WO2006078044A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2006078044A1
WO2006078044A1 PCT/JP2006/301076 JP2006301076W WO2006078044A1 WO 2006078044 A1 WO2006078044 A1 WO 2006078044A1 JP 2006301076 W JP2006301076 W JP 2006301076W WO 2006078044 A1 WO2006078044 A1 WO 2006078044A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light source
polarizing plate
auxiliary light
transmission axis
Prior art date
Application number
PCT/JP2006/301076
Other languages
English (en)
French (fr)
Inventor
Shinya Kondoh
Mie Ohara
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to US10/591,985 priority Critical patent/US7787077B2/en
Priority to JP2006519051A priority patent/JP5318348B2/ja
Publication of WO2006078044A1 publication Critical patent/WO2006078044A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/64Normally black display, i.e. the off state being black
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/66Normally white display, i.e. the off state being white
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0469Details of the physics of pixel operation
    • G09G2300/0478Details of the physics of pixel operation related to liquid crystal pixels
    • G09G2300/0491Use of a bi-refringent liquid crystal, optically controlled bi-refringence [OCB] with bend and splay states, or electrically controlled bi-refringence [ECB] for controlling the color

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly, to a liquid crystal display device capable of performing bright display of a background without using birefringence.
  • a memory liquid crystal has a plurality of optical states and has a characteristic (memory characteristic) that maintains a specific state without applying a voltage. Therefore, when a memory-type liquid crystal is used for a liquid crystal display device, it is possible to control so as to keep a predetermined display without applying a voltage. Utilizing these characteristics, in a display panel using a memory-type liquid crystal such as a ferroelectric liquid crystal, the scanning electrode is driven only in the part where the display needs to be changed, and the display does not need to be changed. It is known that the scanning electrode is controlled so as not to drive the scanning electrode (for example, Patent Document 1).
  • a transflective liquid crystal display device that performs transmissive display, such as reflective display, is known (for example, Patent Document 2).
  • a polarizing plate is placed on one of the substrates sandwiching a twisted nematic liquid crystal (TN liquid crystal) that rotates the transmitted light by 90 degrees, and the reflection axis and the transmission axis on the other side.
  • a transflective liquid crystal display device in which a reflective polarizing plate including: a transflective layer disposed outside the reflective polarizing plate; and an auxiliary light source disposed outside the transflective layer, During reflection display with an auxiliary light source turned to FF, an H level voltage is applied to the TN liquid crystal. When the polarizing plate is placed in the transmissive state, the auxiliary light source is turned off.
  • Bright display in N state (TN liquid crystal is transmissive). This is because when the auxiliary light source is OFF and the TN liquid is transmitted, the surface color of the auxiliary light source that has been FFF is observed from the outside and darkly displayed.
  • auxiliary light source ⁇ N When the liquid crystal is transmitted, the light from the auxiliary light source is observed from the outside and brightly displayed. In other words, even if the same level of voltage is applied to the TN liquid crystal, there is a problem that the display is reversed due to the auxiliary light source ⁇ N / ⁇ FF. Therefore, auxiliary light source ⁇ N
  • the voltage applied to the TN liquid crystal is switched (for example, from H level to L level) to prevent the dark display from being reversed.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 1 1 1 1 2 8 6 (Page 1 1 1 2, Figure 1 2)
  • Patent Document 2 Japanese Patent No. 3 4 8 o 5 4 1 Disclosure of Invention
  • an object of the present invention is to provide a transflective liquid crystal display device having an appropriate direction of a reflective polarizing plate and a direction of a polarizing plate and an alignment direction of liquid crystal molecules of liquid crystal.
  • a liquid crystal display device includes a first substrate, a second substrate,
  • Linearly polarized light having a first transmission axis and a first reflection axis that are orthogonal to each other and having a vibration plane parallel to the first transmission plane.
  • a reflective polarizing plate that reflects linearly polarized light that has a vibration plane parallel to the first reflection axis and is disposed on the second substrate, has a second transmission axis, and second transmission
  • a polarizing plate that transmits linearly polarized light having a vibration plane parallel to the axis, and a first mode that is sandwiched between the first and second substrates and changes the polarization direction of incident light using birefringence.
  • a liquid crystal layer having a second mode that does not change the polarization direction of incident light without using birefringence, and a liquid crystal layer.
  • the liquid crystal is set to the second mode to perform bright display.
  • the external light that has passed through and incident on the liquid crystal layer is reflected by the reflective polarizing plate,
  • No-It is preferable to perform bright display by emitting the liquid again and out of the polarizing plate.
  • liquid mill according to the present invention Furthermore, the liquid mill according to the present invention.
  • the first transmission axis is
  • the second transmission axis is arranged almost perpendicularly.
  • the liquid crystal layer maintains either the first stable state or the second stable state when no voltage is applied, and i Alternatively, it is preferable that one of the stable states of the second stable state is axed in the second mode. So-called memory mill
  • a liquid crystal display device was constituted by ⁇ 13.
  • the alignment direction of the liquid crystal molecules in the second stable state is arranged substantially parallel to the transmission axis of RU eel% 2.
  • the liquid crystal surface according to the present invention In the first this TogaYoshimi are placed so have approximately 4 [delta] 0 slope and distribution column direction of the liquid crystal molecules in the arrangement direction and the fill d second stable state of the liquid crystal molecules that put in a stable state or That's right.
  • the liquid crystal layer is a vertical alignment type liquid crystal layer, and the first state in which the liquid crystal molecules are aligned substantially vertically between the first and second substrates. It is preferable that the liquid crystal molecules have a second state in which the liquid crystal molecules are inclined at a predetermined angle with respect to the second transmission axis, and the first state is set to the second mode.
  • the liquid crystal display device has an auxiliary light source provided outside the reflective polarizing plate, and the liquid crystal layer is set in the second mode with the auxiliary light source turned off. I like this
  • the liquid crystal display 4 device has an auxiliary light source provided outside the reflective polarizing plate, and the liquid crystal layer is set to the second mode with the auxiliary light source turned on. I prefer
  • the light from the auxiliary light source is transmitted through the first transmission axis of the reflective polarizing plate, and the light incident on the liquid crystal layer is transmitted through the second transmission axis of the polarizing plate. It is preferable to display brightly by passing through and emitting to the viewing side.
  • the first transmission axis and the second transmission axis are arranged substantially in parallel.
  • the liquid crystal display device has an auxiliary light source provided outside the reflective polarizing plate, and is disposed between the reflective polarizing plate and the auxiliary light source to absorb light in a partial region. It is preferable to have a light-absorbing layer. As a result, the auxiliary light source is turned off, and the surface color of the auxiliary light source observed on the memory liquid crystal display device can be displayed darker at the mouth where the memory liquid crystal is in a transmissive state.
  • the liquid crystal display device has an auxiliary light source provided outside the reflective polarizing plate, and is disposed between the reflective polarizing plate and the auxiliary light source, and is part of the visible light region. It is preferable to have a light absorption layer that absorbs light. As a result, the auxiliary light source is turned off and the memory liquid crystal is transmitted. In this case, it becomes possible to display the surface color of the auxiliary light source that is observed on the memory.
  • the liquid crystal display device includes an auxiliary light source provided outside the reflective polarizing plate, and the auxiliary light source includes a reflective layer that reflects a part of the light in the visible light region.
  • the liquid crystal layer is a vertical alignment type liquid crystal layer, in which the liquid crystal molecules are aligned substantially vertically between the first and second substrates. It is preferable that the liquid crystal molecules have a second state in which the liquid crystal molecules are inclined at a predetermined angle with respect to the second transmission axis.
  • a liquid crystal according to the present invention is formed by a so-called vertically aligned liquid crystal.
  • a display device was constructed.
  • the liquid crystal layer is set to the second mode when the liquid crystal layer is maintained in the first state.
  • the present invention since it is configured to display white without using the birefringence of the liquid crystal, it is possible to display white clearly. Therefore, when the area of the bright display is large (when the background color is set to white), the effect is particularly high. Note that even if black is displayed without using the birefringence of the liquid crystal, it is possible to display black clearly, but since the dark display is originally inconspicuous, white Not as effective as
  • an auxiliary light source is often not used at all times.
  • the auxiliary light source is often used at all times, and ⁇ of a display that emphasizes transmission is closer to black. Can be displayed.
  • a transflective type using a memory liquid crystal is used.
  • the auxiliary light source is often not used at all times.
  • reflection-oriented display bright display without unevenness can be satisfactorily performed.
  • FIG. 1 is a block diagram of a liquid crystal display device according to the present invention.
  • FIG. 2 is a diagram showing a configuration example of a liquid crystal panel according to the present invention.
  • FIG. 3 is a diagram showing the relationship between the polarizing plate and the reflective polarizing plate of the liquid crystal panel according to the first embodiment.
  • Fig. 4 (a) shows the relationship between the applied voltage and light transmittance of the liquid crystal panel according to the first example when the auxiliary light source is set to 0 FF
  • Fig. 4 (b) shows the case when the auxiliary light source is turned on. It is a figure which shows the relationship between the applied voltage and light transmittance of the liquid crystal panel which concerns on a 1st Example.
  • Fig. 5 (a) shows a display example when the liquid crystal panel according to the present invention is used in a wristwatch
  • Fig. 5 (b) is a diagram showing a case where the display is reversed
  • Fig. 6 (a) is related to the present invention. A display example when the liquid crystal panel is used in a mobile phone is shown
  • FIG. 6 (b) is a diagram showing a case where the display is reversed.
  • FIG. 7 (a) shows an example of the scan voltage waveform applied to one scan electrode 1 3a
  • Fig. 7 (b) shows an example of the signal voltage waveform applied to one signal electrode 1 3b
  • FIG. 7 (c) is a diagram showing a composite voltage waveform of (a) and (b).
  • FIG. 8 is a diagram showing the relationship between the polarizing plate and the reflective polarizing plate of the liquid crystal panel according to the second embodiment.
  • Fig. 9 (a) shows the relationship between the applied voltage and the light transmittance of the liquid crystal panel according to the second embodiment when the auxiliary light source is turned off
  • Fig. 9 (b) shows the auxiliary light source. It is a figure which shows the relationship between the applied voltage and light transmittance of the liquid crystal panel which concerns on the 2nd Example when a light source is (circle) N.
  • FIG. 10 is a diagram showing the relationship between the polarizing plate and the reflective polarizing plate of the liquid crystal panel according to the third embodiment.
  • Figure 11 is a diagram for explaining the operation of liquid crystal molecules.
  • liquid crystal display device 100 According to the present invention, a liquid crystal display device 100 according to the present invention will be described with reference to the drawings.
  • FIG. 1 shows a schematic block diagram of a liquid display device 100 common to each embodiment.
  • the liquid crystal display device 100 includes a liquid crystal panel 20, a control unit 21, a drive voltage waveform control circuit 22, and a scan for applying a voltage waveform to each scan electrode 13 a disposed in the liquid crystal panel 20.
  • Drive voltage waveform generation circuit 2 3 signal drive voltage waveform generation circuit 24 4 for applying a voltage waveform to each signal electrode 1 3 b arranged in the liquid crystal panel 20, solar cell, secondary battery, etc.
  • It is configured to have ⁇ 4 3 ⁇ , clock circuit 50, etc.
  • the liquid crystal display device 100 includes an auxiliary light source 60 disposed on the back side of the liquid crystal panel 20, an auxiliary light source control circuit 61 for controlling ZOFF of the auxiliary light source 60, and a user assisting An auxiliary light source switch 6 2 for setting ON FF of the light source 60 is provided.
  • each component of the liquid crystal display device 100 is configured to be able to receive power supply from the power supply unit 25.
  • the control unit 21 creates display data using the time information received from the clock circuit 50 according to the program stored in the RAM 30 or R0M 3 1 in advance, and the display data storage unit 2 7 Memorize and respond to time information A control signal is output to the drive voltage waveform control circuit 22 so that the displayed display is displayed on the liquid crystal panel 20.
  • control unit 21 controls the auxiliary light source control circuit 6 1 when the user turns on the auxiliary light source switch 6 2 when the surroundings of the liquid crystal display device 100 0 are dark, for example. Turn on.
  • control unit 21 detects that the auxiliary light source switch 6 2 is turned on, controls the drive voltage waveform control circuit 2 2, and inverts the polarity of the ferroelectric liquid crystal 10. Regardless of the ⁇ N ⁇ FF of the auxiliary light source 60, control is performed so that the display on the liquid crystal panel 20 does not invert.
  • the first embodiment will be described.
  • FIG. 2 shows a cross-sectional view of the liquid crystal panel 20 according to the first embodiment and an auxiliary light source 60.
  • the liquid crystal panel 20 includes a first transparent glass substrate 1 1 a, a second transparent glass substrate 1 lb, and a scanning electrode 1 3 provided on the first transparent glass substrate 1 1 a. a, a signal electrode 13 b provided on the second transparent glass substrate 11 b, a polymer alignment film 14 a coated on the scanning electrode 13 a and rubbed, and a signal electrode 13 Polymer alignment film 14 b coated and rubbed on b, sealing member 1 2, first and second transparent glass substrates 1 1 a and 1 1 b, and sealing member 1 2 A ferroelectric liquid crystal 10 enclosed by the liquid crystal substrate 10; a reflection type polarizing plate 16 provided outside the first transparent glass substrate 11a; and a second transparent glass substrate 11b provided outside.
  • the reflective polarizing plate 16 is made from a multilayer film such as a polyester resin. And has a transmission axis and a reflection axis perpendicular to each other.
  • the reflective polarizing plate 16 has a function of transmitting linearly polarized light having a vibration surface parallel to the transmission axis and reflecting linearly polarized light having a vibration surface parallel to the reflection axis.
  • arrow A indicates external light incident on the liquid crystal panel 20 from the outside
  • arrow B indicates light incident on the liquid crystal panel from the auxiliary light source 60.
  • Reflective polarizing plate 1 of the liquid crystal panel 20 In the lower part of Fig. 6, in consideration of low power consumption and thinness, a backlight using an organic EL cell as a light emitting element is arranged as an auxiliary light source 60. Other light emitting elements were used. An auxiliary light source can also be used.
  • the force indicating five scan electrodes 13 a is used.
  • 40 scan electrodes 13 a composed of a transparent conductive film pattern are arranged over the entire liquid crystal panel 20. Arranged. Also.
  • FIG. 3 shows the arrangement of the polarizing plate 15 and the reflective polarizing plate 16 in the liquid crystal panel 20 according to the first embodiment.
  • the 16 transmission axes (b!) Were arranged so as to be almost orthogonal.
  • the ferroelectric liquid crystal has two stable states, a first stable state and a second stable state when no voltage is applied.
  • FIG. 3 the liquid crystal molecules of the ferroelectric liquid crystal 10 in the second stable state.
  • the arrangement direction of the major axes of the polarizing plate is aligned with the transmission axis (a,) of the polarizing plate 15.
  • the alignment direction of the long axes of the liquid crystal molecules in either stable state may be aligned with the transmission axis (a.
  • the alignment direction of the long axis of the liquid crystal molecules of the ferroelectric liquid crystal 10 in the first stable state is shown in Fig.
  • FIG. 3 the length of the liquid crystal molecules of the ferroelectric liquid crystal 10 in the second stable state is shown in Fig. 3.
  • the position was tilted by a cone angle of 0 from the arrangement direction of the axes, that is, another position along the liquid crystal cone.
  • an arrow 17 indicates the alignment direction of the alignment film, which is intermediate between the alignment direction in the first stable state and the alignment direction in the second stable state.
  • the cone angle was set to be ( ⁇ 1) approximately 45 °. This is because when the ferroelectric liquid crystal uses birefringence, the relationship between the amount of light incident on the ferroelectric liquid crystal (I, mecanic) and the amount of light emitted (I u u ( ) is generally This is because when the cone angle () is 45 °, the amount of emitted light '(I. u ( ) becomes the maximum.
  • FIG. 4 shows the relationship between the polarities of the voltages applied to the ferroelectric liquid crystal 10 and the light transmittance in the liquid crystal panel 20 according to the first embodiment.
  • FIG. 4 (a) shows a state where the auxiliary light source 60 is turned off
  • FIG. 4 (b) shows a state where the auxiliary light source 60 is turned off.
  • the horizontal axis of each graph is the applied voltage applied between the scan electrode 13a and the signal electrode 13b with reference to the scan electrode 13a of the liquid crystal panel 20.
  • V (that is, the applied voltage applied to the ferroelectric liquid crystal 10)
  • the vertical axis represents the light transmittance of the liquid crystal panel 20.
  • the alignment direction of the long axis of the liquid crystal molecules of the ferroelectric liquid crystal 10 is the transmission axis (ai) of the polarizing plate 15 and the reflective polarizing plate
  • the transmission axis of 16 (becomes inconsistent with any of b. That is, the alignment direction of the long axis of the liquid crystal molecules of the ferroelectric liquid crystal 10 is ⁇ , (approximately 45 ° to the transmission axis (a,)).
  • the external light A having a plane of vibration parallel to the transmission axis (a!) Of the polarizing plate 15 incident on the liquid crystal panel 20 is caused by the birefringence of the ferroelectric liquid crystal 10.
  • the vibration surface substantially parallel to (b,) is transmitted through the liquid crystal panel 20 (transmission state), and is reflected from the surface of the auxiliary light source 60. Since the surface of the auxiliary light source 60 is normally dark, when the auxiliary light source 60 is turned to 0 FF, in the first stable state, the light incident on the liquid crystal panel 20 is reflected on the surface of the auxiliary light source 60. The dark color is visible and the color is displayed on the liquid crystal panel 20.
  • the light transmittance at this time is T l, — ⁇ F F ci: in Fig. 4 (a).
  • the mode in which the polarization direction of incident light is changed using birefringence in this way is called the first mode. In this embodiment, the first mode is set when the ferroelectric liquid crystal is in the first stable state.
  • the alignment direction of the major axis of the liquid crystal molecules of the ferroelectric liquid crystal 10 is that of the polarizing plate 15. Parallel to the transmission axis (a!). In this case, the ferroelectric liquid crystal 10 passes incident light as it is. Since the external light A having a vibration plane parallel to the transmission axis (a) incident on the liquid crystal panel 20 has a vibration plane almost perpendicular to the transmission axis (b!) Of the reflective polarizing plate 16, Reflected by the reflection axis of plate 16 (reflected state).
  • the auxiliary light source 60 When the auxiliary light source 60 is turned to 0 FF, in the second stable state, the light incident on the liquid crystal panel 20 is reflected by the reflection axis of the reflective polarizing plate 16 and is bright on the liquid crystal panel 20. Display.
  • the light transmittance at this time is T h, — OFF in Fig. 4 (a).
  • the mode in which the polarization direction of the incident light is not changed without using birefringence is called the second mode.
  • the ferroelectric liquid crystal takes the second stable state, the second mode is set.
  • the voltage applied to the ferroelectric liquid crystal 10 is increased (beyond the voltage value V, where the light transmittance starts to increase), and the light transmittance is increased.
  • the increase is equal to or higher than the voltage value V 2 (positive threshold)
  • the ferroelectric liquid crystal 1 0 maintains the first ferroelectric state without applying a voltage after that (ie, applying 0 V).
  • the liquid crystal panel 20 maintains the ⁇ display.
  • the voltage applied to the ferroelectric liquid crystal 10 is decreased (beyond the voltage value V 3 at which the light transmittance starts decreasing), and the voltage value V (negative threshold) at which the decrease in light transmittance is saturated.
  • the ferroelectric liquid crystal 10 maintains the second ferroelectric state and the liquid crystal panel 20 maintains the bright display even if no voltage is applied thereafter (that is, 0 V is applied).
  • the alignment direction of the major axis of the liquid crystal molecules of the ferroelectric liquid crystal 10 is
  • the transmission axis (a and the transmission axis (b,) of the reflective polarizing plate 16 does not coincide with each other.
  • the transmission axis (b of the reflective polarizing plate 16 entering the liquid crystal panel 20 from the auxiliary light source 60) ,)) Has a vibration plane parallel to the transmission axis (a,) of the polarizing plate 15 due to the birefringence of the ferroelectric liquid crystal 10. It is observed on the liquid crystal panel 20 through the plate 15 (transmission state).
  • the auxiliary light source 60 when the auxiliary light source 60 is turned on, the light from the auxiliary light source 60 is brightly displayed on the liquid crystal panel 20 in the first stable state.
  • the light transmittance at this time is T h, — ⁇ N in Fig. 4 (b).
  • the liquid layer uses the birefringence and is the first mode.
  • the orientation direction of the major axis of the liquid crystal molecules in the ferroelectric liquid crystal 10 Is parallel to the transmission axis of the polarizing plate 15 (light B having a plane of vibration parallel to the transmission axis (b!) Incident on the liquid crystal panel 20 from the auxiliary light source 60 is perpendicular to the transmission axis (a). Therefore, when the auxiliary light source 60 is turned on, in the second stable state, the liquid crystal panel 20 is absorbed by the polarizing plate 15 and is not observed on the surface of the liquid crystal panel 20.
  • the light transmittance at this time is assumed to be exactly 1
  • the voltage value V 2 (positive) If the voltage is higher than that, the ferroelectric liquid crystal 10 maintains the first ferroelectric state, and the liquid crystal panel 20 maintains the bright display even if no voltage is applied thereafter (ie, 0 V is applied).
  • the ferroelectric liquid crystal 10 maintains the second ferroelectric state and maintains the dark display even if no voltage is applied thereafter (ie, 0 V is applied).
  • the ferroelectric liquid crystal 10 is controlled so as to invert the polarity (invert from one ferroelectric state to the other ferroelectric state) in accordance with switching of the auxiliary light source 60 between ON and OFF. Then, control is performed so that the display on the liquid crystal panel 20 does not change.
  • the ⁇ display (T 1, — 0 FF) on the liquid crystal panel 20 is strong as described above. Since the birefringence of the dielectric liquid crystal 10 is used, if the display background is black (see the liquid crystal panel 20 shown in Fig. 6 (b)), unevenness becomes noticeable and the display quality deteriorates. . On the other hand, the bright display (T h, — 0 FF) on the liquid crystal panel 20 when the auxiliary light source 60 is turned off and the ferroelectric liquid crystal 10 is in the second stable state is strong as described above. Dielectric property The birefringence of liquid crystal 10 is not used and display unevenness does not occur.
  • ) of the polarizing plate 15 and the transmission axis (b,) of the reflective polarizing plate 16 are arranged so as to be perpendicular to each other. If the arrangement direction of the long axis of the liquid crystal molecules is arranged parallel to the transmission axis (a,) of the polarizing plate 15 and the background is displayed in white and the characters are displayed in black (Fig. 5 (a) and (Refer to the liquid crystal panel 20 shown in Fig. 6 (a)), and it becomes possible to perform a good display without unevenness. That is, in this case, white background can be displayed without using birefringence.
  • the liquid crystal panel 20 according to the first embodiment can provide a good bright display with no unevenness when the auxiliary light source is turned off.
  • the auxiliary light source 60 is a type that does not use time and is suitable for display that emphasizes reflective display.
  • the liquid crystal panel 20 according to the first embodiment has the auxiliary light source 60 in the state of FF. Since the bright display can be displayed very finely (because there is no unevenness due to non-uniform birefringence), the background of the watch that displays the background white with the auxiliary light source 60 turned OFF It is suitable for use. The reason why the auxiliary light source 60 is not normally used in a wristwatch or the like is to avoid power consumption.
  • FIG. 5 shows an example in which the liquid crystal panel 20 according to the first embodiment is used for a wristwatch.
  • FIG. 5 (a) shows an example in which the liquid crystal panel 20 is displaying using external light in the timepiece 1 without using the auxiliary light source 60.
  • ⁇ ⁇ the user turns on the auxiliary light source switch 6 2 placed on the clock 1 and the liquid crystal panel 2 in FIG.
  • the auxiliary light source 60 placed on the back side of 0 turns 0 N.
  • the control unit 2 1 detects that 0 N has been turned on. Then, the control unit 21 controls the drive voltage waveform control circuit 22 to reverse the polarity of the strong liquid crystal 10 corresponding to each pixel of the liquid crystal panel 20 (from one ferroelectric state to the other strong state).
  • the display on the liquid crystal panel 20 is controlled as shown in FIG. 6 (a).
  • the white display (T 1 in Figure 4 (a),-0 FF) in the state where the auxiliary light source 60 is set to 0 FF uses birefringence. Therefore, there is no unevenness due to uneven birefringence.
  • 1, -O F F indicates the ⁇ display (T on the liquid crystal panel 20 when the auxiliary light source 60 is turned N and the ferroelectric liquid crystal 10 is inverted to the second stable state.
  • the ⁇ display on the liquid crystal panel 20 when the 10 is inverted to the first stable state uses the birefringence of the ferroelectric liquid crystal 10 and is slightly different from the transmission axis of the reflective polarizing plate 16 ( b,)), an outward light A that is not corrected so as to have a vibration plane almost parallel to the light is generated, reflected by the reflective polarizing plate 16 and leaking to the liquid crystal panel 20 side, and the light transmittance increases. It is.
  • the bright display (T h, — 0 N) on the liquid crystal panel 20 is ⁇
  • the Young's light transmittance is lower than the bright display (T h, — ⁇ FF) on the liquid crystal panel 20 when FF is applied and the ferroelectric liquid crystal 10 is inverted to the second stable state (ie, The light display is a little gray.)
  • the transmission axis of the polarizing plate 15 (light B that is not corrected so as to have a vibration plane almost parallel to a is generated and absorbed by the polarizing plate 15 to reduce the light transmittance. It is.
  • the liquid crystal panel 20 can display a dark display very clearly with the auxiliary light source 60 turned ON (the light transmittance is almost zero).
  • the auxiliary light source 60 is often used at all times. It is also suitable for use in the display of etc.
  • FIG. 6 shows an example in which the liquid crystal panel 20 according to the first embodiment is used in a mobile phone.
  • FIG. 6 (a) shows an example in which the mobile phone 2 displays the liquid crystal panel 20 using the auxiliary light source 60.
  • the auxiliary light source is used when the mobile phone is not operated for a certain period of time.
  • the wrinkle display is inverted, and the display is displayed as shown in FIG. 6 (b). Therefore
  • the control unit 21 detects that it has been turned on. Next, the control unit 21 controls the drive voltage waveform control circuit 22 to invert the polarity of the ferroelectric liquid crystal 10 corresponding to each pixel of the liquid crystal panel 20, and displays the display on the liquid crystal panel 20.
  • the darkness in the state where the auxiliary light source 60 is 0 F F is used.
  • the first stable state in Fig. 6 (a)) is slightly more transparent than the ⁇ display (second stable state in Fig. 6 (b)) when the auxiliary light source 60 is turned off.
  • the state where the auxiliary light source 60 is turned off is not a major problem because it does not normally use a mobile rrr phone.
  • Figure 7 shows an example of the drive voltage waveform for driving the liquid crystal panel 20.
  • Fig. 7 (a) shows an example of the scan voltage waveform applied to one scan electrode 1 3a
  • Fig. 7 (b) shows the signal voltage waveform applied to one signal electrode 1 3b
  • An example is shown in Fig. 7 (c), which is a composite of (a) and (b). The pressure waveform is shown.
  • Figure 7 shows the drive voltage waveform for two frames.
  • “ ⁇ N” indicates the bright display when the auxiliary light source “ ⁇ FF” is shown in FIG. 4 (a), and “OFF” indicates the same.
  • the haze in Fig. 4 (a) is shown.
  • one scan period is used to execute a display based on one display data.
  • One frame consists of a reset period (R s) and a scan period, and one scan period consists of a selection period (S e) and a non-selection period (N S e).
  • the ferroelectric liquid crystal 10 is in the first stable state where the first half is bright (transmission) regardless of the previous display state, and in the second half is non-transmission (non-transmission). Is forcibly reset to the second stable state.
  • the scanning voltage waveform (a) is applied with +20 V force in the first half and –20 V in the second half.
  • +5 V and 15 V were repeatedly applied at predetermined intervals.
  • the pixel of the ferroelectric liquid crystal 10 has a voltage corresponding to the composite voltage waveform (c), that is, a positive threshold V 2 in the first half of the reset period (R s) (see Fig.
  • the first frame is set to the first stable state and brightly displayed, and the second frame is In this case, the case where the ⁇ display is set in the second stable state is shown.
  • “F elix 50 1 j” manufactured by Clariant was used as the ferroelectric liquid crystal 10. Further, in the second embodiment, the first liquid crystal 10 was also used. The distance between the second transparent glass substrate 1 1 a and the second transparent glass substrate 1 1 b was about 1.7 wm.
  • FIG. 8 shows the arrangement of the polarizing plate 15 and the reflective polarizing plate 16 in the liquid crystal panel 20 according to the second embodiment.
  • the polarizing plate 1 5 of the transmission axis (a 2) the transmission axis of the reflection polarizing plate 1 6 (b 2) is arranged to run in parallel.
  • the arrangement direction of the long axes of the liquid crystal molecules of the ferroelectric liquid crystal 10 in the second stable state was arranged to coincide with the transmission axis (a 2 ) of the polarizing plate 15.
  • the alignment direction of the long axes of the liquid crystal molecules of the ferroelectric liquid crystal 10 in the first stable state is shown in FIG. 8, and the liquid crystal of the ferroelectric liquid crystal 10 in the second stable state is shown in FIG. position inclined from the array direction of the long axis by a cone angle 5 2 molecules, i.e. was ⁇ Tsuta other locations in the liquid crystal cone.
  • the case where the cone angle ( ⁇ 2 ) is not 45 ° is taken as an example.
  • the cone angle ⁇ is not 45 °, so the attenuation due to the cone angle ( 2 ) and the attenuation due to retardation are combined to utilize birefringence.
  • I. ut is not equal to I.
  • FIG. 9 shows the relationship between the polarities of the ferroelectric liquid crystal 10 and the light transmittance in the liquid crystal panel 20 according to the second embodiment.
  • FIG. 9A shows a state where the auxiliary light source 60 is turned off
  • FIG. 9B shows a state where the auxiliary light source 60 is turned on.
  • the horizontal axis of each graph represents the applied voltage applied between the scan electrode 1 3 a and the signal electrode 1 3 b with reference to the scan electrode 13 3 a of the liquid crystal panel 20.
  • V that is, the applied voltage applied to the ferroelectric liquid crystal 10
  • the vertical axis represents the light transmittance of the liquid crystal panel 20.
  • the orientation direction of the liquid crystal molecules of the ferroelectric liquid crystal 10 is with any longer matches the transmission axis (a 2) and transmission ⁇ reflective polarizing plate 1 6 (b 2).
  • Light A having a vibration plane parallel to the transmission axis (a 2 ) of the polarizing plate 15 incident on the liquid crystal panel 20 from the viewing side is reflected by the birefringence of the ferroelectric liquid crystal 10 to reflect the polarizing plate 1 6 It has a vibrating surface in a direction orthogonal to the transmission axis (b 2 ) of the light and is reflected by the reflection axis of the reflective polarizing plate 16.
  • the auxiliary light source 60 when the auxiliary light source 60 is set to 0 FF, in the first stable state, the light A force incident on the liquid crystal panel 20 from the viewing side is observed on the liquid crystal panel 20 and brightly displayed on the liquid crystal panel 20 It becomes.
  • the light transmittance at this time is T h 2 — ⁇ FF in Fig. 9 (a).
  • the mode in which the polarization direction of incident light is changed using birefringence in this way is called the first mode.
  • the first mode is set when the ferroelectric liquid crystal takes the first stable state.
  • the alignment direction of the major axis of the liquid crystal molecules of the ferroelectric liquid crystal 10 is that of the polarizing plate 15.
  • the light a is the transmission axis of the reflective polarizer 1 6 having a transmission axis (a 2) a vibration plane parallel to the incident from the viewing side to the liquid crystal panel 2 0 ( b,) have a plane of vibration parallel to the reflection type polarizing plate 16.
  • the auxiliary light source 60 when the auxiliary light source 60 is set to 0 FF, in the second stable state, the light A from the outside passes through the polarizing plate 15 and is incident on the liquid crystal panel 20, so that the auxiliary light source 60 Table of The surface is visually recognized, and a black (black) display appears on the liquid crystal panel 20.
  • the light transmittance at this time is T l 2 — OFF in Fig. 9 (a).
  • the mode that does not change the polarization direction of incident light without using birefringence is called the second mode.
  • the ferroelectric liquid crystal takes the second stable state, the second mode is set.
  • the voltage value V 2 (positive) If the voltage is higher than that, the ferroelectric liquid crystal 10 maintains the first stable state without applying voltage (ie, 0 V is applied), and the liquid crystal panel 20 maintains the bright (white) display. To do.
  • the voltage value ⁇ negative If the threshold is set below, the ferroelectric liquid crystal 10 maintains the second stable state and maintains the dark (black) display even if no voltage is applied thereafter (ie, 0 V is applied).
  • the alignment direction of the major axis of the liquid crystal molecules of the ferroelectric liquid crystal 10 is the transmission axis (a:) and any and even longer matches the transmission axis of the reflection polarizing plate 1 6 (b 2). Therefore, the alignment direction of the long axis of the liquid crystal molecules of the ferroelectric liquid crystal 10 is inclined with an angle of ⁇ 2 with respect to the transmission plane (a 2 ).
  • Light B having a vibration plane parallel to the transmission axis (b 2 ) of the reflective polarizer 16 incident from the auxiliary light source 60 is transmitted through the polarizing plate 15 due to the birefringence of the ferroelectric liquid crystal 10.
  • the alignment direction of the major axis of the liquid crystal molecules of the ferroelectric liquid crystal 10 is the reflective polarizer 1 6 parallel to the transmission axis (b 2 ).
  • the auxiliary light source 60 when the auxiliary light source 60 is turned on, the voltage applied to the ferroelectric liquid crystal 10 is increased (beyond the voltage value V, where the light transmittance starts to increase), and the light transmittance is increased. Assuming that the increase is greater than the voltage value V 2 (positive threshold) or higher, the ferroelectric liquid crystal 1 0 remains in the first 'stable state even if no voltage is applied thereafter (ie, 0 V is applied). Panel 2 0 maintains the ⁇ display.
  • the voltage applied to the ferroelectric liquid crystal 10 is decreased (beyond the voltage value V 3 at which the light transmittance begins to decrease), and the voltage value V, (negative threshold value) at which the decrease in light transmittance is saturated ) If the following is applied, the ferroelectric liquid crystal 10 maintains the second stable state and the liquid crystal panel 20 maintains a bright display without applying a voltage thereafter (ie, applying 0 V).
  • the liquid crystal panel 20 according to the second embodiment can display a bright display very clearly with the auxiliary light source 60 turned ON (no unevenness due to uneven birefringence). Therefore, it is suitable for use in mobile phone displays that display white background with the auxiliary light source 60 turned on (see Fig. 6).
  • the display on the liquid crystal panel 20 when the complementary light source 60 is turned on and the ferroelectric liquid crystal 10 is inverted to the first stable state, the display on the liquid crystal panel 20 (see FIG. 9B).
  • T 1 2 —O N) is a dark display on the liquid crystal panel 20 when the auxiliary light source 60 is turned off and the ferroelectric liquid crystal 10 is inverted to the first stable state in the first embodiment (
  • the light transmittance is higher than T 1 (one OFF) in Fig. 4 (a) (that is, the ⁇ display is further gray). This is because the ⁇ display on the liquid crystal panel 20 when the auxiliary light source 60 is turned ON and the ferroelectric liquid crystal 10 is inverted to the first stable state in the second embodiment is shown in FIG.
  • the cone angle is 45. Therefore, external light A that is not corrected so as to have a vibration plane almost parallel to the reflective surface of the reflective polarizing plate 16 is more generated and reflected by the reflective polarizing plate 16. This is because the light transmittance is further increased.
  • T h 2 — 0 FF is the brightness of the liquid crystal panel 20 when the auxiliary light source 60 in the first embodiment is turned on and the ferroelectric liquid crystal 10 is inverted to the first stable state.
  • the light transmittance is lower than the display (Th, ON in Fig. 4 (b)) (that is, the bright display is more gray).
  • the auxiliary light source 60 in the second embodiment is ⁇ Bright display on the liquid crystal panel 20 when the FF is turned to the first stable state and the birefringence of the ferroelectric liquid crystal 10 is used. .
  • the cone angle is not set to 45 °, light that is not corrected so as to have a vibration surface substantially parallel to the reflection axis of the reflective polarizing plate 16. This is because B is generated more and is not reflected by the reflection axis, and the light transmittance is further reduced.
  • the liquid crystal panel 20 according to the second embodiment has an auxiliary light source.
  • T 1,-OFF in Fig. 9 (a) can be displayed very neatly with 6 0 turned OFF (light transmittance is almost close to the mouth) Therefore, the auxiliary light source 60 is often not used at all times, and it is suitable for use as a display for a watch that emphasizes reflection.
  • liquid crystal panel 20 according to the second embodiment can be used in the mobile phone 2 shown in FIG. 6A in the same manner as the first embodiment.
  • the auxiliary light source 60 is simply turned on, the ⁇ display is reversed and displayed as shown in FIG. 6 (b).
  • the auxiliary light source switch 6 2 is turned on,
  • ⁇ N is detected by the control unit 2 1 and the drive voltage waveform control circuit 2
  • the polarity of the ferroelectric liquid crystal 10 corresponding to each pixel of the liquid crystal panel 20 is inverted, and the display on the liquid crystal panel 20 may be controlled as shown in FIG. 6 (a).
  • the liquid crystal panel 20 is in a transmissive state.
  • the dark / color of the surface of the auxiliary light source 60 is observed on the liquid crystal panel 20.
  • a light absorption layer can be provided between 1 6 and the auxiliary light source 60. By providing a light absorption layer, the surface color of the auxiliary light source 60 observed on the liquid crystal panel 20 can be displayed darker.
  • the auxiliary light source 60 is
  • the liquid crystal panel 20 is in a transmissive state, so that the light B from the auxiliary light source 60 is not attenuated so that it absorbs light in a certain area on the surface of the light absorption layer ( It is preferable to provide a large number of fine openings ⁇ If a large number of fine openings are provided on the surface of the light absorption layer, the light B from the auxiliary light source 60 is transmitted through the openings. It does not significantly affect the amount of light observed at 20 0.
  • the aperture ratio due to minute openings in the light absorption layer is a preferable value within the range of 30% to 70%.
  • the fine opening may be in the form of a minute round hole, or may be formed in a lattice shape, and the opening need not be formed regularly, It may be formed at random.
  • a reflection layer that reflects a part of the visible light region can be provided on the light emission side of the auxiliary light source 60.
  • the reflective layer may be a layer that reflects a part of the wavelength in the visible light region and reflects a specific color as reflected light, or over the entire visible light region.
  • LCD panel
  • the polarity inversion of the ferroelectric liquid crystal 10 is controlled by the control unit 2 1
  • the drive voltage waveform control circuit 2 2, the scan drive voltage waveform generation circuit 2 3 and the signal drive voltage waveform generation circuit 2 4 are used, and the display data storage unit 2 7 is negative-positive inverted from the display display for normal display.
  • Negative / positive inversion display data] 7 is stored in advance, and the polarity of the drive waveform applied to the scan electrode or the signal electrode is inverted from the previous drive waveform using the negative / positive inversion display data stored in the memory.
  • the polarity inversion of the ferroelectric liquid crystal 10 should be performed by reversing the polarity of the voltage supplied from the power supply unit 25 to the liquid crystal panel 20 in addition to using the display device.
  • the control unit 21 can use any electronic circuit for inverting the polarity.
  • a polymer alignment film 14 a which is applied and subjected to a straight alignment treatment is used on 3 a, and a polymer alignment film 14 b which is applied and subjected to a vertical alignment treatment is used on signal electrode 13 b.
  • the liquid crystal 1 1 0 has vertical alignment.
  • MLCC-688 3 manufactured by Merck
  • the liquid crystal 110 was sandwiched between the first and second transparent glass substrates 11a and 11b to a thickness of approximately 1.7 m.
  • the arrow A points from the outside to the liquid crystal panel of the third embodiment.
  • the incident external light is shown
  • the arrow B shows the light incident on the liquid crystal panel of the third embodiment from the auxiliary light source 60.
  • FIG. 10 shows the arrangement of the polarizing plate 15 and the reflective polarizing plate 16 in the liquid crystal panel according to the third embodiment.
  • polarizing plate 1 5 of the transmission axis (a 3) and the reflection-type transmission axis of the polarizing plate 1 6 (b 3) is arranged perpendicular.
  • an arrow 1 17 indicates the alignment direction of the alignment film
  • 3 indicates an angle formed by the alignment direction of the alignment film and the transmission axis (a : i ) of the polarizing plate 15. Yes.
  • 0 3 is set to be about 4 5 times.
  • 0 3 is not limited to 45 degrees, and may be another angle, for example, 40 degrees.
  • Figure 11 shows the behavior of the liquid crystal molecules in the vertically aligned (homeotropic alignment) type liquid crystal 110.
  • the vertical orientation (home-mouthed pick orientation) is the major axis of the liquid crystal molecules of the liquid crystal 1 1 0 (see 1 1 0 a)> 2 is placed almost vertically between the glass substrates 1 1 1 a and 1 1 1 b, and in the state in which voltage is applied to the liquid crystal panel 1 2 0, the vertical orientation (home mouth orientation) type
  • the long axis of the liquid crystal molecules of liquid crystal 1 1 0 (see 1 1 0 b) is set to tilt sideways so as to coincide with the direction of arrow 1 1 7.
  • the external light A incident through the polarizing plate 15 passes through the liquid crystal 110 as it is. Since the polarization direction of the light passing through the liquid crystal 1 1 0 is perpendicular to the transmission axis (b 3 ) of the reflective polarizing plate 1 6, the light passing through the liquid crystal 1 1 0 is reflected from the reflective polarizing plate 1 6. Reflected by. Therefore, in this case, the liquid crystal panel of the third embodiment is brightly displayed. At this time, using the birefringence The liquid crystal layer is in the second mode.
  • the external light A incident through the polarizing plate 15 is tilted in parallel with the direction of the arrow 1 1 7 when passing through the liquid crystal 1 1 0. Due to the birefringence due to the liquid crystal molecules 1 1 0 b, the polarization direction is tilted approximately 90 degrees. Therefore, the polarization direction of the light that has passed through the liquid crystal 110 is almost parallel to the transmission axis (b 3) of the reflective polarizing plate 16, passes through the reflective polarizing plate 16, and reaches the auxiliary light source 60. Reflected at. Therefore, in this case, in the liquid crystal panel of the third embodiment, the color of the auxiliary light source 60 is visually recognized and is displayed in a haze. At this time, since the birefringence is used, the liquid crystal layer is in the first mode.
  • the light B of the auxiliary light source 60 passing through the reflective polarizing plate 16 passes through the liquid crystal 110 as it is. Since the polarization direction of the light that has passed through the liquid crystal 110 is perpendicular to the transmission axis (a 3 ) of the polarizing plate 15, the light that has passed through the liquid crystal 110 is absorbed by the polarizing plate 16. Therefore, in this case, the liquid crystal panel 1 2 0 is darkly displayed. At this time, since the birefringence is not used, the liquid crystal layer is in the second mode.
  • the light B of the auxiliary light source 60 that has entered through the polarizing plate 15 is in the direction of the arrow 1 1 7 when passing through the liquid crystal 110.
  • the liquid crystal molecules tilted parallel to 1 1 0 b undergoes birefringence, and its polarization direction tilts about 90 degrees. Therefore, the polarization direction of the light that has passed through the liquid crystal 110 has a component substantially parallel to the transmission axis (a 3 ) of the polarizing plate 15 and passes through the polarizing plate 15. Therefore, in this case, the liquid crystal panel of the third embodiment is brightly displayed.
  • the birefringence is used, the liquid crystal layer is in the first mode.
  • the birefringence does not occur completely even when the liquid crystal panel 1 2 0 is fully closed. If birefringence does not occur uniformly, the display color will not be completely uniform across the entire liquid crystal panel 120 and display unevenness will occur. For example, when the auxiliary light source 60 is turned off and no voltage is applied to the liquid crystal panel 120, the bright display on the liquid crystal panel 120 does not use birefringence, so there is no display unevenness. In this case, it is possible to display the background white without using the birefringence. In other words, when displaying a white background with a large area, it is important not to use birefringence.
  • the liquid crystal panel according to the third embodiment has an auxiliary light source
  • the auxiliary light source 6 0 It is suitable for use in the display section of a watch that displays the background white in the FF state (see Fig. 5). The reason why the auxiliary light source 60 is not normally used in a wristwatch or the like is to avoid power consumption.
  • auxiliary light source 60 It is suitable for use in mobile phone displays that display a white background in the state (see Figure 6).

Abstract

本発明は、複屈折性を利用せずに、明表示を行うことができる液晶表示装置を提供することを目的とする。本発明に係る液晶表示装置は、第1の基板と、第2の基板と、第1の基板上に配置され、それぞれ直交する第1の透過軸と第1の反射軸とを有し、及び第1の透過軸に平行な振動面を有する直線偏光を透過し且つ第1の反射軸に平行な振動面を有する直線偏光を反射する反射型偏光板と、第2の基板上に配置され、第2の透過軸を有し、及び第2の透過軸に平行な振動面を有する直線偏光を透過する偏光板と、第1及び第2の基板間に挟持され、複屈折性を利用して入射光の偏光方向を変化させる第1のモードと複屈折性を利用せずに入射光の偏光方向を変化させない第2のモードを有する液晶層とを有し、液晶層への電圧印加によって明表示と暗表示とを切り替え、液晶層を第2モードに設定して明表示を行うことを特徴とする。

Description

明 細 書 液晶表示装置 技術分野
本発明は、 液晶表示装置に関し、 特に複屈折を利用せずに、 背景 の明表示を行う こ とができる液晶表示装置に関する。 背景技術
メモリ性液晶は、 複数の光学的な状態を有し、 電圧を印加しなく ても特定の状態を維持し続ける特性 (メモリ特性) を有する。 した がって、 メモリ性液晶を液晶表示装置に用いた場合、 電圧を印加し なく ても所定の表示を維持し続けるように制御することが可能であ る。 このよ うな特性を利用 し、 強誘電性液晶等のメモリ性液晶を用 いた表示パネルにおいて、 表示を変更する必要がある部分にのみ走 査電極の駆動を行い、 表示を変更する必要が無い部分については走 査電極の駆動を行わないように制御することが知られている (例え ば、 特許文献 1 ) 。
また、 反射表示ど透過表示を行う 半透過反射型液晶表示装置が知 られている (例えば、 特許文献 2 ) 。 半透過反射型液晶表示装置で は、 透過する光を 9 0度旋光するツイス 卜ネマティ ック液晶 ( T N 液晶) を挟持する基板の一方に偏光板を配置し、 他方に反射軸と透 過軸とを備える反射型偏光板を配置し、 反射型偏光板の外側に半透 過吸収層を配置し、 半透過吸収層の外側に補助光源を配置している 半透過反射型液晶表示装置では、 補助光源を〇 F F した反射表示 時に、 T N液晶へ H レベルの電圧を印加した〇 N状態 ( T N液晶が 透過状態) で喑表示となる つ に偏光板を配 すると、 補助光源を
O N した透過表示時には、 T N液晶へ H レベルの電圧を印加した 0
N状態 ( T N液晶が透過状態 ) で明表示となつてしまう。 これは、 補助光源を O F F して T N液 を透過状態とすると 〇 F F された 補助光源の表面色が外部から観察されて暗表示となり 、 補助光源を
〇 N して T N液晶を透過状態 すると、 補助光源からの光が外部か ら観察されて明表示となるからでめる。 即ち 、 T N液晶へ同じ レべ ルの電圧を印加していても 補助光源の 〇 N / 〇 F Fによって、 喑 表示が反転してしまう とい 問題がある 。 そこで、 補助光源の〇 N
/ O F Fに応じて、 T N液晶に印加する電圧を (例えば、 H レベル から L レベルに) 切換えて 、 暗表示の反転を防止していた。
特許文献 1 : 特開平 2 一 1 3 1 2 8 6号公報 (第 1 1 1 2 頁、 第 1 2 図)
特許文献 2 : 特許第 3 4 8 o 5 4 1 号公報 発明の開示
しかしなが 半透過反射型の液晶表示装置において、 用途に応 じた反射型偏光板の方向、 偏光板の方向及び液晶の液晶分子の配列 方向に関する提案はなされていなかった。
そこで、 本発明は、 適切な反射型偏光板の方向 偏光板の方向及 び液晶の液晶分子の配列方向を有する半透過反射型の液晶表示装置 を提供することを目的とする。
また、 本発明は 、 複屈折性を利用せずに、 明表不を行う とがで きる液晶表示装置を提供することを目的とする。
本発明に係る液晶表示装置は、 第 1 の基板と、 第 2 の基板と、 第
1 の基板上に配置され、 それぞれ直交する第 1 の透過軸と第 1 の反 射軸とを有し 、 及び第 1 の透過蚰に平行な振動面を有する直線偏光 を透過し且つ第 1 の反射軸に平行な振動面を有する直線偏光を反射 する反射型偏光板と、 第 2 の基板上に配置され、 第 2 の透過軸を有 し、 及び第 2 の透過軸に平行な振動面を有する直線偏光を透過する 偏光板と 、 第 1 及び第 2 の基板間に挟持され 、 複屈折性を利用 して 入射光の偏光方向を変化させる第 1 のモ ― ドと複屈折性を利用せず に入射光の偏光方向を変化させない第 2 のモ ― を有する液晶層と を有し 、 液曰
曰曰層への電圧印加によって明表示と喑表示とを切り替え
、 液晶 を前記第 2 モ ― ドに設定して明表示を行う ことを特徴とす る。
さ らに、 本発明に係る 仪曰曰衣 装置では、 偏光板の第 2 の 過軸
を通過して液晶層に入射した外光を 記反射型偏光板で反射させ、
_、ノー - 再び前記液曰曰眉及び 偏光板外に出射させることによって明表示 を行う ことが好ま しい。
さ らに、 本発明に係る液臼 主 ;
曰曰衣小衣置では、 第 1 の透過軸と 記第
2 の透過軸とは、 ほぼ直交に配置されていることが好ま しい。
さ らに 、 本発明に係る液晶表示装直では 、 液晶層は、 電圧無印加 時に第 1 の安定状態又は第 2 の安定状態の何れか一方の状態を維持 し、 刖 i第 1 の安定状態又は前記第 2 の安定状態の何れか一方の安 定状態が 、 記第 2 のモ ― ドに ax疋 れることが好ま しい。 所謂メ モリ性液臼
曰 13によって本発明による液晶表示装置を構成した。
さ らに 、 本発明に係る液晶表 TP 3¾ IS.では 、 第 2 の安定状態におけ る液晶分子の配列方向は RU eel % 2 の透過軸とほぼ平行に配置される ことが好ま しい。
さ らに 、 本発明に係る液晶表不.
Figure imgf000005_0001
では 、 第 1 の安定状態におけ る液晶分子の配列方向と fill d第 2 の安定状態における液晶分子の配 列方向とは ほぼ 4 δ 0 の傾きを有するよ うに配置されるこ とが好 ま しい。 さ らに、 本発明に係る液晶表示装置では、 液晶層は、 垂直配向型 の液晶層であって、 第 1 及び第 2 の基板間に液晶分子がほぼ垂直に 配向される第 1 の状態と、 液晶分子が前記第 2 の透過軸に対して所 定の角度を持って傾く 第 2 の状態を有し、 第 1 の状態が第 2 モ一 ド に設定されることが好ま しい。
さ らに、 本発明に係る液晶表示装置では 、 反射型偏光板の外側に 設けられた補助光源を有し、 補叻光源を O F F させた状態で、 液晶 層は第 2 モー ドに設定されるこ とが好ま しい
さ らに、 本発明に係る液晶表示 4装置では 、 反射型偏光板の外側に 設けられた補助光源を有し、 補助光源を o N した状態で、 液晶層は 第 2モー ドに設定されることが好ま しい
さ らに、 本発明に係る液晶表示装置では 、 補助光源からの光を反 射型偏光板の第 1 の透過軸で透過し、 液晶層に入射した光を偏光板 の第 2 の透過軸を通過して視認側に出射させるこ とによって明表示 を行つ ことが好ま しい。
さ らに、 本発明に係る液晶表示装置では、 第 1 の透過軸と第 2 の 透過軸とは、 ほぼ平行に配置されていることが好ま しい。
さ らに、 本発明に係る液晶表示装置では、 反射型偏光板の外側に 設けられた補助光源を有し、 反射型偏光板と補助光源との間に配置 され 、 一部領域の光を吸収する光吸収層を有するこ とが好ま しい。 これにより 、 補助光源がオフ し、 メモリ性液晶が透過状態となった 口にメモリ性液晶表示装置上で観測される補助光源の表面色をよ り暗ぐ表示することが可能となった。
さ らに、 本発明に係る液晶表示装置では、 反射型偏光板の外側に 設けられた補助光源を有し、 反射型偏光板と補助光源との間に配置 され 、 可視光領域の一部の光を吸収する光吸収層を有することが好 ま しい 。 これによ り 、 補助光源がオフ し、 メモリ性液晶が透過状態 となった場合にメモリ性 仪 ¾ 不装 上で観測される補助光源の表 面色をよ り喑く 表示するこ とが可能となった。
さ らに、 本発明に係る液晶表示装置では、 反射型偏光板の外側に 設けられた補助光源を有し、 補助光源には、 可視光領域の一部の光 を反射する反射層が備えられていることが好ま しい
さ らに、 本発明に係る液晶表示 置では、 液晶層は 、 垂直配向型 の液晶層であって、 第 1 及び第 2 の基板間に液晶分子がほぼ垂直に 配向される第 1 の状態と 、 液晶分子が第 2 の透過軸に対して所定の 角度を持って傾く第 2 の状態を有することが好ま しい 。 所謂垂直配 向型液晶によって本発明による液曰
曰表示装置を構成した。
さ らに、 本発明に係る 仪晶表示装置では、 液晶層が第 1 の状態に 維持された場合に、 液晶層は第 2 モ一 ドに設定されることが好ま し い
本発明によれば、 液晶の複屈折性を利用せずに、 白を表示するよ うに構成したので、 白をきれいに表示するこ とが可能となった。 し たがつて 、 明表示の面積が多い場合 (背景色を白に設定する場合 ) に、 特に効果が高レ、 。 なお、 液晶の複屈折性を利用せずに、 黒を表 示するよ にしても 、 黒をきれいに表示することは可能であるが 、 もと もと暗表示はムラが目立たないので、 白の場合ほど、 効果は大 さく ない
本発明によれば、 メモリ性液晶を用いた半透過反射型の液晶表示 装置において 、 補助光源を常時利用 しない場合が多い反射重視の表 示の場ム
□に 、 よ り黒に近い暗表示を行う こ とができる。
また 、 本発明によれば、 メモリ性液晶を用いた半透過反射型の液 曰 衣示衣置において 、 補助光源を常時利用する場合が多い透過重視 の表示の α に、 よ り黒に近い喑表示を行う ことができる。
さ らに 本発明によれば、 メモリ性液晶を用いた半透過反射型の 液晶表示装置において、 補助光源を常時利用 しない場合が多い反射 重視の表示の場合に、 ムラの無い明表示を良好に行う ことができる
図面の簡単な説明
図 1 は、 本発明に係る液晶表示装置のブロ ック構成図である。 図 2 は、 本発明に係わる液晶パネルの構成例を示す図である。 図 3 は、 第 1 の実施例に係る液晶パネルの偏光板及び反射型偏光 板の関係を示す図である。
図 4 ( a ) は補助光源を 0 F F した場合の第 1 の実施例に係る液 晶パネルの印加電圧と光透過率との関係を示し、 図 4 ( b ) は補助 光源を O N した場合の第 1 の実施例に係る液晶パネルの印加電圧と 光透過率との関係を示す図である。
図 5 ( a ) は本発明に係わる液晶パネルを腕時計に利用 した場合 の表示例を示し、 図 5 ( b ) は表示が反転した場合を示す図である 図 6 ( a ) は本発明に係わる液晶パネルを携帯電話に利用 した場 合の表示例を示し、 図 6 ( b ) は表示が反転した場合を示す図であ る。
図 7 ( a ) は 1 本の走査電極 1 3 a に印加される走査電圧波形の 一例を示し、 図 7 ( b ) は 1 本の信号電極 1 3 bに印加される信号 電圧波形の一例を示し、 図 7 ( c ) は ( a ) 及び ( b ) の合成電圧 波形を示す図である。
図 8 は、 第 2 の実施例に係る液晶パネルの偏光板及び反射型偏光 板の関係を示す図である。
図 9 ( a ) は補助光源を O F F した場合の第 2 の実施例に係る液 晶パネルの印加電圧と光透過率との関係を示し、 図 9 ( b ) は補助 光源を〇 N した場合の第 2 の実施例に係る液晶パネルの印加電圧と 光透過率との関係を示す図である。
図 1 0 は、 第 3 の実施例に係る液晶パネルの偏光板及び反射型偏 光板の関係を示す図である。
図 1 1 は、 液晶分子の動作を説明するための図である。 発明を実施するための最良の形態
以下図面を参照して、 本発明に係る液晶表示装置 1 0 0 について 説明する。
図 1 に、 各実施例に共通する液 表示装置 1 0 0 の概略ブロ ック 構成図を示す。
液晶表示装置 1 0 0 は 、 液晶パネル 2 0 、 制御部 2 1 、 駆動電圧 波形制御回路 2 2 、 液晶パネル 2 0 中に配置される各走査電極 1 3 a に電圧波形を印加するための走査駆動電圧波形発生回路 2 3 、 液 晶パネル 2 0 中に配置される各信 電極 1 3 bに電圧波形を印加す るための信号駆動電圧波形発生回路 2 4、 太陽電池や 2次電池等か ら構成される電源部 2 δ ―夕記憶部 2 7 、 R A M 3 0 、 R
〇 λ4 3 ΐ 、 時計回路 5 0等を有するよ うに構成した。
また、 液晶表示装置 1 0 0 は、 液晶パネル 2 0 の背面側に配置し た補助光源 6 0 、 補助光源 6 0 の 〇 Ν Z O F Fを制御するための補 助光源制御回路 6 1 、 ユーザが補助光源 6 0 の O Nノ〇 F Fを設定 するための補助光源スィ ッチ 6 2 を有するように構成した。 なお、 図 1 には明記していなし ^が、 液晶表示装置 1 0 0 の各構成要素は電 源部 2 5から電力供給を受けることできるように構成した。
制御部 2 1 は、 R A M 3 0 又は R〇 M 3 1 に予め記憶されたプ口 グラムに従い、 時計回路 5 0から受信した時刻情報等を用いて表示 データを作成し、 表示データ記憶部 2 7 に記憶し、 時刻情報と対応 した表示デ一夕が液晶パネル 2 0 に表示されるように、 駆動電圧波 形制御回路 2 2 に制御信号を出力する。
また、 制御部 2 1 は、 液晶表示装置 1 0 0 の周囲が暗い場合等に 、 ユーザが補助光源スィ ッチ 6 2 を O Nすると、 補助光源制御回路 6 1 を制御し、 補助光源 6 0 を O Nする。
さ らに、 制御部 2 1 は、 補助光源スィ ッチ 6 2が〇 Nされたこ と を検知して、 駆動電圧波形制御回路 2 2 を制御し、 強誘電性液晶 1 0 の極性反転を行い、 補助光源 6 0 の〇 N 〇 F Fに拘らず、 液晶 パネル 2 0 の表示が反転しないように制御を行う。
第 1 の実施例について説明する。
図 2 に、 第 1 の実施例に係る液晶パネル 2 0 の断面図と補助光源 6 0 とを示す。
第 1 の実施例に係る液晶パネル 2 0 は、 第 1 の透明ガラス基板 1 1 a、 第 2 の透明ガラス基板 1 l b、 第 1 の透明ガラス基板 1 1 a 上に設けられた走査電極 1 3 a 、 第 2 の透明ガラス基板 1 1 b上に 設けられた信号電極 1 3 b、 走査電極 1 3 a上に塗布され且つラ ビ ング処理された高分子配向膜 1 4 a 、 信号電極 1 3 b上に塗布され 且つラ ビング処理された高分子配向膜 1 4 b、 シール部材 1 2 、 第 1 及び第 2 の透明ガラス基板 1 1 a及び 1 1 bの間に挟持されシー ル部材 1 2 によって封入された強誘電性液晶 1 0 、 第 1 の透明ガラ ス基板 1 1 aの外側に設けられた反射型偏光板 1 6 、 及び第 2 の透 明ガラス基板 1 1 bの外側に設けられた偏光板 1 5等から構成した 強誘電性液晶 1 0 と しては、 ク ラ リ アン 卜社製の 「 F e 1 i X 50 I」 を用いた。 また、 強誘電性液晶 1 0 は、 第 1 及び第 2の透明ガラス 基板 1 1 a及び 1 1 bの間に、 ほぼ 1 . 7 w mの厚さに挟持した。 反射型偏光板 1 6 は、 ポリ エステル樹脂等の多層フィ ルムから槠 成され、 直交する透過軸と反射軸を有する。 また、 反射型偏光板 1 6 は、 透過軸に平行な振動面を有する直線偏光を透過し且つ反射軸 に平行な振動面を有する直線偏光を反射する機能を有する。
図 2 中、 矢印 Aは、 外部から液晶パネル 2 0へ入射する外光を示 し、 矢印 Bは補助光源 6 0 から液晶パネルへ入射する光を示してい 液晶パネル 2 0 の反射型偏光板 1 6 の下部には、 低消費電力と薄 さ を考慮して、 有機 E Lセルを発光素子と して用いたバック ライ ト を補助光源 6 0 と して配置した なお 、 他の発光素子を用いた補助 光源を用いるこ と もできる。
図 2 では、 便宜上 5本の走査電極 1 3 a を示した力 本実施形態 では、 透明導電膜パターンによ Ό構成した 4 0本の走査電極 1 3 a を液晶パネル 2 0 の全体に渡 て配置した。 また。 図 2 には明記し ていないが、 透明導電膜パ夕 ―ノによ Ό構成した 5 0 本の信号電極
1 3 b を、 走査電極 1 3 a と直行するよう に液晶パネル 2 0 の全体 に渡って配置した。 したがつて 、 走査電極 1 3 a と信号電極 1 3 b が交差する各ポイ ン ト力 、 液曰
曰曰パネル 2 0 の各画素 ( 2 0 0 0 画素
) となる。
図 3 に、 第 1 の実施例に係る液曰パネル 2 0 における偏光板 1 5 及び反射型偏光板 1 6 の配置を示す
図 3 に示すよ うに、 偏光板 1 0 の透過 ( a , ) と反射型偏光板
1 6 の透過軸 ( b! ) がほぼ直交するよう に配置した。 強誘電性液 晶は、 電圧無印加時に第 1 の安定状態と第 2 の安定状態の 2 つの安 定状態を有する、 図 3では、 第 2 の安定状態における強誘電性液晶 1 0の液晶分子の長軸の配列方向を偏光板 1 5の透過蚰 ( a , ) と 一致させるよう に配置した。 この際、 どち らの安定状態の液晶分子 の長軸の配列方向を透過軸 ( a に一致させてもかまわない。 さ らに、 第 1 の安定状態における強誘電性液晶 1 0の液晶分子の長軸 の配列方向を、 図 3 に示すよう に、 第 2の安定状態における強誘電 性液晶 1 0の液晶分子の長軸の配列方向からコーン角度 0 ,だけ傾 いた位置、 即ち液晶コーンに沿った他の位置と した。 また、 図 3 に おいて、 矢印 1 7 は、 配向膜の配向方向を示しており、 第 1 の安定 状態における配列方向と第 2の安定状態の配列方向のちょ う ど中間 となっている。
なお、 第 1 の実施例における強誘電性液晶 1 0では、 コーン角度 を ( θ 1 ) ほぼ 4 5 ° となるように設定した。 これは、 強誘電性液 晶が複屈折性を利用 した場合に、 強誘電性液晶に入射する光量 ( I ,„) と出射する光量 ( I 。 u ( ) との関係が一般に以下の式 ( 1 ) で 表され、 コーン角度 ( ) が 4 5 ° の時に、 出射光量 '( I。 u ( ) が 最大となるからである。
I o l ' s i r^ S e ' s i n MR / A ) ^ ( 1 ) こ こで、 Rはリ タデーシヨ ンを示し、 λ は強誘電性液晶への入射光 の波長を示している。
なお、 コーン角度 を 4 5 ° と しても、 リ タデーシヨ ンに よる減衰が生じるため、 複屈折性を利用 した場合には、 I。 u ,は I , „とは等しく ならない。
図 4に、 第 1 の実施例に係る液晶パネル 2 0における強誘電性液 晶 1 0 に印加する電圧の各極性と光透過率との関係を示す。
図 4 ( a ) は補助光源 6 0が〇 F F している状態を示し、 図 4 ( b ) は補助光源 6 0が〇 Nしている状態を示している。 また、 それ ぞれのグラフの横軸は液晶パネル 2 0の走査電極 1 3 a を基準と し て、 走査電極 1 3 a と信号電極 1 3 bとの間に印加される印加電圧
( V ) (即ち、 強誘電性液晶 1 0 に印加される印加電圧) を示し、 縦軸は液晶パネル 2 0の光透過率を示している。 図 4 ( a ) を用いて補助光源 6 0 を O F F した状態について説明 する。
第 2 の安定状態の液晶分子の配列方向を透過軸 ( a i ) と平行に 配置したので、 印加電圧の極性を変化させて、 強誘電性液晶 1 0 を 第 1 の安定状態に反転させた場合、 強誘電性液晶 1 0 の液晶分子の 長軸の配列方向は、 偏光板 1 5 の透過軸 ( a i ) 及び反射型偏光板
1 6 の透過軸 ( b の何れとも一致しなく なる。 即ち、 強誘電性 液晶 1 0 の液晶分子の長軸の配列方向は、 透過軸 ( a , ) に対して θ , (ほぼ 4 5 ° ) の角度を持って傾く。 液晶パネル 2 0 に入射す る偏光板 1 5 の透過軸 ( a ! ) と平行な振動面を有する外光 Aは、 強誘電性液晶 1 0 の複屈折性によって、 反射型偏光板 1 6 の透過軸
( b , ) とほぼ平行な振動面を有するようになり 、 液晶パネル 2 0 を透過して (透過状態) 、 補助光源 6 0 の表面から反射される。 補 助光源 6 0の表面は通常暗色であるので、 補助光源 6 0 を〇 F F し た場合、 第 1 の安定状態では、 液晶パネル 2 0 に入射した光が、 補 助光源 6 0 の表面の暗色が視認されて、 液晶パネル 2 0 上では喑表 示となる。 この時の光透過率を、 図 4 ( a ) において、 T l , —〇 F F ci:する。 このように、 複屈折性を利用 して入射光の偏光方向を 変化させるモー ドを第 1 のモー ドと称する。 本実施例では、 強誘電 性液晶が第 1 の安定状態をとるときに第 1 のモー ドとなる。
印加電圧の極性を変化させて、 強誘電性液晶 1 0 を第 2 の安定状 態に反転させた場合、 強誘電性液晶 1 0 の液晶分子の長軸の配列方 向が偏光板 1 5 の透過軸 ( a ! ) と平行となる。 この場合、 強誘電 性液晶 1 0 は入射光をそのまま通過させる。 液晶パネル 2 0 に入射 する透過軸 ( a ) と平行な振動面を有する外光 Aは、 反射型偏光 板 1 6の透過軸 ( b! ) とほぼ垂直な振動面を有するため、 反射型 偏光板 1 6 の反射軸によって反射される (反射状態) 。 したがって 、 補助光源 6 0 を〇 F F した場合、 第 2 の安定状態では、 液晶パネ ル 2 0 に入射した光が、 反射型偏光板 1 6 の反射軸で反射されて、 液晶パネル 2 0上では明表示となる。 この時の光透過率を、 図 4 ( a ) において、 T h ,— O F F とする。 このよ うに、 複屈折性を利 用せずに入射光の偏光方向を変化させないモー ドを第 2 モー ドと称 する。 本実施例では、 強誘電性液晶が第 2 の安定状態を取るときに 、 第 2 のモー ドとなる。
このよ うに、 補助光源 6 0 を〇 F F した場合、 強誘電性液晶 1 0 に印加される電圧を (光透過率が増加し始める電圧値 V ,を越えて ) 増加させて、 光透過率の増加が飽和する電圧値 V 2 (正の閾値) 以上とすると、 その後電圧を印加せずとも (即ち、 0 V印加) 強誘 電性液晶 1 0 は第 1 の強誘電性状態を維持し、 液晶パネル 2 0 は喑 表示を維持する。 また、 強誘電性液晶 1 0 に印加される電圧を (光 透過率が減少し始める電圧値 V 3を越えて) 減少させて、 光透過率 の減少が飽和する電圧値 V (負の閾値) 以下とすると、 その後電 圧を印加せずとも (即ち、 0 V印加) 強誘電性液晶 1 0 は第 2 の強 誘電性状態を維持し、 液晶パネル 2 0 は明表示を維持する。
図 4 ( b ) を用いて補助光源 6 0 を〇 N した状態について説明す る。
印加電圧の極性を変化させて、 強誘電性液晶 1 0 を第 1 の安定状 態に反転させた場合、 強誘電性液晶 1 0 の液晶分子の長軸の配列方 向は、 偏光板 1 5 の透過軸 ( a 及び反射型偏光板 1 6の透過軸 ( b , ) の何れとも一致しなく なる。 補助光源 6 0から液晶パネル 2 0 に入射する反射型偏光板 1 6 の透過軸 ( b , ) と平行な振動面 を有する光 Bは、 強誘電性液晶 1 0 の複屈折性によって、 偏光板 1 5 の透過軸 ( a , ) とほぼ平行な振動面を有するよ う になり、 偏光 板 1 5 を透過して (透過状態) 、 液晶パネル 2 0上で観測される。 したがつて、 補助光源 6 0 を〇 N した場 第 1 の安定状態では、 補助光源 6 0からの光は、 液晶パネル 2 0 上では明表示となる。 こ の時の光透過率を、 図 4 ( b ) において T h , —〇 Nとする。 こ の時、 液曰曰層は複屈折性を利用 しているので第 1 のモー ドである。 印加電圧の極性を変化させて、 強口乃電性液 tl曰 1 0 を第 2 の安定状 態に反転させた場合、 強誘電性液晶 1 0の液曰曰分子の長軸の配列方 向が偏光板 1 5 の透過軸 ( a と平行となる。 補助光源 6 0から 液晶パネル 2 0 に入射する透過軸 ( b! ) と平行な振動面を有する 光 Bは、 透過軸 ( a と垂直な振動面を有するため、 偏光板 1 5 によって吸収され、 液晶パネル 2 0 の表面で観測されない。 したが つて、 補助光源 6 0 を O N した場合、 第 2 の安定状態では、 液晶パ ネル 2 0 上では喑表示となる。 この時の光透過率を、 図 4 ( b ) に おいて、 丁 1 | ー〇 1^とする。 この時、 液晶層は複屈折性を利用 し ておらず、 第 2 のモー ドである。
このように、 強誘電性液晶 1 0 に印加される電圧を (光透過率が 増加し始める電圧値 V , を越えて) 増加させて、 光透過率の増加が 飽和する電圧値 V 2 (正の閾値) 以上とすると、 その後電圧を印加 せずとも (即ち、 0 V印加) 強誘電性液晶 1 0 は第 1 の強誘電性状 態を維持し、 液晶パネル 2 0 は明表示を維持する。 同様に、 強誘電 性液晶 1 0 に印加される電圧を (光透過率が減少し始める電圧値 V 3を越えて) 減少させて、 光透過率の減少が飽和する電圧値 V 4 (負 の閾値) 以下とすると、 その後電圧を印加せずと も (即ち、 0 V印 加) 強誘電性液晶 1 0 は第 2 の強誘電性状態を維持し、 暗表示を維 持する。
図 4 ( a ) 及び ( b ) から理解されるよ うに、 第 1 の実施例に係 る液晶パネル 2 0では、 補助光源 6 0 を〇 Nと〇 F F を切換えると 、 強誘電性液晶 1 0が同じ強誘電状態であっても、 喑表示が反転さ れてしまう。 そこで、 本実施例では、 補助光源 6 0 の O Nと O F F との切換えに応じて、 強誘電性液晶 1 0 を極性反転 (一方の強誘電 状態から他方の強誘電状態へ反転) させるよう に制御して、 液晶パ ネル 2 0 の喑表示が変化しないように制御を行う。
ところで、 複屈折性を利用 した表示の場合、 液晶パネル 2 0 の基 板間の微細なギャ ップの影響を受けやすく 、 表示ムラが多く現れて しまう。 即ち、 液晶パネル 2 0全体で基板間 (第 1 及び第 2 のガラ ス基板 1 1 a及び 1 1 b間) のギャ ップを完全に均一にすることは できないので、 液晶パネル 2 0全体で複屈折は完全に均一には生じ ない。 複屈折が均一に生じないと、 液晶パネル 2 0全体で表示色が 完全に均一にならず、 表示ムラが発生してしまう。 例えば、 補助光 源 6 0 を〇 F F し強誘電性液晶 1 0 を第 1 の安定状態にした場合の 液晶パネル 2 0 における喑表示 ( T 1 ,—〇 F F ) は、 前述したよ う に強誘電性液晶 1 0 の複屈折性を利用 しているので、 表示の背景 を黒とすると (図 6 ( b ) に示す液晶パネル 2 0参照) 、 ムラが顕 著になり表示の質が悪く なる。 これに対して、 補助光源 6 0 を O F F し強誘電性液晶 1 0 を第 2 の安定状態にした場合の液晶パネル 2 0 における明表示 ( T h ,— 0 F F ) は、 前述したように強誘電性 液晶 1 0 の複屈折性を利用 しておらず、 表示ムラが発生しない。
即ち、 偏光板 1 5 の透過軸 ( a | ) と反射型偏光板 1 6 の透過軸 ( b , ) を垂直になるよ うに配置し、 第 2 の安定状態における強誘 電性液晶 1 0 の液晶分子の長軸の配列方向を偏光板 1 5 の透過軸 ( a , ) と平行に配置し、 且つ背景を白で表示し文字を黒で表示する ように設定すると (図 5 ( a ) 及び図 6 ( a ) に示す液晶パネル 2 0参照) 、 ムラの無い良好な表示を行う ことが可能となる。 即ち、 この場合、 複屈折性を利用せずに、 背景の白を表示するこ とが可能 となる。 言い換えれば、 背景の白を表示する場合には、 複屈折性を 利用 しないようにすることが重要である したがつて、 第 1 の実施 例に係る液晶パネル 2 0 は、 補助光源を 〇 F F した状態で 、 ムラの 無い良好な明表示を行う こ とができるので 補助光源 6 0 を 時利 用 しないタイ プで、 反射表示を重視するよ な表示に適している 即ち、 第 1 の実施例に係る液晶パネル 2 0 は、 補助光源 6 0 を〇 F F した状態で、 明表示を非常にきれいに表示するこ とがでさるの で (複屈折性の不均等によるムラが無いので ) 、 補助光源 6 0 を〇 F F した状態で背景の白を表示する時計の表示部等に利用するのに 適している。 なお、 腕時計等で補助光源 6 0 を通常利用 しないのは 電力の消費を避けるためである。
図 5 に、 第 1 の実施例に係る液晶パネル 2 0 を腕時計に利用 した 例を示す。
図 5 ( a ) は 、 時計 1 において、 補助光源 6 0 を利用せずに、 液 晶パネル 2 0が 、 外部光を利用 して表示を行つている例を示してい る。 外部が喑 < なった場合、 ユーザが時計 1 に配置されている補助 光源スィ ッチ 6 2 を O Nすると、 図 5 ( a ) において液晶パネル 2
0 の裏側に配置されている補助光源 6 0が 0 Nする。
前述したよ に、 単に補助光源 6 0 を 〇 Nさせると 、 喑表示が反 転してしまい 、 図 5 ( b ) に示すように表示されてしまう。 そこで
、 時計 1 では 、 補助光源スィ ッチ 6 2が 〇 Nされると 、 0 Nされた こ とを制御部 2 1 が検知する。 そして、 制御部 2 1 は 、 駆動電圧波 形制御回路 2 2 を制御し、 液晶パネル 2 0 の各画素に対応する強誘 電性液晶 1 0 の極性反転 (一方の強誘電状態から他方の強誘電状態 へ反転) を行い 、 液晶パネル 2 0 の表示を図 6 ( a ) に示すように 制御する。
前述したよ Όに、 補助光源 6 0 を〇 F F した状態における背景の 白の表示 (図 4 ( a ) の T 1 ,—〇 F F ) は、 複屈折性を利用 して いないため、 複屈折性の不均等によるムラが無い。
と ころで、 補助光源 6 0 を〇 F F し且つ強誘電性液晶 1 0 を第 1 の安定状態に反転させた場合の液晶パネル 2 0 における喑表示 ( T
1 , - O F F ) は、 補助光源 6 0 を〇 N し強誘電性液晶 1 0 を第 2 の安定状態に反転させた場合の液晶パネル 2 0 における喑表示 ( T
1 , 一 O N ) よ り も、 若干光透過率が高い (即ち、 喑表示が若干グ レーより となる) 。 これは、 補助光源 6 0 を O F F し強誘電性液晶
1 0 を第 1 の安定状態に反転させた場合の液晶パネル 2 0 における 喑表示が、 強誘電性液晶 1 0 の複屈折性を利用 しており、 若干反射 型偏光板 1 6 の透過軸 ( b , ) とほぼ平行な振動面を有するよう補 正されない外向光 Aが発生し、 反射型偏光板 1 6 で反射されて液晶 パネル 2 0側に漏れ出てしまい、 光透過率が増加するためである。
また、 補助光源 6 0 を〇 N し強誘電性液晶 1 0 を第 1 の安定状態 に反転させた場合の液晶パネル 2 0 における明表示 ( T h ,—〇 N ) は、 補助光源 6 0 を〇 F F し強誘電性液晶 1 0 を第 2 の安定状態 に反転させた場合の液晶パネル 2 0 における明表示 ( T h ,—〇 F F ) よ り も、 若千光透過率が低い (即ち、 明表示が若干グレーよ り となる) 。 これは、 補助光源 6 0 を〇 N し強誘電性液晶 1 0 を第 1 の安定状態に反転させた場合の液晶パネル 2 0 における明表示が、 強誘電性液晶 1 0の複屈折性を利用 しており、 若干偏光板 1 5の透 過軸 ( a とほぼ平行な振動面を有するように補正されない光 B が発生し、 偏光板 1 5 に吸収されてしまい、 光透過率が低下するた めである。
このように、 第 1 の実施例に係る液晶パネル 2 0 は、 補助光源 6 0 を〇 N した状態で、 暗表示を非常にきれいに表示することができ るので (光透過率がほぼゼロに近い喑表示を行う ことができるので ) 、 補助光源 6 0 を常時利用する場合が多い透過 ϋ視の携帯電話用 の表示等に利用するのにも適している。
図 6 に、 第 1 の実施例に係る液晶パネル 2 0 を携帯電話に利用 し た例を示す。
図 6 ( a ) は、 携帯電話 2 において、 補助光源 6 0 を利用 して、 液晶パネル 2 0 力 表示を行っている例を示している。 なお、 省電 力のために一定期間、 携帯電話が操作されない場合等には補助光源
6 0 が〇 F F される。 しカゝしな力 ら 、 一ザが携帯電話 2 に配置さ れている補助光源スィ ッチ 6 2 を O Nすると、 図 6 ( a ) において 液晶パネル 2 0 の裏側に配置されている補助光源 6 0 が〇 Nする。
前述したように 、 単に補助光源 6 0 を 0 Nさせると、 喑表示が反 転してしまい、 図 6 ( b ) に示すように表示されてしまう 。 そこで
、 携帯電話 2では 、 補助光源スィ ッチ 6 2が 0 Nされると 、 O Nさ れたことを制御部 2 1 が検知する。 次いで、 制御部 2 1 は 、 駆動電 圧波形制御回路 2 2 を制御し、 液晶パネル 2 0 の各画素に対応する 強誘電性液晶 1 0 の極性反転を行い、 液晶パネル 2 0 の表示を図 6
( a ) に示すように制御する。
前述したように 、 補助光源 6 0 を〇 F F した状態における暗 不
(図 6 ( a ) の第 1 の安定状態) は、 若干、 補助光源 6 0 を〇 N し た状態での喑表示 (図 6 ( b ) の第 2 の安定状態) よ り光透過率が 増加してしまう しかしながら、 補助光源 6 0が〇 F F されている 状態は、 通常携 rrr電話を利用 していない状態であるため、 大きな問 題とはならない
図 7 に、 液晶パネル 2 0 を駆動するための駆動電圧波形の一例を 示す。
図 7 ( a ) は 、 1 本の走査電極 1 3 a に印加される走査電圧波形 の一例を示し、 図 7 ( b ) は 1 本の信号電極 1 3 bに印加される信 号電圧波形の一例を示し、 図 7 ( c ) は ( a ) 及び ( b ) の合成電 圧波形を示している。
図 7 には 2 フ レーム分の駆動電圧波形が示されており、 図中 「〇 N」 は図 4 ( a ) で図示した補助光源 「〇 F F」 時における明表示 、 「O F F」 は同様に図 4 ( a ) における喑表示を示している。 こ こでは、 1 回の表示データに基づく 表示を実行するために 1 つの走 査期間を利用 している。 1 フ レームはリセッ ト期間 ( R s ) 及び走 査期間から成り、 1 走査期間は選択期間 ( S e ) 及び非選択期間 ( N S e ) から成る。
リセッ ト期間 ( R s ) において、 強誘電性液晶 1 0 は、 直前の表 示状態に拘らず、 前半は明表示 (透過状態) となる第 1 の安定状態 に、 後半は喑表示 (非透過状態) となる第 2 の安定状態に、 強制的 にリセッ トされる。 リセッ ト期間 ( R s ) において、 走査電圧波形 ( a ) は前半では + 2 0 V力 、 後半では— 2 0 Vが印加されている 。 また、 信号電圧波形 ( b ) は所定間隔で + 5 Vと一 5 Vの電圧が 繰り返し印加されることと した。 この結果、 強誘電性液晶 1 0 の画 素には、 合成電圧波形 ( c ) に応じた電圧、 即ち リセッ ト期間 ( R s ) の前半に正の閾値 V 2 (図 4 ( a ) 参照) 以上の電圧が印加さ れて第 1 の安定状態に、 後半に負の閾値 V (図 4 ( a ) 参照) 以 下の電圧が印加されて第 2 の安定状態にリセッ 卜 される。 リセッ ト 期間を設けるこ とによって、 強誘電性液晶を用いた液晶パネルにお いて、 良好な表示を持続するこ とが可能となる。
補助光源 6 0 を O F F した状態で、 図 7 に示すような駆動電圧が 印加された場合、 第 1 フ レームでは、 第 1 の安定状態にセッ トされ て明表示を行い、 第 2 フ レームでは、 第 2 の安定状態にセッ ト され て喑表示を行う場合が示されることとなる。
第 2 の実施例について説明する。
第 2 の実施例に係る液晶パネル 2 0 の断面図及び補助光源 6 0 は 、 図 2 に示した構成と同様であるので、 説明を省略する。
第 2 の実施例においても、 強誘電性液晶 1 0 と しては、 ク ラ リ ア ン ト社製の 「F e l i x 50 1 j を用いた。 また、 第 2 の実施例において も、 第 1 及び第 2 の透明ガラス基板 1 1 a及び 1 1 bの間隔は、 ほ ぼ 1 . 7 w mと した。
図 8 に、 第 2 の実施例に係る液晶パネル 2 0 における偏光板 1 5 及び反射型偏光板 1 6 の配置を示す。
図 8 に示すように、 偏光板 1 5の透過軸 ( a 2 ) と反射型偏光板 1 6 の透過軸 ( b 2 ) が平行になるように配置した。 また、 第 2 の 安定状態における強誘電性液晶 1 0 の液晶分子の長軸の配列方向を 偏光板 1 5 の透過軸 ( a 2 ) と一致させるように配置した。 さ らに 、 第 1 の安定状態における強誘電性液晶 1 0 の液晶分子の長軸の配 列方向を、 図 8 に示すように、 第 2 の安定状態における強誘電性液 晶 1 0 の液晶分子の長軸の配列方向からコーン角度 5 2だけ傾いた 位置、 即ち液晶コーンに沿つた他の位置と した。
なお、 第 2 の実施例における強誘電性液晶 1 0 では、 コーン角度 ( Θ 2 ) が 4 5 ° とならない場合を例と している。 前述した式 ( 1 ) に示されるように、 コーン角度 Θ が 4 5 ° でないため、 コ ーン角度 ( 2 ) による減衰及びリ タデ一シヨ ンによる減衰が相乗 されて、 複屈折性を利用 した場合には、 I 。 u tは I とは等し く な らない。
図 9 に、 第 2 の実施例に係る液晶パネル 2 0 における強誘電性液 晶 1 0 の各極性と光透過率との関係を示す。
図 9 ( a ) は補助光源 6 0が〇 F F している状態を示し、 図 9 ( b ) は補助光源 6 0 が O N している状態を示している。 また、 それ ぞれのグラフの横軸は液晶パネル 2 0 の走査電極 1 3 a を基準と し て、 走査電極 1 3 a と信号電極 1 3 b との間に印加される印加電圧 ( V ) (即ち、 強誘電性液晶 1 0 に印加される印加電圧) を示し、 縦軸は液晶パネル 2 0 の光透過率を示している。
図 9 ( a ) を用いて補助光源 6 0 を〇 F F した状態について説明 する。
印加電圧の極性を変化させて、 強誘電性液晶 1 0 を第 1 の安定状 態に反転させた場合、 強誘電性液晶 1 0の液晶分子の長蚰の配列方 向は、 偏光板 1 5の透過軸 ( a 2 ) 及び反射型偏光板 1 6の透過蚰 ( b 2 ) の何れとも一致しなく なる。 視認側から液晶パネル 2 0 に 入射する偏光板 1 5 の透過軸 ( a 2 ) と平行な振動面を有する光 A は、 強誘電性液晶 1 0の複屈折性によって、 反射型偏光板 1 6 の透 過軸 ( b 2 ) とは直交する方向の振動面を有するようになり、 反射 型偏光板 1 6 の反射軸で反射される。 したがって、 補助光源 6 0 を 0 F F した場合、 第 1 の安定状態では、 視認側から液晶パネル 2 0 に入射する光 A力 液晶パネル 2 0 上で観測されて、 液晶パネル 2 0 上では明表示となる。 この時の光透過率を、 図 9 ( a ) において 、 T h 2—〇 F F とする。 このように、 複屈折性を利用 して入射光 の偏光方向を変化させるモー ドを第 1 のモー ドと称する。 本実施例 では: 強誘電性液晶が第 1 の安定状態をとるときに第 1 のモー ドと なる。
印加電圧の極性を変化させて、 強誘電性液晶 1 0 を第 2 の安定状 態に反転させた場合、 強誘電性液晶 1 0 の液晶分子の長軸の配列方 向が偏光板 1 5 の透過軸 ( a 2 ) と平行となるため、 視認側から液 晶パネル 2 0 に入射する透過軸 ( a 2 ) と平行な振動面を有する光 Aは、 反射型偏光板 1 6 の透過軸 ( b , ) と も平行な振動面を有し 、 反射型偏光板 1 6 を通過する。 したがって、 補助光源 6 0 を 0 F F した場合、 第 2 の安定状態では、 外側からの光 Aは、 偏光板 1 5 を通過し、 液晶パネル 2 0 に入射した光によ り、 補助光源 6 0 の表 面が視認されて、 液晶パネル 2 0上では喑 (黒) 表示となる。 この 時の光透過率を、 図 9 ( a ) において、 T l 2— O F F とする。 こ のように、 複屈折性を利用せずに入射光の偏光方向を変化させない モー ドを第 2モー ドと称する。 本実施例では、 強誘電性液晶が第 2 の安定状態を取るときに、 第 2 のモー ドとなる。
このように、 強誘電性液晶 1 0 に印加される電圧を (光透過率が 増加し始める電圧値 V ,を越えて) 増加させて、 光透過率の増加が 飽和する電圧値 V 2 (正の閾値) 以上とすると、 その後電压を印加 せずとも (即ち、 0 V印加) 強誘電性液晶 1 0 は第 1 の安定状態を 維持し、 液晶パネル 2 0 は明 (白) 表示を維持する。 同様に、 強誘 電性液晶 1 0 に印加される電圧を (光透過率が減少し始める電圧値 V 3を越えて) 減少させて、 光透過率の減少が飽和する電圧値 \ ( 負の閾値) 以下とすると、 その後電圧を印加せずと も (即ち、 0 V 印加) 強誘電性液晶 1 0 は第 2 の安定状態を維持し、 暗 (黒) 表示 を維持する。
図 9 ( b ) を用いて補助光源 6 0 を〇 N した状態について説明す る。
印加電圧の極性を変化させて、 強誘電性液晶 1 0 を第 1 の安定状 態に反転させた場合、 強誘電性液晶 1 0 の液晶分子の長軸の配列方 向は、 偏光板 1 5 の透過軸 ( a : ) 及び反射型偏光板 1 6 の透過軸 ( b 2 ) の何れと も一致しなくなる。 したがって、 強誘電性液晶 1 0の液晶分子の長軸の配列方向は、 透過蚰 ( a 2 ) に対して θ 2の角 度を持って傾く。 補助光源 6 0から入射する反射型偏 板 1 6 の透 過軸 ( b 2 ) と平行な振動面を有する光 Bは、 強誘電性液晶 1 0 の 複屈折性によって、 偏光板 1 5の透過軸 ( a 2 ) と垂直な方向を有 する振動面を有するようになり、 偏光板 1 5 に吸収される。 したが つて、 補助光源 6 0 を〇 N した場合、 第 1 の安定状態では、 液晶パ ネル 2 0上で喑 (黒) 表示となる この時の光透過率を、 図 9 ( b ) において、 T l 2 — O Nとする。 この時、 複屈折性を利用するの で、 液晶層は第 1 のモー ド'である
印加電圧の極性を変化させて、 強誘電性液晶 1 0 を第 2 の安定状 態に反転させた場合、 強 電性液晶 1 0 の液晶分子の長軸の配列方 向が反射型偏光板 1 6 の透過軸 ( b 2 ) と平行となる。 補助光源 6
0から入射する反射型偏光板 1 6 の透過軸 ( b 2 ) と平行な振動面 を有する光 Bは、 反射型偏光板 1 6 の透過蚰 ( b 2 ) と も平行な振 動面を有し、 反射型偏光板 1 6 を透過する (透過状態) 。 したがつ て、 補助光源 6 0 を O N した場合、 第 2 の安定状態では、 液晶パネ ル 2 0 に入射した光 Bによ り、 液晶パネル 2 0 上では明 (白) 表示 となる。 この時の光透過率を、 図 9 ( b ) において、 T h 2 —〇 N とする。 この時、 複屈折性を利用 しないので、 液晶層は第 2 のモー ドである。
このよう に、 補助光源 6 0 を〇 N した場合、 強誘電性液晶 1 0 に 印加される電圧を (光透過率が増加し始める電圧値 V , を越えて) 増加させて、 光透過率の増加が飽和する電圧値 V 2 (正の閾値) 以 上とすると、 その後電圧を印加せずとも (即ち、 0 V印加) 強誘電 性液晶 1 0 は第 1 の'安定状態を維持し、 液晶パネル 2 0 は喑表示を 維持する。 また、 強誘電性液晶 1 0 に印加される電圧を (光透過率 が減少し始める電圧値 V 3を越えて) 減少させて、 光透過率の減少 が飽和する電圧値 V , (負の閾値) 以下とすると、 その後電圧を印 加せずとも (即ち、 0 V印加) 強誘電性液晶 1 0 は第 2 の安定状態 を維持し、 液晶パネル 2 0 は明表示を維持する。
図 9 ( a ) 及び ( b ) から理解されるように、 第 2 の実施例に係 る液晶パネル 2 0 では、 補助光源 6 0 を〇 Nと O F F を切換えると 、 強誘電性液晶 1 0が同じ安定状態であっても、 暗表示が反転され てしまう。
複屈折性を利用 した表示の場合、 液晶パネル 2 0の基板間の微細 なギャ ッ プの影響を受けやすく 、 表示ムラが多く現れてしまう。 即 ち、 液晶パネル 2 0全体で基板間 (第 1 及び第 2 のガラス基板 1 1 a及び 1 1 b間) のギャ ップを完全に均一にすることはできないの で、 液晶パネル 2 0全体で複屈折は完全に均一には生じない。 複屈 折が均一に生じないと、 液晶パネル 2 0全体で表示色が完全に均一 にならず、 表示ムラが発生してしま う。 例えば、 補助光源 6 0 を〇 N し強誘電性液晶 1 0 を第 1 の安定状態に した場合の液晶パネル 2 0 における喑表示 ( T 1 , - O N ) は、 前述したように強誘電性液 晶 1 0 の複屈折性を利用 しているので、 表示の背景を喑とすると ( 図 6 ( b ) に示す液晶パネル 2 0参照) 、 ムラが顕著になり表示の 質が悪く なる。 これに対して、 補助光源 6 0 を〇 N し強誘電性液晶 1 0 を第 2の安定状態に した場合の液晶パネル 2 0 における明表示
( T h , - 0 N ) は、 前述したように強誘電性液晶 1 0 の複屈折性 を利用 しておらず、 表示ムラが生じない。
即ち、 偏光板 1 5 の透過軸 ( a 2 ) と反射型偏光板 1 6 の透過軸
( b , ') を平行になるように配置し、 第 2 の安定状態における強誘 電性液晶 1 0 の液晶分子の長軸の配列方向を偏光板 1 5の透過軸 ( a , ) と平行に配置し、 且つ背景を白で表示し文字を黒で表示する ように設定すると (図 5 ( a ) 及び図 6 ( a ) に示す液晶パネル 2 0参照) 、 ムラの無い良好な表示を行う こ とが可能となる。 即ち、 この場合、 複屈折性を利用せずに、 背景の白を表示するこ とが可能 となる。 言い換えれば、 背景の白を表示する場合には、 複屈折性を 利用 しないようにするこ とが重要である。 したがって、 第 2 の実施 例に係る液晶パネル 2 0 は、 補助光源を〇 N した状態で、 ムラの無 い良好な明表示を行う こ とができるので、 補助光源 6 0 を常時利用 する場合の多い、 透過表示を重視するよ うな表示にも適している。 そこで、 第 2 の実施例に係る液晶パネル 2 0 は、 補助光源 6 0 を 〇 N した状態で、 明表示を非常にきれいに表示することができるの で (複屈折性の不均等によるムラが無いので) 、 補助光源 6 0 を〇 N した状態で背景の白を表示する携帯電話の表示部等に利用するの に適している (図 6参照) 。
ところで、 第 2 の実施例において補叻光源 6 0 を O N し強誘電性 液晶 1 0 を第 1 の安定状態に反転させた場合の液晶パネル 2 0 にお ける喑表示 (図 9 ( b ) の T 1 2—〇 N ) は、 第 1 の実施例におい て補助光源 6 0 を O F F し強誘電性液晶 1 0 を第 1 の安定状態に反 転させた場合の液晶パネル 2 0 における暗表示 (図 4 ( a ) の T 1 , 一 O F F ) より も、 さ らに光透過率が高い (即ち、 喑表示がさ ら にグレーより となる) 。 これは、 第 2 の実施例において補助光源 6 0 を〇 N し強誘電性液晶 1 0 を第 1 の安定状態に反転させた場合の 液晶パネル 2 0 における喑表示が、 強誘電性液晶 1 0 の複屈折性を 利用 しているためである。 前述したように、 第 2 の実施例では、 コ —ン角度を 4 5。 に設定していないこ とから、 反射型偏光板 1 6 の 反射釉とほぼ平行な振動面を有するように補正されない外光 Aがよ り発生して、 反射型偏光板 1 6 によって反射されてしまい、 よ り光 透過率が増加するためである。
また、 第 2 の実施例における補助光源 6 0 を 0 F F し強誘電性液 晶 1 0 を第 1 の安定状態に反転させた場合の液晶パネル 2 0 におけ る明表示 (図 9 ( b ) の T h 2 — 0 F F ) は、 第 1 の実施例におけ る補助光源 6 0 を〇 N し強誘電性液晶 1 0 を第 1 の安定状態に反転 させた場合の液晶パネル 2 0 における明表示 (図 4 ( b ) の T h , - O N ) よ り も、 さ らに光透過率が低い (即ち、 明表示がさ らにグ レーよ り となる) 。 これは、 第 2の実施例における補助光源 6 0 を 〇 F F し強誘電性液晶 1 0 を第 1 の安定状態に反転させた場合の液 晶パネル 2 0 における明表示が、 強誘電性液晶 1 0 の複屈折性を利 用 しているためである。 前述したように、 第 2 の実施例では、 コ ー ン角度を 4 5 ° に設定していないことから、 反射型偏光板 1 6 の反 射軸とほぼ平行な振動面を有するよう補正されない光 Bがよ り発生 し、 反射軸によって反射されず、 より光透過率が減少するためであ る。
しかしながら、 第 2 の実施例に係る液晶パネル 2 0 は、 補助光源
6 0 を O F F した状態で、 喑表示 9】 (図 9 ( a ) の T 1 , - O F F ) を非常にきれいに表示することができるので (光透過率がほぼゼ口 に近ぃ喑表示を行う ことができるので) 、 コ ン 卜 ラス 卜重視で、 補 助光源 6 0 を常時利用 しない場合が多い 、 反射重視の時計用の表示 等に利用するのに適している。
したがつて、 第 2 の実施例に係る液晶パネル 2 0 は、 図 6 ( a ) に示す携帯電話 2 に第 1 の実施例と同様に用いることができる。 第
2 の実施例においても、 第 1 の実施例と同様に 、 単に補助光源 6 0 を〇 Nさせると、 喑表示が反転してしまい 、 図 6 ( b ) に示すよう に表示されてしまうので、 補助光源スィ 'ンチ 6 2 が〇 Nされると、
〇 Nされたことを制御部 2 1 が検知して 、 駆動電圧波形制御回路 2
2 を制御し 、 液晶パネル 2 0の各画素に対応する強誘電性液晶 1 0 の極性反転を行い、 液晶パネル 2 0 の表示を図 6 ( a ) に示すよう に制御しても良い。
なお、 前述したように、 補助光源 6 0 を 〇 N した状態における喑 表示 (図 9 ( b ) の T 1 2— 0 N ) は、 補助光源 6 0 を〇 F F した 状態での暗表示 (図 9 ( a ) の T 1 2—〇 F F ) より、 さ らに光透 過率が増加してしまう力 補助光源 6 0が〇 Nされている状態は、 時計を利用する場合の常時ではないため、 大きな問題とはならない また、 第 2の実施例に係る液晶パネル 2 0 を駆動するための駆動 電圧波形も 、 図 7 に示す第 1 の実施例に関して示すものと同様であ るので、 明を省略する。
上記の第 1 及び第 2 の実施例において、 液晶パネル 2 0 を透過状 態と した □ 、 補助光源 6 0の表面の暗/色が液晶パネル 2 0 上で 観測される そこで、 反射型偏光板 1 6 と補助光源 6 0 との間に、 光吸収層を設けるこ とが可能である。 光吸収層を設けれ、 液晶パネ ル 2 0 上で観測される補助光源 6 0 の表面の色をより暗く 表示する こ とが可能となる。
さ らに 、 上記の第 1 及び第 2 の実施例において、 補助光源 6 0 を
〇 N して 、 液晶パネル 2 0 を透過状態と した場合に、 補助光源 6 0 からの光 Bを減衰させない為に、 光吸収層の表面に、 一部の領域の 光を吸収するよ う (こ多数の微細な開 □部を設けることが好ま しい。 光吸収層の表面に多数の微細な開口部を設ければ、 開口部を通して 補助光源 6 0からの光 Bが透過するので、 液晶パネル 2 0 上で観測 される光量に大きな影響を与えるこ とはない。 なお、 光吸収層にお ける微小な開口部による開口率は、 3 0 % 〜 7 0 %の範囲内から好 ま しい値を選択するこ とができる。 また微細な開口部は微小な丸孔 状であっても良いし 、 格子状に形成されても良い、 また開口部は規 則的に形成される必要はなく 、 ランダムに形成されていても良い。
また、 上記の第 1 及び第 2 の実施例において、 補助光源 6 0 の発 光側に、 可視光領域の一部を反射する反射層を設けることもできる
。 反射層は、 可視光領域の一部の波長を反射し、 特定の色を反射光 と して反射する層であっても良いし 可視光領域の全域にわたって
、 光量の一部を反射し、 他を透過するような半透過反射膜であって も良い。 例えば、 脔色光を反射する反射層を設ければ、 液晶パネル 2 0 を透過状態と した場合、 液晶パネル 2 0上で観測される補助光 源 6 0 からの反射光を青色とするこ とができる。 即ち、 液晶パネル
2 0 を透過状態と した場合の表示色を変化させることが可能である さ らに、 上記の第 1 及び第 2 の実施例において、 強誘電性液晶 1 0 の極性反転は、 制御部 2 1 力 駆動電圧波形制御回路 2 2 、 走査 駆動電圧波形発生回路 2 3及び信号駆動電圧波形発生回路 2 4 を用 い、 表示データ記憶部 2 7 に通常表示用の表示デ一とはネガポジ反 転されたネガポジ反転表示データ】 7を予め記憶し、 記億されているネ ガポジ反転表示データを用いて前記走査電極又は前記信号電極に印 加される駆動波形の極性をそれ以前の駆動波形と反転するように制 御した。 しかしながら、 強誘電性液晶 1 0の極性反転は、 表示デ一 夕を利用する他に、 電源部 2 5から液晶パネル 2 0 に供給される電 圧の極性を反転させるよ うにして、 行う こと も可能である。 その場 合、 制御部 2 1 は、 極性を反転させるための任意の電子回路を用い ることができる。
第 3 の実施例について説明する。
第 ' 3 の実施例を図 2 を用いて説明する。 第 3 の実施例では、 図 2 の構成を、 ほぼそのまま用いることができる。 ただし、 走査電極 1
3 a 上には、 塗布され且つ ¾直配向処理された高分子配向膜 1 4 a 、 信号電極 1 3 b上には、 塗布され且つ垂直配向処理された高分子 配向膜 1 4 bが使用される。 また、 液晶 1 1 0 と しては、 垂直配向
(ホメオ ト 口 ピック配向) 型液晶用と して、 負の誘電異方性である M L C - 6 8 8 3 (メルク社製) を用いた。 また、 液晶 1 1 0 は、 第 1 及び第 2 の透明ガラス基板 1 1 a及び 1 1 bの間に、 ほぼ 1 . 7 mの厚さに挟持した。
また、 図 2 中、 矢印 Aは、 外部から第 3 の実施例の液晶パネルへ 入射する外光を示し、 矢印 Bは補助光源 6 0から第 3 の実施例の液 晶パネルへ入射する光を示している。
図 1 0 に、 第 3 の実施例に係る液晶パネルにおける偏光板 1 5及 び反射型偏光板 1 6 の配置を示す。
図 1 0 に示すよう に、 偏光板 1 5 の透過軸 ( a 3 ) と反射型偏光 板 1 6 の透過軸 ( b 3 ) が直交するように配置した。 また、 図 1 0 において、 矢印 1 1 7 は配向膜の配向方向を示しており、 3は配 向膜の配向方向と偏光板 1 5 の透過軸 ( a :i ) とのなす角度を示し ている。 なお、 本実施例において、 0 3は約 4 5度となるよう に設 定されている。 しかしながら、 0 3は 4 5度に限定されるわけでは なく 、 他の角度例えば 4 0度と しても良い。
図 1 1 に、 垂直配向 (ホメォ 卜 ロ ピック配向) 型液晶 1 1 0 の液 晶分子の動作を示す。
第 3 の実施例の液晶パネルに電圧を印加しない状態では、 垂直配 向 (ホメオ ト 口 ピッ ク配向) 液晶 1 1 0の液晶分子の長軸 ( 1 1 0 a参照 >は、 第 1 及び第 2 のガラス基板 1 1 1 a及び 1 1 1 bの間 にほぼ垂直に配置されている。 また、 液晶パネル 1 2 0 に電圧を印 加した状態では、 垂直配向 (ホメオ ト 口 ピック配向) 型液晶 1 1 0 の液晶分子の長軸 ( 1 1 0 b参照) は、 矢印 1 1 7 の方向に一致す るように、 横に傾く ように設定されている。
次に、 補助電源 6 0 を〇 F F した状態について説明する。
第 3 の実施例の液晶パネルに電圧が印加されていない場合、 偏光 板 1 5 を通過して入射した外光 Aは、 そのまま液晶 1 1 0 を通過す る。 液晶 1 1 0 を通過した光の偏光方向は反射型偏光板 1 6 の透過 軸 ( b 3 ) とは垂直であるので、 液晶 1 1 0 を通過した光は反射型 偏光板 1 6 の反射舢で反射される。 したがって、 この場合、 第 3 の 実施例の液晶パネルでは明表示となる。 この時、 複屈折性を利用 し ていないので、 液晶層は第 2 のモー ドである。
第 3 の実施例の液晶パネルに電圧が印加された場合, 偏光板 1 5 を通過して入射した外光 Aは、 液晶 1 1 0 を通過する時に、 矢印 1 1 7 の方向に平行に傾いた液晶分子 1 1 0 bによる複屈折性によつ て、 その偏光方向が約 9 0度傾く。 したがって、 液晶 1 1 0 を通過 した光の偏光方向は、 反射型偏光板 1 6 の透過軸 ( b 3 ) とほぼ平 行になり、 反射型偏光板 1 6 を通過して、 補助光源 6 0 で反射され る。 したがって、 この場合、 第 3の実施例の液晶パネルでは、 補助 光源 6 0の色が視認され喑表示となる。 この時、 複屈折性を利用 し ているので、 液晶層は第 1 のモー ドである。
次に、 補助光源 6 0 を〇 N した状態について説明する。
第 3 の実施例の液晶パネルに電圧が印加されていない場合、 反射 型偏光板 1 6 を通過した補助光源 6 0 の光 Bは、 そのまま液晶 1 1 0 を通過する。 液晶 1 1 0 を通過した光の偏光方向は偏光板 1 5 の 透過軸 ( a 3 ) とは垂直であるので、 液晶 1 1 0 を通過した光は偏 光板 1 6で吸収される。 したがって、 この場合、 液晶パネル 1 2 0 では暗表示となる。 この時、 複屈折性を利用 していないので、 液晶 層は第 2 のモー ドである。
第 3 の実施例の液晶パネルに電圧が印加された場合、 偏光板 1 5 を通過して入射した補助光源 6 0 の光 Bは、 液晶 1 1 0 を通過する 時に、 矢印 1 1 7 の方向に平行に傾いた液晶分子 1 1 0 b によって 複屈折を受けて、 その偏光方向が約 9 0度傾く。 したがって、 液晶 1 1 0 を通過した光の偏光方向は、 偏光板 1 5の透過軸 ( a 3 ) と ほぼ平行な成分を有するよう になり、 偏光板 1 5 を通過する。 した がって、 この場合、 第 3 の荚施例の液晶パネルでは明表示となる。 この時、 複屈折性を利用 しているので、 液晶層は第 1 のモー ドであ る。 複屈折性を利用 した表示の場合、 液晶パネル 1 2 0 の基板間の微 細なギヤ ップの影響を受けやすく 、 表示ムラが多く現れてしま う。 即ち、 液晶パネル 2 0全体で基板間 (第 1 及び第 2 のガラス基板 1
1 1 a及び 1 1 1 b間 ) のギャ ップを完全に均一にするこ とはでき ないので、 液晶パネル 1 2 0全休で複屈折は完全に均一には生じな い。 複屈折が均一に生じないと、 液晶パネル 1 2 0全体で表示色が 完全に均一にならず 、 表示ムラが発生してしま う。 例えば、 補助光 源 6 0 を O F F し且つ液晶パネル 1 2 0へ電圧を印加しない場合、 液晶パネル 1 2 0 における明表示は、 複屈折性を利用 していないの で、 表示ムラが無い 即ち、 この場合、 複屈折性を利用せずに、 背 景の白を表示することが可能となる。 言い換えれば、 面積の大きい 背景の白を表示する場合には、 複屈折性を利用 しないようにする こ とが重要である。
したがって、 第 3 の実施例に係る液晶パネルは、 補助光源を〇 F
F した状態で、 ムラの無い良好な明表示を行う ことができるので、 補助光源 6 0 を常時利用 しない場合の多い反射表示を重視するよう な表示に適している 例えば、 補助光源 6 0 を〇 F F した状態で背 景の白を表示する時計の表示部等に利用するのに適している (図 5 参照) 。 なお、 腕時計等で補助光源 6 0 を通常利用 しないのは、 電 力の消費を避けるためである。
また、 補助光源を 〇 N した状態で、 ムラの無い明表示を行うには
、 偏光板の透過軸 ( a 3 ) と反射型偏光板の透過軸 ( b ) を平行 に配置すればよい のように配置すれば、 複屈折性を利用 しない 第 2 のモー ドで明表示をすることができるので、 面積の大きい背景 の白を表示する場 □ には良好な明 (白) 表示を行う こ とができる。 このような配置は 、 常時補助光源を〇 N して使用する透過表示を重 視するような表示に している。 例えば、 補助光源 6 0 を〇 N した 状態で背景の白を表示する携帯電話の表示部に利用するのに適して いる (図 6参照) 。

Claims

請 求 の 範 囲
1 . 液晶表示装置でめって、
第 1 の基板と、
第 2 の基板と、
前記第 1 の基板上に配置され、 それぞれ直交する第 1 の透過軸と 第 1 の反射軸とを有し 、 及び前記第 1 の透過軸に平行な振動面を有 する直線偏光を透過し且つ前記第 1 の反射軸に平行な振動面を有す る直線偏光を反射する反射型偏光板と
記第 2 の基板上に配置され、 第 2 の透過軸を有し、 及び前記第
2 の透過軸に平行な振動面を有する直線偏光を透過する偏光板と、 前記第 1 及び第 2 の基板間に挟持され、 複屈折性を利用 して入射 光の偏光方向を変化させる第 1 のモ ドと複屈折性を利用せずに入 射光の偏光方向を変化させない第 2 のモー ドを有する液晶層とを有 し
前記液晶層への電圧印加によって 明表示と喑表示とを切り替え 前記液晶層を前記第 2 モー ドに設定して、 明表示を行う ことを特 徴とする液晶表示装置。
2 . 前記偏光板の第 2 の透過軸を通過して前記液晶層に入射した 外光を前記反射型偏光板で反射させ、 再び前.記液晶層及び前記偏光 板外に出射させるこ とによって明表示を行う、 請求項 1 に記載の液 晶 不 ιΑ
3 . 前記第 1 の透過軸と前記第 2 の透過軸とは、 ほぼ直交に配置 されている、 請求項 2 に記載の液晶表示装置。
4 . 前記液晶層は、 電圧無印加時に第 1 の安定状態又は第 2 の安 定状態の何れか一方の状態を維持し、 前記第 1 の安定状態又は前記 第 2 の安定状態の何れか一方の安定状態が、 前記第 2 のモー ドに設 定される、 請求項 1 に記載の液晶表示装置。
δ . 前記第 2の安定状態における液晶分子の配列方向は前記第 2 の透過軸とほぼ平行に配置される、 請求項 4 に記載の液晶表示装置
6 . 前記第 1 の安定状態における液晶分子の配列方向と前記第 2 の安定状態における液晶分子の配列方向とは、 ほぼ 4 5 の傾きを 有するよ うに配置される、 請求項 4 に記載の液晶表示装置。
7 . 前記液晶層は、 垂直配向型の液晶層であって、 前記第 1 及び 第 2 の基板間に液晶分子がほぼ垂直に配向される第 1 の状態と、 液 晶分子が前記第 2 の透過軸に対して所定の角度を持って傾く 第 2 の 状態を有し、 前記第 1 の状態が前記第 2 モー ドに設定される、 請求 項 1 に記載の液晶表示装置。
8 . さ らに、 前記反射型偏光板の外側に設けられた補助光源を有 し、
前記補助光源を〇 F F させた状態で、 前記液晶層は前記第 2 モ一 ドに設定される、 請求項 1 に記載の液晶表示装置。
9 . _ さ らに、 前記反射型偏光板の外側に設けられた補助光源を有 し、
前記補助光源を〇 Ν した状態で、 前記液晶層は前記第 2 モー ドに 設定される、 請求項 1 に記載の液晶表示装置。
1 0 . 前記補助光源からの光を前記反射型偏光板の第 1 の透過軸 で透過し、 前記液晶層に入射した光を前記偏光板の第 2 の透過軸を 通過して視認側に出射させることによって明表示を行う、 請求項 9 に記載の液晶表示装置。
1 1 . 前記第 1 の透過'袖と前記第 2 の透過軸とは、 ほぼ平行に配 置されている、 請求項 1 0 に記載の液晶表示装置。
1 2 . さ らに RiJ記反射型偏光板の外側し axけられた補助光源を 有し
記反射型偏光板と前記補助光源との間に配置され、 一部領域の 光を吸収する光吸収層を有する請求項 1 に記載の液 flH ¾ 1M
1 3 . さ らに RIJ記反射型偏光板の外側に設けられた補助光源を 有し
前記反射型偏光板と前記補助光源との間に配置され、 可視光領域 の 部の光を吸収する光吸収層を有す 円求項 1 に記載の液晶表示 壮
衣 m 3 4
'
1 4 . さ らに RD記反射型偏光板の外側に設けられた補助光源を 有し
前記補助光源には 、 可視光領域の 部の光を反射する反射層が備 えられている、 請求項 1 に記載の液晶表示装置。
PCT/JP2006/301076 2005-01-18 2006-01-18 液晶表示装置 WO2006078044A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/591,985 US7787077B2 (en) 2005-01-18 2006-01-18 Liquid crystal display apparatus
JP2006519051A JP5318348B2 (ja) 2005-01-18 2006-01-18 液晶表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-010180 2005-01-18
JP2005010180 2005-01-18

Publications (1)

Publication Number Publication Date
WO2006078044A1 true WO2006078044A1 (ja) 2006-07-27

Family

ID=36692413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301076 WO2006078044A1 (ja) 2005-01-18 2006-01-18 液晶表示装置

Country Status (4)

Country Link
US (1) US7787077B2 (ja)
JP (2) JP5318348B2 (ja)
CN (1) CN100535721C (ja)
WO (1) WO2006078044A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910854A (en) 1993-02-26 1999-06-08 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
US5668663A (en) 1994-05-05 1997-09-16 Donnelly Corporation Electrochromic mirrors and devices
US6891563B2 (en) * 1996-05-22 2005-05-10 Donnelly Corporation Vehicular vision system
US6172613B1 (en) 1998-02-18 2001-01-09 Donnelly Corporation Rearview mirror assembly incorporating vehicle information display
US6124886A (en) 1997-08-25 2000-09-26 Donnelly Corporation Modular rearview mirror assembly
US8294975B2 (en) 1997-08-25 2012-10-23 Donnelly Corporation Automotive rearview mirror assembly
US6326613B1 (en) 1998-01-07 2001-12-04 Donnelly Corporation Vehicle interior mirror assembly adapted for containing a rain sensor
US6445287B1 (en) 2000-02-28 2002-09-03 Donnelly Corporation Tire inflation assistance monitoring system
US8288711B2 (en) 1998-01-07 2012-10-16 Donnelly Corporation Interior rearview mirror system with forwardly-viewing camera and a control
US6477464B2 (en) 2000-03-09 2002-11-05 Donnelly Corporation Complete mirror-based global-positioning system (GPS) navigation solution
US6693517B2 (en) 2000-04-21 2004-02-17 Donnelly Corporation Vehicle mirror assembly communicating wirelessly with vehicle accessories and occupants
US6329925B1 (en) 1999-11-24 2001-12-11 Donnelly Corporation Rearview mirror assembly with added feature modular display
US7855755B2 (en) 2005-11-01 2010-12-21 Donnelly Corporation Interior rearview mirror assembly with display
US7370983B2 (en) 2000-03-02 2008-05-13 Donnelly Corporation Interior mirror assembly with display
EP1263626A2 (en) 2000-03-02 2002-12-11 Donnelly Corporation Video mirror systems incorporating an accessory module
US7167796B2 (en) 2000-03-09 2007-01-23 Donnelly Corporation Vehicle navigation system for use with a telematics system
US7581859B2 (en) 2005-09-14 2009-09-01 Donnelly Corp. Display device for exterior rearview mirror
WO2006124682A2 (en) 2005-05-16 2006-11-23 Donnelly Corporation Vehicle mirror assembly with indicia at reflective element
US7255451B2 (en) 2002-09-20 2007-08-14 Donnelly Corporation Electro-optic mirror cell
ES2287266T3 (es) 2001-01-23 2007-12-16 Donnelly Corporation Sistema de iluminacion de vehiculos mejorado.
US6918674B2 (en) 2002-05-03 2005-07-19 Donnelly Corporation Vehicle rearview mirror system
US7329013B2 (en) 2002-06-06 2008-02-12 Donnelly Corporation Interior rearview mirror system with compass
AU2003237424A1 (en) 2002-06-06 2003-12-22 Donnelly Corporation Interior rearview mirror system with compass
US7310177B2 (en) 2002-09-20 2007-12-18 Donnelly Corporation Electro-optic reflective element assembly
AU2003278863A1 (en) 2002-09-20 2004-04-08 Donnelly Corporation Mirror reflective element assembly
US7446924B2 (en) 2003-10-02 2008-11-04 Donnelly Corporation Mirror reflective element assembly including electronic component
US7308341B2 (en) 2003-10-14 2007-12-11 Donnelly Corporation Vehicle communication system
US7502156B2 (en) 2004-07-12 2009-03-10 Gentex Corporation Variable reflectance mirrors and windows
US8545030B2 (en) 2004-07-12 2013-10-01 Gentex Corporation Rearview mirror assemblies with anisotropic polymer laminates
US8282224B2 (en) * 2004-07-12 2012-10-09 Gentex Corporation Rearview mirror assemblies with anisotropic polymer laminates
US7511815B2 (en) * 2007-05-15 2009-03-31 Arima Display Corporation Device and method for measuring optical parameters of liquid crystal display
US8154418B2 (en) 2008-03-31 2012-04-10 Magna Mirrors Of America, Inc. Interior rearview mirror system
US9254789B2 (en) * 2008-07-10 2016-02-09 Gentex Corporation Rearview mirror assemblies with anisotropic polymer laminates

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109337A (ja) * 1997-10-02 1999-04-23 Seiko Epson Corp 液晶装置及び電子機器
WO1999021051A1 (fr) * 1997-10-16 1999-04-29 Citizen Watch Co., Ltd. Unite d'affichage liquide
JPH11212073A (ja) * 1998-01-26 1999-08-06 Hitachi Ltd 液晶表示装置
JP2000131681A (ja) * 1998-10-23 2000-05-12 Sharp Corp 半透過型液晶表示装置
JP2000330107A (ja) * 1999-05-24 2000-11-30 Nitto Denko Corp 液晶表示装置
JP2001222005A (ja) * 2000-12-14 2001-08-17 Seiko Epson Corp 液晶装置及び電子機器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177400A (ja) * 1996-09-17 2003-06-27 Seiko Epson Corp 表示装置及びそれを用いた電子機器
JPH10260403A (ja) 1997-01-20 1998-09-29 Seiko Epson Corp 液晶装置及び電子機器
JPH10239682A (ja) * 1997-02-24 1998-09-11 Sharp Corp 液晶表示装置
DE69833284T2 (de) * 1997-04-23 2006-09-28 Sharp K.K. Reflektierende Flüssigkristallanzeige
JPH11194185A (ja) * 1997-06-09 1999-07-21 Seiko Epson Corp 電子時計
JP3702643B2 (ja) * 1997-06-09 2005-10-05 セイコーエプソン株式会社 表示装置及び電子時計
JPH11326896A (ja) * 1998-03-10 1999-11-26 Dainippon Printing Co Ltd 液晶表示装置
JP3491144B2 (ja) 1999-11-05 2004-01-26 Jfeスチール株式会社 プレス成形性に優れた鋼板とその製造方法
KR20020078897A (ko) * 2001-04-11 2002-10-19 삼성전자 주식회사 강유전성 액정 표시소자 및 그 제조방법
JP2004029694A (ja) * 2002-05-02 2004-01-29 Casio Comput Co Ltd 液晶表示装置
US20050117095A1 (en) * 2003-12-02 2005-06-02 Yao-Dong Ma Reflective cholesteric displays employing linear polarizer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109337A (ja) * 1997-10-02 1999-04-23 Seiko Epson Corp 液晶装置及び電子機器
WO1999021051A1 (fr) * 1997-10-16 1999-04-29 Citizen Watch Co., Ltd. Unite d'affichage liquide
JPH11212073A (ja) * 1998-01-26 1999-08-06 Hitachi Ltd 液晶表示装置
JP2000131681A (ja) * 1998-10-23 2000-05-12 Sharp Corp 半透過型液晶表示装置
JP2000330107A (ja) * 1999-05-24 2000-11-30 Nitto Denko Corp 液晶表示装置
JP2001222005A (ja) * 2000-12-14 2001-08-17 Seiko Epson Corp 液晶装置及び電子機器

Also Published As

Publication number Publication date
JP2012168559A (ja) 2012-09-06
JP5318348B2 (ja) 2013-10-16
CN100535721C (zh) 2009-09-02
US7787077B2 (en) 2010-08-31
JPWO2006078044A1 (ja) 2008-06-19
JP5405620B2 (ja) 2014-02-05
CN1942814A (zh) 2007-04-04
US20070206131A1 (en) 2007-09-06

Similar Documents

Publication Publication Date Title
WO2006078044A1 (ja) 液晶表示装置
TWI309738B (ja)
US20180149918A1 (en) Specular Display Apparatus and Controlling Method Thereof
WO2014119395A1 (ja) 液晶表示装置
JP5074526B2 (ja) 能動型反射偏光子を採用して反射モード及び透過モード間で切替可能な液晶ディスプレイ装置
US20080165309A1 (en) Transflective Liquid Crystal Display
KR101721889B1 (ko) 능동형유기발광다이오드 표시장치 및 그의 표시제어방법
JP2004069926A (ja) 鏡機能付き表示装置及び電子機器
JP2005534969A (ja) 半透過型液晶表示装置
JP4105655B2 (ja) デュアルライトユニットを利用した液晶表示装置
TW200419255A (en) Transflective liquid crystal display device
JP2010019998A (ja) 液晶表示装置及びその駆動方法
CN113589579A (zh) 半透半反显示装置
JP2005222043A (ja) 高コントラストのキラルネマチック液晶ディスプレイにおける新規な光学配列
JP3846483B2 (ja) 液晶表示装置
KR20050084379A (ko) 액정 디스플레이 장치
US20050036082A1 (en) Electro-optical crystal light shutter preventing motion picture blurring in a liquid crystal display
JP2006201799A (ja) メモリ性液晶表示装置
JP4787506B2 (ja) 半透過反射型強誘電性液晶表示装置
JP4176816B2 (ja) 液晶表示装置
JP4086462B2 (ja) 液晶表示装置及び液晶表示方法
US11892721B1 (en) Electronic privacy shutter for liquid crystal display device
JP4466186B2 (ja) 表示装置及び電子機器
JP2007178496A (ja) 液晶表示素子
JP2006126612A (ja) メモリ性液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006519051

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2007206131

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10591985

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680000127.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06701346

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6701346

Country of ref document: EP