WO2006090650A1 - Method for processing wafer - Google Patents

Method for processing wafer Download PDF

Info

Publication number
WO2006090650A1
WO2006090650A1 PCT/JP2006/302868 JP2006302868W WO2006090650A1 WO 2006090650 A1 WO2006090650 A1 WO 2006090650A1 JP 2006302868 W JP2006302868 W JP 2006302868W WO 2006090650 A1 WO2006090650 A1 WO 2006090650A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
processing method
support
compound
composition
Prior art date
Application number
PCT/JP2006/302868
Other languages
French (fr)
Japanese (ja)
Inventor
Kyouyuu Yasuda
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to JP2007504692A priority Critical patent/JPWO2006090650A1/en
Publication of WO2006090650A1 publication Critical patent/WO2006090650A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer

Definitions

  • the present invention relates to a series of wafer processing methods in which the back surface of a wafer having a semiconductor element formed on the front surface is polished to reduce the thickness of the wafer, and the wafer is divided into semiconductor chips. More specifically, by adopting an adhesion method that can firmly fix the wafer to the support even under high temperature conditions in the heat treatment during or after polishing, and can easily peel off the wafer after processing, The present invention also relates to a wafer processing method capable of reducing the thickness of a wafer having a complicated internal structure to a thickness of 100 ⁇ m or less even for a large-area wafer.
  • Patent Document 1 As a technique for stacking a plurality of semiconductor chips in this way, for example, as described in JP-A-2001-0153218 (Patent Document 1), a through via structure is formed inside a wafer to form a gap between chips. There have been proposed a method of performing this wiring and a method of taking out the wiring with a gold wire and laminating the electrode pad force at the periphery of the wafer.
  • Thinning a wafer is a series of processes in which the wafer surface is first protected and supported with back grind tape 1) ⁇ Polishing, then pasted with dicing tape, and the wafer is cut into semiconductor chips. It has been implemented.
  • Patent Document 1 JP 2001-53218 A
  • an object of the present invention is to provide a wafer thinning process that can solve the above-mentioned problems in the conventional processes and can cope with wafers having various and complicated structures. is there.
  • a low melting point fixing agent that can be easily attached to the dicing tape is selected and used.
  • the grinding strain layer removal method it is preferable to use the CMP method wet polishing and chemical etching method, which do not easily raise the wafer temperature, and the reactive ion etching (RIE) method, which can control the wafer temperature! /.
  • RIE reactive ion etching
  • the present invention is based on the above findings, and is specifically as follows.
  • the wafer processing method uses as a main component a compound having a molecular weight of 1000 or less as a fixing agent for fixing the wafer and the support between the wafer surface on which the semiconductor element is formed and the support.
  • the adhesive composition contained is interposed, and the composition is heated and melted.
  • the wafer and the support are bonded and fixed by cooling, and the wafer is thinned by polishing the rear surface of the wafer, and the composition is heated and melted to heat the wafer and the support. It is characterized by peeling.
  • the compound having a molecular weight of 1000 or less preferably has crystallinity.
  • the compound having a molecular weight of 1000 or less is preferably a compound having a steroid skeleton and Z or a hydroxyl group in the molecule or a derivative thereof.
  • the compound having a molecular weight of 1000 or less preferably has a melting temperature of 50 to 300 ° C. and a melting temperature width of the composition of 30 ° C. or less.
  • the thickness of the wafer in the step of polishing the back surface of the wafer, can be reduced to 20 to: LOO ⁇ m.
  • the adhesive strength at 25 ⁇ 2 ° C of the above composition is A (MPa) and the adhesive strength at a temperature 20 ° C lower than the melting temperature of the composition is B (MPa)
  • the adhesive strength A And B preferably satisfies the following formula (1).
  • composition is preferably in the form of a tablet.
  • the wafer may have a semiconductor element formed in a region partitioned by a plurality of die cinder streets on the surface, or a cutting groove may be formed in the dicing street. In this case, it is possible to reduce the thickness to a semiconductor chip until the above-mentioned cutting groove is exposed, and to separate the support body force in units of the semiconductor chip.
  • the wafer is a wafer in which a hole having a predetermined depth is formed on the surface, the inner wall of the hole is covered with an insulating film, and the conductive electrode material is embedded in the hole covered with the insulating film. It may also have a protruding electrode for conduction.
  • the wafer may be a wafer on which at least one selected from a structure, a wiring, and an element force is formed on the back surface.
  • the polished surface may be further processed to form at least one selected from the structure, wiring, and element force.
  • the back surface of the roughly ground wafer is polished to reduce the thickness to 20 to: LOO / zm.
  • LOO / zm the thickness of the roughly ground wafer
  • the crystalline composition used in the present invention has a very low melt viscosity, it can follow the shape of a wafer having a complicated shape, and the thin wall of the wafer having a complicated shape, which has been difficult with a conventional tape support. Can be realized.
  • FIG. 1 is a model diagram of the Ueno / Cake method performed in Example 1 of the present invention.
  • FIG. 2 is an SEM image of a nodal bump formed in Example 2 of the present invention.
  • FIG. 3 is a model diagram of the Ueno / Cake method performed in Example 2 of the present invention.
  • FIG. 4 is a model diagram of a wafer used in Example 4 of the present invention.
  • FIG. 5 is a schematic view showing a method for measuring adhesive strength in Examples.
  • the wafer surface on which the semiconductor element is formed and the support are bonded and fixed using a specific fixing agent, and the wafer back surface is ground and polished to reduce the thickness.
  • the fixing agent used in the present invention is an adhesive composition containing, as a main component, a compound having crystallinity in order to impart cohesive force to the composition, preferably a tablet-like adhesive composition,
  • the compound should have a molecular weight of 1000 or less, preferably 150 to 800, more preferably 200 to 600. When the molecular weight of the compound exceeds the above range, the solubility of the compound in the solvent becomes low, and peeling and washing with the solvent may be insufficient.
  • the melting temperature of the above compound is 50 to 300 ° C, preferably 55 to 250 ° C, more preferably 100 to 200 ° C.
  • the melting temperature refers to the peak temperature in the main melting peak curve measured with a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the above compound does not damage the wiring and insulating film formed on the semiconductor wafer, does not become a contamination source, and does not denature the adhesive when melted.
  • a neutral compound that does not have an active functional group such as a group, and an alkali metal or the like that diffuses into the medium and adversely affects insulation is desirably subjected to a metal-free treatment until the total metal content becomes lOOppm or less, preferably ⁇ m or less.
  • this does not apply to those containing metal oxides in a stable form.
  • Examples of such compounds include 1, 3, 5-tri-trobenzene and 2, 3, 6-tri-trophenol.
  • -tro compounds such as 2, 4, 5-tri-tolutoluene, etc.
  • N element from the viewpoint of high handling safety, excellent heat resistance during melting, and low coloring
  • Specific examples include aromatic compounds, aliphatic compounds, and alicyclic compounds as exemplified below.
  • aromatic compounds examples include 9H-xanthene, benzofuran-3 (2H) -one, 1,5-diphenyl-2,4-pentagen-1-one, di-2-naphthyl ether, cis-1,8 -Terpine, 2,3-dimethylnaphthalene, 1,2-naphthalenediol, di-1-naphthylmethane, biphenyl-2,2'-diol, di-1-naphthyl ether, bis (diphenylmethyl) ether, 9, 10-dihydroanthracene, 2, 3, 5, 6-tetramethyl-p-benzoquinone, 2, 6-dimethylnaphthalene, syringaldehyde, vanillyl alcohol, 1,3-diphenylisobenzofuran, 2, 3'- Dihydroxybenzophenone, isohydrobenzoin, 4,4'-dimethylbiphenyl, 1,3-naphthalenediol,
  • Examples of the aliphatic compounds include ribitol, D-arabitol, furyl, ⁇ -carotene, j8-carotene, cantharidin, pentaerythritol, trans, trans-1, 4-diacetoxybutadiene, D-glucitol, D -Mannitol, idose, decanal, ⁇ -carotene, 2,4,6-trimethylphloroglucinol, galactitol, echirin, echlenine, trans-1, 2-cyclobentanediol, manol, 1-heptadecanol, 1-octadecanol , Examples include 1-icosanol, dihydroxyacetone, ⁇ ⁇ -terbineol, 1-hexacosanol, 1-hentriacontanol, and stearone.
  • Examples of the alicyclic compounds include coprostanol, timosterol, ergocalciferol, j8-sitosterol, lanosterol, 11-deoxycorticosterone, cholestanonore, cholesterol, and testosterone, enolegostero-nore, Stigmasterol, estradiol, conoleticosterone, epicholestanol, androsterone, 17 ⁇ -hydroxy-11-deoxycorticosterone, gitoxigenin, epicoprostanol, calcipherol, progesterone, dehydroepiandrosterone , 7-dehydrocholesterol, agnosterol, 11-dehydrocorticosterone, prednisolone, digitoxigenin, estrone, / 3-estradiol, cortisone, D-fructose ( ⁇ -open, D-lyxose a form), D-lyxose (13 form), isomaltose,
  • the above compound may be used alone or in combination of two or more.
  • the content in the adhesive composition is 70% by weight or more, preferably 80% by weight or more, particularly preferably. Is used so that it becomes 90% by weight or more. If the content is lower than the above range, the melting temperature may not be sharp, and the melt viscosity may increase.
  • the adhesive composition containing the above compound as a main component has a melting temperature range of 1 to 30 ° C, preferably 1 to 20 ° C, particularly preferably 1 to 10 ° C. It is characterized by melt viscosity at the melting temperature of ⁇ 0.001-0. lPa's, preferably 0.001-0.05 Pa's, particularly preferably 0.001-0. OlPa's.
  • the melting temperature range refers to the difference between the starting point temperature and the ending point temperature in the main melting peak curve measured by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the melting temperature range and melt viscosity of the composition strongly depend on the melting temperature range and melt viscosity of the compound, it is desirable to use a compound having a narrow melting temperature range and a low melt viscosity. That is, the main component compound has a melting temperature of 50 to 300 ° C, a melting temperature range of 1 to 30 ° C, and a melt viscosity at the melting temperature of 0.0001-0.lPa's. Is preferred.
  • the immobilizing agent used in the present invention is used to adjust the wettability and adhesion to the substrate, or to adjust the melt viscosity of the adhesive composition and to improve the tableting processability of the composition. Therefore, a surface tension adjusting agent such as a nonionic surfactant or a release agent can be added within a range without impairing the intended function, if necessary.
  • nonionic surfactants examples include fluorine surfactants having a fluorinated alkyl group such as a perfluoroalkyl group, and polyether alkyl surfactants having an oxyalkyl group.
  • Silicone mold release agent can be used as the mold release agent.
  • fluorosurfactant examples include C F CONHC H.
  • polyether alkyl surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl ether, polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, and polyoxyethylene alkyl ether.
  • Lioxyethylene sorbitan fatty acid ester, oxyethyleneoxypropylene block Examples include a copolymer.
  • nonionic surfactants other than the above include polyoxyethylene fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyalkylene oxide block copolymers, and the like.
  • CHEMISTAT 2500 “Sanyo Kasei Kogyo Co., Ltd.”, “SN-EX9228” (San Nopco Co., Ltd.), “Nonaru 530” (Toho Chemical Co., Ltd.), etc. can be used.
  • compositions having a high melting temperature exceeding 150 ° C dimethyl silicone oil KF 965 (manufactured by Shin-Etsu Chemical), SH200 (manufactured by Dow Silicone), methyl-fell silicone oil KF54, KF50 (Shin-Etsu)
  • KF 965 manufactured by Shin-Etsu Chemical
  • SH200 manufactured by Dow Silicone
  • methyl-fell silicone oil KF54, KF50 Shin-Etsu
  • a low-volatility silicone oil with excellent heat resistance, such as chemicals can also be used effectively and can be used.
  • the surface tension adjusting agent can be used in an amount of 0.1 to 50 parts by weight, preferably 1 to 30 parts by weight with respect to 100 parts by weight of the compound. If the amount used exceeds the above range, there is a problem that the hardness of the adhesive at room temperature is too low, or the tackiness is too high, making tableting difficult. On the other hand, if the amount is less than the above range, the effect of improving wettability and Z or adhesion may not be exhibited!
  • the immobilizing agent is a metal oxide such as aluminum oxide, zirconium oxide, titanium oxide, or silicon oxide, if necessary, in order to control the gap between the substrates to be bonded.
  • fine particles having a narrow particle size distribution such as polystyrene cross-linked particles (for example, “Micropearl SPN, SPS series” manufactured by Sekisui Chemical Co., Ltd.), etc., are 0.01 to: L0 wt%, preferably 0 It may be contained in the range of 01 to 5% by weight.
  • the adhesive strength of the adhesive composition is 0.5 MPa or more, preferably 1 MPa or more, particularly preferably 5 MPa or more at 25 ⁇ 2 ° C. If the adhesive strength is lower than the above range, the bonded surface may be partially peeled depending on the processing conditions after bonding, and the in-plane uniformity of processing may be impaired.
  • the adhesive strength at 25 ⁇ 2 ° C. of the adhesive composition is A (MPa) and the adhesive strength at a temperature 20 ° C. lower than the melting temperature of the composition is B (MPa)
  • the adhesive strength is By satisfying the relational expression of degree A and B force 0 ⁇ AB ⁇ 0.5 (MPa), it is possible to maintain a good adhesive state in a wide range below the melting temperature where the temperature dependence of the adhesive strength is small. The measurement method and conditions will be described later.
  • the adhesive composition (fixing agent) is heated and melted and applied to a wafer or the like, the wafer and the support are bonded together, and then cooled, The wafer and the support are bonded and fixed.
  • the amount of the fixing agent applied can be arbitrarily selected according to the size of the adhesive surface of the wafer or the like to be used and the degree of adhesion required in the processing step. It is desirable to apply in an amount such that the thickness force is 0.01 ⁇ m to 2 mm, preferably 0.5 ⁇ m to 1 mm, more preferably 0.1 ⁇ m to 0.5 mm. If the thickness of the adhesive layer is less than the above range, it may not be sufficiently adhered, and if it exceeds the above range, the adhesive strength may be reduced, peeling off from the adhesive surface, and material failure of the adhesive may occur. The thickness of the adhesive layer can be adjusted by the amount of the adhesive and the pressure at the time of bonding.
  • (ii) A method of bonding the wafer and the support by interposing a tablet-like adhesive composition between the wafer and the support and then heating in that state to melt the adhesive composition Is mentioned.
  • the method (ii) is preferably performed under a reduced pressure of 200 Torr or less in order to remove bubbles in the adhesive and make the thickness of the adhesive layer constant.
  • the wafer After bonding the wafer and the support as described above, the wafer is cooled to a melting temperature or lower, preferably “melting temperature 20 ° C” or lower, particularly preferably “melting temperature 40 ° C” or lower. As a result, the wafer and the support are firmly bonded.
  • the processing of the wafer fixed on the support as described above is lower than the melting temperature of the adhesive composition used! ⁇ ⁇ ⁇ It is preferable to carry out at temperature ⁇ .
  • the wafer (including a semiconductor chip) is peeled from the support after the wafer processing described later.
  • this peeling step at least one of the wafer and the support is heated to a temperature equal to or higher than the melting temperature of the used adhesive composition, so that the adhesive composition is melted and the wafer is peeled off from the support. be able to.
  • the adhesive can be removed by washing with a solvent capable of dissolving the adhesive composition.
  • a solvent capable of dissolving the adhesive composition.
  • a solvent is not particularly limited as long as it can dissolve the adhesive composition.
  • Alcohols such as isopropanol, butanol, hexanol, ethanol, methanol, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, phenol, t-amyl alcohol, cyclohexanol;
  • n-pentane cyclopentane, n-xane, cyclohexane, n-heptane, cycloheptane, n-octane, cyclooctane, n-decane, cyclodecane, dicyclopentagen hydride, benzene, toluene, xylene, durene, indene Hydrocarbon solvents such as, decalin, tetralin, tetrahydronaphthalene, decahydronaphthalene, squalane, ethylbenzene, t-butylbenzene and trimethylbenzene;
  • Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone; ethyl ether, ethylene glycol dimethyl ether, ethyl Ethers such as ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, dioxane, etc .; ethyl acetate, butyl acetate, butyl butyrate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ethinoate acetate , Ethylene glycol monoacetate, diethylene glycol monomethinoate etherate acetate, diethylene glycol monoethinoate etherate acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl
  • Polar solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, hexamethylphosphomide, dimethyl sulfoxide, ⁇ -butyrolatatone, blackform, methylene chloride, and photoresist stripping solutions can be used.
  • isopropanol, ethanol, methanol, acetone, methyl ethyl ketone, and tetrahydrofuran are preferable.
  • the above solvents may be used alone or in combination of two or more.
  • Examples of the cleaning method include a method of immersing a wafer in a cleaning solution and a method of spraying a cleaning solution on the wafer.
  • the temperature of the cleaning liquid is not particularly limited, but is preferably 20 to 80. C, more preferably 30 to 50 ° C.
  • the material of the support used in the present invention is not particularly limited. However, when used in a semiconductor process, a material having no eluted metal is preferable. For example, a ceramic substrate such as silicon carbide or alumina, or a metal substrate such as silicon or stainless steel can be preferably used. In order to make the molten adhesive composition easily spread uniformly on the support, it is also preferable to apply the above-mentioned surfactant on the support surface or to form a fine groove pattern or the like in advance.
  • a fine groove pattern on the support can be formed using a photosensitive resin or by plating. From the viewpoint of resistance at high temperatures and repeated use, a pattern formed by a plating method is preferred. If the pattern shape is controlled to the pattern height according to the bonding film thickness, noturn can be used as a pillar for bonding gap control. The in-plane accuracy can be easily improved. Furthermore, by setting the in-plane pattern design according to the flow direction of the adhesive composition (the center force also flows toward the periphery, etc.), bubbles during bonding and wetting into the surface spread. Can also be controlled.
  • the wafer bonded to the support is set on the back grinder together with the support, and is roughly ground until the wafer thickness reaches about 100 m. Thereafter, the grinding strain layer generated by grinding is removed, and the resulting layer is covered to a desired thickness of 20 to: L 00 / z m.
  • the rough grinding method at this time can be a known method without any particular limitation.
  • the grinding strain can be removed by selecting force such as felt grinding wheel method, plasma etching method, CMP method and chemical etching method.
  • the felt grindstone used in the felt grindstone method is produced, for example, by impregnating a felt material described in JP-A-2002-28311, JP-A-2002-283212, etc. with abrasive grains.
  • a grindstone can be used suitably.
  • RIE reactive ion etching
  • the CMP method is a method used for flatness even during element formation.
  • polishing by switching to a simple slurry in which silicon fine particles are dispersed in water to eliminate contaminated ions as much as possible, Polishing can be performed.
  • the chemical etching method is performed using about 40-50% KOH solution, HFZ nitric acid mixed solution, etc. as the etching solution, and it is made into an apparatus like “GL-210S” manufactured by SEZ. I'll do it.
  • the processing until the wafer that has been polished to a desired thickness is mounted as a semiconductor chip varies depending on the application of the semiconductor chip.
  • the present invention supports a process that could not be achieved in the past. It becomes possible to perform it in a state of being bonded to the body.
  • One of such processes An example is shown below.
  • a resist pattern is formed on the polished surface, and the wafer is etched using the resist pattern as a mask to form desired structures such as cavities, holes (including through holes), protrusions, grooves, etc. on the wafer and the back surface. .
  • the wafer is diced without being attached to the dicing tape by selecting a fixing agent having a desired hardness and adhesive strength.
  • a through-via is used as an inspection electrode, and a wafer level burn-in test is performed after thinning.
  • the semiconductor wafer used in the wafer etching method of the present invention is not particularly limited, and a semiconductor wafer suitable for the calorie method can be used for the application, and has a large area or various complicated structures on the surface. You may have.
  • the process (5) includes a semiconductor element formed in a region partitioned by a plurality of die cinder streets, and the die cinder streets are cut corresponding to the thickness of the semiconductor chip.
  • a semiconductor wafer having grooves formed by tip dicing can be used.
  • a hole having a predetermined depth is formed on the surface, the inner wall of the hole is covered with an insulating film, and a conductive electrode material is embedded in the hole covered with the insulating film.
  • a semiconductor wafer can be used.
  • the semiconductor wafer may have conductive bump electrodes, for example, nodal bumps, formed on the surface.
  • the compounds used in the following examples are compounds that have been purified by deionization treatment by adding 20 parts by weight of ion-exchanged resin in advance and stirring and mixing for 10 hours.
  • the metal contents of Na, K, Ca, Fe, Cu, Ni, Cr, and Al were confirmed to be less than lppm.
  • the melting temperature, melting temperature range, melt viscosity, and adhesive strength were measured as follows.
  • the value in air at 2 ° C. Zmin was measured.
  • the peak temperature of the main melting peak curve was defined as the melting temperature, and the temperature difference between the start point and end point of the melting peak curve was defined as the melting temperature width.
  • the adhesive strength unique to each adhesive composition is: adhesive strength A (MPa) at 25 ° C at 2 ° C and adhesive strength B (MPa) at a temperature 20 ° C lower than the melting temperature of the adhesive composition. Measurement was performed as follows to determine the difference in adhesive strength (A ⁇ B).
  • 650 / zm thick silicon wafer piece (50mm x 12mm) and 0.7mm thick non-alkali glass piece (50mm x 12mm) were polished on the surface of silicon wafer (V in the product state)
  • the steel sheet was pulled up and down with a constant load, and the tensile shear strength was measured when both substrates were peeled off. The value was taken as the adhesive strength.
  • silicon wafer baresilicon
  • non-alkali glass # 1737 manufactured by Corning Co., Ltd.
  • the measurement was performed using a Tensilon type tensile tester at a tensile speed of 1. 67 X 10 " 4 m / s at a predetermined temperature. To keep the test piece at the predetermined temperature, the ribbon was not touched. A glass tube wrapped around a heater (heater for sample heating) was placed, and the ribbon heater was heated and controlled by the temperature controller so that the temperature of the thermocouple attached to the test specimen reached the specified temperature. The figure shows the test piece for measuring the adhesive strength from the top, and the figure on the lower left shows the test piece with the lateral force. The silicon unit actually used in each example, the substrate, The adhesive strength when adhering was measured in the same manner.
  • Cholesterol (Molecular weight; 386.7, Melting temperature: 150 ° C, Melting temperature range; 1 ° C, Melt viscosity; Adhesive strength A at 2 mPa's, 25 ° C and Adhesive strength B at 130 ° C; 0 2MPa) 0.354g was weighed into a columnar pressure molding machine with a diameter of 10mm, and 200kg'cm- 2 pressure was applied for 3 minutes to obtain a cylindrical tablet with a diameter of 10mm and a thickness of 5.5mm.
  • the obtained tablet is placed on a 6-inch silicon wafer (thickness: 650 / zm) on which a plurality of semiconductor elements are formed, and a square SUS substrate having a thickness of 0.7 mm and a side of 20 cm is placed thereon, Placed in a vacuum oven.
  • the SUS substrate used as the support was a substrate obtained by spin-coating a 5% isopropyl alcohol solution of hexamethyldisilazane, drying it, and subjecting the surface to hydrophobic treatment.
  • the vacuum oven lOTorr
  • the tablet melted and became liquid at a wafer temperature of about 148 ° C.
  • the back surface of the wafer bonded to the SUS substrate was rough-polished, and then polished by a felt grindstone method using “Polisher DFP8140” manufactured by Disco Corporation to reduce the wafer thickness. 100 / zm. After polishing, do not touch the polished surface of the wafer adhered to the SUS substrate. Life film resist was laminated to form a 50 m hole pattern. During this time, stress was applied to the lamination temperature (100 ° C), alkali development and drying (120 ° C), wafers, supports and fixing agents, but the wafer was firmly adhered to the support.
  • Figure 1 shows a model diagram of the above-mentioned caching method.
  • Example 1 instead of the 6-inch silicon wafer on which the semiconductor elements were formed, a thick-film resist ("THB series” manufactured by JSR Corporation) was used to apply solder bumps (Fig. 2) with a height of 65 ⁇ m to the wafer surface.
  • release agent “KF54” manufactured by Shin-Etsu Silicone 0.15 g
  • a mixture with fine particles of silicon silicate silicon particles manufactured by Shionogi & Co., Ltd., average particle size; 2; ⁇ ⁇ ) 0.09g (melting temperature; 223 ° C, melting temperature range; 1 ° C, melt viscosity; lmPa's, the difference between the adhesive strength A at 25 ° C and the adhesive strength B at 203 ° C; 0.3 MPa
  • a wafer was bonded to the glass substrate in the same manner as in Example 1 except that a glass substrate was used instead of and the heating temperature of the vacuum oven was 240 ° C.
  • the fixing agent uniformly penetrated into the groove portion of the pattern, and bubbles were not observed, and the 6-inch silicon wafer with the same concavo-convex pattern and the glass substrate were adhered to each other as shown in FIG.
  • the same test piece was prepared and the adhesive strength was measured.
  • the tensile shear strength was 4.5 MPa (25 ° C).
  • a photosensitive insulating film CiSR (“WPR1100”) 2 / zm was applied to the polished surface by spin coating, and the dicing groove was removed by exposure-development.
  • a wafer piece thinned to a thickness of 70 m and further cut into 3 mm squares was placed thereon.
  • the laminate is heated to 240 ° C to melt the immobilizing agent, and with the insulating film “WP Rl 100” as an adhesive, a 5 mm square wafer piece (70 ⁇ m thickness) with solder bumps and a 3 mm square wafer piece ( 70 ⁇ m thick) was removed from the support.
  • Example 1 The wafer thinned to 100 m in Example 1 and formed with through-holes was directly set in a dicing apparatus (“DAD321” manufactured by Disco Corporation) to form dicing grooves in units of semiconductor elements.
  • DAD321 a dicing apparatus manufactured by Disco Corporation
  • the semiconductor chip was fixed to the SUS substrate with a fixing agent that would not peel off in small pieces.
  • the SUS substrate was heated to 170 ° C, and the semiconductor chips were individually picked up with vacuum tweezers and separated from the SUS substrate as the support, and immersed in 40 ° C isopropanol for 3 minutes to remain attached to the device surface.
  • the immobilizing agent was removed.
  • the 6-inch silicon wafer on which the semiconductor device of Example 1 was formed was further drilled with a 50 m hole and a depth of 80 m, and a silicon nitride film was formed on the hole wall and device surface.
  • the thinned wafer was put together with the support (SUS substrate) in a clean oven adjusted under a nitrogen atmosphere and held at 140 ° C for 20 hours, but the wafer was held without any damage to the support.
  • 1-octadecanol 1.5 g (molecular weight; 270.5, melting temperature; 60 ° C., melting temperature range) as a fixing agent of a 6-inch wafer with a concavo-convex pattern and a glass substrate used in Example 2 1 ° C, melt viscosity; 1.5 mPa 's, bonded to each other by using the difference between adhesive strength A at 25 ° C and adhesive strength B at 40 ° C (0. IMPa).
  • Each substrate was held and returned to normal pressure and cooled to solidify the immobilizing agent.
  • the surface roughness of the glass substrate was observed by microscopic observation of the concave / convex pattern of the wafer, the immobilizing agent uniformly penetrated into the groove portion of the pattern, and no bubbles were observed.
  • the bonded sample was roughly ground on the back surface of the wafer so that the wafer thickness was 50 m, and then polished with a disc grinder "Polisher DFP8140" using a felt grindstone method.
  • the wafer thickness was 30 m.
  • a 5mm square dicing groove provided in advance on a 6-inch wafer appeared, and it was confirmed that the groove was filled with a fixing agent.
  • the thinned sample with the glass substrate down was placed on a hot plate and heated to 80 ° C.
  • the chip divided into 5 mm squares can be easily picked up with vacuum tweezers, and the edge of the chip is not chipped, and the state is maintained.
  • Example 1 A knock grind tape (“BGE-164VC” manufactured by Toyo Adtec Co., Ltd.) was applied to the surface of a 6-inch wafer with a concavo-convex pattern used in Example 2, and grinding and polishing were performed in the same manner as in Example 5 to reduce the wafer thickness to 30. m.
  • BGE-164VC manufactured by Toyo Adtec Co., Ltd.
  • Example 5 The same as in Example 5, using a 6-inch wafer and glass substrate with the same uneven pattern as in Example 5 and using a water-soluble silicone wax having a melting temperature of 45 ° C. (“KF6004” manufactured by Shin-Etsu Chemical Co., Ltd.) as a fixing agent. Then, both substrates were bonded together by heating under vacuum. When observing the groove portion of the concave / convex pattern of the wafer from the glass substrate surface, bubbles were observed, but when the polished surface after grinding and polishing in the same procedure as in Example 5 was observed, the dicing groove portion There was a gap, and the chip edge part of that part was chipped.
  • KF6004 water-soluble silicone wax having a melting temperature of 45 ° C.
  • KF6004 is water-soluble, there was a portion where KF6004 in the dicing groove was partially dissolved and separated by cleaning the polished surface.
  • a photosensitive insulating film QSR (“WPR1100”) 2 ⁇ m was applied to the polished surface by spin coating, and the immobilizing agent dissolved in WPR1100 and spin-coated. Chips were scattered during coating.

Abstract

A method for processing a wafer adaptable to a variety of wafers having complex structure by solving problems of conventional processes that the wafer strength lowers and the wafer support thermally deteriorates after wet polishing, a polished wafer is liable to crack when it is separated from the support, and testing at wafer level is difficult after thinning. The method for processing a wafer is characterized in that an adhesive composition principally comprising a compound having a molecular weight of 5,000 or less is interposed, as a fixing agent, between the wafer surface on which a semiconductor element is formed and the support, the wafer and the support are brought into close contact by thermally fusing the composition and then bonded fixedly by cooling, the back of the wafer is polished to thin the wafer to a thickness of 20-100 μm, and then the wafer and the support are separated by thermally fusing the composition.

Description

明 細 書  Specification
ウェハ加工方法  Wafer processing method
技術分野  Technical field
[0001] 本発明は、表面に半導体素子が形成されたウェハの裏面を研磨してウェハの厚み を薄くし、半導体チップ単位に分断して取り出す一連のウェハ加工方法に関する。よ り詳しくは、研磨中または研磨後の熱処理における高温状況下でもウェハを支持体 に強固に固定し、かつ、加工後のウェハの剥離を容易に行うことができる接着方法を 採用することで、複雑に内部構造が形成されたウェハゃ大面積ウェハについても、 1 00 μ m以下の厚みにウェハを薄肉化できるウェハ加工方法に関する。  [0001] The present invention relates to a series of wafer processing methods in which the back surface of a wafer having a semiconductor element formed on the front surface is polished to reduce the thickness of the wafer, and the wafer is divided into semiconductor chips. More specifically, by adopting an adhesion method that can firmly fix the wafer to the support even under high temperature conditions in the heat treatment during or after polishing, and can easily peel off the wafer after processing, The present invention also relates to a wafer processing method capable of reducing the thickness of a wafer having a complicated internal structure to a thickness of 100 μm or less even for a large-area wafer.
背景技術  Background art
[0002] 半導体チップの高機能化および大容量化などの要求に応えるベぐ複数の半導体 チップを積層して実装する技術が開発され、実用に供されている。このような技術とし ては、たとえば、複数のメモリチップを積層する技術が挙げられ、これにより全体とし て記憶容量を増大させることができる。  [0002] Technology for stacking and mounting a plurality of semiconductor chips that meet demands for higher functionality and larger capacity of semiconductor chips has been developed and put into practical use. As such a technique, for example, a technique of stacking a plurality of memory chips can be cited, and as a result, the storage capacity can be increased as a whole.
このように複数の半導体チップを積層させるための技術としては、たとえば、特開 20 01— 53218号公報 (特許文献 1)に記載のように、ウェハ内部に貫通ビア構造を形 成してチップ間の配線を行う方法や、ウェハ周辺部の電極パッド力も金ワイヤーで配 線を取り出し、積層する方法が提案されている。  As a technique for stacking a plurality of semiconductor chips in this way, for example, as described in JP-A-2001-0153218 (Patent Document 1), a through via structure is formed inside a wafer to form a gap between chips. There have been proposed a method of performing this wiring and a method of taking out the wiring with a gold wire and laminating the electrode pad force at the periphery of the wafer.
[0003] 最近では、メモリの大容量化、小型化および機能の集積ィ匕が急速に進展し、ウェハ の積層数も増しており、 10層の積層も間近に成りつつある。そして、ウェハの薄肉化 もこれに呼応して進展し、 300mm φウェハにおいては 100 m以下の厚みが要求さ れてきている。  [0003] Recently, the increase in memory capacity, miniaturization, and integration of functions has progressed rapidly, the number of wafers has increased, and 10 layers have been approaching. In response to this trend, thinning of wafers has progressed accordingly, and a thickness of less than 100 m has been required for 300 mmφ wafers.
ウェハの薄肉化は、まずウェハ表面をバックグラインドテープで保護および支持して 研肖 1』·研磨が行われた後、ダイシングテープに貼り替えて、ウェハを半導体チップに 小片化する一連の工程で実施されて 、る。  Thinning a wafer is a series of processes in which the wafer surface is first protected and supported with back grind tape 1) · Polishing, then pasted with dicing tape, and the wafer is cut into semiconductor chips. It has been implemented.
[0004] このようなウェハを半導体チップに小片化する一連の工程において、現在、砲粒を 用いた湿式研削後の工程にポイントが置かれ、ウェハ裏面に生成された研削歪み層 を除去する工程が主に検討されている。たとえば、研削された裏面を硝酸および弗 化水素酸を含むエッチング液を使用して化学的エッチングを行うウエットエッチング法 、エッチングガスを用いるドライエッチング法、研削された半導体ウェハの裏面を遊離 砲粒を使用してポリツシングするポリッシング法、ならびに、フェルト砥石でドライ研磨 する方法など様々な試みがなされて 、る。 [0004] In a series of processes for making such a wafer into semiconductor chips, the focus is now placed on the process after wet grinding using gunshot particles. The process of removing is mainly studied. For example, a wet etching method in which the ground back surface is chemically etched using an etchant containing nitric acid and hydrofluoric acid, a dry etching method using an etching gas, and a back surface of the ground semiconductor wafer is freed from a barrel. Various attempts have been made, such as polishing using a polishing method and dry polishing with a felt grindstone.
[0005] また、このように半導体チップの積層が進展すると、積層する半導体チップが良品 であるか不良品であるかが積層体の歩留まりに影響する。この歩留まりは積層数に 応じて影響度が増すことから、半導体チップの良 Z不良の判定を積層前に行ってお くテスティングプロセスが重要視されて 、る。  [0005] Further, when the stacking of semiconductor chips progresses in this way, whether the stacked semiconductor chips are non-defective products or defective products affects the yield of the stacked body. Since the yield increases with the number of stacked layers, the testing process that determines whether a semiconductor chip is good or defective before stacking is regarded as important.
従来のテスティングプロセスでは、各半導体チップを個別にテストする方法が主流 であったが、近年、ウェハ単位で一括テストする方法が提案され実用化されている。 しかし、積層体の歩留まりを改善するためには、積層直前、すなわち、薄肉化および ダイシングを終えた状態でテストすることが最も有効と考えられる力 薄肉化ウェハの 取扱いが難しいことから積層直前でテストすることが困難な状況である。  In the conventional testing process, the method of testing each semiconductor chip individually has been the mainstream, but in recent years, a method of batch testing on a wafer basis has been proposed and put into practical use. However, in order to improve the yield of the laminated body, it is most effective to test immediately before stacking, that is, after thinning and dicing, so it is difficult to handle thinned wafers. It is a difficult situation to do.
特許文献 1 :特開 2001— 53218号公報  Patent Document 1: JP 2001-53218 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 半導体ウェハのさらなる薄肉化を実現するにあたって、従来のプロセスにおける問 題点として以下の点が指摘されて!ヽる。 [0006] The following points have been pointed out as problems in the conventional process for further thinning of semiconductor wafers! Speak.
(1)砲粒を用いて研削する湿式研削だけでは、ウェハに微細な傷が残るため加工後 のウェハ強度が不十分となり、ハンドリング時に割れたり、ダイシング時に欠けたりす る。  (1) Only wet grinding that uses an abrasive can leave fine scratches on the wafer, resulting in insufficient wafer strength after processing, cracking during handling, and chipping during dicing.
(2)湿式研削でできた傷 (研削歪み層)を乾式研磨で除去する方法が試みられて!/ヽ る力 乾式研磨で発生する熱によってウェハ支持体が熱劣化することがあり、特に大 面積ウェハにおいては顕著である。  (2) Attempts have been made to remove the scratches (grind strain layer) generated by wet grinding by dry polishing! / Wearing force The heat generated by dry polishing can cause thermal degradation of the wafer support. This is especially true for area wafers.
(3)薄肉化後のウェハを支持体力 剥がす際、ウェハが薄くなるほどウェハ自身の強 度と支持体との粘着力とのバランスが悪くなり、剥がしにくぐ割れやすくなる。特に大 面積ウェハでは剥がす面積が大きいことから顕著である。 (4)薄肉化後ではウェハレベルでのテスティングが行えないため、薄肉加工、ダイシ ングカ卩ェでの不良がチップ積層体の歩留まりに大きく影響してしまう。 (3) Support strength of the wafer after thinning, the thinner the wafer, the worse the balance between the strength of the wafer itself and the adhesive strength with the support, and the easier it is to crack. This is especially true for large-area wafers because the area to be peeled off is large. (4) Since testing at the wafer level cannot be performed after thinning, defects in thin-wall processing and dicing cage greatly affect the yield of the chip stack.
[0007] したがって、本発明の課題は、従来のプロセスにおける上記問題点を解決すること ができるとともに、多様で複雑な構造を有するウェハにも対応可能なウェハ薄肉化プ 口セスを提供することにある。 [0007] Therefore, an object of the present invention is to provide a wafer thinning process that can solve the above-mentioned problems in the conventional processes and can cope with wafers having various and complicated structures. is there.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは上記課題を解決すベぐ鋭意研究を行った。その結果、荒研削した 半導体ウェハ裏面を研磨して 20〜: LOO mまで薄肉化する際に、固定化剤として分 子量が 1000以下の化合物を主成分として含む組成物を用いて、ウェハ表面(素子 形成面)と支持体とを固定ィ匕し、ウェハの温度環境、ダイシング方法、ウェハ表面構 造、ならびに、求められる密着強度などに応じて材料およびプロセスを選定すること で、上記課題が解決されることを見出した。  [0008] The inventors of the present invention have conducted intensive studies to solve the above problems. As a result, when the back surface of the roughly ground semiconductor wafer is polished and thinned to 20-: LOO m, a composition containing as a main component a compound having a molecular weight of 1000 or less is used as a fixing agent. By fixing the (element forming surface) and the support and selecting the materials and processes according to the temperature environment of the wafer, the dicing method, the wafer surface structure, the required adhesion strength, etc. I found it to be solved.
[0009] たとえば、従来のように、ウェハを薄肉化した後ダイシングテープを用いて小片化す る方法においては、ダイシングテープへの貼り替えの容易な低融点の固定化剤を選 定して用い、研削歪み層除去法としては、ウェハの温度が上がりにくい CMP方式の 湿式研磨、化学エッチング法のほか、ウェハの温度制御が可能なリアクティブイオン エッチング (RIE)方式で行うことが好まし!/、。  [0009] For example, in a conventional method of thinning a wafer using a dicing tape after thinning the wafer, a low melting point fixing agent that can be easily attached to the dicing tape is selected and used. As the grinding strain layer removal method, it is preferable to use the CMP method wet polishing and chemical etching method, which do not easily raise the wafer temperature, and the reactive ion etching (RIE) method, which can control the wafer temperature! /.
[0010] 一方、研削前に予め所定の厚さの切削溝を形成しておく「先ダイシング」方法にお いては、該切削溝へも固定化剤を隈無く染み込ませるため、浸透性のよい、溶融粘 度の低い固定化剤を選定して用いる。この場合、研磨工程でこの固定化剤も削られ ること力ら、 CMP方式の湿式研磨やフェルト砥石による物理的な研磨が好まし!/、。 また、ウェハ構造が複雑で凹凸の著しいもの、具体的には、膜厚方向に貫通するビ ァ構造を有するウェハ、配線接続用のバンプ構造が形成されたウェハなどを加工す る場合も同様に浸透性のょ ヽ、溶融粘度の低 、固定化剤が好まし ヽ。  [0010] On the other hand, in the "tip dicing" method in which a cutting groove having a predetermined thickness is formed in advance before grinding, the fixing agent is thoroughly impregnated into the cutting groove, so that the permeability is good. Select and use a fixative with a low melt viscosity. In this case, because of the ability to remove this fixing agent in the polishing process, CMP type wet polishing and physical polishing with a felt grindstone are preferred! Similarly, when processing a wafer having a complicated wafer structure with unevenness, specifically, a wafer having a via structure penetrating in the film thickness direction, a wafer having a bump structure for wiring connection, and the like. Penetration, low melt viscosity, and fixatives are preferred.
[0011] 本発明は上記知見に基づくものであり、具体的には以下のとおりである。  [0011] The present invention is based on the above findings, and is specifically as follows.
本発明に係るウェハ加工方法は、半導体素子が形成されたウェハ表面と支持体と の間に、該ウェハと支持体とを固定する固定化剤として、分子量が 1000以下の化合 物を主成分として含有する接着剤組成物を介在させ、該組成物を加熱溶融してゥ ノヽと支持体とを密着させた後、冷却することによりウェハと支持体とを接着固定し、ゥ ェハ裏面を研磨することにより薄肉化し、該組成物を加熱溶融してウェハと支持体と を剥離することを特徴とする。 The wafer processing method according to the present invention uses as a main component a compound having a molecular weight of 1000 or less as a fixing agent for fixing the wafer and the support between the wafer surface on which the semiconductor element is formed and the support. The adhesive composition contained is interposed, and the composition is heated and melted. After the substrate and the support are brought into close contact with each other, the wafer and the support are bonded and fixed by cooling, and the wafer is thinned by polishing the rear surface of the wafer, and the composition is heated and melted to heat the wafer and the support. It is characterized by peeling.
[0012] 上記分子量が 1000以下の化合物は、結晶性を有することが好ましい。また、上記 分子量が 1000以下の化合物は、分子内にステロイド骨格および Zまたは水酸基を 有する化合物もしくはその誘導体であることが好ましい。さらに、上記分子量が 1000 以下の化合物は、溶融温度が 50〜300°Cであり、かつ、上記組成物の溶融温度幅 が 30°C以下であることが好ましい。  [0012] The compound having a molecular weight of 1000 or less preferably has crystallinity. The compound having a molecular weight of 1000 or less is preferably a compound having a steroid skeleton and Z or a hydroxyl group in the molecule or a derivative thereof. Furthermore, the compound having a molecular weight of 1000 or less preferably has a melting temperature of 50 to 300 ° C. and a melting temperature width of the composition of 30 ° C. or less.
[0013] 本発明に係るウェハ加工方法では、上記ウェハ裏面を研磨する工程において、該 ウエノ、を 20〜: LOO μ mまで薄肉化することができる。 In the wafer processing method according to the present invention, in the step of polishing the back surface of the wafer, the thickness of the wafer can be reduced to 20 to: LOO μm.
また、上記組成物の 25± 2°Cにおける接着強度を A(MPa)とし、該組成物の溶融 温度より 20°C低い温度における接着強度を B (MPa)とした場合、該接着強度 Aおよ び Bが下記式(1)を満たすことが好ま 、。  Further, when the adhesive strength at 25 ± 2 ° C of the above composition is A (MPa) and the adhesive strength at a temperature 20 ° C lower than the melting temperature of the composition is B (MPa), the adhesive strength A And B preferably satisfies the following formula (1).
0<A-B< 0. 5 (MPa) …(1)  0 <A-B <0.5 (MPa) (1)
上記組成物はタブレット状であることが好ましい。  The composition is preferably in the form of a tablet.
[0014] 上記ウェハは、複数のダイシンダストリートによって区画された領域内に形成された 半導体素子を表面に有していてもよぐ該ダイシングストリートに切削溝が形成されて いてもよい。この場合、上記切削溝が露出するまで薄肉化して半導体チップに小片 化し、該半導体チップ単位で支持体力 剥離することができる。 [0014] The wafer may have a semiconductor element formed in a region partitioned by a plurality of die cinder streets on the surface, or a cutting groove may be formed in the dicing street. In this case, it is possible to reduce the thickness to a semiconductor chip until the above-mentioned cutting groove is exposed, and to separate the support body force in units of the semiconductor chip.
また、上記ウェハは、表面に所定の深さの孔が形成され、該孔の内壁が絶縁膜で 被覆され、該絶縁膜で被覆された孔に導電性電極材料が埋め込まれたウェハであつ てもよく、導通用の突起電極を有していてもよい。  The wafer is a wafer in which a hole having a predetermined depth is formed on the surface, the inner wall of the hole is covered with an insulating film, and the conductive electrode material is embedded in the hole covered with the insulating film. It may also have a protruding electrode for conduction.
[0015] また、上記ゥヱハは、裏面に構造体、配線、および素子力 選ばれる少なくとも一種 が掲形成されたウェハであってもよ ヽ。 [0015] The wafer may be a wafer on which at least one selected from a structure, a wiring, and an element force is formed on the back surface.
本発明のウェハ加工方法は、ウェハを薄肉化した後、研磨面にさらに加工を施すこ とにより、構造体、配線および素子力も選ばれる少なくとも 1種を形成してもよい。 発明の効果  In the wafer processing method of the present invention, after the wafer is thinned, the polished surface may be further processed to form at least one selected from the structure, wiring, and element force. The invention's effect
[0016] 本発明によれば、荒研削されたウェハ裏面を研磨して 20〜: LOO /z mまで薄肉化す る加工方法が提供され、たとえば、以下の効果が得られる。 [0016] According to the present invention, the back surface of the roughly ground wafer is polished to reduce the thickness to 20 to: LOO / zm. For example, the following effects can be obtained.
(1)従来のテープ支持体を用いる場合よりも固定化剤の耐熱性が優れていることから (1) Because the heat resistance of the fixing agent is better than when using a conventional tape support
、研磨時の冷却機構に力かる負担が軽減される。 The burden imposed on the cooling mechanism during polishing is reduced.
(2)接着層の硬度が高!、ため、ウェハ薄肉化後のダイシングにお ヽてチッビングが少 ない。  (2) Because of the high hardness of the adhesive layer, there is less chipping when dicing after wafer thinning.
(3)硬質支持体を使用することができるため、大面積ウェハであっても反りがなぐか つ、薄肉化後のウェハを支持体力 容易に剥がすことができる。  (3) Since a hard support can be used, even a large area wafer does not warp, and the thinned wafer can be easily peeled off.
(4)本発明で用いる結晶性組成物は、溶融粘度が非常に小さいことから複雑形状の ウェハへの形状追従が可能であり、従来のテープ支持体では困難であった複雑形状 のウェハの薄肉化が可能となる。  (4) Since the crystalline composition used in the present invention has a very low melt viscosity, it can follow the shape of a wafer having a complicated shape, and the thin wall of the wafer having a complicated shape, which has been difficult with a conventional tape support. Can be realized.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の実施例 1で行ったウエノ、カ卩ェ方法のモデル図である。 FIG. 1 is a model diagram of the Ueno / Cake method performed in Example 1 of the present invention.
[図 2]本発明の実施例 2で形成したノヽンダバンプの SEM像である。 FIG. 2 is an SEM image of a nodal bump formed in Example 2 of the present invention.
[図 3]本発明の実施例 2で行ったウエノ、カ卩ェ方法のモデル図である。 FIG. 3 is a model diagram of the Ueno / Cake method performed in Example 2 of the present invention.
[図 4]本発明の実施例 4で用いたウェハのモデル図である。 FIG. 4 is a model diagram of a wafer used in Example 4 of the present invention.
[図 5]実施例における接着強度の測定方法を示す概略図である。 FIG. 5 is a schematic view showing a method for measuring adhesive strength in Examples.
符号の説明 Explanation of symbols
1 · 'ウェハ  1'Wafer
2· •半導体素子  2. • Semiconductor elements
3 · •SUS基板  3 · SUS substrate
4· '固定化剤  4 · 'Fixing agent
5 · 'ドライフィルムレジスト  5 'Dry film resist
6 · •貫通孔  6
7· •ノヽンダノ ンプ  7 • Nonda Knoop
8 · •切削溝 (80 m)  8 • Cutting groove (80 m)
9 · 'ガラス基板  9 'glass substrate
10 · ' '固定化剤  10 '' 'Immobilizing agent
11 · ' '絶縁樹脂膜 12 · · ·ウェハ小片(3mm口、 70 μ mj?) 11 '''Insulating resin film 12 · · · Wafer piece (3mm mouth, 70 μmj?)
13 · · ·ウェハ小片(5mm口、 70 μ mj?)  13 · · · Wafer piece (5mm mouth, 70 μmj?)
14 · · ·切削溝  14 · · · Cutting grooves
15 · · ·ビア(50 m口、深さ 80 μ m)  15 ··· Via (50 m mouth, depth 80 μm)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明に係るウェハ加工方法について詳細に説明する。 Hereinafter, the wafer processing method according to the present invention will be described in detail.
本発明のウェハ加工方法では、半導体素子が形成されたウェハ表面と支持体とを、 特定の固定化剤を用いて接着固定し、ウェハ裏面を研削および研磨して薄肉化する く固定化剤〉  In the wafer processing method of the present invention, the wafer surface on which the semiconductor element is formed and the support are bonded and fixed using a specific fixing agent, and the wafer back surface is ground and polished to reduce the thickness.
本発明で用いられる固定化剤は、組成物に凝集力を付与するために結晶性を有 する化合物を主成分として含有する接着剤組成物、好ましくはタブレット状の接着剤 組成物であり、該化合物は、分子量が 1000以下、好ましくは 150〜800、より好まし くは 200〜600であることが望ましい。該化合物の分子量が前記範囲を超えると、化 合物の溶剤への溶解性が低くなるため、溶剤による剥離'洗浄が不十分となることが ある。  The fixing agent used in the present invention is an adhesive composition containing, as a main component, a compound having crystallinity in order to impart cohesive force to the composition, preferably a tablet-like adhesive composition, The compound should have a molecular weight of 1000 or less, preferably 150 to 800, more preferably 200 to 600. When the molecular weight of the compound exceeds the above range, the solubility of the compound in the solvent becomes low, and peeling and washing with the solvent may be insufficient.
[0020] 上記化合物の溶融温度は 50〜300°C、好ましくは 55〜250°C、より好ましくは 100 〜200°Cである。ここで、溶融温度とは、示差走査熱量分析装置 (DSC)で測定した メインの溶融ピーク曲線におけるピーク温度をいう。化合物の溶融温度が前記範囲 にあることにより、接着時の耐熱温度を向上させることができる。  [0020] The melting temperature of the above compound is 50 to 300 ° C, preferably 55 to 250 ° C, more preferably 100 to 200 ° C. Here, the melting temperature refers to the peak temperature in the main melting peak curve measured with a differential scanning calorimeter (DSC). When the melting temperature of the compound is in the above range, the heat-resistant temperature at the time of adhesion can be improved.
また、上記化合物は、半導体ウェハ上に形成される配線および絶縁膜に対してダメ ージを与えず、汚染源ともならず、溶融時に接着剤が変性しないなどの観点から、力 ルボン酸基ゃァミノ基などの活性な官能基を有しな 、中性ィ匕合物であること、ならび に、媒質中に拡散して絶縁性に悪影響を及ぼすアルカリ金属等 (例えば、 Na、 K、 C a、 Fe、 Cu、 Ni、 Cr、 Al等)の金属含有量の合計が lOOppm以下、好ましくは ΙΟρρ m以下となるまでメタルフリー化処理したものであることが望ましい。なお、金属酸ィ匕 物など安定な形態で含有するものはこの限りではな 、。  Further, the above compound does not damage the wiring and insulating film formed on the semiconductor wafer, does not become a contamination source, and does not denature the adhesive when melted. A neutral compound that does not have an active functional group such as a group, and an alkali metal or the like that diffuses into the medium and adversely affects insulation (for example, Na, K, Ca, (Fe, Cu, Ni, Cr, Al, etc.) is desirably subjected to a metal-free treatment until the total metal content becomes lOOppm or less, preferably ΙΟρρm or less. However, this does not apply to those containing metal oxides in a stable form.
[0021] このような化合物としては、 1, 3, 5—トリ-トロベンゼン、 2, 3, 6-トリ-トロフエノール 、 2, 4, 5-トリ-トロトルエン等の-トロ化合物なども挙げることができる力 取扱上の安 全性が高ぐ溶融時の耐熱性に優れ、着色が少ないなどの観点から、 N元素を含ま ないじ, H, Oの元素のみ力もなる有機化合物が好ましい。具体的には、以下に例示 するような芳香族化合物、脂肪族化合物および脂環式ィ匕合物などが挙げられる。 上記芳香族化合物としては、たとえば、 9H-キサンテン、ベンゾフラン- 3(2H)-オン、 1, 5-ジフエニル- 2, 4-ペンタジェン- 1-オン、ジ- 2-ナフチルエーテル、 cis-1, 8-テル ピン、 2, 3-ジメチルナフタレン、 1, 2-ナフタレンジオール、ジ- 1-ナフチルメタン、ビフ ェニル -2, 2'-ジオール、ジ- 1-ナフチルエーテル、ビス (ジフエニルメチル)エーテル、 9, 10-ジヒドロアントラセン、 2, 3, 5, 6-テトラメチル- p-ベンゾキノン、 2, 6-ジメチルナ フタレン、シリンガアルデヒド、バニリルアルコール、 1, 3-ジフエ-ルイソベンゾフラン、 2, 3'-ジヒドロキシベンゾフエノン、イソヒドロべンゾイン、 4, 4'-ジメチルビフエニル、 1, 3-ナフタレンジオール、 4-フエナントロール、 3, 3-ジフエ-ルフタリド、ペンタメチルフ ェノール、へキサェチルベンゼン、 3, 4-ジヒドロキシベンゾフエノン、 2, 4-ジヒドロキシ ベンズアルデヒド、 p-ヒドロキシベンゾフエノン、 4, 5, 9, 10-テトラヒドロピレン、 2, 3, 4 -トリヒドロキシベンゾフエノン、へマトキシリン、 2-イソプロピル- 5-メチルヒドロキノン、 1 , 9-ジフヱニル- 1, 3, 6, 8-ノナテトラェン- 5-オン、 9 -フエニルフルオレン、 1, 4, 5-ナ フタレントリオール、 1-アントロール、 1, 4-ジフエニル- 1, 3-ブタジエン、ガルビノキシ ル、ピレン、 9-フエ二ルアントラセン、トリフエニルメタノール、 1,1'-ビナフチル、 m-キシ レン- 2, 4, 6-トリオール、 4, 4'-メチレンジフエノール、へキサメチルベンゼン、ジベン ゾ -18-クラウン- 6、ジフエノキノン、ビフエ-ル- 4-オール、 1H-フエナレン、 10-ヒドロキ シアントロン、フラボノール、ベンゾアントロン、 9H-キサンテン- 9-オン、テトラフェニル フラン、 2-メチルアントラキノン、 4-ヒドロキシ- 1-ナフトアルデヒド、 1, 7-ナフタレンジ オール、 2, 5-ジエトキシ -p-ベンゾキノン、クルクミン、 2, 2'-ビナフチル、 1, 8-ジヒドロ キシアントラキノン、 1, 4-ナフタレンジオール、 1-ヒドロキシアントラキノン、 3, 4-ジヒド ロキシアントロン、 0-テルフエ-ル、 m-テルフエ-ル、 p-テルフエ-ル、 4, 4'-ジヒドロ キシベンゾフエノン、アントラセン、 2, 4, 6-トリヒドロキシァセトフエノン、 1, 8-アントラセ ンジオール、テトラフェニルエチレン、 1, 7-ジヒドロキシ- 9-キサンテノン、 2, 7-ジメチ ルアントラセン、ェピカテキン、ナリンゲ-ン、 2-アントロール、 1, 5-ナフタレンジォー ル、ベンジリデンフタリド、 2-フエ-ルナフタレン、 cis-デカヒドロ- 2-ナフトール (cisoid) 、 (2R, 3R)-2, 3-ビス (ジフエ-ルホスフイノ)ブタン、 trans-1, 2-ジベンゾィルエチレン 、 trans-1, 4-ジフエニル- 2-ブテン- 1, 4-ジオン、ビス (2-ヒドロキシェチル)テレフタラ ート、フルオランテン、ビフエ-レン、イソバニリン、フルオレン、 9-アントロール、 p-フエ -レンジァセタート、 trans-スチルベン、ビフエ-ル- 3, 3しジオール、 2, 5-ジヒドロキ シベンゾフエノン、ピノールヒドラート、ベンゾイン、ヒドロべンゾイン、 1, 2-ビス (ジフエ ニルホスフイノ)ェタン、 2, 4-ジヒドロキシベンゾフエノン、 1, 8-ナフタレンジオール、 1 , 2-ナフトキノン、 2, 4'-ジヒドロキシベンゾフエノン、 5-ヒドロキシ- 1, 4-ナフトキノン、 1 -フエナントロール、アントロン、 9-フルォレノール、トリフエ-ルホスフィンォキシド、ベ ンゾ [a]アントラセン、 1, 2-アントラセンジオール、 2, 3-ナフタレンジオール、 2, 4, 6-ト リヒドロキシベンゾフエノン、ジ- 2-ナフチルケトン、 3, 3'-ジヒドロキシベンゾフエノン、 アルブチン、 1, 2, 3, 5-ベンゼンテトラオール、ジフエ二ルキノメタン、 2-フエナント口 ール、 2, 3, 4-トリヒドロキシァセトフエノン、カプサンチン、 1, 3, 5-トリフエニルベンゼ ン、 3, 4, 5-トリヒドロキシベンゾフエノン、ベンゾ [a]ピレン、トリフエニルメチルペルォキ シド、へキセストロール、 1, 1, 2, 2-テトラフエ-ル- 1, 2-エタンジオール、 1, 8-ジヒド ロキシ -3-メチルアントラキノン、ショウノウキノン、 2, 2', 5, 6しテトラヒドロキシベンゾフ ェノン、エスクリン、 3, 4'-ジヒドロキシベンゾフエノン、 2, 4, 5-トリヒドロキシァセトフエノ ン、 9, 10-フエナントレンキノン、 1, 1, 2, 2-テトラフエニルェタン、ルチン、 (-) -ヘスべ レチン、 2, 3', 4, 4', 6-ペンタヒドロキシベンゾフエノン、 7-ヒドロキシクマリン、 cQ-ヘス ペレチン、ニンヒドリン、トリプチセン、フルォレシン、タリセン、ジェチルスチルベスト口 ール、ジベンゾ [a,h]アントラセン、ペンタセン、 1, 6-ジヒドロキシアントラキノン、 3, 4', 5, 7-テトラヒドロキシフラボン、 2, 6-アントラセンジオール、ゲニスティンなどが挙げら れる。 [0021] Examples of such compounds include 1, 3, 5-tri-trobenzene and 2, 3, 6-tri-trophenol. The ability to mention -tro compounds such as 2, 4, 5-tri-tolutoluene, etc. N element from the viewpoint of high handling safety, excellent heat resistance during melting, and low coloring Organic compounds that only contain H and O elements are preferred. Specific examples include aromatic compounds, aliphatic compounds, and alicyclic compounds as exemplified below. Examples of the aromatic compounds include 9H-xanthene, benzofuran-3 (2H) -one, 1,5-diphenyl-2,4-pentagen-1-one, di-2-naphthyl ether, cis-1,8 -Terpine, 2,3-dimethylnaphthalene, 1,2-naphthalenediol, di-1-naphthylmethane, biphenyl-2,2'-diol, di-1-naphthyl ether, bis (diphenylmethyl) ether, 9, 10-dihydroanthracene, 2, 3, 5, 6-tetramethyl-p-benzoquinone, 2, 6-dimethylnaphthalene, syringaldehyde, vanillyl alcohol, 1,3-diphenylisobenzofuran, 2, 3'- Dihydroxybenzophenone, isohydrobenzoin, 4,4'-dimethylbiphenyl, 1,3-naphthalenediol, 4-phenanthrol, 3,3-diphenylphthalide, pentamethylphenol, hexenylbenzene, 3, 4-dihydro Cibenzophenone, 2, 4-dihydroxybenzaldehyde, p-hydroxybenzophenone, 4, 5, 9, 10-tetrahydropyrene, 2, 3, 4-trihydroxybenzophenone, hematoxylin, 2-isopropyl-5-methylhydroquinone 1,9-diphenyl-1,3,4,8-nonatetraen-5-one, 9-phenylfluorene, 1,4,5-naphthalenetriol, 1-anthrol, 1,4-diphenyl-1 , 3-butadiene, galvinoxyl, pyrene, 9-phenylanthracene, triphenylmethanol, 1,1'-binaphthyl, m-xylene-2,4,6-triol, 4,4'-methylenediphenol, Hexamethylbenzene, dibenzo-18-crown-6, diphenoquinone, biphenol-4-ol, 1H-phenalene, 10-hydroxycyantron, flavonol, benzoanthrone, 9H-xanthen-9-one, te Raphenylfuran, 2-methylanthraquinone, 4-hydroxy-1-naphthaldehyde, 1,7-naphthalenediol, 2,5-diethoxy-p-benzoquinone, curcumin, 2,2'-binaphthyl, 1,8-dihydroxy Anthraquinone, 1,4-naphthalenediol, 1-hydroxyanthraquinone, 3,4-dihydroxyanthrone, 0-terfel, m-terfel, p-terfel, 4,4'-dihydroxybenzophenone , Anthracene, 2,4,6-trihydroxyacetophenone, 1,8-anthracenediol, tetraphenylethylene, 1,7-dihydroxy-9-xanthenone, 2,7-dimethylanthracene, epicatechin, naringen, 2-antolol, 1,5-naphthalenedio , Benzylidenephthalide, 2-phenylnaphthalene, cis-decahydro-2-naphthol (cisoid), (2R, 3R) -2, 3-bis (diphenylphosphino) butane, trans-1, 2-dibenzoy Ruethylene, trans-1, 4-diphenyl-2-butene-1, 4-dione, bis (2-hydroxyethyl) terephthalate, fluoranthene, biphenylene, isovanillin, fluorene, 9-anthrol, p- Hue-rangeacetate, trans-stilbene, biphenyl-3,3 diol, 2,5-dihydroxybenzophenone, pinol hydrate, benzoin, hydrobenzoin, 1,2-bis (diphenylphosphino) ethane, 2, 4- Dihydroxybenzophenone, 1,8-naphthalenediol, 1,2-naphthoquinone, 2,4'-dihydroxybenzophenone, 5-hydroxy-1,4-naphthoquinone, 1-phenanthrol, anthrone, 9- Luolenol, triphenylphosphine oxide, benzo [a] anthracene, 1,2-anthracenediol, 2,3-naphthalenediol, 2,4,6-trihydroxybenzophenone, di-2-naphthyl ketone 3,3'-dihydroxybenzophenone, arbutin, 1, 2, 3, 5-benzenetetraol, diphenylquinomethane, 2-phenanthol, 2, 3, 4-trihydroxyacetophenone, capsanthin, 1,3,5-triphenylbenzen, 3,4,5-trihydroxybenzophenone, benzo [a] pyrene, triphenylmethylperoxide, hexestrol, 1,1,2,2-tetraphenyl -Lu-1,2-ethanediol, 1,8-dihydroxy-3-methylanthraquinone, camphorquinone, 2, 2 ', 5, 6 and tetrahydroxybenzophenone, esculin, 3,4'-dihydroxybenzophe Non, 2, 4, 5-trihydroxyacetophenone, 9, 10-phenanthrenequinone, 1, 1, 2, 2-tetraphenylethane, rutin, (-)-hesberetine, 2, 3 ', 4 , 4 ', 6-Pentahydroxybenzophenone, 7-Hydroxycoumarin, cQ-Hesperetin, Ninhydrin, Triptycene, Fluorescine, Talycene, Jetylstilbestol, Dibenzo [a, h] anthracene, Pentacene, 1, Examples include 6-dihydroxyanthraquinone, 3,4 ′, 5,7-tetrahydroxyflavone, 2,6-anthracenediol, and genistein.
上記脂肪族化合物としては、たとえば、リビトール、 D-ァラビトール、フリル、 γ -カロ テン、 j8 -カロテン、カンタリジン、ペンタエリトリトーノレ、 trans, trans-1, 4-ジァセトキシ ブタジエン、 D-グルシトール、 D-マンニトール、イドース、デカナール、 α -カロテン、 2, 4, 6-トリメチルフロログルシノール、ガラクチトール、ェキリン、ェキレニン、 trans-1 , 2-シクロベンタンジオール、マノオール、 1-ヘプタデカノール、 1-ォクタデカノール、 1-ィコサノール、ジヒドロキシアセトン、 Ί -テルビネオール、 1-へキサコサノール、 1- ヘントリアコンタノール、ステアロンなどが挙げられる。 Examples of the aliphatic compounds include ribitol, D-arabitol, furyl, γ-carotene, j8-carotene, cantharidin, pentaerythritol, trans, trans-1, 4-diacetoxybutadiene, D-glucitol, D -Mannitol, idose, decanal, α-carotene, 2,4,6-trimethylphloroglucinol, galactitol, echirin, echlenine, trans-1, 2-cyclobentanediol, manol, 1-heptadecanol, 1-octadecanol , Examples include 1-icosanol, dihydroxyacetone, テ ル -terbineol, 1-hexacosanol, 1-hentriacontanol, and stearone.
上記脂環式化合物としては、たとえば、コプロスタノール、チモステロール、ェルゴ カルシフエロール、 j8 -シトステロール、ラノステロール、 11-デォキシコルチコステロン 、コレスタノ一ノレ、コレステロ一ノレ、テストステロン、エノレゴステロ一ノレ、スチグマステロ ール、エストラジオール、コノレチコステロン、ェピコレスタノール、アンドロステロン、 17 α -ヒドロキシ -11-デォキシコルチコステロン、ギトキシゲニン、ェピコプロスタノール、 カルシフエロール、プロゲステロン、デヒドロェピアンドロステロン、 7-デヒドロコレステ ロール、ァグノステロール、 11-デヒドロコルチコステロン、プレドニソロン、ジギトキシゲ ニン、エストロン、 /3 -エストラジオール、コルチソン、 D-フルクトース( α开 、 D-リキソ 一ス( a形)、 D-リキソース( 13形)、イソマルトース、 D-タロース( 13形)、 D-タロース( a形 )、 D—アロース( β形)、 D—マンノース( β形)、 D—マンノース( (X形)、 D—キシロース( (X形) D-ガラクトース( 13形)、 L-フコース( a形)、 D-グルコース( a形)、 2-デォキシ- D-グル コース、マノレトトリオース、 D- altro-ヘプッロース、 L-ァラビノース (ピラノース α开 、 D- ァラビノース、カフェストール、 L-ァラビノース (ビラノース 13形)、 D-ガラクトース( a形) 、リコペン、ァゥクビン、スクロース、フリーデリン、 cis-1 , 3, 5-シクロへキサントリオ一 ル、 D-イノシトール、ルティン、ジォスゲニン、チゴゲニン、ゼアキサンチン、 myo-イノ シトール、セロビオース、ジベレリン A3、へマテイン、べッリン、 D-フルクトース(j8开 、 D-アルトロース( 13形)、ジベンゾ- 24-クラウン- 8、メチル -D -ダルコビラノシド( β形)、 D -ジギタロース、サリノマイシン、メチル -D-ガラクトピラノシド( a形)、 a , a -トレハロー ス、ビキシン (全 trans形)、パラチノース、 trans- 1 , 4-テルピン、 D-キノボース(α形)、 D — glycero— D— galacto—ヘプトース、 D—フコース(ひ开 、 D—グルコース( j8开 、 D— manno— ヘプッロース、 D- glycero- D- gluco-ヘプトース、ソホロース、サノレササポゲニン、 L-ソ ルボース、 D- altro- 3-ヘプッロース、ツイスタン、(+)-ボルネオール、イノシトール、(-) -イソボルネオール、 L-ァラビノース (フラノース形)、 L-ガラクトース(α形)、 α -サント ニン、メチル -D-ガラクトピラノシド(j8形)、シクロペンタデカノン、 δ -バレロラタトン、 ci s-2-メチルシクロへキサノール、下記化学式(1)〜(8)で表される化合物などが挙げ られる。 Examples of the alicyclic compounds include coprostanol, timosterol, ergocalciferol, j8-sitosterol, lanosterol, 11-deoxycorticosterone, cholestanonore, cholesterol, and testosterone, enolegostero-nore, Stigmasterol, estradiol, conoleticosterone, epicholestanol, androsterone, 17α-hydroxy-11-deoxycorticosterone, gitoxigenin, epicoprostanol, calcipherol, progesterone, dehydroepiandrosterone , 7-dehydrocholesterol, agnosterol, 11-dehydrocorticosterone, prednisolone, digitoxigenin, estrone, / 3-estradiol, cortisone, D-fructose (α-open, D-lyxose a form), D-lyxose (13 form), isomaltose, D-talose (13 form), D-talose (a form), D-allose (beta form), D-mannose (beta form), D-mannose ((X form), D-xylose ((X form) D-galactose (13 form), L-fucose (a form), D-glucose (a form), 2-deoxy-D-glucose, manoletotri Aose, D-altro-heptulose, L-arabinose (pyranose α-opened, D-arabinose, caffe stall, L-arabinose (viranose 13 form), D-galactose (a form), lycopene, alkvin, sucrose, freedelin, cis- 1,3,5-cyclohexanetriol, D-inositol, rutin, diosgenin, tigogenin, zeaxanthin, myo-inositol, cellobiose, gibberellin A3, hematein, bellin, D-fructose (j8 open, D-altrose (Form 13), dibenzo-24-crown-8, methyl-D-darcoviranoside (beta form), D-digitalose, salinomycin, methyl-D-galactopyranoside (form a), a, a-trehalose, Bixin (all trans form), palatinose, trans-1, 4-terpine, D-quinobose (alpha form), D—glycero— D—galacto—heptose, D—fucose (open, D—glucose (j8 open, D) — Manno— heprose, D-glycero- D-gluco-heptose, sophorose, sanoresasapogenin, L-sorbose, D-altro-3-heptulose, twistin, (+)-borneol, inositol, (-)-iso Borneol, L-arabinose (furanose form), L-galactose (alpha form), alpha-santonin, methyl-D-galactopyranoside (j8 form), cyclopentadecanone, δ-valerolataton, ci s-2- Methylcyclohexanol Following chemical formula (1) to the compound represented by (8), and the like.
Figure imgf000012_0001
上記化合物の中では、タブレット加工性の観点から、コレステロール、コプロスタノ 一ノレ、チモステロ一ノレ、エノレゴカノレシフェローノレ、 β -シトステロ一ノレ、ラノステロ一ノレ 、 11-デォキシコルチコステロン、コレスタノール、テストステロン、エルゴステロール、 スチグマステロール、エストラジオール、コノレチコステロン、ェピコレスタノール、アンド ロステロン、 17ひ-ヒドロキシ -11-デォキシコルチコステロン、ギトキシゲニン、ェピコプ ロスタノール、カルシフエロール、プロゲステロン、デヒドロェピアンドロステロン、 7-デ ヒドロコレステロ一ノレ、ァグノステロ一ノレ、 11-デヒドロコノレチコステロン、プレドニソロン 、ジギトキシゲニン、エストロン、 j8 -エストラジオール、コルチソンおよび上記化学式( 1)〜(8)で表される化合物などのステロイド骨格を有する化合物; trans - 1, 2_シクロ ベンタンジオール、マノオール、 1-ヘプタデカノール、 1-ォクタデカノール、 1-ィコサ ノール、 γ -テルピネオール、 1-へキサコサノール、 1-ヘントリアコンタノールなどの水 酸基含有化合物;およびこれらの誘導体、 0-テルフエニル、 m-テルフヱ-ル、 P-テル フエニル、ビフエ二ルが特に好ましい。なお、エステル誘導体は、融点が低ぐ熱分解 したときに酸性となって接着面を浸食する可能性があるなどの理由力 好ましくない。
Figure imgf000012_0001
Among the above compounds, from the viewpoint of tablet processability, cholesterol, coprostano monole, timostero monore, enorego cano referonore, β-sitostero monore, lanostero monore 11-deoxycorticosterone, cholestanol, testosterone, ergosterol, stigmasterol, estradiol, conoleticosterone, epicolestanol, androsterone, 17-hydroxy-11-deoxycorticosterone, Gitoxigenin, epicoprostanol, calcipherol, progesterone, dehydroepiandrosterone, 7-dehydrocholesterol, agnostellonore, 11-dehydroconorticosterone, prednisolone, digitoxigenin, estrone, j8-estradiol, cortisone and above Compounds having a steroid skeleton such as compounds represented by chemical formulas (1) to (8); trans-1, 2_cyclobentandiol, manol, 1-heptadecanol, 1-octadecanol, 1-icosanol, γ- Te Pineoru, Kisakosanoru to 1, the water acid group-containing compounds such as 1-hen triacontanol; and derivatives thereof, 0 Terufueniru, m- Terufuwe - le, P- Tel phenyl, Bifue two Le is particularly preferred. The ester derivative is not preferable because it may become acidic when thermally decomposed with a low melting point and may erode the adhesive surface.
[0027] 上記化合物は、単独で用いてもよぐ 2種類以上を混合して用いてもよぐ接着剤組 成物中の含有量が 70重量%以上、好ましくは 80重量%以上、特に好ましくは 90重 量%以上となるように用いる。含有量が前記範囲よりも低いと、溶融温度がシャープ にならず、また溶融粘度も高くなることがある。 [0027] The above compound may be used alone or in combination of two or more. The content in the adhesive composition is 70% by weight or more, preferably 80% by weight or more, particularly preferably. Is used so that it becomes 90% by weight or more. If the content is lower than the above range, the melting temperature may not be sharp, and the melt viscosity may increase.
上記のような化合物を主成分として含む接着剤組成物は、組成物の溶融温度幅が 1〜30°C、好ましくは 1〜20°C、特に好ましくは 1〜10°Cであり、組成物の溶融温度 における溶融粘度力 ^0. 0001〜0. lPa' s、好ましくは 0. 001〜0. 05Pa' s、特に好 ましくは 0. 001-0. OlPa' sであることを特徴とする。ここで、溶融温度幅とは、示差 走査熱量分析装置 (DSC)で測定したメインの溶融ピーク曲線における始点の温度 と終点の温度との差をいう。溶融温度幅および溶融粘度が前記範囲にあることにより 、ウェハを支持体力も剥離する際に加える外力を小さくすることができ、剥離容易性 が向上する。  The adhesive composition containing the above compound as a main component has a melting temperature range of 1 to 30 ° C, preferably 1 to 20 ° C, particularly preferably 1 to 10 ° C. It is characterized by melt viscosity at the melting temperature of ^ 0.001-0. lPa's, preferably 0.001-0.05 Pa's, particularly preferably 0.001-0. OlPa's. To do. Here, the melting temperature range refers to the difference between the starting point temperature and the ending point temperature in the main melting peak curve measured by a differential scanning calorimeter (DSC). When the melting temperature range and the melt viscosity are in the above ranges, the external force applied when the wafer is also peeled off can be reduced, and the ease of peeling is improved.
[0028] 上記組成物の溶融温度幅および溶融粘度は、上記化合物の溶融温度幅および溶 融粘度に強く依存することから、溶融温度幅が狭ぐ溶融粘度が低い化合物を用い ることが望ましい。すなわち、主成分である化合物としては、溶融温度が 50〜300°C 、溶融温度幅が 1〜30°C、溶融温度における溶融粘度が 0. 0001-0. lPa' sのも のが好ましい。 [0028] Since the melting temperature range and melt viscosity of the composition strongly depend on the melting temperature range and melt viscosity of the compound, it is desirable to use a compound having a narrow melting temperature range and a low melt viscosity. That is, the main component compound has a melting temperature of 50 to 300 ° C, a melting temperature range of 1 to 30 ° C, and a melt viscosity at the melting temperature of 0.0001-0.lPa's. Is preferred.
[0029] また、化合物の溶融温度幅を狭くし、溶融粘度を低減し、さらに遊離金属イオン量 を低減するために、化合物の精製を行うことが好ましい。化合物の精製方法としては 、たとえば、  [0029] In addition, it is preferable to purify the compound in order to narrow the melting temperature range of the compound, reduce the melt viscosity, and further reduce the amount of free metal ions. As a method for purifying a compound, for example,
(a)化合物を溶剤に溶解し、溶剤を徐々に留去して再結晶化させることで純度を高 める方法、および  (a) a method of increasing the purity by dissolving the compound in a solvent, gradually distilling off the solvent and recrystallization, and
(b)化合物を溶剤に溶解し、その溶液をイオン交換樹脂に接触させて遊離金属を除 去することで金属含有量を減らす方法などが挙げられる。  (b) A method in which the metal content is reduced by dissolving the compound in a solvent and bringing the solution into contact with an ion exchange resin to remove free metal.
[0030] 本発明で用いる固定化剤には、基材への濡れ性および接着性を調整するために、 あるいは、接着剤組成物の溶融粘度の調整、組成物のタブレット化加工性を改善す るために、必要に応じて非イオン系界面活性剤などの表面張力調節剤や離形剤を、 目的とする機能を損なわな 、範囲で添加することができる。  [0030] The immobilizing agent used in the present invention is used to adjust the wettability and adhesion to the substrate, or to adjust the melt viscosity of the adhesive composition and to improve the tableting processability of the composition. Therefore, a surface tension adjusting agent such as a nonionic surfactant or a release agent can be added within a range without impairing the intended function, if necessary.
添加することのできる非イオン系界面活性剤としては、パーフルォロアルキル基な どのフッ化アルキル基を有するフッ素系界面活性剤や、ォキシアルキル基を有する ポリエーテルアルキル系界面活性剤などを挙げることができ、離形剤としてはシリコー ン離形剤を用いることができる。  Examples of nonionic surfactants that can be added include fluorine surfactants having a fluorinated alkyl group such as a perfluoroalkyl group, and polyether alkyl surfactants having an oxyalkyl group. Silicone mold release agent can be used as the mold release agent.
[0031] 上記フッ素系界面活性剤としては、たとえば、 C F CONHC H [0031] Examples of the fluorosurfactant include C F CONHC H.
9 19 12 25、C F SO NH  9 19 12 25, C F SO NH
8 17 2 一(C H O) H、「エフトップ EF301、同 EF303、同 EF352」(新秋田化成(株)製)、 8 17 2 I (C H O) H, “F-top EF301, EF303, EF352” (manufactured by Shin-Akita Kasei Co., Ltd.),
2 4 6 2 4 6
「メガファック F171、同 F173」(大日本インキ (株)製)、「アサヒガード AG710」(旭硝 子(株)製)、「フロラード FC— 170C、同 FC430、同 FC431」(住友スリーェム(株) 製)、「サーフロン S— 382、同 SC101、同 SC102、同 SC103、同 SC104、同 SC10 5、同 SC106」(旭硝子(株)製)、「: BM— 1000、同 1100」(B. M— Chemie社製)、 「Schsego— Fluor」(Schwegmann社製)、「FS1265」(東レダウコ一-ングシリコ ーン (株)製)などを挙げることができる。  “Megafuck F171, F173” (Dainippon Ink Co., Ltd.), “Asahi Guard AG710” (Asahi Glass Co., Ltd.), “Florard FC—170C, FC430, FC431” (Sumitomo 3EM) )), "Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106" (Asahi Glass Co., Ltd.), ": BM-1000, 1100" (B. M — Chemie), “Schsego-Fluor” (Schwegmann), “FS1265” (manufactured by Toray Dowco-Nungsircon Co., Ltd.), and the like.
[0032] 上記ポリエーテルアルキル系界面活性剤としては、たとえば、ポリオキシエチレンァ ルキルエーテル、ポリオキシエチレンァリルエーテル、ポリオキシエチレンアルキルフ ェ-ルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポ リオキシエチレンソルビタン脂肪酸エステル、ォキシエチレンォキシプロピレンブロッ クポリマーなどが挙げられる。具体的には、「ェマルゲン 105、同 430、同 810、同 92 0」、 「レオドール SP— 40S、同 TW— ΙΛ20、エマノール 3199、同 4110」、 「ェキセ ル P— 40S、ブリッジ 30、同 52、同 72、同 92」、 「ァラッセル 20、エマゾール 320、ッ ィーン 20、同 60、マージ 45」(以上、(株)花王製)、「ノ-ボール 55」(三洋化成 (株) 製)、「SH— 28PA、同— 190、同— 193、 SZ— 6032、 SF— 8428」(以上、東レダ ゥコ一-ングシリコーン (株)製)などの市販品を用いることができる。 [0032] Examples of the polyether alkyl surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl ether, polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, and polyoxyethylene alkyl ether. Lioxyethylene sorbitan fatty acid ester, oxyethyleneoxypropylene block Examples include a copolymer. Specifically, “Emargen 105, 430, 810, 920”, “Leodol SP-40S, TW—ΙΛ20, Emanol 3199, 4110”, “Exel P-40S, Bridge 30, 52” 72, 92 ”,“ Alassell 20, Emazole 320, Queen 20, 60, Merge 45 ”(above, manufactured by Kao Corporation),“ No-Ball 55 ”(manufactured by Sanyo Chemical Co., Ltd.), Commercial products such as “SH-28PA, i-190, i-193, SZ-6032, SF-8428” (above, manufactured by Toray Industries Co., Ltd.) can be used.
[0033] 上記以外の非イオン系界面活性剤としては、たとえば、ポリオキシエチレン脂肪酸 エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリアルキレンオキサイドブ ロック共重合体などが挙げられ、具体的には「ケミスタツト 2500」(三洋化成工業 (株) 製)、「SN— EX9228」(サンノプコ (株)製)、「ノナール 530」(東邦化学工業 (株)製 )などの市販品を用いることができる。  [0033] Examples of nonionic surfactants other than the above include polyoxyethylene fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyalkylene oxide block copolymers, and the like. Specifically, “CHEMISTAT 2500 "Sanyo Kasei Kogyo Co., Ltd.", "SN-EX9228" (San Nopco Co., Ltd.), "Nonaru 530" (Toho Chemical Co., Ltd.), etc. can be used.
[0034] また、溶融温度が 150°Cを超える高温の組成物では、ジメチルシリコーンオイル KF 965 (信越化学製)、 SH200(東レ 'ダウシリコーン製)、メチルフエ-ルシリコーンオイ ル KF54,KF50 (信越化学製)などの低揮発で、耐熱性に優れたシリコーンオイルなど も有効に作用し、用いることができる。  [0034] In addition, for compositions having a high melting temperature exceeding 150 ° C, dimethyl silicone oil KF 965 (manufactured by Shin-Etsu Chemical), SH200 (manufactured by Dow Silicone), methyl-fell silicone oil KF54, KF50 (Shin-Etsu) A low-volatility silicone oil with excellent heat resistance, such as chemicals, can also be used effectively and can be used.
上記表面張力調整剤は、上記化合物 100重量部に対して 0. 1〜50重量部、好ま しくは 1〜30重量部の量で用いることができる。使用量が前記範囲を超えると、常温 における接着剤の硬度が低すぎたり、粘着性が高すぎてタブレット化加工が困難とな る問題がある。一方、前記範囲よりも少ないと、濡れ性および Zまたは接着性の改善 効果が表れな!/ヽことがある。  The surface tension adjusting agent can be used in an amount of 0.1 to 50 parts by weight, preferably 1 to 30 parts by weight with respect to 100 parts by weight of the compound. If the amount used exceeds the above range, there is a problem that the hardness of the adhesive at room temperature is too low, or the tackiness is too high, making tableting difficult. On the other hand, if the amount is less than the above range, the effect of improving wettability and Z or adhesion may not be exhibited!
[0035] 上記固定化剤は、接着する基材間の間隙を制御するために、必要に応じて酸化ァ ルミ二ゥム、酸ィ匕ジルコニウム、酸化チタン、酸化ケィ素などの金属酸化物、または、 ポリスチレン架橋粒子 (たとえば、積水化学製「ミクロパール SPN、同 SPSシリーズ」 等)などの粒度分布の狭い微粒子を、組成物全体に対して 0. 01〜: L0重量%、好ま しくは 0. 01〜5重量%の範囲で含有してもよい。含有量が前記範囲を超えると、溶 融させた時に、微粒子が被着体面内に広がりにくぐ微粒子が凝集することによって 基板間の間隙が制御できないという問題が生じることがあり、前記範囲よりも低いと、 間隙を制御する効果が表れないことがある。 [0036] 上記接着剤組成物の接着強度は、 25± 2°Cにおいて 0. 5MPa以上、好ましくは 1 MPa以上、特に好ましくは 5MPa以上である。接着強度が前記範囲よりも低いと接着 後の加工条件によっては接着面が部分的に剥がれ加工の面内均一性が損なわれる 場合がある。 [0035] The immobilizing agent is a metal oxide such as aluminum oxide, zirconium oxide, titanium oxide, or silicon oxide, if necessary, in order to control the gap between the substrates to be bonded. Alternatively, fine particles having a narrow particle size distribution such as polystyrene cross-linked particles (for example, “Micropearl SPN, SPS series” manufactured by Sekisui Chemical Co., Ltd.), etc., are 0.01 to: L0 wt%, preferably 0 It may be contained in the range of 01 to 5% by weight. When the content exceeds the above range, there may be a problem that when the particles are melted, the fine particles that are difficult to spread in the surface of the adherend aggregate to cause a problem that the gap between the substrates cannot be controlled. If it is low, the effect of controlling the gap may not appear. [0036] The adhesive strength of the adhesive composition is 0.5 MPa or more, preferably 1 MPa or more, particularly preferably 5 MPa or more at 25 ± 2 ° C. If the adhesive strength is lower than the above range, the bonded surface may be partially peeled depending on the processing conditions after bonding, and the in-plane uniformity of processing may be impaired.
また、上記接着剤組成物の 25± 2°Cにおける接着強度を A (MPa)とし、該組成物 の溶融温度より 20°C低い温度における接着強度を B (MPa)とした場合、該接着強 度 Aおよび B力 0<A-B< 0. 5 (MPa)の関係式を満たすことにより、接着強度の 温度依存性が小さぐ溶融温度以下の広い範囲で良好な接着状態を保持できる。な お、測定方法および条件等につ!、ては後述する。  Further, when the adhesive strength at 25 ± 2 ° C. of the adhesive composition is A (MPa) and the adhesive strength at a temperature 20 ° C. lower than the melting temperature of the composition is B (MPa), the adhesive strength is By satisfying the relational expression of degree A and B force 0 <AB <0.5 (MPa), it is possible to maintain a good adhesive state in a wide range below the melting temperature where the temperature dependence of the adhesive strength is small. The measurement method and conditions will be described later.
[0037] <固定化方法 > [0037] <Immobilization method>
本発明のウェハ加工方法では、上記接着剤組成物(固定化剤)を加熱溶融してゥェ ハ等に塗布し、ウェハと支持体とを貼り合わせて密着させた後、冷却することにより、 ウェハと支持体とを接着固定する。  In the wafer processing method of the present invention, the adhesive composition (fixing agent) is heated and melted and applied to a wafer or the like, the wafer and the support are bonded together, and then cooled, The wafer and the support are bonded and fixed.
上記接着剤組成物をウェハ等に塗布するには、該組成物の「溶融温度 + 2°C」〜「 溶融温度 + 50°C」、好ましくは「溶融温度 + 2°C」〜「溶融温度 + 30°C」、特に好まし くは「溶融温度 + 5°C」〜「溶融温度 + 20°C」の範囲に加熱することにより塗布するこ とができる。加熱温度が前記範囲よりも低いと、接着剤の被着体面内での広がりが不 十分で接着ムラが生じることがあり、前記範囲を超えると、接着剤の揮発や分解が部 分的に進行し、所望の接着特性を得られないことがある。  In order to apply the adhesive composition to a wafer or the like, “melting temperature + 2 ° C.” to “melting temperature + 50 ° C.”, preferably “melting temperature + 2 ° C.” to “melting temperature” of the composition. It can be applied by heating to + 30 ° C, particularly preferably in the range of “melting temperature + 5 ° C” to “melting temperature + 20 ° C”. If the heating temperature is lower than the above range, the spread of the adhesive in the adherend surface may be insufficient and adhesion unevenness may occur. If the heating temperature exceeds the above range, volatilization or decomposition of the adhesive partially proceeds. In some cases, desired adhesive properties cannot be obtained.
[0038] 上記固定化剤の塗布量は、使用するウェハなどの接着面のサイズ、加工工程で要 求される密着性の程度に応じて任意に選択することができ、たとえば、接着剤層の厚 み力 0. 01 μ m〜2mm、好ましく ίま 0. 05 μ m〜lmm、より好ましく ίま 0. 1 μ m〜0 . 5mmとなる量で塗布することが望ましい。接着剤層の厚みが前記範囲を下回ると、 充分に接着されないことがあり、前記範囲を超えると接着強度が低下し、接着面から の剥がれ、接着剤の材破が生じる場合がある。なお、接着層の厚みは、接着剤の量 および貼り合わせるときの圧力で調整することができる。  [0038] The amount of the fixing agent applied can be arbitrarily selected according to the size of the adhesive surface of the wafer or the like to be used and the degree of adhesion required in the processing step. It is desirable to apply in an amount such that the thickness force is 0.01 μm to 2 mm, preferably 0.5 μm to 1 mm, more preferably 0.1 μm to 0.5 mm. If the thickness of the adhesive layer is less than the above range, it may not be sufficiently adhered, and if it exceeds the above range, the adhesive strength may be reduced, peeling off from the adhesive surface, and material failure of the adhesive may occur. The thickness of the adhesive layer can be adjusted by the amount of the adhesive and the pressure at the time of bonding.
[0039] ウェハと支持体とを貼り合せる方法としては、  [0039] As a method of bonding the wafer and the support,
(i)ウェハおよび支持体のいずれか一方もしくは両方に接着剤組成物を塗布して、両 者を貼り合せる方法、および (i) Applying an adhesive composition to one or both of the wafer and the support, To paste the person, and
(ii)タブレット状の接着剤組成物をウェハと支持体との間に介在させた後、その状態 で加熱して接着剤組成物を溶融させることにより、ウェハと支持体とを貼り合せる方法 などが挙げられる。(ii)の方法においては、接着剤中の気泡を除去し、接着層の厚み を一定にするため、 200Torr以下の減圧下で行うことが好ましい。  (ii) A method of bonding the wafer and the support by interposing a tablet-like adhesive composition between the wafer and the support and then heating in that state to melt the adhesive composition Is mentioned. The method (ii) is preferably performed under a reduced pressure of 200 Torr or less in order to remove bubbles in the adhesive and make the thickness of the adhesive layer constant.
[0040] 上記のようにしてウェハと支持体とを貼り合せた後、溶融温度以下、好ましくは「溶 融温度 20°C」以下、特に好ましくは「溶融温度 40°C」以下にまで冷却することに より、ウェハと支持体とが強固に接着される。 [0040] After bonding the wafer and the support as described above, the wafer is cooled to a melting temperature or lower, preferably "melting temperature 20 ° C" or lower, particularly preferably "melting temperature 40 ° C" or lower. As a result, the wafer and the support are firmly bonded.
上記のようにして支持体に固定ィ匕したウェハの加工処理は、使用した接着剤組成 物の溶融温度より低!ヽ温度で実施することが好ま ヽ。  The processing of the wafer fixed on the support as described above is lower than the melting temperature of the adhesive composition used!こ と が It is preferable to carry out at temperature ヽ.
[0041] <剥離方法 > [0041] <Peeling method>
本発明のウェハ加工方法では、後述するウェハ加工処理後に、支持体からウェハ( 半導体チップの場合も含む)を剥離する。この剥離工程に際しては、ウェハおよび支 持体の少なくとも一方を、使用した接着剤組成物の溶融温度以上に加熱すること〖こ より、該接着剤組成物が溶融され、ウェハを支持体から剥離することができる。  In the wafer processing method of the present invention, the wafer (including a semiconductor chip) is peeled from the support after the wafer processing described later. In this peeling step, at least one of the wafer and the support is heated to a temperature equal to or higher than the melting temperature of the used adhesive composition, so that the adhesive composition is melted and the wafer is peeled off from the support. be able to.
[0042] 剥離後の面に接着剤が残存して!/ヽる場合は、接着剤組成物を溶解することができ る溶剤で洗浄して除去することができる。このような溶剤としては、上記接着剤組成物 を溶解することができれば特に限定されず、たとえば、 [0042] If the adhesive remains on the peeled surface, it can be removed by washing with a solvent capable of dissolving the adhesive composition. Such a solvent is not particularly limited as long as it can dissolve the adhesive composition. For example,
イソプロパノーノレ、ブタノーノレ、へキサノーノレ、エタノーノレ、メタノーノレ、エチレングリコ ール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、フエノー ル、 t-ァミルアルコール、シクロへキサノール等のアルコール類;  Alcohols such as isopropanol, butanol, hexanol, ethanol, methanol, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, phenol, t-amyl alcohol, cyclohexanol;
n—ペンタン、シクロペンタン、 n キサン、シクロへキサン、 n—ヘプタン、シクロへ プタン、 n オクタン、シクロオクタン、 n—デカン、シクロデカン、ジシクロペンタジェン 水素化物、ベンゼン、トルエン、キシレン、デュレン、インデン、デカリン、テトラリン、テ トラヒドロナフタレン、デカヒドロナフタレン、スクヮラン、ェチルベンゼン、 t ブチルベ ンゼン、トリメチルベンゼン等の炭化水素系溶媒;  n-pentane, cyclopentane, n-xane, cyclohexane, n-heptane, cycloheptane, n-octane, cyclooctane, n-decane, cyclodecane, dicyclopentagen hydride, benzene, toluene, xylene, durene, indene Hydrocarbon solvents such as, decalin, tetralin, tetrahydronaphthalene, decahydronaphthalene, squalane, ethylbenzene, t-butylbenzene and trimethylbenzene;
アセトン、メチルェチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロへキ サノン等のケトン類;ェチルエーテル、エチレングリコールジメチルエーテル、ェチレ ングリコールジェチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレン グリコールジェチルエーテル、テトラヒドロフラン、ジォキサン等のエーテル類; 酢酸ェチル、酢酸ブチル、酪酸ェチル、エチレングリコールモノメチルエーテルァセ テート、エチレングリコーノレモノェチノレエーテノレアセテート、エチレングリコーノレモノァ セテート、ジエチレングリコーノレモノメチノレエーテノレアセテート、ジエチレングリコーノレ モノエチノレエーテノレアセテート、プロピレングリコールモノメチルエーテルアセテート、 プロピレングリコールモノェチルエーテルアセテート、ジプロピレングリコーノレモノメチ ルエーテルアセテート、ジプロピレングリコールモノェチルエーテルアセテート等のェ ステル類;および、 Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone; ethyl ether, ethylene glycol dimethyl ether, ethyl Ethers such as ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, dioxane, etc .; ethyl acetate, butyl acetate, butyl butyrate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ethinoate acetate , Ethylene glycol monoacetate, diethylene glycol monomethinoate etherate acetate, diethylene glycol monoethinoate etherate acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate Esters such as dipropylene glycol monoethyl ether acetate; Beauty,
ジメチルホルムアミド、ジメチルァセトアミド、 N—メチルピロリドン、へキサメチルホスホ ミド、ジメチルスルホキシド、 γ ブチロラタトン、クロ口ホルム、塩化メチレン等の極性 溶媒、フォトレジスト剥離液などを用いることができる。  Polar solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, hexamethylphosphomide, dimethyl sulfoxide, γ-butyrolatatone, blackform, methylene chloride, and photoresist stripping solutions can be used.
[0043] これらの中では、イソプロパノール、エタノール、メタノール、アセトン、メチルェチル ケトン、テトラヒドロフランが好ましい。また、上記溶剤は、単独で用いても、 2種以上を 混合して用いてもよい。  Among these, isopropanol, ethanol, methanol, acetone, methyl ethyl ketone, and tetrahydrofuran are preferable. The above solvents may be used alone or in combination of two or more.
洗浄方法としては、ウェハを洗浄液に浸漬する方法、ウェハに洗浄液をスプレーす る方法などが挙げられる。洗浄液の温度は特に限定されないが、好ましくは 20〜80 。C、より好ましくは 30〜50°Cである。  Examples of the cleaning method include a method of immersing a wafer in a cleaning solution and a method of spraying a cleaning solution on the wafer. The temperature of the cleaning liquid is not particularly limited, but is preferably 20 to 80. C, more preferably 30 to 50 ° C.
[0044] 本発明で用いられる支持体の材質は特に制限されな ヽが、半導体プロセスで用い る場合は、溶出金属のないものが好ましい。たとえば、炭化珪素、アルミナなどのセラ ミックス基板、シリコン、ステンレスなどのメタル基板を好適に用いることができる。また 、溶融した接着剤組成物が支持体上に均一に広がりやすくするために、支持体表面 に前述の界面活性剤を塗布したり、微細な溝パターンなどを予め形成しておくことも 好ましい。  [0044] The material of the support used in the present invention is not particularly limited. However, when used in a semiconductor process, a material having no eluted metal is preferable. For example, a ceramic substrate such as silicon carbide or alumina, or a metal substrate such as silicon or stainless steel can be preferably used. In order to make the molten adhesive composition easily spread uniformly on the support, it is also preferable to apply the above-mentioned surfactant on the support surface or to form a fine groove pattern or the like in advance.
[0045] 支持体への微細な溝パターンは、感光性榭脂を用いて、あるいはメツキにより形成 することができる。高温での耐性、繰り返し使用の観点からメツキ法で形成されたバタ ーンが好ましい。パターン形状は貼り合わせ膜厚に応じたパターン高さに制御すれ ば、ノターンを貼り合わせギャップ制御用の柱として活用することができ、貼り合わせ の面内精度を容易に改善することができる。さらには、面内でのパターンデザインを 接着剤組成物の流れ方向(中央力も周辺部に向力つて流れるなど)に応じて設定す ることで、貼り合わせ時の気泡、面内への濡れ広がりを制御することもできる。 [0045] A fine groove pattern on the support can be formed using a photosensitive resin or by plating. From the viewpoint of resistance at high temperatures and repeated use, a pattern formed by a plating method is preferred. If the pattern shape is controlled to the pattern height according to the bonding film thickness, noturn can be used as a pillar for bonding gap control. The in-plane accuracy can be easily improved. Furthermore, by setting the in-plane pattern design according to the flow direction of the adhesive composition (the center force also flows toward the periphery, etc.), bubbles during bonding and wetting into the surface spread. Can also be controlled.
[0046] <加工プロセス >  [0046] <Processing process>
支持体に貼り合わされたウェハは支持体ごと、バックグラインド装置にセットされ、ゥ ェハの厚みが約 100 mに達する程度まで荒研削される。その後、研削で生じた研 削歪み層の除去を行い、所望の 20〜: L 00 /z m厚にまでカ卩ェする。この時の荒研削 方法については特に制限はなぐ公知の方法を用いることができる。研削歪みの除 去方法については、フェルト砥石方式、プラズマエッチング方式、 CMP方式および 化学エッチング方式など力 選択して行うことができる。  The wafer bonded to the support is set on the back grinder together with the support, and is roughly ground until the wafer thickness reaches about 100 m. Thereafter, the grinding strain layer generated by grinding is removed, and the resulting layer is covered to a desired thickness of 20 to: L 00 / z m. The rough grinding method at this time can be a known method without any particular limitation. The grinding strain can be removed by selecting force such as felt grinding wheel method, plasma etching method, CMP method and chemical etching method.
[0047] 上記フェルト砥石方式で用いられるフェルト砥石としては、たとえば、特開 2002— 2 83211号公報、特開 2002— 283212号公報などに記載されているフェルト素材に 砥粒を含浸させて作製した砥石を好適に用いることができる。  [0047] The felt grindstone used in the felt grindstone method is produced, for example, by impregnating a felt material described in JP-A-2002-28311, JP-A-2002-283212, etc. with abrasive grains. A grindstone can be used suitably.
上記プラズマエッチング方式では、特開平 6— 338479号公報、再表 98/01695 0号公報、特開 2003— 100718号公報、特開 2003— 229418号公報などに示され ている装置を用い、 CF、 C F、 C F (ォクタフルォロシクロペンテン)などのエツチン  In the above plasma etching method, the apparatus shown in JP-A-6-338479, Table 98/016950, JP-A-2003-100718, JP-A-2003-229418, etc. is used, and CF, Ettin such as CF and CF (octafluorocyclopentene)
4 4 8 5 8  4 4 8 5 8
グガスを用いて行うことができる。プラズマエッチング方法としては、ウェハの温度制 御および異方エッチングが可能なリアクティブイオンエッチング (RIE)法力 加工速 度およびウェハへの温度付加が少な 、点で好まし 、。  It can be performed using ggus. As a plasma etching method, the reactive ion etching (RIE) method capable of controlling the temperature of the wafer and anisotropic etching is preferred in terms of processing speed and less temperature applied to the wafer.
[0048] CMP方式は、素子形成時にも平坦ィ匕のために用いられる方式で、裏面研磨の際 は、汚染イオンを極力排除するためシリコン微粒子を水分散させた単純なスラリーに 切り替えることで、研磨を行うことができる。 [0048] The CMP method is a method used for flatness even during element formation. When polishing the back surface, by switching to a simple slurry in which silicon fine particles are dispersed in water to eliminate contaminated ions as much as possible, Polishing can be performed.
化学エッチング方式は、約 40〜50%の KOH溶液、 HFZ硝酸混合溶液などをェ ツチング液として行われ、 SEZ社製「GL-210S」の様に装置化されており、これを用い ることがでさる。  The chemical etching method is performed using about 40-50% KOH solution, HFZ nitric acid mixed solution, etc. as the etching solution, and it is made into an apparatus like “GL-210S” manufactured by SEZ. I'll do it.
[0049] 所望の厚みに研磨を終えたウェハを半導体チップにして実装するまでの加工処理 は、半導体チップの用途に応じて異なる力 本発明では、これまで成し得なかったプ 口セスを支持体に貼り合わせた状態で行うことが可能となる。そのようなプロセスの一 例を以下に示す。 [0049] The processing until the wafer that has been polished to a desired thickness is mounted as a semiconductor chip varies depending on the application of the semiconductor chip. The present invention supports a process that could not be achieved in the past. It becomes possible to perform it in a state of being bonded to the body. One of such processes An example is shown below.
(1)研磨面にレジストパターンを形成し、これをマスクとしてウェハをエッチングする ことにより、所望の構造体、たとえば、空洞、穴 (貫通孔含む)、突起、溝などをウエノ、 裏面に形成する。  (1) A resist pattern is formed on the polished surface, and the wafer is etched using the resist pattern as a mask to form desired structures such as cavities, holes (including through holes), protrusions, grooves, etc. on the wafer and the back surface. .
[0050] (2)研磨面に有機膜層を塗布し、焼成して成膜することにより、研磨面のイオン汚 染防止膜とする。  [0050] (2) An organic film layer is applied to the polished surface and baked to form an ion-contamination preventing film on the polished surface.
(3)所望の硬度および接着力を有する固定化剤を選択することにより、ダイシング テープに貼り替えることなくウェハをダイシングする。  (3) The wafer is diced without being attached to the dicing tape by selecting a fixing agent having a desired hardness and adhesive strength.
(4)貫通ビアを検査電極に用い、薄肉化後にウェハレベルバーンインテストを行う。  (4) A through-via is used as an inspection electrode, and a wafer level burn-in test is performed after thinning.
[0051] (5)先ダイシングによりダイシンダストリートに切削溝を形成したウェハを、上記加工 方法に従って切削溝が露出するまで薄肉化し、小片化された半導体チップを、固定 ィ匕剤を溶融させると同時にピックアップし、該チップに付着残留した固定化剤をアン ダーフィル剤またはチップボンディング剤として活用してパッケージ基板に実装する。 [0051] (5) When a wafer in which cutting grooves are formed in die cinder street by tip dicing is thinned until the cutting grooves are exposed in accordance with the above-described processing method, and the semiconductor chip that has been cut into pieces is melted with the fixing adhesive. At the same time, it is picked up and mounted on the package substrate using the fixing agent remaining on the chip as an underfill agent or a chip bonding agent.
<ウェハ >  <Wafer>
本発明のウェハ加ェ方法で用 ヽられる半導体ウェハは特に制限されず、用途ゃカロ ェ方法に応じた半導体ウェハを用いることができ、大面積のものや、多様で複雑な構 造を表面に有するものでもよい。  The semiconductor wafer used in the wafer etching method of the present invention is not particularly limited, and a semiconductor wafer suitable for the calorie method can be used for the application, and has a large area or various complicated structures on the surface. You may have.
[0052] たとえば、上記(5)のプロセスには、複数のダイシンダストリートによって区画された 領域内に形成された半導体素子を有し、該ダイシンダストリートに、半導体チップの 厚さに相当する切削溝を先ダイシングにより形成した半導体ウェハを用いることがで きる。 [0052] For example, the process (5) includes a semiconductor element formed in a region partitioned by a plurality of die cinder streets, and the die cinder streets are cut corresponding to the thickness of the semiconductor chip. A semiconductor wafer having grooves formed by tip dicing can be used.
また、上記プロセス (4)には、表面に所定の深さの孔が形成され、該孔の内壁が絶 縁膜で被覆され、該絶縁膜で被覆された孔に導電性電極材料が埋め込まれた半導 体ウェハを用いることができる。  In the process (4), a hole having a predetermined depth is formed on the surface, the inner wall of the hole is covered with an insulating film, and a conductive electrode material is embedded in the hole covered with the insulating film. In addition, a semiconductor wafer can be used.
[0053] さらに、上記半導体ウェハは、導通用の突起電極、たとえばノヽンダバンプなどが表 面に形成されて 、てもよ 、。  [0053] Further, the semiconductor wafer may have conductive bump electrodes, for example, nodal bumps, formed on the surface.
[実施例]  [Example]
以下、上記した例の幾つ力を実践した実施例に基づいて本発明をより具体的に説 明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples in which several powers of the above-described examples are practiced. As will be apparent, the present invention is not limited to these examples.
[0054] なお、以下の実施例で用いた化合物は、予め THF溶液とし、 20重量部のイオン交 換榭脂を加えて 10時間攪拌混合することによって脱イオン化処理して精製した化合 物を用い、 Na, K, Ca, Fe, Cu, Ni, Cr, Alの各金属含有量が lppm以下であるこ とを確認して用いた。また、溶融温度、溶融温度幅、溶融粘度および接着強度の測 定は以下のようにして行った。  [0054] The compounds used in the following examples are compounds that have been purified by deionization treatment by adding 20 parts by weight of ion-exchanged resin in advance and stirring and mixing for 10 hours. The metal contents of Na, K, Ca, Fe, Cu, Ni, Cr, and Al were confirmed to be less than lppm. The melting temperature, melting temperature range, melt viscosity, and adhesive strength were measured as follows.
[0055] <溶融温度および溶融温度幅 >  [0055] <Melting temperature and melting temperature range>
示差走査熱量装置(セイコー社製「RDC220」)を用い、 2°CZmin、空気中での値 を測定した。メインの溶融ピーク曲線のピーク温度を溶融温度とし、該溶融ピーク曲 線の始点と終点との温度差を溶融温度幅とした。  Using a differential scanning calorimeter (“RDC220” manufactured by Seiko), the value in air at 2 ° C. Zmin was measured. The peak temperature of the main melting peak curve was defined as the melting temperature, and the temperature difference between the start point and end point of the melting peak curve was defined as the melting temperature width.
<溶融粘度 >  <Melting viscosity>
E型粘度計 (東機産業社製)を用い、溶融温度にて測定した。  Using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd.), the measurement was performed at the melting temperature.
[0056] <接着強度 > [0056] <Adhesive strength>
各接着剤組成物固有の接着強度として、 25士 2°Cにおける接着強度 A (MPa)お よび接着剤組成物の溶融温度より 20°C低!ヽ温度における接着強度 B (MPa)を、以 下のようにして測定し、接着強度差 (A—B)を求めた。  The adhesive strength unique to each adhesive composition is: adhesive strength A (MPa) at 25 ° C at 2 ° C and adhesive strength B (MPa) at a temperature 20 ° C lower than the melting temperature of the adhesive composition. Measurement was performed as follows to determine the difference in adhesive strength (A−B).
図 5に示すように、 650 /z m厚のシリコンウェハ片(50mmX 12mm)と 0. 7mm厚 の無アルカリガラス片(50mm X 12mm)とを、シリコンウェハの表面(製品状態にお V、て研磨されて 、る面)を接着面として、各接着剤組成物を用いて接着した試験片( 接着面積: 12mm X 12mm、接着厚み: 10 m)を準備し、試験片を縦にして端をつ かんで上下に一定加重で引張り、両基板が剥がれたときの引張りせん断強度を測定 し、その値を接着強度とした。なお、試験片を作製する際に用いたシリコンウェハ (bar esilicon)および無アルカリガラス(コ一-ング社製「# 1737」)は、予め RCA洗浄 [W. Kern, D.A.Puotinen, RCA Review, 31, pl87 (1970)参照]したものを用いた。具体的 には、シリコンゥエーハを SC— 1液(H 0 :NH OH :H O = 5: 1: 1) 80。Cの槽に 10  As shown in Fig. 5, 650 / zm thick silicon wafer piece (50mm x 12mm) and 0.7mm thick non-alkali glass piece (50mm x 12mm) were polished on the surface of silicon wafer (V in the product state) Prepare test specimens (adhesive area: 12 mm x 12 mm, adhesive thickness: 10 m) using the adhesive composition as the adhesive surface, and connect the ends of the test piece vertically. The steel sheet was pulled up and down with a constant load, and the tensile shear strength was measured when both substrates were peeled off. The value was taken as the adhesive strength. The silicon wafer (baresilicon) and non-alkali glass (“# 1737” manufactured by Corning Co., Ltd.) used for preparing the test specimens were previously cleaned by RCA [W. Kern, DAPuotinen, RCA Review, 31 , pl87 (1970)]. Specifically, silicon wafer is SC-1 solution (H 0: NH OH: H 2 O = 5: 1: 1) 80. 10 in C tank
2 4 2 2  2 4 2 2
分程度入れ有機物汚染、金属汚染を除去し、これを超純水で洗浄した。次に、 HF : H O = 1 : 50の液を用いて、前工程でシリコンゥエーハ上に生じたシリコン酸ィ匕膜を The organic matter contamination and metal contamination were removed for about a minute, and this was washed with ultrapure water. Next, using a solution of HF: H 2 O = 1: 50, the silicon oxide film formed on the silicon wafer in the previous process is
2 2 twenty two
除去した。この後、再び超純水で洗浄し、さらに、 SC— 2液 (H 0 :HC1:H O =6 : 1 : 1) 80°Cの槽内で残留の金属汚染を除去し、超純水で洗浄して乾燥した。 Removed. After this, it is washed again with ultrapure water, and further SC-2 solution (H 0: HC1: HO = 6: 1 : 1) Residual metal contamination was removed in an 80 ° C bath, washed with ultrapure water and dried.
[0057] 測定はテンシロン型引張り試験機を用い、引張速度 1. 67 X 10"4m/s,所定温度 で行った。試験片を所定温度に保っために、試験片に触れないようにリボンヒーター を巻いたガラス管(サンプル加温用ヒーター)を配置し、試験片に取り付けた熱電対 の温度が所定の温度になるように温度コントローラーでリボンヒーターを加熱制御した 。なお、図 5の左上図は、接着強度測定用試験片を上から見た図であり、左下図はこ の試験片を横力も見た図である。また、各実施例において実際に用いたシリコンゥ ノ、と基板とを接着したときの接着強度についても同様にして測定した。 [0057] The measurement was performed using a Tensilon type tensile tester at a tensile speed of 1. 67 X 10 " 4 m / s at a predetermined temperature. To keep the test piece at the predetermined temperature, the ribbon was not touched. A glass tube wrapped around a heater (heater for sample heating) was placed, and the ribbon heater was heated and controlled by the temperature controller so that the temperature of the thermocouple attached to the test specimen reached the specified temperature. The figure shows the test piece for measuring the adhesive strength from the top, and the figure on the lower left shows the test piece with the lateral force.The silicon unit actually used in each example, the substrate, The adhesive strength when adhering was measured in the same manner.
[0058] (実施例 1)  [Example 1]
コレステロール (分子量; 386. 7、溶融温度; 150°C、溶融温度幅; 1°C、溶融粘度; 2mPa' s、 25°Cにおける接着強度 Aと 130°Cにおける接着強度 Bとの差; 0. 2MPa) 0. 354gを直径 10mmの柱状加圧成型器に秤量し、 200kg 'cm— 2の圧力を 3分間力 け、直径 10mm、厚さ 5. 5mmの円柱状タブレットを得た。 Cholesterol (Molecular weight; 386.7, Melting temperature: 150 ° C, Melting temperature range; 1 ° C, Melt viscosity; Adhesive strength A at 2 mPa's, 25 ° C and Adhesive strength B at 130 ° C; 0 2MPa) 0.354g was weighed into a columnar pressure molding machine with a diameter of 10mm, and 200kg'cm- 2 pressure was applied for 3 minutes to obtain a cylindrical tablet with a diameter of 10mm and a thickness of 5.5mm.
[0059] 得られたタブレットを、複数の半導体素子が形成された 6インチシリコンウェハ (厚さ 650 /z m)上におき、その上に厚み 0. 7mm、 1辺 20cmの正方形 SUS基板を乗せ、 真空オーブンに入れた。なお、支持体となる SUS基板は、へキサメチルジシラザンの 5%イソプロピルアルコール溶液をスピンコート塗布して乾燥し表面の疎水化処理を 行ったものを用いた。真空オーブン(lOTorr)を l°CZminの速度で 160°Cまで昇温 すると、タブレットは、ウェハ温度が 148°C程度で溶融して液状となった。この時点で 真空吸引を停止し、 lOTorrの減圧下で溶融したコレステロールの脱気を 2分間行う と、コレステロールはウェハ全面に広がった。真空オーブン力 貼り合わせたサンプ ルを取り出すとサンプルが急速に冷却されるため直ちにコレステロールが結晶化し、 両基板は強固に接着された。上記と同じ仕様の 6インチシリコンウェハと SUS基板と を接着させて図 5と同様の試験片を作製し、引っ張りせん断強度を測定したところ、 接着強度は 5MPa (25°C)であった。  [0059] The obtained tablet is placed on a 6-inch silicon wafer (thickness: 650 / zm) on which a plurality of semiconductor elements are formed, and a square SUS substrate having a thickness of 0.7 mm and a side of 20 cm is placed thereon, Placed in a vacuum oven. The SUS substrate used as the support was a substrate obtained by spin-coating a 5% isopropyl alcohol solution of hexamethyldisilazane, drying it, and subjecting the surface to hydrophobic treatment. When the vacuum oven (lOTorr) was heated to 160 ° C at a rate of l ° CZmin, the tablet melted and became liquid at a wafer temperature of about 148 ° C. At this point, when vacuum suction was stopped and degassing of the melted cholesterol under the reduced pressure of lOTorr for 2 minutes, cholesterol spread over the entire wafer surface. Vacuum oven force When the attached sample was taken out, the sample was cooled rapidly, so that cholesterol crystallized immediately and the two substrates were firmly bonded. A 6-inch silicon wafer with the same specifications as above and a SUS substrate were bonded together to produce a test piece similar to that shown in FIG. 5, and the tensile shear strength was measured. The bond strength was 5 MPa (25 ° C).
[0060] 次いで、市販の研磨装置を用いて、 SUS基板に貼り合わせたウェハの裏面を荒研 削した後、ディスコ社製「ポリッシヤー DFP8140」にてフェルト砥石方式による研磨を行 い、ウェハ厚みを 100 /z mとした。研磨後、 SUS基板に接着したウェハの研磨面にド ライフイルムレジストをラミネート成膜し、 50 m口の穴パターンを形成した。この間、 ラミネート温度(100°C)、アルカリ現像および乾燥(120°C)のストレス力 ウェハ、支 持体および固定化剤に加わったが、ゥヱハは支持体に強固に接着していた。 [0060] Next, using a commercially available polishing apparatus, the back surface of the wafer bonded to the SUS substrate was rough-polished, and then polished by a felt grindstone method using “Polisher DFP8140” manufactured by Disco Corporation to reduce the wafer thickness. 100 / zm. After polishing, do not touch the polished surface of the wafer adhered to the SUS substrate. Life film resist was laminated to form a 50 m hole pattern. During this time, stress was applied to the lamination temperature (100 ° C), alkali development and drying (120 ° C), wafers, supports and fixing agents, but the wafer was firmly adhered to the support.
[0061] 次に、 50 μ m口の穴パターンをマスクとして、 CFをエッチングガスとして用いた RI [0061] Next, RI using CF as an etching gas with a 50 μm hole pattern as a mask
4  Four
Eにより、ウェハ表面に達する貫通孔を形成した。その後、 SUS基板を加熱して固定 化剤を溶融させ、ウェハを支持体からずらし取り、 40°Cのイソプロピルアルコール中 に 1分間浸して洗浄することにより、裏面力も空けた貫通孔を有する 100 m厚ゥヱ ハを得た。  By E, a through hole reaching the wafer surface was formed. After that, the SUS substrate is heated to melt the fixing agent, and the wafer is removed from the support, washed by immersing it in 40 ° C isopropyl alcohol for 1 minute, and has a through-hole with a back surface force vacant 100 m I got Thoroughly.
[0062] 得られたウェハを従来通りダイシングして小片化し、貫通孔を形成していない場合と 半導体チップの不良率を比較すると、貫通孔を設ける新たな裏面加工を施しても不 良率に変化がなかった。上記カ卩ェ方法のモデル図を図 1に示す。  [0062] When the obtained wafer is diced into small pieces and the through hole is not formed and the defect rate of the semiconductor chip is compared with the case where the through hole is not formed, the defect rate is reduced even when a new back surface processing is performed to provide the through hole. There was no change. Figure 1 shows a model diagram of the above-mentioned caching method.
(実施例 2)  (Example 2)
実施例 1において、半導体素子が形成された 6インチシリコンウェハの代わりに、厚 膜レジスト (JSR (株)製「THBシリーズ」)を用いて高さ 65 μ mのハンダバンプ(図 2) をウェハ表面に 100 m間隔で形成し、さらに先ダイシングにより 80 mの深さの切 削溝(5mm角)を予め形成した凹凸パターン付き 6インチウェハを用い、コレステロ一 ルの代わりに、上記化学式 (8)に示す化合物(分子量; 404. 7、溶融温度; 223°C、 溶融温度幅; 1°C、溶融粘度; ImPa's . 5gと、離形剤「KF54」(信越シリコーン社 製) 0. 15gと、微粒ニ酸ィ匕珪素粒子 (塩野義製薬 (株)製、平均粒径 ; 2 ;ζ ΐη) 0. 09g との混合物 (溶融温度; 223°C、溶融温度幅; 1°C、溶融粘度; lmPa' s、 25°Cにおけ る接着強度 Aと 203°Cにおける接着強度 Bとの差; 0. 3MPa)を用いてタブレットを形 成し、 SUS基板の代わりにガラス基板を用い、真空オーブンの加熱温度を 240°Cに したこと以外は、実施例 1と同様にしてガラス基板にウェハを貼り合わせた。ガラス基 板面からウェハの凹凸パターンを顕微鏡観察するとパターンの溝部分に一様に固定 ィ匕剤が浸透しており、気泡は観察されな力 た。また、上記と同じ凹凸パターン付き 6 インチシリコンウェハとガラス基板とを接着させて図 5と同様の試験片を作製し、接着 強度を測定したところ、引っ張りせん断強度は 4. 5MPa (25°C)であった。  In Example 1, instead of the 6-inch silicon wafer on which the semiconductor elements were formed, a thick-film resist ("THB series" manufactured by JSR Corporation) was used to apply solder bumps (Fig. 2) with a height of 65 μm to the wafer surface. A 6-inch wafer with a concavo-convex pattern, which is formed at intervals of 100 m and further formed with cutting grooves (5 mm square) with a depth of 80 m by pre-dicing, is replaced by the above chemical formula (8) (Molecular weight; 404.7, melting temperature: 223 ° C, melting temperature range: 1 ° C, melt viscosity; ImPa's. 5 g, release agent “KF54” (manufactured by Shin-Etsu Silicone) 0.15 g, A mixture with fine particles of silicon silicate silicon particles (manufactured by Shionogi & Co., Ltd., average particle size; 2; ζ ΐη) 0.09g (melting temperature; 223 ° C, melting temperature range; 1 ° C, melt viscosity; lmPa's, the difference between the adhesive strength A at 25 ° C and the adhesive strength B at 203 ° C; 0.3 MPa A wafer was bonded to the glass substrate in the same manner as in Example 1 except that a glass substrate was used instead of and the heating temperature of the vacuum oven was 240 ° C. When observed, the fixing agent uniformly penetrated into the groove portion of the pattern, and bubbles were not observed, and the 6-inch silicon wafer with the same concavo-convex pattern and the glass substrate were adhered to each other as shown in FIG. The same test piece was prepared and the adhesive strength was measured. The tensile shear strength was 4.5 MPa (25 ° C).
[0063] 次いで、ウェハを実施例 1と同様にして 100 m厚まで研削および研磨した後、ディ スコ社製「ポリッシヤー DFP8140Jにてフェルト砥石方式による研磨を行い、 70 μ mま で薄肉化を行った。研磨中、ウェハは支持体のカラス基板力も剥がれることなく強固 に固着されていた。 Next, after grinding and polishing the wafer to a thickness of 100 m in the same manner as in Example 1, “Polisher DFP8140J made by Sco Co., Ltd. was used to polish the felt to a thickness of 70 μm. During the polishing, the wafer was firmly fixed without peeling off the crow substrate force of the support.
研磨面を絶縁膜で保護するため、研磨面にスピンコートにて感光性絶縁膜 CiSR ( 株)製「WPR1100」)を 2 /z m塗布し、ダイシング溝部分を露光—現像によって除去し た。次いで、その上に別途 70 m厚に薄肉化し、 3mm角に小片化したウェハ片をの せた。積層物を 240°Cに加熱して固定化剤を溶融させるとともに、上記絶縁膜「WP Rl 100」を接着剤として、ハンダバンプ付き 5mm角ウェハ片(70 μ m厚)と 3mm角ゥ ハ片(70 μ m厚)とを硬化接着させた積層体を支持体からずらし取った。  In order to protect the polished surface with an insulating film, a photosensitive insulating film CiSR (“WPR1100”) 2 / zm was applied to the polished surface by spin coating, and the dicing groove was removed by exposure-development. Next, a wafer piece thinned to a thickness of 70 m and further cut into 3 mm squares was placed thereon. The laminate is heated to 240 ° C to melt the immobilizing agent, and with the insulating film “WP Rl 100” as an adhesive, a 5 mm square wafer piece (70 μm thickness) with solder bumps and a 3 mm square wafer piece ( 70 μm thick) was removed from the support.
[0064] 5mm角ウェハ片に 3mm角ウェハ片が積層された小片を 40°Cの tーァミルアルコー ルに 3分浸して固定化剤を除去した。 5mm角ウェハ側に形成してあったノヽンダバン プは、初期の状態を保持しており脱落する物はな力 た。工程のモデル図を図 3に 示す。 [0064] A small piece in which a 3 mm square wafer piece was laminated on a 5 mm square wafer piece was immersed in a 40 ° C tantalum alcohol for 3 minutes to remove the fixing agent. The non-bumper bump formed on the 5mm square wafer maintained its initial state and did not drop off. Figure 3 shows a model diagram of the process.
(実施例 3)  (Example 3)
実施例 1で 100 m厚に薄肉化し、貫通孔を形成したウェハをそのままダイシング 装置 (ディスコ社製「DAD321」)にセットし、半導体素子単位にダイシング溝を形成 した。この時点では、半導体チップは小片単位で剥がれ落ちることはなぐ固定化剤 によって SUS基板に固定ィ匕されていた。次いで、 SUS基板を 170°Cに加熱し、半導 体チップを個々に真空ピンセットでピックアップして支持体である SUS基板力 分離 し、 40°Cイソプロパノールに 3分間浸して素子面に付着残留した固定化剤を除去し た。  The wafer thinned to 100 m in Example 1 and formed with through-holes was directly set in a dicing apparatus (“DAD321” manufactured by Disco Corporation) to form dicing grooves in units of semiconductor elements. At this point, the semiconductor chip was fixed to the SUS substrate with a fixing agent that would not peel off in small pieces. Next, the SUS substrate was heated to 170 ° C, and the semiconductor chips were individually picked up with vacuum tweezers and separated from the SUS substrate as the support, and immersed in 40 ° C isopropanol for 3 minutes to remain attached to the device surface. The immobilizing agent was removed.
[0065] 各半導体チップの表面 (半導体素子面)の切断エッジ部の欠け不良を、通常のダイ シングテープ (日東電工 (株)製「リバアルファ一 No. 3193M」)を用いて行った場合と 比べたところ、不良率が約 30%低減した。  [0065] In the case where the chipping defect of the cut edge portion of the surface (semiconductor element surface) of each semiconductor chip was performed using a normal dicing tape ("Riva Alpha No. 3193M" manufactured by Nitto Denko Corporation) In comparison, the defect rate was reduced by about 30%.
(実施例 4)  (Example 4)
図 4に示すように、実施例 1の半導体素子が形成された 6インチシリコンウェハにさら に 50 m口、深さ 80 mの穴を空け、穴の壁面、素子面に窒化珪素膜を形成し、穴 を銅メツキで埋めて貫通配線となるビア構造を 3mm口の素子周辺に等間隔で 20個 形成した。このウェハを実施例 1と同様に 100 mまで研肖 1 研磨し、次いでサムコ社 製リアクティブイオンエッチング装置「RIE-10NR」にて研磨面前面を均一にエツチン グし、銅が表面に現れる 80 m厚までエッチングを行った。薄肉化したウェハを支持 体 (SUS基板)ごと窒素雰囲気下に調整したクリーンオーブンに入れ、 140°Cで 20時 間保持したがウェハは支持体力ゝらずれずに保持されていた。 As shown in Fig. 4, the 6-inch silicon wafer on which the semiconductor device of Example 1 was formed was further drilled with a 50 m hole and a depth of 80 m, and a silicon nitride film was formed on the hole wall and device surface. , Via holes filled with copper plating and 20 via structures around the 3mm mouth element at equal intervals Formed. Polish this wafer to 100 m as in Example 1 and polish it uniformly on the front surface using a reactive ion etching system “RIE-10NR” manufactured by Samco. Etching was performed to a thickness of m. The thinned wafer was put together with the support (SUS substrate) in a clean oven adjusted under a nitrogen atmosphere and held at 140 ° C for 20 hours, but the wafer was held without any damage to the support.
[0066] 上記結果は、ウェハレベルバーンインテストは通常 125°Cで行われることから、予め 形成した貫通銅配線を半導体素子のテスト端子として活用すれば、薄肉化した状態 、すなわち、実装直前のチップ状態での動作テストができることを示している。 [0066] The above results show that the wafer level burn-in test is normally performed at 125 ° C. Therefore, if a previously formed through copper wiring is used as a test terminal of a semiconductor element, the thinned state, that is, the chip immediately before mounting It shows that the operation test in the state can be performed.
(実施例 5)  (Example 5)
実施例 2で用いた凹凸パターン付き 6インチウェハとガラス基板とを、固定化剤とし て 1ーォクタデカノール 1. 5g (分子量; 270. 5、溶融温度; 60°C、溶融温度幅; 1°C、 溶融粘度; 1. 5mPa' s、 25°Cにおける接着強度 Aと 40°Cにおける接着強度 Bとの差 ;0. IMPa)を用いて貼り合わせた。貼り合わせはタブレット状に成形した固定化剤を 前記ウェハ上に置き、真空オーブンに入れて lOTorrで 80°Cに加熱し、次いでゥェ ハ底面とガラス基板の底面との距離が 1425 m[ = 75 m+ウェハ厚み(650 μ m ) +ガラス基板厚み(700 μ m) ]となるように各基板を保持した状態で常圧に戻して 冷却し、固定化剤を固化させて行った。ガラス基板面力もウェハの凹凸パターンを顕 微鏡観察すると、パターンの溝部分に一様に固定化剤が浸透しており、気泡は観察 されなかった。  1-octadecanol 1.5 g (molecular weight; 270.5, melting temperature; 60 ° C., melting temperature range) as a fixing agent of a 6-inch wafer with a concavo-convex pattern and a glass substrate used in Example 2 1 ° C, melt viscosity; 1.5 mPa 's, bonded to each other by using the difference between adhesive strength A at 25 ° C and adhesive strength B at 40 ° C (0. IMPa). For bonding, a tablet-shaped immobilizing agent is placed on the wafer, placed in a vacuum oven, heated to 80 ° C with lOTorr, and then the distance between the wafer bottom and the glass substrate bottom is 1425 m [= 75 m + wafer thickness (650 μm) + glass substrate thickness (700 μm)] Each substrate was held and returned to normal pressure and cooled to solidify the immobilizing agent. When the surface roughness of the glass substrate was observed by microscopic observation of the concave / convex pattern of the wafer, the immobilizing agent uniformly penetrated into the groove portion of the pattern, and no bubbles were observed.
[0067] 貼り合わせたサンプルを実施例 1と同様に、ウェハ厚みが 50 mとなるようにウェハ の裏面を荒研削した後、ディスコ社製「ポリッシヤー DFP8140」にてフェルト砥石方式 による研磨を行い、ウェハ厚みを 30 mとした。研磨面には予め 6インチウェハに設 けた 5mm角のダイシング溝が現れ、溝には固定化剤が充填されていることが確認さ れた。  [0067] In the same manner as in Example 1, the bonded sample was roughly ground on the back surface of the wafer so that the wafer thickness was 50 m, and then polished with a disc grinder "Polisher DFP8140" using a felt grindstone method. The wafer thickness was 30 m. On the polished surface, a 5mm square dicing groove provided in advance on a 6-inch wafer appeared, and it was confirmed that the groove was filled with a fixing agent.
ガラス基板を下にして薄化したサンプルをホットプレート上に置き、 80°Cに加熱した 。 5mm角に分断されたチップはバキュームピンセットで容易にピックアップすることが でき、チップのエッジ部も欠けがな 、状態が保たれて 、た。  The thinned sample with the glass substrate down was placed on a hot plate and heated to 80 ° C. The chip divided into 5 mm squares can be easily picked up with vacuum tweezers, and the edge of the chip is not chipped, and the state is maintained.
[0068] (比較例 1) 実施例 2で用いた凹凸パターン付き 6インチウェハ表面にノックグラインドテープ(ト ーョーアドテック製「BGE-164VC」)を貼りつけて、実施例 5と同様に、研削および研 磨を行い、ウェハ厚みを 30 mとした。研磨面を観察すると、予め設けた 5mm角のダ イシング溝のエッジ部に欠落が多数あり、また、溝の中に研磨剤の残留物もあった。 5 mm角に分断されたチップはバキュームピンセットではテープ力 剥離することができ ず、剥がそうとするとチップが割れてしまった。 [0068] (Comparative Example 1) A knock grind tape (“BGE-164VC” manufactured by Toyo Adtec Co., Ltd.) was applied to the surface of a 6-inch wafer with a concavo-convex pattern used in Example 2, and grinding and polishing were performed in the same manner as in Example 5 to reduce the wafer thickness to 30. m. When the polished surface was observed, there were many defects at the edge of the 5 mm square dicing groove provided in advance, and there was abrasive residue in the groove. The chip that was cut into 5 mm squares could not be peeled off with vacuum tweezers, and the chip broke when trying to remove it.
[0069] (比較例 2)  [0069] (Comparative Example 2)
実施例 5と同じ凹凸パターン付き 6インチウェハおよびガラス基板を用い、固定化剤 として溶融温度 45°Cの水溶性シリコーンワックス (信越ィ匕学製「KF6004」)を用いて 、実施例 5と同様にして真空下で加熱して両基板を貼り合わせた。ガラス基板面から ウェハの凹凸パターンの溝部分を観察した際には気泡は見られな力つたが、実施例 5と同じ手順で研削および研磨を行った後の研磨面を見ると、ダイシング溝部に空隙 があり、その部分のチップエッジ部には欠けが生じていた。また、 KF6004は水溶性 であるため、研磨面の洗浄によってダイシング溝部の KF6004が部分的に溶解剥離 している部分があった。研磨面を絶縁膜で保護するため、研磨面にスピンコートにて 感光性絶縁膜 QSR (株)製「WPR1100」 )を 2 μ m塗布しょうとしたところ、固定化剤 が WPR1100に溶解してスピンコート時にチップが飛散してしまった。  The same as in Example 5, using a 6-inch wafer and glass substrate with the same uneven pattern as in Example 5 and using a water-soluble silicone wax having a melting temperature of 45 ° C. (“KF6004” manufactured by Shin-Etsu Chemical Co., Ltd.) as a fixing agent. Then, both substrates were bonded together by heating under vacuum. When observing the groove portion of the concave / convex pattern of the wafer from the glass substrate surface, bubbles were observed, but when the polished surface after grinding and polishing in the same procedure as in Example 5 was observed, the dicing groove portion There was a gap, and the chip edge part of that part was chipped. In addition, since KF6004 is water-soluble, there was a portion where KF6004 in the dicing groove was partially dissolved and separated by cleaning the polished surface. In order to protect the polished surface with an insulating film, a photosensitive insulating film QSR (“WPR1100”) 2 μm was applied to the polished surface by spin coating, and the immobilizing agent dissolved in WPR1100 and spin-coated. Chips were scattered during coating.
[0070] 比較例 1および 2より、従来の方法では 30 μ m厚まで薄化したチップを高収率で得 ることができず、また、研磨した面を追加加工、たとえばチップ裏面を絶縁膜で保護 することなどができな力つた。  [0070] From Comparative Examples 1 and 2, the conventional method cannot obtain a chip thinned to a thickness of 30 μm in high yield, and the polished surface is additionally processed, for example, the back surface of the chip is an insulating film. I couldn't protect it with

Claims

請求の範囲 The scope of the claims
[1] 半導体素子が形成されたウェハ表面と支持体との間に、該ウェハと支持体とを固定 する固定化剤として、分子量が 1000以下の化合物を主成分として含有する接着剤 組成物を介在させ、  [1] An adhesive composition containing, as a main component, a compound having a molecular weight of 1000 or less as a fixing agent for fixing the wafer and the support between the wafer surface on which the semiconductor element is formed and the support. Intervene,
該組成物を加熱溶融してウェハと支持体とを密着させた後、冷却することによりゥ ノ、と支持体とを接着固定し、  The composition is heated and melted to bring the wafer and the support into close contact, and then cooled to bond and fix the unit and the support,
ウェハ裏面を研磨することにより薄肉化し、  By thinning the backside of the wafer,
該組成物を加熱溶融してウェハと支持体とを剥離すること  Heat-melting the composition to separate the wafer and the support
を特徴とするウェハ加工方法。  A wafer processing method.
[2] 上記化合物が、分子内にステロイド骨格または水酸基を有する化合物もしくはその 誘導体であることを特徴とする請求項 1に記載のウェハ加工方法。  [2] The wafer processing method according to [1], wherein the compound is a compound having a steroid skeleton or a hydroxyl group in the molecule or a derivative thereof.
[3] 上記化合物が、分子内にステロイド骨格および水酸基を有する化合物もしくはその 誘導体であることを特徴とする請求項 1に記載のウェハ加工方法。  [3] The wafer processing method according to [1], wherein the compound is a compound having a steroid skeleton and a hydroxyl group in the molecule or a derivative thereof.
[4] 上記化合物の示差走査熱量分析装置で測定した溶融ピーク値での溶融温度が 50 〜300°Cであり、かつ、上記組成物の示差走査熱量分析装置で測定した溶融ピーク 値の始点と終点の温度差で表わされる溶融温度幅が 30°C以下であることを特徴とす る請求項 1に記載のウェハ加工方法。  [4] The melting temperature at the melting peak value measured with a differential scanning calorimeter of the above compound is 50 to 300 ° C., and the starting point of the melting peak value measured with the differential scanning calorimeter of the above composition is 2. The wafer processing method according to claim 1, wherein a melting temperature range represented by a temperature difference at the end point is 30 ° C. or less.
[5] 上記ウェハ裏面を研磨する工程において、該ウェハを 20〜: L00 mまで薄肉化す ることを特徴とする請求項 1に記載のウェハ加工方法。  [5] The wafer processing method according to [1], wherein in the step of polishing the back surface of the wafer, the wafer is thinned to 20 to L00 m.
[6] 上記組成物の 25± 2°Cにおける接着強度を A(MPa)とし、該組成物の溶融温度よ り 20°C低い温度における接着強度を B (MPa)とした場合、該接着強度 Aおよび Bが 下記式(1)を満たすことを特徴とする請求項 1に記載のウェハ加工方法。  [6] When the adhesive strength at 25 ± 2 ° C of the above composition is A (MPa) and the adhesive strength at a temperature 20 ° C lower than the melting temperature of the composition is B (MPa), the adhesive strength 2. The wafer processing method according to claim 1, wherein A and B satisfy the following formula (1).
0<A-B< 0. 5 (MPa) …(1)  0 <A-B <0.5 (MPa) (1)
[7] 上記組成物がタブレット状であることを特徴とする請求項 1に記載のウェハ加工方 法。  [7] The wafer processing method according to [1], wherein the composition is in the form of a tablet.
[8] 上記ウェハが、複数のダイシンダストリートによって区画された領域内に形成された 半導体素子を表面に有することを特徴とする請求項 1に記載のウェハ加工方法。  8. The wafer processing method according to claim 1, wherein the wafer has on its surface a semiconductor element formed in a region partitioned by a plurality of die cinder streets.
[9] 上記ダイシンダストリートに切削溝が形成されて 、ることを特徴とする請求項 8に記 載のウェハ加工方法。 [9] The cutting groove according to claim 8, wherein a cutting groove is formed in the die cinder street. The wafer processing method described.
[10] 上記切削溝が露出するまで研磨によって薄肉化して半導体チップに小片化し、該 半導体チップ単位で支持体力 剥離することを特徴とする請求項 9に記載のウェハ 加工方法。  10. The wafer processing method according to claim 9, wherein the wafer is thinned by polishing until the cutting groove is exposed, and is cut into semiconductor chips, and the support force is peeled off in units of the semiconductor chips.
[11] 上記ウェハが、表面に所定の深さの孔が形成され、該孔の内壁が絶縁膜で被覆さ れ、該絶縁膜で被覆された孔に導電性電極材料が埋め込まれたウェハであることを 特徴とする請求項 1に記載のウェハ加工方法。  [11] The wafer is a wafer in which a hole having a predetermined depth is formed on the surface, an inner wall of the hole is covered with an insulating film, and a conductive electrode material is embedded in the hole covered with the insulating film. The wafer processing method according to claim 1, wherein:
[12] 上記ウェハが導通用の突起電極を有することを特徴とする請求項 1に記載のウェハ 加工方法。  12. The wafer processing method according to claim 1, wherein the wafer has a protruding electrode for conduction.
[13] 上記研磨によりウェハを薄肉化した後、研磨面にさらに加工を施すことにより、構造 体、配線および素子から選ばれる少なくとも 1種を形成することを特徴とする請求項 1 に記載のゥヱハ加工方法。  [13] The wafer according to claim 1, wherein after the wafer is thinned by the polishing, the polished surface is further processed to form at least one selected from a structure, a wiring, and an element. Processing method.
PCT/JP2006/302868 2005-02-23 2006-02-17 Method for processing wafer WO2006090650A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007504692A JPWO2006090650A1 (en) 2005-02-23 2006-02-17 Wafer processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-046853 2005-02-23
JP2005046853 2005-02-23

Publications (1)

Publication Number Publication Date
WO2006090650A1 true WO2006090650A1 (en) 2006-08-31

Family

ID=36927291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302868 WO2006090650A1 (en) 2005-02-23 2006-02-17 Method for processing wafer

Country Status (3)

Country Link
JP (1) JPWO2006090650A1 (en)
TW (1) TW200723382A (en)
WO (1) WO2006090650A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328104A (en) * 2005-05-23 2006-12-07 Jsr Corp Adhesive composition
JP2008071892A (en) * 2006-09-13 2008-03-27 Disco Abrasive Syst Ltd Method of manufacturing laminating device
JP2008244132A (en) * 2007-03-27 2008-10-09 Sanyo Electric Co Ltd Semiconductor device, and manufacturing method therefor
JP2009090416A (en) * 2007-10-10 2009-04-30 Dainippon Printing Co Ltd Method of manufacturing membrane structure
JP2009099954A (en) * 2007-09-04 2009-05-07 Infineon Technologies Ag Method for dividing semiconductor substrate, and method for manufacturing semiconductor circuit arrangement
JP2009194287A (en) * 2008-02-18 2009-08-27 Denki Kagaku Kogyo Kk Method for grinding electronic component assembly, method for dividing electronic component assembly using same, and adhesive resin used for same
JP2009224659A (en) * 2008-03-18 2009-10-01 Disco Abrasive Syst Ltd Method of dividing work
JP2010177540A (en) * 2009-01-30 2010-08-12 Panasonic Corp Method of dry-etching substrate
JP2010258160A (en) * 2009-04-23 2010-11-11 Toshiba Corp Semiconductor device and method of manufacturing the same
US7888758B2 (en) 2008-03-12 2011-02-15 Aptina Imaging Corporation Method of forming a permanent carrier and spacer wafer for wafer level optics and associated structure
JP2012216849A (en) * 2006-10-19 2012-11-08 Quantam Global Technologies Llc Removing residues from substrate processing component
JP2013519218A (en) * 2010-02-05 2013-05-23 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method for processing temporarily bonded product wafers
JP2018142630A (en) * 2017-02-28 2018-09-13 日化精工株式会社 Wafer temporarily bonding wax and wafer temporarily bonding method
JP2020188248A (en) * 2019-05-09 2020-11-19 株式会社ディスコ Installation method of protective member, processing method of workpiece, workpiece with protective layer, and frame unit
JP7335136B2 (en) 2019-11-06 2023-08-29 株式会社ディスコ Resin protective member forming device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6219565B2 (en) * 2012-12-26 2017-10-25 株式会社ディスコ Wafer processing method
CN113941952B (en) * 2021-11-01 2022-12-23 徐州领测半导体科技有限公司 Double-side polishing process of semiconductor wafer
CN115725240B (en) * 2022-11-18 2024-03-01 无锡市恒利弘实业有限公司 Wafer polishing solution composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038556A (en) * 1998-07-22 2000-02-08 Nitto Denko Corp Semiconductor wafer-retaining protective hot-melt sheet and method for application thereof
JP2005179654A (en) * 2003-11-27 2005-07-07 Jsr Corp Hot-melt adhesive composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737768A (en) * 1992-11-26 1995-02-07 Sumitomo Electric Ind Ltd Reinforcing method for semiconductor wafer and reinforced semiconductor wafer
JP3309681B2 (en) * 1995-11-30 2002-07-29 株式会社日立製作所 Semiconductor device and processing method thereof
JP2001118760A (en) * 1999-10-21 2001-04-27 Victor Co Of Japan Ltd Method for sticking semiconductor wafer
JP2002075940A (en) * 2000-08-25 2002-03-15 Hitachi Ltd Method for manufacturing semiconductor device
JP2003179006A (en) * 2002-09-20 2003-06-27 Toshiba Corp Wafer dividing method and method of manufacturing semiconductor device
CN100338138C (en) * 2002-10-01 2007-09-19 宇部兴产株式会社 Polyol mixture, reactive hot-melt composition obtained from the mixture, and molded article obtained with the composition
JP2004186522A (en) * 2002-12-05 2004-07-02 Renesas Technology Corp Manufacture method of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038556A (en) * 1998-07-22 2000-02-08 Nitto Denko Corp Semiconductor wafer-retaining protective hot-melt sheet and method for application thereof
JP2005179654A (en) * 2003-11-27 2005-07-07 Jsr Corp Hot-melt adhesive composition

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328104A (en) * 2005-05-23 2006-12-07 Jsr Corp Adhesive composition
JP2008071892A (en) * 2006-09-13 2008-03-27 Disco Abrasive Syst Ltd Method of manufacturing laminating device
CN102626698B (en) * 2006-10-19 2018-08-21 量子全球技术有限公司 Residue is removed from substrate processing components
JP2012216849A (en) * 2006-10-19 2012-11-08 Quantam Global Technologies Llc Removing residues from substrate processing component
JP2008244132A (en) * 2007-03-27 2008-10-09 Sanyo Electric Co Ltd Semiconductor device, and manufacturing method therefor
JP2009099954A (en) * 2007-09-04 2009-05-07 Infineon Technologies Ag Method for dividing semiconductor substrate, and method for manufacturing semiconductor circuit arrangement
JP2009090416A (en) * 2007-10-10 2009-04-30 Dainippon Printing Co Ltd Method of manufacturing membrane structure
JP2009194287A (en) * 2008-02-18 2009-08-27 Denki Kagaku Kogyo Kk Method for grinding electronic component assembly, method for dividing electronic component assembly using same, and adhesive resin used for same
US7888758B2 (en) 2008-03-12 2011-02-15 Aptina Imaging Corporation Method of forming a permanent carrier and spacer wafer for wafer level optics and associated structure
JP2009224659A (en) * 2008-03-18 2009-10-01 Disco Abrasive Syst Ltd Method of dividing work
JP2010177540A (en) * 2009-01-30 2010-08-12 Panasonic Corp Method of dry-etching substrate
JP2010258160A (en) * 2009-04-23 2010-11-11 Toshiba Corp Semiconductor device and method of manufacturing the same
US9362154B2 (en) 2010-02-05 2016-06-07 Ev Group E. Thallner Gmbh Method for treatment of a temporarily bonded product wafer
KR101822669B1 (en) * 2010-02-05 2018-03-08 에베 그룹 에. 탈너 게엠베하 Method for treating a temporarily bonded product wafer
JP2013519218A (en) * 2010-02-05 2013-05-23 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method for processing temporarily bonded product wafers
JP2018142630A (en) * 2017-02-28 2018-09-13 日化精工株式会社 Wafer temporarily bonding wax and wafer temporarily bonding method
JP2020188248A (en) * 2019-05-09 2020-11-19 株式会社ディスコ Installation method of protective member, processing method of workpiece, workpiece with protective layer, and frame unit
JP7362333B2 (en) 2019-05-09 2023-10-17 株式会社ディスコ How to install a protective member, how to process a workpiece, a workpiece with a protective layer, and a frame unit
JP7335136B2 (en) 2019-11-06 2023-08-29 株式会社ディスコ Resin protective member forming device

Also Published As

Publication number Publication date
TW200723382A (en) 2007-06-16
JPWO2006090650A1 (en) 2008-07-24

Similar Documents

Publication Publication Date Title
WO2006090650A1 (en) Method for processing wafer
JP4784604B2 (en) Manufacturing method of wafer with fixing agent
JP2006328104A (en) Adhesive composition
EP2078306B1 (en) Wafer bonding and debonding method using spin-on coatable bonding compositions
TWI589665B (en) Adhesive adhesive material for wafer processing, member for wafer processing using the temporary adhesive material for wafer processing, method for manufacturing wafer processed body, and thin wafer
TWI545171B (en) Wafer processing body, wafer processing member, temporary adhesive material for wafer processing, and manufacturing method of thin wafer
EP2587530B1 (en) Wafer processing laminate, wafer processing member, temporary bonding arrangement, and thin wafer manufacturing method
TWI656188B (en) Temporary bonding material for wafer processing, wafer processing body, and manufacturing method using the same
EP2551322B1 (en) Wafer processing laminate, wafer processing member, temporary bonding arrangement, and thin wafer manufacturing method
KR101908630B1 (en) Wafer processing laminate, wafer processing member, temporary bonding arrangement, and thin wafer manufacturing method
TW201732869A (en) Wafer processing laminate and method for processing wafer
US20100264566A1 (en) Rapid fabrication of a microelectronic temporary support for inorganic substrates
TW201022388A (en) Cyclic olefin compositions for temporary wafer bonding
TWI600738B (en) Wafer resin film formation sheet
US20070135543A1 (en) Hot melt adhesive composition
TW201726865A (en) Tentatively sticking method and method for manufacturing thin wafer
WO2015163201A1 (en) Curable composition, temporary adhesive material, and method for temporarily bonding member using same and substrate
JP4899308B2 (en) Hot melt adhesive composition
TW202113054A (en) Cleaning fluid for temporary adhesives for substrates, substrate cleaning method, and cleaning method for support bodies or substrates
JP2013533338A (en) Dual cure adhesive
TWI649381B (en) Stripping liquid composition for wafer processing and stripping agent containing the same
JP2006186224A (en) Method for supporting substrate and support used therefor
Mould et al. A New Alternative for Temporary Wafer Mounting
KR102021302B1 (en) Method for Manufacturing Device Substrate and Semiconductor Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007504692

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714009

Country of ref document: EP

Kind code of ref document: A1