WO2006096429A3 - Load transient control for direct-injection engines with controlled auto-ignition combustion - Google Patents

Load transient control for direct-injection engines with controlled auto-ignition combustion Download PDF

Info

Publication number
WO2006096429A3
WO2006096429A3 PCT/US2006/007328 US2006007328W WO2006096429A3 WO 2006096429 A3 WO2006096429 A3 WO 2006096429A3 US 2006007328 W US2006007328 W US 2006007328W WO 2006096429 A3 WO2006096429 A3 WO 2006096429A3
Authority
WO
WIPO (PCT)
Prior art keywords
load
nvo
ignition
percentage
during
Prior art date
Application number
PCT/US2006/007328
Other languages
French (fr)
Other versions
WO2006096429A2 (en
Inventor
Jun-Mo Kang
Chen-Fang Chang
Zongxuan Sun
Tang-Wei Kuo
James A Eng
Barry L Brown
Paul M Najt
Man-Feng Chang
Original Assignee
Gen Motors Global Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Motors Global Technology filed Critical Gen Motors Global Technology
Priority to DE112006000513.8T priority Critical patent/DE112006000513B4/en
Publication of WO2006096429A2 publication Critical patent/WO2006096429A2/en
Publication of WO2006096429A3 publication Critical patent/WO2006096429A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/01Internal exhaust gas recirculation, i.e. wherein the residual exhaust gases are trapped in the cylinder or pushed back from the intake or the exhaust manifold into the combustion chamber without the use of additional passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

Direct injection controlled auto-Ignition engine operated at steady state, within a homogeneous charge compression-ignition (HCCI) load range and with fuel-air-dilueπt mixtures at predetermined conditions, for each speed and load, of engine control inputs, including at least fueling mass flow rate, injection timing (Fl), spark timing (Sl) and exhaust recompression obtained by negative valve overlap (NVO). During load change rates below a predetermined threshold, Sl, Fl and NVO change rates are synchronized to current changes in the fueling mass flow rate. For fast load increases above the threshold, the cylinder charge is temporarily enriched by increasing the percentage of residual gas or reducing the percentage of fresh air mass in the charge sufficiently to maintain auto-ignition temperature during the load change, possibly by delaying NVO action for a predetermined speed-dependent number of engine cycles. Stable fuel rate reduction may require involving deceleration fuel cut-off followed by a step change during refire.
PCT/US2006/007328 2005-03-03 2006-03-02 Load transient control for direct-injection engines with controlled auto-ignition combustion WO2006096429A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112006000513.8T DE112006000513B4 (en) 2005-03-03 2006-03-02 Load step control method for direct injection engines with controlled auto-ignition combustion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US65837605P 2005-03-03 2005-03-03
US60/658,376 2005-03-03

Publications (2)

Publication Number Publication Date
WO2006096429A2 WO2006096429A2 (en) 2006-09-14
WO2006096429A3 true WO2006096429A3 (en) 2007-10-04

Family

ID=36953847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/007328 WO2006096429A2 (en) 2005-03-03 2006-03-02 Load transient control for direct-injection engines with controlled auto-ignition combustion

Country Status (4)

Country Link
US (1) US7370633B2 (en)
CN (1) CN101287897A (en)
DE (1) DE112006000513B4 (en)
WO (1) WO2006096429A2 (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10344428B4 (en) * 2003-09-25 2015-02-19 Daimler Ag Method for operating an internal combustion engine
DE10344426B4 (en) * 2003-09-25 2021-08-05 Daimler Ag Method for operating an internal combustion engine
JP4278151B2 (en) * 2004-01-20 2009-06-10 本田技研工業株式会社 Control method for internal combustion engine
US7680534B2 (en) 2005-02-28 2010-03-16 Cardiac Pacemakers, Inc. Implantable cardiac device with dyspnea measurement
WO2006096425A2 (en) * 2005-03-03 2006-09-14 General Motors Global Technology Operations, Inc. Method for transition between controlled auto-ignition and spark ignition modes direct fuel injection engines
US7367308B2 (en) * 2005-03-03 2008-05-06 Gm Global Technology Operations, Inc. Method for load transient control between lean and stoichiometric combustion modes of direct-injection engines with controlled auto-ignition combustion
CN101287897A (en) 2005-03-03 2008-10-15 通用汽车环球科技运作公司 Load transient control methods for direct-injection engines with controlled auto-ignition combustion
FR2883336B1 (en) * 2005-03-17 2007-05-11 Inst Francais Du Petrole INTERNAL COMBUSTION ENGINE, IN PARTICULAR DIRECT INJECTION, WITH A PISTON PROVIDED WITH A BOWL THAT CONTAINS A TOE
CN101316746B (en) * 2005-10-06 2011-08-03 通用汽车环球科技运作公司 Fuel reforming estimation in HCCI engines
FR2895026B1 (en) * 2005-12-21 2011-09-09 Inst Francais Du Petrole FUEL INJECTION METHOD FOR INTERNAL COMBUSTION ENGINE, IN PARTICULAR DIRECT INJECTION, COMPRISING A PISTON HAVING A BOWL WITH A TOE
DE102006034806A1 (en) * 2006-07-27 2008-01-31 Robert Bosch Gmbh Internal combustion engine i.e. petrol engine, operating method, involves compressing ignitable gas mixture in chamber in compression stroke, and changing remaining gas amount and/or injecting time for working cycle to intermediate value
US7748355B2 (en) * 2006-09-15 2010-07-06 Ford Global Technologies, Llc Approach for facilitating engine mode transitions
EP1925802B1 (en) 2006-11-22 2009-12-30 Ford Global Technologies, LLC Quick restart HCCI internal combustion engine
US7480558B2 (en) 2007-02-28 2009-01-20 Gm Global Technology Operations, Inc. Method and apparatus for controlling a homogeneous charge compression ignition engine
US8229648B2 (en) * 2007-03-06 2012-07-24 GM Global Technology Operations LLC Method and apparatus for controlling fuel injection in a homogeneous charge compression ignition engine
US7822529B2 (en) * 2007-03-06 2010-10-26 Gm Global Technology Operations, Inc. Method and apparatus for determining a parameter for normalized instantaneous heat release in an internal combustion engine
US8887691B2 (en) * 2007-04-17 2014-11-18 GM Global Technology Operations LLC Method and apparatus for selecting a combustion mode for an internal combustion engine
US7506535B2 (en) * 2007-04-24 2009-03-24 Gm Global Technology Operations, Inc. Method and apparatus for determining a combustion parameter for an internal combustion engine
US7540270B2 (en) * 2007-04-24 2009-06-02 Gm Global Technology Operations, Inc. Method and apparatus for controlling combustion mode transitions in an internal combustion engine
US7689343B2 (en) * 2007-04-24 2010-03-30 Gm Global Technology Operations, Inc. Method and apparatus for enabling control of fuel injection for an engine operating in an auto-ignition mode
US7689344B2 (en) * 2007-06-08 2010-03-30 Gm Global Technology Operations, Inc. Method and apparatus for controlling transitions in an engine having multi-step valve lift
JP4743169B2 (en) * 2007-06-13 2011-08-10 トヨタ自動車株式会社 Internal combustion engine control apparatus and method
US8290686B2 (en) * 2008-03-12 2012-10-16 GM Global Technology Operations LLC Method for controlling combustion mode transitions for an internal combustion engine
US8095290B2 (en) * 2008-08-01 2012-01-10 GM Global Technology Operations LLC Method to control vehicular powertrain by monitoring map preview information
US8316819B2 (en) * 2008-09-26 2012-11-27 Mazda Motor Corporation Control of spark ignited internal combustion engine
US7966991B2 (en) * 2009-03-25 2011-06-28 GM Global Technology Operations LLC Method and apparatus for controlling combustion mode transitions in an internal combustion engine
US8118010B2 (en) * 2009-10-06 2012-02-21 GM Global Technology Operations LLC Diagnostic systems and methods for fuel injectors in homogenous charge compression ignition engine systems
US8776762B2 (en) * 2009-12-09 2014-07-15 GM Global Technology Operations LLC HCCI mode switching control system and method
US8434450B2 (en) * 2010-01-27 2013-05-07 GM Global Technology Operations LLC Method for operating a direct-injection spark-assisted compression-ignition engine
US8437943B2 (en) * 2010-01-28 2013-05-07 Deere & Company NOx control during load increases
US8645044B2 (en) 2010-05-24 2014-02-04 GM Global Technology Operations LLC Method and apparatus for operating an internal combustion engine in a homogeneous-charge compression-ignition combustion mode
US9008944B2 (en) 2010-05-24 2015-04-14 GM Global Technology Operations LLC Method and apparatus for controlling operation of an internal combustion engine operating in HCCI combustion mode
US8616182B2 (en) 2010-05-24 2013-12-31 GM Global Technology Operations LLC Method and apparatus for controlling an internal combustion engine coupled to a passive selective catalytic reduction aftertreatment system
US8863728B2 (en) * 2010-08-17 2014-10-21 GM Global Technology Operations LLC Model-based transient fuel injection timing control methodology
DE102010045083A1 (en) * 2010-09-13 2012-03-15 Volkswagen Ag Method and device for controlling an internal combustion engine
WO2012042610A1 (en) * 2010-09-29 2012-04-05 トヨタ自動車株式会社 Control device of internal combustion engine
US8826884B2 (en) 2010-10-29 2014-09-09 GM Global Technology Operations LLC Combustion balancing control strategy using normalized instantaneous heat release in HCCI engines
EP2646663B1 (en) * 2010-12-03 2018-02-14 Cummins Intellectual Properties, Inc. Lean burn active ignition engine with aftertreatment system and method
US9151240B2 (en) 2011-04-11 2015-10-06 GM Global Technology Operations LLC Control system and method for a homogeneous charge compression ignition (HCCI) engine
US9284906B2 (en) * 2011-06-08 2016-03-15 GM Global Technology Operations LLC Combustion phasing control methodology in HCCI combustion
US8948999B2 (en) * 2011-07-03 2015-02-03 Southwest Research Institute Fuel injection during negative valve overlap for stoichiometric diesel operations
US9163569B2 (en) * 2011-08-25 2015-10-20 GM Global Technology Operations LLC Indirect HCCI combustion control
AT511604B1 (en) 2011-10-06 2013-01-15 Avl List Gmbh INTERNAL COMBUSTION ENGINE WITH AN INTAKE TRAIN
US8918265B2 (en) 2012-01-18 2014-12-23 GM Global Technology Operations LLC Method and apparatus for controlling operation of an internal combustion engine operating in HCCI combustion mode
WO2014129225A1 (en) * 2013-02-22 2014-08-28 日産自動車株式会社 Device and method for controlling internal combustion engine
DE102013209037A1 (en) * 2013-05-15 2014-11-20 Robert Bosch Gmbh Method and apparatus for operating an exhaust gas recirculation of a self-igniting internal combustion engine, in particular of a motor vehicle
US9453481B2 (en) 2013-06-04 2016-09-27 Ford Global Technologies, Llc System and method for operating an engine
JP6269410B2 (en) * 2014-09-18 2018-01-31 トヨタ自動車株式会社 Control device for internal combustion engine
US9587617B2 (en) * 2014-12-10 2017-03-07 Cummins Inc. Method of spark timing adjustment for an internal combustion engine
JP6332320B2 (en) 2016-04-11 2018-05-30 トヨタ自動車株式会社 Control device for internal combustion engine
US9856829B2 (en) * 2016-04-26 2018-01-02 Ford Global Technologies, Llc System and methods for improving fuel economy
US10337430B2 (en) * 2016-06-14 2019-07-02 Ford Global Technologies, Llc Method and system for determining air-fuel ratio imbalance
CN110139977B (en) 2017-02-01 2022-04-26 卡明斯公司 Combustion and thermal management strategy using variable valve timing
CN113803174B (en) * 2020-06-16 2022-09-20 上海汽车集团股份有限公司 Engine control method and device
US11698034B2 (en) * 2021-04-13 2023-07-11 GM Global Technology Operations LLC Method of transient control for robust enrichment operation in low temperature combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519958A (en) * 1982-06-14 1985-05-28 Kenna Research Corporation Fuel flow metering apparatus
US6640771B2 (en) * 2001-09-25 2003-11-04 Avl List Gmbh Internal combustion engine
US6675748B2 (en) * 2000-02-11 2004-01-13 Westport Research Inc. Method and apparatus for fuel injection into an internal combustion engine
US20040134449A1 (en) * 2003-01-13 2004-07-15 Ford Global Technologies, Inc. Control of autoignition timing in a hcci engine
US20040182359A1 (en) * 2003-03-17 2004-09-23 Stewart Daniel W. Individual cylinder-switching in a multi-cylinder engine

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446830A (en) * 1983-01-10 1984-05-08 Ford Motor Company Method of operating an engine with a high heat of vaporization fuel
JPH09250387A (en) * 1996-03-19 1997-09-22 Toyota Motor Corp Fuel injection control method for internal combustion engine
US6636197B1 (en) * 1996-11-26 2003-10-21 Immersion Corporation Haptic feedback effects for control, knobs and other interface devices
FR2760487B1 (en) * 1997-03-07 1999-04-30 Inst Francais Du Petrole METHOD FOR CONTROLLING SELF-IGNITION IN A 4-STROKE ENGINE
US5713328A (en) * 1997-03-31 1998-02-03 Ford Global Technologies, Inc. Spark ignited internal combustion engine with multiple event fuel injection
JP3355997B2 (en) * 1997-05-30 2002-12-09 株式会社日立製作所 Internal combustion engine control method
DE19810935C2 (en) * 1998-03-13 2000-03-30 Daimler Chrysler Ag Process for operating a four-stroke reciprocating piston internal combustion engine
DE19818596C5 (en) * 1998-04-25 2006-06-29 Daimlerchrysler Ag Method for operating a four-stroke reciprocating internal combustion engine
JP2000073800A (en) * 1998-08-28 2000-03-07 Hitachi Ltd Controller for engine with electromagnet drive suction and exhaust valve
DE60010176T2 (en) * 1999-05-12 2004-08-26 Nissan Motor Co., Ltd., Yokohama Self-ignited internal combustion engine
DE19923413B4 (en) * 1999-05-21 2011-02-17 Daimler Ag Method for operating a four-stroke reciprocating internal combustion engine with alternating compression and spark ignition
JP4253426B2 (en) * 1999-09-14 2009-04-15 日産自動車株式会社 Compression self-ignition gasoline engine
DE19952096C2 (en) * 1999-10-29 2001-10-11 Daimler Chrysler Ag Compression ignition internal combustion engine
WO2001046573A1 (en) 1999-12-22 2001-06-28 Lotus Cars Limited A direct injection four stroke engine with auto-ignition
JP3815163B2 (en) * 2000-01-25 2006-08-30 日産自動車株式会社 Compression self-ignition internal combustion engine
JP2001323828A (en) * 2000-05-16 2001-11-22 Nissan Motor Co Ltd Compression self-ignition gasoline engine
JP3988383B2 (en) * 2000-12-19 2007-10-10 日産自動車株式会社 Self-igniting engine and its control device
GB2374633C (en) * 2001-04-19 2015-03-25 Lotus Car A four stroke engine
JP3885524B2 (en) * 2001-06-25 2007-02-21 日産自動車株式会社 Compression self-ignition internal combustion engine
ITTO20010660A1 (en) * 2001-07-06 2003-01-06 Fiat Ricerche MULTI-CYLINDER DIESEL ENGINE WITH VARIABLE VALVE OPERATION.
JP2003314309A (en) * 2002-04-25 2003-11-06 Hitachi Unisia Automotive Ltd Variable valve control device of internal combustion engine
US6910449B2 (en) * 2002-12-30 2005-06-28 Ford Global Technologies, Llc Method for auto-ignition operation and computer readable storage device for use with an internal combustion engine
EP1496231B1 (en) * 2003-07-01 2008-05-14 Ford Global Technologies, LLC An arrangement and a computer readable storage device for controlling homogeneous charge compression ignition combustion
US7021277B2 (en) * 2004-07-26 2006-04-04 General Motors Corporation Valve and fueling strategy for operating a controlled auto-ignition four-stroke internal combustion engine
US7150250B2 (en) * 2004-07-26 2006-12-19 General Motors Corporation Valve and fueling strategy for operating a controlled auto-ignition four-stroke internal combustion engine
US7128047B2 (en) * 2004-07-26 2006-10-31 General Motors Corporation Valve and fueling strategy for operating a controlled auto-ignition four-stroke internal combustion engine
EP1681452A1 (en) * 2005-01-13 2006-07-19 Ford Global Technologies, LLC Internal combustion engine and method for auto-ignition operation of said engine
WO2006096425A2 (en) * 2005-03-03 2006-09-14 General Motors Global Technology Operations, Inc. Method for transition between controlled auto-ignition and spark ignition modes direct fuel injection engines
US7171957B2 (en) * 2005-03-03 2007-02-06 International Engine Intellectual Property Company, Llc Control strategy for expanding diesel HCCI combustion range by lowering intake manifold temperature
CN101287897A (en) 2005-03-03 2008-10-15 通用汽车环球科技运作公司 Load transient control methods for direct-injection engines with controlled auto-ignition combustion
WO2006096423A2 (en) * 2005-03-03 2006-09-14 General Motors Global Technology Operations, Inc. Speed transient control methods for direct-injection engines with controlled auto-ignition combustion
US7017561B1 (en) * 2005-03-03 2006-03-28 International Engine Intellectual Property Company, Llc Control strategy for expanding diesel HCCI combustion range by lowering intake manifold temperature
US7367308B2 (en) * 2005-03-03 2008-05-06 Gm Global Technology Operations, Inc. Method for load transient control between lean and stoichiometric combustion modes of direct-injection engines with controlled auto-ignition combustion
US7275514B2 (en) * 2005-04-28 2007-10-02 Gm Global Technology Operations, Inc. Method of HCCI and SI combustion control for a direct injection internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519958A (en) * 1982-06-14 1985-05-28 Kenna Research Corporation Fuel flow metering apparatus
US6675748B2 (en) * 2000-02-11 2004-01-13 Westport Research Inc. Method and apparatus for fuel injection into an internal combustion engine
US6640771B2 (en) * 2001-09-25 2003-11-04 Avl List Gmbh Internal combustion engine
US20040134449A1 (en) * 2003-01-13 2004-07-15 Ford Global Technologies, Inc. Control of autoignition timing in a hcci engine
US20040182359A1 (en) * 2003-03-17 2004-09-23 Stewart Daniel W. Individual cylinder-switching in a multi-cylinder engine

Also Published As

Publication number Publication date
WO2006096429A2 (en) 2006-09-14
CN101287897A (en) 2008-10-15
DE112006000513B4 (en) 2015-06-25
DE112006000513T5 (en) 2008-01-17
US7370633B2 (en) 2008-05-13
US20060196467A1 (en) 2006-09-07

Similar Documents

Publication Publication Date Title
WO2006096429A3 (en) Load transient control for direct-injection engines with controlled auto-ignition combustion
US10605193B2 (en) Control system for compression-ignition engine
WO2006096423A3 (en) Speed transient control methods for direct-injection engines with controlled auto-ignition combustion
EP2527632B1 (en) Fuel injection control device for internal-combustion engine
US9255539B2 (en) Spark-ignition direct injection engine
US10641193B2 (en) Control system for compression-ignition engine
US10641197B2 (en) Control system for compression-ignition engine
US10704480B2 (en) Control system for compression-ignition engine
US9261041B2 (en) Spark-ignition direct injection engine
JP5772025B2 (en) Control device for internal combustion engine
WO2006019816A3 (en) Hcci engine combustion control
JP2007092724A (en) Multistage fuel injection type internal combustion engine
WO2006096425A3 (en) Method for transition between controlled auto-ignition and spark ignition modes direct fuel injection engines
US10704524B2 (en) Control system of compression-ignition engine
WO2006118698A2 (en) Method of hcci and si combustion control for a direct injection internal combustion engine
JP2002242709A (en) 4-cycle engine for automobile
WO2006036265A2 (en) Method for rapid stable torque transition between lean and rich combustion modes
EP3256704B1 (en) Reducing unburned hydrocarbon emissions in gaseous fuelled lean-burn engines
JP2002242711A (en) 4-cycle engine having catalyst
JP4114008B2 (en) Control device for spark ignition direct injection engine with turbocharger
JP5310951B2 (en) Control device for internal combustion engine
JP6614192B2 (en) Control device for compression self-ignition engine
JP2005256778A (en) Engine equipped with exhaust gas circulating device
JP2004011584A (en) Fuel injection control device
WO2012090320A1 (en) In-cylinder injection-type internal combustion engine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680006833.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120060005138

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

RET De translation (de og part 6b)

Ref document number: 112006000513

Country of ref document: DE

Date of ref document: 20080117

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06736617

Country of ref document: EP

Kind code of ref document: A2