WO2006079241A1 - Dispositif de pre-distorsion base sur une injection d'enveloppe de vecteur, et procede correspondant - Google Patents

Dispositif de pre-distorsion base sur une injection d'enveloppe de vecteur, et procede correspondant Download PDF

Info

Publication number
WO2006079241A1
WO2006079241A1 PCT/CN2005/000108 CN2005000108W WO2006079241A1 WO 2006079241 A1 WO2006079241 A1 WO 2006079241A1 CN 2005000108 W CN2005000108 W CN 2005000108W WO 2006079241 A1 WO2006079241 A1 WO 2006079241A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signals
envelope
compensation
envelope injection
Prior art date
Application number
PCT/CN2005/000108
Other languages
English (en)
French (fr)
Inventor
Xiaowei Liu
Hongtao Ru
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to US11/814,636 priority Critical patent/US7756492B2/en
Priority to CNB2005800423452A priority patent/CN100530946C/zh
Priority to PCT/CN2005/000108 priority patent/WO2006079241A1/zh
Publication of WO2006079241A1 publication Critical patent/WO2006079241A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3221Predistortion by overamplifying in a feedforward stage the distortion signal to have a combined main signal and "negative" distortion to form the predistorted signal for a further stage. so that after amplification in the further stage only the amplified main signal remains
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3224Predistortion being done for compensating memory effects

Definitions

  • the present invention relates to linearization techniques for radio frequency power amplifiers in radio transmitters, and more particularly to methods and apparatus for employing envelope injection techniques to improve the linearity of radio frequency power amplifiers. Background technique
  • Pre-distortion technology is a common linearization method that achieves higher power efficiency than the pass-through feed technology, without the need for complicated manual adjustments, and is more suitable for large-scale production. Due to the rapid development of digital signal processing technology, digital predistortion technology is also becoming more and more perfect. There are two main types of digital predistortion techniques: one is to superimpose the predistortion compensation signal directly on the digital baseband; the other is to use a digital baseband signal to control the vector (phase, amplitude) modulation device to generate a suitable distortion compensation component.
  • the technique of compensating (predistortion) before the amplifier is distorted is not fundamentally different from the technique of compensating (feedforward) after distortion, and the effect should be close.
  • the linearization effect of predistortion is greatly reduced. From the time domain, when there is a memory effect, the distortion characteristics of the amplifier are not only related to the current input value, but also related to the previous input value of the amplifier; from the frequency domain, the memory effect means the nonlinear distortion component of the amplifier. The amplitude and phase will vary with the modulation frequency of the input signal.
  • the existence of the memory effect greatly affects the effect of the distortion prediction of the predistortion method, and this problem does not exist for the feedforward technique that compensates after the amplifier. So in fact, the linearized bandwidth and linearization performance of feedforward technology is always better than predistortion technology.
  • predistortion technology Another issue facing predistortion technology is: How to work on mobile communication devices (such as mobile terminals) Achieving satisfactory predistortion linearization performance within a limited range of limited space and limited resources (eg, power, computational power, etc.).
  • the current analog pre-distortion achieves the performance and stability required for the application, while the general digital pre-distortion method consumes too much resources.
  • Envelope injection technology is a linear and reliable linearization method that uses a low frequency signal to achieve the amplifier's distortion compensation function. Specifically, the technique injects a low frequency signal proportional to the input signal power into the amplifier, and mixes the input original RF signal with the second (even) order nonlinear mixing of the amplifier itself to generate the amplifier itself.
  • the intermodulation distortion signal is equal in magnitude and opposite in direction to the compensation signal.
  • the envelope injection signal can also be used to compensate for the memory effect of the amplifier when the appropriate method is used.
  • envelope injection can achieve almost complete distortion compensation, but in practical systems, some non-ideal factors limit the compensation effect, for example, the phase distortion component due to the nonlinearity of the input capacitance of the amplifier tube will follow the input power. The increase is increased, which will make the angle between the compensation component and the distortion component larger and larger. Because of this, envelope injection can only achieve partial offset distortion cancellation at higher power. In order to solve this problem, the key is to realize the "phase adjustment" of the envelope injection compensation signal.
  • the technique is to simultaneously inject two envelope signals at different locations of the cascode amplifier to obtain two control degrees of freedom to compensate for distorted signals with independent amplitude and phase.
  • the phase difference between the distortion compensating components introduced by this technique is usually small, so there is a possibility that the distortion component of some specific angles cannot be effectively compensated.
  • Changing the injection position of the envelope signal is only a temporary solution to the problem, and it does not fundamentally solve the problem.
  • the focus of the problem is: How to superimpose the compensation signals generated by two independent envelope injection signals. Summary of the invention
  • the present invention has been made in view of the above technical problems in the prior art, and an object thereof is to provide a pre-distortion method and apparatus based on vector envelope injection to realize a compensation component of an arbitrary angle.
  • a pre-distortion method based on vector envelope injection includes the following steps:
  • the two envelope injection signals are respectively mixed with the two RF signals to obtain two compensation signals;
  • the step of generating an envelope injection signal further comprises:
  • the amplitude of the low frequency envelope signal is adjusted to obtain two low frequency envelope injection signals that respectively control the amplitude and phase of the compensation signal.
  • the step of performing power synthesis on the compensation signal performing orthogonal power synthesis on the compensation signal to obtain two orthogonal compensation signals.
  • a pre-distortion device based on vector envelope injection includes: a multiplier for performing square processing on a radio frequency input signal;
  • a low pass filter for extracting low frequency components of the signal
  • a first proportional unit and a second proportional unit configured to adjust a signal amplitude to generate two low frequency envelope injection signals
  • a power splitter for dividing the RF input signal into two input signals
  • a first RF amplifier for amplifying an input signal and mixing the amplified signal with a low frequency envelope injection signal
  • a second RF amplifier for amplifying another input signal and mixing the amplified signal with another low frequency envelope injection signal
  • a hybrid bridge configured to perform power synthesis on signals output by the first RF amplifier and the second RF amplifier, to obtain compensation signals in two directions and an amplified RF input signal; wherein the first RF amplifier and the first The second RF amplifier is the same.
  • the hybrid bridge uses a 90 degree hybrid bridge.
  • the predistortion method and device of the present invention compensation for intermodulation distortion components of any angle can be realized; since the intermodulation distortion compensation signal is realized by injecting a low frequency envelope injection signal, the predistortion device is greatly simplified. Reduce the cost of the predistortion system.
  • FIG. 1 is a schematic diagram of a multi-point envelope injection technique in the prior art
  • FIG. 2 is a flow chart of a vector envelope injection based predistortion method in accordance with one embodiment of the present invention
  • FIG. 3 is a block diagram of a vector envelope injection based predistortion apparatus in accordance with one embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the position of the predistortion device shown in FIG. 3 in the entire RF power amplification link;
  • FIG. 5 is a schematic diagram showing the effect of predistortion using the present invention. detailed description
  • FIG. 1 is a schematic diagram of a multi-point envelope injection technique in the prior art.
  • the signal output from the two-tone source 101 is amplified by the RF amplifiers 102, 104 and applied to the load 107.
  • the envelope injection source 103 is either generated independently or mixed by the source of the joy signal 101.
  • the envelope signals generated by the envelope injection signal source 103 are amplified by the operational amplifiers 105, 106, respectively, and injected into the RF amplifiers 102, 104.
  • the phase of the distortion compensation signal can be controlled by controlling the relative magnitude and phase of the two envelope signals.
  • the phase difference between the distortion compensating components of the RF amplifiers 102, 104 is generally small, so there is a possibility that the distortion components of some specific angles cannot be effectively compensated.
  • the RF input signal is split into two signals.
  • the one-frequency input signal generates two envelope-injection signals whose amplitudes can be independently adjusted in step 205, specifically: the envelope signal of the extracted input signal is a quadratic term, because the required compensation signal is the envelope signal and the original RF input signal (primary Item)
  • the mixing signal is generated, and the compensation signal is a cubic term, so the envelope signal must be a quadratic term to generate the required cubic term; then the envelope signal is filtered to obtain the low frequency envelope of the signal.
  • the other RF input signal is further divided into two RF signals.
  • the two RF signals are separately amplified, and at the same time, the two envelope injection signals generated in step 205 are mixed to generate a required compensation signal.
  • power synthesis is performed on the amplified RF signal and the compensation signal to obtain compensation signals with different directions and amplified RF signals.
  • the compensation vector for compensating the distortion component of an arbitrary angle can be obtained by superimposing the compensation signal of any angle other than 0 degrees and 180 degrees, but the orthogonal compensation signal is the easiest to synthesize the compensation vector in any direction. Therefore, preferably, When the compensation signals of different directions are generated by step 215, the compensation signals are subjected to orthogonal power synthesis to obtain two orthogonal compensation signals.
  • the compensation of the distortion component of the arbitrary angle intermodulation can be realized by controlling the amplitude and the sign of the signal injected by the two low frequency envelopes.
  • the apparatus includes a multiplier 302, lowpass filter 304, a first proportional element 306, the second proportion unit 308, a power splitter 310, a first RF amplifier 312, a second RF amplifier 314 and Hybrid bridge 316.
  • the hybrid bridge 316 is used for power synthesis of signals to obtain different compensation signals in two directions.
  • the compensation vector can be obtained by superimposing the compensation signals of any angle other than 0 degrees and 180 degrees, but since the orthogonal compensation vector is the easiest to synthesize the compensation vector in any direction, in the present embodiment, the hybrid bridge 316 A 90 degree hybrid bridge is used.
  • the RF input signal 301 After the RF input signal 301 enters the device, it is split into two input signals. An input signal is used to generate an envelope signal, which is squared by a multiplier 302 and output to a low pass filter 304, which extracts the low frequency envelope component of the signal. This low-frequency component are inputted to an envelope ratio Zi unit 306 and a second proportion unit 308, to produce two separately adjustable amplitude low-frequency envelope injection signals 303 and 305.
  • the other input signal is input to the power splitter 310, and the power splitter 310 is divided into two branch input signals, wherein the first branch 5»input signal 311 and envelope injection signal 303; ⁇ first radio frequency amplifier 31 2 amplified, and then output to 90 degree hybrid bridge 316; second branch signal 313 and envelope injection signal 30 5 3 ⁇ 4 ⁇ second radio frequency
  • the amplifier 314 is amplified and also output to the 90 degree hybrid bridge 316.
  • the first RF amplifier 312 and the second RF amplifier 314 are identical in model and size.
  • the amplified signal is subjected to power synthesis in a 90 degree hybrid bridge 316 to obtain an output signal 307 which is a composite of the original RF input signal 301 and a predistortion signal carrying phase information.
  • the 90 degree hybrid bridge 316 introduces a 90 degree phase shift to one of the signals, ensuring the orthogonality of the compensation signal.
  • the radio frequency distortion compensation signal can be generated from the low frequency envelope injection signal to achieve intermodulation distortion compensation.
  • Figure 4 shows the position of the predistortion device of Figure 3 throughout the RF power amplification system.
  • the received RF input signal 401 is predistorted by the predistortion device 402 shown in Fig. 3, wherein the envelope injection signals 403 and 405 for controlling the predistortion compensation parameters are generated according to the input signal according to the method described in Fig. 2.
  • the signal output by predistortion device 402 is then used directly to drive main power amplifier 406. If the power is insufficient, the main power amplifier 406 can be driven by the driver amplifier 404. If the magnitude of the envelope injection signal is appropriate, the intermodulation distortion of the main power amplifier 406 output signal 407 can be controlled within the specification requirements.
  • the predistortion device 402 is before the driver amplifier 404 and the main power amplifier 406.
  • Fig. 5 is a view showing the effect of the distortion of the present invention, wherein the dotted line shows the spectrum before compensation, and the solid line shows the spectrum after compensation.
  • a PHS signal with a bandwidth of 200 kHz was used in the experiment.
  • the orthogonal envelope injection compensation is adopted, the effect is obvious.
  • the method and the device of the invention realize the single unit and low cost, and can be applied to the base station subsystem, the mobile terminal, the wireless local area network and the like which require wide-band linear amplification in the third generation mobile communication, and are particularly suitable for the linearity of the power amplifier in the above system. Chemical.

Description

基于矢量包络注入的预失真方法与装置 技术领域
本发明涉及无线电发射机中的射频功率放大器的线性化技术, 具体而 言, 涉及采用包络注入技术以改善射频功率放大器线性度的方法和装置。 背景技术
近年来, 随着无线通信在世界范围内的迅 展, 无线频谱资源日益 紧张。 为了更有效的利用有限的频谱资源, 许多无线通信系统都采用了频 傅利用率更高的线性调制方式。 由于线性调制信号 ¾相位与幅度均携带有 用信息, 任何对这种信号的非线性放大均会造成误码率的增加以及对相邻 无线频道的干扰, 因此对线性调制信号必须保证放大的.线性。
预失真技术是一种常见的线性化方法, 与传 Λ的 馈技术相比, 它能 取得更高的功率效率, 同时不需要复杂的手工调整, 更适合大规模的生产。 由于数字信号处理技术的迅速发展, 数字预失真技术也日益完善。 数字预 失真技术主要分为两种: 一种是直接在数字基带上叠加预失真补偿信号; 另一种是利用数字基带信号控制矢量(相位、 幅度)调制装置, 以产生合 适的失真补偿分量。
在本质上, 在放大器失真之前补偿(预失真) 的技术与在失真之后补 偿(前馈) 的技术没有本质的区别, 其效果应该是接近的。 但是由于放大 器存在记忆效应, 因此预失真的线性化效果会大打折扣。 从时域上看, 当 存在记忆效应时, 放大器的失真特性不仅与当前的输入值有关, 还与放大 器以前的输入值有关; 从频域上来看, 记忆效应意味着放大器的非线性失 真分量的幅度与相位将随输入信号的调制频率变化。 记忆效应的存在很大 程度上影响了预失真方法的失真预测的效果, 而对于在放大器之后进行补 偿的前馈技术来说, 不存在这个问题。 所以实际上, 前馈技术所取得的线 性化带宽和线性化性能一般总是优于预失真技术。
预失真技术面临的另外一个问题是: 如何在移动通信设备(如移动终 端)有限的空间和有限的资源 (如功率, 计算能力等) 范围内实现满意的 预失真线性化性能。目前的模拟预失真^^达到应用所需的性能与稳定度, 而一般的数字预失真方法又会消耗过多的资源。
包络注入技术是一种实现筒单、 性能可靠的线性化方法, 它利用一个 低频信号来实现放大器的失真补偿功能。 具体而言, 该技术将正比于输入 信号功率包洛的低频信号注入放大器中, 利用放大器本身的二(偶次) 阶 非线性混频作用与输入的原射频信号进行混频, 产生与放大器本身的互调 失真信号大小相等、 方向相反的补偿信号。 当釆取合适的方式时, 包络注 入信号也可以用来补偿放大器的记忆效应。 在理想情况下, 包络注入可以 实现几乎完全的失真补偿, 但是在实际系统中, 一些非理想因素限制了补 偿效果, 例如由于放大管输入电容的非线性产生的相位失真分量会随着输 入功率的增大而增大, 这将使补偿分量与失真分量之间的角度越来越大。 正是因为如此, 包络注入在较大功率时只能实现部分互调失真的抵消。 为 了解决这个问题, 关键在于实现包络注入补偿信号的 "相位调整" 。
香港中文大学的 K-K M. Cheng等人引入了多点包络注入技术以解决这 个问题。 该技术是在级联放大器的不同位置同时注入两个包络信号, 以获 得两个控制自由度来补偿具有独立幅度和相位的失真信号。 但采用这种技 术引入的失真补偿分量之间的相位差通常比较小, 因此对于某些特定角度 的失真分量, 存在无法有效补偿的可能。 改变包络信号的注入位置只是一 种暂时解决问题的方法, 它没有从根本上解决问题。 这样, 问题的焦点就 在于: 如何叠加两个独立的包络注入信号产生的补偿信号。 发明内容
本发明正是针对现有技术中的上述技术问题提出的, 其目的是提供一 种基于矢量包络注入的预失真方法与装置, 以实现任意角度的补偿分量。
根据本发明的一个方面, 一种基于矢量包络注入的预失真方法包括如 下步骤:
将射频输入信号分成两路信号; 一路输入信号产生两个幅度可独立调节的包络注入信号;
将另一路信号再分成两路射频信号;
对所述两路射频信号进行放大, 其放大的幅度相同;
所述两个包络注入信号分别与所述两路射频信号进行混频, 获得两个 补偿信号;
对所述放大后的射频信号和所述补偿信号进行相同的功率合成, 得到 两个方向不同的补偿信号以及放大后的射频信号。
优选地, 所述产生包络注入信号的步骤进一步包括:
提取输入信号的包络信号为二次方项;
对包络信号进行滤波, 获得其低频分量;
调节低频包络信号的幅度, 获得分别控制补偿信号的幅度和相位的两 个低频包络注入信号。
优选地, 所述对补偿信号进行功率合成的步骤, 对所述补偿信号进行 正交功率合成, 获得两个正交的补偿信号。
才艮据本发明的另一个方面,一种基于矢量包络注入的预失真装置包括: 乘法器, 用于对射频输入信号进行平方处理;
低通滤波器, 用于提取信号的低频分量;
第一比例单元和第二比例单元, 用于调整信号幅度, 产生两路低频包 络注入信号;
功分器, 用于将射频输入信号分成两路输入信号;
第一射频放大器, 用于对一路输入信号进行放大, 并将放大后的信号 和一路低频包络注入信号进行混频;
第二射频放大器, 用于对另一路输入信号进行放大, 并将放大后的信 号和另一路低频包络注入信号进行混频;
混合电桥, 用于对所述第一射频放大器和第二射频放大器输出的信号 进行功率合成,得到两个方向不同的补偿信号以及放大后的射频输入信号; 其中所述第一射频放大器与第二射频放大器相同。
优选地, 所述混合电桥采用 90度混合电桥。 采用本发明所述的预失真方法和装置, 能够实现对任意角度的互调失 真分量的补偿; 由于互调失真补偿信号是通过注入低频包络注入信号实现 的, 因此大大简化了预失真装置, 降低了预失真系统的成本。 附图说明
图 1是现有技术中多点包络注入技术的示意图;
图 2是根据本发明的一个实施例的基于矢量包络注入的预失真方法的 流程图;
图 3是根据本发明的一个实施例的基于矢量包络注入的预失真装置的 框图;
图 4是图 3所示预失真装置在整个射频功率放大链路中的位置示意图; 图 5是采用本发明进行预失真的效果示意图。 具体实施方式
相信通过以下对本发明实施例的详细描述, 可以更好地理解本发明的 上述和其它目的、 特征和优点。
图 1是现有技术中多点包络注入技术的示意图。 如图 1所示, 双音信 号源 101输出的信号经射频放大器 102、 104放大后, 加到负载 107。 包络 注入信号源 103或是独立产生, 或是由欢音信号源 101混频产生。 包络注 入信号源 103产生的包络信号经过运算放大器 105、 106分别放大后,注入 射频放大器 102、 104中。 通过控制这两个包络信号的相对大小和相位, 可 以控制失真补偿信号的相位。但是射频放大器 102、 104的失真补偿分量之 间的相位差通常都比较小, 因此对于某些特定角度的失真分量, 存在无法 有效补偿的可能。
图 2是根据本发明的一个实施例的预失真方法的流程图。在步骤 201 , 射频输入信号被分成两路信号。 其中一 频输入信号在步骤 205中产生 两个幅度可独立调节的包络注入信号, 具体是: 提取输入信号的包络信号 为二次方项, 因为所需补偿信号是由包络信号与原射频输入信号 (一次方 项) 混频产生的, 而补偿信号是一个三次方项, 所以包络信号必须是一个 二次方项才能产生所需要的三次方项; 然后将包络信号进行滤波, 获得信 号的低频包络分量; 最后调节信号的幅度, 产生两个幅度可独立调节的低 频包络注入信号, 分别用于控制补偿信号的幅度和相位。 在步骤 208, 另 一路射频输入信号再被分成两路射频信号。 在步骤 210, 这两路射频信号 分别进行放大, 同时与步骤 205产生的两个包络注入信号进行混频, 产生 所需要的补偿信号。 在步驟 215, 对放大后的射频信号和补偿信号进行功 率合成, 得到两个方向不同的补偿信号以及放大后的射频信号。
原则上,补偿任意角度的失真分量的补偿矢量可以采用除了 0度和 180 度的任意角度的补偿信号进行叠加获得, 但正交的补偿信号最容易合成任 何方向的补偿矢量, 因此, 优选地, 在通过步骤 215产生不同方向的补偿 信号时, 对补偿信号进行正交功率合成, 以获得两个正交的补偿信号。
通过以上描述可知, 采用本实施例, 可以通过控制两个低频包络注入 信号的幅度和符号, 实现对任意角度互调失真分量的补偿。
图 3是根据本发明的一个实施例的基于矢量包络注入的预失真装置的 框图。 如图 3所示, 该装置包括乘法器 302、 低通滤波器 304、 第一比例单 元 306、 第二比例单元 308、 功分器 310、 第一射频放大器 312、 第二射频 放大器 314和混合电桥 316。 其中, 混合电桥 316用于对信号进行功率合 成, 以获得两个方向不同的补偿信号。 原则上补偿矢量可以采用除了 0度 和 180度之外的任意角度的补偿信号进行叠加获得, 但因为正交补偿矢量 最容易合成任何方向的补偿矢量, 因此在本实施例中, 混合电桥 316采用 90度混合电桥。
射频输入信号 301进入该装置后, 被分为两路输入信号。 一路输入信 号用于产生包絡信号, 该 入信号经过乘法器 302进行平方处理后, 输 出到低通滤波器 304中,由低通滤波器 304提取该信号中的低频包络分量。 此低频包络分量分别输入到笫一比例单元 306和第二比例单元 308中, 产 生两个幅度可独立调节的低频包络注入信号 303和 305。 另外一路输入信 号输入到功分器 310, 由功分器 310分成两个支路输入信号, 其中第一支 5»入信号 311与包络注入信号 303; ^第一射频放大器 312中放大, 然 后输出到 90度混合电桥 316; 第二支 入信号 313与包络注入信号 305 ¾ ^第二射频放大器 314中放大, 也输出到 90度混合电桥 316。 第一射频 放大器 312和第二射频放大器 314的型号和规格完全相同。 放大后的信号 在 90度混合电桥 316中进行功率合成,得到输出信号 307,该输出信号 307 是原射频输入信号 301和携带有相位信息的预失真信号的合成。 90度混合 电桥 316对其中一路信号引进了 90度相移, 保证了补偿信号的正交性。
通过以上描述可知, 采用本实施例, 可以由低频包络注入信号产生射 频失真补偿信号, 以实现互调失真补偿。
图 4示出了图 3所示预失真装置在整个射频功率放大系统中的位置。 接收到的射频输入信号 401经过图 3所示预失真装置 402进行预失真处理, 其中控制预失真补偿参数的包络注入信号 403和 405根据输入信号按图 2 所述的方法产生。 然后, 预失真装置 402输出的信号直接用于驱动主功率 放大器 406。 如果功率不足, 则可通过驱动放大器 404来驱动主功率放大 器 406。 如果包络注入信号的幅度大小合适, 则主功率放大器 406输出信 号 407的互调失真就可以控制在指标要求内。 因此, 在整个射频功率放大 链路中, 预失真装置 402处于驱动放大器 404和主功率放大器 406之前。
图 5示出了采用本发明进 ^失真的效果示意图, 其中虚线所示的是 补偿之前的频谱, 实线所示的是补偿之后的频谱。 在实验中采用 200kHz 带宽的 PHS信号。 从图中可以看出, 当采取正交包络注入补偿后, 效果是 4艮明显的。 工业应用性
本发明所述方法和装置实现筒单、 成本低廉, 可以应用于第三代移动 通信的基站子系统、 移动终端、 无线局域网等要求宽带线性放大的场合, 特别适合于上述系统中功率放大器的线性化。

Claims

权 利 要求 书
1. 一种基于矢量包络注入的预失真方法,其特征在于,包括如下步骤: 将射频输入信号分成两路信号;
一路输入信号产生两个幅度可独立调节的包络注入信号;
将另一路信号再分成两路射频信号;
对所述两路射频信号进行放大, 其放大的幅度相同;
所述两个包络注入信号分别与所述两路射频信号进行混频, 获得两个 补偿信号;
对所述放大后的射频信号和所述补偿信号进行相同的功率合成, 得到 两个方向不同的补偿信号以 故大后的射频信号。
2.根据权利要求 1所述的基于矢量包络注入的预失真方法, 其特征在 于, 所述产生包络注入信号的步骤进一步包括:
提取输入信号的包络信号为二次方项;
将包络信号进行滤波, 获得其低频分量;
调节低频包络信号的幅度, 获得分别控制补偿信号的幅度和相位的两 个低频包络注入信号。
3.根据权利要求 1所述的基于矢量包络注入的预失真方法, 其特征在 于, 所述对补偿信号进行功率合成的步骤, 对所述补偿信号进行正交功率 合成, 获得两个正交的补偿信号。
4.一种基于矢量包络注入的预失真装置, 其特征在于, 包括: 乘法器, 用于对射频输入信号进行平方处理;
低通滤波器, 用于提取信号的低频分量;
第一比例单元和第二比例单元, 用于调整信号幅度, 产生两路低频包 络注入信号;
功分器, 用于将射频输入信号分成两路输入信号;
第一射频放大器, 用于对一路输入信号进行放大, 并将放大后的信号 和一路低频包络注入信号进行混频; 第二射频放大器, 用于对另一路输入信号进^ f亍放大, 并将放大后的信 号和另一路低频包络注入信号进行混频;
混合电桥, 用于对所述第一射频放大器和第二射频放大器输出的信号 进行功率合成, 得到两个方向不同的补偿信号以及放大后的射 ^信号; 其中所述第一射频放大器与第二射频放大器相同。
5. 根据权利要求 4所述的基于矢量包络注入的预失真装置, 其特征在 于, 所述混合电桥采用 90度混合电桥。
PCT/CN2005/000108 2005-01-25 2005-01-25 Dispositif de pre-distorsion base sur une injection d'enveloppe de vecteur, et procede correspondant WO2006079241A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/814,636 US7756492B2 (en) 2005-01-25 2005-01-25 Predistortion device based on vector envelope injection and the method thereof
CNB2005800423452A CN100530946C (zh) 2005-01-25 2005-01-25 基于矢量包络注入的预失真方法与装置
PCT/CN2005/000108 WO2006079241A1 (fr) 2005-01-25 2005-01-25 Dispositif de pre-distorsion base sur une injection d'enveloppe de vecteur, et procede correspondant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2005/000108 WO2006079241A1 (fr) 2005-01-25 2005-01-25 Dispositif de pre-distorsion base sur une injection d'enveloppe de vecteur, et procede correspondant

Publications (1)

Publication Number Publication Date
WO2006079241A1 true WO2006079241A1 (fr) 2006-08-03

Family

ID=36740011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000108 WO2006079241A1 (fr) 2005-01-25 2005-01-25 Dispositif de pre-distorsion base sur une injection d'enveloppe de vecteur, et procede correspondant

Country Status (3)

Country Link
US (1) US7756492B2 (zh)
CN (1) CN100530946C (zh)
WO (1) WO2006079241A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407181B (zh) * 2014-12-25 2017-06-30 上海联星电子有限公司 一种测试夹具
CN105468079B (zh) * 2015-12-30 2017-05-31 沈阳东软医疗系统有限公司 一种双路对称输出可调电源
CN109768773A (zh) * 2017-11-09 2019-05-17 陕西亚成微电子股份有限公司 一种用于包络跟踪的电源
CN109768774B (zh) * 2017-11-09 2022-09-16 陕西亚成微电子股份有限公司 一种用于包络跟踪的电源

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104241A (en) * 1998-11-18 2000-08-15 Spectrian High efficiency feed-forward RF power amplifier with predistoration enchancement
CN1384602A (zh) * 2001-05-08 2002-12-11 华为技术有限公司 自适应射频数字预失真线性化方法及其电路
CN1390022A (zh) * 2001-06-01 2003-01-08 华为技术有限公司 一种线性功率放大方法及其装置
CN1462153A (zh) * 2002-05-29 2003-12-17 松下电器产业株式会社 功率放大器
CN1516493A (zh) * 2003-01-10 2004-07-28 深圳市中兴通讯股份有限公司上海第二 一种功率放大器线性化方法和线性功率放大器装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892397A (en) * 1996-03-29 1999-04-06 Spectrian Adaptive compensation of RF amplifier distortion by injecting predistortion signal derived from respectively different functions of input signal amplitude
US5898338A (en) * 1996-09-20 1999-04-27 Spectrian Adaptive digital predistortion linearization and feed-forward correction of RF power amplifier
US6438360B1 (en) * 1999-07-22 2002-08-20 Motorola, Inc. Amplifier system with load control to produce an amplitude envelope
JP2001313532A (ja) * 2000-05-01 2001-11-09 Sony Corp 歪み補償装置
WO2006066452A1 (fr) * 2004-12-21 2006-06-29 Zte Corporation Procede et systeme de linearisation de la predistorsion hors bande

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104241A (en) * 1998-11-18 2000-08-15 Spectrian High efficiency feed-forward RF power amplifier with predistoration enchancement
CN1384602A (zh) * 2001-05-08 2002-12-11 华为技术有限公司 自适应射频数字预失真线性化方法及其电路
CN1390022A (zh) * 2001-06-01 2003-01-08 华为技术有限公司 一种线性功率放大方法及其装置
CN1462153A (zh) * 2002-05-29 2003-12-17 松下电器产业株式会社 功率放大器
CN1516493A (zh) * 2003-01-10 2004-07-28 深圳市中兴通讯股份有限公司上海第二 一种功率放大器线性化方法和线性功率放大器装置

Also Published As

Publication number Publication date
US7756492B2 (en) 2010-07-13
CN101073200A (zh) 2007-11-14
CN100530946C (zh) 2009-08-19
US20080164943A1 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
CN100542055C (zh) 发送电路、无线通信装置以及发送电路的定时调整方法
JP5296381B2 (ja) ベクトル電力増幅のためのシステムおよび方法
US7346122B1 (en) Direct modulation of a power amplifier with adaptive digital predistortion
Shi et al. A 200-MHz IF BiCMOS signal component separator for linear LINC transmitters
GB2348755A (en) A digital polynomial predistortion arrangement
US7023292B2 (en) Polar modulation using amplitude modulated quadrature signals
JP2002534908A (ja) 電力iq変調システムおよび方法
WO2006085585A1 (ja) 送信変調装置、通信機器、及び移動無線機
JPH08163189A (ja) 送信回路
US20140162576A1 (en) Envelope Detector and Method for Detecting an Envelope of a Signal to be Amplified by a Power Amplifier
EP1833214B1 (en) A method and system for out of band predistortion linearization
WO2011108057A1 (ja) ポーラ変調方式を用いた送信回路及び通信機器
JP5248651B2 (ja) ポーラフィードバックを備える線形rf増幅器
CN104426488A (zh) 功率放大系统、装置和方法
CN101159725A (zh) 基于多项式的开环数字基带预失真器的实现方法
WO2006079241A1 (fr) Dispositif de pre-distorsion base sur une injection d'enveloppe de vecteur, et procede correspondant
KR101401723B1 (ko) 통신 시스템에서 신호 전력 증폭 장치 및 방법
CN105634415A (zh) 数字预失真系统和用于放大信号的方法
Veetil et al. Discrete implementation and linearization of a new polar modulator-based mixerless wireless transmitter suitable for high reconfigurability
JP5870739B2 (ja) プリディストーション装置
JP2006129402A (ja) 増幅回路及び送信機
Li et al. Nonideal effects of reconstruction filter and I/Q imbalance in digital predistortion
JPH11196140A (ja) 電力増幅器
CN100525079C (zh) 模拟预失真线性化方法及实现所述方法的装置
JP4167605B2 (ja) 電力増幅器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580042345.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11814636

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1152/MUMNP/2007

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 05700481

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5700481

Country of ref document: EP