WO2006091765A2 - Dual frequency identification device - Google Patents

Dual frequency identification device Download PDF

Info

Publication number
WO2006091765A2
WO2006091765A2 PCT/US2006/006511 US2006006511W WO2006091765A2 WO 2006091765 A2 WO2006091765 A2 WO 2006091765A2 US 2006006511 W US2006006511 W US 2006006511W WO 2006091765 A2 WO2006091765 A2 WO 2006091765A2
Authority
WO
WIPO (PCT)
Prior art keywords
identification
animal
ear
frequency
tag
Prior art date
Application number
PCT/US2006/006511
Other languages
French (fr)
Other versions
WO2006091765A3 (en
Inventor
Ronald M Thibault
Original Assignee
Osborne Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osborne Industries, Inc. filed Critical Osborne Industries, Inc.
Publication of WO2006091765A2 publication Critical patent/WO2006091765A2/en
Publication of WO2006091765A3 publication Critical patent/WO2006091765A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K11/00Marking of animals
    • A01K11/001Ear-tags
    • A01K11/004Ear-tags with electronic identification means, e.g. transponders

Definitions

  • the present invention relates generally to radio frequency identification
  • RFID RFID devices
  • RFID devices and in particular, to RFID devices that can be used to identify, track and/or manage animals in the livestock industry and various other fields of use.
  • the present invention will be described in connection with its use in the livestock industry, particularly with cattle, but it should be understood that its utility is not limited to livestock or any other particular field of use.
  • RFID ear tags that use the ISO standard frequency of 134.2 kHz are used effectively for many applications (e.g., pigs), however these RFID ear tags do not solve problems for use with cattle.
  • the read range for ISO ear tags is generally too short for many applications. For example, cattle must move in single file past a reader to ensure that their ear tags can be read. This is impractical for many circumstances where large groups of cattle must be moved rapidly. Usually alleyways between cattle pens are designed to allow five or more cattle to move adjacent to each other from pen to pen or from pen to sale ring. Inserting multiple single-file antennas and readers into such a situation is not practical. Similarly, many cattle usually eat at a feed bunk simultaneously.
  • Identifying individual animals with ISO ear tags requires multiple antennas, a means of separating animals to prevent interference between multiple antennas, and the use of a multiplexing reader. Use of the ISO ear tags and associated technology is unacceptable in many similar circumstances because it slows the "speed of commerce" for the producer.
  • the present invention provides an RFID system that incorporates two different frequency transmitters on the same tag for transmitting a unique identification code from the tag to readers operating at different frequencies.
  • the RFID system can be contained, for example, within an ear tag structure adapted to be attached to an animal's ear.
  • the RFID system includes a first radio frequency component having a first antenna that transmits at a first frequency, and a second radio frequency component having a second antenna that transmits at a second frequency higher than the first frequency.
  • the RFID system is programmed to transmit the same identification code from both of the first and second antennas, whereby the tag can be interrogated by reader antennas operating at different frequencies to identify the same animal.
  • Various embodiments for the ear tag structure are also disclosed herein.
  • an identification system for animals comprising: a structure for attaching the identification system to a body part of an animal; a first radio frequency identification component having a first antenna operating at a first frequency; a second radio frequency identification component having a second antenna operating at a second frequency, the second frequency being higher than the first frequency; and a means for transmitting an identification code from both of the first and second antennas for allowing the identification code to be read by readers operating at different frequencies to identify the same animal.
  • a dual frequency identification system comprising: a first radio frequency identification component having a first antenna operating at a first frequency; a second radio frequency identification component having a second antenna operating at a second frequency, the second frequency being at least an order of magnitude different from the first frequency; and a programmable microchip associated with the first and second components for storing and transmitting an identification code from both of the first and second antennas so that the identification code can be read by readers operating at different frequencies.
  • a method of marking and identifying animals comprising the steps of: providing a tag having a radio frequency identification system with first and second antennas operating at different frequencies, and an identification code programmed into the system that can be transmitted from the first and second antennas; attaching the tag to a body part of an animal; and using a first reader to read the identification code transmitted from the first antenna.
  • a second reader operating at a different frequency than the first reader can be used to read the identification code transmitted from the second antenna.
  • FIG. 1 is a perspective front view of a dual frequency ear tag according to a first embodiment of the present invention.
  • Fig. 2 is a perspective rear view of the ear tag shown in Fig. 1.
  • Fig. 3 is a perspective front view of a dual frequency ear tag according to a second embodiment of the present invention.
  • Fig. 4 is a perspective rear view of the ear tag shown in Fig. 2.
  • the present invention incorporates into one RFID tag both (1) the ISO standard 134.2 kHz RFID technology, and (2) a higher frequency technology, for example 13.56 Mhz, 868-915 Mhz, or 2.45/5.8 GHz.
  • the dual frequency tag can incorporate two antennas, optimized for each frequency, and a microchip to operate at each frequency.
  • the unique ISO code would be programmed into both microchips if two microchips are used.
  • a new "dual-channel" microchip can be made to operate at two frequencies, utilizing shared or parallel components, to reduce cost for dual frequency tags.
  • the dual frequency tag of the present invention can use either an active or a passive RFID system, or a combination of active and passive systems.
  • the low frequency component of the tag can be a passive system
  • the high frequency component of the tag can be an active system.
  • Passive systems are those that have no power source other than the transmitter, which is normally charged by a reader through the antenna.
  • Active systems are those that have their own power source (usually a battery) and a transmitter. Both passive and active RFID systems are known in the art, and therefore the circuit details of such systems will not be explained in great detail herein. While active RFID systems can be made to have a longer read range, passive RFID systems have other advantages that may make them more suitable for a given application.
  • passive RFID systems will generally have a lower cost, less susceptibility to interference from external conditions (e.g., rain storms), longer operating life, and less maintenance.
  • the two antennas and one or two RFID microchips can be molded into a single plastic ear tag device. The cost of the extra high frequency antenna and microchip is small compared to the cost of the low frequency ISO coil and microchip.
  • Figs. 1 and 2 of the drawings show a dual frequency tag 10 according to a first embodiment of the present invention.
  • the tag 10 according to this embodiment has a one-piece construction with a low-frequency (LF) RFID circuit 11 (e.g., operating at 134.2 Khz) molded into the female part 12 of the livestock tag 10.
  • LF low-frequency
  • the high frequency (HF) RFID circuit 13 (e.g., operating at 915 Mhz) is embedded below the surface of the "flag" or male part 14 of the tag 10.
  • the HF RFID circuit 13 is shown schematically in Fig. 1 as radiating from a central transponder chip 15, but various other suitable circuits will be known to those skilled in the art. hi normal practice, the HF RFID circuit 13 will not be visible and would be over-molded by a layer of plastic to shield the circuit components from wear and the elements.
  • the exposed face of the flag part 14 of the tag 10 could also be engraved or marked with visible numbers or other indicia commonly used in the livestock industry for visual identification.
  • a special tool (not shown) will accept the one piece construction of the tag 10 shown in Figs. 1 and 2 and apply it as a single piece to the ear of an animal, such that the LF RFID part 11 would be within the ear and the HF RFED part 13 would be on the outside of the ear.
  • This construction provides several advantages, including the following.
  • the construction of the tag 10 ensures that the LF and HF RFDD are simultaneously applied so that the common RFID number or identification code that they are preprogrammed to transmit when interrogated by a reading antenna is on the same animal. This ensures that two different numbers will not be carried by one tag assembly on the same animal. Loss or removal of the tag 10 ensures that either both LF and HF RFDD are lost or, if removed, that the tag 10 is destroyed and cannot be reapplied to another animal.
  • this construction presents the HF RFDD on the flag part 14 in the best orientation outside the body mass of the animal's ear so that it can be optimally read (i.e., HF-RF energy is absorbed and signal strength is dampened by water and water-containing bodies like the flesh of the ear, while LF-RF energy is not as readily absorbed or dampened and can easily penetrate the ear).
  • the tag 10 of this embodiment will be applied to the upper part of the ear of the animal so that the HF RFDD is presented with a view that clears the animal's head.
  • the position of the "flag" part 14 of this construction enables visual reading of number marks or other visual indicia engraved or printed on the tag surface.
  • the construction retains the tag configuration close to the surface of the ear and presents a minimum of material that can be snagged or trapped by fences and equipment. This construction has the potential to improve retention of the tag 10 in the animal's ear as compared with alternative designs.
  • Figs. 3 and 4 show another embodiment of the dual frequency tag 20 according to the present invention.
  • the dual frequency tag 20 of this embodiment has a two-piece construction 21, 22 that relies upon a female part 23 and a male part 24 coupled together to attach to an animal's ear.
  • AU other features of this construction are similar to those described above for the embodiment shown in Figs. 1 and 2.
  • the construction of the tag 20 in this embodiment is similar to many simple visual tags used in the livestock industry.
  • the tag 20 is attached to the ear with the LF RFID circuit 25 within the ear as described above, but with the HF RFID circuit 26 hanging below and outside of the ear fold. This construction should provide adequate RF access to the HF-RF antenna and, should provide adequate HF RFID communication in most cases.
  • the flag part 22 of the tag 20 can also be engraved or printed with numbers or other visual indicia to allow visual identification of the animal.
  • the utility of a dual frequency tag according to either of the embodiments described above would be determined by the application and the antenna and reader used in the application. For applications where the RFID for a single animal or animals moving in single file can be read, then the ISO or low frequency mode would be used. For applications where a longer range reading is required, such as cattle alleyways or sale pens, then an antenna/reader combination would be chosen to operate in high frequency mode. These applications at high frequency could also utilize anti-collision technology to identify animals in a group.
  • the dual frequency tags 10, 20 would simultaneously meet the ISO standard and be acceptable worldwide. Any ISO reading device operating at the ISO standard frequency could read the ear tag.
  • Any ISO reading device operating at the ISO standard frequency could read the ear tag.
  • the use of at least two frequencies for an RFID device to enable it to meet a broader range of applications will provide a substantial improvement over the prior art by combining the benefits of both high and low frequency RFID devices. Other advantages of the present invention will be apparent to those skilled in the art upon reading this disclosure.
  • the present invention uses either two RFID circuits or one combined circuit to drive two antennas, one operating at low frequency and the other at high frequency, both using a common digital sequence that includes a unique identification number for an animal.

Abstract

A dual frequency identification system (10) for animals is contained within an ear tag structure adapted to by attached to an animal's ear. The system includes a first radio frequency component (11) having a first antenna that operates at a first frequency, and a second radio frequency component (13) having a second antenna that operates at a second frequency higher than the first frequency. The radio frequency identification system is programmed to transmit the same identification code from both of the first and second antennas, whereby the tag can be interrogated by reader antennas operating at different frequencies to identify the same animal. Various constructions are molded into the plastic parts of the ear tag.

Description

DUAL FREQUENCY IDENTIFICATION DEVICE
TECHNICAL FIELD
[0001] The present invention relates generally to radio frequency identification
(RFID) devices, and in particular, to RFID devices that can be used to identify, track and/or manage animals in the livestock industry and various other fields of use. The present invention will be described in connection with its use in the livestock industry, particularly with cattle, but it should be understood that its utility is not limited to livestock or any other particular field of use.
BACKGROUND ART [0002] The use of RFID devices to identify, track and manage cattle has become increasingly important in recent years as a means for controlling spread of disease, for insuring food safety, and for rewarding producers for the production of quality meat products. To facilitate international trade, ISO standards for RFID have been proposed and, although not accepted internationally yet, appear to be gaining influence in the market in the absence of any competing alternative.
[0003] RFID ear tags that use the ISO standard frequency of 134.2 kHz are used effectively for many applications (e.g., pigs), however these RFID ear tags do not solve problems for use with cattle. [0004] The read range for ISO ear tags is generally too short for many applications. For example, cattle must move in single file past a reader to ensure that their ear tags can be read. This is impractical for many circumstances where large groups of cattle must be moved rapidly. Usually alleyways between cattle pens are designed to allow five or more cattle to move adjacent to each other from pen to pen or from pen to sale ring. Inserting multiple single-file antennas and readers into such a situation is not practical. Similarly, many cattle usually eat at a feed bunk simultaneously. Identifying individual animals with ISO ear tags requires multiple antennas, a means of separating animals to prevent interference between multiple antennas, and the use of a multiplexing reader. Use of the ISO ear tags and associated technology is unacceptable in many similar circumstances because it slows the "speed of commerce" for the producer.
[0005] It is well known that higher frequency RPDD technologies offer certain advantages over the ISO standard frequency that are desirable, including lower cost of production, longer read range, and reading speed that enables the use of anti-collision techniques so that large numbers of RFID numbers can be read in an assembly, using only one reader/antenna combination. However, these higher frequency RFID technologies do not penetrate materials very well, and tend to bounce off objects or become absorbed by water or body tissue. Because of these deficiencies, the higher frequency RFID technologies were not adopted as the ISO standard for livestock identification.
[0006] There is a need in the industry for an improved RFID system that solves the problems with the existing RFID systems described above.
DISCLOSURE OF INVENTION [0007] It is an object of the present invention to provide an improved RFID system that overcomes the problems in the prior art systems described above. [0008] It is a further object of the present invention to provide an RFID system that can be used effectively in a wide variety of conditions, has a low cost of production, is reliable and durable, has a relatively long reading range, can be used in a manner which does not slow the speed of commerce, and incorporates the ISO frequency standard for the target industry.
[0009] The present invention provides an RFID system that incorporates two different frequency transmitters on the same tag for transmitting a unique identification code from the tag to readers operating at different frequencies. The RFID system can be contained, for example, within an ear tag structure adapted to be attached to an animal's ear. The RFID system includes a first radio frequency component having a first antenna that transmits at a first frequency, and a second radio frequency component having a second antenna that transmits at a second frequency higher than the first frequency. The RFID system is programmed to transmit the same identification code from both of the first and second antennas, whereby the tag can be interrogated by reader antennas operating at different frequencies to identify the same animal. Various embodiments for the ear tag structure are also disclosed herein.
[0010] According to a broad aspect of the present invention, an identification system for animals is provided, comprising: a structure for attaching the identification system to a body part of an animal; a first radio frequency identification component having a first antenna operating at a first frequency; a second radio frequency identification component having a second antenna operating at a second frequency, the second frequency being higher than the first frequency; and a means for transmitting an identification code from both of the first and second antennas for allowing the identification code to be read by readers operating at different frequencies to identify the same animal.
[0011] According to another broad aspect of the present invention, a dual frequency identification system is provided, comprising: a first radio frequency identification component having a first antenna operating at a first frequency; a second radio frequency identification component having a second antenna operating at a second frequency, the second frequency being at least an order of magnitude different from the first frequency; and a programmable microchip associated with the first and second components for storing and transmitting an identification code from both of the first and second antennas so that the identification code can be read by readers operating at different frequencies.
[0012] According to another broad aspect of the present invention, a method of marking and identifying animals is provided, comprising the steps of: providing a tag having a radio frequency identification system with first and second antennas operating at different frequencies, and an identification code programmed into the system that can be transmitted from the first and second antennas; attaching the tag to a body part of an animal; and using a first reader to read the identification code transmitted from the first antenna. A second reader operating at a different frequency than the first reader can be used to read the identification code transmitted from the second antenna. [0013] Numerous other objects and features of the present invention will be apparent to those skilled in this art from the following description wherein there is shown and described exemplary embodiments of the present invention, simply by way of illustration of the modes best suited to carry out the invention. As will be realized, the invention is capable of other different embodiments, and its several details are capable of modification in various obvious aspects without departing from the invention. Accordingly, the drawings and description should be regarded as illustrative in nature and not restrictive.
BRIEF DESCRIPTION OF DRAWINGS
[0014] The present invention will become more clearly appreciated as the disclosure of the invention is made with reference to the accompanying drawings. In the drawings:
[0015] Fig. 1 is a perspective front view of a dual frequency ear tag according to a first embodiment of the present invention.
[0016] Fig. 2 is a perspective rear view of the ear tag shown in Fig. 1. [0017] Fig. 3 is a perspective front view of a dual frequency ear tag according to a second embodiment of the present invention.
[0018] Fig. 4 is a perspective rear view of the ear tag shown in Fig. 2.
BEST MODES FORCARRYING OUT THE INVENTION [0019] A radio frequency identification device (RFID) according to the present invention will now be described with reference to Figs. 1 to 4 of the accompanying drawings.
[0020] The present invention incorporates into one RFID tag both (1) the ISO standard 134.2 kHz RFID technology, and (2) a higher frequency technology, for example 13.56 Mhz, 868-915 Mhz, or 2.45/5.8 GHz. The dual frequency tag can incorporate two antennas, optimized for each frequency, and a microchip to operate at each frequency. The unique ISO code would be programmed into both microchips if two microchips are used. Alternatively, a new "dual-channel" microchip can be made to operate at two frequencies, utilizing shared or parallel components, to reduce cost for dual frequency tags.
[0021] The dual frequency tag of the present invention can use either an active or a passive RFID system, or a combination of active and passive systems. For example, the low frequency component of the tag can be a passive system, while the high frequency component of the tag can be an active system. Passive systems are those that have no power source other than the transmitter, which is normally charged by a reader through the antenna. Active systems are those that have their own power source (usually a battery) and a transmitter. Both passive and active RFID systems are known in the art, and therefore the circuit details of such systems will not be explained in great detail herein. While active RFID systems can be made to have a longer read range, passive RFID systems have other advantages that may make them more suitable for a given application. For example, passive RFID systems will generally have a lower cost, less susceptibility to interference from external conditions (e.g., rain storms), longer operating life, and less maintenance. [0022] The two antennas and one or two RFID microchips can be molded into a single plastic ear tag device. The cost of the extra high frequency antenna and microchip is small compared to the cost of the low frequency ISO coil and microchip.
Both are small compared to the cost of over-molding the RFHD components into a functional ear tag. Therefore, adding a high frequency component to the ISO standard components should not greatly increase the cost of the RFED ear tag device, while greatly extending its utility by overcoming its current deficits. [0023] Figs. 1 and 2 of the drawings show a dual frequency tag 10 according to a first embodiment of the present invention. The tag 10 according to this embodiment has a one-piece construction with a low-frequency (LF) RFID circuit 11 (e.g., operating at 134.2 Khz) molded into the female part 12 of the livestock tag 10. The high frequency (HF) RFID circuit 13 (e.g., operating at 915 Mhz) is embedded below the surface of the "flag" or male part 14 of the tag 10. The HF RFID circuit 13 is shown schematically in Fig. 1 as radiating from a central transponder chip 15, but various other suitable circuits will be known to those skilled in the art. hi normal practice, the HF RFID circuit 13 will not be visible and would be over-molded by a layer of plastic to shield the circuit components from wear and the elements. The exposed face of the flag part 14 of the tag 10 could also be engraved or marked with visible numbers or other indicia commonly used in the livestock industry for visual identification.
[0024] A special tool (not shown) will accept the one piece construction of the tag 10 shown in Figs. 1 and 2 and apply it as a single piece to the ear of an animal, such that the LF RFID part 11 would be within the ear and the HF RFED part 13 would be on the outside of the ear. This construction provides several advantages, including the following.
[0025] First, the construction of the tag 10 ensures that the LF and HF RFDD are simultaneously applied so that the common RFID number or identification code that they are preprogrammed to transmit when interrogated by a reading antenna is on the same animal. This ensures that two different numbers will not be carried by one tag assembly on the same animal. Loss or removal of the tag 10 ensures that either both LF and HF RFDD are lost or, if removed, that the tag 10 is destroyed and cannot be reapplied to another animal. [0026] Second, this construction presents the HF RFDD on the flag part 14 in the best orientation outside the body mass of the animal's ear so that it can be optimally read (i.e., HF-RF energy is absorbed and signal strength is dampened by water and water-containing bodies like the flesh of the ear, while LF-RF energy is not as readily absorbed or dampened and can easily penetrate the ear). Ideally, the tag 10 of this embodiment will be applied to the upper part of the ear of the animal so that the HF RFDD is presented with a view that clears the animal's head.
[0027] Third, the position of the "flag" part 14 of this construction enables visual reading of number marks or other visual indicia engraved or printed on the tag surface. Fourth, the construction retains the tag configuration close to the surface of the ear and presents a minimum of material that can be snagged or trapped by fences and equipment. This construction has the potential to improve retention of the tag 10 in the animal's ear as compared with alternative designs.
[0028] Figs. 3 and 4 show another embodiment of the dual frequency tag 20 according to the present invention. The dual frequency tag 20 of this embodiment has a two-piece construction 21, 22 that relies upon a female part 23 and a male part 24 coupled together to attach to an animal's ear. AU other features of this construction are similar to those described above for the embodiment shown in Figs. 1 and 2. The construction of the tag 20 in this embodiment is similar to many simple visual tags used in the livestock industry. The tag 20 is attached to the ear with the LF RFID circuit 25 within the ear as described above, but with the HF RFID circuit 26 hanging below and outside of the ear fold. This construction should provide adequate RF access to the HF-RF antenna and, should provide adequate HF RFID communication in most cases. The flag part 22 of the tag 20 can also be engraved or printed with numbers or other visual indicia to allow visual identification of the animal. [0029] The utility of a dual frequency tag according to either of the embodiments described above would be determined by the application and the antenna and reader used in the application. For applications where the RFID for a single animal or animals moving in single file can be read, then the ISO or low frequency mode would be used. For applications where a longer range reading is required, such as cattle alleyways or sale pens, then an antenna/reader combination would be chosen to operate in high frequency mode. These applications at high frequency could also utilize anti-collision technology to identify animals in a group.
The dual frequency tags 10, 20 would simultaneously meet the ISO standard and be acceptable worldwide. Any ISO reading device operating at the ISO standard frequency could read the ear tag. [0030] The use of at least two frequencies for an RFID device to enable it to meet a broader range of applications will provide a substantial improvement over the prior art by combining the benefits of both high and low frequency RFID devices. Other advantages of the present invention will be apparent to those skilled in the art upon reading this disclosure. [0031] As explained above, the present invention uses either two RFID circuits or one combined circuit to drive two antennas, one operating at low frequency and the other at high frequency, both using a common digital sequence that includes a unique identification number for an animal. This combination is incorporated into a single functional tag so that both the LF and HF antennas are inseparably combined and carried on the same animal. The exact geometric shape, relative dimensions of their component parts, configuration of the male pin and the female locking receptacle, and the actual size of the ear tags are not critical to the present invention and can be modified without departing from the basic concepts of the present invention.
[0032] While the invention has been specifically described in connection with specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.

Claims

What is claimed is: 1. An identification system for animals, comprising: a structure for attaching the identification system to a body part of an animal; a first radio frequency identification component having a first antenna operating at a first frequency; a second radio frequency identification component having a second antenna operating at a second frequency, said second frequency being higher than said first frequency; and a means for transmitting an identification code from both of the first and second antennas for allowing the identification code to be read by readers operating at different frequencies to identify the same animal.
2. The identification system according to claim 1, wherein said structure for attaching the identification system to a body part of an animal is an ear tag that attaches to an ear of the animal.
3. The identification system according to claim 2, wherein said first radio frequency identification component is contained within a first part of the ear tag that fits within an animal's ear, and said second radio frequency identification component is contained within a second part of the ear tag located on an outside of the animal's ear.
4. The identification system according to claim 3, wherein said ear tag has a one piece construction with a flag portion adapted to be placed on an outside surface of the animal's ear, a coupling portion adapted to be placed within the animal's ear, and a flexible portion connecting the flag portion and the coupling portion.
5. The identification system according to claim 4, wherein said flag portion has a display surface on which visual indicia are displayed to allow visual identification of the animal.
6. The identification system according to claim 4, wherein said first radio frequency identification component is contained within said coupling portion, and said second radio frequency identification component is contained within said flag portion.
7. The identification system according to claim 2, wherein said first and second radio frequency identification components are molded within said ear tag.
8. The identification system according to claim 2, wherein said ear tag has a two-piece construction with a flag portion adapted to be placed on one side of an animal's ear and a coupling portion adapted to be placed on an opposite side of the animal's ear, and wherein said first and second radio frequency identification components are contained within said flag portion of the ear tag.
9. The identification system according to claim 8, wherein said flag portion has a display surface on which visual indicia are displayed to allow visual identification of the animal.
10. The identification system according to claim 1, wherein said first and second radio frequency identification components are each programmed to transmit the same identification code when interrogated by respective reading antennas.
11. The identification system according to claim 1, wherein said first frequency is approximately 134.2 kHz, and said second frequency is at least about 13.56 MHz.
12. The identification system according to claim 11, wherein said second frequency is about 868 to 915 MHz.
13. The identification system according to claim 11, wherein said second frequency is about 2.45 to 5.8 GHz.
14. A dual frequency identification system, comprising: a first radio frequency identification component having a first antenna operating at a first frequency; a second radio frequency identification component having a second antenna operating at a second frequency, said second frequency being at least an order of magnitude different from said first frequency; and a programmable microchip associated with said first and second components for storing and transmitting an identification code from both of the first and second antennas so that the identification code can be read by readers operating at different frequencies.
15. A method of marking and identifying animals, comprising the steps of: providing a tag having a radio frequency identification system with first and second antennas operating at different frequencies, and an identification code programmed into said system that can be transmitted from said first and second antennas; attaching the tag to a body part of an animal; and using a first reader to read the identification code transmitted from said first antenna.
16. The method according to claim 15, further comprising the step of using a second reader to read the identification code transmitted from said second antenna.
17. The method according to claim 16, wherein said radio frequency identification system is programmed to transmit the same identification code from both of said first and second antennas, whereby the tag can be read by either of said first and second readers to identify the same animal.
18. The method according to claim 15, wherein said tag is an ear tag and said attaching step comprises attaching the ear tag to an animal's ear.
19. The method according to claim 18, wherein said ear tag includes a display area, and further comprising the step of using visual indicia on said display area to allow visual identification of the animal.
20. The method according to claim 15, wherein said first and second antennas operate at respective low and high frequencies that are at least an order of magnitude different from each other.
PCT/US2006/006511 2005-02-25 2006-02-24 Dual frequency identification device WO2006091765A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US65662705P 2005-02-25 2005-02-25
US60/656,627 2005-02-25
US11/361,862 2006-02-23
US11/361,862 US20060202835A1 (en) 2005-02-25 2006-02-23 Dual frequency identification device

Publications (2)

Publication Number Publication Date
WO2006091765A2 true WO2006091765A2 (en) 2006-08-31
WO2006091765A3 WO2006091765A3 (en) 2007-05-10

Family

ID=36928026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/006511 WO2006091765A2 (en) 2005-02-25 2006-02-24 Dual frequency identification device

Country Status (2)

Country Link
US (1) US20060202835A1 (en)
WO (1) WO2006091765A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667261A (en) * 2009-10-20 2010-03-10 上海公用事业自动化工程有限公司 Dual-frequency label capable of supporting multi-application and extended application
DE202011000402U1 (en) 2011-02-22 2011-05-05 Harting Electric Gmbh & Co. Kg RFID transponder with a flexible antenna body
CN102279921A (en) * 2011-09-20 2011-12-14 公安部上海消防研究所 Dual-frequency electronic tag reading and writing module
WO2014165901A1 (en) * 2013-04-09 2014-10-16 Forehan John Tag
WO2017173065A1 (en) * 2016-03-31 2017-10-05 Merial, Inc. Single or dual technology animal tags and system and method of using the same
US11026402B2 (en) 2017-09-26 2021-06-08 Boeringer Ingelheim Animal Health Usa Inc. Method and system for tracking animals and alerting animal owners of lost animals
US11192055B2 (en) 2017-08-30 2021-12-07 Cummins Filtration Ip, Inc. Interlock for genuine filter recognition
EP4134038A1 (en) * 2021-08-09 2023-02-15 Covidien LP Inventory systems and methods for detecting and counting potentially retained surgical items
US11771059B2 (en) 2017-08-31 2023-10-03 Boehringer Ingelheim Animal Health USA Inc. Method and system for tracking a plurality of animals with a portable computing device

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7889052B2 (en) 2001-07-10 2011-02-15 Xatra Fund Mx, Llc Authorizing payment subsequent to RF transactions
US7725427B2 (en) 2001-05-25 2010-05-25 Fred Bishop Recurrent billing maintenance with radio frequency payment devices
US8548927B2 (en) 2001-07-10 2013-10-01 Xatra Fund Mx, Llc Biometric registration for facilitating an RF transaction
US7668750B2 (en) 2001-07-10 2010-02-23 David S Bonalle Securing RF transactions using a transactions counter
US8001054B1 (en) 2001-07-10 2011-08-16 American Express Travel Related Services Company, Inc. System and method for generating an unpredictable number using a seeded algorithm
US7303120B2 (en) 2001-07-10 2007-12-04 American Express Travel Related Services Company, Inc. System for biometric security using a FOB
US9031880B2 (en) 2001-07-10 2015-05-12 Iii Holdings 1, Llc Systems and methods for non-traditional payment using biometric data
US20040236699A1 (en) 2001-07-10 2004-11-25 American Express Travel Related Services Company, Inc. Method and system for hand geometry recognition biometrics on a fob
US9454752B2 (en) 2001-07-10 2016-09-27 Chartoleaux Kg Limited Liability Company Reload protocol at a transaction processing entity
US7249112B2 (en) 2002-07-09 2007-07-24 American Express Travel Related Services Company, Inc. System and method for assigning a funding source for a radio frequency identification device
US8294552B2 (en) 2001-07-10 2012-10-23 Xatra Fund Mx, Llc Facial scan biometrics on a payment device
US9024719B1 (en) 2001-07-10 2015-05-05 Xatra Fund Mx, Llc RF transaction system and method for storing user personal data
US7360689B2 (en) * 2001-07-10 2008-04-22 American Express Travel Related Services Company, Inc. Method and system for proffering multiple biometrics for use with a FOB
US8284025B2 (en) 2001-07-10 2012-10-09 Xatra Fund Mx, Llc Method and system for auditory recognition biometrics on a FOB
US7735725B1 (en) 2001-07-10 2010-06-15 Fred Bishop Processing an RF transaction using a routing number
US6805287B2 (en) 2002-09-12 2004-10-19 American Express Travel Related Services Company, Inc. System and method for converting a stored value card to a credit card
US7341181B2 (en) * 2004-07-01 2008-03-11 American Express Travel Related Services Company, Inc. Method for biometric security using a smartcard
US7318550B2 (en) 2004-07-01 2008-01-15 American Express Travel Related Services Company, Inc. Biometric safeguard method for use with a smartcard
US7314165B2 (en) * 2004-07-01 2008-01-01 American Express Travel Related Services Company, Inc. Method and system for smellprint recognition biometrics on a smartcard
US7325724B2 (en) * 2004-07-01 2008-02-05 American Express Travel Related Services Company, Inc. Method for registering a biometric for use with a smartcard
EP1838145B1 (en) * 2004-11-17 2016-03-09 GT Acquisition Sub, Inc. Radio frequency animal tracking system
WO2007053774A1 (en) * 2005-11-02 2007-05-10 Gt Acquisition Sub, Inc. Flexible animaltag and method of manufacturing such tag
ES2298016B1 (en) * 2006-01-10 2009-07-21 Rumitag, S.L. LABEL LABEL FOR THE IDENTIFICATION OF ANIMALS.
US8066179B2 (en) * 2006-11-10 2011-11-29 Breedcare Pty Ltd. Livestock breeding and management system
HUE044597T2 (en) 2007-01-21 2019-11-28 Gt Acquisition Sub Inc Animal management system and corresponding method including radio animal tag and additional transceiver(s)
WO2008108816A1 (en) * 2007-03-05 2008-09-12 Fort Supply Ip, Llc System and method for subject management using intelligent rf tag and reader
US20090058614A1 (en) * 2007-08-30 2009-03-05 Em Microelectronic-Marin S.A. Electronic identification device or transponder fitted with two antennae tuned to different frequencies
US20090115578A1 (en) * 2007-11-06 2009-05-07 Geissler Randolph K Radio frequency animal tracking system
US8314706B2 (en) * 2007-11-16 2012-11-20 Rcd Technology Corporation Coupled radio frequency identification (RFID) and biometric device
US7859415B2 (en) * 2007-11-16 2010-12-28 Rcd Technology Inc. RFID based identification device
KR101204091B1 (en) * 2008-01-23 2012-11-22 한양대학교 산학협력단 RFID system preventing recognition error and communication method thereof
NZ592929A (en) * 2008-12-06 2013-09-27 Br Technic V Henrik Risbo Jeppesen Radio frequency identification tag
GB0914650D0 (en) 2009-08-21 2009-09-30 Petrowell Ltd Apparatus and method
US8584619B2 (en) 2010-08-26 2013-11-19 Osborne Industries, Inc. Electronic livestock feeding station with integral scale assembly
US8763914B2 (en) * 2012-01-17 2014-07-01 On Track Innovations Ltd. Decoupled contactless bi-directional systems and methods
US20130255593A1 (en) * 2012-03-29 2013-10-03 Dan Hilarides System and method for facilitating the selection of livestock animals requiring action
KR101543510B1 (en) * 2013-07-30 2015-08-10 하나 마이크론(주) Ear tag for identifyng domestic animals
US20180328903A1 (en) * 2017-05-12 2018-11-15 Qualcomm Incorporated Multi-power source perishable item sensor apparatus
US11106960B2 (en) 2017-06-12 2021-08-31 Geissler Companies, Llc RFID device with dual frequency interrogation for enhanced security and method of preventing counterfeiting of RFID devices
US10210731B2 (en) * 2017-06-28 2019-02-19 Datalogic IP Tech, S.r.l. Systems and methods for a smart electronic article surveillance circuit
JP7347214B2 (en) * 2017-12-20 2023-09-20 凸版印刷株式会社 electronic tag device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655320A (en) * 1995-05-30 1997-08-12 Kazenski; Walter R. Animal tag fastener
US6513271B2 (en) * 2001-04-11 2003-02-04 Verilogik, Inc. Tamper-proof animal identification tag
US20060014109A1 (en) * 2002-11-06 2006-01-19 Masanori Ogawa Method for manufacturing a masking member

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612877A (en) * 1984-11-28 1986-09-23 Hayes Norman J Multiple purpose animal ear tag system
US4692769A (en) * 1986-04-14 1987-09-08 The United States Of America As Represented By The Secretary Of The Navy Dual band slotted microstrip antenna
US5768813A (en) * 1992-05-13 1998-06-23 Reboul; Jerome Carrier for an electronic identification device
NL9300289A (en) * 1992-09-21 1994-04-18 Nedap Nv Loss, flame and fraud resistant electronic identification label.
US5381137A (en) * 1992-10-26 1995-01-10 Motorola, Inc. RF tagging system and RF tags and method
MY109809A (en) * 1992-11-18 1997-07-31 British Tech Group Ltd Detection of multiple articles
DE69331989T2 (en) * 1992-12-07 2003-01-16 Nippon Telegraph & Telephone antenna device
US5604486A (en) * 1993-05-27 1997-02-18 Motorola, Inc. RF tagging system with multiple decoding modalities
US5444223A (en) * 1994-01-11 1995-08-22 Blama; Michael J. Radio frequency identification tag and method
US5461807A (en) * 1994-04-13 1995-10-31 Fearing Manufacturing Company Animal eartag electronic transponder
US7002475B2 (en) * 1997-12-31 2006-02-21 Intermec Ip Corp. Combination radio frequency identification transponder (RFID tag) and magnetic electronic article surveillance (EAS) tag
US5952935A (en) * 1996-05-03 1999-09-14 Destron-Fearing Corporation Programmable channel search reader
US6012415A (en) * 1997-04-18 2000-01-11 Magtronic Id, Inc. Bolus with animal ID and temperature transponder
US5926139A (en) * 1997-07-02 1999-07-20 Lucent Technologies Inc. Planar dual frequency band antenna
US6095915A (en) * 1998-02-09 2000-08-01 Destron Fearing Corporation Premise identification system
NL1008539C1 (en) * 1998-03-09 1998-06-18 Nedap Nv Carrier provided with an electronic transponder for identifying animals and a method of manufacturing such a carrier.
US6509828B2 (en) * 1998-07-30 2003-01-21 Prc Inc. Interrogating tags on multiple frequencies and synchronizing databases using transferable agents
FI105421B (en) * 1999-01-05 2000-08-15 Filtronic Lk Oy Planes two frequency antenna and radio device equipped with a planar antenna
US6617962B1 (en) * 2000-01-06 2003-09-09 Samsys Technologies Inc. System for multi-standard RFID tags
US6400338B1 (en) * 2000-01-11 2002-06-04 Destron-Fearing Corporation Passive integrated transponder tag with unitary antenna core
US6642895B2 (en) * 2000-03-15 2003-11-04 Asulab S.A. Multifrequency antenna for instrument with small volume
US6542114B1 (en) * 2000-09-07 2003-04-01 Savi Technology, Inc. Method and apparatus for tracking items using dual frequency tags
US6480100B1 (en) * 2001-03-09 2002-11-12 Sat Corporation Radio frequency identification tag formatting method
US6732923B2 (en) * 2001-04-04 2004-05-11 Ncr Corporation Radio frequency identification system and method
US6703935B1 (en) * 2001-05-14 2004-03-09 Amerasia International Technology, Inc. Antenna arrangement for RFID smart tags
TW542416U (en) * 2002-06-20 2003-07-11 Hon Hai Prec Ind Co Ltd Dual-band antenna
US6726099B2 (en) * 2002-09-05 2004-04-27 Honeywell International Inc. RFID tag having multiple transceivers
EP1838145B1 (en) * 2004-11-17 2016-03-09 GT Acquisition Sub, Inc. Radio frequency animal tracking system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655320A (en) * 1995-05-30 1997-08-12 Kazenski; Walter R. Animal tag fastener
US6513271B2 (en) * 2001-04-11 2003-02-04 Verilogik, Inc. Tamper-proof animal identification tag
US20060014109A1 (en) * 2002-11-06 2006-01-19 Masanori Ogawa Method for manufacturing a masking member

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667261A (en) * 2009-10-20 2010-03-10 上海公用事业自动化工程有限公司 Dual-frequency label capable of supporting multi-application and extended application
DE202011000402U1 (en) 2011-02-22 2011-05-05 Harting Electric Gmbh & Co. Kg RFID transponder with a flexible antenna body
WO2012113383A1 (en) 2011-02-22 2012-08-30 Harting Electric Gmbh & Co. Kg Rfid transponder with a flexible antenna body
CN102279921A (en) * 2011-09-20 2011-12-14 公安部上海消防研究所 Dual-frequency electronic tag reading and writing module
WO2014165901A1 (en) * 2013-04-09 2014-10-16 Forehan John Tag
US11019808B2 (en) 2016-03-31 2021-06-01 Boehringer Ingelheim Animal Health USA Inc. Single or dual technology animal tags and system and method of using the same
JP2019518267A (en) * 2016-03-31 2019-06-27 メリアル インコーポレイテッド Single or dual technology animal tags and systems and methods of use thereof
US10342219B2 (en) 2016-03-31 2019-07-09 Boehringer Ingelheim Animal Health USA Inc. Single or dual technology animal tags and system and method of using the same
WO2017173065A1 (en) * 2016-03-31 2017-10-05 Merial, Inc. Single or dual technology animal tags and system and method of using the same
AU2017240592B2 (en) * 2016-03-31 2021-11-04 Boehringer lngelheim Vetmedica GmbH. Single or dual technology animal tags and system and method of using the same
US11553695B2 (en) 2016-03-31 2023-01-17 Boehringer Ingelheim Vetmedica Gmbh Single or dual technology animal tags and system and method of using the same
US11192055B2 (en) 2017-08-30 2021-12-07 Cummins Filtration Ip, Inc. Interlock for genuine filter recognition
US11633684B2 (en) 2017-08-30 2023-04-25 Cummins Filtration Ip, Inc. Interlock for genuine filter recognition
US11771059B2 (en) 2017-08-31 2023-10-03 Boehringer Ingelheim Animal Health USA Inc. Method and system for tracking a plurality of animals with a portable computing device
US11026402B2 (en) 2017-09-26 2021-06-08 Boeringer Ingelheim Animal Health Usa Inc. Method and system for tracking animals and alerting animal owners of lost animals
EP4134038A1 (en) * 2021-08-09 2023-02-15 Covidien LP Inventory systems and methods for detecting and counting potentially retained surgical items

Also Published As

Publication number Publication date
WO2006091765A3 (en) 2007-05-10
US20060202835A1 (en) 2006-09-14

Similar Documents

Publication Publication Date Title
US20060202835A1 (en) Dual frequency identification device
US9078416B2 (en) Detection system
EP1913812B1 (en) Identification device and method for manufacturing thereof
US20140035730A1 (en) Method for electronic tracking of units associated with a batch
AU2008249220B1 (en) Animal identification tag and recycling process of such a tag
WO2008118591A3 (en) Methods and systems of tagging objects and reading tags coupled to objects
KR20130019970A (en) Ear tag for identifyng domestic animals
Hammer et al. Comparison of different ultra-high-frequency transponder ear tags for simultaneous detection of cattle and pigs
KR20150014709A (en) Ear tag for identifyng domestic animals
CN105792774B (en) The improvement of animal detecting system
WO2017006350A1 (en) Inlay designs for uhf rfid tags
Brown-Brandl et al. Comparing three different passive RFID systems for behaviour monitoring in grow-finish pigs
EP1669946A3 (en) Radio frequency identification (RFID) system
CN114340382B (en) Identification ear tag for an animal comprising a portion housing a portion of a UHF identification system and a portion configured to press and retain the applied UHF portion against the animal's ear
KR20100005356U (en) Animal identification tag include inserting IC chip
NZ570369A (en) Ear tag for identifying animals
CN201640293U (en) Active ultrahigh frequency electronic label of beast and bird bodies
CN209859161U (en) In-place type identification system for dairy cows
WO2012070958A1 (en) An oestrus detection tag and method and system
CN202819288U (en) Fish identification system
Umstatter et al. Short overview of electronic identification in bovines, and prospects for alternative transponder technologies
Hammer et al. Simultaneous detection of cattle by using an UHF RFID system
CN202995777U (en) Electronic mark used in livestock slaughter and segmentation process
CN114080997A (en) Animal intelligence foot ring
KR20210001234U (en) Identification Tag for Pleuronectiformes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06735965

Country of ref document: EP

Kind code of ref document: A2