WO2006102183A2 - Two-way communication system for tracking locations and statuses of wheeled vehicles - Google Patents

Two-way communication system for tracking locations and statuses of wheeled vehicles Download PDF

Info

Publication number
WO2006102183A2
WO2006102183A2 PCT/US2006/009921 US2006009921W WO2006102183A2 WO 2006102183 A2 WO2006102183 A2 WO 2006102183A2 US 2006009921 W US2006009921 W US 2006009921W WO 2006102183 A2 WO2006102183 A2 WO 2006102183A2
Authority
WO
WIPO (PCT)
Prior art keywords
cart
wheel
carts
transceiver
shopping
Prior art date
Application number
PCT/US2006/009921
Other languages
French (fr)
Other versions
WO2006102183A3 (en
Inventor
Stephen E. Hannah
Scott J. Carter
Jesse M. James
Original Assignee
Gatekeeper Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37024463&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006102183(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Gatekeeper Systems, Inc. filed Critical Gatekeeper Systems, Inc.
Priority to CA2601565A priority Critical patent/CA2601565C/en
Priority to EP19202571.6A priority patent/EP3614104B1/en
Priority to EP16179514.1A priority patent/EP3138701B1/en
Priority to EP22177661.0A priority patent/EP4123261A1/en
Priority to EP06748454.3A priority patent/EP1864082B1/en
Priority to CN2006800166212A priority patent/CN101176127B/en
Priority to ES06748454.3T priority patent/ES2605370T3/en
Priority to EP16179519.0A priority patent/EP3138702B1/en
Publication of WO2006102183A2 publication Critical patent/WO2006102183A2/en
Publication of WO2006102183A3 publication Critical patent/WO2006102183A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • B62B5/04Braking mechanisms; Locking devices against movement
    • B62B5/0438Braking mechanisms; Locking devices against movement hand operated
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F10/00Furniture or installations specially adapted to particular types of service systems, not otherwise provided for
    • A47F10/02Furniture or installations specially adapted to particular types of service systems, not otherwise provided for for self-service type systems, e.g. supermarkets
    • A47F10/04Furniture or installations specially adapted to particular types of service systems, not otherwise provided for for self-service type systems, e.g. supermarkets for storing or handling self-service hand-carts or baskets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/08Auxiliary drives from a ground wheel, e.g. engaging the wheel tread or rim
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/16Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/16Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle
    • B60T7/18Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle operated by wayside apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • B62B3/14Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor characterised by provisions for nesting or stacking, e.g. shopping trolleys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • B62B3/14Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor characterised by provisions for nesting or stacking, e.g. shopping trolleys
    • B62B3/1404Means for facilitating stowing or transporting of the trolleys; Antitheft arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • B62B3/14Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor characterised by provisions for nesting or stacking, e.g. shopping trolleys
    • B62B3/1408Display devices mounted on it, e.g. advertisement displays
    • B62B3/1412Display devices mounted on it, e.g. advertisement displays mounted on the frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • B62B3/14Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor characterised by provisions for nesting or stacking, e.g. shopping trolleys
    • B62B3/1408Display devices mounted on it, e.g. advertisement displays
    • B62B3/1424Electronic display devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • B62B3/14Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor characterised by provisions for nesting or stacking, e.g. shopping trolleys
    • B62B3/1492Wheel arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • B62B5/0003Adaptations for loading in or on a vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • B62B5/04Braking mechanisms; Locking devices against movement
    • B62B5/0404Braking mechanisms; Locking devices against movement automatic
    • B62B5/0423Braking mechanisms; Locking devices against movement automatic braking or blocking when leaving a particular area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • B62B5/04Braking mechanisms; Locking devices against movement
    • B62B5/048Hub brakes; drum brakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10366Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2428Tag details
    • G08B13/2434Tag housing and attachment details
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2428Tag details
    • G08B13/2448Tag with at least dual detection means, e.g. combined inductive and ferromagnetic tags, dual frequencies within a single technology, tampering detection or signalling means on the tag
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2451Specific applications combined with EAS
    • G08B13/2462Asset location systems combined with EAS
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2465Aspects related to the EAS system, e.g. system components other than tags
    • G08B13/2482EAS methods, e.g. description of flow chart of the detection procedure
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/20Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1846Rotary generators structurally associated with wheels or associated parts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/024Guidance services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2451Specific applications combined with EAS
    • G08B13/246Check out systems combined with EAS, e.g. price information stored on EAS tag
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2465Aspects related to the EAS system, e.g. system components other than tags
    • G08B13/2468Antenna in system and the related signal processing
    • G08B13/2474Antenna or antenna activator geometry, arrangement or layout
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2465Aspects related to the EAS system, e.g. system components other than tags
    • G08B13/2468Antenna in system and the related signal processing
    • G08B13/2477Antenna or antenna activator circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the present invention relates to systems for tracking the movement and statuses of non-motorized vehicles, including but not limited to shopping carts. Description of the Related Art
  • these systems include a wire that is embedded in the pavement of a store parking lot to define an outer boundary of area in which shopping cart use is permitted.
  • a sensor in or near one of the wheels detects an electromagnetic signal generated via the wire, causing the wheel to lock.
  • an attendant typically uses a handheld remote control to send an unlock signal to the wheel.
  • the present invention comprises a system for tracking the locations and statuses of vehicles, such as shopping carts.
  • Each vehicle includes a wheel or wheel assembly that includes sensor circuitry for sensing various types of events.
  • the types of sensors included in the wheel assembly may vaiy widely, but may include, for example, any one or more of the following: (1) a wheel rotation sensor, (2) a vibration sensor for sensing wheel skid events, (3) a VLF (Very Low Frequency) signal detector for detecting signals used by conventional cart containment systems, (4) an EAS (Electronic Article Surveillance) signal detector capable of detecting conventional EAS towers, and/or (5) a magnetic field sensor capable of detecting encoded magnetic markers placed on or under store flooring or pavement to mark specific locations.
  • the wheel may also include a braking mechanism that can be actuated to lock the wheel from rotating, although braking mechanisms may be omitted in some embodiments.
  • the wheel's sensor circuitry is coupled to a radio frequency (RP) transceiver system, which may but need not also be housed in the wheel or wheel assembly.
  • the RF transceiver system provides a two-way data link that may be used to retrieve status information from, and send commands to, specific vehicles.
  • the RF transceiver system is preferably capable of measuring and reporting the signal strengths of transmissions it receives, such as transmissions from wireless access points and/or other vehicles.
  • the retrieved status information may be used to track locations of the vehicles in real time or near real time, and to make decisions on whether to authorize or block particular vehicle actions. For example, in the context of a shopping cart that is exiting a store, the data acquired via two-way communications with the cart may be used to determine whether the cart passed through a checkout lane. If it did not, a lock command may be transmitted to the cart, or an "exit authorized" command withheld, to cause the wheel to lock.
  • the determination of whether to treat the exit event as unauthorized may also be based on other types of data, such as any one or more of the following: (1) whether the corresponding checkout register/scanner was active, as may be determined, e.g., from a central store computer or via a network-connected sensor at the checkout station; (2) the average speed at which the cart passed through the checkout lane, as may be determined, e.g., from a rotation sensor in the wheel, (3) the amount of time spent in the store, (4) whether the cart passed through an area that includes high-priced or frequently stolen merchandise.
  • data such as any one or more of the following: (1) whether the corresponding checkout register/scanner was active, as may be determined, e.g., from a central store computer or via a network-connected sensor at the checkout station; (2) the average speed at which the cart passed through the checkout lane, as may be determined, e.g., from a rotation sensor in the wheel, (3) the amount of time spent in the store, (4) whether the cart passed through an area
  • the sensor or sensor-based data collected from the vehicles may also be used for a variety of other applications.
  • a vibration sensor may be included in the wheel to detect and report wheel skid events.
  • Such skid events commonly occur when a retrieval unit retrieves a cart having a locked or improperly oriented wheel, and can cause damage to the wheels and the retrieval unit.
  • the reported skid event message may be used to automatically disable the cart retrieval unit and/or to alert its operator.
  • signal strength measurements taken by the vehicle's RF transceivers can be analyzed collectively, such as by using a clustering algorithm, to estimate the number of carts currently queued or otherwise clustered at a checkout station, in a cart retrieval line, at a cart park area, or elsewhere.
  • This information may be used for various purposes, such as to alert store personnel of the need to open a checkout lane or to retrieve carts, or to automatically disable a cart retrieval unit that is attempting to retrieve more than an authorized number of carts at a time.
  • each cart may be provided with a display unit that contains or is coupled to the cart's RF transceiver, hi these embodiments, the location data obtained via two-way communications with a cart may be used to select messages to present on the display unit to a customer. For instance, when a shopping cart enters a particular area or department of the store, an advertisement or other message may be displayed that is specific to that area or department. If the customer's identity is known (e.g., as the result of the customer swiping a customer loyalty card via the display unit), the ad or message may be targeted and/or personalized based, e.g., on the past shopping activities of the customer.
  • the data obtained via two-way communications with the carts may also be analyzed on an aggregated basis for store planning purposes. For example, the paths followed by customers, and the amounts of time spent in particular areas or departments, can be collectively analyzed to identify areas that are the most or least frequently visited by customers.
  • the system may associate the customer/cart's path in the store with the associated transaction record, including identifiers of the products purchased; this data may be mined on an aggregated basis via data mining software to detect, e.g., that customers commonly have difficulty locating particular products, or to detect that customers commonly linger in a particular area without selecting an item to purchase.
  • the invention also comprises a mechanized cart retrieval unit that is capable of instructing the shopping carts it is pushing or pulling to maintain their wheels in an unlocked state.
  • the cart retrieval unit may also instruct one or more carts at the front of the nest to apply weak or partial braking so that the carts do not become un-nested during retrieval.
  • the invention comprises techniques for using directional antennas to create lock and unlock zones for containing vehicles in a defined area.
  • the present invention thus comprises a system for monitoring the usage of vehicles.
  • the system includes a control unit coupled to a radio frequency (RF) communication system; and a plurality of vehicles, each vehicle including a wheel assembly with sensor circuitry for sensing at least one type of condition, and including an RF transceiver system coupled to the sensor circuitry, said RF transceiver system configured to communicate bi-directionally with the RF communication system as the vehicle moves in a vehicle monitoring area, and configured to report events detected via the sensor circuitry.
  • the control unit receives and aggregates vehicle status data collected via bi-directional RF communications with the RF transceiver systems of the vehicles, said status data including vehicle location data.
  • the invention also includes a system for tracking and controlling a wheeled vehicle, the system comprising: a wheel adapted to be attached to the vehicle, the wheel including a brake mechanism, and including sensor circuitry capable of detecting at least one type of condition; and an RF transceiver system connected to the sensor circuitry and to the brake mechanism, said RF transceiver system configured to communicate bi- directionally over a wireless link to report events detected via the sensor circuitry and to receive commands.
  • the RF transceiver system is responsive to commands received over the wireless link by activating and deactivating the brake mechanism to control movement of the vehicle.
  • the invention also includes a method of monitoring and. controlling movement of shopping cart.
  • the method comprises monitoring a location of a shopping cart via bi-directional radio frequency (RF) communications with a cart transceiver of the shopping cart, said cart transceiver electrically coupled to a brake mechanism of the shopping cart; and automatically determining whether to activate the brake mechanism to inhibit the shopping cart from exiting a store based, at least in part, on a path taken by the shopping cart before proceeding to an exit of the store, as determined from the monitoring.
  • RF radio frequency
  • the invention also includes a method of controlling a cart.
  • the method comprises communicating bi-directionally with the cart over at least one wireless link to obtain event data, including event data reflective of a location of the cart, wherein the cart includes a brake mechanism that can be engaged to impair movement of the cart.
  • the method further includes programmatically analyzing the event data substantially in real time at a node that is separate from the cart to evaluate whether to cause the brake mechanism to be engaged.
  • the invention also includes a method of reducing wheel damage to carts retrieved by a mechanized cart retrieval unit.
  • the method comprises detecting a wheel skid event via a vibration sensor included in a wheel assembly of a cart being retrieved by the mechanized cart retrieval unit; and in response to detecting the wheel skid event, transmitting a message to the mechanized cart retrieval unit over a wireless communication link to cause the mechanized cart retrieval unit to take a corrective action.
  • the invention also includes a system for reducing wheel damage.
  • the system includes a wheel configured for use on a shopping cart; a vibration sensor included in the wheel and capable of detecting vibration caused by skidding of the wheel during mechanized cart retrieval; and a communication circuit connected to the vibration sensor.
  • the communication circuit is configured to respond to vibration detection by the vibration sensor by transmitting an alert message via an RF communication link.
  • the invention also includes a system for retrieving shopping carts.
  • the system comprises a plurality of shopping carts, each of which includes RF communication circuitry coupled to a braking mechanism, the RF communication circuitry being capable of receiving RF transmissions of commands.
  • the system also includes a mechanized cart retrieval unit that pushes or pulls a group of nested carts to facilitate retrieval.
  • the mechanized cart retrieval unit is configured to communicate with the RF communication circuitry of the nested carts to cause the braking mechanisms of the nested carts to remain unlocked during mechanized cart retrieval.
  • the invention also includes a method of estimating a number of carts clustered together in an area that comprises a plurality of carts.
  • the method comprises causing each of the plurality of carts to generate an RF transmission via a respective RF transceiver; at each respective cart, generating RSSI (Received Signal Strength Indication) values for the transmissions received from the other carts; and collectively analyzing the RSSI values generated at the carts to estimate how many of the carts are clustered together.
  • RSSI Receiveived Signal Strength Indication
  • the invention also includes a system for detecting clusters of carts.
  • the system comprises a plurality of wheels that are adapted to be attached to respective carts, each wheel including an RF transceiver; and a node configured to communicate bi- directionally with the plurality of wheels.
  • the wheels are configured to measure signal strengths of transmissions from other wheels and to report said signal strengths to said node, and the node is programmed to collectively analyze the reported signal strengths to identify carts that are clustered together.
  • the invention also includes a system for controlling shopping carts usage in the vicinity of a parking lot.
  • the system comprises a device that repeatedly transmits a lock command from a directional antenna, the directional antenna mounted above ground and angled downward to create a lock zone in which shopping cart use is restricted.
  • the lock zone encompasses an exit area associated with the parking lot.
  • the system also comprises a plurality of shopping carts, each shopping cart comprising a brake mechanism, and comprising an RF communication circuit that is responsive to the lock command by activating the brake mechanism.
  • the invention also includes a system for controlling vehicle usage.
  • the system includes a device that repeatedly transmits a lock command from a directional antenna, the directional antenna mounted above ground and angled downward to create a lock zone in which vehicle use is restricted.
  • the system also includes a plurality of vehicles, each vehicle comprising a brake mechanism, and comprising an RF communication circuit that is responsive to the lock command by activating the brake mechanism.
  • the invention also comprises a shopping cart system.
  • the shopping cart system comprises a shopping cart having an RF transceiver and a display unit.
  • the RF transceiver is configured to communicate bi-directionally with one or more nodes of a wireless network to enable a location of the shopping cart to be monitored.
  • the system also includes a content selection module that selects content to display on the display unit based, at least in part, on a current location of the shopping cart.
  • Figure 1 illustrates various types of system components that may be deployed in and around a store for purposes of tracking shopping carts.
  • Figure 2 illustrates one possible configuration that may be used to detect whether a customer who is exiting the store has paid.
  • Figure 3 illustrates one example of the decision logic that may be used to evaluate whether an exiting customer has paid.
  • Figure 4 illustrates the electronics that may be included in a shopping cart wheel according to one embodiment of the invention.
  • Figure 5 illustrates one example of a type of vibration sensor that may be included in the wheel to detect skid events.
  • Figure 6 illustrates how an antenna used for two-way communications may be configured and positioned within a shopping cart wheel in a 2.4 GHz implementation.
  • Figure 7 is a top view illustrating the unoccluded radiation pattern produced by the antenna of Figure 6.
  • Figure 8 illustrates how other electrical and mechanical components may be arranged within the wheel according to one embodiment.
  • Figure 9 illustrates an embodiment in which the cart includes a handle- mounted display unit that includes the RF transceiver circuitry used for two-way communications.
  • Figure 10 is a block diagram of a circuit that may be used to implement the access points.
  • Figure 11 illustrates, in example format, a communications protocol that maybe used for communications between access points and shopping carts.
  • Figure 12 illustrates a program loop that may be executed by the cart transceivers to implement the protocol of Figure 11.
  • Figure 13 illustrates additional logic that maybe used to implement the "respond to a command" decision block in Figure 12.
  • Figure 14 illustrates one embodiment of a CCU that stores and analyzes event data captured via two-way communications with the carts.
  • Figure 15 illustrates a configuration in which a single access point is used to create a lock zone and an adjacent unlock zone in a parking lot area of a store.
  • Figures 16 and 17 illustrate other examples of how lock and unlock zones can be used to contain shopping carts.
  • Figure 18 illustrates a process by which the number of carts that are queued or otherwise clustered in a specific area may be estimated.
  • Figure 19 illustrates an arrangement of shopping carts that can be analyzed via the process of Figure 18.
  • Figure 20 illustrates one example of logic that may be incorporated into a cart transceiver or wheel to facilitate cart retrieval operations.
  • FIG. 1 illustrates a vehicle tracking system according to one embodiment of the invention.
  • the vehicle tracking system is shown deployed in a store for purposes of tracking and controlling the movement of shopping carts 30.
  • the inventive components and methods of the vehicle tracking system may be used for other applications, such as tracking luggage carts in an airport, stretchers in a hospital, or carts in a warehouse.
  • the system includes a set of cart transceivers (CTs) that communicate bi-directionally with a set of wireless access points (APs) to create two-way communications links with the shopping carts 30.
  • CTs cart transceivers
  • APs wireless access points
  • each cart transceiver is fully contained within one of the standard-size (5-inch diameter) wheels 32 (typically a front wheel) of a respective shopping cart 30, together with a braking unit that can be actuated by the cart transceiver to lock the wheel.
  • a braking unit that may be used for this purpose is described in U.S. Patent No. 6,362,728, the disclosure of which is hereby incorporated by reference.
  • the term "cart transceiver” refers collectively to the cart's RF transceiver and the associated sensor circuitry).
  • a progressive or partial braking unit may be used that is additionally capable of inhibiting the wheel's rotation without placing the wheel in a locked state.
  • Some of the circuitry of the cart transceivers may alternatively be provided elsewhere on the shopping carts 30.
  • some of the transceiver circuitry may alternatively be included in a display unit that attaches to the shopping cart's handle (see Figure 9, discussed below).
  • some or all of the circuitry, including sensor circuitry could be housed in the wheel assembly (e.g., in the wheel's caster or fork) without being included in the wheel itself.
  • the access points (APs) are generally responsible for communicating with the cart transceivers (CTs) for purposes of retrieving and generating cart status information, including information indicative or reflective of cart location.
  • the types of cart status information that may be retrieved and monitored include, for example, whether the wheel 32 is in a locked versus unlocked state, whether the cart is moving; the wheel's average rotation speed (as may be sensed using a rotation sensor in the wheel 32); whether the cart has detected a particular type of location-dependent signal such as a VLF, EAS or magnetic signal (discussed below); whether the wheel 32 is skidding; the CT's battery level and a general wheel "health"; and the number of lock/unlock cycles experienced by the cart since some reference time.
  • the access points (APs) are also capable of generating and/or relaying commands to the cart transceivers (CTs), including lock and unlock commands that are sent to specific shopping carts.
  • CTs cart transceivers
  • all of the access points (APs) communicate wirelessly with a central control unit (CCU), either directly or via intermediate access points.
  • the central control unit may be implemented as a personal computer that includes a wireless transceiver card or which is wire-connected to an external transceiver unit.
  • the CCU is generally responsible for collecting, storing and analyzing cart status information, including location information, gathered by the access - points (APs).
  • the CCU may collect data generated by the access points, such as signal strength measurements of detected cart transmissions. Some or all of the collected data is preferably stored by the CCU together with associated event timestamps.
  • the CCU may analyze the collected data in real time for purposes of making decisions, such as whether to send a lock command to a particular cart 30 or whether to send an alert message to personnel. For example, when a cart is approaching or passing through the store exit, the CCU may analyze the cart's recent history (e.g., path and speed) to evaluate whether a customer is attempting to leave the store without paying. (The access points may additionally or alternatively be responsible for making such determinations.) Based on the outcome of this determination, the CCU may send a lock command to the cart (typically via an access point), or may refrain from issuing a command that authorizes the cart to exit. As another example, if the CCU detects a rapid increase in the number of active carts, the CCU may alert personnel (e.g., over a store LAN) regarding the possible need to open an additional checkout station.
  • decisions such as whether to send a lock command to a particular cart 30 or whether to send an alert message to personnel. For example, when a cart is approaching or passing through the store exit
  • the CCU may also run data mining and reporting software that analyzes the data collected over time for purposes of detecting meaningful traffic patterns and trends. For example, the CCU may generate reports showing how customers typically progress through the store, and how much time they spend in each aisle or other shopping area. This information may be used to, for example, adjust the store layout.
  • the CCU may additionally or alternatively convey the data it collects over a cellular network or the Internet to a remote node that handles analysis and reporting tasks.
  • the CCU (and possibly one or more access points) may have an autonomous WAN link that uses a cellular data service such as GPRS to convey the collected data to a remote node for analysis and reporting. This feature can be used to monitor the system's health from a remote facility.
  • the system may also be capable of being tested and configured via the WAN link from the remote facility.
  • the CCU may connect to various other types of systems that exist within the store.
  • the CCU may connect to a preexisting alarm system and/or video surveillance system, in which case the CCU may be configured to activate an audible alarm or a video camera upon detecting an unauthorized exit event.
  • the CCU may connect to a pre-existing central store computer that maintains information regarding the states of the store's checkout registers; as described below, this information may be retrieved and used by the CCU to evaluate whether a customer has passed through an active checkout lane.
  • the CCU may be omitted.
  • the access points may implement all of the real time analysis functionality that might otherwise be handled by the CCU.
  • an access point mounted in the vicinity of the store exit may be capable of detecting that a customer is attempting to exit the store without paying, and deciding whether to send a lock command to the cart.
  • each access point maybe capable of operating both with and without a CCU. Implementations are also possible in which the access points are omitted, such that the CCU communicates directly with the cart transceivers.
  • the cart transceivers (CTs), access points (APs), and central control unit (CCU) all operate as uniquely addressable nodes on a wireless tracking network.
  • CCU central control unit
  • another type of node that may be included on the network is a handheld mobile control unit (MCU).
  • the mobile control unit is designed to enable store personnel to unlock individual carts via depression of a button, as is known in the art.
  • the mobile control unit may also include functionality for retrieving and displaying various types of cart status information, for configuring the wheels/cart transceivers and updating their firmware, and for controlling a motorized cart retrieval unit 40 (see discussion of cart retriever 40 below).
  • nodes e.g., cart transceivers, access points, central control unit, and mobile control unit
  • a relatively small battery such as one CRl 23 A (LiMnO 2 ) battery or two L91 (LiFeS 2 ) batteries mounted in the wheel 32.
  • Each cart transceiver is preferably capable of measuring the received signal strength, in terms of an RSSI (received signal strength indication) value, of the transmissions it receives on the wireless tracking network.
  • the system may use these RSSI measurements in various ways. For example, a cart transceiver may compare the RSSI value of an access point's transmission to a threshold value to determine whether to respond to the transmission. The cart transceiver may also report this RSSI value to the access point (together with the cart transceiver's unique ID) to enable the system to estimate the location of, or distance to, the shopping cart.
  • RSSI received signal strength indication
  • the cart transceivers may be programmed to generate and report RSSI values of transmissions from other nearby cart transceivers; this information may in turn be used to estimate the number of carts that are queued at a checkout lane, in a cart storage structure, in a cart stack being retrieved with a mechanized cart retrieval unit 40, or elsewhere.
  • RSSI values of transmissions from other nearby cart transceivers
  • One example of a method that may be used to estimate the number of queued or clustered carts in a particular area is described below under the heading "Queued Count Estimation.”
  • Each checkout station 34 includes a checkout register (REG), which typically includes a merchandise scanner.
  • Each checkout station 34 in this particular example includes an access point (AP), which may be mounted to the preexisting pole (if present) that indicates the number of the checkout lane.
  • Each such access point may include a connection or sensor that enables it to determine whether the respective checkout station is currently active. This information is useful for assessing whether a customer who passes through the checkout lane has paid.
  • AP access point
  • Each access point that is positioned at a checkout station 34 may use a directional antenna to communicate with nearby shopping carts/cart transceivers, such as those that are queued in the corresponding checkout lane (see Figure 2, discussed below).
  • Access points may additionally or alternatively be mounted to various other fixed and/or mobile structures in the vicinity of the store.
  • access points may be mounted to a shopping cart storage structure 36 (two shown) in the store parking lot.
  • These parking-structure-mounted access points may be used to detect and report the number of carts stored in their respective areas, and may also be used to enable the in-store access points or CCU to communicate with carts that would otherwise.be out of range.
  • an access point may also be mounted on a power-assisted (mechanized) cart retrieval unit or trolley 40, which may be either a cart pusher or cart puller.
  • a power-assisted cart retrieval unit or trolley 40 which may be either a cart pusher or cart puller.
  • a retrieval unit 40 is the CartManagerTM product of Gatekeeper Systems, Inc.
  • the retriever-mounted access point may serve various functions related to cart retrieval, including one or more of the following: (1) sending unlock commands to a nest 41 of carts 30 being retrieved, such that the wheels 32 of these carts are not damaged by being retrieved while in a locked state, (2) detecting whether the cart retriever 40 is being used to push or pull more than an authorized number (e.g., 15) carts at a time, and disabling the cart retriever 40, and/or reporting the event, if such misuse is detected, (3) in embodiments in which the wheel 32 or wheel assembly supports partial braking, instructing the cart or carts at the front of the nest 41 (particularly in the case of a cart pusher) to apply weak braking so that the carts do not become un- nested, with the degree of braking applied optionally being dependent upon the detected slope of the ground; and (4) in embodiments in which the wheels 32 include vibration sensors for detecting wheel skid events, responding to skid-event messages from the carts being retrieved by disabling the cart retriever 40 and/
  • the cart retrieval unit 40 is a battery powered cart pusher that is adapted to be positioned at the rear of a cart stack to be retrieved.
  • the operator manually steers the cart stack by holding the front cart with one hand while holding the MCU in the other hand. Via a set of buttons on the MCU, the operator can control the forward and backward direction and speed of the retriever 40.
  • Various type of status information may be displayed to the operator on a display of the MCU, such as the estimated number of carts being retrieved (as determined using the cluster analysis methods described below).
  • the retriever-mounted access point may disable the retriever 40 in various ways, such as by "spoofing" a manual throttle interface, or if the retriever 40 contains a motor controller with a digital external control interface, by issuing a stop command via this interface? .
  • a misuse condition e.g., a skid event or too many carts being pushed
  • each cart transceiver may include an EAS receiver (see Figure 4) for detecting that it is passing between a pair of EAS towers, and may be configured to report EAS detection events on the wireless tracking network; this information may in turn be taken into consideration in assessing whether an exiting customer has paid.
  • the example store configuration in Figure 1 is also shown as having a VLF signal line 44 embedded in the pavement along an outer perimeter of the parking lot.
  • VLF signal line 44 embedded in the pavement along an outer perimeter of the parking lot.
  • Such signal lines are commonly used in prior art systems to define the outer boundary of the area in which shopping carts are permitted.
  • the wheel 32 of each shopping cart includes a VLF receiver that detects the VLF signal, and engages the brake, when the cart is pushed over the signal line 44.
  • a VLF line may also be provided at the store exit such that all carts that pass through the exit have to cross over this line, and/or at other locations of interest.
  • cart transceiver preferably includes a VLF receiver.
  • the VLF receiver may be capable of detecting a code transmitted on a VLF line, so that different lines can be used to uniquely identify different areas or boundaries.
  • the cart transceiver may take various actions, depending on the circumstances. For example, the cart transceiver may attempt to report the VLF detection event on the wireless tracking network and then wait for a command indicating whether to engage the brake. If no command is received within a pre-programmed time period in this example (e.g., 2 seconds), the cart transceiver may automatically engage the brake.
  • one or more magnetic markers or strips may optionally be provided on or under the store flooring to provide an additional or alternative location-tracking mechanism. As illustrated, these magnetic markers may be provided in strategic locations, such as in each checkout lane and at the store exit. Although not shown in Figure 1, one or more magnetic markers may also be provided in the parking log and/or in shopping aisles. Each magnetic strip has a unique magnetic pattern that can be sensed by an optional magnetic sensor included in each wheel 32. The magnetic markers thus serve as magnetic bar codes that identify specific locations. When a cart 30 crosses a magnetic marker in one embodiment, the cart transceiver (CT) transmits the detected magnetic code, or information from which this code can be derived, on the wireless tracking network. Additional details of how magnetic markers may be sensed and used are described below, and are also described in the Navigation Patent Application referenced above, the disclosure of which is incorporated by reference herein.
  • FIG. 1 many of the components shown in Figure 1 are optional components that may or may not be included in a given system installation.
  • the magnetic markers, the EAS towers, and/or the VLF signal line can be omitted.
  • either the access points or the CCU can be omitted.
  • the illustrated components may be arranged differently than illustrated.
  • VLF signal lines could be provided in the checkout lanes and/or in the store exit/entrance (e.g., in place of the magnetic markers and EAS towers shown) to enable the carts to detect checkout events and exit/entrance events, respectively.
  • other types of signal transmitters and detectors/receivers could be used to monitor cart locations. II. Detecting Unauthorized Exit Events ( Figures 2 and 3)
  • the system supports a variety of different methods for assessing whether a customer is exiting the store without paying.
  • the particular method or methods used may vary widely based on the types and the locations of the system components included in a given installation. For example, if the store does not include any Electronic Article Surveillance (EAS) Towers, magnetic markers (MAG), or VLF lines, the determination may be made based solely or primarily on cart location/path information determined from CT-AP communications, with wheel speed history optionally taken into consideration as an additional factor. If EAS towers, magnetic markers, and/or VLF signal lines are provided, they may be used as additional or alternative sources of information from which the decision can be made.
  • EAS Electronic Article Surveillance
  • MAG magnetic markers
  • FIG. 2 illustrates three representative checkout stations 34, and will be used to describe how access point "zones" may optionally be used to monitor cart locations and to assess whether an exiting customer has paid.
  • Each checkout station 34 in this example includes a respective access point (AP) with a directional antenna (not shown), as described above.
  • the directional antennas are oriented such that each access point creates a respective zone 46 extending outward from the cart entry area of the checkout lane.
  • Each zone 46 in the preferred embodiment represents the area in which the RSSI of the respective access point's transmissions, as measured by the cart transceivers, exceed a selected threshold.
  • the transmission ranges of the access points typically extend well beyond their respective zones.
  • the zones 46 in this example are positioned such that a cart that enters the corresponding checkout lane will ordinarily pass through the corresponding zone. Some overlap may oceur between adjacent zones, as shown in this example.
  • access points (APs) positioned near the store exit/entrance create two additional zones 48 that may be used to detect cart exit and entry events. Access points in other areas (not shown) may create additional zones used for other purposes.
  • the store exit/entrance in the illustrated configuration of Figure 2 also includes a VLF signal line 49.
  • the code transmitted on this line 49 may uniquely correspond to the store's exit/entrance.
  • cart exit events can be distinguished from cart entry events by evaluating the timing with which the cart transceiver detects this VLF code relative to the timing which it sees various RSSI levels from the exit-mounted access points. For instance, if the strengths of transmissions from the exit-mounted access points peak and then fade before the wheel detects the VLF signal, the cart is likely exiting the store.
  • a shopping cart 30 when a shopping cart 30 (i.e., its cart transceiver) detects that it has entered into a zone 46, 48 (as determined by monitoring the RSSI values of the corresponding access point's transmissions), it registers with the access point (AP) by responding to a periodic transmission from the access point. If this access point is located at a checkout station 34, the access point may instruct the cart transceiver to enter into a data collection mode in which it monitors and reports a wider range of events and conditions than usual. For example, if the cart transceiver includes an EAS receiver, it may power-up this receiver for purposes of detecting passage between a pair of EAS towers.
  • the cart transceiver may monitor the wheel's rotation, such as by counting the number of rotation interrupts that occur.
  • the cart transceiver may also periodically generate and store RSSI values for the access point transmissions it hears.
  • the cart transceiver may send the collected data (wheel speed history, RSSI values, magnetic marker or EAS detection events, etc.) to an access point for analysis to determine whether a payment event has occurred.
  • the active/inactive state of the checkout register/station 34 corresponding to the cart's path may also be considered.
  • the task of evaluating the collected data is preferably handled primarily by the access points and/or the CCU, but could alternatively be handled partially or wholly by the cart transceivers (CTs).
  • CTs cart transceivers
  • Data collected by two or more different access points, potentially including access points that are not near the checkout stations 34, may be analyzed in combination for purposes of assessing whether a payment event occurred. For example, as a cart moves from one zone to another, it may communicate with a number of different access points. The history of these communications may be aggregated (e.g., by the CCU) and analyzed to estimate the cart's navigation path over time, and this estimated path may in turn be considered in assessing whether the customer has paid.
  • checkout activity may be monitored without providing access points (APs) at the checkout stations 34.
  • the system may detect that a cart has passed or is passing through a checkout lane based on one or more of the following: (1) detection by the wheel 32 of a magnetic marker that uniquely identifies a particular checkout lane; (2) if the store has VLF signal lines or EAS towers in the checkout lanes, detection by the cart transceiver (CT) of a VLF or EAS signal, optionally in conjunction with location history information indicating that the cart is in the general vicinity of a checkout lane.
  • CT cart transceiver
  • Figure 3 illustrates one example of the decision logic that may be used to determine whether to enable a cart 30 to exit the store.
  • This logic may be embodied in software executed by the CCU, an access point, and/or a cart transceiver, and may be executed upon detecting that a cart is attempting to exit the store.
  • This logic uses data acquired via two-way communications with the cart to infer whether the cart is being used to steal merchandise (referred to as an "inferred theft" or "pushout” event).
  • an inferred theft or "pushout” event.
  • This determination may be made in a variety of ways. For example, in some stores, the CCU may be able to get this information substantially in real time from a centralized store computer system that connects to the individual POS registers. Thus, for example, if magnetic markers (MAG) are provided in the checkout lanes, the wheel 32 may sense the unique magnetic code of its checkout lane and relay this information to the CCU via an access point; the CCU may then query the central store computer system to determine the state of the register.
  • MAG magnetic markers
  • the active/inactive determination may alternatively be made by an access point (AP) mounted at the checkout station; for example, the access point may include or be locally connected to an acoustic sensor that senses the beep sound produced by the merchandise scanners, or may include a light-based sensor or pressure-sensitive floor mat that detects whether a cashier is present at the station.
  • AP access point
  • the access point may include or be locally connected to an acoustic sensor that senses the beep sound produced by the merchandise scanners, or may include a light-based sensor or pressure-sensitive floor mat that detects whether a cashier is present at the station.
  • the wheel is caused to lock unless the average wheel speed through the checkout area is sufficiently low to indicate a likely payment event (block 66). If the checkout station was active, the cart is permitted to exit unless, in some embodiments, the average wheel speed is sufficiently high to indicate that the customer did not stop to pay (blocks 68-72).
  • the decision logic shown in Figure 3 can be varied in a number of ways.
  • the determination of whether to permit the cart to exit can be made without regard to the identity of the checkout lane used; for instance, the cart may be authorized to exit as long as it passed through some checkout lane with an average wheel speed falling below a selected threshold.
  • the determination whether to authorize the exit may be made without regard to wheel speed; for instance, the exit event may be authorized as long as the cart passed through a checkout lane that was active.
  • Figure 4 illustrates some of the different types of components that may be provided in or in conjunction with the cart transceiver (CT) according to one embodiment of the invention.
  • CT cart transceiver
  • all of the components shown in Figure 4 are mounted inside the shopping cart wheel 32.
  • some of the components shown in Figure 4 may alternatively be provided elsewhere on the cart 20, such as in a display unit mounted to the shopping cart, or in another portion of the wheel assembly (e.g., in the caster).
  • the design illustrated in Figure 4 and described below can be varied widely without departing from the scope of the invention.
  • the cart transceiver includes a microcontroller 80 that communicates with an RF transceiver 82.
  • the microcontroller is preferably a low power device that includes a self-programmable flash memory, RAM, and a set of integrated peripheral circuits such as an Analog to Digital Converter (ADC) and a multichannel Counter/Timer Circuit (CTC).
  • ADC Analog to Digital Converter
  • CTC Counter/Timer Circuit
  • An Atmel ATMegal 68V-10MI is one example of a microcontroller that is suitable for use.
  • the microcontroller 80 and RF transceiver 82 collectively act as a programmable RF transceiver system.
  • the RF transceiver system may alternatively be implemented without the use of a separate microcontroller; for example, an IC device that includes both an RF transceiver and a processor, such as a TI/Chipcon cc2510, may be used.
  • the microcontroller 80 could be replaced with another type of controller device, such as a custom ASIC (Application Specific Integrated Circuit).
  • the RF transceiver 82 is preferably either a 2.4 GHz or 5.7-5.8 GHz transceiver, although other frequency bands such as UHF can be used.
  • the RF transceiver 82 preferably has the following attributes: (1) very low power for periodic wakeup and receive, (2) modulation that is insensitive to phase reversal (e.g., Frequency Shift Keying or FSK), (3) log linear RSSI measurement, (4) hardware support for Clear Channel Assesment (CCA).
  • FSK Frequency Shift Keying
  • CCA Clear Channel Assesment
  • An RF transceiver that may be used is a Tl/Chipcon cc2500.
  • this RF transceiver device is capable of receiving transmissions while the microcontroller 80 is in an inactive state, and waking ip the microcontroller if the received transmission matches pre-programmed criteria.
  • the RF transceiver 82 is coupled to an antenna 84, which preferably has a differential ended antenna port so that no balun is needed when using a preferred differential antenna 84.
  • the cart transceiver also optionally includes a VLF receiver 88 for detecting VLF signal lines 44.
  • the VLF receiver 88 may, for example, be an 8 kHz receiver that is compatible with existing shopping cart containment systems, and which is capable of detecting a code transmitted via a VLF line.
  • the cart transceiver also includes an optional Electronic Article Surveillance (EAS) receiver 90 for detecting EAS tower interrogations as described above.
  • the microcontroller 82 preferably maintains the EAS receiver 90 in an inactive state except when certain types of events are detected, such as events evidencing a possible checkout or store exit event.
  • the EAS receiver 90 is preferably tunable by the microcontroller 80 to the various frequencies commonly used for EAS.
  • the microcontroller 80 is connected to a rotation sensor 92, a vibration sensor 94, and a magnetic sensor 96. One or more of these sensors may alternatively be omitted.
  • the rotation sensor 92 enables the microcontroller 80 to detect wheel rotation events, and may be implemented using mechanical, optical, and/or electromagnetic components. By measuring the number of rotations that occur over a period of time, the microcontroller 80, and/or an access point or the CCU, can determine the wheel's average rotation speed and the cart's average speed.
  • the vibration sensor 94 if present, enables the microcontroller 80 to detect wheel vibration/skid events commonly caused when a motorized shopping cart retriever 40 pushes or pulls a cart whose wheel is locked or has an improper orientation.
  • a vibration sensor design that may be used is shown in Figure 5 and is discussed below.
  • the cart transceiver may transmit an alert message to a nearby access point, which in some cases may be an access point mounted to a motorized cart retriever 40.
  • the retriever-mounted access point may respond to such an alert message by generating a signal that disables the cart retriever 40 and/or causes an alarm on the cart retriever 40 to be activated.
  • This feature of the invention may, in some embodiments, be implemented without two-way communications with the carts; for example, the wheel's RF transceiver 82 could be replaced with an RF transmitter, such that the wheel 32 transmits skid alert messages but does not received any data.
  • the magnetic field sensor 96 if present, enables the microcontroller 80 to detect magnetic markers (MAG) of the type described above.
  • the magnetic sensor 96 may, for example, be one of the following: (1) a two-axis magnetic sensor capable of measuring the value of the two magnetic field components in an object's plane of motion; (2) a "2 1 A axis" sensor that can measure two magnetic field components and the algebraic sign of a third component, or (3) a three-axis magnetic field sensor that measures each of the three independent magnetic field components.
  • the microcontroller begins buffering the output of the magnetic field sensor, and continues such buffering until the microcontroller determines that the wheel 32 has likely finished passing over the marker.
  • the cart transceiver (CT) transmits the buffered data to an access point (AP) for analysis together with wheel rotation-sensor data.
  • the access point or the CCU analyzes this data to determine whether a magnetic marker was actually crossed, and if so, to identify the unique code of this marker. This analysis could alternatively be performed by the cart transceiver (CT), and the result transmitted to an access point.
  • One additional type of sensor that may be included in the wheel 32 is a heading sensor (not shown in Figure 4) that senses the orientation of the wheel 32, and thus the direction of travel of the cart 30. If a heading sensor is provided, data collected by the rotation and heading sensors may be used in combination by the cart transceiver, an access point, or the CCU to calculate the cart's location relative to one or more known reference points. Examples of algorithms that may be used for this purpose are described in the Navigation Patent Application referenced above.
  • Various other types of sensors and receivers may additionally or alternatively be included in the wheel 32 or wheel assembly.
  • a GPS Global Positioning System
  • the wheel 32 could transmit a signal that is used by an external node or system to detect the wheel's location, and the wheel could then be notified of its location via an access point.
  • the microcontroller 80 generates a drive signal that controls the state of the wheel's braking unit 100, such as by driving a brake motor, to change the locked/unlocked state of the wheel.
  • Decisions to lock the brake may be made by the microcontroller 80, an access point (AP), and/or the CCU, depending upon the system's configuration and the scenario involved.
  • the microcontroller 80 may be programmed to automatically lock the wheel, in the absence of a command to the contrary, whenever a VLF or EAS signal is detected.
  • lock decisions that are not responsive to detection of a VLF or EAS signal may be made by an access point or the CCU.
  • a braking unit 100 that supports partial braking may be used; in such embodiments, the microcontroller may gradually engage the brake whenever a lock decision is made so that the cart does not stop suddenly.
  • the cart transceiver (CT) and the brake unit 100 are powered by a power subsystem 104.
  • the power subsystem 104 preferably includes either a battery, or a power generator that generates a power signal from the rotation of the wheel 32. If a power generator is used, the power signal is preferably provided to a capacitor, or other energy reservoir, so that power continues to be supplied to the wheel's active components when the wheel is stopped. Examples of power generator designs that may be used in the wheel 32 are described in the Power Generation Patent Application referenced above, the disclosure of which is incorporated by reference herein.
  • the brake unit 100 may be omitted from the wheels 32.
  • the system may track and report the locations and statuses of the carts 30 or other vehicles without attempting to stop their movement.
  • Figure 4 also depicts an optional LED indicator 110 that may be provided on a visible portion of the wheel 32 or wheel assembly.
  • This LED indicator may be strobed by the microcontroller 80 to visually indicate that the cart 30 is in a particular state. For example, if the wheel is currently locked, and a particular type of command is received from the mobile control unit (MCU), the microcontroller may strobe the LED at a low duty cycle for several seconds; this feature may be used to enable store personnel to efficiently identify carts whose wheels are locked.
  • the indicator may be electromechanical, e.g. a highly visible feature, such as a bright orange piece of a suitable material, may be made visible and invisible via an electromechanical device controlled by the microcontroller 80.
  • FIG. 5 illustrates one example of a vibration sensor 94 that may be used in the wheel 32.
  • the vibration sensor 94 includes a striker mass 114 attached at the end of a cantilever spring 116. When vibration of a sufficient amplitude occurs along the vertical axis, the striker mass 114 strikes a piezoelectric crystal 118, causing the piezoelectric crystal to generate a voltage.
  • the output signal is optionally buffered by an opamp 120 before being fed to a counter input of the microcontroller 80.
  • the microcontroller counts the number of pulses generated by the vibration sensor per unit time to evaluate whether the vibration matches the skid profile of a wheel 32, and generates a skid alert message on the wireless tracking network if it does.
  • the frequency response of the vibration sensor 94 may be tuned by varying the characteristics of the striker mass 114, spring 116, and an elastometric snubber 122.
  • vibration sensors can alternatively be used.
  • a disturbance switch such as a 10651 -X-OOO disturbance switch from Aerodyne Controls, may be used.
  • the rotation sensor if included, may be similar to the vibration detector shown in Figure 5, but with the free striker mass 114 replaced with one or more bumps molded inside the wheel. These bumps are arranged to push a striker against the piezoelectric crystal during wheel rotations. The bumps may be spaced unevenly so that forward rotation can be distinguished from reverse rotation.
  • Various other types of rotation sensors including those that use magnets such as Hall Effect sensors, may alternatively be used, rv. Wheel Configuration and Antenna Radiation Pattern ( Figures 6-8)
  • Figure 6 is a breakaway view of a wheel 32 attached to a metal caster 134 (also commonly referred to as a "fork").
  • the wheel 32 and caster 134 collectively form a wheel assembly that is adapted to be attached (screwed in) to a shopping cart in place of a standard-size shopping cart wheel assembly.
  • the drawing illustrates how the RF transceiver's antenna 84 may be configured and positioned in the wheel 32 in a 2.4 GHz implementation. Ideally, a straight antenna with a length of 1.6 inches would be used for 2.4 GHz implementations.
  • the antenna 84 is preferably formed on a printed circuit board 85 that remains stationary as the wheel rotates. This same printed circuit board also includes the various electronic components shown in Figure 4. To compensate for its shorter than ideal length, the antenna 84 is coupled to a pair of spiral inductors 130, each of which has an inductance of about 1.25 nanohenries.
  • Each such inductor 130 is preferably connected via a respective 1.3 pF capacitor (not shown) to a differential output of the RF transceiver 82.
  • the arrow in Figure 6 illustrates the direction of the strongest antenna radiation, which is preferably somewhat upward since the access point antennas typically reside at a higher elevation than the wheels 32.
  • the antenna configuration shown in Figure 6 produces an unoccluded radiation pattern 132 that extends horizontally outward from the back and sides of the wheel. Signal transmissions in the direction of wheel movement tend to be attenuated to a much greater degree as the result of the metal caster 134.
  • the caster may be non-conducting, in which case the attenuation of the signal in the forward direction is much less severe.
  • FIG 8 is another view illustrating how various other components may be arranged inside the wheel 32.
  • the wheel is powered by a battery 104, although the battery may be replaced with a power generator as described above.
  • the other illustrated components include the printed circuit board 85; a brake motor 142 that drives a drive mechanism 144 (set of gears) to control the locked/unlock state of the wheel 32; and a drive band 148 that expands and contracts under control of the motor to come into and out of contact with the rotating portion of the wheel 32. All of the internal components mentioned above are fully contained and enclosed within the wheel (behind a cover plate that is not shown in Figure 8) such that they cannot be seen by the user of the shopping cart, and cannot easily be tampered with.
  • FIG. 9 illustrates an embodiment in which some of the cart transceiver (CT) circuitry is included in a handle-mounted display unit 150, rather than the wheel 32.
  • the handle mounted display unit 150 includes a display screen 152, such as a touch screen, that is viewable by the customer while pushing the shopping cart 30.
  • the display screen 152 is connected to a master microcontroller 8OA, which is connected to an RF transceiver 82.
  • the master microcontroller 8OA and the RF transceiver 82 may be the same as the microcontroller 80 and RF transceiver 82 used in the embodiment of Figure 4.
  • the wheel 32 includes a slave microcontroller 80B, which may be a more basic (lower functionality) device than the master microcontroller 8OA.
  • the wheel 32 also includes a power generator subsystem 104 that includes a power generator and reservoir.
  • the wheel electronics and the display unit 150 are connected by a pair of wires 154, which may be routed through or on the shopping cart's frame. These wires are used to supply power from the wheel's power generator subsystem 104 to the display unit 150, and are also used for two-way communications between the two microcontrollers 80A, 80B.
  • the display unit 150 may also include a battery for enabling the display unit to continue to operate when the wheel's power reservoir is deeply discharged.
  • the two-wire connection is made via a pair of coupling transformers 156A, 156B.
  • One example of a mechanical coupling that may be used to pass the transformer coupled signals from the wheel's PCB to the cart frame and thence to the display unit 150 is described in the Power Generation Patent Application referenced above.
  • the two microcontrollers 8OA, 80B communicate in half duplex mode using a one-wire protocol.
  • a one-wire protocol A variety of suitable one-wire protocols are known in the art. One example is the protocol defined by the ISO 11898-1 Controller Area Network (CAN) specification.
  • the master microcontroller 80A sets the I/O port that is connected to the coupling transformer 156A to "output,” and the slave microcontroller 80B sets its I/O port to "input.”
  • the master microcontroller then toggles its I/O port output on and off at one of two frequencies to generate an FSK signal.
  • the AC component of that signal couples onto the power line through the coupling transformer 156 A and passes through the other coupling transformer 156B.
  • the slave microcontroller 80B can distinguish between the two FSK frequencies by counting the number of crossings per unit time. Transmissions in the opposite direction occur in the same manner.
  • the two microcontrollers 80A and 80B may be programmed such that some or all of the events detected via the VLF receiver 88, vibration sensor 94, and rotation sensor 92 (and/or other sensors included in the wheel) are reported to the master microcontroller 80A so that they may, if appropriate, be reported to an access point.
  • the electrical coupling between the wheel 32 and the display unit 150 can be varied in a number of ways. For example, a third wire may be added to directly connect the two I/O ports, so that the two coupling transformers 156A, 156B can be omitted.
  • the power generator may be omitted from the wheel 32, and the wheel electronics may be powered by a battery in the display unit.
  • the wired connection is omitted, and wheel 32 and the display unit 150 communicate with each other solely by RF and are powered by their own respective power sources.
  • the display unit 150 may have a card reader 160, such as a magnetic card reader or a barcode scanner, that enables a customer to swipe a customer loyalty card or another type of card that identifies the customer.
  • the cart transceiver may be configured to convey the customer identifier to an access point such that this identifier can be associated with the other cart events detected during the customer's shopping session.
  • the display unit 150 may additionally or alternatively include or be connected to a merchandise ID reader 162, which may be a barcode scanner or RFID reader.
  • a merchandise ID reader 162 which may be a barcode scanner or RFID reader.
  • the CT may use cart movement data (e.g., as determined using a wheel rotation sensor) in combination with data from the RFID reader to identify products that are in the cart. For example, if the cart is has moved forward by a selected distance (e.g. 20 feet) and the RFID reader is still detecting the presence of a particular product, the product may be treated as being in the cart (as opposed, for example, to being on in a nearby cart or on a nearby shelf).
  • the display unit 150 may, for example, display the names and prices of the items selected by the customer to purchase, and may convey this information to an access point (AP).
  • the display unit may also display recommendations of related products.
  • a single scanner or reader device such as a barcode scanner may serve as both a merchandise scanner 162 and a loyalty card reader 160.
  • the display unit 150 may also include a beeper, chirper, or other audio signal generator (not shown) that outputs an audio signal when a new message is initially displayed, or when the customer's attention is otherwise desired.
  • the access point includes a power supply 170 that receives power from a power source.
  • a power source For indoor installations, an AC power source will typically be used, while for outdoor installations, a solar cell and/or a battery may be used for those outdoor locations where providing AC or DC power is infeasible.
  • the access point optionally includes or is coupled to a register activity sensor 172 capable of sensing whether a checkout register is currently active. Such a sensor may be used, as described above, when the access point is mounted at a checkout station 34.
  • the register activity sensor 172 is an acoustic sensor that is trained or trainable to detect the audible beep generated by conventional merchandise scanners.
  • the access point treats the register as active when beep signals of sufficient amplitude and/or specific frequency content are being detected at regular intervals. Beep signals of adjacent registers/scanners can typically be filtered out and ignored based on their lower volume at the location of the access point.
  • the acoustic register activity sensor may either be mounted inside the housing of the access point, or may be connected to the access point by a pair of small wires.
  • register activity sensors 172 may alternatively be used.
  • an infrared or LED sensor, or a weight sensor positioned under a mat may be used to detect whether a cashier is present at the register.
  • the access point may passively monitor the register's wired interface (typically an RS-422 differential full duplex interface) to the store's point-of-sale central system, and may infer that the register is active when signals are detected that reflect common activity patterns.
  • information about the active/inactive states of the registers/checkout stations may be obtained by querying a preexisting store computer that maintains such information, and thus without the use of a register activity sensor 172.
  • the access point includes a microcontroller 180 and an RF transceiver 182, both of which may be the same as in the cart transceivers (CTs).
  • a set of switches 186A and 186B enable the RF transceiver's output to be selectively amplified via an RF power amplifier 188.
  • a power amplifier that may be used is a Tyco M/ A-COM MAAPS0066 device.
  • the access point also includes a three-way switch 190 that enables the RF transceiver 182 to be connected to an internal antenna, a first external antenna port, or a second external antenna port.
  • the internal antenna is preferably used primarily or exclusively for communications with other access points and/or the CCU.
  • the external antenna ports may be used to connect one or two directional antennas to the access point. These directional antennas may be used to create zones for communicating with and tracking the locations of cart transceivers, as described above.
  • One example of how an access point can use the two external antennas to create two different control zones is shown in Figure 15 and discussed below.
  • a directional antenna may also be used to provide connectivity when an access point is mounted at a relatively remote location, such as in a distant area of the store parking lot, where the gain of the internal antenna is insufficient to achieve reliable communication.
  • the access points may support a greater number of external antennas, and/or may include two or more complete RF subsystems (see Figure 17, discussed below).
  • the access point also includes an interface 192 for enabling the microcontroller 180 to communicate with a store security system.
  • This interface 192 may be used for various purposes, such as the following: (1) notifying the store security system of whether the AP is receiving AC power or has experienced an internal fault; (2) enabling the security system to place the APs in a "safe mode" in which the APs command all of the cart transceivers to remain unlocked at the building exits; this mode may be used when, for example, a fire alarm occurs; (3) activating a security system alarm, or generating a video surveillance capture event, in response to an inferred theft event.
  • the various components of the access point may be housed within a plastic or other housing that is adapted to be mounted to a fixed or mobile structure.
  • the housing may, for example, be approximately the size of a standard chalk board eraser.
  • access points can be positioned strategically throughout the store, such as in every department, aisle, checkout area, etc. Each such access point may be configured to periodically (e.g., once every 5 seconds) identify, and report to the CCU, all of the cart transceivers in its respective zone.
  • the design of the transceiver used in the CCU may be the same as or similar to the access point design shown in Figure 10. VII. Communications Protocol ( Figures 11-13)
  • a protocol that may be used for wireless communications between "controllers” (devices that initiate transmissions) and "targets” (devices that respond to communications from a controller) will now be described with reference to Figures 11-13.
  • the cart transceivers and the CCU act only as targets, meaning that they do not initiate transmissions on the wireless network.
  • Access points (APs) and mobile control units (MCUs) are capable of acting as either a controller or a target.
  • the CCU may be capable of acting as a controller.
  • the protocol will be described herein in the context of communications between the access points (acting as controllers) and the cart transceivers, although the description is also applicable to other types of nodes.
  • each cart transceiver wakes up approximately every 1.8 seconds to listen for a transmission from an access point, and then returns to its low power state after one millisecond if it does not receive a transmission that requires a response or other action. If the cart transceiver detects an AP transmission that requires a response, it remains active until a response window occurs, and then transmits its response to the access point.
  • the cart transceiver can adjust the frequency with which it wakes up under specific conditions where lower communication latency is desirable and where the extra power consumption is acceptable, e.g. when passing through a very narrow exit zone or by a potential payment point.
  • an access point that has a small antenna footprint or zone may command nearby CTs to wake up more frequently when detecting RSSI levels above a specified threshold.
  • the access points preferably use both unicast (target-specific) and multi-cast addressing to send messages to the cart transceivers.
  • An example of a multicast message is a message addressed to "all cart transceivers that are locked,” or "all cart transceivers of carts that are moving.” Because multiple cart transceivers can respond to a multicast transmission, the response window is divided into multiple response slots, and the cart transceivers pseudo-randomly select between the available response slots.
  • the access point acknowledges the responses it receives, enabling the cart transceivers to detect and retry unsuccessful responses (e.g., those that produced collisions).
  • Figure 11 illustrates a scenario in which an access point AP sends a multicast message that is applicable to four cart transceiver (CT) devices. Solid boxes in Figure 11 represent packet transmissions, and dashed boxes represent packet receptions or reception slots. The access point (AP) initially sends a sequence of wakeup packets.
  • CT cart transceiver
  • each wakeup packet includes the following: (1) a synchronization pattern, (2) a source address (i.e., the unique address of the transmitting access point), (3) a destination address (e.g., "all carts,” “all carts in category X,” or “cart 12345"), (4) a command, (5) an RSSI threshold (i.e., a minimum RSSI value that needs to be detected by the cart transceiver for the cart transceiver to respond), (5) a window begin time indicating a length of time before the response window begins, (6) the size of the response window, (7) the number of slots in the response window, and (8) a CRC value.
  • a source address i.e., the unique address of the transmitting access point
  • a destination address e.g., "all carts,” “all carts in category X,” or "cart 12345”
  • an RSSI threshold i.e., a minimum RSSI value that needs to be detected by the cart transceiver for the cart
  • the RSSI threshold refers to a filtered RSSI value, so that a cart transceiver will not respond to an AP when the cart transceiver is not in the AP's antenna footprint or zone, even if anomalous RF propagation causes a single RSSI measurement to be anomalously high.
  • the RSSI filtering method may be similar to the method described below in the section on queue count estimation, though the parameters of the method may be adjusted to reflect that this filter computation is preferably performed by the relatively low-power cart transceivers rather than the APs.
  • a CT may generate a filtered RSSI value for a given AP from wakeup-packet-specific RSSI values generated by the CT during the wakeup sequence, and/or from RSSI values generated from recent transmissions of the AP.
  • the slot length is specified implicitly by the combination of the response window size and the number of slots. Typically, the AP will select a slot size that corresponds to the expected response size given the type of command being issued.
  • the command field present in the wakeup packet indicates the nature of a forthcoming command.
  • the response window beginning time is then interpreted by the CT as the beginning of an additional transmission from the access point which contains the remainder of the command.
  • the response window then follows immediately after the additional command information. Any CT which receives the wakeup and which is a potential addresse of the command based on the information present in the wakeup message will then wake up as if the CT did have a response, receive the additional command information, and then determine whether a response is required.
  • Table 1 lists some of the commands that can be issued to a cart transceiver. In general, these commands may be issued from either an AP or a MCU, though it is unlikely that certain commands would be issued from an MCU, e.g. Report zone entry.
  • each response is in the form of an acknowledgement (ACK) packet that includes the following: (1) a synchronization pattern, (2) a source address (i.e., the unique address of the responding cart transceiver), (3) a destination address (i.e., the unique address of the access point), (4) a response message, the content of which depends on the command from the access point, (5) an async request (discussed below), (6) a filtered RSSI value measured by the cart transceiver during the preceding wake up sequence, and (7) a CRC value.
  • ACK acknowledgement
  • the async field provides a mechanism for a cart transceiver to notify the access point that it has some unsolicited data to report.
  • the cart transceiver may have such data to report when, for example, it detects a VLF field code, EAS signal, magnetic marker, or skid event, hi one embodiment, the cart transceiver uses the async field to notify the access point of the type of the unsolicited data; the access point thereafter schedules a unicast interrogation of the cart transceiver to retrieve this data.
  • the access points ordinarily transmit commands, such as "report zone entry" commands, on a regular basis (e.g., every few seconds), the async feature provides a mechanism for all types of cart status information to be retrieved substantially in real time.
  • the ACK packets from CTl and CT2 are successfully received and acknowledged by the access point.
  • CT3 and CT4 determine that their responses were not successfully received by the absence of an acknowledgement.
  • CT3 and CT4 thereafter successfully retry their ACK packet transmissions, resulting in the access point's acknowledgement of both.
  • Figure 12 illustrates a program loop that may be executed by each cart transceiver to implement the protocol described above.
  • Figure 13 illustrates steps performed to implement the "command requires response" decision block in Figure 12.
  • APs are capable of transmitting at significantly higher power levels than the cart transceivers (CTs)
  • Cs cart transceivers
  • a significantly higher bit rate is preferably used for the downlink to the carts than for the uplink to the access points. This reduces the disparity that would otherwise result between the transmission ranges of the two types of devices.
  • the relatively high bit rate on the downlink also allows the access points to send out wakeup packets at a reasonably high rate (e.g., one every two milliseconds); consequently, the cart transceivers only have to listen for a wakeup packet for a very short time before re-entering a low-power state.
  • Frequency hopping may be used for transmissions in both directions.
  • the access points preferably maintain synchronization with each other by monitoring transmissions from the CCU or each other.
  • FIG 14 illustrates one embodiment of a CCU configured to analyze cart event data acquired via two-way communications with the cart transceivers (CTs).
  • the CCU receives cart event data substantially in real time as such data is retrieved or generated by the access points.
  • Each such event may, for example, include an event type, an event timestamp, the ID of the access point (AP) reporting the event, the ID of the cart transceiver (CT) to which the event applies (if applicable), and any associated data.
  • an event may specify that AP#1 detected CT#2 into its zone at a particular time, and that CT#2 reported an RSSI value of X.
  • the CCU stores the event data in an event histories database 210, which may be a relational database.
  • Each cart session record 212 shown in the event histories database corresponds to a particular cart and shopping session, and contains the event data associated with that shopping session.
  • the CCU treats a cart's entry into the store as the beginning of a shopping session, and treats the cart's subsequent exit from the store as the end of a shopping session; however, different criteria may be used for different store configurations and applications.
  • the cart IDs may be the unique IDs or addresses of the corresponding cart transceivers.
  • the CCU also preferably accesses a database 220 of purchase transaction data and customer profile data maintained by or obtained from the store's central computer. As illustrated, this database 220 may contain records 222 of specific purchase transactions of specific customers, including identifiers of the purchased items.
  • a given session record 212 may, in some cases, include a store transaction ID and/or a customer number.
  • the store transaction ID identifies the checkout transaction, if known, as produced by a conventional point-of-sale system and recorded in the database 220.
  • the transaction IDs are attached to the corresponding session records 212 by an event-history/transaction correlation component 214 that runs on the CCU.
  • this component 214 compares purchase transaction data stored in database 220 with the cart event data to uniquely match specific transaction records 222 with specific cart session records 212. This may be accomplished by, for example, comparing the data/time stamp and register ID information contained in a store transaction record 222 to the cart event data reflective of a checkout event. If a sufficient degree of correspondence exists between time and location, a given session record 212 may be matched to a given transaction record 222.
  • the correlation component 214 may compare the items identifiers contained in the potentially matching transaction records 222 to the path taken by the cart.
  • a database 230 of store and access point configuration data may be used for this purpose. If, for example, a particular transaction includes items (and especially bulky items) that are not available along the path followed by the cart, the transaction may be excluded as a candidate. If, on the other hand, the purchased items closely match the cart path, a match may be deemed to exist.
  • the customer number field in the cart session records 212 may be used to store a customer loyalty number, if known. This number may be obtained from the matching transaction record 222, or in embodiments in which the cart includes a display unit 150 with a card reader 160 ( Figure 9), from the event data retrieved from the cart transceiver. If the customer loyalty number is acquired via a card reader on the cart, the acquired number may also be used to match the cart session record 212 to a corresponding transaction record 222.
  • the analysis components that run on the CCU in the example embodiment of Figure 14 include a real time analysis component 240 and an off-line statistical analysis component 250.
  • the real time analysis component 240 analyzes event data as it is acquired for purposes of identifying real time actions to take. Examples of action that may be taken include transmitting a particular command (e.g., a lock command) to a particular cart, activating an alarm system or video surveillance camera, alerting personnel of the need to retrieve carts from the parking lot, or alerting personnel of the need to open an additional checkout lane.
  • a particular command e.g., a lock command
  • the real time analysis component 240 may also select location-dependent ads or other messages to present to users. For example, upon entry into a. particular store department, the CCU may instruct the cart to display a particular ad, promotion, offer, or other message that is specific to that department. If the customer's loyalty number is known at the time (e.g., as the result of entry via a card reader 160 on the display unit 130), the ad or message may also be based on the actions taken by this customer in prior sessions or visits. For example, if the customer regularly purchases milk on visits to the store, and has entered the checkout area without first entering the area where milk is sold, a message may be displayed reminding the customer to do so.
  • the content that is available for display may be selected from a content database 260 and wirelessly downloaded to the cart transceivers, and/or may be cached in the display units.
  • the component 250 labeled "off-line statistical analysis" in Figure 14 is responsible for analyzing the cart event history records 212, optionally in conjunction with corresponding transaction records 222, to mine various types of information.
  • One type of information that can be mined is information regarding the effectiveness of the store layout, including product locations. For example, by collectively analyzing cart histories and transaction records of many different customers, a determination may be made that customers frequently linger in a particular area without selecting a product to purchase, or that they frequently look in the wrong location before finding a desired product.
  • the off-line statistical analysis component 250 may also generate data that can be used for targeted or personalized messaging on the display units.
  • the offline statistical analysis component 250 may be used to determine statistics related to the shopping cart inventory of the store, for example, the total number of carts physically present on the premises, the number of carts in active use over specific time periods, which firmware revisions (and associated functionality) are present in the store's cart inventory, etc.
  • FIG 15 illustrates an example store configuration in which the store is surrounded by a fence 280 that serves as a barrier to shopping cart removal.
  • the only opening in the fence 280 that is sufficiently large for cart removal is a car and pedestrian exit.
  • a single access point (AP) with two directional antemias 282 and 284 is mounted to an exterior wall of the store.
  • the AP repeatedly transmits an "unconditional lock” command on the first antenna 282 to create a lock zone 286, and repeatedly transmits an "unconditional unlock” command on the second antenna 284 to create an unlock zone.
  • the directional antemias may be spaced apart from each other by an appropriate distance (e.g., 10 feet) and elevated from the ground, and may be pointed somewhat outward and downward to form corresponding RSSI-based lobes or zones at ground level.
  • Each such zone 286, 288 extends from the wall of the store to and beyond the fence 280.
  • FIG. 16 illustrates another example of how AP-generated lock and unlock zones as described above can be used to control shopping cart usage in a store parking lot.
  • each leaf-shaped zone represents the area at ground level at which a cart's wheel 32 should see a filtered RSSI that exceeds the threshold specified by the corresponding AP.
  • the two zones 290, 292 located at the auto entrance/exit are lock zones created by two respective APs, 294 and 296. These APs 294 and 296 may be mounted to poles (not shown) on the perimeter fence 295 surrounding the parking lot, with their directional antennas angled toward the ground. Because the areas immediately "above” these two APs in the drawing are valid parking areas where carts should be permitted, the antennas are elevated and angled such that these valid parking areas do not form part of the lock zones.
  • the two lock zones 290 and 292 together provide a good approximation of the ideal lock- zone 297 represented by the shaded area in Figure 16.
  • an additional lock zone 299 covers a pedestrian entrance/exit, hi addition, a relatively large unlock zone 298 is created by an AP mounted near the cart storage area.
  • This unlock zone 298 is positioned relative to the lock zones 290, 292, and 299 such that customers who attempt to return a locked cart to the cart storage area from a lock zone need not travel very far before the wheel is unlocked.
  • Figure 17 illustrates an example of how lock and unlock zones can be used in connection with a strip mall, hi this example, the center store is the user of the system.
  • the desired behavior is: (1) carts cannot escape past the sidewalk into the street, (2) carts cannot go into the other stores, and (3) carts cannot get far past the parking immediately in front of the center store.
  • two APs are positioned near the sidewalk area, such as on respective poles. Each AP creates two lock zones, one which extends from the sidewalk to one of the stores that does not use cart containment, and one which extends along the sidewalk.
  • Each AP also optionally creates a relatively large unlock zone that covers the majority of the parking area in from of the center store.
  • each AP may be provided with a third external/directional antenna. Time slicing may be used to alternate between the three antennas, or two separate RF transceivers may be included in each AP — one which transmits the unconditional unlock command and the other which transmits the unconditional lock command. As another option, a separate AP or pair of APs could be provided to create the unlock zone. - ⁇ ⁇ •
  • lock and unlock zones as described in this section may be implemented using receivers, rather than transceivers, on the shopping carts 30.
  • the RF transceivers included in the locking wheels 32 may be replaced with RP receivers.
  • lock and unlock zones that are created as described herein can also be used for the containment of other types of carts and vehicles, including but not limited to wheelchairs, hospital beds, gurneys, pharmacy carts, and luggage carts.
  • the display unit of a cart 30 that is approaching a lock zone may be instructed to display a warning message.
  • the display unit may instruct the user on how to restore the wheel to an unlocked state, including the location of the nearest unlock zone.
  • Figure 18 illustrates a process that may be implemented collectively by an access point (AP) and a set of nearby cart transceivers (CTs) to estimate the number of carts 30 currently queued or otherwise clustered together near the access point.
  • AP access point
  • CTs cart transceivers
  • [0152] Estimating the number of carts 30 queued at a checkout station 34.
  • the system may use the result of this calculation/estimation to automatically alert personnel regarding the possible need to open an additional checkout station. Also, the system may generate and report statistics regarding the distribution of queue lengths over time (e.g., as a function of time of day, day of week, number of registers open, etc.).
  • an access point initiates the counting process by broadcasting a "queue count" command together with a threshold RSSI value that controls the size of a response zone.
  • the access point preferably transmits this command from a directional antenna that is positioned and configured such that the response zone encompasses, and is larger than, the area in which a queue is expected to form.
  • the zones may be generally similar in configuration to the zones 46 and 48 shown in Figure 2.
  • the AP that transmits the command is typically mounted at or close to a particular checkout station 34, and the zone 46 encompasses the checkout station's cart queuing area- (see Figure 2).
  • the AP is typically mounted to, and the zone encompasses, a particular cart storage area.
  • the AP is preferably mounted to the cart retrieval unit, and the zone encompasses the area in which the carts being retrieved typically reside.
  • each cart transceiver (CT) within the AP 's transmission range measures the RSSI of the AP 's transmission, and if this value exceeds the RSSI threshold, responds to indicate its participation in the queue- size estimation process.
  • CT cart transceiver
  • Figure 18 only shows the actions of a single one of the many CTs/carts that may participate, and that each participating CT/cart may perform the steps shown.
  • the AP identifies the N participating CTs from the responses it receives.
  • the AP assigns a set of k unique transmission timeslots to each participating CT, and initiates a process in which each CT uses its assigned timeslots to generate k transmissions, each of which preferably occurs at a different frequency.
  • the use of multiple different transmission frequencies provides a mechanism for reducing errors caused by frequency-selective effects such as multi-path distortion and antenna shadowing.
  • the other participating CTs measure the RSSI of the transmission.
  • each participating CT generates k(N-l) RSSI values.
  • the AP retrieves the Ic(N-I) RSSI values generated by each participating CT.
  • CTl and CT2 both participate, CTl would generate a separate RSSI value for each of CT2's eight transmissions, and these eight RSSI values would be converted into a single filtered RSSI value.
  • the RSSI values are preferably log linear, the arithmetic average of the RSSI readings is the log of the geometric mean of the four middle received RF power values.
  • the task of generating the filtered RSSI values may alternatively be performed by the CTs that took the corresponding RSSI measurements, or by some other node such as the CCU. Although filtered RSSI values are used in the preferred embodiment, their use is not required.
  • the result of block 316 is a set of N(N-I) RSSI* i ⁇ j values, where RSSI*i ⁇ j is the filtered RSSI of the zth CT as measured at thejth CT.
  • RSSI*i ⁇ j is the filtered RSSI of the zth CT as measured at thejth CT.
  • the AP calculates a pair-wise distance metric for each CT pair i ⁇ j.
  • the preferred method of calculating distance metrics takes advantage of, but does not require, temporal stability of the cluster of carts/CTs.
  • the nth. iteration distance metric d(i,j,n) may be defined by the following recurrence relations:
  • RSSI* is an invertible nionotonic function of distance which can be determined by straightforward experimentation.
  • An AP-CT distance metric may also be calculated for each of the N cart transceivers.
  • the AP or another node applies a clustering algorithm to the calculated distance metrics to identify any CTs/carts that are clustered together.
  • cluster formation can be performed by locating the CT which has the highest RSSI* (which is the CT/cart which is probably closest to the AP), and forming a cluster by the known algorithm of single-link (or single linkage) hierarchical clustering. This may be accomplished as follows. Begin by considering each CT as in a cluster of its own. The distance metric between two clusters is defined as the minimum pair- wise distance metric between the two clusters.
  • the above process may be performed merely to estimate the total number of carts that are clustered together, without regard to how or whether these carts are queued. This may be the case where, for example, the number of carts in a cart storage area 36 is being estimated.
  • Figure 19 illustrates an example scenario involving three registers, nos. 1-3, and eight shopping carts, C1-C8.
  • Register 2 in this example is closed.
  • a human can easily see that there are four carts (C2-C5) queued at register 3.
  • the clustering process will start register 3's cluster formation with C2.
  • C3-C5 will then be clustered with C2 as part of register 3's queue, even though C4 and C5 are closer to register 2 than to register 3.
  • C7 forms an isolated queue of one at register 1.
  • the system may include a mechanized cart retrieval unit 40 ( Figure 1), which may be a cart pusher or a cart puller, that applies a force to a nest 41 of carts to facilitate retrieval.
  • a mechanized cart retrieval unit 40 ( Figure 1), which may be a cart pusher or a cart puller, that applies a force to a nest 41 of carts to facilitate retrieval.
  • the cart retrieval unit 40 retrieves a nest 41 of carts 30, it commands each of the carts/CTs, via its access point (AP) or another type of transmitter, to remain unlocked.
  • AP access point
  • the commands may be sent via a directional antenna that is mounted and positioned on the cart retrieval unit 40 so as to substantially limit its command transmissions to the nest of carts.
  • Figure 20 illustrates logic that may be incorporated into the cart transceivers (CTs) to facilitate mechanized cart retrieval operations.
  • one type of command that may optionally be transmitted by the retriever- mounted AP is a "you are part of a retriever cluster" command.
  • the retriever- mounted AP may use the cluster/queue identification methods described in the preceding section to identify the carts in the nest 41, and may then notify these carts (e.g., via unicast command transmissions) that they are part of a cluster or nest being retrieved.
  • the CT Upon receiving the "you are part of a retriever cluster" command, the CT sets a retrieval mode flag (block 402) which causes the CT to ignore lock conditions, such as those ordinarily caused by VLF signal lines and/or AP-generated lock zones. The CT then remains in a loop until either an "end of retrieval" command is received from the retriever-mounted AP or a time out event occurs (blocks 404 and 406), and then clears the retrieval mode flag (block 408).
  • a retrieval mode flag block 402 which causes the CT to ignore lock conditions, such as those ordinarily caused by VLF signal lines and/or AP-generated lock zones.
  • the CT then remains in a loop until either an "end of retrieval" command is received from the retriever-mounted AP or a time out event occurs (blocks 404 and 406), and then clears the retrieval mode flag (block 408).
  • the retriever-mounted AP 40 may additionally or alternatively be configured to broadcast a "you are being retrieved" command when the retrieval operation is initiated.
  • This command preferably includes a field indicating whether it is being sent from a directional antenna.
  • the CT determines whether either (1) the RSSI associated with the command transmission exceeds the AP-specified threshold, or (2) the command was transmitted via a directional antenna (block 412). If neither condition is true, no further action is taken (block 414).
  • the CT unlocks the wheel if currently locked (blocks 416 and 418) and sets a "probable retrieval" flag (block 422).
  • the CT then enters into a loop in which it either detects wheel movement or skidding, or times out (blocks 424 and 426). If wheel movement or skidding is detected, the CT follows the sequence depicted by blocks 402-408, discussed above. (If a skid event is detected, the CT may also send a skid event message to the retrieval unit, as described above). If a timeout event occurs in block 426, the probable retrieval flag is cleared and the process ends. X ⁇ . Conclusion
  • wheel braking mechanism described herein can be replaced with another type of electromechanical mechanism for inhibiting the motion of the cart, including mechanisms that cause one or more of the wheels of the cart 30 to be lifted off the ground.

Abstract

A vehicle tracking system includes a wheel (32) containing sensor circuitry (88, 90, 92, 94, 96) capable of sensing various types of conditions, such as wheel rotation, wheel vibration caused by skidding, and specific electromagnetic and/or magnetic signals indicative of particular wheel locations. The sensor circuitry is coupled to an RF transceiver (82), which may but need not be included within the wheel. The wheel (32) may also include a brake mechanism (100). In one embodiment, the wheels (32) are placed on shopping carts (30) and are used to collect and monitor shopping cart status and location data via a wireless network. The collected data may be used for various purposes, such as locking the wheel of an exiting cart if the customer has not paid, estimating numbers of queued carts, stopping wheel skid events that occur during mechanized cart retrieval, store planning, and providing location-based messaging to customers.

Description

TWO-WAY COMMUNICATION SYSTEM FOR TRACKING LOCATIONS AND STATUSES OF WHEELED VEHICLES
RELATED APPLICATIONS
[0001] This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Appl. Nos. 60/663,147, 60/663,327, and 60/663,195, all filed on March 18, 2005, the disclosures of which are hereby incorporated by reference. This application is being filed concurrently with the following non-provisional applications, the disclosures of which are additionally hereby incorporated by reference: U.S. Patent Appl. No. _, filed March 20, 2006, titled NAVIGATION SYSTEMS AND METHODS FOR WHEELED OBJECTS (hereinafter "the Navigation Patent Application"), and U.S. Patent Appl. No. _, filed March 20, 2006, titled POWER GENERATION SYSTEMS AND METHODS FOR WHEELED OBJECTS (hereinafter "the Power Generation Patent Application").
BACKGROUND Field of the Invention
[0002] The present invention relates to systems for tracking the movement and statuses of non-motorized vehicles, including but not limited to shopping carts. Description of the Related Art
[0003] A variety of commercially available cart containment systems exist for deterring the theft of shopping carts. Typically, these systems include a wire that is embedded in the pavement of a store parking lot to define an outer boundary of area in which shopping cart use is permitted. When a shopping cart is pushed over this wire, a sensor in or near one of the wheels detects an electromagnetic signal generated via the wire, causing the wheel to lock. To unlock the wheel, an attendant typically uses a handheld remote control to send an unlock signal to the wheel.
[0004] While existing cart containment systems are useful for deterring shopping cart theft, they are generally not capable of detecting other types of shopping cart misuse. As one example, existing systems are unable to detect that a shopping cart is being used to steal groceries or other merchandise. While merchandise theft can often be detected using an Electronic Article Surveillance (EAS) system, the cost and burden of attaching EAS tags to merchandise items is often impractical. As another example of misuse, merchants that use power-assisted cart retrieval units sometimes use these machines to retrieve too many carts at a time, or to push a cart having a locked or improperly oriented wheel.
[0005] This background section is not intended to suggest that the present invention is limited to shopping carts, or that the invention requires detection of the particular types of misuse described above.
SUMMARY
[0006] The present invention comprises a system for tracking the locations and statuses of vehicles, such as shopping carts. Each vehicle includes a wheel or wheel assembly that includes sensor circuitry for sensing various types of events. The types of sensors included in the wheel assembly may vaiy widely, but may include, for example, any one or more of the following: (1) a wheel rotation sensor, (2) a vibration sensor for sensing wheel skid events, (3) a VLF (Very Low Frequency) signal detector for detecting signals used by conventional cart containment systems, (4) an EAS (Electronic Article Surveillance) signal detector capable of detecting conventional EAS towers, and/or (5) a magnetic field sensor capable of detecting encoded magnetic markers placed on or under store flooring or pavement to mark specific locations. The wheel may also include a braking mechanism that can be actuated to lock the wheel from rotating, although braking mechanisms may be omitted in some embodiments.
[0007] The wheel's sensor circuitry is coupled to a radio frequency (RP) transceiver system, which may but need not also be housed in the wheel or wheel assembly. The RF transceiver system provides a two-way data link that may be used to retrieve status information from, and send commands to, specific vehicles. The RF transceiver system is preferably capable of measuring and reporting the signal strengths of transmissions it receives, such as transmissions from wireless access points and/or other vehicles.
[0008] The retrieved status information may be used to track locations of the vehicles in real time or near real time, and to make decisions on whether to authorize or block particular vehicle actions. For example, in the context of a shopping cart that is exiting a store, the data acquired via two-way communications with the cart may be used to determine whether the cart passed through a checkout lane. If it did not, a lock command may be transmitted to the cart, or an "exit authorized" command withheld, to cause the wheel to lock. (Various other types of actions may additionally or alternatively be taken, such as sounding an alarm or activating a video surveillance system.) The determination of whether to treat the exit event as unauthorized may also be based on other types of data, such as any one or more of the following: (1) whether the corresponding checkout register/scanner was active, as may be determined, e.g., from a central store computer or via a network-connected sensor at the checkout station; (2) the average speed at which the cart passed through the checkout lane, as may be determined, e.g., from a rotation sensor in the wheel, (3) the amount of time spent in the store, (4) whether the cart passed through an area that includes high-priced or frequently stolen merchandise.
[0009] The sensor or sensor-based data collected from the vehicles may also be used for a variety of other applications. For example, in applications involving power- assisted cart retrieval, a vibration sensor may be included in the wheel to detect and report wheel skid events. Such skid events commonly occur when a retrieval unit retrieves a cart having a locked or improperly oriented wheel, and can cause damage to the wheels and the retrieval unit. The reported skid event message may be used to automatically disable the cart retrieval unit and/or to alert its operator.
[0010] As another example, signal strength measurements taken by the vehicle's RF transceivers can be analyzed collectively, such as by using a clustering algorithm, to estimate the number of carts currently queued or otherwise clustered at a checkout station, in a cart retrieval line, at a cart park area, or elsewhere. This information may be used for various purposes, such as to alert store personnel of the need to open a checkout lane or to retrieve carts, or to automatically disable a cart retrieval unit that is attempting to retrieve more than an authorized number of carts at a time.
[0011] hi some shopping cart based embodiments, each cart may be provided with a display unit that contains or is coupled to the cart's RF transceiver, hi these embodiments, the location data obtained via two-way communications with a cart may be used to select messages to present on the display unit to a customer. For instance, when a shopping cart enters a particular area or department of the store, an advertisement or other message may be displayed that is specific to that area or department. If the customer's identity is known (e.g., as the result of the customer swiping a customer loyalty card via the display unit), the ad or message may be targeted and/or personalized based, e.g., on the past shopping activities of the customer. [0012] The data obtained via two-way communications with the carts may also be analyzed on an aggregated basis for store planning purposes. For example, the paths followed by customers, and the amounts of time spent in particular areas or departments, can be collectively analyzed to identify areas that are the most or least frequently visited by customers. As another example, when a checkout event is detected, the system may associate the customer/cart's path in the store with the associated transaction record, including identifiers of the products purchased; this data may be mined on an aggregated basis via data mining software to detect, e.g., that customers commonly have difficulty locating particular products, or to detect that customers commonly linger in a particular area without selecting an item to purchase.
[0013] The invention also comprises a mechanized cart retrieval unit that is capable of instructing the shopping carts it is pushing or pulling to maintain their wheels in an unlocked state. The cart retrieval unit may also instruct one or more carts at the front of the nest to apply weak or partial braking so that the carts do not become un-nested during retrieval. In addition, the invention comprises techniques for using directional antennas to create lock and unlock zones for containing vehicles in a defined area.
[0014] The various inventive features described herein are applicable to a wide range of different types of vehicles, including but not limited to shopping carts, luggage carts, wheelchairs, hospital beds, gurneys, pharmacy carts, and carts used for medical and other equipment.
[0015] The present invention thus comprises a system for monitoring the usage of vehicles. The system includes a control unit coupled to a radio frequency (RF) communication system; and a plurality of vehicles, each vehicle including a wheel assembly with sensor circuitry for sensing at least one type of condition, and including an RF transceiver system coupled to the sensor circuitry, said RF transceiver system configured to communicate bi-directionally with the RF communication system as the vehicle moves in a vehicle monitoring area, and configured to report events detected via the sensor circuitry. The control unit receives and aggregates vehicle status data collected via bi-directional RF communications with the RF transceiver systems of the vehicles, said status data including vehicle location data.
[0016] The invention also includes a system for tracking and controlling a wheeled vehicle, the system comprising: a wheel adapted to be attached to the vehicle, the wheel including a brake mechanism, and including sensor circuitry capable of detecting at least one type of condition; and an RF transceiver system connected to the sensor circuitry and to the brake mechanism, said RF transceiver system configured to communicate bi- directionally over a wireless link to report events detected via the sensor circuitry and to receive commands. The RF transceiver system is responsive to commands received over the wireless link by activating and deactivating the brake mechanism to control movement of the vehicle.
[0017] The invention also includes a method of monitoring and. controlling movement of shopping cart. The method comprises monitoring a location of a shopping cart via bi-directional radio frequency (RF) communications with a cart transceiver of the shopping cart, said cart transceiver electrically coupled to a brake mechanism of the shopping cart; and automatically determining whether to activate the brake mechanism to inhibit the shopping cart from exiting a store based, at least in part, on a path taken by the shopping cart before proceeding to an exit of the store, as determined from the monitoring.
[0018] The invention also includes a method of controlling a cart. The method comprises communicating bi-directionally with the cart over at least one wireless link to obtain event data, including event data reflective of a location of the cart, wherein the cart includes a brake mechanism that can be engaged to impair movement of the cart. The method further includes programmatically analyzing the event data substantially in real time at a node that is separate from the cart to evaluate whether to cause the brake mechanism to be engaged.
[0019] The invention also includes a method of reducing wheel damage to carts retrieved by a mechanized cart retrieval unit. The method comprises detecting a wheel skid event via a vibration sensor included in a wheel assembly of a cart being retrieved by the mechanized cart retrieval unit; and in response to detecting the wheel skid event, transmitting a message to the mechanized cart retrieval unit over a wireless communication link to cause the mechanized cart retrieval unit to take a corrective action.
[0020] The invention also includes a system for reducing wheel damage. The system includes a wheel configured for use on a shopping cart; a vibration sensor included in the wheel and capable of detecting vibration caused by skidding of the wheel during mechanized cart retrieval; and a communication circuit connected to the vibration sensor. The communication circuit is configured to respond to vibration detection by the vibration sensor by transmitting an alert message via an RF communication link. [0021] The invention also includes a system for retrieving shopping carts. The system comprises a plurality of shopping carts, each of which includes RF communication circuitry coupled to a braking mechanism, the RF communication circuitry being capable of receiving RF transmissions of commands. The system also includes a mechanized cart retrieval unit that pushes or pulls a group of nested carts to facilitate retrieval. The mechanized cart retrieval unit is configured to communicate with the RF communication circuitry of the nested carts to cause the braking mechanisms of the nested carts to remain unlocked during mechanized cart retrieval.
[0022] The invention also includes a method of estimating a number of carts clustered together in an area that comprises a plurality of carts. The method comprises causing each of the plurality of carts to generate an RF transmission via a respective RF transceiver; at each respective cart, generating RSSI (Received Signal Strength Indication) values for the transmissions received from the other carts; and collectively analyzing the RSSI values generated at the carts to estimate how many of the carts are clustered together.
[0023] The invention also includes a system for detecting clusters of carts. The system comprises a plurality of wheels that are adapted to be attached to respective carts, each wheel including an RF transceiver; and a node configured to communicate bi- directionally with the plurality of wheels. The wheels are configured to measure signal strengths of transmissions from other wheels and to report said signal strengths to said node, and the node is programmed to collectively analyze the reported signal strengths to identify carts that are clustered together.
[0024] The invention also includes a system for controlling shopping carts usage in the vicinity of a parking lot. The system comprises a device that repeatedly transmits a lock command from a directional antenna, the directional antenna mounted above ground and angled downward to create a lock zone in which shopping cart use is restricted. The lock zone encompasses an exit area associated with the parking lot. The system also comprises a plurality of shopping carts, each shopping cart comprising a brake mechanism, and comprising an RF communication circuit that is responsive to the lock command by activating the brake mechanism.
[0025] The invention also includes a system for controlling vehicle usage. The system includes a device that repeatedly transmits a lock command from a directional antenna, the directional antenna mounted above ground and angled downward to create a lock zone in which vehicle use is restricted. The system also includes a plurality of vehicles, each vehicle comprising a brake mechanism, and comprising an RF communication circuit that is responsive to the lock command by activating the brake mechanism.
[0026] The invention also comprises a shopping cart system. The shopping cart system comprises a shopping cart having an RF transceiver and a display unit. The RF transceiver is configured to communicate bi-directionally with one or more nodes of a wireless network to enable a location of the shopping cart to be monitored. The system also includes a content selection module that selects content to display on the display unit based, at least in part, on a current location of the shopping cart.
BRIEF DESCRIPTION OF THE DRAWINGS
[0027] Specific embodiments of the invention will now be described with reference to the drawings summarized below. These specific embodiments are intended to illustrate, and not limit, the invention. The invention is defined by the claims.
[0028] Figure 1 illustrates various types of system components that may be deployed in and around a store for purposes of tracking shopping carts.
[0029] Figure 2 illustrates one possible configuration that may be used to detect whether a customer who is exiting the store has paid.
[0030] Figure 3 illustrates one example of the decision logic that may be used to evaluate whether an exiting customer has paid.
[0031] Figure 4 illustrates the electronics that may be included in a shopping cart wheel according to one embodiment of the invention.
[0032] Figure 5 illustrates one example of a type of vibration sensor that may be included in the wheel to detect skid events.
[0033] Figure 6 illustrates how an antenna used for two-way communications may be configured and positioned within a shopping cart wheel in a 2.4 GHz implementation.
[0034] Figure 7 is a top view illustrating the unoccluded radiation pattern produced by the antenna of Figure 6.
[0035] Figure 8 illustrates how other electrical and mechanical components may be arranged within the wheel according to one embodiment. [0036] Figure 9 illustrates an embodiment in which the cart includes a handle- mounted display unit that includes the RF transceiver circuitry used for two-way communications.
[0037] Figure 10 is a block diagram of a circuit that may be used to implement the access points.
[0038] Figure 11 illustrates, in example format, a communications protocol that maybe used for communications between access points and shopping carts.
[0039] Figure 12 illustrates a program loop that may be executed by the cart transceivers to implement the protocol of Figure 11.
[0040] Figure 13 illustrates additional logic that maybe used to implement the "respond to a command" decision block in Figure 12.
[0041] Figure 14 illustrates one embodiment of a CCU that stores and analyzes event data captured via two-way communications with the carts.
[0042] Figure 15 illustrates a configuration in which a single access point is used to create a lock zone and an adjacent unlock zone in a parking lot area of a store.
[0043] Figures 16 and 17 illustrate other examples of how lock and unlock zones can be used to contain shopping carts.
[0044] Figure 18 illustrates a process by which the number of carts that are queued or otherwise clustered in a specific area may be estimated.
[0045] Figure 19 illustrates an arrangement of shopping carts that can be analyzed via the process of Figure 18.
[0046] Figure 20 illustrates one example of logic that may be incorporated into a cart transceiver or wheel to facilitate cart retrieval operations.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS I. Overview (Figures 1 and 2)
[0047] Figure 1 illustrates a vehicle tracking system according to one embodiment of the invention. The vehicle tracking system is shown deployed in a store for purposes of tracking and controlling the movement of shopping carts 30. However, the inventive components and methods of the vehicle tracking system may be used for other applications, such as tracking luggage carts in an airport, stretchers in a hospital, or carts in a warehouse. [0048] The system includes a set of cart transceivers (CTs) that communicate bi-directionally with a set of wireless access points (APs) to create two-way communications links with the shopping carts 30. In one embodiment, each cart transceiver (CT) is fully contained within one of the standard-size (5-inch diameter) wheels 32 (typically a front wheel) of a respective shopping cart 30, together with a braking unit that can be actuated by the cart transceiver to lock the wheel. One example of a braking unit that may be used for this purpose is described in U.S. Patent No. 6,362,728, the disclosure of which is hereby incorporated by reference. (For purposes of this detailed description, the term "cart transceiver" refers collectively to the cart's RF transceiver and the associated sensor circuitry). Alternatively, a progressive or partial braking unit may be used that is additionally capable of inhibiting the wheel's rotation without placing the wheel in a locked state.
[0049] Some of the circuitry of the cart transceivers (CTs) may alternatively be provided elsewhere on the shopping carts 30. For example, as described below, some of the transceiver circuitry may alternatively be included in a display unit that attaches to the shopping cart's handle (see Figure 9, discussed below). As another example, some or all of the circuitry, including sensor circuitry, could be housed in the wheel assembly (e.g., in the wheel's caster or fork) without being included in the wheel itself.
[0050] The access points (APs) are generally responsible for communicating with the cart transceivers (CTs) for purposes of retrieving and generating cart status information, including information indicative or reflective of cart location. The types of cart status information that may be retrieved and monitored include, for example, whether the wheel 32 is in a locked versus unlocked state, whether the cart is moving; the wheel's average rotation speed (as may be sensed using a rotation sensor in the wheel 32); whether the cart has detected a particular type of location-dependent signal such as a VLF, EAS or magnetic signal (discussed below); whether the wheel 32 is skidding; the CT's battery level and a general wheel "health"; and the number of lock/unlock cycles experienced by the cart since some reference time. (The term "wheel 32" is used herein to refer specifically to a wheel that includes electronics as described herein, as opposed to the other wheels of the shopping cart.) The access points (APs) are also capable of generating and/or relaying commands to the cart transceivers (CTs), including lock and unlock commands that are sent to specific shopping carts. [0051] In the embodiment shown in Figure 1, all of the access points (APs) communicate wirelessly with a central control unit (CCU), either directly or via intermediate access points. The central control unit may be implemented as a personal computer that includes a wireless transceiver card or which is wire-connected to an external transceiver unit. The CCU is generally responsible for collecting, storing and analyzing cart status information, including location information, gathered by the access - points (APs). In addition to the data retrieved from the cart transceivers (CTs), the CCU may collect data generated by the access points, such as signal strength measurements of detected cart transmissions. Some or all of the collected data is preferably stored by the CCU together with associated event timestamps.
[0052] The CCU may analyze the collected data in real time for purposes of making decisions, such as whether to send a lock command to a particular cart 30 or whether to send an alert message to personnel. For example, when a cart is approaching or passing through the store exit, the CCU may analyze the cart's recent history (e.g., path and speed) to evaluate whether a customer is attempting to leave the store without paying. (The access points may additionally or alternatively be responsible for making such determinations.) Based on the outcome of this determination, the CCU may send a lock command to the cart (typically via an access point), or may refrain from issuing a command that authorizes the cart to exit. As another example, if the CCU detects a rapid increase in the number of active carts, the CCU may alert personnel (e.g., over a store LAN) regarding the possible need to open an additional checkout station.
[0053] The CCU may also run data mining and reporting software that analyzes the data collected over time for purposes of detecting meaningful traffic patterns and trends. For example, the CCU may generate reports showing how customers typically progress through the store, and how much time they spend in each aisle or other shopping area. This information may be used to, for example, adjust the store layout.
[0054] The CCU may additionally or alternatively convey the data it collects over a cellular network or the Internet to a remote node that handles analysis and reporting tasks. For example, the CCU (and possibly one or more access points) may have an autonomous WAN link that uses a cellular data service such as GPRS to convey the collected data to a remote node for analysis and reporting. This feature can be used to monitor the system's health from a remote facility. The system may also be capable of being tested and configured via the WAN link from the remote facility. [0055] As depicted in Figure 1, the CCU may connect to various other types of systems that exist within the store. For example, the CCU may connect to a preexisting alarm system and/or video surveillance system, in which case the CCU may be configured to activate an audible alarm or a video camera upon detecting an unauthorized exit event. As another example, the CCU may connect to a pre-existing central store computer that maintains information regarding the states of the store's checkout registers; as described below, this information may be retrieved and used by the CCU to evaluate whether a customer has passed through an active checkout lane.
[0056] In some implementations of the system, the CCU may be omitted. In these implementations, the access points (APs) may implement all of the real time analysis functionality that might otherwise be handled by the CCU. For example, an access point mounted in the vicinity of the store exit may be capable of detecting that a customer is attempting to exit the store without paying, and deciding whether to send a lock command to the cart. To accommodate both centralized and distributed of installations, each access point maybe capable of operating both with and without a CCU. Implementations are also possible in which the access points are omitted, such that the CCU communicates directly with the cart transceivers.
[0057] The cart transceivers (CTs), access points (APs), and central control unit (CCU) all operate as uniquely addressable nodes on a wireless tracking network. As shown in Figure 1, another type of node that may be included on the network is a handheld mobile control unit (MCU). The mobile control unit is designed to enable store personnel to unlock individual carts via depression of a button, as is known in the art. The mobile control unit may also include functionality for retrieving and displaying various types of cart status information, for configuring the wheels/cart transceivers and updating their firmware, and for controlling a motorized cart retrieval unit 40 (see discussion of cart retriever 40 below).
[0058] The various types of nodes (e.g., cart transceivers, access points, central control unit, and mobile control unit) communicate with each other using a non- standard wireless communications protocol that enables the cart transceivers to operate at very low duty cycles, without the need to maintain synchronization with the access points when inactive. Consequently, the cart transceivers can operate for extended periods of time (e.g., approximately 3 years with an average of 0.7 lock/unlock events per day) using a relatively small battery, such as one CRl 23 A (LiMnO2) battery or two L91 (LiFeS2) batteries mounted in the wheel 32. The details of a particular communications protocol that may be used are described below under the heading "Communications Protocol."
[0059] Each cart transceiver (CT) is preferably capable of measuring the received signal strength, in terms of an RSSI (received signal strength indication) value, of the transmissions it receives on the wireless tracking network. The system may use these RSSI measurements in various ways. For example, a cart transceiver may compare the RSSI value of an access point's transmission to a threshold value to determine whether to respond to the transmission. The cart transceiver may also report this RSSI value to the access point (together with the cart transceiver's unique ID) to enable the system to estimate the location of, or distance to, the shopping cart. As another example, the cart transceivers may be programmed to generate and report RSSI values of transmissions from other nearby cart transceivers; this information may in turn be used to estimate the number of carts that are queued at a checkout lane, in a cart storage structure, in a cart stack being retrieved with a mechanized cart retrieval unit 40, or elsewhere. One example of a method that may be used to estimate the number of queued or clustered carts in a particular area is described below under the heading "Queued Count Estimation."
[0060] Three checkout stations 34 are shown in Figure 1, each of which includes a checkout register (REG), which typically includes a merchandise scanner. Each checkout station 34 in this particular example includes an access point (AP), which may be mounted to the preexisting pole (if present) that indicates the number of the checkout lane. Each such access point may include a connection or sensor that enables it to determine whether the respective checkout station is currently active. This information is useful for assessing whether a customer who passes through the checkout lane has paid. Several different methods that maybe used to sense the active/inactive state of a checkout station are described below. Each access point that is positioned at a checkout station 34 may use a directional antenna to communicate with nearby shopping carts/cart transceivers, such as those that are queued in the corresponding checkout lane (see Figure 2, discussed below).
[0061] Access points may additionally or alternatively be mounted to various other fixed and/or mobile structures in the vicinity of the store. For example, as shown in Figure 1, access points may be mounted to a shopping cart storage structure 36 (two shown) in the store parking lot. These parking-structure-mounted access points may be used to detect and report the number of carts stored in their respective areas, and may also be used to enable the in-store access points or CCU to communicate with carts that would otherwise.be out of range.
[0062] As illustrated in Figure 1, an access point (AP) may also be mounted on a power-assisted (mechanized) cart retrieval unit or trolley 40, which may be either a cart pusher or cart puller. One example of such a retrieval unit 40 is the CartManager™ product of Gatekeeper Systems, Inc. The retriever-mounted access point may serve various functions related to cart retrieval, including one or more of the following: (1) sending unlock commands to a nest 41 of carts 30 being retrieved, such that the wheels 32 of these carts are not damaged by being retrieved while in a locked state, (2) detecting whether the cart retriever 40 is being used to push or pull more than an authorized number (e.g., 15) carts at a time, and disabling the cart retriever 40, and/or reporting the event, if such misuse is detected, (3) in embodiments in which the wheel 32 or wheel assembly supports partial braking, instructing the cart or carts at the front of the nest 41 (particularly in the case of a cart pusher) to apply weak braking so that the carts do not become un- nested, with the degree of braking applied optionally being dependent upon the detected slope of the ground; and (4) in embodiments in which the wheels 32 include vibration sensors for detecting wheel skid events, responding to skid-event messages from the carts being retrieved by disabling the cart retriever 40 and/or alerting an operator. It should be noted that in many cases the wheel skid events occur because a cart being retrieved is mis- nested such that the skidding wheel cannot swivel to point in the correct direction. A flow chart illustrating logic that may be implemented by the cart transceivers (CTs) to facilitate retrieval operations is provided as Figure 20 and is discussed below.
[0063] In one embodiment, the cart retrieval unit 40 is a battery powered cart pusher that is adapted to be positioned at the rear of a cart stack to be retrieved. The operator manually steers the cart stack by holding the front cart with one hand while holding the MCU in the other hand. Via a set of buttons on the MCU, the operator can control the forward and backward direction and speed of the retriever 40. Various type of status information may be displayed to the operator on a display of the MCU, such as the estimated number of carts being retrieved (as determined using the cluster analysis methods described below). If the retriever-mounted access point detects a misuse condition (e.g., a skid event or too many carts being pushed), it may disable the retriever 40 in various ways, such as by "spoofing" a manual throttle interface, or if the retriever 40 contains a motor controller with a digital external control interface, by issuing a stop command via this interface? .
[0064] In the particular example shown in Figure 1, the store includes a pair of conventional EAS (Electronic Article Surveillance) towers at the store exit, and also at the end of each checkout lane. Although EAS towers are not needed to implement the various functions described herein, the system may take advantage of their common presence in retail stores. For example, each cart transceiver (CT) may include an EAS receiver (see Figure 4) for detecting that it is passing between a pair of EAS towers, and may be configured to report EAS detection events on the wireless tracking network; this information may in turn be taken into consideration in assessing whether an exiting customer has paid.
[0065] The example store configuration in Figure 1 is also shown as having a VLF signal line 44 embedded in the pavement along an outer perimeter of the parking lot. Such signal lines are commonly used in prior art systems to define the outer boundary of the area in which shopping carts are permitted. In such prior art systems, the wheel 32 of each shopping cart includes a VLF receiver that detects the VLF signal, and engages the brake, when the cart is pushed over the signal line 44. Although not shown in Figure 1, a VLF line may also be provided at the store exit such that all carts that pass through the exit have to cross over this line, and/or at other locations of interest.
[0066] While the present system does not require the use of a VLF signal line 44, the system is preferably capable of using one or more VLF lines as a mechanism for monitoring cart location. Specifically, cart transceiver (CT) preferably includes a VLF receiver. The VLF receiver may be capable of detecting a code transmitted on a VLF line, so that different lines can be used to uniquely identify different areas or boundaries. When the VLF signal is detected, the cart transceiver may take various actions, depending on the circumstances. For example, the cart transceiver may attempt to report the VLF detection event on the wireless tracking network and then wait for a command indicating whether to engage the brake. If no command is received within a pre-programmed time period in this example (e.g., 2 seconds), the cart transceiver may automatically engage the brake.
[0067] With further reference to Figure 1, one or more magnetic markers or strips (MAG) may optionally be provided on or under the store flooring to provide an additional or alternative location-tracking mechanism. As illustrated, these magnetic markers may be provided in strategic locations, such as in each checkout lane and at the store exit. Although not shown in Figure 1, one or more magnetic markers may also be provided in the parking log and/or in shopping aisles. Each magnetic strip has a unique magnetic pattern that can be sensed by an optional magnetic sensor included in each wheel 32. The magnetic markers thus serve as magnetic bar codes that identify specific locations. When a cart 30 crosses a magnetic marker in one embodiment, the cart transceiver (CT) transmits the detected magnetic code, or information from which this code can be derived, on the wireless tracking network. Additional details of how magnetic markers may be sensed and used are described below, and are also described in the Navigation Patent Application referenced above, the disclosure of which is incorporated by reference herein.
[0068] As will be apparent from the foregoing discussion, many of the components shown in Figure 1 are optional components that may or may not be included in a given system installation. For instance, the magnetic markers, the EAS towers, and/or the VLF signal line can be omitted. In addition, either the access points or the CCU can be omitted. Further, the illustrated components may be arranged differently than illustrated. For instance, VLF signal lines could be provided in the checkout lanes and/or in the store exit/entrance (e.g., in place of the magnetic markers and EAS towers shown) to enable the carts to detect checkout events and exit/entrance events, respectively. Further, other types of signal transmitters and detectors/receivers could be used to monitor cart locations. II. Detecting Unauthorized Exit Events (Figures 2 and 3)
[0069] The system supports a variety of different methods for assessing whether a customer is exiting the store without paying. The particular method or methods used may vary widely based on the types and the locations of the system components included in a given installation. For example, if the store does not include any Electronic Article Surveillance (EAS) Towers, magnetic markers (MAG), or VLF lines, the determination may be made based solely or primarily on cart location/path information determined from CT-AP communications, with wheel speed history optionally taken into consideration as an additional factor. If EAS towers, magnetic markers, and/or VLF signal lines are provided, they may be used as additional or alternative sources of information from which the decision can be made. [0070] Figure 2 illustrates three representative checkout stations 34, and will be used to describe how access point "zones" may optionally be used to monitor cart locations and to assess whether an exiting customer has paid. Each checkout station 34 in this example includes a respective access point (AP) with a directional antenna (not shown), as described above. The directional antennas are oriented such that each access point creates a respective zone 46 extending outward from the cart entry area of the checkout lane. Each zone 46 in the preferred embodiment represents the area in which the RSSI of the respective access point's transmissions, as measured by the cart transceivers, exceed a selected threshold. The transmission ranges of the access points typically extend well beyond their respective zones. The zones 46 in this example are positioned such that a cart that enters the corresponding checkout lane will ordinarily pass through the corresponding zone. Some overlap may oceur between adjacent zones, as shown in this example.
[0071] In the example shown in Figure 2, access points (APs) positioned near the store exit/entrance create two additional zones 48 that may be used to detect cart exit and entry events. Access points in other areas (not shown) may create additional zones used for other purposes. The store exit/entrance in the illustrated configuration of Figure 2 also includes a VLF signal line 49. The code transmitted on this line 49 may uniquely correspond to the store's exit/entrance. In this configuration, cart exit events can be distinguished from cart entry events by evaluating the timing with which the cart transceiver detects this VLF code relative to the timing which it sees various RSSI levels from the exit-mounted access points. For instance, if the strengths of transmissions from the exit-mounted access points peak and then fade before the wheel detects the VLF signal, the cart is likely exiting the store.
[0072] In one embodiment, when a shopping cart 30 (i.e., its cart transceiver) detects that it has entered into a zone 46, 48 (as determined by monitoring the RSSI values of the corresponding access point's transmissions), it registers with the access point (AP) by responding to a periodic transmission from the access point. If this access point is located at a checkout station 34, the access point may instruct the cart transceiver to enter into a data collection mode in which it monitors and reports a wider range of events and conditions than usual. For example, if the cart transceiver includes an EAS receiver, it may power-up this receiver for purposes of detecting passage between a pair of EAS towers. In addition, if the wheel 32 includes a rotation sensor, the cart transceiver may monitor the wheel's rotation, such as by counting the number of rotation interrupts that occur. The cart transceiver may also periodically generate and store RSSI values for the access point transmissions it hears.
[0073] Upon passage through a set of EAS towers (if used) or entry into an exit zone 48, the cart transceiver may send the collected data (wheel speed history, RSSI values, magnetic marker or EAS detection events, etc.) to an access point for analysis to determine whether a payment event has occurred. The active/inactive state of the checkout register/station 34 corresponding to the cart's path may also be considered.
[0074] The task of evaluating the collected data is preferably handled primarily by the access points and/or the CCU, but could alternatively be handled partially or wholly by the cart transceivers (CTs). Data collected by two or more different access points, potentially including access points that are not near the checkout stations 34, may be analyzed in combination for purposes of assessing whether a payment event occurred. For example, as a cart moves from one zone to another, it may communicate with a number of different access points. The history of these communications may be aggregated (e.g., by the CCU) and analyzed to estimate the cart's navigation path over time, and this estimated path may in turn be considered in assessing whether the customer has paid.
[0075] In some configurations, checkout activity may be monitored without providing access points (APs) at the checkout stations 34. In these configurations, the system may detect that a cart has passed or is passing through a checkout lane based on one or more of the following: (1) detection by the wheel 32 of a magnetic marker that uniquely identifies a particular checkout lane; (2) if the store has VLF signal lines or EAS towers in the checkout lanes, detection by the cart transceiver (CT) of a VLF or EAS signal, optionally in conjunction with location history information indicating that the cart is in the general vicinity of a checkout lane.
[0076] Figure 3 illustrates one example of the decision logic that may be used to determine whether to enable a cart 30 to exit the store. This logic may be embodied in software executed by the CCU, an access point, and/or a cart transceiver, and may be executed upon detecting that a cart is attempting to exit the store. This logic uses data acquired via two-way communications with the cart to infer whether the cart is being used to steal merchandise (referred to as an "inferred theft" or "pushout" event). [0077] As depicted by blocks 60 and 62, if it is determined that the cart did not recently pass through a checkout lane, the wheel 32 is caused to lock. Otherwise, a determination is made whether the checkout station 34 detected as being used by the cart was in an active state at the time (block 64). This determination may be made in a variety of ways. For example, in some stores, the CCU may be able to get this information substantially in real time from a centralized store computer system that connects to the individual POS registers. Thus, for example, if magnetic markers (MAG) are provided in the checkout lanes, the wheel 32 may sense the unique magnetic code of its checkout lane and relay this information to the CCU via an access point; the CCU may then query the central store computer system to determine the state of the register. The active/inactive determination may alternatively be made by an access point (AP) mounted at the checkout station; for example, the access point may include or be locally connected to an acoustic sensor that senses the beep sound produced by the merchandise scanners, or may include a light-based sensor or pressure-sensitive floor mat that detects whether a cashier is present at the station.
[0078] If the checkout station 34 was inactive in the example shown in Figure 3, the wheel is caused to lock unless the average wheel speed through the checkout area is sufficiently low to indicate a likely payment event (block 66). If the checkout station was active, the cart is permitted to exit unless, in some embodiments, the average wheel speed is sufficiently high to indicate that the customer did not stop to pay (blocks 68-72).
[0079] As will be apparent, the decision logic shown in Figure 3 can be varied in a number of ways. For example, the determination of whether to permit the cart to exit can be made without regard to the identity of the checkout lane used; for instance, the cart may be authorized to exit as long as it passed through some checkout lane with an average wheel speed falling below a selected threshold. As another example, the determination whether to authorize the exit may be made without regard to wheel speed; for instance, the exit event may be authorized as long as the cart passed through a checkout lane that was active. Other criteria that may be considered include the following: (1) the total amount of time the cart spent in the store since its last entry, (2) whether the cart passed through an area that includes high priced and/or frequently stolen merchandise, as determined, e.g., based on whether the cart communicated with (or exceeded a specific threshold RSSI with) a particular access point (AP) or sensed a particular magnetic marker (MAG) or VLF code. [0080] Further, in addition or as an alternative to locking the wheel .32 as shown in Figure 3, some other action may be taken in response to the inferred theft event. Examples include activating a visual and/or audio alarm, and generating a capture event to a digital video recorder. III. Cart Transceiver and Wheel Electronics (Figures 4 and 5)
[0081] Figure 4 illustrates some of the different types of components that may be provided in or in conjunction with the cart transceiver (CT) according to one embodiment of the invention. In this embodiment, all of the components shown in Figure 4 are mounted inside the shopping cart wheel 32. As discussed below, some of the components shown in Figure 4 may alternatively be provided elsewhere on the cart 20, such as in a display unit mounted to the shopping cart, or in another portion of the wheel assembly (e.g., in the caster). The design illustrated in Figure 4 and described below can be varied widely without departing from the scope of the invention.
[0082] As illustrated in Figure 4, the cart transceiver (CT) includes a microcontroller 80 that communicates with an RF transceiver 82. The microcontroller is preferably a low power device that includes a self-programmable flash memory, RAM, and a set of integrated peripheral circuits such as an Analog to Digital Converter (ADC) and a multichannel Counter/Timer Circuit (CTC). An Atmel ATMegal 68V-10MI is one example of a microcontroller that is suitable for use. The microcontroller 80 and RF transceiver 82 collectively act as a programmable RF transceiver system. The RF transceiver system may alternatively be implemented without the use of a separate microcontroller; for example, an IC device that includes both an RF transceiver and a processor, such as a TI/Chipcon cc2510, may be used. As another example, the microcontroller 80 could be replaced with another type of controller device, such as a custom ASIC (Application Specific Integrated Circuit).
[0083] The RF transceiver 82 is preferably either a 2.4 GHz or 5.7-5.8 GHz transceiver, although other frequency bands such as UHF can be used. The RF transceiver 82 preferably has the following attributes: (1) very low power for periodic wakeup and receive, (2) modulation that is insensitive to phase reversal (e.g., Frequency Shift Keying or FSK), (3) log linear RSSI measurement, (4) hardware support for Clear Channel Assesment (CCA). One example of an RF transceiver that may be used is a Tl/Chipcon cc2500. One useful feature of this RF transceiver device is that it is capable of receiving transmissions while the microcontroller 80 is in an inactive state, and waking ip the microcontroller if the received transmission matches pre-programmed criteria. The RF transceiver 82 is coupled to an antenna 84, which preferably has a differential ended antenna port so that no balun is needed when using a preferred differential antenna 84.
[0084] As illustrated in Figure 4, the cart transceiver (CT) also optionally includes a VLF receiver 88 for detecting VLF signal lines 44. The VLF receiver 88 may, for example, be an 8 kHz receiver that is compatible with existing shopping cart containment systems, and which is capable of detecting a code transmitted via a VLF line. The cart transceiver also includes an optional Electronic Article Surveillance (EAS) receiver 90 for detecting EAS tower interrogations as described above. To conserve power, the microcontroller 82 preferably maintains the EAS receiver 90 in an inactive state except when certain types of events are detected, such as events evidencing a possible checkout or store exit event. The EAS receiver 90 is preferably tunable by the microcontroller 80 to the various frequencies commonly used for EAS.
[0085] As shown in Figure 4, the microcontroller 80 is connected to a rotation sensor 92, a vibration sensor 94, and a magnetic sensor 96. One or more of these sensors may alternatively be omitted. The rotation sensor 92 enables the microcontroller 80 to detect wheel rotation events, and may be implemented using mechanical, optical, and/or electromagnetic components. By measuring the number of rotations that occur over a period of time, the microcontroller 80, and/or an access point or the CCU, can determine the wheel's average rotation speed and the cart's average speed.
[0086] The vibration sensor 94, if present, enables the microcontroller 80 to detect wheel vibration/skid events commonly caused when a motorized shopping cart retriever 40 pushes or pulls a cart whose wheel is locked or has an improper orientation. One example of a vibration sensor design that may be used is shown in Figure 5 and is discussed below. Upon detecting a skid event, the cart transceiver may transmit an alert message to a nearby access point, which in some cases may be an access point mounted to a motorized cart retriever 40. The retriever-mounted access point may respond to such an alert message by generating a signal that disables the cart retriever 40 and/or causes an alarm on the cart retriever 40 to be activated. This feature of the invention may, in some embodiments, be implemented without two-way communications with the carts; for example, the wheel's RF transceiver 82 could be replaced with an RF transmitter, such that the wheel 32 transmits skid alert messages but does not received any data. [0087] The magnetic field sensor 96, if present, enables the microcontroller 80 to detect magnetic markers (MAG) of the type described above. The magnetic sensor 96 may, for example, be one of the following: (1) a two-axis magnetic sensor capable of measuring the value of the two magnetic field components in an object's plane of motion; (2) a "2 1A axis" sensor that can measure two magnetic field components and the algebraic sign of a third component, or (3) a three-axis magnetic field sensor that measures each of the three independent magnetic field components. When the magnetic field sensor 96 initially detects a likely magnetic marker in one embodiment, the microcontroller begins buffering the output of the magnetic field sensor, and continues such buffering until the microcontroller determines that the wheel 32 has likely finished passing over the marker. The cart transceiver (CT) then transmits the buffered data to an access point (AP) for analysis together with wheel rotation-sensor data. The access point or the CCU then analyzes this data to determine whether a magnetic marker was actually crossed, and if so, to identify the unique code of this marker. This analysis could alternatively be performed by the cart transceiver (CT), and the result transmitted to an access point.
[0088] One additional type of sensor that may be included in the wheel 32 is a heading sensor (not shown in Figure 4) that senses the orientation of the wheel 32, and thus the direction of travel of the cart 30. If a heading sensor is provided, data collected by the rotation and heading sensors may be used in combination by the cart transceiver, an access point, or the CCU to calculate the cart's location relative to one or more known reference points. Examples of algorithms that may be used for this purpose are described in the Navigation Patent Application referenced above.
[0089] Various other types of sensors and receivers may additionally or alternatively be included in the wheel 32 or wheel assembly. For example, in some applications, it may be feasible to include a GPS (Global Positioning System) receiver in the wheel or wheel assembly, or to include another type of electronic device that is capable of calculating its position based on received RF, optical, or ultrasonic signals. Further, the wheel 32 could transmit a signal that is used by an external node or system to detect the wheel's location, and the wheel could then be notified of its location via an access point.
[0090] As illustrated in Figure 4, the microcontroller 80 generates a drive signal that controls the state of the wheel's braking unit 100, such as by driving a brake motor, to change the locked/unlocked state of the wheel. Decisions to lock the brake may be made by the microcontroller 80, an access point (AP), and/or the CCU, depending upon the system's configuration and the scenario involved. For example, the microcontroller 80 may be programmed to automatically lock the wheel, in the absence of a command to the contrary, whenever a VLF or EAS signal is detected. As another example, lock decisions that are not responsive to detection of a VLF or EAS signal may be made by an access point or the CCU. As mentioned above, in some embodiments a braking unit 100 that supports partial braking may be used; in such embodiments, the microcontroller may gradually engage the brake whenever a lock decision is made so that the cart does not stop suddenly.
[0091] As illustrated in Figure 4, the cart transceiver (CT) and the brake unit 100 are powered by a power subsystem 104. The power subsystem 104 preferably includes either a battery, or a power generator that generates a power signal from the rotation of the wheel 32. If a power generator is used, the power signal is preferably provided to a capacitor, or other energy reservoir, so that power continues to be supplied to the wheel's active components when the wheel is stopped. Examples of power generator designs that may be used in the wheel 32 are described in the Power Generation Patent Application referenced above, the disclosure of which is incorporated by reference herein.
[0092] In some embodiments of the invention, the brake unit 100 may be omitted from the wheels 32. In these embodiments, the system may track and report the locations and statuses of the carts 30 or other vehicles without attempting to stop their movement.
[0093] Figure 4 also depicts an optional LED indicator 110 that may be provided on a visible portion of the wheel 32 or wheel assembly. This LED indicator may be strobed by the microcontroller 80 to visually indicate that the cart 30 is in a particular state. For example, if the wheel is currently locked, and a particular type of command is received from the mobile control unit (MCU), the microcontroller may strobe the LED at a low duty cycle for several seconds; this feature may be used to enable store personnel to efficiently identify carts whose wheels are locked. Alternatively, the indicator may be electromechanical, e.g. a highly visible feature, such as a bright orange piece of a suitable material, may be made visible and invisible via an electromechanical device controlled by the microcontroller 80. [0094] Figure 5 illustrates one example of a vibration sensor 94 that may be used in the wheel 32. The vibration sensor 94 includes a striker mass 114 attached at the end of a cantilever spring 116. When vibration of a sufficient amplitude occurs along the vertical axis, the striker mass 114 strikes a piezoelectric crystal 118, causing the piezoelectric crystal to generate a voltage. The output signal is optionally buffered by an opamp 120 before being fed to a counter input of the microcontroller 80. The microcontroller counts the number of pulses generated by the vibration sensor per unit time to evaluate whether the vibration matches the skid profile of a wheel 32, and generates a skid alert message on the wireless tracking network if it does. The frequency response of the vibration sensor 94 may be tuned by varying the characteristics of the striker mass 114, spring 116, and an elastometric snubber 122.
[0095] Various other types of vibration sensors can alternatively be used. For example, a disturbance switch, such as a 10651 -X-OOO disturbance switch from Aerodyne Controls, may be used.
[0096] The rotation sensor, if included, may be similar to the vibration detector shown in Figure 5, but with the free striker mass 114 replaced with one or more bumps molded inside the wheel. These bumps are arranged to push a striker against the piezoelectric crystal during wheel rotations. The bumps may be spaced unevenly so that forward rotation can be distinguished from reverse rotation. Various other types of rotation sensors, including those that use magnets such as Hall Effect sensors, may alternatively be used, rv. Wheel Configuration and Antenna Radiation Pattern (Figures 6-8)
[0097] Figure 6 is a breakaway view of a wheel 32 attached to a metal caster 134 (also commonly referred to as a "fork"). The wheel 32 and caster 134 collectively form a wheel assembly that is adapted to be attached (screwed in) to a shopping cart in place of a standard-size shopping cart wheel assembly. The drawing illustrates how the RF transceiver's antenna 84 may be configured and positioned in the wheel 32 in a 2.4 GHz implementation. Ideally, a straight antenna with a length of 1.6 inches would be used for 2.4 GHz implementations. Because such an antenna does not easily fit is a suitable location in a standard 5" wheel, a shorter antenna is used, with the antenna curved to match the curvature of the inner surface of the wheel's rotating portion. Different antenna configurations would typically be used for designs that use other frequency bands, such as UHF or 5.7-5.8 GHz. [0098] The antenna 84 is preferably formed on a printed circuit board 85 that remains stationary as the wheel rotates. This same printed circuit board also includes the various electronic components shown in Figure 4. To compensate for its shorter than ideal length, the antenna 84 is coupled to a pair of spiral inductors 130, each of which has an inductance of about 1.25 nanohenries. Each such inductor 130 is preferably connected via a respective 1.3 pF capacitor (not shown) to a differential output of the RF transceiver 82. The arrow in Figure 6 illustrates the direction of the strongest antenna radiation, which is preferably somewhat upward since the access point antennas typically reside at a higher elevation than the wheels 32.
[0099] As illustrated in Figure 7, the antenna configuration shown in Figure 6 produces an unoccluded radiation pattern 132 that extends horizontally outward from the back and sides of the wheel. Signal transmissions in the direction of wheel movement tend to be attenuated to a much greater degree as the result of the metal caster 134. In some embodiments the caster may be non-conducting, in which case the attenuation of the signal in the forward direction is much less severe.
[0100] Figure 8 is another view illustrating how various other components may be arranged inside the wheel 32. In this example, the wheel is powered by a battery 104, although the battery may be replaced with a power generator as described above. The other illustrated components include the printed circuit board 85; a brake motor 142 that drives a drive mechanism 144 (set of gears) to control the locked/unlock state of the wheel 32; and a drive band 148 that expands and contracts under control of the motor to come into and out of contact with the rotating portion of the wheel 32. All of the internal components mentioned above are fully contained and enclosed within the wheel (behind a cover plate that is not shown in Figure 8) such that they cannot be seen by the user of the shopping cart, and cannot easily be tampered with.
[0101] In other embodiments, some or all of the electronic and braking components may reside outside the wheel 32, such as in an enclosed plastic housing that forms part of the caster. V. Embodiment with RF Transceiver Circuitry in Display Unit (Figure 9)
[0102] Figure 9 illustrates an embodiment in which some of the cart transceiver (CT) circuitry is included in a handle-mounted display unit 150, rather than the wheel 32. The handle mounted display unit 150 includes a display screen 152, such as a touch screen, that is viewable by the customer while pushing the shopping cart 30. The display screen 152 is connected to a master microcontroller 8OA, which is connected to an RF transceiver 82. The master microcontroller 8OA and the RF transceiver 82 may be the same as the microcontroller 80 and RF transceiver 82 used in the embodiment of Figure 4. The wheel 32 includes a slave microcontroller 80B, which may be a more basic (lower functionality) device than the master microcontroller 8OA. The wheel 32 also includes a power generator subsystem 104 that includes a power generator and reservoir.
[0103] The wheel electronics and the display unit 150 are connected by a pair of wires 154, which may be routed through or on the shopping cart's frame. These wires are used to supply power from the wheel's power generator subsystem 104 to the display unit 150, and are also used for two-way communications between the two microcontrollers 80A, 80B. The display unit 150 may also include a battery for enabling the display unit to continue to operate when the wheel's power reservoir is deeply discharged. The two-wire connection is made via a pair of coupling transformers 156A, 156B. One example of a mechanical coupling that may be used to pass the transformer coupled signals from the wheel's PCB to the cart frame and thence to the display unit 150 is described in the Power Generation Patent Application referenced above.
[0104] The two microcontrollers 8OA, 80B communicate in half duplex mode using a one-wire protocol. A variety of suitable one-wire protocols are known in the art. One example is the protocol defined by the ISO 11898-1 Controller Area Network (CAN) specification. To transmit data from the display unit 150 to the wheel 32, the master microcontroller 80A sets the I/O port that is connected to the coupling transformer 156A to "output," and the slave microcontroller 80B sets its I/O port to "input." The master microcontroller then toggles its I/O port output on and off at one of two frequencies to generate an FSK signal. The AC component of that signal couples onto the power line through the coupling transformer 156 A and passes through the other coupling transformer 156B. The slave microcontroller 80B can distinguish between the two FSK frequencies by counting the number of crossings per unit time. Transmissions in the opposite direction occur in the same manner. The two microcontrollers 80A and 80B may be programmed such that some or all of the events detected via the VLF receiver 88, vibration sensor 94, and rotation sensor 92 (and/or other sensors included in the wheel) are reported to the master microcontroller 80A so that they may, if appropriate, be reported to an access point. [0105] The electrical coupling between the wheel 32 and the display unit 150 can be varied in a number of ways. For example, a third wire may be added to directly connect the two I/O ports, so that the two coupling transformers 156A, 156B can be omitted. As another example, the power generator may be omitted from the wheel 32, and the wheel electronics may be powered by a battery in the display unit. In yet another embodiment, the wired connection is omitted, and wheel 32 and the display unit 150 communicate with each other solely by RF and are powered by their own respective power sources.
[0106] In some implementations, the display unit 150 may have a card reader 160, such as a magnetic card reader or a barcode scanner, that enables a customer to swipe a customer loyalty card or another type of card that identifies the customer. In these implementations, the cart transceiver may be configured to convey the customer identifier to an access point such that this identifier can be associated with the other cart events detected during the customer's shopping session.
[0107] The display unit 150 may additionally or alternatively include or be connected to a merchandise ID reader 162, which may be a barcode scanner or RFID reader. In the case of an RDIF reader, the CT may use cart movement data (e.g., as determined using a wheel rotation sensor) in combination with data from the RFID reader to identify products that are in the cart. For example, if the cart is has moved forward by a selected distance (e.g. 20 feet) and the RFID reader is still detecting the presence of a particular product, the product may be treated as being in the cart (as opposed, for example, to being on in a nearby cart or on a nearby shelf).
[0108] If a merchandise ID reader is provided and is used by the customer, the display unit 150 may, for example, display the names and prices of the items selected by the customer to purchase, and may convey this information to an access point (AP). The display unit may also display recommendations of related products. In some implementations, a single scanner or reader device such as a barcode scanner may serve as both a merchandise scanner 162 and a loyalty card reader 160. The display unit 150 may also include a beeper, chirper, or other audio signal generator (not shown) that outputs an audio signal when a new message is initially displayed, or when the customer's attention is otherwise desired. VI. Access Point Design (Figure 10) [0109] Figure 10 shows the design of an access point (AP) according to one embodiment of the invention. The access point includes a power supply 170 that receives power from a power source. For indoor installations, an AC power source will typically be used, while for outdoor installations, a solar cell and/or a battery may be used for those outdoor locations where providing AC or DC power is infeasible. The access point optionally includes or is coupled to a register activity sensor 172 capable of sensing whether a checkout register is currently active. Such a sensor may be used, as described above, when the access point is mounted at a checkout station 34.
[0110] In one embodiment, the register activity sensor 172 is an acoustic sensor that is trained or trainable to detect the audible beep generated by conventional merchandise scanners. When this type of sensor is used, the access point (AP) treats the register as active when beep signals of sufficient amplitude and/or specific frequency content are being detected at regular intervals. Beep signals of adjacent registers/scanners can typically be filtered out and ignored based on their lower volume at the location of the access point. The acoustic register activity sensor may either be mounted inside the housing of the access point, or may be connected to the access point by a pair of small wires.
[0111] Various other types of register activity sensors 172 may alternatively be used. For example, an infrared or LED sensor, or a weight sensor positioned under a mat, may be used to detect whether a cashier is present at the register. As another example, the access point may passively monitor the register's wired interface (typically an RS-422 differential full duplex interface) to the store's point-of-sale central system, and may infer that the register is active when signals are detected that reflect common activity patterns. Further, in some installations, information about the active/inactive states of the registers/checkout stations may be obtained by querying a preexisting store computer that maintains such information, and thus without the use of a register activity sensor 172.
[0112] As illustrated in Figure 10, the access point (AP) includes a microcontroller 180 and an RF transceiver 182, both of which may be the same as in the cart transceivers (CTs). A set of switches 186A and 186B enable the RF transceiver's output to be selectively amplified via an RF power amplifier 188. One example of a power amplifier that may be used is a Tyco M/ A-COM MAAPS0066 device. [0113] The access point also includes a three-way switch 190 that enables the RF transceiver 182 to be connected to an internal antenna, a first external antenna port, or a second external antenna port. The internal antenna is preferably used primarily or exclusively for communications with other access points and/or the CCU. The external antenna ports may be used to connect one or two directional antennas to the access point. These directional antennas may be used to create zones for communicating with and tracking the locations of cart transceivers, as described above. One example of how an access point can use the two external antennas to create two different control zones is shown in Figure 15 and discussed below. A directional antenna may also be used to provide connectivity when an access point is mounted at a relatively remote location, such as in a distant area of the store parking lot, where the gain of the internal antenna is insufficient to achieve reliable communication. In alternate embodiments, the access points may support a greater number of external antennas, and/or may include two or more complete RF subsystems (see Figure 17, discussed below).
[0114] The access point also includes an interface 192 for enabling the microcontroller 180 to communicate with a store security system. This interface 192 may be used for various purposes, such as the following: (1) notifying the store security system of whether the AP is receiving AC power or has experienced an internal fault; (2) enabling the security system to place the APs in a "safe mode" in which the APs command all of the cart transceivers to remain unlocked at the building exits; this mode may be used when, for example, a fire alarm occurs; (3) activating a security system alarm, or generating a video surveillance capture event, in response to an inferred theft event.
[0115] The various components of the access point may be housed within a plastic or other housing that is adapted to be mounted to a fixed or mobile structure. The housing may, for example, be approximately the size of a standard chalk board eraser.
[0116] Where fine grain tracking of in-store customer activity is desired, access points can be positioned strategically throughout the store, such as in every department, aisle, checkout area, etc. Each such access point may be configured to periodically (e.g., once every 5 seconds) identify, and report to the CCU, all of the cart transceivers in its respective zone.
[0117] The design of the transceiver used in the CCU may be the same as or similar to the access point design shown in Figure 10. VII. Communications Protocol (Figures 11-13)
[0118] One example of a., protocol that may be used for wireless communications between "controllers" (devices that initiate transmissions) and "targets" (devices that respond to communications from a controller) will now be described with reference to Figures 11-13. In the preferred embodiment, the cart transceivers and the CCU act only as targets, meaning that they do not initiate transmissions on the wireless network. Access points (APs) and mobile control units (MCUs), on the other hand, are capable of acting as either a controller or a target. In other embodiments, the CCU may be capable of acting as a controller. For purposes of illustration, the protocol will be described herein in the context of communications between the access points (acting as controllers) and the cart transceivers, although the description is also applicable to other types of nodes.
[0119] The protocol advantageously allows the cart transceivers to remain in a very low power state most of the time. For example, in one embodiment, each cart transceiver (CT) wakes up approximately every 1.8 seconds to listen for a transmission from an access point, and then returns to its low power state after one millisecond if it does not receive a transmission that requires a response or other action. If the cart transceiver detects an AP transmission that requires a response, it remains active until a response window occurs, and then transmits its response to the access point.
[0120] The cart transceiver (CT) can adjust the frequency with which it wakes up under specific conditions where lower communication latency is desirable and where the extra power consumption is acceptable, e.g. when passing through a very narrow exit zone or by a potential payment point. As one example, an access point that has a small antenna footprint or zone may command nearby CTs to wake up more frequently when detecting RSSI levels above a specified threshold.
[0121] The access points preferably use both unicast (target-specific) and multi-cast addressing to send messages to the cart transceivers. An example of a multicast message is a message addressed to "all cart transceivers that are locked," or "all cart transceivers of carts that are moving." Because multiple cart transceivers can respond to a multicast transmission, the response window is divided into multiple response slots, and the cart transceivers pseudo-randomly select between the available response slots. The access point acknowledges the responses it receives, enabling the cart transceivers to detect and retry unsuccessful responses (e.g., those that produced collisions). [0122] Figure 11 illustrates a scenario in which an access point AP sends a multicast message that is applicable to four cart transceiver (CT) devices. Solid boxes in Figure 11 represent packet transmissions, and dashed boxes represent packet receptions or reception slots. The access point (AP) initially sends a sequence of wakeup packets. As illustrated, each wakeup packet includes the following: (1) a synchronization pattern, (2) a source address (i.e., the unique address of the transmitting access point), (3) a destination address (e.g., "all carts," "all carts in category X," or "cart 12345"), (4) a command, (5) an RSSI threshold (i.e., a minimum RSSI value that needs to be detected by the cart transceiver for the cart transceiver to respond), (5) a window begin time indicating a length of time before the response window begins, (6) the size of the response window, (7) the number of slots in the response window, and (8) a CRC value.
[0123] In one embodiment, the RSSI threshold refers to a filtered RSSI value, so that a cart transceiver will not respond to an AP when the cart transceiver is not in the AP's antenna footprint or zone, even if anomalous RF propagation causes a single RSSI measurement to be anomalously high. The RSSI filtering method may be similar to the method described below in the section on queue count estimation, though the parameters of the method may be adjusted to reflect that this filter computation is preferably performed by the relatively low-power cart transceivers rather than the APs. A CT may generate a filtered RSSI value for a given AP from wakeup-packet-specific RSSI values generated by the CT during the wakeup sequence, and/or from RSSI values generated from recent transmissions of the AP.
[0124] The slot length is specified implicitly by the combination of the response window size and the number of slots. Typically, the AP will select a slot size that corresponds to the expected response size given the type of command being issued.
[0125] hi cases where the command including its parameters is too long to fit in the space allocated in the wakeup message format, the command field present in the wakeup packet indicates the nature of a forthcoming command. The response window beginning time is then interpreted by the CT as the beginning of an additional transmission from the access point which contains the remainder of the command. The response window then follows immediately after the additional command information. Any CT which receives the wakeup and which is a potential addresse of the command based on the information present in the wakeup message will then wake up as if the CT did have a response, receive the additional command information, and then determine whether a response is required.
[0126] Table 1 lists some of the commands that can be issued to a cart transceiver. In general, these commands may be issued from either an AP or a MCU, though it is unlikely that certain commands would be issued from an MCU, e.g. Report zone entry.
Figure imgf000032_0001
Figure imgf000033_0001
TABLE 1 - EXAMPLE COMMANDS ISSUED TO CARTS
[0127] With further reference to Figure 11, because the wakeup sequence exceeds the duty cycle of the cart transceivers, all four cart transceivers detect a wake up packet and respond during one of the four response slots. Each response is in the form of an acknowledgement (ACK) packet that includes the following: (1) a synchronization pattern, (2) a source address (i.e., the unique address of the responding cart transceiver), (3) a destination address (i.e., the unique address of the access point), (4) a response message, the content of which depends on the command from the access point, (5) an async request (discussed below), (6) a filtered RSSI value measured by the cart transceiver during the preceding wake up sequence, and (7) a CRC value.
[0128] The async field provides a mechanism for a cart transceiver to notify the access point that it has some unsolicited data to report. The cart transceiver may have such data to report when, for example, it detects a VLF field code, EAS signal, magnetic marker, or skid event, hi one embodiment, the cart transceiver uses the async field to notify the access point of the type of the unsolicited data; the access point thereafter schedules a unicast interrogation of the cart transceiver to retrieve this data. Because the access points ordinarily transmit commands, such as "report zone entry" commands, on a regular basis (e.g., every few seconds), the async feature provides a mechanism for all types of cart status information to be retrieved substantially in real time.
[0129] In the example shown in Figure 11, the ACK packets from CTl and CT2 are successfully received and acknowledged by the access point. The ACK packets from CT3 and CT4, on the other hand, collide with each other and are not acknowledged. CT3 and CT4 determine that their responses were not successfully received by the absence of an acknowledgement. CT3 and CT4 thereafter successfully retry their ACK packet transmissions, resulting in the access point's acknowledgement of both.
[0130] Figure 12 illustrates a program loop that may be executed by each cart transceiver to implement the protocol described above. Figure 13 illustrates steps performed to implement the "command requires response" decision block in Figure 12.
[0131] Because the - access points (APs) are capable of transmitting at significantly higher power levels than the cart transceivers (CTs), a significantly higher bit rate is preferably used for the downlink to the carts than for the uplink to the access points. This reduces the disparity that would otherwise result between the transmission ranges of the two types of devices. The relatively high bit rate on the downlink also allows the access points to send out wakeup packets at a reasonably high rate (e.g., one every two milliseconds); consequently, the cart transceivers only have to listen for a wakeup packet for a very short time before re-entering a low-power state.
[0132] Frequency hopping may be used for transmissions in both directions. The access points preferably maintain synchronization with each other by monitoring transmissions from the CCU or each other. VIII. Storage and Analysis of Cart History Data (Figure 14^)
[0133] Figure 14 illustrates one embodiment of a CCU configured to analyze cart event data acquired via two-way communications with the cart transceivers (CTs). As illustrated, the CCU receives cart event data substantially in real time as such data is retrieved or generated by the access points. Each such event may, for example, include an event type, an event timestamp, the ID of the access point (AP) reporting the event, the ID of the cart transceiver (CT) to which the event applies (if applicable), and any associated data. For example, an event may specify that AP#1 detected CT#2 into its zone at a particular time, and that CT#2 reported an RSSI value of X.
[0134] The CCU stores the event data in an event histories database 210, which may be a relational database. Each cart session record 212 shown in the event histories database corresponds to a particular cart and shopping session, and contains the event data associated with that shopping session. In one embodiment, the CCU treats a cart's entry into the store as the beginning of a shopping session, and treats the cart's subsequent exit from the store as the end of a shopping session; however, different criteria may be used for different store configurations and applications. The cart IDs may be the unique IDs or addresses of the corresponding cart transceivers.
[0135] The CCU also preferably accesses a database 220 of purchase transaction data and customer profile data maintained by or obtained from the store's central computer. As illustrated, this database 220 may contain records 222 of specific purchase transactions of specific customers, including identifiers of the purchased items.
[0136] As illustrated, a given session record 212 may, in some cases, include a store transaction ID and/or a customer number. The store transaction ID identifies the checkout transaction, if known, as produced by a conventional point-of-sale system and recorded in the database 220. The transaction IDs are attached to the corresponding session records 212 by an event-history/transaction correlation component 214 that runs on the CCU. In one embodiment, this component 214 compares purchase transaction data stored in database 220 with the cart event data to uniquely match specific transaction records 222 with specific cart session records 212. This may be accomplished by, for example, comparing the data/time stamp and register ID information contained in a store transaction record 222 to the cart event data reflective of a checkout event. If a sufficient degree of correspondence exists between time and location, a given session record 212 may be matched to a given transaction record 222.
[0137] If the recorded time and location information is insufficient to match the cart session under consideration to a particular transaction, the correlation component 214 may compare the items identifiers contained in the potentially matching transaction records 222 to the path taken by the cart. A database 230 of store and access point configuration data may be used for this purpose. If, for example, a particular transaction includes items (and especially bulky items) that are not available along the path followed by the cart, the transaction may be excluded as a candidate. If, on the other hand, the purchased items closely match the cart path, a match may be deemed to exist.
[0138] The customer number field in the cart session records 212 may be used to store a customer loyalty number, if known. This number may be obtained from the matching transaction record 222, or in embodiments in which the cart includes a display unit 150 with a card reader 160 (Figure 9), from the event data retrieved from the cart transceiver. If the customer loyalty number is acquired via a card reader on the cart, the acquired number may also be used to match the cart session record 212 to a corresponding transaction record 222.
[0139] The analysis components that run on the CCU in the example embodiment of Figure 14 include a real time analysis component 240 and an off-line statistical analysis component 250. The real time analysis component 240 analyzes event data as it is acquired for purposes of identifying real time actions to take. Examples of action that may be taken include transmitting a particular command (e.g., a lock command) to a particular cart, activating an alarm system or video surveillance camera, alerting personnel of the need to retrieve carts from the parking lot, or alerting personnel of the need to open an additional checkout lane.
[0140] In embodiments in which the carts 30 include display units, the real time analysis component 240 may also select location-dependent ads or other messages to present to users. For example, upon entry into a. particular store department, the CCU may instruct the cart to display a particular ad, promotion, offer, or other message that is specific to that department. If the customer's loyalty number is known at the time (e.g., as the result of entry via a card reader 160 on the display unit 130), the ad or message may also be based on the actions taken by this customer in prior sessions or visits. For example, if the customer regularly purchases milk on visits to the store, and has entered the checkout area without first entering the area where milk is sold, a message may be displayed reminding the customer to do so. The content that is available for display may be selected from a content database 260 and wirelessly downloaded to the cart transceivers, and/or may be cached in the display units.
[0141] The component 250 labeled "off-line statistical analysis" in Figure 14 is responsible for analyzing the cart event history records 212, optionally in conjunction with corresponding transaction records 222, to mine various types of information. One type of information that can be mined is information regarding the effectiveness of the store layout, including product locations. For example, by collectively analyzing cart histories and transaction records of many different customers, a determination may be made that customers frequently linger in a particular area without selecting a product to purchase, or that they frequently look in the wrong location before finding a desired product. The off-line statistical analysis component 250 may also generate data that can be used for targeted or personalized messaging on the display units. Additionally, the offline statistical analysis component 250 may be used to determine statistics related to the shopping cart inventory of the store, for example, the total number of carts physically present on the premises, the number of carts in active use over specific time periods, which firmware revisions (and associated functionality) are present in the store's cart inventory, etc. DC. Use of Lock and Unlock Zones to Set Boundaries (Figs. 15-17)
[0142] Figure 15 illustrates an example store configuration in which the store is surrounded by a fence 280 that serves as a barrier to shopping cart removal. The only opening in the fence 280 that is sufficiently large for cart removal is a car and pedestrian exit. To inhibit theft via this exit without the need for a relatively expensive VLF signal line, a single access point (AP) with two directional antemias 282 and 284 is mounted to an exterior wall of the store. The AP repeatedly transmits an "unconditional lock" command on the first antenna 282 to create a lock zone 286, and repeatedly transmits an "unconditional unlock" command on the second antenna 284 to create an unlock zone. To create these two adjacent but non-overlapping zones, the directional antemias may be spaced apart from each other by an appropriate distance (e.g., 10 feet) and elevated from the ground, and may be pointed somewhat outward and downward to form corresponding RSSI-based lobes or zones at ground level. Each such zone 286, 288 extends from the wall of the store to and beyond the fence 280.
[0143] With this configuration, a customer attempting to push a cart 30 through the parking lot exit will have to pass through the lock zone 286, causing the wheel 32 to lock. Upon encountering the lock event, the customer may attempt to drag the cart back to the front of the store, such as to get back a monetary deposit placed on the cart. If the customer does so, the cart will enter the unlock zone 288, causing the wheel 32 to unlock. Thus, the wheel damage that might otherwise occur from dragging the locked wheel is avoided.
[0144] A similar arrangement can be used to control the movement of carts through a building exit. Typically the lock zone 286 would be placed on the outside of the building exit and the unlock zone 288 on the inside. Alternatively, the lock zone 286 could be placed immediately inside of the exit and the unlock zone some greater distance inside the building. [0145] Figure 16 illustrates another example of how AP-generated lock and unlock zones as described above can be used to control shopping cart usage in a store parking lot. As in the prior examples, each leaf-shaped zone represents the area at ground level at which a cart's wheel 32 should see a filtered RSSI that exceeds the threshold specified by the corresponding AP. The two zones 290, 292 located at the auto entrance/exit are lock zones created by two respective APs, 294 and 296. These APs 294 and 296 may be mounted to poles (not shown) on the perimeter fence 295 surrounding the parking lot, with their directional antennas angled toward the ground. Because the areas immediately "above" these two APs in the drawing are valid parking areas where carts should be permitted, the antennas are elevated and angled such that these valid parking areas do not form part of the lock zones. The two lock zones 290 and 292 together provide a good approximation of the ideal lock- zone 297 represented by the shaded area in Figure 16.
[0146] With further reference to Figure 16, an additional lock zone 299 covers a pedestrian entrance/exit, hi addition, a relatively large unlock zone 298 is created by an AP mounted near the cart storage area. This unlock zone 298 is positioned relative to the lock zones 290, 292, and 299 such that customers who attempt to return a locked cart to the cart storage area from a lock zone need not travel very far before the wheel is unlocked.
[0147] Figure 17 illustrates an example of how lock and unlock zones can be used in connection with a strip mall, hi this example, the center store is the user of the system. The desired behavior is: (1) carts cannot escape past the sidewalk into the street, (2) carts cannot go into the other stores, and (3) carts cannot get far past the parking immediately in front of the center store. To achieve these objectives, two APs are positioned near the sidewalk area, such as on respective poles. Each AP creates two lock zones, one which extends from the sidewalk to one of the stores that does not use cart containment, and one which extends along the sidewalk.
[0148] Each AP also optionally creates a relatively large unlock zone that covers the majority of the parking area in from of the center store. To provide this third zone, each AP may be provided with a third external/directional antenna. Time slicing may be used to alternate between the three antennas, or two separate RF transceivers may be included in each AP — one which transmits the unconditional unlock command and the other which transmits the unconditional lock command. As another option, a separate AP or pair of APs could be provided to create the unlock zone. - <
[0149] As will be apparent, lock and unlock zones as described in this section may be implemented using receivers, rather than transceivers, on the shopping carts 30. Thus, for example, in some embodiments of the invention, the RF transceivers included in the locking wheels 32 may be replaced with RP receivers. In addition, lock and unlock zones that are created as described herein can also be used for the containment of other types of carts and vehicles, including but not limited to wheelchairs, hospital beds, gurneys, pharmacy carts, and luggage carts.
[0150] In embodiments in which the shopping carts include display units 150, the display unit of a cart 30 that is approaching a lock zone may be instructed to display a warning message. In addition, once the cart has entered a lock zone and the wheel 32 becomes locked, the display unit may instruct the user on how to restore the wheel to an unlocked state, including the location of the nearest unlock zone. X. Queue Count Estimation (Figures 18 and 19)
[0151] Figure 18 illustrates a process that may be implemented collectively by an access point (AP) and a set of nearby cart transceivers (CTs) to estimate the number of carts 30 currently queued or otherwise clustered together near the access point. This feature has several applications, including the following:
[0152] 1. Estimating the number of carts 30 queued at a checkout station 34. The system may use the result of this calculation/estimation to automatically alert personnel regarding the possible need to open an additional checkout station. Also, the system may generate and report statistics regarding the distribution of queue lengths over time (e.g., as a function of time of day, day of week, number of registers open, etc.).
[0153] 2. Estimating the number of carts 30 present in a defined storage area, such as a "cart corral" storage area 36 in a store parking lot (see Figure 1). In the case of store parking lot applications, the system may use the results of such calculations to automatically alert personnel of the need to retrieve carts from the parking lot.
[0154] 3. Estimating the number of carts being pushed or otherwise retrieved by an electric cart retriever 40 (Figure 1). As mentioned above, the results of such calculations/estimations may be used to automatically assess whether the cart retriever is improperly being used to concurrently retrieve more than an authorized number of carts. If such improper use is detected, the system may automatically disable the cart retriever 40.
[0155] As illustrated in block 300 of Figure 18, an access point (AP) initiates the counting process by broadcasting a "queue count" command together with a threshold RSSI value that controls the size of a response zone. The access point preferably transmits this command from a directional antenna that is positioned and configured such that the response zone encompasses, and is larger than, the area in which a queue is expected to form. The zones may be generally similar in configuration to the zones 46 and 48 shown in Figure 2. In the case of checkout stations 34, the AP that transmits the command is typically mounted at or close to a particular checkout station 34, and the zone 46 encompasses the checkout station's cart queuing area- (see Figure 2). hi the case of cart storage areas 34, the AP is typically mounted to, and the zone encompasses, a particular cart storage area. In the case of an electric cart retrieval unit 40, the AP is preferably mounted to the cart retrieval unit, and the zone encompasses the area in which the carts being retrieved typically reside.
[0156] As illustrated in block 302 of Figure 18, each cart transceiver (CT) within the AP 's transmission range measures the RSSI of the AP 's transmission, and if this value exceeds the RSSI threshold, responds to indicate its participation in the queue- size estimation process. (Note that Figure 18 only shows the actions of a single one of the many CTs/carts that may participate, and that each participating CT/cart may perform the steps shown.) hi block 304, the AP identifies the N participating CTs from the responses it receives.
[0157] hi block 306, the AP assigns a set of k unique transmission timeslots to each participating CT, and initiates a process in which each CT uses its assigned timeslots to generate k transmissions, each of which preferably occurs at a different frequency. The use of multiple different transmission frequencies provides a mechanism for reducing errors caused by frequency-selective effects such as multi-path distortion and antenna shadowing. As depicted in blocks 308 and 310, when one CT transmits, the other participating CTs (as well as the AP) measure the RSSI of the transmission. Thus, during this process, each participating CT generates k(N-l) RSSI values. Although the k transmissions from a given CT need not be consecutive (e.g., the transmissions from different CTs may be interleaved), they are preferably sufficiently close in time such that significant cart movement does not occur between the first and last transmissions. In blocks 312 and 314, the AP retrieves the Ic(N-I) RSSI values generated by each participating CT.
[0158] hi block 316, the AP generates a filtered RSSI value from each set of k RSSI values, hi one embodiment, k = 8, and the filtered RSSI value is generated by discarding the two highest and two lowest RSSI values and then taking the arithmetic average of the remaining four. Thus, for example, if CTl and CT2 both participate, CTl would generate a separate RSSI value for each of CT2's eight transmissions, and these eight RSSI values would be converted into a single filtered RSSI value. Since the RSSI values are preferably log linear, the arithmetic average of the RSSI readings is the log of the geometric mean of the four middle received RF power values. The task of generating the filtered RSSI values (designated hereinafter by the notation RSSI*) may alternatively be performed by the CTs that took the corresponding RSSI measurements, or by some other node such as the CCU. Although filtered RSSI values are used in the preferred embodiment, their use is not required.
[0159] The result of block 316 is a set of N(N-I) RSSI*i→j values, where RSSI*i→j is the filtered RSSI of the zth CT as measured at thejth CT. (Note that the term "CT" in this discussion may be replaced with "wheel 32" in embodiments in which the CT is contained within the wheel.)
[0160] hi block 318, the AP (or some other node) calculates a pair-wise distance metric for each CT pair i≠j. The preferred method of calculating distance metrics takes advantage of, but does not require, temporal stability of the cluster of carts/CTs. The nth. iteration distance metric d(i,j,n) may be defined by the following recurrence relations:
d(ij,n) =βRSSl*i→i , RSSI*j→i , d(i,j,n-l)) and d(ij.O) =/0(RSSI*i→j , RSSI*j→i )
Several different/and/) functions can be used in the above calculation. Over a statistical ensemble, RSSI* is an invertible nionotonic function of distance which can be determined by straightforward experimentation. An AP-CT distance metric may also be calculated for each of the N cart transceivers.
[0161] hi block 320 of Figure 18, the AP or another node applies a clustering algorithm to the calculated distance metrics to identify any CTs/carts that are clustered together. Given N(N- 1)/2 d(ij,n) values for the current n, cluster formation can be performed by locating the CT which has the highest RSSI* (which is the CT/cart which is probably closest to the AP), and forming a cluster by the known algorithm of single-link (or single linkage) hierarchical clustering. This may be accomplished as follows. Begin by considering each CT as in a cluster of its own. The distance metric between two clusters is defined as the minimum pair- wise distance metric between the two clusters. Merge in each step the two clusters whose two closest members have the smallest distance metric. Merging continues until no two clusters have a distance metric less than a programmable threshold. The cluster which contains the CT probably closest to the AP (as specified above) is taken to be the queue, and the number of elements in that cluster is taken to be the length of the queue. Any of a variety of other known clustering algorithms may alternatively be used. The process shown in Figure 18 may executed separately for each checkout station 34, and the results may be combined to evaluate which carts belong to which queues.
[0162] m some applications, the above process may be performed merely to estimate the total number of carts that are clustered together, without regard to how or whether these carts are queued. This may be the case where, for example, the number of carts in a cart storage area 36 is being estimated.
[0163] Figure 19 illustrates an example scenario involving three registers, nos. 1-3, and eight shopping carts, C1-C8. Register 2 in this example is closed. A human can easily see that there are four carts (C2-C5) queued at register 3. The clustering process will start register 3's cluster formation with C2. As the result of the calculated intra-cart distance metrics determined using filtered RSSI values, C3-C5 will then be clustered with C2 as part of register 3's queue, even though C4 and C5 are closer to register 2 than to register 3. Similarly, C7 forms an isolated queue of one at register 1. C8, which a human can see is probably just passing through, is not part of either register l's queue or register 2's queue because its distance metric to the nearest other cluster member (probably C7, possibly C5 depending on the wheels' angles) is over the threshold. XI. Maintaining Carts in Unlocked State During Retrieval (Figure 20)
[0164] As mentioned above, the system may include a mechanized cart retrieval unit 40 (Figure 1), which may be a cart pusher or a cart puller, that applies a force to a nest 41 of carts to facilitate retrieval. In one embodiment, as the cart retrieval unit 40 retrieves a nest 41 of carts 30, it commands each of the carts/CTs, via its access point (AP) or another type of transmitter, to remain unlocked. As a result, if the nest 41 is pushed across a ., VLF signal line that would ordinarily cause' the carts' braking mechanisms to become locked, or is pushed through a lock zone created via an access point, the braking mechanisms of the retrieved carts will remain unlocked. The commands may be sent via a directional antenna that is mounted and positioned on the cart retrieval unit 40 so as to substantially limit its command transmissions to the nest of carts.
[0165] Figure 20 illustrates logic that may be incorporated into the cart transceivers (CTs) to facilitate mechanized cart retrieval operations. As represented by block 400, one type of command that may optionally be transmitted by the retriever- mounted AP is a "you are part of a retriever cluster" command. For example, when the operator initially depresses a button to initiate retrieval of a nest of carts 41, the retriever- mounted AP may use the cluster/queue identification methods described in the preceding section to identify the carts in the nest 41, and may then notify these carts (e.g., via unicast command transmissions) that they are part of a cluster or nest being retrieved. Upon receiving the "you are part of a retriever cluster" command, the CT sets a retrieval mode flag (block 402) which causes the CT to ignore lock conditions, such as those ordinarily caused by VLF signal lines and/or AP-generated lock zones. The CT then remains in a loop until either an "end of retrieval" command is received from the retriever-mounted AP or a time out event occurs (blocks 404 and 406), and then clears the retrieval mode flag (block 408).
[0166] As depicted by block 410, the retriever-mounted AP 40 may additionally or alternatively be configured to broadcast a "you are being retrieved" command when the retrieval operation is initiated. This command preferably includes a field indicating whether it is being sent from a directional antenna. In response to receiving this command, the CT determines whether either (1) the RSSI associated with the command transmission exceeds the AP-specified threshold, or (2) the command was transmitted via a directional antenna (block 412). If neither condition is true, no further action is taken (block 414).
[0167] If either of the conductions in block 412 is true, the CT unlocks the wheel if currently locked (blocks 416 and 418) and sets a "probable retrieval" flag (block 422). The CT then enters into a loop in which it either detects wheel movement or skidding, or times out (blocks 424 and 426). If wheel movement or skidding is detected, the CT follows the sequence depicted by blocks 402-408, discussed above. (If a skid event is detected, the CT may also send a skid event message to the retrieval unit, as described above). If a timeout event occurs in block 426, the probable retrieval flag is cleared and the process ends. Xπ. Conclusion
[0168] The various functions described above as being performed by an access point, cart transceiver, CCU or MCU may be embodied in or controlled by executable software code that is stored in a computer memory or other computer storage device. Some of the functions may alternatively be embodied in application-specific circuitry. Any feasible combination of the various features and functions described herein may be embodied in a given system, and all such combinations are contemplated.
[0169] As will be recognized, the wheel braking mechanism described herein can be replaced with another type of electromechanical mechanism for inhibiting the motion of the cart, including mechanisms that cause one or more of the wheels of the cart 30 to be lifted off the ground.
[0170] Although this invention has been described in terms of certain embodiments and applications, other embodiments and applications that are apparent to those of ordinary skill in the art, including embodiments which do not provide all of the features and advantages set forth herein, are also within the scope of this invention. Accordingly, the scope of the present invention is intended to be defined only by reference to the claims.

Claims

WHAT IS CLAIMED IS:
1. A system for monitoring the usage of vehicles, the system comprising: a control unit coupled to a radio frequency (RF) communication system; and a plurality of vehicles, each vehicle including a wheel assembly with sensor circuitry for sensing at least one type of condition, and including an RF transceiver system coupled to the sensor circuitry, said RF transceiver system configured to communicate bi-directionally with the RF communication system as the vehicle moves in a vehicle monitoring area, and configured to report events detected via the sensor circuitry; wherein the control unit receives and aggregates vehicle status data collected via bi-directional RF communications with the RF transceiver systems of the vehicles, said status data including vehicle location data.
2. The system of Claim 1, wherein the RF communication system includes a plurality of access points mounted at selected locations in the vehicle monitoring area, said access points configured to communicate with the control unit and with the RF transceiver systems of the vehicles.
3. The system of Claim 2, wherein at least some of the access points include directional antennas that are mounted so as to create respective zones within the monitoring area, and wherein the system monitors the locations of the vehicles, at least in part, by detecting entry of particular vehicles into particular zones.
4. The system of Claim 2, wherein at least one of the access points uses a directional antenna to create a lock zone in an area in which vehicles are not permitted, and wherein the RF transceiver systems of the vehicles are responsive to entry into the lock zone by engaging a vehicle brake mechanism.
5. The system of Claim 2, wherein the access points communicate with the RF transceiver systems of the vehicles using a protocol in which an access point issues a command to one or more of the RF transceiver systems by sending a plurality of wakeup messages, each of which includes the command and specifies a timing of a response window for responding to the command.
6. The system of Claim 1, wherein the system additionally includes at least one magnetic marker that is encoded with a unique code and positioned at a selected location in the monitoring area, said magnetic code being readable by the sensor circuitry when a corresponding wheel assembly passes over the magnetic marker, and wherein the RF transceiver systems of the vehicles are configured to report detection of the magnetic marker via the RF communication system.
7. The system of Claim 6, wherein the magnetic marker is positioned in a checkout lane of a store, and the unique code identifies the checkout lane.
8. The system of Claim 1, wherein the system includes at least one VLF signal line that generates a VLF signal that is detectable via said sensor circuitry, and wherein the RF transceiver systems of the vehicles are configured to report detection of the VLF signal line to the RF communications system.
9. The system of Claim 1 , wherein the sensor circuitry includes an Electronic Article Surveillance (EAS) receiver capable of detecting an EAS signal.
10. The system of Claim 1, wherein each vehicle's RF transceiver system and sensor circuitry in fully contained in a wheel of the respective vehicle.
11. The system of Claim 1, wherein each wheel assembly includes a brake mechanism capable of being activated by the wheel assembly's RF transceiver system, and wherein the system additionally includes a component that programmatically analyzes reported events associated with a vehicle to determine whether to engage the vehicle's brake mechanism.
12. The system of Claim 11, wherein said component determines whether to engage the vehicle's brake mechanism, at least in part, by assessing whether the vehicle has passed through a checkout lane.
13. The system of Claim 1, wherein at least some of the vehicles include display units, and the system in capable of using the monitored location of a vehicle to select messaging to display on the vehicle's display unit.
14. The system of Claim 1, wherein the RF transceiver systems run software that is upgradeable via the RF communication system.
15. A system for tracking and controlling a wheeled vehicle, the system comprising: a wheel adapted to be attached to the vehicle, the wheel including a brake mechanism, and including sensor circuitry capable of detecting at least one type of condition; and an RF transceiver system connected to the sensor circuitry and to the brake mechanism, said RF transceiver system configured to communicate bi- directionally over a wireless link to report events detected via the sensor circuitry and to receive commands; wherein the RF transceiver system is responsive to commands received over the wireless link by activating and deactivating the brake mechanism to control movement of the vehicle.
16. The system of Claim 15, further comprising a node programmed to communicate with the RF transceiver system over the wireless link, and to analyze event data reported by the RF transceiver system substantially in real time to determine whether to cause the brake mechanism to be activated.
17. The system of Claim 15, wherein the sensor circuitry comprises a rotation sensor that senses rotation of the wheel.
18. The system of Claim 17, wherein the sensor circuitry further comprises a magnetic field sensor, and the RF transceiver system is configured to use outputs of the magnetic field sensor and rotation sensor in combination to capture, and report via the wireless link, data representative of unique magnetic codes of magnetic markers that the wheel passes over.
19. The system of Claim 15, wherein the sensor circuitry comprises an Electronic Article Surveillance (EAS) receiver capable of detecting an EAS signal.
20. The system of Claim 15, wherein the sensor circuitry comprises a very low frequency (VLF) receiver capable of detecting a VLF transmission.
21. The system of Claim 15, wherein the sensor circuitry comprises a vibration sensor capable of detecting wheel vibration, and wherein the RF transceiver system is configured to use the vibration sensor to detect, and report via the wireless link, wheel skid events.
22. The system of Claim 15, wherein the sensor circuitry and the RF transceiver system are fully contained within the wheel.
23. The system of Claim 22, wherein the wheel has a diameter of approximately five inches.
24. The system of Claim 22, wherein the wheel is configured for use on a shopping cart.
25. The system of Claim 15, wherein the sensor circuitry is contained within the wheel, and the RF transceiver system is part of a display unit that attaches to the vehicle.
26. The system of Claim 15, wherein the wheel contains a power generator that generates a voltage signal in response to rotation of the wheel, wherein the power generator is connected so as to supply power to at least the sensor circuitry and the RF transceiver system.
27. The system of Claim 15, wherein the RF transceiver system is configured to generate a plurality of RSSI values from one or more transmissions of a node, and to use the plurality of RSSI values to generate a filtered RSSI value.
28. The system of Claim 27, wherein the RF transceiver system is further programmed to do at least one of the following: (1) use the filtered RSSI value to determine whether to respond to a transmission from the node, (2) report the filtered RSSI value via the wireless link.
29. A method of monitoring and controlling movement of shopping cart, the method comprising: monitoring a location of a shopping cart via bi-directional radio frequency (RF) communications with a cart transceiver of the shopping cart, said cart transceiver electrically coupled to a brake mechanism of the shopping cart; and automatically determining whether to activate the brake mechanism to inhibit the shopping cart from exiting a store based, at least in part, on a path taken by the shopping cart before proceeding to an exit of the store, as determined from said monitoring.
30. The method of Claim 29, wherein automatically determining whether to activate the brake mechanism comprises assessing whether the shopping cart passed through a checkout lane prior to proceeding to the exit.
31. The method of Claim 30, wherein automatically determining whether to activate the brake mechanism further comprises taking into consideration a speed at which the shopping cart passed through the checkout lane.
32. The method of Claim 31, wherein the method comprises monitoring said speed via a rotation sensor included in a wheel of the shopping cart.
33. The method of Claim 29, wherein automatically determining whether to activate the brake mechanism further comprises identifying a checkout lane used by the shopping cart, and assessing whether a register in the checkout lane was active when the shopping cart passed through the checkout lane.
34. The method of Claim 33, wherein assessing whether the register was active comprises using an acoustic sensor to check for a beep sound generated by a merchandise scanner.
35. The method of Claim 33, wherein assessing whether the register was active comprises using a sensor mounted at the checkout station to assess whether a cashier is present.
36. The method of Claim 29, wherein automatically determining whether to activate the brake mechanism further comprises determining whether the shopping passed through a high-theft-risk merchandise area.
37. The method of Claim 29, wherein monitoring the location of the shopping cart comprises monitoring signal detection events reported by the cart transceiver.
38. The method of Claim 29, wherein monitoring the location of the shopping cart comprises communicating with the cart transceiver via each of a plurality of directional antennas mounted in the store.
39. A method of controlling a cart, comprising: communicating bi-directionally with the cart over at least one wireless link to obtain event data, including event data reflective of a location of the cart, wherein the cart includes a brake mechanism that can be engaged to impair movement of the cart; and programmatically analyzing the event data substantially in real time at a node that is separate from the cart to evaluate whether to cause the brake mechanism to be engaged.
40. The method of Claim 39, wherein the cart is a shopping cart, and the method comprises communicating bi-directionally with the shopping cart via a plurality of access points located in a store.
41. The method of Claim 40, wherein the event data includes data descriptive of location-based signals detected by sensor circuitry contained in a wheel of the shopping cart.
42. The method of Claim 40, wherein programmatically analyzing the event data comprises assessing whether the shopping cart has passed through a checkout lane of the store.
43. A method of reducing wheel damage to carts retrieved by a mechanized cart retrieval unit, the method comprising: detecting a wheel skid event via a vibration sensor included in a wheel assembly of a cart being retrieved by the mechanized cart retrieval unit; and in response to detecting the wheel skid event, transmitting a message to the mechanized cart retrieval unit over a wireless communication link to cause the mechanized cart retrieval unit to take a corrective action.
44. The method of Claim 43, wherein the corrective action is the disablement of cart retrieval operations.
45. The method of Claim 43, wherein the corrective action comprises activation of an alarm.
46. The method of Claim 43, wherein cart is a shopping cart, and the method comprises sensing wheel vibration via a vibration sensor included in the wheel of the shopping cart.
47. The method of Claim 43, wherein method comprises receiving said message via a directional antenna of the mechanized cart retrieval unit.
48. The method of Claim 43, further comprising transmitting a command from the cart retrieval unit during cart retrieval to cause wheel locking mechanisms of carts being retrieved to remain unlocked.
49. The method of Claim 48, wherein the command is transmitted via a directional antenna on the mechanized cart retrieval unit, said directional antenna positioned so as to focus transmissions on a cart retrieval area.
50. A system for reducing wheel damage, comprising: a wheel configured for use on a shopping cart; a vibration sensor included in the wheel and capable of detecting vibration caused by skidding of the wheel during mechanized cart retrieval; and a communication circuit connected to the vibration sensor and configured to respond to vibration detection by the vibration sensor by transmitting an alert message via an RF communication link.
51. The system of Claim 48, further comprising a mechanized cart retrieval unit that is responsive to the alert message by discontinuing a cart retrieval operation.
52. The system of Claim 48, wherein the vibration sensor is a piezoelectric vibration sensor.
53. The system of Claim 48, wherein the communication circuit is included in the wheel.
54. A system for retrieving shopping carts, the system comprising: a plurality of shopping carts, each of which includes RF communication circuitry coupled to a braking mechanism, said RF communication circuitry being capable of receiving RF transmissions of commands; and a mechanized cart retrieval unit that pushes or pulls a group of nested carts to facilitate retrieval, the mechanized cart retrieval unit configured to communicate with the RF communication circuitry of the nested carts to cause the braking mechanisms of the nested carts to remain unlocked during mechanized cart retrieval.
55. The system of Claim 54, wherein the shopping carts are ordinarily responsive to detection of a VLF (very low frequency) signal by locking their respective braking mechanisms, and wherein the mechanized cart retrieval unit is capable, via communication with the RF communication circuitry of the nested carts, of causing the nested carts to disregard the VLF signal.
56. The system of Claim 54, wherein the mechanized cart retrieval unit includes a directional antenna positioned so as to focus RF transmissions of commands on the nest of carts.
57. The system of Claim 54, wherein the communication circuitry of each shopping cart is coupled to a vibration sensor capable of detecting a wheel skid event, and is capable of reporting a detected wheel skid event to the mechanized cart retrieval unit.
58. The system of Claim 54, wherein the mechanized cart retrieval unit is a mechanized cart pusher, and is configured to command at least one shopping cart at the front of the nest to apply partial braking during mechanized cart retrieval so that the group of carts does not become un-nested.
59. The system of Claim 54, wherein the RF communication circuitry includes an RF transceiver.
60. The system of Claim 59, wherein the RF transceiver is fully contained within a wheel of the respective shopping cart.
61. A method of estimating a number of carts clustered together in an area that comprises a plurality of carts, the method comprising: causing each of the plurality of carts to generate an RF transmission via a respective RF transceiver; at each respective cart, generating RSSI (Received Signal Strength Indication) values for the transmissions received from the other carts; and collectively analyzing the RSSI values generated at the carts to estimate how many of the carts are clustered together.
62. The method of Claim 61, wherein the method is performed at a checkout area to estimate a number of shopping carts queued at a register.
63. The method of Claim 62, further comprising generating an alert message when said number of queued shopping carts exceeds a threshold.
64. The method of Claim 61 , wherein the method is performed to determine an approximate number of carts being retrieved by a mechanized cart retrieval unit.
65. The method of Claim 64, further comprising automatically doing at least one of the following if the approximate number of carts being retrieved exceeds a selected threshold: (1) disabling the mechanized cart retrieval unit, (2) activating an alarm.
66. The method of Claim 61, further comprising using RSSI values generated by a receiver at a front of a cart queuing area to identify a first cart in an identified queue of carts, said receiver not being attached to any one of the carts.
67. The method of Claim 61, wherein the RF transceivers are located in wheels of the carts.
68. The method of Claim 61, wherein collectively analyzing the RSSI values comprising converting a group of RSSI values into a filtered RSSI values.
69. The method of Claim 61, wherein collectively analyzing the RSSI values comprising calculating distance metrics for specific pairs of carts, and using a clustering algorithm to analyze the distance metrics.
70. A system for detecting clusters of carts, comprising: a plurality of wheels that are adapted to be attached to respective carts, each wheel including an RF transceiver; and a node configured to communicate bi-directionally with the plurality of wheels; wherein the wheels are configured to measure signal strengths of transmissions from other wheels and to report said signal strengths to said node, and the node is programmed to collectively analyze the reported signal strengths to identify carts that are clustered together.
71. The system of Claim 70, wherein the node is programmed to identify a set of carts that form a queue.
72. A system for controlling shopping carts usage in the vicinity of a parking lot, the system comprising: a device that repeatedly transmits a lock command from a directional antenna, said directional antenna mounted above ground and angled downward to create a lock zone in which shopping cart use is restricted, said lock zone encompassing an exit area associated with the parking lot; and a plurality of shopping carts, each shopping cart comprising a brake mechanism, and comprising an RF communication circuit that is responsive to the lock command by activating the brake mechanism.
73. The system of Claim 72, further comprising a second directional antenna from which an unlock command is repeatedly transmitted, said second directional antenna mounted and angled downward to create an unlock zone adjacent to the lock zone such that a user of a cart that enters the lock zone can move the cart a short distance to cause the cart's wheel to become unlocked.
74. The system of Claim 73, wherein the unlock command is transmitted from the second directional antenna by said device.
75. The system of Claim 73, wherein the RF communication circuits include RF transceivers.
76. A system for controlling vehicle usage, comprising: a device that repeatedly transmits a lock command from a directional antenna, said directional antenna mounted above ground and angled downward to create a lock zone in which vehicle use is restricted; and a plurality of vehicles, each vehicle comprising a brake mechanism, and comprising an RF communication circuit that is responsive to the lock command by activating the brake mechanism.
77. A shopping cart system, comprising: a shopping cart having an RF transceiver and a display unit, said RF transceiver configured to communicate bi-directionally with one or more nodes of a wireless network to enable a location of the shopping cart to be monitored; and a content selection module that selects content to display on the display unit based, at least in part, on a current location of the shopping cart.
78. The shopping cart system of Claim 77, wherein the content selection module selects content for display based, at least in part, on a store department in which the shopping cart is currently located.
79. The shopping cart system of Claim 77, wherein the content selection module selects content for display based further on a purchase history of the current user of the shopping cart.
80. The shopping cart system of Claim 77, wherein the shopping cart includes a wheel braking mechanism that is responsive to a signal, and the content selection module causes the display unit to display a warning message when the shopping cart is approaching an area in which the braking mechanism will become locked.
81. A method of analyzing shopping cart usage, comprising: generating shopping cart event data via two-way RF communications with each of a plurality of shopping carts associated with a store, said event data including information about paths followed by the shopping carts during shopping sessions of customers; aggregating the shopping cart event data in a data repository; and programmatically analyzing the aggregated shopping cart event data to generate information about shopping patterns of customers.
82. The method of Claim 81, wherein programmatically analyzing the aggregated shopping cart event data comprises associating particular shopping cart paths followed by customers with particular transaction records generated by a point-of-sale system.
PCT/US2006/009921 2005-03-18 2006-03-20 Two-way communication system for tracking locations and statuses of wheeled vehicles WO2006102183A2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2601565A CA2601565C (en) 2005-03-18 2006-03-20 Two-way communication system for tracking locations and statuses of wheeled vehicles
EP19202571.6A EP3614104B1 (en) 2005-03-18 2006-03-20 Two-way communication system for tracking locations and statuses of wheeled vehicles
EP16179514.1A EP3138701B1 (en) 2005-03-18 2006-03-20 Two-way communication system for tracking locations and statuses of wheeled vehicles
EP22177661.0A EP4123261A1 (en) 2005-03-18 2006-03-20 Two-way communication system for tracking locations and statuses of wheeled vehicles
EP06748454.3A EP1864082B1 (en) 2005-03-18 2006-03-20 Two-way communication system for tracking locations and statuses of wheeled vehicles
CN2006800166212A CN101176127B (en) 2005-03-18 2006-03-20 Method for monitoring and controlling shopping handcart
ES06748454.3T ES2605370T3 (en) 2005-03-18 2006-03-20 Bidirectional communication system to track locations and states of wheeled vehicles
EP16179519.0A EP3138702B1 (en) 2005-03-18 2006-03-20 Two-way communication system for tracking locations and statuses of wheeled vehicles

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US66314705P 2005-03-18 2005-03-18
US66332705P 2005-03-18 2005-03-18
US66319505P 2005-03-18 2005-03-18
US60/663,147 2005-03-18
US60/663,327 2005-03-18
US60/663,195 2005-03-18

Publications (2)

Publication Number Publication Date
WO2006102183A2 true WO2006102183A2 (en) 2006-09-28
WO2006102183A3 WO2006102183A3 (en) 2007-11-29

Family

ID=37024463

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/US2006/010686 WO2006102561A2 (en) 2005-03-18 2006-03-20 Power generation systems and methods for wheeled objects
PCT/US2006/009921 WO2006102183A2 (en) 2005-03-18 2006-03-20 Two-way communication system for tracking locations and statuses of wheeled vehicles
PCT/US2006/010175 WO2006102300A2 (en) 2005-03-18 2006-03-20 Navigation systems and methods for wheeled objects

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2006/010686 WO2006102561A2 (en) 2005-03-18 2006-03-20 Power generation systems and methods for wheeled objects

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2006/010175 WO2006102300A2 (en) 2005-03-18 2006-03-20 Navigation systems and methods for wheeled objects

Country Status (5)

Country Link
US (36) US8463540B2 (en)
EP (7) EP3138701B1 (en)
CA (8) CA2934721C (en)
ES (4) ES2921886T3 (en)
WO (3) WO2006102561A2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2310494A1 (en) * 2008-03-06 2009-01-01 Clece, S.A System of provision of trolleys in a venue of several storage stations (Machine-translation by Google Translate, not legally binding)
WO2009007469A1 (en) * 2007-07-09 2009-01-15 Enrique Costa Porta Method for detection and localization of luggage trollies in airports and/or the like
DE102009016347A1 (en) 2009-04-06 2010-10-07 Wanzl Metallwarenfabrik Gmbh Roller for use at wheel fork of transportation cart, has thrust ring with sectional surface that attaches thrust ring at wheel body and detaches thrust ring from wheel body, where wheel body is provided with opening
WO2009027816A3 (en) * 2007-08-31 2011-04-28 Newtrax Technologies Inc. Tracking of and communication with mobile terminals using a battery-powered wireless network infrastructure
CN102243805A (en) * 2010-05-14 2011-11-16 现代自动车株式会社 Vehicle management system
EP2503527A1 (en) * 2011-03-23 2012-09-26 Hekatron Vertriebs GmbH Communication system, in particular for alarms and method for its operation
EP2608163A1 (en) * 2011-12-21 2013-06-26 Gemalto SA Customer carried shopping utensil
US8571908B2 (en) 2010-12-30 2013-10-29 International Business Machines Corporation Allocating commodity shelves in a supermarket
ES2525510A1 (en) * 2014-04-09 2014-12-23 José Antonio QUINTERO TRAVERSO System and method for control and management of shopping carts (Machine-translation by Google Translate, not legally binding)
EP2832117A4 (en) * 2012-03-26 2015-05-06 Nguyen Mark Vuong Toan Monitoring and tracking of trolleys and other transporting units
GB2531075A (en) * 2014-10-10 2016-04-13 Cambridge Consultants Smart trolley wheel
EP2148169A3 (en) * 2008-07-25 2016-05-04 HERE Global B.V. Open area maps with restriction content
GB2496365B (en) * 2011-09-04 2016-08-31 Edmond Glaser Alan Motorised Braking System for a chair movable on castors
EP3236689A4 (en) * 2014-12-15 2018-06-13 Sony Corporation Information processing device, wireless communication device, information processing method, and program
WO2019081613A1 (en) 2017-10-26 2019-05-02 Franz Wieth Method for operating an electronically controlled return system
EP3420520A4 (en) * 2016-02-26 2019-10-23 Imagr Limited System and methods for shopping in a physical store
EP3575832A1 (en) * 2018-05-27 2019-12-04 Chun-Tao Chou Smart wheel
KR20190140791A (en) * 2018-06-12 2019-12-20 네이버랩스 주식회사 Smart caster and method of tracking transport apparatus including the same
WO2021071548A1 (en) * 2019-10-10 2021-04-15 Microchip Technology Incorporated Magnetic-based tracking system
US11538090B2 (en) * 2007-03-26 2022-12-27 Media Cart Holdings, Inc. Media enhanced shopping systems with data mining functionalities

Families Citing this family (406)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081693B2 (en) * 2002-03-07 2006-07-25 Microstrain, Inc. Energy harvesting for wireless sensor operation and data transmission
US9148409B2 (en) 2005-06-30 2015-09-29 The Chamberlain Group, Inc. Method and apparatus to facilitate message transmission and reception using different transmission characteristics
US8422667B2 (en) 2005-01-27 2013-04-16 The Chamberlain Group, Inc. Method and apparatus to facilitate transmission of an encrypted rolling code
USRE48433E1 (en) 2005-01-27 2021-02-09 The Chamberlain Group, Inc. Method and apparatus to facilitate transmission of an encrypted rolling code
CA2934721C (en) 2005-03-18 2018-05-01 Gatekeeper Systems, Inc. Two-way communication system for tracking locations and statuses of wheeled vehicles
US9838836B2 (en) * 2005-03-29 2017-12-05 Stryker Corporation Patient support apparatus communication systems
US20060289637A1 (en) * 2005-06-28 2006-12-28 Media Cart Holdings, Inc. Media enabled shopping cart system with basket inventory
US7443295B2 (en) * 2005-06-28 2008-10-28 Media Cart Holdings, Inc. Media enabled advertising shopping cart system
US7660747B2 (en) * 2005-06-28 2010-02-09 Media Cart Holdings, Inc. Media enabled shopping cart system with point of sale identification and method
CA2620062C (en) 2005-08-25 2015-10-27 Gatekeeper Systems, Inc. Systems and methods for locating and controlling powered vehicles
DE102005051357B4 (en) * 2005-10-25 2013-08-14 Rayonex Schwingungstechnik Gmbh Device and method for locating a device
EP1955289A2 (en) * 2005-11-28 2008-08-13 ASTRA Gesellschaft für Asset Management mbH &amp; Co. KG Security system
US20070225879A1 (en) * 2006-03-22 2007-09-27 French John R System and method for monitoring and managing an environment
GB0605845D0 (en) * 2006-03-24 2006-05-03 Gray Matter Alpha Ltd Power Generation
US20080114519A1 (en) * 2006-06-02 2008-05-15 Dufaux Douglas P Automatically and remotely controlled brake actuator systems
WO2007148247A1 (en) * 2006-06-21 2007-12-27 Nxp B.V. Magnetic field sensor
US8207851B2 (en) * 2006-08-16 2012-06-26 James Christopher System and method for tracking shopping behavior
US7392872B2 (en) * 2006-08-31 2008-07-01 Po-Lin Chiu Power assisted vehicle
US7509748B2 (en) * 2006-09-01 2009-03-31 Seagate Technology Llc Magnetic MEMS sensors
US7658247B2 (en) 2006-09-20 2010-02-09 Gatekeeper Systems, Inc. Systems and methods for power storage and management from intermittent power sources
US8395478B2 (en) * 2006-10-30 2013-03-12 Broadcom Corporation Secure profile setting in a shared device
US20080100423A1 (en) * 2006-10-31 2008-05-01 Geissler Technologies, Llc. Power management in radio frequency devices
US20080126126A1 (en) * 2006-11-13 2008-05-29 Phil Ballai Method And Apparatus For Managing And Locating Hospital Assets, Patients And Personnel
KR100955327B1 (en) * 2006-12-04 2010-04-29 한국전자통신연구원 Apparatus for collecting shopping information using magnetic sensor and its method
US9171419B2 (en) * 2007-01-17 2015-10-27 Touchtunes Music Corporation Coin operated entertainment system
JP4833105B2 (en) * 2007-02-06 2011-12-07 富士通フロンテック株式会社 Information terminal device, store information providing device, store information providing method, and store information providing program
EP2565100B1 (en) 2007-02-19 2014-10-01 Thorley Industries Stroller
US8500152B2 (en) 2007-02-19 2013-08-06 Thorley Industries Llc Collapsible stroller
WO2008105687A1 (en) * 2007-02-27 2008-09-04 Telefonaktiebolaget Lm Ericsson (Publ) Ordering tracing of wireless terminal activities
JP4452286B2 (en) * 2007-03-05 2010-04-21 株式会社日立製作所 Tag detection system, moving object detection method, and entrance / exit management system
JP5038744B2 (en) * 2007-03-06 2012-10-03 富士通コンポーネント株式会社 Intrusion detection system
US7741808B2 (en) 2007-03-25 2010-06-22 Media Cart Holdings, Inc. Bi-directional charging/integrated power management unit
US7679522B2 (en) 2007-03-26 2010-03-16 Media Cart Holdings, Inc. Media enhanced shopping systems with electronic queuing
US20080237339A1 (en) 2007-03-26 2008-10-02 Media Cart Holdings, Inc. Integration of customer-stored information with media enabled shopping systems
US7714723B2 (en) 2007-03-25 2010-05-11 Media Cart Holdings, Inc. RFID dense reader/automatic gain control
US7782194B2 (en) 2007-03-25 2010-08-24 Media Cart Holdings, Inc. Cart coordinator/deployment manager
US7762458B2 (en) 2007-03-25 2010-07-27 Media Cart Holdings, Inc. Media enabled shopping system user interface
US9031857B2 (en) 2007-04-03 2015-05-12 International Business Machines Corporation Generating customized marketing messages at the customer level based on biometric data
US9031858B2 (en) 2007-04-03 2015-05-12 International Business Machines Corporation Using biometric data for a customer to improve upsale ad cross-sale of items
US8639563B2 (en) 2007-04-03 2014-01-28 International Business Machines Corporation Generating customized marketing messages at a customer level using current events data
US8812355B2 (en) * 2007-04-03 2014-08-19 International Business Machines Corporation Generating customized marketing messages for a customer using dynamic customer behavior data
US8831972B2 (en) 2007-04-03 2014-09-09 International Business Machines Corporation Generating a customer risk assessment using dynamic customer data
US9685048B2 (en) 2007-04-03 2017-06-20 International Business Machines Corporation Automatically generating an optimal marketing strategy for improving cross sales and upsales of items
US9092808B2 (en) 2007-04-03 2015-07-28 International Business Machines Corporation Preferred customer marketing delivery based on dynamic data for a customer
US9361623B2 (en) 2007-04-03 2016-06-07 International Business Machines Corporation Preferred customer marketing delivery based on biometric data for a customer
US9846883B2 (en) 2007-04-03 2017-12-19 International Business Machines Corporation Generating customized marketing messages using automatically generated customer identification data
US8775238B2 (en) 2007-04-03 2014-07-08 International Business Machines Corporation Generating customized disincentive marketing content for a customer based on customer risk assessment
US9626684B2 (en) 2007-04-03 2017-04-18 International Business Machines Corporation Providing customized digital media marketing content directly to a customer
AT505213A3 (en) 2007-05-07 2009-05-15 Innova Patent Gmbh DEVICE FOR CARRYING PERSONS AND / OR OBJECTS
US9202190B2 (en) * 2007-05-29 2015-12-01 Sap Se Method for tracking and controlling grainy and fluid bulk goods in stream-oriented transportation process using RFID devices
US20080309389A1 (en) * 2007-06-15 2008-12-18 French John R System for preventing shopping cart push-out theft
US8180029B2 (en) 2007-06-28 2012-05-15 Voxer Ip Llc Telecommunication and multimedia management method and apparatus
US8645477B2 (en) 2009-01-30 2014-02-04 Voxer Ip Llc Progressive messaging apparatus and method capable of supporting near real-time communication
US8533611B2 (en) 2009-08-10 2013-09-10 Voxer Ip Llc Browser enabled communication device for conducting conversations in either a real-time mode, a time-shifted mode, and with the ability to seamlessly shift the conversation between the two modes
US20100198988A1 (en) 2009-01-30 2010-08-05 Rebelvox Llc Methods for using the addressing, protocols and the infrastructure of email to support near real-time communication
US8825772B2 (en) 2007-06-28 2014-09-02 Voxer Ip Llc System and method for operating a server for real-time communication of time-based media
US8688789B2 (en) 2009-01-30 2014-04-01 Voxer Ip Llc Progressive messaging apparatus and method capable of supporting near real-time communication
US9178916B2 (en) 2007-06-28 2015-11-03 Voxer Ip Llc Real-time messaging method and apparatus
US11095583B2 (en) 2007-06-28 2021-08-17 Voxer Ip Llc Real-time messaging method and apparatus
US20110019662A1 (en) 2007-06-28 2011-01-27 Rebelvox Llc Method for downloading and using a communication application through a web browser
US7783527B2 (en) * 2007-09-21 2010-08-24 Sunrise R&D Holdings, Llc Systems of influencing shoppers at the first moment of truth in a retail establishment
US7734513B2 (en) * 2007-07-13 2010-06-08 Sunrise R&D Holdings, Llc System of tracking the real time location of shoppers, associates, managers and vendors through a communication multi-network within a store
US7792710B2 (en) * 2007-09-21 2010-09-07 Sunrise R&D Holdings, Llc Methods of influencing shoppers at the first moment of truth in a retail establishment
US7742952B2 (en) * 2008-03-21 2010-06-22 Sunrise R&D Holdings, Llc Systems and methods of acquiring actual real-time shopper behavior data approximate to a moment of decision by a shopper
US7739157B2 (en) 2008-01-15 2010-06-15 Sunrise R&D Holdings, Llc Method of tracking the real time location of shoppers, associates, managers and vendors through a communication multi-network within a store
US20090045675A1 (en) * 2007-08-14 2009-02-19 Novak Gerald J Vehicle Theft Prevention Apparatus and Method Utilizing a Transmission Signal
DE102007052946B4 (en) * 2007-10-15 2016-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus, method and system for detecting when an object or a person exceeds a boundary marked by a magnetic field
US8559319B2 (en) 2007-10-19 2013-10-15 Voxer Ip Llc Method and system for real-time synchronization across a distributed services communication network
US7751362B2 (en) 2007-10-19 2010-07-06 Rebelvox Llc Graceful degradation for voice communication services over wired and wireless networks
US8391312B2 (en) 2007-10-19 2013-03-05 Voxer Ip Llc Telecommunication and multimedia management method and apparatus
US8706907B2 (en) 2007-10-19 2014-04-22 Voxer Ip Llc Telecommunication and multimedia management method and apparatus
US8682336B2 (en) 2007-10-19 2014-03-25 Voxer Ip Llc Telecommunication and multimedia management method and apparatus
US8250181B2 (en) 2007-10-19 2012-08-21 Voxer Ip Llc Method and apparatus for near real-time synchronization of voice communications
US8699678B2 (en) 2007-10-19 2014-04-15 Voxer Ip Llc Telecommunication and multimedia management method and apparatus
US8145780B2 (en) 2007-10-19 2012-03-27 Voxer Ip Llc Telecommunication and multimedia management method and apparatus
US8380874B2 (en) 2007-10-19 2013-02-19 Voxer Ip Llc Telecommunication and multimedia management method and apparatus
US7751361B2 (en) 2007-10-19 2010-07-06 Rebelvox Llc Graceful degradation for voice communication services over wired and wireless networks
US8782274B2 (en) 2007-10-19 2014-07-15 Voxer Ip Llc Method and system for progressively transmitting a voice message from sender to recipients across a distributed services communication network
US8001261B2 (en) 2007-10-19 2011-08-16 Voxer Ip Llc Telecommunication and multimedia management method and apparatus
US8099512B2 (en) 2007-10-19 2012-01-17 Voxer Ip Llc Method and system for real-time synchronization across a distributed services communication network
US8090867B2 (en) 2007-10-19 2012-01-03 Voxer Ip Llc Telecommunication and multimedia management method and apparatus
US8321581B2 (en) 2007-10-19 2012-11-27 Voxer Ip Llc Telecommunication and multimedia management method and apparatus
US8233598B2 (en) 2007-10-19 2012-07-31 Voxer Ip Llc Telecommunication and multimedia management method and apparatus
US8699383B2 (en) 2007-10-19 2014-04-15 Voxer Ip Llc Method and apparatus for real-time synchronization of voice communications
US8111713B2 (en) 2007-10-19 2012-02-07 Voxer Ip Llc Telecommunication and multimedia management method and apparatus
DK2219931T3 (en) * 2007-12-10 2011-09-12 Siemens Sas Device for measuring movement of a self-propelled vehicle
US20090179760A1 (en) * 2008-01-10 2009-07-16 Nebolon Joseph F Caster system activator
US9054912B2 (en) 2008-02-08 2015-06-09 Voxer Ip Llc Communication application for conducting conversations including multiple media types in either a real-time mode or a time-shifted mode
US8321582B2 (en) 2008-02-08 2012-11-27 Voxer Ip Llc Communication application for conducting conversations including multiple media types in either a real-time mode or a time-shifted mode
US8542804B2 (en) 2008-02-08 2013-09-24 Voxer Ip Llc Voice and text mail application for communication devices
US8339264B2 (en) * 2008-02-22 2012-12-25 Xiao Hui Yang Control unit for an EAS system
US9262912B2 (en) * 2008-02-25 2016-02-16 Checkpoint Systems, Inc. Localizing tagged assets using modulated backscatter
JP4861357B2 (en) * 2008-02-28 2012-01-25 京セラ株式会社 Small electronic device with built-in tilt sensor and correction method
GB2458701C (en) * 2008-03-28 2018-02-21 Pips Tech Limited Vehicle identification system
US7890262B2 (en) * 2008-03-31 2011-02-15 Honeywell International Inc. Position estimation for navigation devices
US8401582B2 (en) 2008-04-11 2013-03-19 Voxer Ip Llc Time-shifting for push to talk voice communication systems
WO2009137422A1 (en) * 2008-05-05 2009-11-12 Gatekeeper Systems, Inc. Brake mechanism for a non-motorized wheeled vehicle
JP5247241B2 (en) * 2008-05-22 2013-07-24 東芝テック株式会社 Checkout counter and self-checkout terminal
US7928724B2 (en) * 2008-05-27 2011-04-19 Honeywell International Inc. Magnetic odometer with direction indicator systems and method
US9642089B2 (en) 2008-07-09 2017-05-02 Secureall Corporation Method and system for planar, multi-function, multi-power sourced, long battery life radio communication appliance
US11469789B2 (en) 2008-07-09 2022-10-11 Secureall Corporation Methods and systems for comprehensive security-lockdown
US10128893B2 (en) 2008-07-09 2018-11-13 Secureall Corporation Method and system for planar, multi-function, multi-power sourced, long battery life radio communication appliance
US10447334B2 (en) 2008-07-09 2019-10-15 Secureall Corporation Methods and systems for comprehensive security-lockdown
US20130241694A1 (en) * 2012-03-16 2013-09-19 Secureall Corporation Non-contact electronic door locks having specialized radio frequency beam formation
US8396755B2 (en) 2008-07-14 2013-03-12 Sunrise R&D Holdings, Llc Method of reclaiming products from a retail store
DE102008036666A1 (en) * 2008-08-06 2010-02-11 Wincor Nixdorf International Gmbh Device for navigating transport unit on enclosed surface, has navigation electronics and radio transmission and receiving station, and transport unit for shopping property has reader for detecting identifications of location markings
US8325662B2 (en) 2008-09-17 2012-12-04 Voxer Ip Llc Apparatus and method for enabling communication when network connectivity is reduced or lost during a conversation and for resuming the conversation when connectivity improves
US8010220B1 (en) * 2008-09-29 2011-08-30 Honda Motor Co., Ltd. Synchronous and optimum line delivery utilizing tact information
US20120091843A1 (en) * 2008-11-21 2012-04-19 Gore Richard G Electricity generated off recurring energy
US8447287B2 (en) 2008-12-05 2013-05-21 Voxer Ip Llc System and method for reducing RF radiation exposure for a user of a mobile communication device by saving transmission containing non time-sensitive media until the user of the mobile communication device is a safe distance away from the user
US8417414B2 (en) * 2008-12-11 2013-04-09 Infosys Technologies Limited Method and system for managing passenger and vehicle safety
US8339243B2 (en) * 2008-12-31 2012-12-25 Mitac Technology Corp. System and method for positioning active RFID tag
US8849927B2 (en) 2009-01-30 2014-09-30 Voxer Ip Llc Method for implementing real-time voice messaging on a server node
US9558604B2 (en) * 2009-02-10 2017-01-31 Yikes Llc System for permitting secure access to a restricted area
US8401560B2 (en) * 2009-03-31 2013-03-19 Empire Technology Development Llc Infrastructure for location discovery
TWI525025B (en) 2009-04-10 2016-03-11 辛波提克有限責任公司 Storage and retrieval system
US20100283228A1 (en) * 2009-05-05 2010-11-11 Soma Cycle, Inc. Caster for Stroller-Cycle
GB2470901A (en) * 2009-06-08 2010-12-15 Molarity Ltd Area monitoring and selective wireless information transmission
CA2773798A1 (en) * 2009-09-09 2011-03-17 Absolute Software Corporation Alert for real-time risk of theft or loss
US8626443B2 (en) * 2009-09-18 2014-01-07 Deutsches Zentrum für Luft—und Raumfahrt e.V. Method for creating a map relating to location-related data on the probability of future movement of a person
JP5657547B2 (en) * 2009-09-18 2015-01-21 株式会社東芝 transceiver
KR101100712B1 (en) * 2009-09-22 2011-12-30 김성윤 Walking Support Machine Employing Circuit for Electronically Suppressing Acceleration and Charging Electricity
TW201113544A (en) * 2009-10-06 2011-04-16 Univ Nat Taiwan Method to forecast location of object
US8633817B2 (en) * 2009-10-21 2014-01-21 Qualcomm Incorporated Mapping wireless signals with motion sensors
US8816854B2 (en) * 2009-11-10 2014-08-26 Tyco Fire & Security Gmbh System and method for reducing cart alarms and increasing sensitivity in an EAS system with metal shielding detection
US9135482B2 (en) * 2009-12-07 2015-09-15 Meps Real-Time, Inc. Mobile dispensing system for medical articles
US20110153194A1 (en) * 2009-12-23 2011-06-23 Xerox Corporation Navigational gps voice directions via wirelessly delivered data audio files
DE102010014644B4 (en) * 2010-04-12 2021-07-22 Liebherr-Components Biberach Gmbh Self-propelled work machine with an electric drive system and a method for operating such a system
US8922431B2 (en) * 2010-04-13 2014-12-30 Becker Research And Development (Proprietary) Limited Apparatus, a system and a method for collission avoidance
US8754545B2 (en) 2010-04-22 2014-06-17 Trimble Navigation Limited High efficiency backup-power circuits for switch-mode power supplies
US8811247B2 (en) * 2010-06-25 2014-08-19 Cisco Technology, Inc. Automating radio enablement to facilitate power saving
DE202010008163U1 (en) 2010-07-26 2011-03-03 Kyank, Matthias navigation device
US20120027251A1 (en) * 2010-07-30 2012-02-02 Wei Wu Device with markings for configuration
US8321161B1 (en) * 2010-09-17 2012-11-27 The United States of America as represented by the Secretarty of the Navy Autonomous magnetic measurement system
FR2966960B1 (en) * 2010-11-02 2013-03-01 Fors France ANTI-THEFT PROTECTION SYSTEM FOR AN ARTICLE AVAILABLE FOR SALE IN FREE SERVICE
JP5218532B2 (en) * 2010-12-01 2013-06-26 株式会社日本自動車部品総合研究所 Driving support device and driving support system
US9008884B2 (en) 2010-12-15 2015-04-14 Symbotic Llc Bot position sensing
US10822168B2 (en) 2010-12-15 2020-11-03 Symbotic Llc Warehousing scalable storage structure
US9475649B2 (en) 2010-12-15 2016-10-25 Symbolic, LLC Pickface builder for storage and retrieval systems
US8694152B2 (en) 2010-12-15 2014-04-08 Symbotic, LLC Maintenance access zones for storage and retrieval systems
KR101744723B1 (en) * 2010-12-20 2017-06-20 한국전자통신연구원 Indoor location position system and method for recognizing indoor location position using the same
US8860409B2 (en) 2011-01-11 2014-10-14 Invensense, Inc. Micromachined resonant magnetic field sensors
US8947081B2 (en) * 2011-01-11 2015-02-03 Invensense, Inc. Micromachined resonant magnetic field sensors
WO2012101529A2 (en) * 2011-01-24 2012-08-02 Anagog Ltd. Mobility determination
US8602176B2 (en) * 2011-02-24 2013-12-10 Carttronics, Llc Ball bearing braking apparatus
DE102011001169A1 (en) * 2011-03-09 2012-09-13 Maxim Integrated Gmbh Safety device and method for using a safety device
US9501880B2 (en) 2011-03-17 2016-11-22 Unikey Technologies Inc. Wireless access control system including remote access wireless device generated magnetic field based unlocking and related methods
US9501883B2 (en) 2011-03-17 2016-11-22 Unikey Technologies Inc. Wireless access control system including lock assembly generated magnetic field based unlocking and related methods
US9336637B2 (en) * 2011-03-17 2016-05-10 Unikey Technologies Inc. Wireless access control system and related methods
CN102692224B (en) * 2011-03-24 2015-08-05 昆达电脑科技(昆山)有限公司 Invest navigational system and the air navigation aid thereof of carrier
US8115623B1 (en) * 2011-03-28 2012-02-14 Robert M Green Method and system for hand basket theft detection
KR101932787B1 (en) 2011-04-06 2019-03-15 로베르트 보쉬 게엠베하 Method and device for increasing the data transmission capacity in a serial bus system
JP5902799B2 (en) * 2011-04-06 2016-04-13 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for adjusting the reliability of data transmission in a serial bus system
DE102011078266A1 (en) 2011-06-29 2013-01-03 Robert Bosch Gmbh Method and apparatus for serial data transmission with flexible message size and variable bit length
US9432289B2 (en) 2011-04-26 2016-08-30 Robert Bosch Gmbh Method and device for serial data transmission which is adapted to memory sizes
WO2012154872A2 (en) 2011-05-10 2012-11-15 Gatekeeper Systems, Inc. Cart connection assemblies and methods
US10853856B2 (en) 2011-06-06 2020-12-01 Ncr Corporation Notification system and methods for use in retail environments
AU2012277899B2 (en) 2011-06-29 2017-06-29 Robert Bosch Gmbh Method and device for serial data transmission having a flexible message size and a variable bit length
WO2013000916A1 (en) 2011-06-29 2013-01-03 Robert Bosch Gmbh Method and device for serial data transmission having a flexible message size and a variable bit length
US8418316B2 (en) * 2011-08-18 2013-04-16 Der Sheng Co., Ltd. Friction wheel for cart
AU2012216439A1 (en) * 2011-08-25 2013-03-21 Noah No. 1 Pty Ltd Castor Wheel
US11288472B2 (en) * 2011-08-30 2022-03-29 Digimarc Corporation Cart-based shopping arrangements employing probabilistic item identification
TWI622540B (en) 2011-09-09 2018-05-01 辛波提克有限責任公司 Automated storage and retrieval system
US8590789B2 (en) * 2011-09-14 2013-11-26 Metrologic Instruments, Inc. Scanner with wake-up mode
EP2750903B1 (en) 2011-09-22 2015-10-21 Gatekeeper Systems, Inc. Non-motorized vehicle wheel replacement treads and methods
US8694183B1 (en) * 2011-12-06 2014-04-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Partial automated alignment and integration system
US9513127B2 (en) * 2011-12-22 2016-12-06 AppLabz, LLC Systems, methods, and apparatus for providing indoor navigation
US9702707B2 (en) * 2011-12-22 2017-07-11 AppLabz, LLC Systems, methods, and apparatus for providing indoor navigation using optical floor sensors
US9243918B2 (en) 2011-12-22 2016-01-26 AppLabz, LLC Systems, methods, and apparatus for providing indoor navigation using magnetic sensors
US8866663B2 (en) * 2011-12-27 2014-10-21 Massachusetts Institute Of Technology Methods and apparatus for sensing organic tissue
DE102012200087A1 (en) * 2012-01-04 2013-07-04 Siemens Aktiengesellschaft Method for object-side determination of speed data of rail-mounted vehicle, involves measuring location-specific parameters of natural earth magnetic field using magnetic field sensor, and evaluating parameters of earth magnetic field
CN104205179A (en) * 2012-01-23 2014-12-10 诺米尔有限公司 Method and system for preventing shopping cart theft
GB2499288A (en) * 2012-02-09 2013-08-14 Sita Inf Networking Computing Usa Inc Path determination
US9659336B2 (en) 2012-04-10 2017-05-23 Bags, Inc. Mobile baggage dispatch system and method
US20130268449A1 (en) * 2012-04-10 2013-10-10 Craig Mateer Mobility device tracking systems and methods
US10515489B2 (en) 2012-05-23 2019-12-24 Enterprise Holdings, Inc. Rental/car-share vehicle access and management system and method
US8768565B2 (en) 2012-05-23 2014-07-01 Enterprise Holdings, Inc. Rental/car-share vehicle access and management system and method
US11170331B2 (en) 2012-08-15 2021-11-09 Everseen Limited Virtual management system data processing unit and method with rules and alerts
IES86318B2 (en) * 2012-08-15 2013-12-04 Everseen Intelligent retail manager
US8886383B2 (en) 2012-09-28 2014-11-11 Elwha Llc Automated systems, devices, and methods for transporting and supporting patients
US9625262B2 (en) 2012-10-25 2017-04-18 Honeywell International Inc. Smoothed navigation solution using filtered resets
US8914875B2 (en) * 2012-10-26 2014-12-16 Facebook, Inc. Contextual device locking/unlocking
US20140167960A1 (en) * 2012-12-19 2014-06-19 Wal-Mart Stores, Inc. Detecting Defective Shopping Carts
US8930065B2 (en) * 2012-12-20 2015-01-06 Wal-Mart Stores, Inc. Faulty cart wheel detection
US9002095B2 (en) * 2012-12-20 2015-04-07 Wal-Mart Stores, Inc. Faulty cart wheel detection
US9973736B2 (en) * 2013-02-19 2018-05-15 Touchpoint Medical, Inc. Mobile workstation having navigation camera
ES2694663T3 (en) 2013-03-06 2018-12-26 Gatekeeper Systems, Inc. Wheels for non-motorized vehicles
US9499128B2 (en) 2013-03-14 2016-11-22 The Crawford Group, Inc. Mobile device-enhanced user selection of specific rental vehicles for a rental vehicle reservation
TWI594933B (en) 2013-03-15 2017-08-11 辛波提克有限責任公司 Automated storage and retrieval system
GB2526037A (en) * 2013-03-15 2015-11-11 Wal Mart Stores Inc Merchandise event monitoring via wireless tracking
TWI642028B (en) 2013-03-15 2018-11-21 辛波提克有限責任公司 Transportation system and automated storage and retrieval system with integral secured personnel access zones and remote rover shutdown
US9092679B2 (en) 2013-03-15 2015-07-28 Wal-Mart Stores, Inc. RFID reader location self-discovery
US9443218B2 (en) 2013-03-15 2016-09-13 Wal-Mart Stores, Inc. Merchandise event monitoring via wireless tracking
KR102350530B1 (en) 2013-03-15 2022-01-14 심보틱 엘엘씨 Automated storage and retrieval system with integral secured personnel access zones and remote rover shutdown
DE102013206955A1 (en) * 2013-04-17 2014-11-06 Würth Elektronik eiSos Gmbh & Co. KG communicator
WO2014174153A1 (en) 2013-04-24 2014-10-30 Teknologian Tutkimuskeskus Vtt Rfid system with transmission line antenna and related methods
US9401769B2 (en) * 2013-06-04 2016-07-26 Apple Inc. Methods for calibrating receive signal strength data in wireless electronic devices
US20140372027A1 (en) * 2013-06-14 2014-12-18 Hangzhou Haicun Information Technology Co. Ltd. Music-Based Positioning Aided By Dead Reckoning
JP5646018B1 (en) * 2013-08-07 2014-12-24 三菱電機株式会社 Installation location development support method, terminal device, installation location development support system, and program
US10894663B2 (en) 2013-09-13 2021-01-19 Symbotic Llc Automated storage and retrieval system
US10402870B2 (en) * 2013-11-05 2019-09-03 Walmart Apollo, Llc System and method for indicating queue characteristics of electronic terminals
US10496946B2 (en) * 2013-11-06 2019-12-03 Catalina Marketing Corporation System and method for risk-based auditing of self-scan shopping baskets
US9618669B2 (en) 2013-11-08 2017-04-11 Apple Inc. Electronic device display with polarizer windows
US9798000B2 (en) * 2013-12-10 2017-10-24 Intel Corporation System and method for indoor geolocation and mapping
US9726639B1 (en) * 2014-01-17 2017-08-08 Jeffrey S. Rosenberg Apparatus for detecting magnetic flux leakage and methods of making and using same
US9424503B2 (en) * 2014-08-11 2016-08-23 Brian Kieser Structurally encoded component and method of manufacturing structurally encoded component
JP6355080B2 (en) * 2014-03-03 2018-07-11 学校法人千葉工業大学 Boarding type mobile robot
US9958178B2 (en) * 2014-03-06 2018-05-01 Dell Products, Lp System and method for providing a server rack management controller
US9614589B1 (en) 2015-12-01 2017-04-04 Lockheed Martin Corporation Communication via a magnio
US9910105B2 (en) 2014-03-20 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
US9835693B2 (en) 2016-01-21 2017-12-05 Lockheed Martin Corporation Higher magnetic sensitivity through fluorescence manipulation by phonon spectrum control
US10006973B2 (en) 2016-01-21 2018-06-26 Lockheed Martin Corporation Magnetometer with a light emitting diode
US9557391B2 (en) 2015-01-23 2017-01-31 Lockheed Martin Corporation Apparatus and method for high sensitivity magnetometry measurement and signal processing in a magnetic detection system
US10168393B2 (en) 2014-09-25 2019-01-01 Lockheed Martin Corporation Micro-vacancy center device
US9829545B2 (en) 2015-11-20 2017-11-28 Lockheed Martin Corporation Apparatus and method for hypersensitivity detection of magnetic field
US9910104B2 (en) 2015-01-23 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
US9638821B2 (en) 2014-03-20 2017-05-02 Lockheed Martin Corporation Mapping and monitoring of hydraulic fractures using vector magnetometers
US9853837B2 (en) 2014-04-07 2017-12-26 Lockheed Martin Corporation High bit-rate magnetic communication
US9845153B2 (en) 2015-01-28 2017-12-19 Lockheed Martin Corporation In-situ power charging
US10520558B2 (en) 2016-01-21 2019-12-31 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with nitrogen-vacancy center diamond located between dual RF sources
US10241158B2 (en) 2015-02-04 2019-03-26 Lockheed Martin Corporation Apparatus and method for estimating absolute axes' orientations for a magnetic detection system
CA2945016A1 (en) 2014-04-07 2015-10-15 Lockheed Martin Corporation Energy efficient controlled magnetic field generator circuit
US20150287304A1 (en) * 2014-04-07 2015-10-08 Southern Imperial, Inc. Identification Capturing Security Gate
US9250627B2 (en) * 2014-05-28 2016-02-02 Acrox Technologies Co., Ltd. Forward and lateral tracking system and control method thereof
US9721121B2 (en) * 2014-06-16 2017-08-01 Green Hills Software, Inc. Out-of-band spy detection and prevention for portable wireless systems
JP6299475B2 (en) * 2014-06-20 2018-03-28 船井電機株式会社 Walking assist cart
US9781697B2 (en) 2014-06-20 2017-10-03 Samsung Electronics Co., Ltd. Localization using converged platforms
US20160020670A1 (en) * 2014-07-15 2016-01-21 IPH + Limited Energy conversion apparatus and method
CN106573633B (en) * 2014-07-25 2018-11-16 看门人系统公司 Monitor the service condition or state of cart recover
US9754093B2 (en) * 2014-08-28 2017-09-05 Ncr Corporation Methods and a system for automated authentication confidence
US10001553B2 (en) 2014-09-11 2018-06-19 Cpg Technologies, Llc Geolocation with guided surface waves
WO2016046732A1 (en) * 2014-09-22 2016-03-31 Fmtec Gmbh A transport system for transporting items of value
CN107111849B (en) * 2015-01-13 2021-06-22 看门人系统公司 System with embedded antenna for bidirectional communication with wheeled vehicle
CN107209847A (en) * 2015-01-13 2017-09-26 看门人系统公司 Use radio frequency identification(RFID)The system and method for monitoring of tools wheeled vehicle
WO2016190909A2 (en) * 2015-01-28 2016-12-01 Lockheed Martin Corporation Magnetic navigation methods and systems utilizing power grid and communication network
GB2551090A (en) 2015-02-04 2017-12-06 Lockheed Corp Apparatus and method for recovery of three dimensional magnetic field from a magnetic detection system
US9913399B2 (en) 2015-02-09 2018-03-06 Dell Products, Lp System and method for wireless rack management controller communication
CN105987692B (en) * 2015-03-02 2019-02-12 华为技术有限公司 A kind of air navigation aid and device
WO2016142794A1 (en) 2015-03-06 2016-09-15 Wal-Mart Stores, Inc Item monitoring system and method
CN107533140B (en) 2015-03-06 2020-12-25 看门人系统公司 Low energy positioning of movable objects
CA2978319A1 (en) * 2015-03-06 2016-09-15 Wal-Mart Stores, Inc. Shopping facility assistance systems, devices and methods
US20180099846A1 (en) 2015-03-06 2018-04-12 Wal-Mart Stores, Inc. Method and apparatus for transporting a plurality of stacked motorized transport units
US10287149B2 (en) 2015-03-06 2019-05-14 Walmart Apollo, Llc Assignment of a motorized personal assistance apparatus
CA2985467A1 (en) * 2015-05-19 2016-11-24 Wal-Mart Stores, Inc. Measurement system and method
US10001544B2 (en) * 2015-05-27 2018-06-19 Samsung Electronics Co., Ltd. Method and electronic device identifying indoor location
US10380874B2 (en) * 2015-07-22 2019-08-13 Microchip Technology Incorporated Smart wireless asset tracking
US20170037568A1 (en) 2015-08-05 2017-02-09 Milliken & Company Installation of Multi-Component Floor Mat
WO2017031177A1 (en) * 2015-08-18 2017-02-23 Wal-Mart Stores, Inc. Transaction signaling devices in shopping environment
US9731744B2 (en) 2015-09-04 2017-08-15 Gatekeeper Systems, Inc. Estimating motion of wheeled carts
US10001541B2 (en) 2015-09-04 2018-06-19 Gatekeeper Systems, Inc. Magnetometer and accelerometer calibration for cart navigation system
US9679481B2 (en) * 2015-09-08 2017-06-13 Tyco Fire & Security Gmbh Systems and methods for variable detection based on traffic counter input
US10408916B2 (en) 2015-09-10 2019-09-10 Cpg Technologies, Llc Geolocation using guided surface waves
US10396566B2 (en) 2015-09-10 2019-08-27 Cpg Technologies, Llc Geolocation using guided surface waves
US10408915B2 (en) 2015-09-10 2019-09-10 Cpg Technologies, Llc Geolocation using guided surface waves
US10324163B2 (en) 2015-09-10 2019-06-18 Cpg Technologies, Llc Geolocation using guided surface waves
AU2016320686B2 (en) * 2015-09-10 2019-01-03 Cpg Technologies, Llc. Geolocation using guided surface waves
JP2017090051A (en) * 2015-11-02 2017-05-25 セイコーエプソン株式会社 Detection device, detection system, and movable body
WO2017078766A1 (en) 2015-11-04 2017-05-11 Lockheed Martin Corporation Magnetic band-pass filter
US10377403B2 (en) 2015-11-06 2019-08-13 Caster Concepts, Inc. Powered utility cart and compliant drive wheel therefor
WO2017087013A1 (en) 2015-11-20 2017-05-26 Lockheed Martin Corporation Apparatus and method for closed loop processing for a magnetic detection system
CA3006056A1 (en) 2015-12-02 2017-06-08 Walmart Apollo, Llc Systems and methods of monitoring the unloading and loading of delivery vehicles
CA3006060A1 (en) * 2015-12-02 2017-06-08 Walmart Apollo, Llc Systems and methods of tracking item containers at a shopping facility
US9834380B2 (en) 2015-12-07 2017-12-05 6 River Systems, Inc. Warehouse automation systems and methods
US10915910B2 (en) * 2015-12-09 2021-02-09 International Business Machines Corporation Passive analysis of shopping behavior in a physical shopping area using shopping carts and shopping trays
US20170169444A1 (en) * 2015-12-10 2017-06-15 Invensense, Inc. Systems and methods for determining consumer analytics
US10300157B2 (en) * 2015-12-22 2019-05-28 Walmart Apollo, Llc Retail store fixture and method of sterilizing a retail store fixture
US20170185950A1 (en) * 2015-12-28 2017-06-29 Draco Ltd. System for monitoring carts and method
WO2017123261A1 (en) 2016-01-12 2017-07-20 Lockheed Martin Corporation Defect detector for conductive materials
WO2017127098A1 (en) 2016-01-21 2017-07-27 Lockheed Martin Corporation Diamond nitrogen vacancy sensed ferro-fluid hydrophone
WO2017127079A1 (en) 2016-01-21 2017-07-27 Lockheed Martin Corporation Ac vector magnetic anomaly detection with diamond nitrogen vacancies
WO2017127081A1 (en) 2016-01-21 2017-07-27 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with circuitry on diamond
AU2016387312A1 (en) 2016-01-21 2018-09-06 Lockheed Martin Corporation Magnetometer with light pipe
WO2017127095A1 (en) 2016-01-21 2017-07-27 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with common rf and magnetic fields generator
US10164451B2 (en) 2016-01-27 2018-12-25 Walmart Apollo, Llc Shopping cart power generation
US10072935B2 (en) 2016-02-03 2018-09-11 Walmart Apollo, Llc Apparatus and method for tracking carts in a shopping space
US10326300B2 (en) * 2016-02-04 2019-06-18 Walmart Apollo, Llc Apparatus and method for generating electrical energy with shopping carts
CA3013627A1 (en) * 2016-02-08 2017-08-17 Walmart Apollo, Llc Shopping cart and associated systems and methods
US9994175B2 (en) * 2016-03-04 2018-06-12 Honda Motor Co., Ltd. System for preconditioning a vehicle and method thereof
CN105480274A (en) * 2016-03-07 2016-04-13 中山市厚源电子科技有限公司 Intelligent early warning type transport vehicle
US10182309B2 (en) * 2016-03-30 2019-01-15 Honeywell International Inc. Magnetic fingerprinting for proximity-based systems
CA2961938A1 (en) 2016-04-01 2017-10-01 Wal-Mart Stores, Inc. Systems and methods for moving pallets via unmanned motorized unit-guided forklifts
CA3018871A1 (en) 2016-04-04 2017-10-12 Walmart Apollo, Llc Systems and methods for estimating a geographical location of an unmapped object within a defined environment
US10481256B2 (en) * 2016-04-06 2019-11-19 Walmart Apollo, Llc Shopping cart corral system and associated systems and methods
WO2017189602A2 (en) * 2016-04-25 2017-11-02 SeeScan, Inc. Systems and methods for locating and/or mapping buried utilities using vehicle-mounted locating devices
US10723182B2 (en) * 2016-04-25 2020-07-28 Itire, Llc Wheel hub mounted vehicle data communications device incorporating a self-generating electrical power supply
CN109074732B (en) 2016-04-28 2021-11-02 爱知制钢株式会社 Driving support system
US11200403B2 (en) 2016-04-28 2021-12-14 International Business Machines Corporation Next location prediction
US10592946B2 (en) 2016-04-29 2020-03-17 Walmart Apollo, Llc Shopping cart detection
KR102037057B1 (en) 2016-05-23 2019-10-29 크라운 이큅먼트 코포레이션 Systems and Methods for Use of Material Handling Vehicles in Warehouse Environments
US20170343621A1 (en) 2016-05-31 2017-11-30 Lockheed Martin Corporation Magneto-optical defect center magnetometer
US10330744B2 (en) 2017-03-24 2019-06-25 Lockheed Martin Corporation Magnetometer with a waveguide
US10228429B2 (en) 2017-03-24 2019-03-12 Lockheed Martin Corporation Apparatus and method for resonance magneto-optical defect center material pulsed mode referencing
US10338163B2 (en) 2016-07-11 2019-07-02 Lockheed Martin Corporation Multi-frequency excitation schemes for high sensitivity magnetometry measurement with drift error compensation
US10145910B2 (en) 2017-03-24 2018-12-04 Lockheed Martin Corporation Photodetector circuit saturation mitigation for magneto-optical high intensity pulses
US10527746B2 (en) 2016-05-31 2020-01-07 Lockheed Martin Corporation Array of UAVS with magnetometers
US10677953B2 (en) 2016-05-31 2020-06-09 Lockheed Martin Corporation Magneto-optical detecting apparatus and methods
US10281550B2 (en) 2016-11-14 2019-05-07 Lockheed Martin Corporation Spin relaxometry based molecular sequencing
US10359479B2 (en) 2017-02-20 2019-07-23 Lockheed Martin Corporation Efficient thermal drift compensation in DNV vector magnetometry
US10317279B2 (en) 2016-05-31 2019-06-11 Lockheed Martin Corporation Optical filtration system for diamond material with nitrogen vacancy centers
US10345395B2 (en) 2016-12-12 2019-07-09 Lockheed Martin Corporation Vector magnetometry localization of subsurface liquids
US10274550B2 (en) 2017-03-24 2019-04-30 Lockheed Martin Corporation High speed sequential cancellation for pulsed mode
US10371765B2 (en) 2016-07-11 2019-08-06 Lockheed Martin Corporation Geolocation of magnetic sources using vector magnetometer sensors
US10571530B2 (en) 2016-05-31 2020-02-25 Lockheed Martin Corporation Buoy array of magnetometers
US10345396B2 (en) 2016-05-31 2019-07-09 Lockheed Martin Corporation Selected volume continuous illumination magnetometer
US10408890B2 (en) 2017-03-24 2019-09-10 Lockheed Martin Corporation Pulsed RF methods for optimization of CW measurements
US10384531B2 (en) * 2016-06-04 2019-08-20 Chun-Hsiang Yang Universal wheel
EP3481661A4 (en) 2016-07-05 2020-03-11 Nauto, Inc. System and method for automatic driver identification
US10375317B2 (en) * 2016-07-07 2019-08-06 Qualcomm Incorporated Low complexity auto-exposure control for computer vision and imaging systems
US9989756B2 (en) * 2016-07-21 2018-06-05 Walmart Apollo, Llc Motion sensing and energy capturing apparatus, system and methods
WO2018023699A1 (en) * 2016-08-05 2018-02-08 深圳市道通科技股份有限公司 Method and apparatus for positioning tire pressure sensor
WO2018031678A1 (en) * 2016-08-09 2018-02-15 Nauto Global Limited System and method for precision localization and mapping
US9845072B1 (en) 2016-08-12 2017-12-19 Gatekeeper Systems, Inc. Direction crossing detector for containment boundary
CA2974444A1 (en) * 2016-08-23 2018-02-23 Wal-Mart Stores, Inc. Automobile information beacon
WO2018048653A1 (en) * 2016-09-08 2018-03-15 Walmart Apollo, Llc Cart weight sensing system
CN106123908B (en) * 2016-09-08 2019-12-03 北京京东尚科信息技术有限公司 Automobile navigation method and system
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
EP3513265A4 (en) 2016-09-14 2020-04-22 Nauto Global Limited Systems and methods for near-crash determination
US10733460B2 (en) 2016-09-14 2020-08-04 Nauto, Inc. Systems and methods for safe route determination
US10246014B2 (en) 2016-11-07 2019-04-02 Nauto, Inc. System and method for driver distraction determination
USD826508S1 (en) 2016-12-07 2018-08-21 6 River Systems, Inc. Enhanced warehouse cart
US10475321B2 (en) 2016-12-15 2019-11-12 Walmart Apollo, Llc Cart wheel failure detection systems and methods
JP7051864B2 (en) * 2016-12-21 2022-04-11 ヴァイタル アラート コミュニケーション インコーポレイテッド Magnetic positioning system
US10202103B2 (en) 2016-12-29 2019-02-12 Intel Corporation Multi-modal context based vehicle theft prevention
EP3346439A1 (en) * 2017-01-04 2018-07-11 OÜ Virca System and method for fixing purchasable goods, calculating amount owed and settling monetary obligations in retail environments posteriorly
US10118635B2 (en) 2017-02-09 2018-11-06 Walmart Apollo, Llc Systems and methods for monitoring shopping cart wheels
US20180228281A1 (en) * 2017-02-13 2018-08-16 Wal-Mart Stores, Inc. Temperature Controlled-Shopping Cart System
US10232767B2 (en) * 2017-02-21 2019-03-19 Sherri Leslie Direction indicator for pushable transport objects
US10429196B2 (en) * 2017-03-08 2019-10-01 Invensense, Inc. Method and apparatus for cart navigation
US10232869B2 (en) 2017-03-08 2019-03-19 Gatekeeper Systems, Inc. Navigation systems for wheeled carts
CN106994993A (en) * 2017-03-17 2017-08-01 浙江大学 Navigate tracking smart supermarket shopping cart and its method based on local positioning system
US10338164B2 (en) 2017-03-24 2019-07-02 Lockheed Martin Corporation Vacancy center material with highly efficient RF excitation
US10371760B2 (en) 2017-03-24 2019-08-06 Lockheed Martin Corporation Standing-wave radio frequency exciter
US10459041B2 (en) 2017-03-24 2019-10-29 Lockheed Martin Corporation Magnetic detection system with highly integrated diamond nitrogen vacancy sensor
US10379174B2 (en) 2017-03-24 2019-08-13 Lockheed Martin Corporation Bias magnet array for magnetometer
CN206953993U (en) * 2017-04-14 2018-02-02 深圳市中驱电机有限公司 Wheel hub motor
US10864127B1 (en) 2017-05-09 2020-12-15 Pride Mobility Products Corporation System and method for correcting steering of a vehicle
IT201700059286A1 (en) * 2017-06-05 2018-12-05 Claudio Marsella AUTOMATED DEVICE FOR LINEAR MEASUREMENT AND METHOD OF USE
JOP20190160A1 (en) * 2017-06-14 2019-06-25 Grow Solutions Tech Llc Industrial cart and system with means for communicating with an industrial cart
WO2018229549A2 (en) 2017-06-16 2018-12-20 Nauto Global Limited System and method for digital environment reconstruction
WO2018229550A1 (en) 2017-06-16 2018-12-20 Nauto Global Limited System and method for adverse vehicle event determination
EP3638542B1 (en) 2017-06-16 2022-01-26 Nauto, Inc. System and method for contextualized vehicle operation determination
CN109246650B (en) * 2017-06-30 2021-09-21 中国电信股份有限公司 Vehicle-to-vehicle communication method and device, relay device and vehicle-to-vehicle communication system
CN107273935B (en) * 2017-07-09 2020-11-27 北京流马锐驰科技有限公司 Lane sign grouping method based on self-adaptive K-Means
US10387097B2 (en) * 2017-08-02 2019-08-20 Panasonic Avionics Corporation Cart for use in providing service to passengers in a vehicle
US10559147B2 (en) 2017-09-21 2020-02-11 A Priori, LLC Mobile accessory storage, security management, and tracking system
US20190102581A1 (en) * 2017-10-02 2019-04-04 Walmart Apollo, Llc Shopping cart monitoring system
CN108099510A (en) * 2017-10-19 2018-06-01 苏州海瓦电子科技有限公司 It is a kind of to supply electric installation for tyre pressure sensor
US11389357B2 (en) 2017-10-24 2022-07-19 Stryker Corporation Energy storage device management for a patient support apparatus
US11139666B2 (en) * 2017-10-24 2021-10-05 Stryker Corporation Energy harvesting and propulsion assistance techniques for a patient support apparatus
US11394252B2 (en) 2017-10-24 2022-07-19 Stryker Corporation Power transfer system with patient support apparatus and power transfer device to transfer power to the patient support apparatus
US20190122196A1 (en) * 2017-10-24 2019-04-25 Symbol Technologies, Llc Systems and methods of operating a point of sale system
US10797524B2 (en) 2017-10-24 2020-10-06 Stryker Corporation Techniques for power transfer through wheels of a patient support apparatus
US10910888B2 (en) 2017-10-24 2021-02-02 Stryker Corporation Power transfer system with patient transport apparatus and power transfer device to transfer power to the patient transport apparatus
TWI680277B (en) 2017-10-31 2019-12-21 芬蘭商亞瑪芬體育數字服務公司 Method and system for determining a direction of movement of an object
US10818031B2 (en) 2017-11-22 2020-10-27 Blynk Technology Systems and methods of determining a location of a mobile container
US10652743B2 (en) 2017-12-21 2020-05-12 The Chamberlain Group, Inc. Security system for a moveable barrier operator
US11488315B2 (en) * 2018-01-26 2022-11-01 SagaDigits Limited Visual and geolocation analytic system and method
US11080680B2 (en) * 2018-01-31 2021-08-03 Target Brands, Inc. Physical shopping chart-to-mobile device associations
EP3759700B1 (en) 2018-02-27 2023-03-15 Nauto, Inc. Method for determining driving policy
JP7023747B2 (en) * 2018-03-02 2022-02-22 東芝テック株式会社 cart
US11330803B2 (en) 2018-03-14 2022-05-17 Protect Animals with Satellites, LLC Corrective collar utilizing geolocation technology
US10315679B1 (en) 2018-03-29 2019-06-11 Kevin Robell Cart return tracking system
US10852413B2 (en) * 2018-04-13 2020-12-01 Nec Corporation Tagging objects in indoor spaces using ambient, distributed backscatter
WO2019213418A1 (en) * 2018-05-02 2019-11-07 Walmart Apollo, Llc Systems and methods for transactions at a shopping cart
TWI641509B (en) * 2018-05-15 2018-11-21 周君濤 Smart wheel
US10088320B1 (en) * 2018-05-16 2018-10-02 The United States Of America As Represented By The Secretary Of The Navy Positional estimation method using one-step movements and an inertial navigation system
CN110509720A (en) * 2018-05-21 2019-11-29 周君涛 Wisdom castor
US11034187B2 (en) * 2018-05-25 2021-06-15 Chun-Tao Chou Smart wheel
US11074773B1 (en) 2018-06-27 2021-07-27 The Chamberlain Group, Inc. Network-based control of movable barrier operators for autonomous vehicles
CN109035502B (en) * 2018-07-04 2021-10-08 济南智钧信息科技有限公司 Intelligent key lock, intelligent key lock control platform and control method
US10427643B1 (en) 2018-07-13 2019-10-01 Nxp B.V. Defense against relay attack in passive keyless entry systems
JP6984558B2 (en) * 2018-07-26 2021-12-22 トヨタ自動車株式会社 Vehicle driving support device
US11423717B2 (en) 2018-08-01 2022-08-23 The Chamberlain Group Llc Movable barrier operator and transmitter pairing over a network
WO2020051359A1 (en) 2018-09-07 2020-03-12 Gatekeeper Systems, Inc. Shopping basket monitoring using computer vision and machine learning
AU2018101489A4 (en) * 2018-10-05 2018-11-15 Ammendolia, Domenic MR sMART lock
JP7215874B2 (en) * 2018-10-24 2023-01-31 東芝テック株式会社 Monitoring device and monitoring program
US11241348B2 (en) 2018-10-25 2022-02-08 Hill-Rom Services, Inc. Energy management for a stretcher or other occupant support
US11488503B1 (en) * 2018-11-06 2022-11-01 Jean Dumka Shopping cart maintenance signal flag
CN109523179B (en) * 2018-11-23 2021-02-19 英华达(上海)科技有限公司 Fleet management method, device, system, electronic equipment and storage medium
KR20210099217A (en) * 2019-01-03 2021-08-12 엘지전자 주식회사 How to control the robot system
WO2020141639A1 (en) * 2019-01-03 2020-07-09 엘지전자 주식회사 Control method for robot
WO2020150368A1 (en) * 2019-01-15 2020-07-23 Wal-Mart Stores, Inc. Pallet rack and modular counter shelving tractor
WO2020158963A1 (en) * 2019-01-28 2020-08-06 엘지전자 주식회사 Cart and movement method which follow transmission module on basis of location information of transmission module
US11501346B2 (en) * 2019-03-26 2022-11-15 Toshiba Global Commerce Solutions Holdings Corporation System and method for facilitating seamless commerce
AU2020267567B2 (en) 2019-05-07 2023-03-23 Invue Security Products Inc. Merchandise display security systems and methods
US10997810B2 (en) 2019-05-16 2021-05-04 The Chamberlain Group, Inc. In-vehicle transmitter training
US11661055B2 (en) * 2019-05-24 2023-05-30 Preact Technologies, Inc. Close-in collision detection combining high sample rate near-field sensors with advanced real-time parallel processing to accurately determine imminent threats and likelihood of a collision
DE102019209048A1 (en) * 2019-06-21 2020-12-24 Volkswagen Aktiengesellschaft Electric machine
US11483675B2 (en) * 2019-10-10 2022-10-25 Microchip Technology Incorporated Vibration-based tracking system
EP3809309B1 (en) * 2019-10-17 2023-07-19 Feig Electronic GmbH Storage system with a plurality of storage compartments and/or storage places and method for detecting access to storage compartments and/or storage places for a storage system
GB2589559A (en) * 2019-11-04 2021-06-09 Castometer Ltd Improvements in or relating to wheels for wheeled vehicles
KR102240513B1 (en) * 2019-11-14 2021-04-14 울산과학대학교 산학협력단 Baby carriage comprising heating seat
US11610295B2 (en) * 2019-12-09 2023-03-21 Cnh Industrial America Llc System and method for detecting the operating condition of components of an implement
JP6875026B1 (en) * 2020-01-31 2021-05-19 Necプラットフォームズ株式会社 Parking lot management system, parking lot management device, parking lot management method, and parking lot management program
US11620880B2 (en) * 2020-02-10 2023-04-04 Nec Corporation Self checkout system
US11208134B2 (en) * 2020-03-11 2021-12-28 Gatekeeper Systems, Inc. Monitoring system capable of classifying items added to a shopping cart
US20210353467A1 (en) * 2020-05-17 2021-11-18 James L. Orrington, II D.D.S.,P.C. System for minimizing risk of transmission of infection
US11352039B1 (en) * 2020-05-19 2022-06-07 Tyler Milam Shopping cart security system
JP2022024705A (en) * 2020-07-28 2022-02-09 東芝テック株式会社 Contactless power feeding device
CN112183196B (en) * 2020-08-20 2021-08-27 北京航空航天大学 Traffic intersection vehicle state estimation method based on adaptive fusion filter
FR3113943B1 (en) * 2020-09-09 2022-08-19 Commissariat Energie Atomique A method of determining the position and orientation of a vehicle.
DE102020124319A1 (en) 2020-09-17 2022-03-17 Aesculap Ag Use of a mobile energy conversion system to operate a medical device and a sterile goods cycle monitoring system
JP2023030273A (en) * 2021-08-23 2023-03-08 東芝テック株式会社 Non-contact power feeding device
US20230078247A1 (en) 2021-09-16 2023-03-16 Gatekeeper Systems, Inc. Wheel capable of detecting direction of rotation
US11904920B2 (en) 2021-11-19 2024-02-20 Raytheon Company Lift cart with mechanically actuated automatic braking device
US20230347949A1 (en) * 2022-04-27 2023-11-02 Rockwell Automation Technologies, Inc. System and Method for Controlling Movers in an Independent Cart System During Heavy Traffic

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315290A (en) 1992-08-10 1994-05-24 Computron, Inc. Cart theft prevention system
US6177880B1 (en) 1992-01-16 2001-01-23 Klever-Kart, Inc. Automated shopping cart handle
US20040243262A1 (en) 2003-05-27 2004-12-02 Hofmann James H. System and method for golf course management

Family Cites Families (291)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9574A (en) * 1853-02-08 Improved arrangement of center-board and rudder for shoal-water vessels
US3002370A (en) 1958-09-17 1961-10-03 Jr Eugene A La Brie Axle lock
US2964140A (en) 1959-09-14 1960-12-13 Gilbert Florence Anti-theft device for carts
US3031038A (en) 1959-11-16 1962-04-24 Irving Stollman Magnetic wheel lock
US3317841A (en) 1960-03-21 1967-05-02 R A Macplum Ind Inc Radio receiver with alarm means operative when input signal is below predetermined level
US3031037A (en) 1960-09-12 1962-04-24 Stollman Irving Caster structure
US3117655A (en) 1961-02-13 1964-01-14 Faultless Caster Corp Magnetic lock for a caster assembly
US3394945A (en) 1966-01-06 1968-07-30 Hickory Smoked Cheese Corp Anti-theft device for shopping carts
US3380546A (en) * 1966-02-14 1968-04-30 Rodney R. Rabjohn Traction drive for small vehicles
US3340710A (en) 1966-02-14 1967-09-12 Command Lock Inc Time operated and/or remote controloperated electro-mechanical lock
US3475036A (en) 1967-10-06 1969-10-28 Gilbert E Smith Travel limiting service for shopping cart
US3590962A (en) * 1969-01-06 1971-07-06 Marvin Dizack Metering brake
US3652103A (en) 1970-03-23 1972-03-28 Stuart P Higgs Automatic brake for a shopping cart
FR2258294A1 (en) * 1974-01-23 1975-08-18 Suroy Freres Sa Ets L-shaped nesting luggage trolley - has handle swinging arm upwards on trolley and releasing brake
US4037882A (en) * 1975-11-20 1977-07-26 General Motors Corporation Anti-lock brake control circuit
US4093900A (en) 1976-08-11 1978-06-06 General Electric Company Dynamic brake blending for an inverter propulsion system
US4242668A (en) 1979-04-30 1980-12-30 Walter Herzog Cart theft prevention system
US4439772A (en) 1981-05-18 1984-03-27 Kol Gerald W Van Inductor type half wave antenna
US4651156A (en) * 1982-02-08 1987-03-17 Mcgraw-Edison Co. Integrated radio location and communication system
JPS5914711A (en) * 1982-07-13 1984-01-25 株式会社クボタ Unmanned running working vehicle
US4591175A (en) 1982-10-18 1986-05-27 Kart Guard Internationale, Inc. Shopping cart anti-theft apparatus
US4779321A (en) 1983-10-13 1988-10-25 Standex International Corporation Wheel bracket mounting structure
US4862160A (en) 1983-12-29 1989-08-29 Revlon, Inc. Item identification tag for rapid inventory data acquisition system
US4577880A (en) * 1984-01-06 1986-03-25 Bianco Eric L Theft prevention apparatus for shopping carts
US4629036A (en) 1984-08-13 1986-12-16 Choy Kim L Shopping cart braking wheel
IT8534863V0 (en) 1985-05-14 1985-05-14 Corghi Elettromecc Spa LIFT GROUP WITH BUILT-IN PIEZOELECTRIC TRANSDUCER FOR BALANCING TIRES IN GENERAL DIRECTLY ON THE RESPECTIVE VEHICLES
US4656476A (en) * 1985-08-26 1987-04-07 Richard Tavtigian Warning device for golf carts
US4772880A (en) 1986-01-21 1988-09-20 Goldstein Larry W Shopping cart anti-theft system
US4831363A (en) * 1986-07-17 1989-05-16 Checkpoint Systems, Inc. Article security system
US4742857A (en) * 1986-10-07 1988-05-10 Techni Guidance, Inc. Tire pressure sensor and air supply to maintain desired tire pressure
US4849735A (en) 1987-06-02 1989-07-18 James M. Kirtley Radio controlled safety stop system for forklift trucks
US4748395A (en) * 1987-08-07 1988-05-31 General Motors Corporation Dual voltage electrical system
US4973952A (en) 1987-09-21 1990-11-27 Information Resources, Inc. Shopping cart display system
US4868544A (en) 1988-06-28 1989-09-19 Rex Havens Shopping cart retrieval system
DE3823377A1 (en) * 1988-07-09 1990-01-11 Fischer Lagertechnik PUSH AND TRAIN TRANSPORT VEHICLE
US5194844A (en) * 1988-10-06 1993-03-16 Zelda Arthur W Vehicle theft protection device
JP2636403B2 (en) 1989-03-08 1997-07-30 株式会社豊田自動織機製作所 Operation control device for unmanned vehicles
WO1990011922A1 (en) * 1989-04-10 1990-10-18 Rosecall Pty. Ltd. Vehicle for conveying trolleys
GB8908518D0 (en) * 1989-04-14 1989-06-01 Lucas Ind Plc Transducer temperature compensation circuit
US5000297A (en) 1989-05-17 1991-03-19 General Motors Corporation Electric drum brake
US5068654A (en) 1989-07-03 1991-11-26 Hazard Detection Systems Collision avoidance system
US5072956A (en) 1989-07-26 1991-12-17 Tannehill John M Powered display for shopping cart
US4926161A (en) 1989-10-23 1990-05-15 Cupp Ted W Method of monitoring golf carts on a golf course
US5115159A (en) 1989-10-25 1992-05-19 Bridgestone Cycle Co., Ltd. Built-in generator for bicycle
US5053768A (en) * 1989-12-21 1991-10-01 Invisible Fence Company, Inc. Golf cart control system
US5406271A (en) 1989-12-23 1995-04-11 Systec Ausbausysteme Gmbh System for supplying various departments of large self-service stores with department-specific information
US5318144A (en) 1990-05-03 1994-06-07 Assembled Systems, Inc. Personal mobility vehicle
GB9104555D0 (en) 1991-03-05 1991-04-17 Gray Andrew P P Improvements in and relating to braking devices
US5361871A (en) 1991-08-20 1994-11-08 Digicomp Research Corporation Product information system for shoppers
US5250789A (en) 1991-10-31 1993-10-05 Johnsen Edward L Shopping cart
US5572108A (en) 1992-01-07 1996-11-05 Windes; John A. Power system using battery-charged capacitors
US8208014B2 (en) * 1992-01-16 2012-06-26 Klever Marketing, Inc. Electronic shopping cart display system
GB9209436D0 (en) * 1992-05-01 1992-06-17 Multilop Ltd Tracking systems
US6144916A (en) 1992-05-15 2000-11-07 Micron Communications, Inc. Itinerary monitoring system for storing a plurality of itinerary data points
US5283550A (en) * 1992-06-04 1994-02-01 Wild's - Wild Things, Inc. Shopping cart receiver alarm system
JPH0617321A (en) * 1992-06-25 1994-01-25 Morinobu Endo Pitch-based activated carbon fiber
US5382854A (en) * 1992-07-29 1995-01-17 Kabushikikaisha Equos Research Electrical motor drive apparatus with planetary gearing
US5426561A (en) * 1992-09-29 1995-06-20 The United States Of America As Represented By The United States National Aeronautics And Space Administration High energy density and high power density ultracapacitors and supercapacitors
US5439069A (en) * 1992-11-27 1995-08-08 Beeler; Jimmy A. Nested cart pusher
US5491670A (en) 1993-01-21 1996-02-13 Weber; T. Jerome System and method for sonic positioning
US5357182A (en) * 1993-01-27 1994-10-18 Wolfe Steven M Shopping cart theft prevention system
DK12293D0 (en) * 1993-02-02 1993-02-02 Novo Nordisk As HETEROCYCLIC COMPOUNDS AND THEIR PREPARATION AND USE
JPH0760345B2 (en) 1993-02-08 1995-06-28 健 三浦 Golf cart driving guidance method
US5670935A (en) 1993-02-26 1997-09-23 Donnelly Corporation Rearview vision system for vehicle including panoramic view
DE4306507A1 (en) * 1993-03-03 1994-09-08 Basf Ag Process for the preparation of 5-cyanvaleric acid esters
US5557513A (en) * 1993-04-28 1996-09-17 Quadrix Corporation Checkout lane alert system and method for stores having express checkout lanes
US5402106A (en) 1993-05-06 1995-03-28 Anthony M. DiPaolo Shopping cart theft prevention system
US5610586A (en) * 1993-06-24 1997-03-11 Cart Watch, Inc. Golf cart control and monitoring apparatus and system
US5719555A (en) 1993-06-24 1998-02-17 Cart Watch, Inc. Golf cart control and monitoring apparatus and system using digital signal modulation techniques
US5438319A (en) 1993-06-24 1995-08-01 Cart Watch, Inc. Golf cart control and monitoring apparatus
US5434781A (en) * 1993-08-13 1995-07-18 Control Engineering Company Method and apparatus for guiding a driverless vehicle using a sensor tracking a cable emitting an electromagnetic field
US5485520A (en) 1993-10-07 1996-01-16 Amtech Corporation Automatic real-time highway toll collection from moving vehicles
US5877962A (en) * 1993-10-25 1999-03-02 Radcliffe; Frederick W. Cart
US5525967A (en) 1993-11-01 1996-06-11 Azizi; S. Massoud System and method for tracking and locating an object
US5432412A (en) 1993-11-19 1995-07-11 David Fulton Security device for a cart wheel
DE4343134A1 (en) 1993-12-17 1995-07-20 Hauni Werke Koerber & Co Kg Conveyor system for transferring rod-shaped articles of the tobacco processing industry from a production machine to a further processing device
US6181253B1 (en) 1993-12-21 2001-01-30 Trimble Navigation Limited Flexible monitoring of location and motion
US5554921A (en) 1993-12-23 1996-09-10 Motorola, Inc. Battery charger apparatus and method with multiple range current control
US5360094A (en) * 1994-01-24 1994-11-01 Mel Decker Collection, storage and dispensing system for shopping carts
JPH0812031A (en) 1994-07-01 1996-01-16 Murata Mach Ltd Picking system
US5883968A (en) 1994-07-05 1999-03-16 Aw Computer Systems, Inc. System and methods for preventing fraud in retail environments, including the detection of empty and non-empty shopping carts
US5512879A (en) * 1994-07-25 1996-04-30 Stokes; John H. Apparatus to prevent infant kidnappings and mixups
US5586050A (en) 1994-08-10 1996-12-17 Aerojet General Corp. Remotely controllable LNG field station management system and method
US6310963B1 (en) * 1994-09-30 2001-10-30 Sensormatic Electronics Corp Method and apparatus for detecting an EAS (electronic article surveillance) marker using wavelet transform signal processing
US5600191A (en) 1994-12-19 1997-02-04 Yang; Chen-Chi Driving assembly for motor wheels
US5574469A (en) 1994-12-21 1996-11-12 Burlington Northern Railroad Company Locomotive collision avoidance method and system
US5831530A (en) * 1994-12-30 1998-11-03 Lace Effect, Llc Anti-theft vehicle system
US5598144A (en) * 1994-12-30 1997-01-28 Actodyne General, Inc. Anti-theft vehicle system
US5576691A (en) 1995-01-12 1996-11-19 Polytracker, Inc. Method and apparatus for deterring theft of manually operated wheeled vehicles
US5806862A (en) * 1995-01-12 1998-09-15 Polytracker, Inc. Security wheel apparatus for deterring theft of manually operated wheeled vehicles
US5625569A (en) * 1995-01-23 1997-04-29 Trimmer Engineering, Inc. Low power flow measuring device
US5529163A (en) * 1995-02-07 1996-06-25 Mel Decker Collection, storage and dispensing system and vertical lift for shopping carts
US5973601A (en) * 1995-12-06 1999-10-26 Campana, Jr.; Thomas J. Method of radio transmission between a radio transmitter and radio receiver
US5640146A (en) 1995-02-24 1997-06-17 Ntp Incorporated Radio tracking system and method of operation thereof
US5825286A (en) 1995-05-08 1998-10-20 Semisystems, Inc. Vehicular data collection and transmission system and method
US7085637B2 (en) * 1997-10-22 2006-08-01 Intelligent Technologies International, Inc. Method and system for controlling a vehicle
US5640002A (en) 1995-08-15 1997-06-17 Ruppert; Jonathan Paul Portable RF ID tag and barcode reader
US5630600A (en) 1995-09-22 1997-05-20 Pasillas; Norbert Q. Shopping cart brake
US5580093A (en) * 1995-10-16 1996-12-03 Pervis Conway Light generating and emitting roller skate wheel
US5944659A (en) 1995-11-13 1999-08-31 Vitalcom Inc. Architecture for TDMA medical telemetry system
US5607030A (en) * 1995-12-15 1997-03-04 Swift; Daniel P. Centrifugal shopping cart brake
US5934694A (en) * 1996-02-13 1999-08-10 Dane Industries Cart retriever vehicle
US6220379B1 (en) 1996-02-13 2001-04-24 Dane Industries, Inc. Cart retriever vehicle
US7277010B2 (en) * 1996-03-27 2007-10-02 Raymond Anthony Joao Monitoring apparatus and method
US5844130A (en) 1996-04-03 1998-12-01 Ssi Technologies Apparatus for maintaining a constant radial distance between a transmitting circuit and an antenna coil
GB9607138D0 (en) 1996-04-04 1996-06-12 Gray Andrew P P Improvements in and relating to braking devices
US5825868A (en) 1996-06-04 1998-10-20 Lucent Technologies Inc. Arrangement for providing private-network line features on central-office-to-PBX trunks
US5821513A (en) 1996-06-26 1998-10-13 Telxon Corporation Shopping cart mounted portable data collection device with tethered dataform reader
US5821512A (en) 1996-06-26 1998-10-13 Telxon Corporation Shopping cart mounted portable data collection device with tethered dataform reader
US6070679A (en) * 1996-07-11 2000-06-06 Lindbergh Manufacturing, Inc. Powered utility cart having engagement adapters
US5749668A (en) * 1996-08-21 1998-05-12 Mcilvain; Gary Eugene Apparatus for exercising and/or rehabilitating an ankle
US5835868A (en) 1996-08-30 1998-11-10 Mcelroy; Alejandro S. Automated system for immobilizing a vehicle and method
US5745036A (en) 1996-09-12 1998-04-28 Checkpoint Systems, Inc. Electronic article security system for store which uses intelligent security tags and transaction data
US6700493B1 (en) * 1996-12-02 2004-03-02 William A. Robinson Method, apparatus and system for tracking, locating and monitoring an object or individual
US6232884B1 (en) 1997-01-02 2001-05-15 Charles H. Gabbard Remotely operable vehicle disabling system
US6362728B1 (en) 1997-02-07 2002-03-26 Gatekeeper Systems, Llc. Anti-theft vehicle system
US6024655A (en) * 1997-03-31 2000-02-15 Leading Edge Technologies, Inc. Map-matching golf navigation system
US5881846A (en) 1997-04-17 1999-03-16 Carttronics Llc Security device for shopping carts and the like
US6125972A (en) 1997-04-17 2000-10-03 Carttronics Llc Security apparatus and method for shopping carts and the like
US5818134A (en) 1997-04-22 1998-10-06 Yang; Ying-Yen Motor for motorcycles
DE19717375A1 (en) * 1997-04-24 1998-10-29 Expresso Deutschland System for moving group of trolleys
US6008546A (en) 1997-05-02 1999-12-28 Assembled Products Corporation Electronic control system and collision avoidance system for an electric cart
ATE222470T1 (en) 1997-05-13 2002-09-15 Catena Systems Aps SYSTEM FOR PROMOTING THE RETURN OF SERVICE CARS, E.G. SHOPPING CART FOR TRANSPORTING ITEMS IN AN ACTIVITY CENTER, E.G. SHOPPING CENTERS
US6276471B1 (en) * 1997-06-06 2001-08-21 EXPRESSO DEUTSCHLAND TRANSPOTGERäTE GMBH Delivery cart
US5974312A (en) * 1997-07-10 1999-10-26 Ericsson Inc. System and method for updating a memory in an electronic device via wireless data transfer
DE19732597C2 (en) 1997-07-29 1999-08-12 Anatoli Stobbe Trolley with a transponder
US6168367B1 (en) * 1997-07-31 2001-01-02 Coy J. Robinson Shopping cart collection vehicle and method
US6244366B1 (en) * 1997-08-07 2001-06-12 Smarte Carte, Inc. Cart transporter
US6201497B1 (en) * 1997-09-30 2001-03-13 Dlb Limited Enhanced global navigation satellite system
JPH11120396A (en) 1997-10-17 1999-04-30 Nec Corp Device and method for deciding communicating vehicle
US6046698A (en) * 1997-11-05 2000-04-04 Lucent Technologies, Inc. Indoor radio frequency coverage tool
EP1071603A1 (en) 1998-04-17 2001-01-31 Arrowswift, Inc. Human-powered energy generation and transmission system
US6123259A (en) 1998-04-30 2000-09-26 Fujitsu Limited Electronic shopping system including customer relocation recognition
US6100615A (en) * 1998-05-11 2000-08-08 Birkestrand; Orville J. Modular motorized electric wheel hub assembly for bicycles and the like
US6002348A (en) 1998-05-13 1999-12-14 Safe Flight Instrument Corporation Pilot's aid for detecting power lines
US6078826A (en) * 1998-05-29 2000-06-20 Ericsson Inc. Mobile telephone power savings method and apparatus responsive to mobile telephone location
DE19826551C1 (en) 1998-06-15 1999-11-18 Siemens Ag Control system for hybrid system with at least one energy reservoir and energy source e.g. for buses
US6832884B2 (en) 1998-07-02 2004-12-21 Coy J. Robinson Shopping cart collection vehicle and method
US6435803B1 (en) * 1998-07-02 2002-08-20 Coy J. Robinson Shopping cart collection vehicle and method
US6187471B1 (en) 1998-07-14 2001-02-13 Zentek Corporation Bimodal battery
AU6031499A (en) * 1998-09-11 2000-04-03 Key-Trak, Inc. Object control and tracking system with zonal transition detection
US6102414A (en) * 1998-09-29 2000-08-15 Schweninger; David Turn wheel locking device
US6161849A (en) * 1998-09-29 2000-12-19 Schweninger; Q. David Turn wheel locking device
US6352728B1 (en) * 1999-11-02 2002-03-05 International Celery Development Alliance Pty. Ltd. Extracts of celery seed for the prevention and treatment of pain, inflammation and gastrointestinal irritation
EP1057091A1 (en) * 1998-11-20 2000-12-06 Koninklijke Philips Electronics N.V. Current mirror circuit
US6128926A (en) * 1999-03-15 2000-10-10 Dicon Fiberoptics, Inc. Graded index lens for fiber optic applications and technique of fabrication
US6201473B1 (en) * 1999-04-23 2001-03-13 Sensormatic Electronics Corporation Surveillance system for observing shopping carts
US6260643B1 (en) * 1999-05-18 2001-07-17 Rhino Craft, Inc. Cart puller with retaining cord mechanism
DE29909798U1 (en) * 1999-06-04 1999-09-02 Tuenkers Maschinenbau Gmbh Train association
KR100291213B1 (en) * 1999-08-10 2001-05-15 조성춘 Compact wheel generator, light-emitting wheel having the same, and manufacturing method therefor
US6446005B1 (en) 1999-08-13 2002-09-03 Prolink, Inc. Magnetic wheel sensor for vehicle navigation system
US6477542B1 (en) 2000-07-27 2002-11-05 Dimitrios Papaioannou Device for location-dependent automatic delivery of information with integrated custom print-on-demand
US6315062B1 (en) 1999-09-24 2001-11-13 Vermeer Manufacturing Company Horizontal directional drilling machine employing inertial navigation control system and method
US6911908B1 (en) 1999-10-08 2005-06-28 Activerf Limited Security
US6707424B1 (en) * 1999-10-12 2004-03-16 David M. Snyder Integrated positioning system and method
TW443668U (en) * 1999-10-29 2001-06-23 Attend Industry Co Ltd Wheel hub generator structure with combinable brake pulling device
GB9926992D0 (en) 1999-11-15 2000-01-12 Gray Matter Alpha Limited Braking assembly
US6204772B1 (en) 1999-12-16 2001-03-20 Caterpillar Inc. Method and apparatus for monitoring the position of a machine
US20010008191A1 (en) 2000-01-18 2001-07-19 Smith Vincent A. Electric power generation system for electric vehicles
JP3356418B2 (en) * 2000-01-28 2002-12-16 村田機械株式会社 Transfer system
US6587835B1 (en) * 2000-02-09 2003-07-01 G. Victor Treyz Shopping assistance with handheld computing device
US6378684B1 (en) * 2000-02-14 2002-04-30 Gary L. Cox Detecting mechanism for a grocery cart and the like and system
GB2359455B (en) 2000-02-19 2004-07-28 Hydroclean Retail Maintenance Security arrangements
US6304232B1 (en) 2000-02-24 2001-10-16 The Goodyear Tire & Rubber Company Circuit module
US6577275B2 (en) 2000-03-07 2003-06-10 Wherenet Corp Transactions and business processes executed through wireless geolocation system infrastructure
GB0007106D0 (en) 2000-03-23 2000-05-17 Yeoman Group Plc Mobile telephone position detection
US6529164B1 (en) 2000-03-31 2003-03-04 Ge Medical Systems Information Technologies, Inc. Object location monitoring within buildings
JP4156783B2 (en) 2000-04-03 2008-09-24 本田技研工業株式会社 Motorcycle antenna arrangement structure
IL152588A0 (en) * 2000-05-08 2003-05-29 Checkpoint Systems Inc Radio frequency detection and identification system
US6691702B2 (en) * 2000-08-03 2004-02-17 Sequal Technologies, Inc. Portable oxygen concentration system and method of using the same
GB2367169A (en) 2000-08-09 2002-03-27 Clm Services Ltd Monitoring movement of people and/or equipment in a shop.
US20020161651A1 (en) * 2000-08-29 2002-10-31 Procter & Gamble System and methods for tracking consumers in a store environment
US6378663B1 (en) * 2000-11-01 2002-04-30 Apex Medical Corp. Brake mechanism for a walker
US6342769B1 (en) * 2000-11-07 2002-01-29 Orville J. Birkestrand Electronic throttle/brake control system for monitorized wheel hub
EP1336277B1 (en) * 2000-11-14 2011-04-20 Symbol Technologies, Inc. Methods and apparatus for identifying asset location in mobile communication networks
DE10057059C2 (en) 2000-11-17 2003-12-24 Transense Technologies Plc Method and device for monitoring measured values by frequency analysis of modulated backscattering
GB2369332A (en) 2000-11-22 2002-05-29 Trw Lucasvarity Electric Steer Compensation for motor inertia in electric power-assisted steering systems
US6659344B2 (en) 2000-12-06 2003-12-09 Ncr Corporation Automated monitoring of activity of shoppers in a market
US7034695B2 (en) 2000-12-26 2006-04-25 Robert Ernest Troxler Large area position/proximity correction device with alarms using (D)GPS technology
US6550151B2 (en) * 2001-01-19 2003-04-22 Donald R. Airey Contour measuring device and method
US6502669B1 (en) * 2001-02-15 2003-01-07 Charles D. Harris Security device and method for transport devices
DE10116463A1 (en) 2001-04-03 2002-10-10 Isad Electronic Sys Gmbh & Co System for storing electrical energy, and method for operating such an energy storage system
GB0109912D0 (en) 2001-04-23 2001-06-13 Flexello Ltd Trolley security wheel and system
US20020167916A1 (en) 2001-05-14 2002-11-14 Clapper Edward O. Processor-based shopping cart
JP3871900B2 (en) 2001-05-25 2007-01-24 エンブリッジ レイク プロプリエタリー リミテッド Motion detection and warning system for mobile devices
US6717511B2 (en) 2001-06-12 2004-04-06 Dial-A-Theft, Inc. Vehicle alarm and theft deterrent system
US6784800B2 (en) 2001-06-19 2004-08-31 Signal Tech Industrial vehicle safety system
US7737861B2 (en) * 2001-06-19 2010-06-15 Paxflow Holdings Pte Ltd. Location, communication and tracking systems
US7084765B2 (en) 2001-07-12 2006-08-01 Intel Corporation Processor-based positioning system
GB2377802A (en) * 2001-07-17 2003-01-22 Richard John Leeson Security system for a supermarket trolley
AU2002326417A1 (en) * 2001-07-20 2003-03-03 Hill-Rom Services, Inc. Badge for a locating and tracking system
US6481518B1 (en) * 2001-08-07 2002-11-19 David Wu Motor drive mounting arrangement for golf cart
WO2003021851A2 (en) * 2001-09-05 2003-03-13 Newbury Networks, Inc. Position detection and location tracking in a wireless network
US7239876B2 (en) * 2001-09-06 2007-07-03 Motorola, Inc. Method for increased location receiver sensitivity
GB2379804B (en) 2001-09-15 2003-08-06 Far Great Plastics Ind Co Ltd Vehicle electrical generator
US20030132932A1 (en) * 2001-09-17 2003-07-17 Xiangheng Yang Method for constructing polygons used to represent geographic features
US7148791B2 (en) 2001-09-21 2006-12-12 Time Domain Corp. Wireless danger proximity warning system and method
US6563427B2 (en) * 2001-09-28 2003-05-13 Motorola, Inc. Proximity monitoring communication system
US6628107B1 (en) 2001-10-31 2003-09-30 Symbol Technologies, Inc. Power management for a portable electronic device
US7108090B2 (en) 2001-11-06 2006-09-19 Assembled Products Corporation Motorized cart with hub gear motor system
ATE459039T1 (en) 2001-11-16 2010-03-15 Systec Pos Technology Gmbh SYSTEM AND METHOD FOR RECORDING AND REWARDING THE RETURN OF A SHOPPING TROLLEY OR LUGGAGE TROLLEY TAKEN FROM A COLLECTION POINT
US7199709B2 (en) * 2001-12-04 2007-04-03 Arichell Technologies, Inc. Cart fleet management system
AU2002351358A1 (en) 2001-12-12 2003-06-23 Jervis B. Webb Company Driverless vehicle guidance system and method
EP2514640B1 (en) * 2001-12-21 2015-08-05 Kabushiki Kaisha Bridgestone Method and apparatus for estimation of road condition and tire running state, ABS and car control making use thereof
JP3849541B2 (en) * 2002-02-20 2006-11-22 トヨタ自動車株式会社 Charge / discharge control method for battery pack
CN1289911C (en) 2002-03-08 2006-12-13 Ntn株式会社 Rotary detector and anti-brake device of lock using the same
US6993592B2 (en) 2002-05-01 2006-01-31 Microsoft Corporation Location measurement process for radio-frequency badges
US10562492B2 (en) * 2002-05-01 2020-02-18 Gtj Ventures, Llc Control, monitoring and/or security apparatus and method
WO2003098730A2 (en) 2002-05-16 2003-11-27 Ballard Power Systems Inc. Electric power plant with adjustable array of fuel cell systems
US7665035B2 (en) 2002-05-20 2010-02-16 Gateway, Inc. Content selection apparatus, system, and method
US7061749B2 (en) 2002-07-01 2006-06-13 Georgia Tech Research Corporation Supercapacitor having electrode material comprising single-wall carbon nanotubes and process for making the same
CA2392326A1 (en) * 2002-07-03 2004-01-03 Newtrax Technologies Inc. Monitoring system and method
US6744356B2 (en) * 2002-07-11 2004-06-01 Autoliv Asp, Inc. Tire pressure maintenance and monitoring system
GB2423402B (en) 2002-07-19 2007-01-03 Gatekeeper Systems Improvements relating to security and electronic article surveillance
US20040024730A1 (en) * 2002-08-02 2004-02-05 Brown Thomas M. Inventory management of products
US6945366B2 (en) * 2002-08-16 2005-09-20 Gatekeeper Systems, Llc. Anti-theft vehicle system
US6809645B1 (en) 2002-08-30 2004-10-26 Ncr Corporation System and method for updating a product database based on surveillance tag detection at a self-checkout station
GB0222672D0 (en) * 2002-10-01 2002-11-06 Gray Matter Alpha Ltd Braking assembly
JP3887295B2 (en) * 2002-10-08 2007-02-28 本田技研工業株式会社 Vehicle remote control device
US6832153B2 (en) * 2002-11-27 2004-12-14 Mobilearia Method and apparatus for providing information pertaining to vehicles located along a predetermined travel route
US6739675B1 (en) * 2003-01-10 2004-05-25 Westinghouse Air Brake Technologies Corporation Brake effort monitor
US7356357B2 (en) 2003-01-16 2008-04-08 Modstream, Inc. Passive display unit and system and method of use
US7239965B2 (en) 2003-01-17 2007-07-03 Uplink Corporation Method and system for golf cart control
US7215703B2 (en) * 2003-02-14 2007-05-08 Broadcom Corporation Digital calculation received signal strength indication
WO2004077091A1 (en) 2003-02-25 2004-09-10 All Set Marine Security Ab Method and system for monitoring relative movement of maritime containers and other cargo
US7147154B2 (en) 2003-04-29 2006-12-12 International Business Machines Corporation Method and system for assisting a shopper in navigating through a store
US20050104307A1 (en) 2003-05-09 2005-05-19 Bruce Roseman Material handling and shopping cart having a basket with a movable floor
US6925378B2 (en) 2003-05-12 2005-08-02 Circumnav Networks, Inc. Enhanced mobile communication device with extended radio, and applications
US6862500B2 (en) 2003-05-12 2005-03-01 Circumnav Networks, Inc. Methods for communicating between elements in a hierarchical floating car data network
US6880652B2 (en) * 2003-06-09 2005-04-19 Dane Industries, Inc. Cart pulling vehicle with dual cable drums and dual torsion springs
WO2005004339A2 (en) 2003-07-01 2005-01-13 Stream Engineering Corporation Context sensitive streaming system and method
JP3735722B2 (en) * 2003-07-07 2006-01-18 国立大学法人名古屋大学 Unicycle for mobile observation
JP2005062161A (en) 2003-07-25 2005-03-10 Seiko Epson Corp Electronic timepiece with built-in antenna
JP3997965B2 (en) 2003-07-29 2007-10-24 トヨタ自動車株式会社 Charge / discharge control device and method for battery pack, program, battery control system
US6928343B2 (en) 2003-07-30 2005-08-09 International Business Machines Corporation Shopper tracker and portable customer service terminal charger
WO2005020173A1 (en) 2003-08-21 2005-03-03 Andrew George Gathergood Method and apparatus for preventing or deterring theft or loss of shopping trolleys
US6924743B2 (en) * 2003-08-25 2005-08-02 International Business Machines Corporation Method and system for alerting customers in a shopping area
US20050049914A1 (en) * 2003-08-25 2005-03-03 Parish David H. Systems and methods for a retail system
US20050259240A1 (en) 2003-09-18 2005-11-24 Goren David P Optical navigation of vehicles
ES2386915T3 (en) 2003-09-18 2012-09-05 Commonwealth Scientific And Industrial Researchorganisation High performance energy storage devices
US7389836B2 (en) * 2003-09-23 2008-06-24 Dane Industries, Inc. Power-assisted cart retriever with attenuated power output
US7049965B2 (en) * 2003-10-02 2006-05-23 General Electric Company Surveillance systems and methods
US7087029B2 (en) * 2003-10-02 2006-08-08 Frank Friedland Massager
US6868318B1 (en) 2003-10-14 2005-03-15 General Motors Corporation Method for adjusting battery power limits in a hybrid electric vehicle to provide consistent launch characteristics
US7571914B2 (en) * 2003-10-15 2009-08-11 Dane Industries, Inc. Push-pull cart collection device and conversion assembly
US7148803B2 (en) 2003-10-24 2006-12-12 Symbol Technologies, Inc. Radio frequency identification (RFID) based sensor networks
US6774503B1 (en) * 2003-11-07 2004-08-10 Far Great Plastics Industrial Co., Ltd. Wheel having an accelerating electricity charging device
US6903682B1 (en) * 2004-01-14 2005-06-07 Innotek, Inc. DGPS animal containment system
US6974399B2 (en) * 2004-02-11 2005-12-13 Chiu-Hsiang Lo Hub motor mechanism
US20050187819A1 (en) 2004-02-20 2005-08-25 International Business Machines Corporation Method and system for measuring effectiveness of shopping cart advertisements based on purchases of advertised items
WO2005084155A2 (en) 2004-02-24 2005-09-15 Weinstein, Lee Method and apparatus for optical odometry
US20050194218A1 (en) 2004-03-08 2005-09-08 D'arca Paul T. Hand deactivated shopping cart automatic braking system
US7353089B1 (en) 2004-04-13 2008-04-01 P.E.M. Technologies, Llc Method and system for a signal guided motorized vehicle
GB0412498D0 (en) 2004-06-04 2004-07-07 Gray Matter Alpha Ltd Improvements in product security
US20060042734A1 (en) 2004-08-24 2006-03-02 Turner Douglas D Wear component and warning system
US7395886B2 (en) * 2004-08-31 2008-07-08 Gatekeeper Systems (Hk) Limited Dual row cart collector and method
US7515548B2 (en) 2004-09-28 2009-04-07 Texas Instruments Incorporated End-point based approach for determining network status in a wireless local area network
US7420301B2 (en) 2004-10-04 2008-09-02 Axletech International Ip Holdings, Llc Wheel assembly with integral electric motor
US20060095324A1 (en) * 2004-11-04 2006-05-04 Vergeyle David L Electronic capture of promotions
US7346956B2 (en) * 2004-11-19 2008-03-25 Andre Scott E Automatic cart wash apparatus
FR2879331B1 (en) * 2004-12-10 2007-02-02 Siemens Vdo Automotive Sas METHOD AND DEVICE FOR LOCATING THE RIGHT OR LEFT POSITION OF A VEHICLE WHEEL
US7647248B2 (en) * 2004-12-17 2010-01-12 International Business Machines Corporation Shopping environment including detection of unpaid items in proximity to an exit
US7183910B2 (en) 2004-12-17 2007-02-27 International Business Machines Corporation Tiered on-demand location-based service and infrastructure
US7337962B2 (en) 2004-12-30 2008-03-04 International Business Machines Corporation Method to detect false purchases with a consumer service device
US7180409B2 (en) 2005-03-11 2007-02-20 Temic Automotive Of North America, Inc. Tire tread wear sensor system
CA2934721C (en) 2005-03-18 2018-05-01 Gatekeeper Systems, Inc. Two-way communication system for tracking locations and statuses of wheeled vehicles
CN101171147B (en) 2005-03-18 2011-07-06 看门人系统公司 Navigation systems and methods for wheeled objects
WO2006130754A2 (en) 2005-06-02 2006-12-07 Carttronics, Llc Tracking system and method
US20060290494A1 (en) * 2005-06-27 2006-12-28 O'brien Graeme System and method for detecting an object on a cart
US7443295B2 (en) 2005-06-28 2008-10-28 Media Cart Holdings, Inc. Media enabled advertising shopping cart system
CA2620062C (en) 2005-08-25 2015-10-27 Gatekeeper Systems, Inc. Systems and methods for locating and controlling powered vehicles
US20070225879A1 (en) 2006-03-22 2007-09-27 French John R System and method for monitoring and managing an environment
GB0605829D0 (en) 2006-03-24 2006-05-03 Gray Matter Alpha Ltd Common wheel movement
GB0605844D0 (en) 2006-03-24 2006-05-03 Gray Matter Alpha Ltd Latching mechanism
GB0605845D0 (en) 2006-03-24 2006-05-03 Gray Matter Alpha Ltd Power Generation
GB0613553D0 (en) 2006-07-10 2006-08-16 Gray Matter Alpha Ltd Method and apparatus for braking a wheel
US8207851B2 (en) 2006-08-16 2012-06-26 James Christopher System and method for tracking shopping behavior
US7392872B2 (en) * 2006-08-31 2008-07-01 Po-Lin Chiu Power assisted vehicle
US7658247B2 (en) * 2006-09-20 2010-02-09 Gatekeeper Systems, Inc. Systems and methods for power storage and management from intermittent power sources
JP4935310B2 (en) * 2006-11-10 2012-05-23 アイシン精機株式会社 Drive switching device for four-wheel drive vehicles
US7420461B2 (en) 2006-12-28 2008-09-02 Carttronics, Llc Caster-lock with dual receivers
WO2009137422A1 (en) 2008-05-05 2009-11-12 Gatekeeper Systems, Inc. Brake mechanism for a non-motorized wheeled vehicle
US8812225B2 (en) 2011-04-29 2014-08-19 Harris Corporation Electronic navigation device for a human and related methods
WO2012154872A2 (en) 2011-05-10 2012-11-15 Gatekeeper Systems, Inc. Cart connection assemblies and methods
US10853856B2 (en) * 2011-06-06 2020-12-01 Ncr Corporation Notification system and methods for use in retail environments
EP2750903B1 (en) 2011-09-22 2015-10-21 Gatekeeper Systems, Inc. Non-motorized vehicle wheel replacement treads and methods
JP5880568B2 (en) * 2011-10-06 2016-03-09 トヨタ自動車株式会社 Control device for hybrid vehicle
JP6253437B2 (en) 2014-02-14 2017-12-27 キヤノン株式会社 Imaging optical system and image projection apparatus having the same
CN106573633B (en) 2014-07-25 2018-11-16 看门人系统公司 Monitor the service condition or state of cart recover
CN107209847A (en) 2015-01-13 2017-09-26 看门人系统公司 Use radio frequency identification(RFID)The system and method for monitoring of tools wheeled vehicle
US10232869B2 (en) 2017-03-08 2019-03-19 Gatekeeper Systems, Inc. Navigation systems for wheeled carts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177880B1 (en) 1992-01-16 2001-01-23 Klever-Kart, Inc. Automated shopping cart handle
US5315290A (en) 1992-08-10 1994-05-24 Computron, Inc. Cart theft prevention system
US20040243262A1 (en) 2003-05-27 2004-12-02 Hofmann James H. System and method for golf course management

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11538090B2 (en) * 2007-03-26 2022-12-27 Media Cart Holdings, Inc. Media enhanced shopping systems with data mining functionalities
WO2009007469A1 (en) * 2007-07-09 2009-01-15 Enrique Costa Porta Method for detection and localization of luggage trollies in airports and/or the like
US9351242B2 (en) 2007-08-31 2016-05-24 Alexandre Cervinka Tracking of and communication with mobile terminals using a battery-powered wireless network infrastructure
WO2009027816A3 (en) * 2007-08-31 2011-04-28 Newtrax Technologies Inc. Tracking of and communication with mobile terminals using a battery-powered wireless network infrastructure
RU2492592C2 (en) * 2007-08-31 2013-09-10 Ньютрэкс Текнолоджиз Инк. Tracking of and communication with mobile terminals using battery-powered wireless network infrastructure
ES2310494A1 (en) * 2008-03-06 2009-01-01 Clece, S.A System of provision of trolleys in a venue of several storage stations (Machine-translation by Google Translate, not legally binding)
EP2148169A3 (en) * 2008-07-25 2016-05-04 HERE Global B.V. Open area maps with restriction content
DE102009016347A1 (en) 2009-04-06 2010-10-07 Wanzl Metallwarenfabrik Gmbh Roller for use at wheel fork of transportation cart, has thrust ring with sectional surface that attaches thrust ring at wheel body and detaches thrust ring from wheel body, where wheel body is provided with opening
CN102243805A (en) * 2010-05-14 2011-11-16 现代自动车株式会社 Vehicle management system
US9639849B2 (en) 2010-12-30 2017-05-02 International Business Machines Corporation Allocating commodity shelves in a supermarket
US8571908B2 (en) 2010-12-30 2013-10-29 International Business Machines Corporation Allocating commodity shelves in a supermarket
EP2503527A1 (en) * 2011-03-23 2012-09-26 Hekatron Vertriebs GmbH Communication system, in particular for alarms and method for its operation
GB2496365B (en) * 2011-09-04 2016-08-31 Edmond Glaser Alan Motorised Braking System for a chair movable on castors
WO2013092258A1 (en) * 2011-12-21 2013-06-27 Gemalto S.A. Customer carried shopping apparatus
EP2608163A1 (en) * 2011-12-21 2013-06-26 Gemalto SA Customer carried shopping utensil
EP2832117A4 (en) * 2012-03-26 2015-05-06 Nguyen Mark Vuong Toan Monitoring and tracking of trolleys and other transporting units
US20170213201A1 (en) * 2014-04-09 2017-07-27 José Antonio QUINTERO TRAVERSO System and method for controlling and managing shopping trolleys
ES2525510A1 (en) * 2014-04-09 2014-12-23 José Antonio QUINTERO TRAVERSO System and method for control and management of shopping carts (Machine-translation by Google Translate, not legally binding)
EP3163523A4 (en) * 2014-04-09 2018-05-23 José Antonio Quintero Traverso Shopping trolley control and management system
WO2015155397A1 (en) * 2014-04-09 2015-10-15 José Antonio Quintero Traverso Shopping trolley control and management system
WO2016055815A1 (en) * 2014-10-10 2016-04-14 Cambridge Consultants Limited Smart trolley wheel
GB2531075A (en) * 2014-10-10 2016-04-13 Cambridge Consultants Smart trolley wheel
EP3236689A4 (en) * 2014-12-15 2018-06-13 Sony Corporation Information processing device, wireless communication device, information processing method, and program
US11599932B2 (en) 2016-02-26 2023-03-07 Imagr Holdings Limited System and methods for shopping in a physical store
US10832311B2 (en) 2016-02-26 2020-11-10 Imagr Limited Method and medium for shopping in a physical store
EP3420520A4 (en) * 2016-02-26 2019-10-23 Imagr Limited System and methods for shopping in a physical store
EP3701465B1 (en) * 2017-10-26 2022-12-07 Franz Wieth Method for operating an electronically controlled return system
WO2019081613A1 (en) 2017-10-26 2019-05-02 Franz Wieth Method for operating an electronically controlled return system
EP3575832A1 (en) * 2018-05-27 2019-12-04 Chun-Tao Chou Smart wheel
KR20190140791A (en) * 2018-06-12 2019-12-20 네이버랩스 주식회사 Smart caster and method of tracking transport apparatus including the same
KR102085137B1 (en) 2018-06-12 2020-03-05 네이버랩스 주식회사 Smart caster and method of tracking transport apparatus including the same
WO2021071548A1 (en) * 2019-10-10 2021-04-15 Microchip Technology Incorporated Magnetic-based tracking system
US11402239B2 (en) 2019-10-10 2022-08-02 Microchip Technology Incorporated Magnetic-based tracking system

Also Published As

Publication number Publication date
US20120035823A1 (en) 2012-02-09
US11299189B2 (en) 2022-04-12
US20210221420A1 (en) 2021-07-22
US20180154918A1 (en) 2018-06-07
US20160332653A1 (en) 2016-11-17
US20130238169A1 (en) 2013-09-12
US20180009458A1 (en) 2018-01-11
EP4123261A1 (en) 2023-01-25
US8417445B2 (en) 2013-04-09
US9091551B2 (en) 2015-07-28
US11358621B2 (en) 2022-06-14
WO2006102300A3 (en) 2007-12-06
WO2006102561A2 (en) 2006-09-28
WO2006102183A3 (en) 2007-11-29
US20190118845A1 (en) 2019-04-25
US8571778B2 (en) 2013-10-29
US20090322492A1 (en) 2009-12-31
US8478471B2 (en) 2013-07-02
EP3138702A1 (en) 2017-03-08
US20200391780A1 (en) 2020-12-17
EP1863656B1 (en) 2018-01-10
ES2605370T3 (en) 2017-03-14
US8606501B2 (en) 2013-12-10
EP1869405A4 (en) 2010-12-15
US10023216B2 (en) 2018-07-17
EP1863656A2 (en) 2007-12-12
US8570171B2 (en) 2013-10-29
US20220119027A1 (en) 2022-04-21
CA2934724A1 (en) 2006-09-28
US9322658B2 (en) 2016-04-26
EP3614104B1 (en) 2022-06-08
US20080319625A1 (en) 2008-12-25
US8473192B2 (en) 2013-06-25
EP1863656A4 (en) 2016-06-01
ES2765853T3 (en) 2020-06-11
CA2934736C (en) 2017-10-17
EP1864082B1 (en) 2016-10-26
CA2891641C (en) 2018-01-02
US20090002172A1 (en) 2009-01-01
EP3614104A1 (en) 2020-02-26
US9630639B2 (en) 2017-04-25
EP1864082A2 (en) 2007-12-12
US10745040B2 (en) 2020-08-18
CA2601565C (en) 2015-10-27
US20080316029A1 (en) 2008-12-25
US20150197266A1 (en) 2015-07-16
WO2006102300A2 (en) 2006-09-28
US20180037246A1 (en) 2018-02-08
US8406993B2 (en) 2013-03-26
US20130214502A1 (en) 2013-08-22
US8700230B1 (en) 2014-04-15
EP3138701B1 (en) 2018-12-19
CA2934721C (en) 2018-05-01
US20060249320A1 (en) 2006-11-09
US9783218B2 (en) 2017-10-10
US11718336B2 (en) 2023-08-08
ES2711748T3 (en) 2019-05-07
US20130249177A1 (en) 2013-09-26
US8046160B2 (en) 2011-10-25
US20160288811A1 (en) 2016-10-06
EP3138701A1 (en) 2017-03-08
US20140125019A1 (en) 2014-05-08
US9637151B2 (en) 2017-05-02
US20210171083A1 (en) 2021-06-10
CA2891641A1 (en) 2006-09-28
EP1869405B1 (en) 2014-10-08
CA2601572A1 (en) 2006-09-28
US20140350851A1 (en) 2014-11-27
US20060244588A1 (en) 2006-11-02
CA2601565A1 (en) 2006-09-28
US20150325093A1 (en) 2015-11-12
CA2896121C (en) 2016-08-30
US8433507B2 (en) 2013-04-30
US20080316059A1 (en) 2008-12-25
ES2921886T3 (en) 2022-09-01
US20130264786A1 (en) 2013-10-10
US8820447B2 (en) 2014-09-02
WO2006102561A3 (en) 2007-10-25
US10730541B2 (en) 2020-08-04
US20150344055A1 (en) 2015-12-03
CA2934736A1 (en) 2006-09-28
US8558698B1 (en) 2013-10-15
US20230057163A1 (en) 2023-02-23
US9963162B1 (en) 2018-05-08
US20130257000A1 (en) 2013-10-03
US9914470B2 (en) 2018-03-13
US20130261943A1 (en) 2013-10-03
US20080315540A1 (en) 2008-12-25
CA2934721A1 (en) 2006-09-28
US8718923B2 (en) 2014-05-06
EP1864082A4 (en) 2015-02-25
CA2601569C (en) 2015-08-18
US20090002160A1 (en) 2009-01-01
EP3138702B1 (en) 2019-11-13
US9758185B2 (en) 2017-09-12
CA2934724C (en) 2019-04-09
US9676405B2 (en) 2017-06-13
US10189494B2 (en) 2019-01-29
US20180141577A1 (en) 2018-05-24
CA2601569A1 (en) 2006-09-28
US20080314667A1 (en) 2008-12-25
CA2896121A1 (en) 2006-09-28
US8463540B2 (en) 2013-06-11
US10227082B2 (en) 2019-03-12
US11230313B2 (en) 2022-01-25
US9586606B2 (en) 2017-03-07
US8751148B2 (en) 2014-06-10
US20060247847A1 (en) 2006-11-02
EP1869405A2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
US11230313B2 (en) System for monitoring and controlling shopping cart usage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680016621.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2601565

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2006748454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006748454

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU