the air filter 38 and then supplied to the power sword 12c.
  • the anode 12b and the aqueous solution tank 18 are connected to each other via a knock 40, and an unreacted methanol aqueous solution discharged from the anode 12b and the generated carbon dioxide are supplied to the aqueous solution tank 18.
  • a water tank 44 is connected to the force sword 12c via a pipe 42.
  • Pipe 42 has A radiator 46 functioning as a gas-liquid separator is inserted, and a cooling fan 48 for cooling the radiator 46 is disposed in the vicinity of the radiator 46.
  • Exhaust gas containing water (water and water vapor) discharged from the force sword 12c is supplied to the water tank 44 through the pipe.
  • aqueous solution tank 18 and the water tank 44 are connected via a CO vent pipe 50.
  • Vent pipe 50 has a methanol trap 52 for separating methanol aqueous solution S.
  • a level sensor 54 is attached to the water tank 44, and the liquid level in the water tank 44 is detected. Further, an exhaust gas pipe 56 is attached to the water tank 44, and the exhaust gas pipe 56 exhausts carbon dioxide and exhaust from the power sword 12c.
  • the water tank 44 is connected to the aqueous solution tank 18 via a water reflux pipe 58, and a water pump 60 is inserted into the water reflux pipe 58.
  • the water in the water tank 44 is returned to the aqueous solution tank 18 by driving the water pump 60 when necessary depending on the situation of the aqueous solution tank 18.
  • a bypass pipe 62 is formed between the radiator 28 and the aqueous solution filter 30.
  • the concentration sensor 64 for detecting the concentration of the methanol aqueous solution S in the bypass pipe 62 and the aqueous solution temperature for detecting the temperature of the methanol aqueous solution S are also shown.
  • a sensor 65 is provided, a battery temperature sensor 66 for detecting the temperature of the fuel cell 12 is attached to the fuel cell 12, and an outside air temperature sensor 68 for detecting the outside air temperature is provided in the vicinity of the air pump 34.
  • the battery temperature sensor 66 is disposed at a location where the temperature is highest in the fuel cell 12, and is provided, for example, near the outlet of the methanol aqueous solution S.
  • the fuel cell system 10 includes a control circuit 70.
  • the control circuit 70 performs necessary calculations to control the operation of the fuel cell system 10, a clock circuit 74 that gives a clock to the CPU 72, an elapsed time based on the clock given to the CPU 72, a flag, calculation data, etc.
  • Volatile memory 76 made of DRAM, for example, and nonvolatile memory 78 made of EEPROM or SRAM, for example, for storing program data for controlling the operation of the fuel cell system 10, etc.
  • Reset IC80 to prevent malfunction of fuel cell system 10, interface circuit 82a to 82r for connecting to external devices, voltage detection circuit 84 to detect output voltage of fuel cell 12, and output current of fuel cell 12 detected Current detection circuit 86, voltage adjustment circuit 88 for adjusting the output voltage of fuel cell 12, voltage protection circuit 92 for preventing overvoltage of electric circuit 90, and fuel cell 12 provided in electric circuit 90 It includes a diode 94 for protection, a power supply circuit 96 for supplying a voltage for normal mode to the electric circuit 90, and a power supply circuit 98 for supplying a voltage for low power consumption mode to the electric circuit 90.
  • the fuel cell system 10 is configured as a series system that supplies power to a load via a secondary battery 108 (described later).
  • the voltage detection circuit 84, the current detection circuit 86, the voltage adjustment circuit 88, and the diode 94 constitute the voltage control unit 100.
  • the CPU 72 of such a control circuit 70 receives detection signals from the concentration sensor 64, the aqueous solution temperature sensor 65, the battery temperature sensor 66, and the outside air temperature sensor 68, respectively, in the interface circuits 82a, 82b, 82c and 82d. In addition, detection signals from the level sensors 15, 22 and 54 are input via the interface circuits 821, 82k and 82 ⁇ , respectively. Furthermore, the CPU 72 is given to the CPU 72 via the detection signal force interface circuit 82 ⁇ from the overturn switch 102 that detects the presence or absence of the overturn, and signals from the input unit 104 for various settings and information input are supplied to the interface circuit. Is given via 82 ⁇ .
  • the fuel pump 20, the aqueous solution pump 26, the air pump 34, the heat exchanger cooling fan 32, the gas-liquid separator cooling fan 48 and the water pump 60 are connected to the interface circuits 82j, 82g, 82h, 82f, respectively.
  • Control signals are provided via 82e and 82i, and these auxiliary devices are controlled by the CPU 72.
  • a control signal is given from the CPU 72 to the display unit 106 for displaying various types of information and notifying various types of information to the passengers of the motorcycle via the interface circuit 82q, and the display unit 106 is controlled.
  • a secondary battery 108 built in the notch box 107 is connected to the fuel cell 12.
  • the secondary battery 108 complements the output from the fuel cell 12 and is charged by as much electric energy as the fuel cell 12, and the electric energy is given to the motor 116 (described later) and accessories by the discharge.
  • the secondary battery 108 is charged with the electric energy.
  • a nickel metal hydride battery, a lithium ion battery, a Ni—Cd battery, or the like is used as the secondary battery 108.
  • a control device 110 is connected to the secondary battery 108.
  • the control device 110 includes a secondary battery storage amount detection unit 112 that detects the storage amount of the secondary battery 108, and can detect the voltage, current, temperature, and the like of the secondary battery 108.
  • the amount of electricity stored in the secondary battery 108 is obtained by multiplying the secondary battery voltage by a predetermined constant, but may be obtained in consideration of the current and the degree of battery deterioration.
  • the control device 110 transmits information on the secondary battery 108 to the control circuit 70 via the interface circuit 113 and also transmits to the motor controller 114 connected to the secondary battery 108.
  • a load that is, a motor 116 of a motorcycle is connected to the motor controller 114, and the electric energy given to the motor 116 is controlled by the motor controller 114.
  • a meter 118 for measuring various data of the motor 116 is connected to the motor controller 114.
  • Information such as the data measured by the meter 118 and the status of the motor 116 is input to the CPU 72 via the interface circuit 113 of the control device 110 and the interface circuit 82m of the control circuit 70.
  • the storage amount of the secondary battery 108, the stored energy of the secondary battery 108, the detected temperature of the fuel cell 12, and the fuel cell 12 rise to the target temperature.
  • the third threshold for determining whether or not the load is normally driven, and data such as load energy are stored.
  • the non-volatile memory 78 includes low power consumption required to drive the fuel cell system 10 in the low consumption mode for unit time, normal power required to drive the fuel cell system 10 in the normal mode for unit time, Stored are data such as a specified voltage for judging whether or not the fuel cell 12 is in a no-load state, and a vehicle average output corresponding to unit energy required to normally drive the load for a unit time.
  • the non-volatile memory 78 stores table data indicating the relationship between the temperature of the fuel cell 12 when the fuel cell system 10 is started up and the required time to the target temperature (about 65 ° C. in this embodiment). Is done.
  • the required time is the fuel power at startup. Calculated based on the temperature of the pond 12, power generation efficiency, and heat capacity.
  • the fuel cell temperature at time 0 on the vertical axis indicates the temperature at startup.
  • the nonvolatile memory 78 stores control information (control parameters, programs, etc.) corresponding to a plurality of activation modes with different energy consumptions.
  • the CPU 72 corresponds to the first determination means and the second determination means
  • the volatile memory 76 and the nonvolatile memory 78 correspond to the storage means.
  • the current detection circuit 86 is configured by a current transformer, for example, and detects an output current from the fuel cell 12. The current detected by the current detection circuit 86 is converted into a voltage and given to the CPU 72.
  • a voltage detection circuit 84 is connected to the output side of the current detection circuit 86, and the output voltage of the fuel battery 12 is detected. The detected output voltage of the fuel cell 12 is supplied to the CPU 72. Note that the voltage detection circuit 84 also detects the voltage of the secondary battery 108.
  • a voltage adjustment circuit 88 including two FET1 and FET2 is provided on the output side of the voltage detection circuit 84. A control signal is supplied from the CPU 72 to the gates of the FET1 and FET2, and the output voltage of the fuel cell 12 is adjusted based on the control signal. Further, a diode 94 for protecting the fuel cell 12 is connected to the output side of the voltage adjustment circuit 88.
  • the secondary battery storage amount detection unit 112 is connected to the output side of the voltage control unit 100 configured in this manner, and the storage amount of the secondary battery 108 is detected by the secondary battery storage amount detection unit 112. Is done.
  • the fuel cell system 10 starts auxiliary power generation such as the aqueous solution pump 26 and the air pump 34 and starts power generation (operation) when a main switch (not shown) is turned on.
  • a methanol aqueous solution having a desired concentration stored in the aqueous solution tank 18 S is sent toward the fuel cell 12 by driving the aqueous solution pump 26, cooled by the radiator 28 as necessary, purified by the aqueous solution filter 30, and supplied to the anode 12b.
  • air containing oxygen as an oxidant is sent to the fuel cell 12 by driving the air pump 34, and purified by the air filter 38 and supplied to the power sword 12c.
  • Carbon dioxide produced at the anode 12b of the fuel cell 12 is fed to the water tank 44 through the Neub 40, the aqueous solution tank 18 and the CO vent pipe 50, and from the exhaust gas pipe 56.
  • the water crossover is a phenomenon in which several moles of water move to the force sword 12c as the hydrogen ions generated at the anode 12b move to the force sword 12c.
  • Methanol crossover is a phenomenon in which methanol moves to cathode 12c as hydrogen ions move to force sword 12c. In the force sword 12c, methanol reacts with the air supplied from the air pump 34 and is decomposed into water and carbon dioxide.
  • the water (liquid) collected in the water tank 44 is appropriately refluxed to the aqueous solution tank 18 via the water reflux pipe 58 by driving the water pump 60 and used as water of the methanol aqueous solution S.
  • the fuel cell system 10 has three activation modes: a normal mode, a low consumption mode, and a non-activation mode, and the energy consumption of each mode is different.
  • the storage amount (remaining capacity) of the secondary battery 108 is detected and stored in the volatile memory 76 (step Sl).
  • the secondary battery storage amount detection unit 112 of the control device 110 detects the secondary battery voltage, and the storage amount of the secondary battery 108 is obtained by multiplying the detected secondary battery voltage by a predetermined constant.
  • the means for obtaining stored energy includes a secondary battery storage amount detection unit 112 and a CPU 72. Note that the charged amount of the secondary battery 108 may be obtained based on the secondary battery voltage detected by the voltage detection circuit 84! /.
  • the temperature of the fuel cell 12 is detected by the battery temperature sensor 66 (step S3).
  • the temperature of the fuel cell 12 is a temperature corresponding to the output of the fuel cell 12, and the temperature of the fuel cell 12 is, for example, the temperature of the methanol aqueous solution S having a large heat capacity in the aqueous solution tank 18 or the force sword 12c.
  • the exhaust temperature may be substituted.
  • step S5 referring to the table data indicating the relationship between the temperature of the fuel cell 12 at the time of startup and the required time to the target temperature, stored in the nonvolatile memory 78, the detected fuel cell 12 Based on the temperature, the time required to increase to the target temperature is estimated (step S5).
  • the low energy consumption that is the first threshold value is calculated.
  • time required X low power consumption low energy consumption
  • the low power consumption is about 70 W, and the power consumption in the air pump 34 and the vehicle headlights dominate.
  • step S9 it is determined whether or not the energy stored in secondary battery 108 is smaller than the low energy consumption (first threshold value) (step S9).
  • Rechargeable battery 108 has low energy consumption If it is smaller than one, it is determined that the vehicle cannot be started, and the start of the fuel cell system 10 is stopped and the vehicle is not driven (step S11).
  • step S13 normal energy that is the second threshold value is calculated.
  • step S15 it is determined whether or not the stored energy of the secondary battery 108 is smaller than the normal energy (second threshold) (step S15). If the stored energy of the secondary battery 108 is smaller than the normal energy, it is determined that the secondary battery 108 cannot be started in the normal mode, and the fuel cell system 10 is started in the low consumption mode, but the vehicle is not driven (step S17). Thus, even when the stored energy of the secondary battery 108 is not so much, the fuel cell system 10 can be started.
  • step S15 if the stored energy of the secondary battery 108 is equal to or higher than the normal energy in step S15, it is determined that the secondary battery 108 can be started in the normal mode, and the process proceeds to step S19.
  • step S23 it is determined whether or not the stored energy power of secondary battery 108 is smaller than the sum of load energy and normal energy (third threshold) (step S23). If the storage battery of secondary battery 108 is smaller, driving of the vehicle is restricted, and the amount of restriction is set (step S25). In this embodiment, the rear wheel drive of the vehicle during travel is limited. For example, the limit amount is prepared in stages, and the limit amount is set according to the stored energy of the secondary battery 108. Then, when the fuel cell system 10 is activated in the normal mode, the vehicle is limitedly driven (step S 27).
  • step S23 the energy stored in secondary battery 108 is the load energy. If it is equal to or greater than the sum of the normal energy and the normal energy, the fuel cell system 10 is activated in the normal mode, and the vehicle is also normally driven to travel normally (step S29).
  • startup mode of the fuel cell system 10 and the driving state of the vehicle may be displayed on the display unit 106 through the above-described operation.
  • the fuel cell system 10 is started in the low consumption mode, but the vehicle is not driven.
  • the storage battery initial value of the secondary battery 108 as shown in Fig. 8 (a) is obtained, when the fuel cell system 10 is started in the normal mode, the secondary battery 108 of the secondary battery 108 is in the middle of starting as shown by the broken line A1. The stored energy becomes zero, and the fuel cell system 10 cannot be started even when the vehicle is not driven. Therefore, in this case, the fuel cell system 10 is started not in the normal mode but in the low consumption mode, and particularly, the power consumption of the auxiliary machinery is limited to start power generation. Then, the stored energy of the secondary battery 108 is as shown by a solid line B1.
  • the power consumption of the auxiliary machinery is limited by, for example, shortening the time required to reach the target temperature or limiting the driving of the auxiliary machinery.
  • the broken line A2 indicates the output of the fuel cell 12 when activated in the normal mode
  • the solid line B2 indicates the output of the fuel cell 12 when activated in the low consumption mode
  • the broken line A3 indicates the normal mode.
  • Fuel cell system 10 power consumption when activated solid line B3 shows power consumption of fuel cell system 10 when activated in low power consumption mode
  • solid line B4 shows average vehicle output when the vehicle is not driven .
  • the storage battery initial value of the secondary battery 108 has the initial value as shown in FIG. 9 (a)
  • the storage energy of the secondary battery 108 is low. Therefore, as shown by the broken line CI, the stored energy of the secondary battery 108 becomes zero during the startup, and the startup of the fuel cell system 10 cannot be continued. Therefore, in this case, the driving of the vehicle is restricted and the fuel cell system 10 is started in the normal mode. Then, the stored energy of the secondary battery 108 is as shown by the solid line D1.
  • the solid line D2 is the output of the fuel cell 12 at the start in the normal mode
  • the solid line D 3 is the power consumption of the fuel cell system 10 at the start in the normal mode
  • the solid line D4 is the vehicle.
  • the broken line C4 indicates the average output of the vehicle during normal driving.
  • the average output of the vehicle is limited from dashed line C4 to solid line D4.
  • the fuel cell system 10 When the secondary battery 108 has an initial stored energy value as shown in FIG. 10 (a), the fuel cell system 10 is started in the normal mode and the vehicle is normally driven. Then, as shown by the solid line E1, the energy is consumed by the auxiliary equipment and the vehicle of the fuel cell system 10 until time t, and the stored energy of the secondary battery 108 decreases. After time t, the output of the fuel cell 12 stabilizes and exceeds the energy consumed by the auxiliary machinery and the vehicle, so that no energy is taken out from the secondary battery 108 and is compensated by the output of the fuel cell 12. As the machinery and the vehicle are driven, the secondary battery 108 starts to be charged. In this case, since the stored energy of the secondary battery 12 has a margin, starting in the normal mode and normal driving are possible.
  • the solid line E2 is the output of the fuel cell 12 at the start-up in the normal mode
  • the solid line E3 is the power consumption of the fuel cell system 10 at the start-up in the normal mode
  • the solid line E4 is the normal drive Indicates the average output of the vehicle at the time.
  • FIGS. 8 (b), 9 (b), and 10 (b) show the average output of the vehicle.
  • FIG. 11 shows an example of limiting the output of the vehicle.
  • FIG. 11 (a) shows an example in which the maximum current of the motor 116 is limited to limit the output of the vehicle. From FIG. 11 (a), it can be seen that by limiting the maximum current of the motor 116, the rear wheel driving force is reduced and the energy consumption can be suppressed.
  • FIG. 11B shows an example in which the maximum output of the motor 116 is limited to limit the output of the vehicle. It can be seen that by limiting the maximum output of the motor 116, the rear wheel driving power indicated by the oblique lines in FIG.
  • the energy stored in the secondary battery 12 differs depending on the temperature at which the fuel cell 12 is started. Specifically, storage energy Fl is required when the temperature at startup is 20 ° C, storage energy F2 is required when the temperature is 30 ° C, and storage energy F3 is required when the temperature is 40 ° C. The storage energy required for the secondary battery 108 is reduced. The stored energy F1 to F3 is stored energy required when the fuel cell system 10 is started in the normal mode and the vehicle is normally driven.
  • step S 17 of FIG. 7 the subroutine of step S 17 of FIG. 7, that is, the operation in the case where the fuel cell system 10 is started in the low consumption mode but the vehicle is not driven! To do.
  • the fuel cell system 10 is activated in the low consumption mode and power generation is started (step S51), and then normal operation is performed (step S53).
  • step S55 the vehicle as a load is not driven at first (step S55). That is, no voltage is applied to the motor 116 and the motor 116 is not driven.
  • step S57 the state is continued until the stored energy of the secondary battery 108 becomes equal to or higher than the normal energy (second threshold). That is, only the secondary battery 108 is charged until the secondary battery 108 is charged to some extent.
  • the vehicle is driven in a restricted state (for example, the maximum current of motor 116 is restricted) (step S59).
  • step S61 the vehicle continues to be driven in that state until the newly calculated energy stored in the secondary battery 108 becomes equal to or greater than the sum of the normal energy and the load energy (third threshold). If the stored energy of battery 108 is equal to or greater than the sum of normal energy and load energy, the restriction is released and the vehicle is normally driven (step S63).
  • step S27 of FIG. 7 that is, the operation when the fuel cell system 10 is started in the normal mode and the vehicle is driven in a limited manner will be described.
  • the level sensor 54 detects the amount of liquid (water amount) in the water tank 44 (step S101). If the amount of liquid detected in step S101 is preset! /, The first predetermined amount (for example, 250 cc) or more (step S103 is YES), the water pump 60 is driven by the power of the secondary battery 108, The water in the water tank 54 is returned to the aqueous solution tank 18 through the water reflux pipe 58 (step S105). Thereafter, when the amount of liquid detected by the level sensor 54 is set in advance and falls below the second predetermined amount (for example, 220 cc) (YES in step S107), the water pump 60 is stopped (step S109).
  • the second predetermined amount for example, 220 cc
  • step S107 even if the amount of liquid detected by level sensor 54 does not become the second predetermined amount or less (step S107 is NO), if a certain time has passed (step SI11 is YES), step Proceed to S109. In this way, by stopping the water pump 60 after a certain period of time, the amount of liquid detected due to, for example, an abnormality of the level sensor 54 does not always become the second predetermined amount and power generation cannot be performed. ,. Until the predetermined time elapses (NO in step S111), the process in step S105 is continued.
  • step S109 auxiliary equipment such as the fuel pump 20, the aqueous solution pump 26, the air pump 34, the heat exchanger cooling fan 32, the gas-liquid separator cooling fan 48, and the water pump 60 is driven to operate in the normal mode.
  • Power generation is started at (step S113). If the amount of liquid in the water tank 44 is less than the first predetermined amount in step S103 (NO in step S103), the process proceeds to step SI13. After power generation in the normal mode is thus started, normal operation is performed (step S115).
  • step S 117 the vehicle as a load is first driven in a restricted state (for example, the maximum current of motor 116 is restricted) (step S 117).
  • step S119 the vehicle continues to be driven in that state until the newly calculated energy stored in the secondary battery 108 becomes equal to or greater than the sum of the normal energy and the load energy (third threshold). If the stored energy of secondary battery 108 is equal to or greater than the sum of normal energy and load energy, the vehicle is normally driven (step S121). Further, with reference to FIG. 15, the subroutine of step S29 in FIG. 7, that is, the operation when the fuel cell system 10 is started in the normal mode and the vehicle is normally driven will be described.
  • the level sensor 54 detects the liquid amount (water amount) in the water tank 44 (step S151). If the amount of liquid detected in step S151 is greater than or equal to the first predetermined amount (for example, 250 cc) set in advance (YES in step S153), the water pump 60 is driven by the power of the secondary battery 108 and the water tank 54 Of water is returned to the aqueous solution tank 18 through the water reflux pipe 58 (step S155). Thereafter, when the amount of liquid detected by the level sensor 54 is set in advance and falls below the second predetermined amount (for example, 220 cc) (YES in step S157), the water pump 60 is stopped (step S159).
  • the first predetermined amount for example, 250 cc
  • step S157 even if the amount of liquid detected by the level sensor 54 does not become the second predetermined amount or less (NO in step S157), if a certain time (for example, 1 minute) elapses (step S161 force SYES) Proceed to step S159.
  • a certain time for example, 1 minute
  • step S161 force SYES Proceed to step S159.
  • the amount of liquid detected due to, for example, an abnormality of the level sensor 54 does not always become the second predetermined amount, and power generation cannot be performed.
  • Gana Until a certain period of time has elapsed (NO in step S161), bow I continues and step S155 is performed.
  • step S159 auxiliary equipment such as the fuel pump 20, the aqueous solution pump 26, the air pump 34, the cooling fan 32 for the heat exchanger, the cooling fan 48 for the gas-liquid separator and the water pump 60 is driven, and the normal mode is activated. Power generation is started at (Step S163). If the amount of liquid in the water tank 44 is less than the first predetermined amount in step S153 (NO in step S153), the process proceeds to step SI63. After power generation in the normal mode is thus started, normal operation is performed (step S165).
  • step S167 the vehicle as a load is normally driven from the beginning without limiting the output (step S167).
  • step S51 in FIG. 13, step S113 in FIG. 14, and step S163 in FIG. 15 will be described.
  • step S201 no load is set (step S201). That is, the electric circuit 90 is opened by the voltage adjustment circuit 88, the fuel cell 12 is in a no-load operation, and the fuel cell 12 and the secondary battery The connection with 108 is released. In this state, the extraction of current from the fuel cell 12 is stopped. Then, an alarm level is determined (step S202). Thereafter, the amount of the aqueous solution in the aqueous solution tank 18 is controlled (step S203), the concentration of the methanol aqueous solution S is controlled (step S205), and the amount of the aqueous solution in the aqueous solution tank 18 is reduced (step S207). Further, the aqueous solution pump 26 and the air pump 34 are controlled (step S209), and the output voltage of the fuel cell 12 is controlled (step S211).
  • step S 202 of FIG. 16 With reference to FIG. 17, the process of determining the alarm level shown in step S 202 of FIG. 16 will be described.
  • step S251 whether the mode is the normal mode or the low consumption mode is detected (step S251), and the specified voltage (the lowest voltage that can be operated without damaging the cell) is determined for each mode (step S253).
  • the specified voltage is converted to a single cell voltage (voltage of one fuel cell), for example, it is set to 0.25V in the normal mode and 0.2V in the low power consumption mode.
  • connection between the fuel cell 12 and the secondary battery 108 is canceled in the normal mode by setting the specified voltage lower than when starting in the normal mode. Even when the output voltage of the fuel cell 12 reaches such a value, the connection between the fuel cell 12 and the secondary battery 108 is not released in the low power consumption mode (the connection is maintained). ) By continuing the charging of the secondary battery 108, it is possible to suppress the discharge of the secondary battery 108 and thus the reduction of the stored energy.
  • the mode is determined (step S301). In the normal mode, whether or not the amount of the aqueous solution in the aqueous solution tank 18 detected by the level sensor 22 is smaller than the prescribed amount of the aqueous solution tank (the amount of the aqueous solution in the aqueous solution tank 18 during power generation, for example, 1 liter). If it is determined (Step S303), if small, the level sensor 54 detects the amount of water (water amount) in the water tank 44 (Step S305), and whether the detected amount of liquid is equal to or greater than a first predetermined amount (for example, 250 cc). Is determined (step S307).
  • a first predetermined amount for example, 250 cc
  • step S309 the water pump 60 is driven to return water to the aqueous solution tank 18 (step S309).
  • step S311 the operation is continued until a predetermined time elapses, and when the predetermined time elapses, the process returns to step S303.
  • step S313 When the amount of the aqueous solution in the aqueous solution tank 18 is greater than or equal to the prescribed amount of the aqueous solution tank in step S303, or when the amount of liquid is less than the first predetermined amount in step S307, the water pump 60 is stopped (step S313).
  • the amount of the aqueous solution in the aqueous solution tank 18 is not controlled.
  • the amount of the aqueous solution in the aqueous solution tank 18 is not controlled, so that it is not necessary to drive the water pump 60 and power consumption can be suppressed.
  • control of the concentration of aqueous methanol solution S shown in step S205 of FIG. 16 will be described.
  • the concentration of aqueous methanol solution S is set higher than the concentration during normal operation.
  • the concentration sensor 64 detects the concentration of the aqueous methanol solution S (step S353), and it is determined whether or not the detected concentration of the aqueous methanol solution S is smaller than the specified concentration of the detected mode (step S355).
  • the specified concentration is set for each mode and differs between the normal mode and the low-consumption mode. In the normal mode, the specified concentration varies depending on the temperature of the fuel cell 12 and the outside air temperature, but is set higher than the normal operation concentration. On the other hand, in the low consumption mode, the specified concentration is the same as in the normal mode. It is set 2 to 5 wt% higher than the set value. For example, when the outside air temperature is 20 ° C, the specified concentration is set to 6% in the normal mode and 8% in the low consumption mode.
  • step S355 if the concentration of the aqueous methanol solution S is smaller than the specified concentration, the fuel pump 20 is driven (step S357). In step S359, the operation is continued until a predetermined time elapses, and when the predetermined time elapses, the process returns to step S353. In step S355, if the concentration of the aqueous methanol solution S is equal to or higher than the specified concentration, the fuel pump 20 is stopped (step S361).
  • the black Sover increases and efficiency decreases, but the temperature rises faster and the time required to reach the target temperature can be shortened.
  • step S207 of FIG. 16 the process for reducing the amount of aqueous solution in aqueous solution tank 18 shown in step S207 of FIG. 16 will be described.
  • the mode is determined (step S401).
  • the water pump 60 is driven to move the methanol aqueous solution S in the aqueous solution tank 18 into the water tank 44.
  • the aqueous methanol solution S in the aqueous solution tank 18 is reduced (step S403).
  • the water pump 60 is not driven and the control to reduce the methanol aqueous solution S in the aqueous solution tank 18 is not performed.
  • the air flow force by the air pump 34 is determined according to the detected mode (step S453).
  • the air flow rate by the air pump 34 is set to 3 times the theoretical required amount in the normal mode and twice the theoretical required amount in the low consumption mode 1.
  • the air flow rate by the air pump 34 in the low power consumption mode 1 is preferably set to 20% or more and less than 100% in the normal mode.
  • the flow rate of the methanol aqueous solution S by the aqueous solution pump 26 is determined according to the detected mode (step S455).
  • the flow rate of the aqueous solution by the aqueous solution pump 26 is set to the same amount as in normal power generation in the normal mode and to the minimum necessary in the low consumption mode 1.
  • the air pump 34 is driven, and air having a flow rate corresponding to the mode is sent to the power sword 12c of the fuel cell 12 (step S457).
  • the methanol aqueous solution S that is driven and has a flow rate corresponding to the mode is sent to the anode 12b of the fuel cell 12 (step S459).
  • Step S461 the aqueous solution pump 26 and the air pump 34 are driven alternately. This prevents a significant voltage drop from running both pumps simultaneously.
  • the power consumption of the air pump 34 can be reduced by starting the power generation with the output of the air pump 34 being smaller than in the normal mode.
  • step S501 it is detected whether the mode is the normal mode or the low consumption mode.
  • step S503 it is determined whether or not the output voltage of the fuel cell 12 is equal to or higher than the voltage of the secondary battery 108 (step S503), and the output voltage of the fuel cell 12 is equal to or higher than the voltage of the secondary battery 108. Until the output voltage of the fuel cell 12 becomes equal to or higher than the voltage of the secondary battery 108, the output voltage of the fuel cell 12 is set to the VI for the low consumption mode (step S505).
  • step S507 it is determined whether or not the temperature of the fuel cell 12 has reached a predetermined temperature (step S507), and waits until the temperature of the fuel cell 12 reaches the predetermined temperature. If the temperature of the battery 12 reaches the predetermined temperature, the process proceeds to step S505, and the output voltage of the fuel cell 12 is set to VI for the normal mode. The output voltage of the fuel cell 12 is set by the voltage adjustment circuit 88.
  • the temperature T of the fuel cell 12 is determined (step S509), and the output voltage of the fuel cell 12 is set based on the mode and the temperature. If the temperature T is equal to or lower than T1, it waits until a certain time elapses (step S511), and if the certain time elapses, it is determined whether or not the output voltage of the fuel cell 12 is smaller than the specified voltage (step S513). . In terms of the single cell voltage, for example, in the normal mode, whether the single cell voltage is less than 0.25V, and in the low consumption mode, whether the single cell voltage is less than 0.2V, To be judged. If the output voltage of the fuel cell 12 is smaller than the specified voltage, the process returns to step S201 shown in FIG.
  • the single cell voltages corresponding to voltages VI, V2 and V3 are 0.50V, 0.40V and 0.35V in normal mode, respectively, and 0.40V, 0.35V and 0 respectively in low power consumption mode. 25V.
  • the charging current to the secondary battery 108 can be increased.
  • FIG. 23 (a) shows the temperature of the fuel cell 12 and the output voltage of the fuel cell 12 in the normal mode
  • FIG. 23 (b) shows the temperature of the fuel cell 12 and the fuel cell 1 2 in the low consumption mode. Indicates the output voltage.
  • the output voltages VI, V2 and V3 from the fuel cell 12 at the same fuel cell temperature are made lower than when starting in the normal mode.
  • the output current from the fuel cell 12 in the low consumption mode can be made larger than in the normal mode, and the secondary battery 108 can be charged quickly.
  • the temperature of the fuel cell 12 increases rapidly, Can be switched to normal operation.
  • the startup mode of the fuel cell system 10 is determined based on the stored energy of the secondary battery 108 and the threshold value obtained by calculation, and according to the determined startup mode.
  • the fuel cell system 10 is operated.
  • an optimal startup mode can be selected in accordance with the stored energy (amount of stored power) of the secondary battery 108, and there is no problem with the startup of the fuel cell system 10.
  • the amount of power stored in the secondary battery 108 is converted into stored energy, and the stored energy and the low energy consumption required to start the fuel cell system 10 in the low power consumption mode itself. Compare with some first threshold. If the stored energy of the secondary battery 108 is equal to or greater than the first threshold value, the fuel cell system 10 is activated. On the other hand, if the energy storage energy of the secondary battery 108 is less than the first threshold, it is determined that the fuel cell system 10 cannot be activated even in the low consumption mode, and the activation of the fuel cell system 10 is stopped. This avoids unnecessary energy consumption.
  • the energy storage power of the secondary battery 108 If the fuel cell system 10 is equal to or higher than the second threshold, which is the normal energy required to start the fuel cell system 10 in the normal mode, the fuel cell system 10 is started in the normal mode. To do. On the other hand, if the stored energy of the secondary battery 108 is less than the second threshold value, the fuel cell system 10 is activated in the low consumption mode. In this way, the fuel cell system 10 can be activated in a mode corresponding to the stored energy of the secondary battery 108.
  • the second threshold which is the normal energy required to start the fuel cell system 10 in the normal mode
  • a third threshold value which is the sum of normal energy and load energy
  • the vehicle is normally driven.
  • the stored energy of secondary battery 108 is less than the third threshold value, the vehicle is driven in a mode other than normal driving. In this way, the vehicle is driven as much as possible in accordance with the stored energy of the secondary battery 108.
  • the above-described fuel cell system 10 is suitably used for a vehicle that requires a reduction in the capacity of the secondary battery 108.
  • the force described in comparison with the stored energy of 08 is not limited to this.
  • the storage amount may be used as a threshold, and this threshold may be compared with the storage amount of the secondary battery 108.
  • the energy may be converted into the amount of stored electricity and set as a threshold value.
  • a voltage is used as a threshold value, and a current may be used as a threshold value to compare the threshold value with the voltage of the secondary battery 108, and the threshold value is compared with the current flowing through the secondary battery 108.
  • the threshold value for determining the activation mode is obtained by calculation, but it may be as follows. For example, as shown in FIG. 24, three threshold values A, B, and C are set in advance for the amount of electricity stored in the secondary battery 108, and four categories are provided. In this case, after the main switch is turned on, the storage amount of the secondary battery 108 is detected, the category to which the storage amount belongs is determined, and the processing of the category to which it belongs is executed. .
  • threshold A if the amount of stored electricity is equal to or less than threshold A, fuel cell system 10 is not started and the vehicle is not driven. If the charged amount exceeds threshold A and is less than or equal to threshold B, the fuel cell system 10 is started in the low consumption mode, but the vehicle is not driven. If the storage amount exceeds threshold B and is equal to or less than threshold C, the fuel cell system 10 is activated in the normal mode and the vehicle is driven in a limited manner. If the storage amount exceeds the threshold C, the fuel cell system 10 is started in the normal mode and the vehicle is also normally driven.
  • the activation mode can be easily set.
  • the calculation speed of the CPU 72 may be reduced to suppress power consumption.
  • the power using three threshold values and providing four operation modes for the fuel cell system 10 and the vehicle is not limited to this.
  • the threshold value D corresponding to the normal energy required to normally start the fuel cell system 10 and the normal energy and load required to start the fuel cell system 10 in the normal mode are normally driven.
  • the threshold E (D and E) corresponding to the sum of the required load energy three operation modes may be provided. In this case, for example, if the storage amount of the fuel cell 12 is equal to or less than the threshold value D, the fuel cell system 10 is not started and the vehicle is not driven. If the charged amount exceeds the threshold D and is equal to or less than the threshold E, the fuel cell system 10 is activated in the normal mode and the vehicle is limitedly driven. If the amount of stored electricity exceeds threshold E The fuel cell system 10 is started in the normal mode and the vehicle is also normally driven.
  • the threshold values D and E may be obtained by calculation based on the temperature of the fuel cell 12 or may be set in advance.
  • the start-up mode of the fuel cell system 10 may be determined based on data relating to the stored energy of the secondary battery 108 without using a threshold value.
  • the present invention is suitably used for a direct methanol fuel cell system that takes a long time until a sufficient output of the fuel cell can be obtained when the temperature of the aqueous fuel solution is raised.
  • the power using methanol fuel as the fuel and the methanol aqueous solution as the fuel aqueous solution is not limited thereto, and the alcohol fuel such as ethanol is used as the fuel, and the alcohol aqueous solution such as ethanol is used as the fuel aqueous solution. Use it.
  • Any transportation equipment can be used as a load.
  • the present invention can also be applied to a reformer-equipped fuel cell system and a fuel cell system that supplies hydrogen to the fuel cell.
  • the present invention can also be applied to a small installation type fuel cell system.

Abstract

 システムの起動時に二次電池108の蓄電エネルギーに適した起動モードを設定でき起動に不具合が生じない、燃料電池システム10およびその起動方法を提供する。燃料電池システム10は、燃料電池12、燃料電池12に電気的に接続される二次電池108、二次電池108の蓄電量を検出する二次電池蓄電量検出部112、および燃料電池システム10の起動モードを決定するための少なくとも1つの閾値を記憶する記憶手段を含む。二次電池108の蓄電量に対応する蓄電エネルギーを算出し、二次電池108の蓄電エネルギーと記憶手段に記憶された閾値とに基づいて燃料電池システム10の起動モードを決定する。

Description

燃料電池システムおよびその起動方法
技術分野
[0001] この発明は燃料電池システムおよびその駆動方法に関し、より特定的には、燃料電 池に電気的に接続される二次電池を含む燃料電池システムおよびその起動方法に 関する。
背景技術
[0002] 燃料電池は、常温力 十分に発電可能な温度に達するまで時間がかかり、低温時 には発電出力が低い。そのため、燃料電池システムの起動時には、補機類等を駆動 するエネルギーを燃料電池以外の手段から得ており、燃料電池システムは燃料電池 以外にエネルギーを供給する手段がないと起動することができない。また、燃料電池 システムがエネルギーを供給するたとえば二次電池を有するとしても、燃料電池が十 分に発電可能な温度に達するまでの間、二次電池力 エネルギーを十分に供給で きなければ燃料電池システムの起動に不具合が生じる。
[0003] 二次電池を有する燃料電池システムがたとえば特許文献 1にお 、て開示されて!ヽ る。
特許文献 1では、システムの起動時に二次電池が負荷に対して電力を供給し、そ の間、燃料電池の暖機状態が検出され、充分に暖機されたと判断されると、燃料電 池と負荷とが接続され、燃料電池から負荷に対して電力が供給される技術が開示さ れている。
特許文献 1 :特開平 9— 231991号公報
発明の開示
発明が解決しょうとする課題
[0004] し力し、特許文献 1の燃料電池システムでは、二次電池の蓄電エネルギーをみてお らず、二次電池に十分に蓄電されていなければ燃料電池システムの起動に不具合 が生じる場合がある。
[0005] それゆえに、この発明の主たる目的は、システムの起動時に二次電池の蓄電エネ ルギ一に適した起動モードを設定でき起動に不具合が生じな 、、燃料電池システム およびその起動方法を提供することである。
課題を解決するための手段
[0006] この発明のある見地によれば、負荷に接続される燃料電池システムであって、燃料 電池、燃料電池に電気的に接続される二次電池、二次電池の蓄電エネルギーに関 するデータを求める手段、および求められた二次電池の蓄電エネルギーに関するデ ータに基づ 、て、当該燃料電池システムの起動モードを消費エネルギーが異なる複 数のモードのうちのいずれかに決定する第 1決定手段を備える、燃料電池システムが 提供される。
[0007] この発明の他の見地によれば、燃料電池と、燃料電池に電気的に接続される二次 電池とを備え、負荷に接続される燃料電池システムの起動方法であって、二次電池 の蓄電エネルギーに関するデータを求め、求められた二次電池の蓄電エネルギーに 関するデータに基づ 、て、当該燃料電池システムの起動モードを消費エネルギーが 異なる複数のモードのうちのいずれかに決定し、決定されたモードに従って当該燃 料電池システムを動作させる、燃料電池システムの起動方法が提供される。
[0008] この発明では、二次電池の蓄電エネルギーに関するデータに基づいて、燃料電池 システムの起動モードを決定し、決定された起動モードに従って燃料電池システムを 動作させる。これによつて、二次電池の蓄電エネルギーに応じた起動モードを選択で き、燃料電池システムの起動に不具合は生じない。
[0009] 好ましくは、二次電池の蓄電エネルギーに関するデータと当該燃料電池システムの 起動モードを決定するための少なくとも 1つの閾値とに基づいて当該燃料電池システ ムの起動モードを決定する。この場合、最適な燃料電池システムの起動モードを決 定できる。
[0010] また好ましくは、閾値は当該燃料電池システムを起動するのに必要なエネルギーに 対応する第 1閾値を含み、二次電池の蓄電エネルギーに関するデータと第 1閾値と に基づいて当該燃料電池システムを起動する力否かを決定する。たとえば、蓄電工 ネルギーに関するデータが蓄電エネルギーそのものであり、第 1閾値が燃料電池シ ステムを起動するのに必要なエネルギーそのものである場合、二次電池の蓄電エネ ルギ一が第 1閾値以上であれば燃料電池システムを起動し、一方、二次電池の蓄電 エネルギーが第 1閾値未満であれば燃料電池システムを起動できな 、と判断し、燃 料電池システムの起動を停止する。これによつて、不要なエネルギー消費を避けるこ とがでさる。
[0011] さらに好ましくは、閾値は当該燃料電池システムを通常モードで起動するのに必要 な通常エネルギーに対応する第 2閾値を含み、二次電池の蓄電エネルギーに関す るデータと第 2閾値とに基づいて当該燃料電池システムを通常モードで起動するか 低消費モードで起動するかを決定する。たとえば、蓄電エネルギーに関するデータ が蓄電エネルギーそのものであり、第 2閾値が燃料電池システムを通常モードで起動 するのに必要な通常エネルギーそのものである場合、二次電池の蓄電エネルギーが 第 2閾値以上であれば燃料電池システムを通常モードで起動し、一方、二次電池の 蓄電エネルギーが第 2閾値未満であれば燃料電池システムを低消費モードで起動 する。このようにして二次電池の蓄電エネルギーに応じたモードで燃料電池システム を起動する。
[0012] 好ましくは、当該燃料電池システムを通常モードで起動するのに必要な通常エネル ギ一と負荷を通常駆動するのに必要な負荷エネルギーとの和に対応する第 3閾値を さらに用い、二次電池の蓄電エネルギーに関するデータと第 3閾値とに基づいて負 荷を通常駆動する力否かを決定し、決定結果に従って負荷を通常駆動する力または 通常駆動以外のモードで駆動する。たとえば、蓄電エネルギーに関するデータが蓄 電エネノレギーそのものであり、第 3閾値が通常エネノレギ一と負荷エネノレギ一との和そ のものである場合、二次電池の蓄電エネルギーが第 3閾値以上であれば負荷を通常 駆動し、一方、二次電池の蓄電エネルギーが第 3閾値未満であれば負荷を通常駆 動以外のモード、すなわち、負荷が消費するエネルギーを制限し負荷を制限的に駆 動するモード、で駆動する。このように二次電池の蓄電エネルギーに応じて可能な範 囲で負荷を駆動する。
[0013] また好ましくは、当該燃料電池システムを低消費モードで起動する場合には、通常 モードで起動する場合より燃料電池と二次電池との接続を解除するカゝ否かを判断す るための規定電圧を低く設定し、燃料電池の出力電圧と規定電圧とに基づいて燃料 電池と二次電池との接続を解除するカゝ否かを判断する。低消費モードで起動する場 合には通常モードで起動する場合より規定電圧を低く設定することによって、通常モ ードであれば燃料電池と二次電池との接続が解除されるような値 (通常モードの規定 電圧より小さい値)に燃料電池の出力電圧が達したとしても、低消費モードでは、燃 料電池と二次電池との接続は解除されず (接続を維持した状態にし)、二次電池への 充電を継続させることによって、二次電池の放電ひ 、ては蓄電エネルギーの減少を 抑制できる。特に、燃料電池の出力電圧が小さくなりやすい燃料電池温度が低い状 態で燃料電池システムを起動する場合に効果的である。
[0014] さらに好ましくは、燃料電池に供給する燃料水溶液を収容する水溶液タンクを用い 、当該燃料電池システムを低消費モードで起動する場合には、水溶液タンク内の水 溶液量を制御しない。この場合、たとえばポンプを駆動する必要はなく消費電力を抑 制できる。
[0015] 好ましくは、当該燃料電池システムを低消費モードで起動する場合には、通常モー ドで起動する場合より高濃度の燃料水溶液を燃料電池に供給して発電を開始する。 この場合、クロスオーバーが増大し効率は低下するが、燃料電池の温度上昇が早く なり目標温度までの所要時間を短縮できる。
[0016] また好ましくは、当該燃料電池システムを低消費モードで起動する場合には、水溶 液タンク内の水溶液量を減じる制御を行わない。この場合、たとえばポンプを駆動す る必要はなく消費電力を抑制できる。
[0017] さらに好ましくは、燃料電池へ酸素を含む空気を供給するエアポンプを用い、当該 燃料電池システムを低消費モードで起動する場合には、通常モードで起動する場合 よりエアポンプの出力を小さくして発電を開始する。この場合、エアポンプの消費電 力を低減できる。
[0018] 好ましくは、燃料電池へ酸素を含む空気を供給するエアポンプ、および燃料電池 へ燃料水溶液を供給する水溶液ポンプを用い、当該燃料電池システムを低消費モ ードで起動する場合には、空気および燃料水溶液の流量を下げ、エアポンプと水溶 液ポンプとを交互に駆動する。このようにエアポンプと水溶液ポンプとを同時に駆動 しな!/、ことでエアポンプおよび水溶液ポンプの消費電力を低減でき、二次電池の蓄 電エネルギーの減少を抑制できる。
[0019] また好ましくは、当該燃料電池システムを低消費モードで起動する場合には、燃料 電池の出力電圧が二次電池の電圧以上になったとき当該燃料電池システムを負荷 に接続する。この場合、燃料電池の出力電圧が二次電池の電圧以上になればたとえ 燃料電池が所定温度 (通常モード時において、無負荷運転を解除するための閾値と なる温度)に達していなくても、燃料電池の無負荷運転を解除できる。これによつて、 無負荷運転の時間を短くでき目標温度までの昇温時間を短縮できる。
[0020] さらに好ましくは、当該燃料電池システムを低消費モードで起動する場合には、通 常モードで起動する場合より同じ燃料電池温度における燃料電池の出力電圧を小さ くする。これによつて燃料電池からの出力電流を大きくでき、二次電池を早く充電でき る。
[0021] 好ましくは、負荷を通常駆動以外のモードで駆動しているとき、二次電池の蓄電工 ネルギ一が第 3閾値に対応するエネルギー以上になれば、負荷の駆動を通常駆動 に切り替える。これによれば、二次電池の蓄電量に応じたモードで負荷を駆動できる
[0022] 燃料電池に燃料水溶液が供給されて発電する燃料電池システムでは、燃料水溶 液自体が大き!/ヽ熱容量を有するので、燃料水溶液の昇温にひ ヽては燃料電池の十 分な出力が得られるまでに時間がかかる。したがって、この発明は、燃料電池に燃料 水溶液が供給されて発電する燃料電池システムに好適に用いられる。
[0023] また、この発明は、燃料電池システムを搭載する場合には二次電池の容量を小さく することが要求される輸送機器に好適に用いられる。すなわち、この発明は、負荷の 少なくとも 1つが輸送機器のモータである場合に好適に用いられる。
[0024] なお、「蓄電エネルギーに関するデータ」は、蓄電エネルギーそのものに限定され ず、蓄電エネルギーと一対一の関係にある(たとえば蓄電エネルギーとの間で相互 に換算可能な)蓄電量、電圧、電流等であってもよい。
[0025] 「燃料電池システムを起動するのに必要なエネルギー」とは、燃料電池システムを 起動させ燃料電池が十分に発電可能な温度(目標温度)にまで燃料電池温度が到 達するのに必要なエネルギーを!、う。 [0026] 「エネルギーに対応する閾値」は、エネルギーそのものである場合に限定されず、 エネルギーと一対一の対応関係にある(たとえばエネルギーとの間で相互に換算可 能な)蓄電量、電圧、電流等であってもよい。
[0027] 「通常モード」とは、起動時に補機類等の要素の動作に制限を加えることなく燃料 電池システムを動作させるモードを 、う。
[0028] 「低消費モード」とは、起動時に補機類等の要素の動作に制限を加えて燃料電池 システムを動作させるモードをいい、消費エネルギーが通常モードの場合より小さく なる。
[0029] 「負荷エネルギー」とは、燃料電池が十分に発電可能な温度(目標温度)に燃料電 池温度が到達するまで負荷を通常駆動するのに必要なエネルギーを!、う。
[0030] 「通常駆動」とは、制限を加えることなく駆動することをいう。
[0031] この発明の上述の目的およびその他の目的、特徴、局面および利点は、添付図面 に関連して行われる以下の実施形態の詳細な説明から一層明らかとなろう。
図面の簡単な説明
[0032] [図 1]この発明に係る燃料電池システムの要部を示す図解図である。
[図 2]自動二輪車のフレームに燃料電池システムを搭載した状態を示す斜視図であ る。
[図 3]燃料電池システムの要部を示す図解図である。
[図 4]燃料電池システムの電気的構成を示すブロック図である。
[図 5] (a)は燃料電池システム起動後の燃料電池温度の経時的変化を示すグラフで あり、 (b)は燃料電池システム起動時の燃料電池温度と目標温度までの所要時間と の対応関係を示すグラフである。
[図 6]電圧コントロール部を示す回路図である。
[図 7]燃料電池システムの起動時の主要動作の一例を示すフロー図である。
[図 8]燃料電池システムを低消費モードで起動するが車両を駆動しない場合を説明 するためのグラフである。
[図 9]燃料電池システムを通常起動しかつ車両を制限的に駆動する場合を説明する ためのグラフである。 圆 10]燃料電池システムを通常起動しかつ車両を通常駆動する場合を説明するため のグラフである。
[図 11]車両の出力を制限する例を示すグラフであり、 (a)はモータの最大電流を制限 する場合、 (b)はモータの最大出力を制限する場合である。
[図 12]燃料電池システムの起動時の温度によって必要な二次電池の蓄電エネルギ 一が異なることを示すグラフである。
圆 13]燃料電池システムを低消費モードで起動するが車両を駆動しない場合の動作 を示すフロー図である。
圆 14]燃料電池システムを通常モードで起動しかつ車両を制限的に駆動する場合の 動作を示すフロー図である。
圆 15]燃料電池システムを通常モードで起動しかつ車両を通常駆動する場合の動作 を示すフロー図である。
圆 16]発電開始時の動作を示すフロー図である。
[図 17]アラームレベルを決定する処理を示すフロー図である。
[図 18]水溶液タンク内の水溶液量を制御する処理を示すフロー図である。
[図 19]メタノール水溶液の濃度を制御する処理を示すフロー図である。
[図 20]水溶液タンク内の水溶液量を減らす処理を示すフロー図である。
[図 21]水溶液ポンプおよびエアポンプを制御する処理を示すフロー図である。
[図 22]燃料電池の出力電圧を制御する処理を示すフロー図である。
[図 23] (a)は通常モードにおける運転時間に対する燃料電池の温度および燃料電池 の出力電圧を示すグラフであり、 (b)は低消費モードにおける運転時間に対する燃 料電池の温度および燃料電池の出力電圧を示すグラフである。
[図 24]この発明の他の実施形態を説明するための図解図である。
符号の説明
10 燃料電池システム
12 燃料電池
18 水溶液タンク
20 燃料ポンプ 26 水溶液ポンプ
32 熱交換器用冷却ファン
34 エアポンプ
44 水タンク
48 気液分離器用冷却ファン
60 水ポンプ
64 濃度センサ
66 電池温度センサ
70 制御回路
72 CPU
76 揮発性メモリ
78 不揮発性メモリ
84 電圧検出回路
108 二次電池
112 二次電池蓄電量検出部
116 モータ
S メタノール水溶液
発明を実施するための最良の形態
[0034] 以下、図面を参照してこの発明の実施の形態について説明する。
図 1〜図 4に示すように、この発明の一実施形態の燃料電池システム 10は、直接メ タノール型燃料電池システムとして構成される。直接メタノール型燃料電池システム は改質器が不要であるので、携帯性を要する機器や小型化が望まれる機器に好適 に用いられる。ここでは、燃料電池システム 10を輸送機器の一例である自動二輪車 に用いる場合について説明する。なお、図 2に示すように、自動二輪車については車 体フレーム 200のみを示す。図 2において左側が車両前方、右側が車両後方である 。燃料電池システム 10は車体フレーム 200に沿って配置される。以下、必要に応じて 自動二輪車を車両という。
[0035] 図 1を主に参照して、燃料電池システム 10は燃料電池 12を含む。燃料電池 12は、 固体高分子膜からなる電解質 12aと電解質 12aを両側カゝら挟むアノード (燃料極) 12 bおよび力ソード (空気極) 12cとを含む複数の燃料電池セルを直列に接続 (積層)し た燃料電池セルスタックとして構成される。
[0036] また、燃料電池システム 10は、高濃度のメタノール燃料 (メタノールを約 5(^%程 度含む水溶液) Fを収容する燃料タンク 14を含み、燃料タンク 14は燃料供給パイプ 1 6を介してメタノール水溶液 Sが収容される水溶液タンク 18に接続される。燃料供給 パイプ 16には燃料ポンプ 20が介挿され、燃料ポンプ 20の駆動によって燃料タンク 1 4内のメタノール燃料 Fが水溶液タンク 18に供給される。
[0037] 燃料タンク 14にはレベルセンサ 15が装着され、燃料タンク 14内のメタノール燃料 F の液面の高さが検出される。また、水溶液タンク 18にはレベルセンサ 22が装着され、 水溶液タンク 18内のメタノール水溶液 Sの液面の高さが検出される。レベルセンサ 1 5, 22によって液面高さを検出することによって、タンク内の液量を検出できる。後述 するレベルセンサ 54についても同様である。
[0038] 水溶液タンク 18は、水溶液パイプ 24を介して燃料電池 12のアノード 12bに接続さ れる。水溶液パイプ 24には、上流側から水溶液ポンプ 26、熱交^^として機能する ラジェータ 28および水溶液フィルタ 30が順に介挿される。ラジェータ 28の近傍には ラジェータ 28を冷却するための冷却ファン 32が配置される。水溶液タンク 18内のメ タノール水溶液 Sは、水溶液ポンプ 26によってアノード 12bに向けて送られ、必要に 応じてラジェータ 28によって冷却され、さらに水溶液フィルタ 30によって浄ィ匕されて アノード 12bに供給される。
[0039] 一方、燃料電池 12の力ソード 12cにはエアポンプ 34がエア側パイプ 36を介して接 続され、エア側パイプ 36にはエアフィルタ 38が介挿される。したがって、エアポンプ 3 4からの酸素(酸化剤)を含む空気がエアフィルタ 38によって浄ィ匕されたのち力ソード 12cに供給される。
[0040] また、アノード 12bと水溶液タンク 18とはノィプ 40を介して接続され、アノード 12b 力 排出される未反応のメタノール水溶液や生成された二酸ィ匕炭素が水溶液タンク 1 8に与えられる。
[0041] さらに、力ソード 12cにはパイプ 42を介して水タンク 44が接続される。パイプ 42には 気液分離器として機能するラジェータ 46が介挿され、ラジェータ 46の近傍にはラジ エータ 46を冷却するための冷却ファン 48が配置される。力ソード 12cから排出される 水分 (水および水蒸気)を含む排気がパイプ 42を介して水タンク 44に与えられる。
[0042] また、水溶液タンク 18と水タンク 44とは COベントパイプ 50を介して接続される。 C
2
Oベントパイプ 50にはメタノール水溶液 Sを分離するためのメタノールトラップ 52が
2
介挿される。これによつて、水溶液タンク 18から排出される二酸ィ匕炭素が水タンク 44 に与えられる。
[0043] 水タンク 44には、レベルセンサ 54が装着され、水タンク 44内の液面の高さが検出 される。また、水タンク 44には排気ガスパイプ 56が取り付けられ、排気ガスパイプ 56 力 二酸ィ匕炭素と力ソード 12cからの排気とが排出される。
[0044] 水タンク 44は水還流パイプ 58を介して水溶液タンク 18に接続され、水還流パイプ 58には水ポンプ 60が介挿される。水タンク 44内の水は、水溶液タンク 18の状況に 応じて必要なときに水ポンプ 60の駆動によって水溶液タンク 18へ還流される。
[0045] また、水溶液パイプ 24において、ラジェータ 28と水溶液フィルタ 30との間には、バ ィパスパイプ 62が形成される。
[0046] 図 4をも参照して、さらに燃料電池システム 10においては、バイパスパイプ 62にメタ ノール水溶液 Sの濃度を検出するための濃度センサ 64およびメタノール水溶液 Sの 温度を検出するための水溶液温度センサ 65が設けられ、燃料電池 12の温度を検出 するための電池温度センサ 66が燃料電池 12に装着され、外気温度を検出するため の外気温度センサ 68がエアポンプ 34の近傍に設けられる。なお、電池温度センサ 6 6は、燃料電池 12のうち最も温度が高くなる箇所に配置され、たとえばメタノール水 溶液 Sの出口付近に設けられる。
[0047] 図 4に示すように、燃料電池システム 10は制御回路 70を含む。
[0048] 制御回路 70は、必要な演算を行い燃料電池システム 10の動作を制御するための CPU72、 CPU72にクロックを与えるクロック回路 74、 CPU72に与えられるクロック に基づく経過時間やフラグ、演算データ等を格納するための、たとえば DRAMから なる揮発性メモリ 76、燃料電池システム 10の動作を制御するためのプログラムゃデ 一タ等を格納するための、たとえば EEPROMや SRAM力 なる不揮発性メモリ 78、 燃料電池システム 10の誤動作を防ぐためのリセット IC80、外部機器と接続するため のインターフェイス回路 82a〜82r、燃料電池 12の出力電圧を検出するための電圧 検出回路 84、燃料電池 12の出力電流を検出するための電流検出回路 86、燃料電 池 12の出力電圧を調整するための電圧調整回路 88、電気回路 90の過電圧を防止 するための電圧保護回路 92、電気回路 90に設けられ燃料電池 12を保護するため のダイオード 94、電気回路 90に通常モード用電圧を供給するための電源回路 96、 および電気回路 90に低消費モード用電圧を供給するための電源回路 98を含む。燃 料電池システム 10は二次電池 108(後述)を介して負荷に電力を供給するシリーズ型 のシステムとして構成される。
[0049] 電圧検出回路 84、電流検出回路 86、電圧調整回路 88およびダイオード 94が電 圧コントロール部 100を構成する。
[0050] このような制御回路 70の CPU72には、濃度センサ 64、水溶液温度センサ 65、電 池温度センサ 66および外気温度センサ 68からの検出信号がそれぞれインターフエ イス回路 82a, 82b, 82cおよび 82dを介して入力され、また、レベルセンサ 15, 22お よび 54からの検出信号がそれぞれインターフェイス回路 821, 82kおよび 82οを介し て入力される。さら〖こ、 CPU72には、転倒の有無を検知する転倒スィッチ 102からの 検知信号力インターフェイス回路 82ηを介して与えられ、また、各種設定や情報入力 のための入力部 104からの信号がインターフェイス回路 82ρを介して与えられる。
[0051] また、 CPU72から、燃料ポンプ 20、水溶液ポンプ 26、エアポンプ 34、熱交換器用 冷却ファン 32、気液分離器用冷却ファン 48および水ポンプ 60にそれぞれインターフ ェイス回路 82j, 82g, 82h, 82f, 82eおよび 82iを介して制御信号が与えられ、これ らの補器類が CPU72によって制御される。また、 CPU72から、各種情報を表示し自 動二輪車の搭乗者に各種情報を報知するための表示部 106にインターフェイス回路 82qを介して制御信号が与えられ、表示部 106が制御される。
[0052] また、燃料電池 12には、ノ ッテリボックス 107に内蔵される二次電池 108が接続さ れる。二次電池 108は、燃料電池 12からの出力を補完するものであり、燃料電池 12 力もの電気エネルギーによって充電され、その放電によってモータ 116 (後述)や補 機類に電気エネルギーを与える。特に、発電開始時には二次電池 108からの電気工 ネルギ一で補機類を駆動し、燃料電池 12の発電量が大きくなれば二次電池 108に 電気工ネルギ一が充電される。二次電池 108としては、ニッケル水素型電池、リチウ ムイオン電池、 Ni—Cd電池等が用いられる。二次電池 108には制御装置 110が接 続される。制御装置 110は、 CPUおよびメモリなど力 なり、二次電池 108の蓄電量 を検出する二次電池蓄電量検出部 112を含み、二次電池 108の電圧、電流および 温度等をも検出できる。この実施形態では、二次電池 108の蓄電量は二次電池電圧 に所定の定数を掛けることによって求められるが、さらに電流や電池の劣化度を考慮 して求められてもよい。制御装置 110は、これらの二次電池 108の情報を、インター フェイス回路 113を介して制御回路 70に送信するとともに、二次電池 108に接続され るモータコントローラ 114に送信する。モータコントローラ 114には負荷すなわち自動 二輪車のモータ 116が接続され、モータ 116に与えられる電気エネルギーはモータ コントローラ 114によって制御される。モータコントローラ 114には、モータ 116の各種 データを計測するためのメータ 118が接続される。メータ 118によって計測されたデ ータ、モータ 116の状況等の情報は、制御装置 110のインターフェイス回路 113およ び制御回路 70のインターフェイス回路 82mを介して CPU72に入力される。
[0053] この実施形態では、揮発性メモリ 76には、二次電池 108の蓄電量、二次電池 108 の蓄電エネルギー、検出された燃料電池 12の温度、燃料電池 12が目標温度に上 昇するまでの所要時間、燃料電池システム 10を起動する力否かを決定するための第 1閾値、燃料電池システム 10を通常モードで起動する力低消費モードで起動するか を決定するための第 2閾値、負荷を通常駆動する力否かを決定するための第 3閾値 、負荷エネルギー等のデータが格納される。
[0054] 不揮発性メモリ 78には、燃料電池システム 10を低消費モードで単位時間駆動する のに必要な低消費電力、燃料電池システム 10を通常モードで単位時間駆動するの に必要な通常電力、燃料電池 12を無負荷状態にする力否かを判断するための規定 電圧、負荷を単位時間通常駆動するのに必要な単位エネルギーに相当する車両平 均出力等のデータが格納される。また、不揮発性メモリ 78には、燃料電池システム 1 0の起動時の燃料電池 12の温度と目標温度 (この実施形態では約 65°C)までの所 要時間との関係を示すテーブルデータが格納される。所要時間は、起動時の燃料電 池 12の温度と発電効率と熱容量とに基づいて算出される。たとえば図 5 (a)および (b )に示すように、システム起動時の燃料電池 12の温度が高いほど、目標温度までの 所要時間が短くなる。起動時の燃料電池 12の温度を検出すれば、このテーブルデ ータを参照して、燃料電池 12が目標温度まで上昇するのに必要な所要時間が推定 される。図 5 (a)において時間 0のとき (縦軸上)の燃料電池温度は、起動時の温度を 示す。
[0055] また、不揮発性メモリ 78には、消費エネルギーが異なる複数の起動モードに対応 する制御情報 (制御パラメータ、プログラム等)が格納される。
[0056] この実施形態では、 CPU72が第 1決定手段、第 2決定手段に対応し、揮発性メモリ 76、不揮発性メモリ 78が記憶手段に対応する。
[0057] ここで図 6を参照して、電圧コントロール部 100について説明する。
電流検出回路 86はたとえばカレントトランスによって構成され、燃料電池 12からの 出力電流を検出する。電流検出回路 86で検出された電流は電圧に変換されて CP U72に与えられる。電流検出回路 86の出力側には電圧検出回路 84が接続され、燃 料電池 12の出力電圧が検出される。検出された燃料電池 12の出力電圧は CPU72 に与えられる。なお、電圧検出回路 84は二次電池 108の電圧をも検出する。さらに、 電圧検出回路 84の出力側には、 2つの FET1および FET2を含む電圧調整回路 88 が設けられる。 FET1および FET2のそれぞれのゲートには CPU72から制御信号が 与えられ、この制御信号に基づいて燃料電池 12の出力電圧が調整される。さらに、 電圧調整回路 88の出力側には燃料電池 12を保護するためのダイオード 94が接続 される。
[0058] このようにして構成される電圧コントロール部 100の出力側には二次電池蓄電量検 出部 112が接続され、二次電池蓄電量検出部 112によって二次電池 108の蓄電量 が検出される。
[0059] このような燃料電池システム 10の発電動作の概略について説明する。燃料電池シ ステム 10は、図示しないメインスィッチがオンされることを契機として、水溶液ポンプ 2 6やエアポンプ 34等の補機類を駆動し、発電 (運転)を開始する。
[0060] 発電開始時には、水溶液タンク 18内に収容された所望の濃度のメタノール水溶液 Sが水溶液ポンプ 26の駆動によって燃料電池 12に向けて送られ、必要に応じてラジ エータ 28で冷却され、水溶液フィルタ 30によって浄ィ匕されてアノード 12bに供給され る。一方、酸化剤である酸素を含む空気がエアポンプ 34の駆動によって燃料電池 1 2に向けて送られ、エアフィルタ 38によって浄ィ匕され力ソード 12cに供給される。
[0061] 燃料電池 12のアノード 12bでは、メタノール水溶液 Sのメタノールと水とが電気化学 反応して二酸ィ匕炭素と水素イオンとが生成され、生成された水素イオンは、電解質 1 2aを通って力ソード 12cに流入する。この水素イオンは、力ソード 12cに供給された空 気中の酸素と電気化学反応して、水 (水蒸気)と電気工ネルギ一とが生成される。
[0062] 燃料電池 12のアノード 12bで生成された二酸ィ匕炭素はノイブ 40、水溶液タンク 18 および COベントパイプ 50を通って水タンク 44に与えられ、排気ガスパイプ 56から
2
排出される。
[0063] 一方、燃料電池 12の力ソード 12cで生成された水蒸気の大部分は液ィ匕して水とな つて排出されるが、飽和水蒸気分はガス状態で排出される。力ソード 12cから排出さ れた水蒸気の一部は、ラジェータ 46で冷却され露点を下げることによって液ィ匕される 。ラジェータ 46による水蒸気の液ィ匕動作は、冷却ファン 48を動作させることによって 促進される。力ソード 12cからの水分 (水および水蒸気)ならびに未反応の空気はパ ィプ 42を通って水タンク 44に与えられる。また、水のクロスオーバーによって力ソード 12cに移動した水が力ソード 12cから排出され水タンク 44に与えられる。さらに、メタノ ールのクロスオーバーによって力ソード 12cで生成された水と二酸化炭素が力ソード 12cから排出され水タンク 44に与えられる。
[0064] なお、水のクロスオーバーとは、アノード 12bで生成された水素イオンの力ソード 12 cへの移動に伴って、数モルの水が力ソード 12cへ移動する現象である。メタノールの クロスオーバーとは、水素イオンの力ソード 12cへの移動に伴って、メタノールがカソ ード 12cへ移動する現象である。力ソード 12cにおいて、メタノールはエアポンプ 34 から供給される空気と反応して水と二酸化炭素とに分解される。
[0065] 水タンク 44に回収された水(液体)は、水ポンプ 60の駆動によって水還流パイプ 58 を経由して水溶液タンク 18に適宜還流され、メタノール水溶液 Sの水として利用され る。 [0066] ついで、図 7を参照して、燃料電池システム 10の起動時の主要動作の一例につい て説明する。この実施形態では、燃料電池システム 10の起動モードとして、通常モー ド、低消費モード、起動しないの 3つのモードがあり、各モードの消費エネルギーは異 なる。
[0067] まず図示しな ヽメインスィッチを ONすると、二次電池 108の蓄電量 (残存容量)が 検出され揮発性メモリ 76に格納される (ステップ Sl)。制御装置 110の二次電池蓄電 量検出部 112によって、二次電池電圧が検出され、検出された二次電池電圧に所定 の定数を掛けることによって二次電池 108の蓄電量が求められる。 CPU72によって 、求められた二次電池 108の蓄電量に所定の電圧を掛けて二次電池 108の蓄電工 ネルギ一が算出され (蓄電量 X電圧 =蓄電エネルギー)(ステップ S 2)、揮発性メモリ 76に格納される。この実施形態では、蓄電エネルギーを求める手段は、二次電池蓄 電量検出部 112と CPU72とを含む。なお、二次電池 108の蓄電量は電圧検出回路 84によって検出された二次電池電圧に基づ!/、て求められてもよ!/、。
[0068] そして、電池温度センサ 66によって燃料電池 12の温度が検出される(ステップ S3) 。なお、燃料電池 12の温度とは燃料電池 12の出力に対応する温度であり、燃料電 池 12の温度を、たとえば、水溶液タンク 18内の熱容量が大きいメタノール水溶液 Sの 温度や力ソード 12cからの排気温度等で代用させてもよい。
[0069] っ ヽで、不揮発性メモリ 78に格納された、起動時の燃料電池 12の温度と目標温度 までの所要時間との関係を示すテーブルデータを参照して、検出された燃料電池 12 の温度に基づ!、て目標温度まで上昇させるのに必要な所要時間が推定される (ステ ップ S5)。
[0070] この推定された所要時間に、燃料電池システム 10を低消費モードで単位時間駆動 するのに必要な消費電力 (低消費電力)を掛けることによって、第 1閾値となる低消費 エネルギーが算出される(所要時間 X低消費電力 =低消費エネルギー)(ステップ S 7)。この実施形態では、低消費電力は約 70Wであり、エアポンプ 34および車両のへ ッドライトでの消費電力が大部分を占める。
[0071] そして、二次電池 108の蓄電エネルギーが低消費エネルギー(第 1閾値)より小さい か否かが判断される(ステップ S9)。二次電池 108の蓄電エネルギーが低消費エネ ルギ一より小さければ起動できな 、と判断され、燃料電池システム 10の起動が停止 されるとともに車両も駆動されな ヽ (ステップ S 11)。
[0072] 一方、ステップ S9において二次電池 108の蓄電エネルギーが低消費エネルギー 以上であれば、起動可能と判断され、第 2閾値となる通常エネルギーが算出される( ステップ S13)。通常エネルギーは、上述の推定された所要時間に、燃料電池システ ム 10を通常モードで単位時間駆動するのに必要な通常電力を掛けることによって算 出される(所要時間 X通常電力 =通常エネルギー)。
[0073] そして、二次電池 108の蓄電エネルギーが通常エネルギー(第 2閾値)より小さいか 否かが判断される(ステップ S15)。二次電池 108の蓄電エネルギーが通常エネルギ 一より小さければ通常モードで起動できないと判断され、燃料電池システム 10が低 消費モードで起動されるが車両は駆動されな 、 (ステップ S 17)。このように二次電池 108の蓄電エネルギーがさほど多くない場合であっても燃料電池システム 10を起動 できる。
[0074] 一方、ステップ S15において、二次電池 108の蓄電エネルギーが通常エネルギー 以上であれば、通常モードで起動できると判断され、ステップ S19に進む。
[0075] ステップ S19では、不揮発性メモリ 78に格納された単位エネルギーに相当する通 常駆動時の車両平均出力(たとえば 800W)に上記目標温度までの所要時間を掛け て負荷エネルギーが算出される(車両平均出力 X所要時間 =負荷エネルギー)。そ して、その負荷エネルギーと通常エネルギーとが加算されて第 3閾値が算出される ( ステップ S21)。
[0076] そして、二次電池 108の蓄電エネルギー力 負荷エネルギーと通常エネルギーとの 和(第 3閾値)より小さいか否かが判断される(ステップ S23)。二次電池 108の蓄電工 ネルギ一の方が小さければ、車両の駆動が制限されることになり、その制限量が設定 される (ステップ S25)。この実施形態では、走行時の車両の後輪駆動が制限される。 たとえば、制限量を段階的に準備しておき、二次電池 108の蓄電エネルギーに応じ た制限量に設定される。そして、燃料電池システム 10が通常モードで起動されるとと もに車両が制限的に駆動される (ステップ S 27)。
[0077] 一方、ステップ S23において、二次電池 108の蓄電エネルギーが負荷エネルギー と通常エネルギーとの和以上であれば、燃料電池システム 10が通常モードで起動さ れるとともに、車両も通常駆動され通常走行する (ステップ S29)。
[0078] なお、上述の動作にぉ 、て、燃料電池システム 10の起動モードや車両の駆動状態 を表示部 106に表示するようにしてもよい。
[0079] ここで、図 8 (a)および (b)を参照して、燃料電池システム 10を低消費モードで起動 するが車両を駆動しな 、場合にっ 、て説明する。
図 8 (a)に示すような二次電池 108の蓄電エネルギー初期値を有する場合、燃料電 池システム 10を通常モードで起動すると、破線 A1で示すように起動の途中で二次電 池 108の蓄電エネルギーがゼロになってしまい、たとえ車両を駆動しないときでも燃 料電池システム 10の起動を継続できなくなる。したがって、この場合には、燃料電池 システム 10を通常モードではなく低消費モードで起動し、特に補機類の消費電力を 制限して発電を開始する。すると、二次電池 108の蓄電エネルギーは実線 B1のよう になる。なお、補機類の消費電力の制限は、たとえば、目標温度までの所要時間を 短縮したり補機類の駆動を制限したりすることによって行われる。
[0080] 図 8 (b)において、破線 A2は通常モードで起動したときの燃料電池 12の出力、実 線 B2は低消費モードで起動したときの燃料電池 12の出力、破線 A3は通常モードで 起動したときの燃料電池システム 10の消費電力、実線 B3は低消費モードで起動し たときの燃料電池システム 10の消費電力、実線 B4は車両を駆動していないときの車 両の平均出力を示す。
[0081] 破線 A2と実線 B2とからわ力るように、低消費モードであれば、燃料電池 12の出力 が定常になるまで時間が力かってしまう。また、破線 A3および実線 B3を参照して、 通常モードでの起動では補機類によって 150W程度消費されるが、低消費モードで の起動では補機類による消費電力は 100W程度に抑えられ、エネルギー消費を少な くでさる。
[0082] ついで、図 9 (a)および (b)を参照して、燃料電池システム 10を通常モードで起動し かつ車両を制限的に駆動する場合について説明する。
図 9 (a)に示すような二次電池 108の蓄電エネルギー初期値を有する場合、燃料電 池システム 10を通常モードで起動すると、二次電池 108の蓄電エネルギーが少ない ため破線 CIで示すように起動の途中で二次電池 108の蓄電エネルギーがゼロにな つてしまい、燃料電池システム 10の起動を継続できなくなる。したがって、この場合に は、車両の駆動を制限して燃料電池システム 10を通常モードで起動する。すると、二 次電池 108の蓄電エネルギーは実線 D1のようになる。
[0083] 図 9 (b)において、実線 D2は通常モードでの起動時の燃料電池 12の出力、実線 D 3は通常モードでの起動時の燃料電池システム 10の消費電力、実線 D4は車両を制 限的に駆動したときの車両の平均出力、破線 C4は通常駆動時の車両の平均出力を 示す。この例では、車両の平均出力は破線 C4から実線 D4へと制限されている。
[0084] さらに、図 10 (a)および (b)を参照して、燃料電池システム 10を通常モードで起動 しかつ車両を通常駆動する場合にっ 、て説明する。
図 10 (a)に示すような二次電池 108の蓄電エネルギー初期値を有する場合におい て、燃料電池システム 10を通常モードで起動しかつ車両を通常駆動する。すると、実 線 E1で示すように時点 tまでは燃料電池システム 10の補機類および車両によってェ ネルギ一が消費され、二次電池 108の蓄電エネルギーが減少していく。時点 t以降で は、燃料電池 12の出力が安定ィ匕し補機類および車両での消費エネルギー以上とな るので、二次電池 108からのエネルギーの持ち出しがなくなり、燃料電池 12の出力 によって補機類および車両が駆動されるとともに二次電池 108に蓄電され始める。こ の場合には二次電池 12の蓄電エネルギーに余裕があるので通常モードでの起動お よび通常駆動が可能となる。
[0085] 図 10 (b)において、実線 E2は通常モードでの起動時の燃料電池 12の出力、実線 E3は通常モードでの起動時の燃料電池システム 10の消費電力、実線 E4は通常駆 動時の車両の平均出力を示す。
[0086] なお、実際には走行したり停止したりするので車両の出力は変動するが、図 8 (b) , 図 9 (b)および図 10 (b)では車両の平均出力を示す。
[0087] ついで、図 11に車両の出力を制限する例を示す。
図 11 (a)に、モータ 116の最大電流を制限して車両の出力を制限する例を示す。 図 11 (a)より、モータ 116の最大電流を制限することによって後輪駆動力が減少し消 費エネルギーを抑制できることがわかる。 [0088] 図 11 (b)に、モータ 116の最大出力を制限して車両の出力を制限する例を示す。 モータ 116の最大出力を制限することによって図 11 (b)に斜線で示す部分の後輪駆 動力が減少し、消費エネルギーを抑制できることがわかる。
[0089] また、図 12からわかるように、燃料電池 12の起動時の温度によって、二次電池 12 に必要な蓄電エネルギーが異なる。具体的には、起動時の温度が 20°Cのときは蓄 電エネルギー Fl、 30°Cのときには蓄電エネルギー F2、 40°Cのときには蓄電エネル ギー F3が必要となり、起動時の温度が高いほど二次電池 108に必要な蓄電エネル ギ一が少なくなる。なお、蓄電エネルギー F1〜F3は、燃料電池システム 10を通常モ ードで起動しかつ車両を通常駆動する場合に必要な蓄電エネルギーである。
[0090] ついで、図 13を参照して、図 7のステップ S 17のサブルーチン、すなわち燃料電池 システム 10を低消費モードで起動するが車両を駆動しな 、場合の動作につ!、て説 明する。
燃料電池システム 10については低消費モードで起動され発電が開始され (ステツ プ S51)、その後通常運転となる (ステップ S53)。
[0091] 一方、負荷となる車両については最初は駆動されない (ステップ S55)。すなわち、 モータ 116に電圧は印加されずモータ 116は駆動されない。そして、ステップ S57に おいて二次電池 108の蓄電エネルギーが通常エネルギー(第 2閾値)以上になるま でその状態が継続される。すなわち、二次電池 108がある程度充電されるまで二次 電池 108の充電のみが行われる。二次電池 108の蓄電エネルギーが通常エネルギ 一以上になれば、車両は制限された (たとえばモータ 116の最大電流が制限された) 状態で駆動される (ステップ S59)。ステップ S61において、新たに算出された二次電 池 108の蓄電エネルギーが通常エネルギーと負荷エネルギーとの和(第 3閾値)以 上になるまで、車両のその状態での駆動が継続され、二次電池 108の蓄電エネルギ 一が通常エネルギーと負荷エネルギーとの和以上になれば、制限が解除され車両は 通常駆動される (ステップ S63)。
[0092] このように、二次電池 108の蓄電エネルギーが第 3閾値以上になれば、負荷を通常 駆動に切り替えることによって、二次電池 108の蓄電エネルギーに応じたモードで負 荷を駆動できる。 [0093] つぎに、図 14を参照して、図 7のステップ S27のサブルーチン、すなわち燃料電池 システム 10を通常モードで起動しかつ車両を制限的に駆動する場合の動作につい て説明する。
燃料電池システム 10については、まずレベルセンサ 54によって水タンク 44内の液 量 (水量)が検出される (ステップ S101)。ステップ S101で検出した液量が予め設定 されて!/、る第 1所定量(たとえば 250cc)以上であれば (ステップ S 103が YES)、二 次電池 108の電力によって水ポンプ 60が駆動され、水タンク 54内の水が水還流パイ プ 58を通って水溶液タンク 18に還流される(ステップ S105)。その後、レベルセンサ 54の検出する液量が予め設定されて 、る第 2所定量 (たとえば 220cc)以下になると (ステップ S 107が YES)、水ポンプ 60が停止される(ステップ S 109)。
[0094] また、ステップ S 107において、レベルセンサ 54の検出する液量が第 2所定量以下 にならずとも(ステップ S 107が NO)、一定時間経過すれば (ステップ SI 11が YES) 、ステップ S 109に進む。このように、一定時間経過後に水ポンプ 60を停止させること で、たとえばレベルセンサ 54の異常等のために検出する液量がいつまでも第 2所定 量にならず発電できな 、と 、つたことがな 、。一定時間経過するまでは (ステップ S 11 1が NO)、引き続きステップ S 105の処理が行われる。
[0095] ステップ S 109の後に、燃料ポンプ 20、水溶液ポンプ 26、エアポンプ 34、熱交換器 用冷却ファン 32、気液分離器用冷却ファン 48および水ポンプ 60等の補機類が駆動 され、通常モードでの発電が開始される(ステップ S113)。ステップ S103において、 水タンク 44内の液量が第 1所定量未満であれば (ステップ S103で NO)、ステップ SI 13に進む。このように通常モードでの発電が開始された後、通常運転となる (ステツ プ S115)。
[0096] 一方、負荷となる車両については最初は制限された (たとえばモータ 116の最大電 流が制限された)状態で駆動される (ステップ S 117)。ステップ S 119にお 、て、新た に算出された二次電池 108の蓄電エネルギーが通常エネルギーと負荷エネルギー との和(第 3閾値)以上になるまで車両のその状態での駆動が継続され、二次電池 1 08の蓄電エネルギーが通常エネルギーと負荷エネルギーとの和以上になれば車両 は通常駆動される (ステップ S121)。 [0097] さらに、図 15を参照して、図 7のステップ S29のサブルーチン、すなわち燃料電池 システム 10を通常モードで起動しかつ車両を通常駆動する場合の動作について説 明する。
燃料電池システム 10については、まずレベルセンサ 54によって水タンク 44内の液 量 (水量)が検出される (ステップ S151)。ステップ S151で検出した液量が予め設定 されている第 1所定量(たとえば 250cc)以上であれば (ステップ S153が YES)、二 次電池 108の電力によって水ポンプ 60が駆動され、水タンク 54内の水が水還流パイ プ 58を通って水溶液タンク 18に還流される(ステップ S155)。その後、レベルセンサ 54の検出する液量が予め設定されて 、る第 2所定量 (たとえば 220cc)以下になると (ステップ S 157が YES)、水ポンプ 60が停止される(ステップ S 159)。
[0098] また、ステップ S157において、レベルセンサ 54の検出する液量が第 2所定量以下 にならずとも (ステップ S157が NO)、一定時間(たとえば 1分)経過すれば (ステップ S161力 SYES)、ステップ S159に進む。このように、一定時間経過後に水ポンプ 60を 停止させることで、たとえばレベルセンサ 54の異常等のために検出する液量がいつ までも第 2所定量にならず発電できな 、と 、つたことがな 、。一定時間経過するまで は(ステップ S 161が NO)、弓 Iき続きステップ S 155の処理が行われる。
[0099] ステップ S 159の後に、燃料ポンプ 20、水溶液ポンプ 26、エアポンプ 34、熱交換器 用冷却ファン 32、気液分離器用冷却ファン 48および水ポンプ 60等の補機類が駆動 され、通常モードでの発電が開始される(ステップ S163)。ステップ S153において、 水タンク 44内の液量が第 1所定量未満であれば (ステップ S153で NO)、ステップ SI 63に進む。このように通常モードでの発電が開始された後、通常運転となる (ステツ プ S165)。
[0100] 一方、負荷となる車両については最初から出力に制限を加えることなく通常駆動さ れる(ステップ S 167)。
[0101] さら〖こ、図 16を参照して、図 13のステップ S51、図 14のステップ S113、図 15のス テツプ S163に示す発電開始時の処理について説明する。
まず、無負荷に設定される (ステップ S201)。すなわち、電圧調整回路 88によって 電気回路 90が開放され、燃料電池 12が無負荷運転となり、燃料電池 12と二次電池 108との接続が解除される。この状態では、燃料電池 12からの電流の取り出しが停 止される。そして、アラームレベルが決定される(ステップ S 202)。その後、水溶液タ ンク 18内の水溶液量が制御され (ステップ S203)、メタノール水溶液 Sの濃度が制御 され (ステップ S205)、水溶液タンク 18内の水溶液量が減らされる(ステップ S207)。 さらに、水溶液ポンプ 26およびエアポンプ 34が制御され (ステップ S209)、燃料電 池 12の出力電圧が制御される(ステップ S211)。
[0102] 図 16のステップ S201〜S211の動作をさらに具体的に説明する。
図 17を参照して、図 16のステップ S 202に示すアラームレベルを決定する処理に ついて説明する。
まず、モードが通常モードか低消費モードかが検出され (ステップ S251)、モード毎 に規定電圧 (セルを傷めることなく運転できる最低電圧)が決定される (ステップ S253 )。規定電圧を単セル電圧 (燃料電池セル 1個の電圧)に換算すれば、たとえば、通 常モードの場合には 0. 25V、低消費モードの場合には 0. 2Vに設定される。
[0103] このように低消費モードで起動する場合には通常モードで起動する場合より規定電 圧を低く設定することによって、通常モードであれば燃料電池 12と二次電池 108との 接続が解除されるような値に燃料電池 12の出力電圧が達するような場合であっても 、低消費モードでは、燃料電池 12と二次電池 108との接続は解除されず (接続を維 持した状態にし)、二次電池 108への充電を継続させることによって、二次電池 108 の放電ひいては蓄電エネルギーの減少を抑制できる。
[0104] 図 18を参照して、図 16のステップ S203に示す水溶液タンク 18内の水溶液量を 制御する処理につ!、て説明する。
まず、モードが判断される(ステップ S301)。通常モードの場合には、レベルセンサ 22によって検出された水溶液タンク 18内の水溶液量が水溶液タンク規定量 (発電時 の水溶液タンク 18内の水溶液量であり、たとえば 1リットル)より小さいか否かが判断さ れ (ステップ S303)、小さければレベルセンサ 54によって水タンク 44内の液量(水量 )が検出され (ステップ S305)、検出された液量が第 1所定量 (たとえば 250cc)以上 か否かが判断される (ステップ S307)。検出された液量が第 1所定量以上であれば、 水ポンプ 60が駆動されて水が水溶液タンク 18へ還流される(ステップ S309)。ステツ プ S311にお 、て一定時間経過するまでその動作が継続され、一定時間経過すると ステップ S303に戻る。
[0105] ステップ S303において水溶液タンク 18内の水溶液量が水溶液タンク規定量以上 のときや、ステップ S307において液量が第 1所定量より少ないときは、水ポンプ 60が 停止される(ステップ S313)。
[0106] 一方、低消費モードの場合には水溶液タンク 18内の水溶液量の制御は行われな い。
[0107] このように低消費モードで起動する場合には水溶液タンク 18内の水溶液量を制御 しな 、ので、水ポンプ 60を駆動する必要はなく消費電力を抑制できる。
[0108] 図 19を参照して、図 16のステップ S205に示すメタノール水溶液 Sの濃度の制御に ついて説明する。ここではメタノール水溶液 Sの濃度が通常運転時の濃度より高く設 定される。
[0109] まず、モードが通常モードか低消費モードかが検出される (ステップ S351)。そして 、濃度センサ 64によってメタノール水溶液 Sの濃度が検出され (ステップ S353)、検 出されたメタノール水溶液 Sの濃度が、検出されたモードの規定濃度より小さいか否 かが判断される (ステップ S355)。規定濃度はモード毎に設定され、通常モードと低 消費モードとで異なる。規定濃度は、通常モードの場合には、燃料電池 12の温度や 外気温度などによって異なるが通常運転時の濃度より高く設定され、一方、低消費モ ードの場合には、通常モードの場合の設定値よりさらに 2〜5wt%ほど高く設定され る。規定濃度は、たとえば、外気温度が 20°Cのとき、通常モードの場合には 6%、低 消費モードの場合には 8%に設定される。
[0110] ステップ S355において、メタノール水溶液 Sの濃度が規定濃度より小さければ、燃 料ポンプ 20が駆動される(ステップ S357)。ステップ S359において一定時間経過す るまでその動作が継続され、一定時間経過するとステップ S353に戻る。ステップ S35 5にお 、てメタノール水溶液 Sの濃度が規定濃度以上であれば、燃料ポンプ 20が停 止される(ステップ S361)。
[0111] このように、低消費モードで起動する場合には、通常モードで起動する場合より高 濃度のメタノール水溶液 Sを燃料電池 12に供給して発電を開始する。この場合、クロ スオーバーが増大し効率は低下するが、温度上昇が早くなり目標温度までの所要時 間を短縮できる。
[0112] 図 20を参照して、図 16のステップ S207に示す水溶液タンク 18内の水溶液量を減 らす処理にっ 、て説明する。
まず、モードが判断される(ステップ S401)。通常モードの場合には、水ポンプ 60を 駆動して水溶液タンク 18内のメタノール水溶液 Sを水タンク 44内に移すことによって
、水溶液タンク 18内のメタノール水溶液 Sが減らされる(ステップ S403)。一方、低消 費モードの場合には、水ポンプ 60は駆動されず水溶液タンク 18内のメタノール水溶 液 Sを減らす制御は行われな 、。
[0113] このように、低消費モードで起動する場合には、水溶液タンク 18内のメタノール水 溶液量を減じる制御を行わな 、ことによって、水ポンプ 60を駆動する必要はなく消費 電力を抑制できる。
[0114] 図 21を参照して、図 16のステップ S209に示す水溶液ポンプ 26およびエアポンプ 34を制御する処理につ ヽて説明する。
まず、モードが通常モードか低消費モードかが検出される (ステップ S451)。そして 、エアポンプ 34による空気の流量力 検出されたモードに応じて決定される (ステップ S453)。たとえば、エアポンプ 34による空気の流量は、通常モードの場合には理論 必要量の 3倍、低消費モード 1の場合には理論必要量の 2倍に設定される。なお、低 消費モード 1の場合のエアポンプ 34による空気の流量は、通常モードの場合の 20% 以上 100%未満に設定されることが好ましい。ついで、水溶液ポンプ 26によるメタノ ール水溶液 Sの流量力 検出されたモードに応じて決定される(ステップ S455)。たと えば、水溶液ポンプ 26による水溶液の流量は、通常モードの場合には通常発電時と 同量、低消費モード 1の場合には必要最低限に設定される。
[0115] そして、通常モードおよび低消費モード 1の場合には、エアポンプ 34が駆動されて モードに応じた流量の空気が燃料電池 12の力ソード 12cへ送られ (ステップ S457)、 水溶液ポンプ 26が駆動されてモードに応じた流量のメタノール水溶液 Sが燃料電池 12のアノード 12bへ送られる(ステップ S459)。
[0116] また、低消費モード 2の場合には、水溶液ポンプ 26とエアポンプ 34とが交互に駆動 される(ステップ S461)。これによつて、両方のポンプを同時に動かすことによる大幅 な電圧降下を防ぐ。
[0117] このように、低消費モード 1で起動する場合には、通常モードの場合よりエアポンプ 34の出力を小さくして発電を開始することによって、エアポンプ 34の消費電力を低 減できる。
[0118] また、低消費モード 2で起動する場合には、空気およびメタノール水溶液 Sの流量 を下げ、エアポンプ 34と水溶液ポンプ 26とを交互に駆動し同時に駆動しない。これ によって、エアポンプ 34および水溶液ポンプ 26の消費電力を低減でき、二次電池 1 08の蓄電エネルギーの減少を抑制できる。
[0119] 図 22を参照して、燃料電池の出力電圧を制御する処理について説明する。
まず、モードが通常モードか低消費モードかが検出される (ステップ S501)。
[0120] 低消費モードの場合には、燃料電池 12の出力電圧が二次電池 108の電圧以上か 否かが判断され (ステップ S503)、燃料電池 12の出力電圧が二次電池 108の電圧 以上になるまで待機し、燃料電池 12の出力電圧が二次電池 108の電圧以上になれ ば、燃料電池 12の出力電圧が低消費モード用の VIに設定される (ステップ S505)。
[0121] 一方、通常モードの場合には、燃料電池 12の温度が所定温度に達したか否かが 判断され (ステップ S507)、燃料電池 12の温度が所定温度に達するまで待機し、燃 料電池 12の温度が所定温度に達すればステップ S 505に進み、燃料電池 12の出力 電圧が通常モード用の VIに設定される。燃料電池 12の出力電圧は、電圧調整回路 88によって設定される。
[0122] そして、燃料電池 12の温度 Tが判定され (ステップ S509)、モードおよび温度丁に 基づいて、燃料電池 12の出力電圧が設定される。温度 Tが T1以下であれば、一定 時間経過するまで待機し (ステップ S511)、一定時間経過すれば、燃料電池 12の出 力電圧が規定電圧より小さいか否かが判断される (ステップ S513)。単セル電圧でい えば、たとえば、通常モードの場合には単セル電圧が 0. 25Vより小さいか否かが、 低消費モードの場合には単セル電圧が 0. 2Vより小さいか否かが、判断される。燃料 電池 12の出力電圧が規定電圧より小さければ、図 16に示すステップ S201に戻り、 無負荷に設定され、燃料電池 12からの電流の取り出しが停止される。一方、燃料電 池 12の出力電圧が規定電圧以上であれば、燃料電池 12からの電流の取り出しが継 続されステップ S 509〖こ戻る。
[0123] ステップ S509において、温度 Tが T1より大きく T2以下であれば、燃料電池 12の出 力電圧が V2に設定され (ステップ S515)、ステップ S511へ進む。温度 Tが T2より大 きくなれば、燃料電池 12の出力電圧が V3に設定され (ステップ S517)、燃料電池 1 2の温度丁が目標温度 (通常運転温度)に達した力否かが判断される (ステップ S519 ) o温度 Tが目標温度に達していなければステップ S511に進み、達していればリタ一 ンし燃料電池システム 10は通常運転に入る。この実施形態では、 T1 = 50°C、 T2 = 60°C、目標温度 = 65°Cである。また、電圧 VI, V2および V3に対応する単セル電 圧は、通常モードではそれぞれ 0. 50V, 0. 40Vおよび 0. 35Vであり、低消費モー ドではそれぞれ 0. 40V, 0. 35Vおよび 0. 25Vである。燃料電池 12の出力電圧を 下げて 、くことによって、二次電池 108への充電電流を大きくできる。
[0124] このように、低消費モードで起動する場合には、燃料電池 12の出力電圧が二次電 池 108の電圧以上になればたとえ燃料電池 12が所定温度に達していなくても、燃料 電池 12の無負荷運転を解除し燃料電池 12の出力電圧を VIに設定する。これによ つて、無負荷運転の時間を短くでき目標温度までの昇温時間を短縮できる。
[0125] 図 23 (a)に、通常モードにおける燃料電池 12の温度および燃料電池 12の出力電 圧を示し、図 23 (b)に、低消費モードにおける燃料電池 12の温度および燃料電池 1 2の出力電圧を示す。
[0126] 図 23 (a)および (b)より、通常モードより低消費モードの方が早く無負荷運転力も燃 料電池 12の出力電圧力 となる運転へ切り替えることがわかる。これは、上述のよう に、低消費モードでは燃料電池 12の出力電圧が二次電池 108の電圧以上になれば 、燃料電池 12の出力電圧を VIに設定できるからである。通常モードではこの時点で は未だ無負荷運転である。
[0127] また、低消費モードで起動する場合には、通常モードで起動する場合より同じ燃料 電池温度における燃料電池 12からの出力電圧 VI, V2および V3を小さくする。これ によって低消費モードの場合の燃料電池 12からの出力電流を通常モードの場合より 大きくでき、二次電池 108を早く充電できる。また、燃料電池 12の昇温も早くなり、早 く通常運転に切り替えることができる。
[0128] このような燃料電池システム 10によれば、二次電池 108の蓄電エネルギーと計算 によって求めた閾値とに基づいて、燃料電池システム 10の起動モードを決定し、決 定された起動モードに従って燃料電池システム 10を動作させる。これによつて、二次 電池 108の蓄電エネルギー(蓄電量)に応じた最適な起動モードを選択でき、燃料 電池システム 10の起動に不具合は生じない。
[0129] 具体的には、二次電池 108の蓄電量を蓄電エネルギーに換算し、その蓄電エネル ギ一と、燃料電池システム 10を低消費モードで起動するのに必要な低消費エネルギ 一そのものである第 1閾値と比較する。二次電池 108の蓄電エネルギーが第 1閾値 以上であれば燃料電池システム 10を起動する。一方、二次電池 108の蓄電工ネル ギ一が第 1閾値未満であれば燃料電池システム 10を低消費モードであっても起動で きないと判断し、燃料電池システム 10の起動を停止する。これによつて、不要なエネ ルギー消費を避けることができる。
[0130] また、二次電池 108の蓄電エネルギー力 燃料電池システム 10を通常モードで起 動するのに必要な通常エネルギーそのものである第 2閾値以上であれば、燃料電池 システム 10を通常モードで起動する。一方、二次電池 108の蓄電エネルギーが第 2 閾値未満であれば燃料電池システム 10を低消費モードで起動する。このようにして 二次電池 108の蓄電エネルギーに応じたモードで燃料電池システム 10を起動できる
[0131] さらに、二次電池 108の蓄電エネルギーが、通常エネルギーと負荷エネルギーとの 和そのものである第 3閾値以上であれば車両を通常駆動する。一方、二次電池 108 の蓄電エネルギーが第 3閾値未満であれば車両を通常駆動以外のモードで駆動す る。このように二次電池 108の蓄電エネルギーに応じて可能な範囲で車両を駆動す る。
[0132] 上述の燃料電池システム 10は二次電池 108の容量を小さくすることが要求される 車両に好適に用いられる。
[0133] なお、上述の実施形態では、閾値としてエネルギーを用い、この閾値と二次電池 1
08の蓄電エネルギーとを比較した場合について説明した力 これに限定されない。 閾値として蓄電量を用い、この閾値と二次電池 108の蓄電量とを比較するようにして もよい。この場合には、エネルギーを蓄電量に換算し閾値とすればよい。また、閾値と して電圧を用い、この閾値と二次電池 108の電圧とを比較するようにしてもよぐ閾値 として電流を用い、この閾値と二次電池 108を流れる電流とを比較するようにしてもよ い。
[0134] 上述の実施形態では、起動モードを決定するための閾値を計算によって求めたが 、つぎのようにしてもよい。たとえば図 24に示すように二次電池 108の蓄電量につい て予め 3つの閾値 A, Bおよび Cを設定しておき 4区分を設ける。この場合には、メイン スィッチを ONした後、二次電池 108の蓄電量を検出し、その蓄電量がどの区分に属 するかを決定し、属する区分の処理を実行するようにすればょ ヽ。
[0135] 具体的には、蓄電量が閾値 A以下であれば、燃料電池システム 10を起動せずか つ車両も駆動しない。蓄電量が閾値 Aを超えかつ閾値 B以下であれば、燃料電池シ ステム 10を低消費モードで起動するが車両は駆動しない。蓄電量が閾値 Bを超えか つ閾値 C以下であれば、燃料電池システム 10を通常モードで起動しかつ車両を制 限的に駆動する。蓄電量が閾値 Cを超えれば、燃料電池システム 10を通常モードで 起動しかつ車両も通常駆動する。
[0136] この実施形態によれば、簡単に起動モードを設定できる。
[0137] なお、低消費モードでは、 CPU72の演算速度を下げて消費電力を抑制するように してちよい。
[0138] また、上述の実施形態では、 3つの閾値を用い、燃料電池システム 10および車両 につ 、て 4つの動作モードを設けた力 これに限定されな!、。
[0139] たとえば、燃料電池システム 10を通常起動するのに必要な通常エネルギーに対応 する閾値 Dと、燃料電池システム 10を通常モードで起動するのに必要な通常エネル ギ一と負荷を通常駆動するのに必要な負荷エネルギーとの和に対応する閾値 E (D く E)とを用い、 3つの動作モードを設けるようにしてもよい。この場合たとえば、燃料 電池 12の蓄電量が閾値 D以下であれば、燃料電池システム 10を起動せずかつ車両 も駆動しない。蓄電量が閾値 Dを超えかつ閾値 E以下であれば、燃料電池システム 1 0を通常モードで起動しかつ車両を制限的に駆動する。蓄電量が閾値 Eを超えれば 、燃料電池システム 10を通常モードで起動しかつ車両も通常駆動する。なお、閾値 D, Eは、燃料電池 12の温度に基づいて計算によって求められてもよいし、予め設定 されていてもよい。
[0140] さらに、閾値を用いることなぐ二次電池 108の蓄電エネルギーに関するデータに 基づ 、て燃料電池システム 10の起動モードを決定するようにしてもょ 、。
[0141] この発明は、燃料水溶液の昇温にひいては燃料電池の十分な出力が得られるまで に時間がかかる直接メタノール型燃料電池システムに好適に用いられる。
[0142] 上述の実施形態では、燃料としてメタノール燃料を、燃料水溶液としてメタノール水 溶液を用いた力 これに限定されず、燃料としてエタノール等のアルコール系燃料、 燃料水溶液としてエタノール等のアルコール系水溶液を用いてもょ 、。
[0143] 上述の実施形態では、負荷として自動二輪車を用いる場合について説明したが、 これに限定されず、自動二輪車以外の四輪自動車等の自動車両、船舶、航空機等
、任意の輸送機器を負荷として用いることができる。
[0144] この発明は、改質器搭載タイプの燃料電池システムや水素を燃料電池に供給する タイプの燃料電池システムにも適用できる。また、この発明は、小型の据え付けタイプ の燃料電池システムにも適用できる。
[0145] この発明が詳細に説明され図示されたが、それは単なる図解および一例として用い たものであり、限定であると解されるべきではないことは明らかであり、この発明の精 神および範囲は添付された請求の範囲の文言のみによって限定される。

Claims

請求の範囲
[1] 負荷に接続される燃料電池システムであって、
燃料電池、
前記燃料電池に電気的に接続される二次電池、
前記二次電池の蓄電エネルギーに関するデータを求める手段、および 求められた前記二次電池の蓄電エネルギーに関するデータに基づいて、当該燃料 電池システムの起動モードを消費エネルギーが異なる複数のモードのうちのいずれ かに決定する第 1決定手段を備える、燃料電池システム。
[2] 当該燃料電池システムの起動モードを決定するための少なくとも 1つの閾値を記憶 する記憶手段をさらに含み、
前記第 1決定手段は、前記二次電池の蓄電エネルギーに関するデータと前記記憶 手段に記憶された前記閾値とに基づいて当該燃料電池システムの起動モードを決 定する、請求項 1に記載の燃料電池システム。
[3] 前記閾値は当該燃料電池システムを起動するのに必要なエネルギーに対応する 第 1閾値を含み、
前記第 1決定手段は、前記二次電池の蓄電エネルギーに関するデータと前記第 1 閾値とに基づいて当該燃料電池システムを起動する力否かを決定する手段を含む、 請求項 2に記載の燃料電池システム。
[4] 前記閾値は当該燃料電池システムを通常モードで起動するのに必要な通常エネ ルギ一に対応する第 2閾値を含み、
前記第 1決定手段は、前記二次電池の蓄電エネルギーに関するデータと前記第 2 閾値とに基づいて当該燃料電池システムを通常モードで起動する力低消費モードで 起動するかを決定する手段を含む、請求項 2に記載の燃料電池システム。
[5] 前記記憶手段は当該燃料電池システムを通常モードで起動するのに必要な通常 エネルギーと前記負荷を通常駆動するのに必要な負荷エネルギーとの和に対応す る第 3閾値をさらに記憶し、
前記二次電池の蓄電エネルギーに関するデータと前記第 3閾値とに基づいて前記 負荷を通常駆動する力否かを決定する第 2決定手段をさらに備える、請求項 2に記 載の燃料電池システム。
[6] 前記燃料電池に燃料水溶液が供給されて発電する、請求項 1に記載の燃料電池 システム。
[7] 前記負荷の少なくとも 1つは輸送機器のモータである、請求項 1から 6のいずれかに 記載の燃料電池システム。
[8] 燃料電池と、前記燃料電池に電気的に接続される二次電池とを備え、負荷に接続 される燃料電池システムの起動方法であって、
前記二次電池の蓄電エネルギーに関するデータを求め、求められた前記二次電 池の蓄電エネルギーに関するデータに基づ 、て、当該燃料電池システムの起動モ ードを消費エネルギーが異なる複数のモードのうちのいずれかに決定し、決定された モードに従って当該燃料電池システムを動作させる、燃料電池システムの起動方法
[9] 前記二次電池の蓄電エネルギーに関するデータと当該燃料電池システムの起動 モードを決定するための少なくとも 1つの閾値とに基づいて当該燃料電池システムの 起動モードを決定する、請求項 8に記載の燃料電池システムの起動方法。
[10] 前記閾値は当該燃料電池システムを起動するのに必要なエネルギーに対応する 第 1閾値を含み、
前記二次電池の蓄電エネルギーに関するデータと前記第 1閾値とに基づ!、て当該 燃料電池システムを起動するか否かを決定する、請求項 9に記載の燃料電池システ ムの起動方法。
[11] 前記閾値は当該燃料電池システムを通常モードで起動するのに必要な通常エネ ルギ一に対応する第 2閾値を含み、
前記二次電池の蓄電エネルギーに関するデータと前記第 2閾値とに基づいて当該 燃料電池システムを通常モードで起動する力低消費モードで起動するかを決定する
、請求項 9に記載の燃料電池システムの起動方法。
[12] 当該燃料電池システムを通常モードで起動するのに必要な通常エネルギーと前記 負荷を通常駆動するのに必要な負荷エネルギーとの和に対応する第 3閾値をさらに 用い、 前記二次電池の蓄電エネルギーに関するデータと前記第 3閾値とに基づいて前記 負荷を通常駆動する力否かを決定し、決定結果に従って前記負荷を通常駆動する 力または通常駆動以外のモードで駆動する、請求項 9に記載の燃料電池システムの 起動方法。
[13] 当該燃料電池システムを低消費モードで起動する場合には、通常モードで起動す る場合より前記燃料電池と前記二次電池との接続を解除するカゝ否かを判断するため の規定電圧を低く設定し、前記燃料電池の出力電圧と前記規定電圧とに基づいて 前記燃料電池と前記二次電池との接続を解除するカゝ否かを判断する、請求項 9に記 載の燃料電池システムの起動方法。
[14] 前記燃料電池に供給する燃料水溶液を収容する水溶液タンクをさらに用い、 当該燃料電池システムを低消費モードで起動する場合には、前記水溶液タンク内 の水溶液量を制御しな 、、請求項 9に記載の燃料電池システムの起動方法。
[15] 当該燃料電池システムを低消費モードで起動する場合には、通常モードで起動す る場合より高濃度の燃料水溶液を前記燃料電池に供給して発電を開始する、請求項 9に記載の燃料電池システムの起動方法。
[16] 前記燃料電池に供給する燃料水溶液を収容する水溶液タンクをさらに用い、 当該燃料電池システムを低消費モードで起動する場合には、前記水溶液タンク内 の水溶液量を減じる制御を行わな 、、請求項 9に記載の燃料電池システムの起動方 法。
[17] 前記燃料電池へ酸素を含む空気を供給するエアポンプをさらに用い、
当該燃料電池システムを低消費モードで起動する場合には、通常モードで起動す る場合より前記エアポンプの出力を小さくして発電を開始する、請求項 9に記載の燃 料電池システムの起動方法。
[18] 前記燃料電池へ酸素を含む空気を供給するエアポンプ、および前記燃料電池へ 燃料水溶液を供給する水溶液ポンプをさらに用い、
当該燃料電池システムを低消費モードで起動する場合には、前記エアポンプと前 記水溶液ポンプとを交互に駆動する、請求項 9に記載の燃料電池システムの起動方 法。
[19] 当該燃料電池システムを低消費モードで起動する場合には、前記燃料電池の出力 電圧が前記二次電池の電圧以上になったとき当該燃料電池システムを前記負荷に 接続する、請求項 9に記載の燃料電池システムの起動方法。
[20] 当該燃料電池システムを低消費モードで起動する場合には、通常モードで起動す る場合より同じ燃料電池温度における前記燃料電池の出力電圧を小さくする、請求 項 9に記載の燃料電池システムの起動方法。
[21] 前記負荷を通常駆動以外のモードで駆動しているとき、前記二次電池の蓄電エネ ルギ一が前記第 3閾値に対応するエネルギー以上になれば、前記負荷の駆動を通 常駆動に切り替える、請求項 12に記載の燃料電池システムの起動方法。
PCT/JP2006/300857 2005-01-24 2006-01-20 燃料電池システムおよびその起動方法 WO2006077970A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006553969A JP5191129B2 (ja) 2005-01-24 2006-01-20 燃料電池システムおよびその起動方法
EP06712082.4A EP1845574B1 (en) 2005-01-24 2006-01-20 Fuel cell system and start method thereof
US11/814,630 US8206858B2 (en) 2005-01-24 2006-01-20 Fuel cell system and starting method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-015187 2005-01-24
JP2005015187 2005-01-24

Publications (1)

Publication Number Publication Date
WO2006077970A1 true WO2006077970A1 (ja) 2006-07-27

Family

ID=36692350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300857 WO2006077970A1 (ja) 2005-01-24 2006-01-20 燃料電池システムおよびその起動方法

Country Status (5)

Country Link
US (1) US8206858B2 (ja)
EP (1) EP1845574B1 (ja)
JP (1) JP5191129B2 (ja)
TW (1) TW200640062A (ja)
WO (1) WO2006077970A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192549A (ja) * 2007-02-07 2008-08-21 Sony Corp 電源システム
JP2014029869A (ja) * 2013-10-01 2014-02-13 Sony Corp 電源システム
KR101401751B1 (ko) * 2007-09-12 2014-06-27 엘지전자 주식회사 연료 전지와 2차 전지를 구비한 시스템 및 이의 충전제어방법
WO2015072054A1 (ja) * 2013-11-13 2015-05-21 パナソニックIpマネジメント株式会社 燃料電池システム、およびその制御方法
JP2016092849A (ja) * 2014-10-29 2016-05-23 京セラ株式会社 電力供給システム、起動制御装置及び電力供給システムの制御方法
JP2019193321A (ja) * 2018-04-18 2019-10-31 株式会社豊田自動織機 燃料電池式産業車両

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69533862T2 (de) 1994-11-04 2005-12-15 Andrew Corp., Orland Park Basisstation für zellulares Telekommunikationssystem mit Antennensteuerungsanordnung und Antennensteuerungsanordnung
US8110312B2 (en) * 2005-01-24 2012-02-07 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system and starting method therefor
JP5145724B2 (ja) * 2007-02-14 2013-02-20 トヨタ自動車株式会社 電力供給システム
GB0715218D0 (en) * 2007-08-03 2007-09-12 Rolls Royce Fuel Cell Systems A fuel cell and a method of manufacturing a fuel cell
JP4304543B2 (ja) * 2007-11-12 2009-07-29 トヨタ自動車株式会社 燃料電池システム
JP5214230B2 (ja) * 2007-12-04 2013-06-19 Jx日鉱日石エネルギー株式会社 燃料電池システムの起動方法
DE102010011416A1 (de) * 2010-03-15 2011-09-15 Airbus Operations Gmbh Energieregelvorrichtung zum Regeln hybrider Energiequellen für ein Flugzeug
CN102306814A (zh) * 2011-08-17 2012-01-04 中国东方电气集团有限公司 液流电池系统及其控制方法和装置
JP5724935B2 (ja) * 2012-04-19 2015-05-27 トヨタ自動車株式会社 エンジンシステム
US8986899B2 (en) * 2012-10-29 2015-03-24 Gm Global Technology Operations, Llc Systems and methods for enhancing fuel cell vehicle startup
CN104022545A (zh) * 2014-05-19 2014-09-03 沈阳德邦仪器有限公司 一种燃料电池移动充电装置
CN109962313B (zh) * 2017-12-14 2021-06-01 郑州宇通客车股份有限公司 一种燃料电池混合动力车辆及其低温启动控制方法、装置
CN112776619B (zh) * 2020-05-11 2022-12-13 长城汽车股份有限公司 一种充电方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231991A (ja) 1996-02-23 1997-09-05 Toyota Motor Corp 燃料電池システム
US5820172A (en) 1997-02-27 1998-10-13 Ford Global Technologies, Inc. Method for controlling energy flow in a hybrid electric vehicle
JP2001266917A (ja) * 2000-03-15 2001-09-28 Toyota Motor Corp 動力装置およびその制御方法
JP2001357865A (ja) * 2000-06-12 2001-12-26 Honda Motor Co Ltd 燃料電池車両の起動制御装置
JP2002034171A (ja) * 2000-07-17 2002-01-31 Yamaha Motor Co Ltd 電動車両の電力制御方法
US20020095247A1 (en) 2001-01-16 2002-07-18 Yi Ding High efficiency fuel cell and battery for a hybrid powertrain
JP2003068339A (ja) * 2001-08-30 2003-03-07 Nissan Motor Co Ltd 移動体用燃料電池パワープラント
JP2003303605A (ja) * 2002-04-11 2003-10-24 Toyota Motor Corp 電源システムおよびその制御方法
JP2004055379A (ja) * 2002-07-22 2004-02-19 Nissan Motor Co Ltd 燃料電池システム
WO2004042854A2 (en) 2002-11-07 2004-05-21 Nissan Motor Co.,Ltd. Fuel cell start-up system with remote control

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608017B2 (ja) 1996-07-22 2005-01-05 トヨタ自動車株式会社 電源システム
JP4049833B2 (ja) * 1996-07-26 2008-02-20 トヨタ自動車株式会社 電源装置および電気自動車
JPH11176454A (ja) 1997-12-10 1999-07-02 Sanyo Electric Co Ltd 燃料電池の補機用電源
EP1055545B1 (en) 1999-05-26 2004-01-28 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle with fuel cells incorporated therein and method of controlling the same
JP4306085B2 (ja) 1999-05-26 2009-07-29 トヨタ自動車株式会社 燃料電池を備える車両およびその制御方法
JP2001275205A (ja) * 2000-03-24 2001-10-05 Nissan Motor Co Ltd 2次電池と発電機の併用システムの制御装置
US6534950B2 (en) * 2001-05-25 2003-03-18 Cellex Power Products, Inc. Hybrid power supply control system and method
TW543262B (en) 2001-10-15 2003-07-21 Accu Therm Corp Multi-function battery management implement
TW531504B (en) 2002-03-08 2003-05-11 Welltek Energy Technology Comp Power source management system for an electromotive vehicle
US6744237B2 (en) * 2002-03-28 2004-06-01 Ford Global Technologies, Llc Hybrid power system for an electric vehicle
JP3899518B2 (ja) 2002-09-30 2007-03-28 カシオ計算機株式会社 燃料電池システム及びその駆動制御方法並びに電源システムを備えた電子機器
JP2004247164A (ja) 2003-02-13 2004-09-02 Nissan Motor Co Ltd 燃料電池システム
JP4811626B2 (ja) * 2003-08-25 2011-11-09 トヨタ自動車株式会社 車両用の燃料電池システム及び電気自動車
JP4193639B2 (ja) * 2003-08-28 2008-12-10 日産自動車株式会社 燃料電池搭載車両の制御装置
JP2005100694A (ja) 2003-09-22 2005-04-14 Denso Corp 燃料電池の暖機システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231991A (ja) 1996-02-23 1997-09-05 Toyota Motor Corp 燃料電池システム
US5820172A (en) 1997-02-27 1998-10-13 Ford Global Technologies, Inc. Method for controlling energy flow in a hybrid electric vehicle
JP2001266917A (ja) * 2000-03-15 2001-09-28 Toyota Motor Corp 動力装置およびその制御方法
JP2001357865A (ja) * 2000-06-12 2001-12-26 Honda Motor Co Ltd 燃料電池車両の起動制御装置
JP2002034171A (ja) * 2000-07-17 2002-01-31 Yamaha Motor Co Ltd 電動車両の電力制御方法
US20020095247A1 (en) 2001-01-16 2002-07-18 Yi Ding High efficiency fuel cell and battery for a hybrid powertrain
JP2003068339A (ja) * 2001-08-30 2003-03-07 Nissan Motor Co Ltd 移動体用燃料電池パワープラント
JP2003303605A (ja) * 2002-04-11 2003-10-24 Toyota Motor Corp 電源システムおよびその制御方法
JP2004055379A (ja) * 2002-07-22 2004-02-19 Nissan Motor Co Ltd 燃料電池システム
WO2004042854A2 (en) 2002-11-07 2004-05-21 Nissan Motor Co.,Ltd. Fuel cell start-up system with remote control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1845574A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192549A (ja) * 2007-02-07 2008-08-21 Sony Corp 電源システム
KR101401751B1 (ko) * 2007-09-12 2014-06-27 엘지전자 주식회사 연료 전지와 2차 전지를 구비한 시스템 및 이의 충전제어방법
JP2014029869A (ja) * 2013-10-01 2014-02-13 Sony Corp 電源システム
WO2015072054A1 (ja) * 2013-11-13 2015-05-21 パナソニックIpマネジメント株式会社 燃料電池システム、およびその制御方法
JP2016092849A (ja) * 2014-10-29 2016-05-23 京セラ株式会社 電力供給システム、起動制御装置及び電力供給システムの制御方法
JP2019193321A (ja) * 2018-04-18 2019-10-31 株式会社豊田自動織機 燃料電池式産業車両
JP7012589B2 (ja) 2018-04-18 2022-02-14 株式会社豊田自動織機 燃料電池式産業車両

Also Published As

Publication number Publication date
US20090130497A1 (en) 2009-05-21
EP1845574B1 (en) 2015-07-08
JPWO2006077970A1 (ja) 2008-06-19
EP1845574A1 (en) 2007-10-17
TWI371132B (ja) 2012-08-21
US8206858B2 (en) 2012-06-26
EP1845574A4 (en) 2009-05-27
JP5191129B2 (ja) 2013-04-24
TW200640062A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
WO2006077970A1 (ja) 燃料電池システムおよびその起動方法
JP5191130B2 (ja) 燃料電池システムおよびその起動方法
CN100481595C (zh) 燃料电池系统以及残留燃料气体的去除方法
US8691453B2 (en) Fuel cell system
US20080160370A1 (en) Adaptive Current Controller for a Fuel-Cell System
JP2007141732A (ja) 燃料電池システム及びその温度調整方法
JP2010238530A (ja) 燃料電池システム及びこれを備えた車両
JP4917796B2 (ja) 燃料電池システム
JP2006073427A (ja) 燃料電池システム
JP2005228637A (ja) 燃料電池システム
JP5113634B2 (ja) 燃料電池システム
JP2008293695A (ja) 燃料電池システム及びその始動方法
JP2007179786A (ja) 燃料電池システム
JP2009016219A (ja) 非常用電源機能を有するレドックスフロー電池システム及びレドックスフロー電池システムの非常時運転方法
JP2010238529A (ja) 燃料電池システム及びこれを備えた車両
JP5304863B2 (ja) 燃料電池システム
JP4982977B2 (ja) 燃料電池システム
JP4414808B2 (ja) 燃料電池システム
WO2006025321A1 (ja) 燃料電池システムおよびその制御方法
JP5333717B2 (ja) 燃料電池システム
JP6053013B2 (ja) 燃料電池システム
JP2005094914A (ja) 燃料電池車両の電力供給システム
JP2009076261A (ja) 燃料電池システム及びその起動方法
JP7141384B2 (ja) 燃料電池システム、及び燃料電池システムの低温動作方法
JP6287010B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006553969

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006712082

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006712082

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11814630

Country of ref document: US