WO2006113328A2 - Shipping and storage containers - Google Patents

Shipping and storage containers Download PDF

Info

Publication number
WO2006113328A2
WO2006113328A2 PCT/US2006/013825 US2006013825W WO2006113328A2 WO 2006113328 A2 WO2006113328 A2 WO 2006113328A2 US 2006013825 W US2006013825 W US 2006013825W WO 2006113328 A2 WO2006113328 A2 WO 2006113328A2
Authority
WO
WIPO (PCT)
Prior art keywords
container
mercury
vapor resistant
bag
packaging
Prior art date
Application number
PCT/US2006/013825
Other languages
French (fr)
Other versions
WO2006113328A3 (en
Inventor
Mark A. Stennes
Douglas M. Mcmillan
Original Assignee
Vaporlok Technology, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaporlok Technology, Llc filed Critical Vaporlok Technology, Llc
Priority to DE200660016755 priority Critical patent/DE602006016755D1/en
Priority to MX2007012661A priority patent/MX2007012661A/en
Priority to EP20060750007 priority patent/EP1868921B1/en
Priority to DK06750007T priority patent/DK1868921T3/en
Priority to CA2603849A priority patent/CA2603849C/en
Priority to AT06750007T priority patent/ATE480479T1/en
Publication of WO2006113328A2 publication Critical patent/WO2006113328A2/en
Publication of WO2006113328A3 publication Critical patent/WO2006113328A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/82Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for for poisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • B65D77/003Articles enclosed in rigid or semi-rigid containers, the whole being wrapped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/84Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for for corrosive chemicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2565/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D2565/38Packaging materials of special type or form
    • B65D2565/381Details of packaging materials of special type or form
    • B65D2565/387Materials used as gas barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Definitions

  • Mercury is unique in that in its solid form it actually has many of the properties of a liquid, including the ability to form a vapor.
  • Mercury vapor can be harmful.
  • Mercury vapor can cause effects in the central and peripheral nervous systems, lungs, kidneys, skin and eyes in humans. It is also mutagenic and affects the immune system. Acute exposure to high concentrations of mercury vapor causes severe respiratory damage, while chronic exposure to lower levels is primarily associated with central nervous system damage.
  • Chronic exposure to mercury is also associated with behavioral changes and alterations in peripheral nervous system. Pulmonary effects of mercury vapor inhalation include diffuse interstitial pneumonitis with profuse fibrinous exudation. Glomerular dysfunction and proteinuria have been observed in mercury-exposed workers. Chronic mercury exposure can cause discoloration of the cornea and lens, eyelid tremor and, rarely, disturbances of vision and extraocular muscles. Delayed hypersensitivity reactions have been reported in individuals exposed to mercury vapor. Mercury vapor is reported to be mutagenic in humans, causing aneuploidy in lymphocytes of exposed workers.
  • FIG. 1 shows a user recycling waste, according to an example embodiment of a waste recycling process.
  • FIG. 2 is a block diagram giving an overview of an example embodiment of a waste recycling system, corresponding to the waste recycling process illustrated in FIG. 1.
  • FIG. 3 shows examples of products that may be shipped using the packaging system and method as either new products or during recycling, according to an example embodiment.
  • FIG. 4 is a schematic diagram of a system for packaging, according to an example embodiment.
  • FIG. 5 is a flow chart of an example embodiment of the packaging method using the packaging system shown in FIG. 4.
  • FIG. 9 is a flow chart of an example embodiment of a packaging method using the packaging system shown in FIG. 8.
  • FIG. 10 is a perspective view of a system for packaging, according to an example embodiment.
  • FIG. 11 is a flow chart of an example embodiment of a packaging method using the packaging system shown in FIG. 10.
  • FIG. 12 is a schematic diagram of a system for packaging, according to an example embodiment.
  • FIG. 13 is a flow chart of an example embodiment of the packaging method using the packaging system shown in FIG. 12. DETAILED DESCRIPTION
  • the empty containers 400 include one or more of the example embodiments of the method and system for packaging that is further detailed below.
  • the method and system of packaging includes containers 400 (shown in FIG. 4) that are specially designed or adapted to hold at least one kind of waste. (Various kinds of waste are illustrated in FIG. 3.)
  • One example container is a box that can safely accommodate 4-foot - fluorescent tubes.
  • Another example container 600 is a heavy duty, locking-lid bucket with handles for recycling mercury-containing products such as batteries or thermostats.
  • the order may be placed over a network, such as the Internet or by phone or fax. Alternatively, the order may be part of an automatic reorder program.
  • FIG. 2 is a block diagram giving an overview 200 of an example embodiment of a waste recycling system, corresponding to the waste recycling process 100, illustrated in FIG. 1.
  • FIG. 2 shows the basic communication between the user 202 and the waste recycling system 204 to carry out the process 100 of FIG. 1.
  • a waste recycling process describes how it is done, while a waste recycling system describes what is doing it.
  • the packaging system and method discussed herein is useful both in recycling spent products as well as original shipping containers.
  • the containers can also be used to store a product or products before or after shipping the containers.
  • originally manufactured products could be removed from an original shipping container as they are used. Once the original shipping container is empty, spent products could be placed or stored in the shipping container and returned for recycling.
  • the user would not have to place an order for various types of empty waste containers 102, have the order communicated from the user 202 to the waste recycling system 204.
  • FIG. 3 shows examples of products that may be shipped or stored as new products or that may be shipped for the purpose of recycling and that use the system and method for packaging.
  • FIG. 4 is a schematic diagram of a system for packaging 400, according to an example embodiment of the invention.
  • the system for packaging 400 can be used to ship or store products, such as mercury containing products.
  • the system for packaging includes a container 410 that includes a vapor resistant barrier 420.
  • a vapor resistant barrier has an O 2 transmission rate in the range of 0.0003 to 70 cc / 100 in 2 / 24 hrs. hi some embodiments of the invention, the vapor resistant barrier has an O 2 transmission rate in the range of 0.000 to 35 cc / 100 in 2 / 24 hrs.
  • the vapor resistant barrier 420 can be any sort of vapor resistant barrier and the container can be any type of container 410.
  • the container 410 has an open end 412 which can be sealed.
  • Sealing can be accomplished by any means, including folding the portion of the container 410 proximate the open end 412.
  • the folded portion of the container 410 may be retained with an object that contacts the folded portion, or may be retained with an adhesive, such as various types of tape, hi another embodiment of the invention, the end can be provided with a fastener for fastening one side of the container to another side of the container.
  • One type of fastener includes a channel and channel-locking member that is pressed to engage the channel with the channel locking member and form a seal. This is commonly referred to as zipping the container to a sealed position.
  • a zipper element is moved in the channel and the channel-locking member. The zipper element can be moved between a sealed position and an unsealed position.
  • the container 410 includes a bag that has a vapor resistant barrier 420.
  • the bag is formed of a foil laminate material that includes a layer of polyethylene plastic and a layer including a foil vapor barrier.
  • the foil vapor barrier 420 is located on the outer surface of the bag.
  • One such bag is available from Poly Lam Products, Corp. of Williamsville, NY. Another bag maker is Armand Manufacturing Inc. of Henderson, NV.
  • the bags are made from stock that is obtained form Ludlow Coated Products, Inc. of Columbus, GA, USA as MIL-PRDF-131J Class 1 type material. Ludlow Coated Products refers to the material as Foil-O-Rad 2175-B.
  • other bags also include vapor resistant barriers 410.
  • the other bags are formed of material include vapor resistant barrier made of products such as polyester, mylar, or nylon.
  • the vapor resistant bags when used as part of the apparatus described herein and according to methods set forth herein, keep mercury levels below specified limits of 0.1 mg/meter 3 eight hour time weighted average mercury permissible exposure limit .
  • FIG. 5 is a flow chart of an example embodiment of the packaging method 500 using the packaging system 400 shown in FIG. 4.
  • the packaging method 500 includes placing a mercury device in a container, as depicted by reference 510 and sealing the open end of the container, as depicted by reference numeral 512.
  • Sealing the open end of the container can include folding the open end of the container and then placing an object over the folded end to retain the folded end in position, or can include folding the open end of the container and placing an adhesive such as a tape product over the fold. Sealing the open end can also include bonding one side of the open end to the other side of the open end using an adhesive or a tape or thermally bonding the material of the area near the open end to one another.
  • sealing the open end 512 can include engaging a channel with a mating pertruperence, such as closing a zip lock type enclosure, hi some embodiments of the invention the container with the mercury devices therein is then shipped, as depicted by reference 514.
  • the packaging method 500 can be used to ship or store products.
  • FIG. 6A and 6B are isometric views of a system for packaging, according to another example embodiment. Many of the elements shown in FIG. 6 A are the same as those shown in FIG. 6B. Accordingly, similar or same elements carry the same reference numbers in FIG. 6 A and 6B.
  • the system for packaging 600 can be used to ship or store products, such as mercury containing products.
  • the packaging system 600 includes the container 410 having an open end 412.
  • the container 410 also includes a vapor resistant barrier 420.
  • the container 410 and the vapor resistant material 420 are made of a laminate of polyethylene in foil that is available from Ludlow Products or Cadillac Products.
  • a mylar/polyester can be used to form the container 410 and the vapor barrier 420.
  • the container 410 can be any sort of material including a plastic such as polyethylene, paper, or the like.
  • the vapor barrier generally has a transmission rate of O 2 in the range of .0003 to 70 cc / 100 in 2 / 24 hrs. It should be noted that the container 410 can be formed in any type of shape as needed or desired.
  • the packaging system 600 further includes a second container 630. As shown in FIG.
  • the second container 630 is a hard-sided, plastic bucket.
  • the second container 630 also includes a lockable lid 632 as shown in FIG. 6 A.
  • the second container 630 is not limited to a plastic bucket but could also be steel drum, trash can, dumpster, rolloff or the like.
  • the first container 410 and specifically the open end 412 are not provided with any type of feature, such as a feature for sealing the open end of the first container 410.
  • the shipping system 600 can be used for originally manufactured devices or to recycle spent devices. In one embodiment of the invention, originally manufactured devices are shipped using the packaging system 600. The originally manufactured devices are put to use or sold or set out for sale.
  • FIG. 6B shows another embodiment of a packaging system 602.
  • the system for packaging 602 can be used to ship or store products, such as mercury containing products.
  • the packaging system 602 includes the first container 610 having a vapor resistant film 620.
  • the container 610 also includes a zippered end or a sealable end.
  • the packaging system 602 also includes a second container 630 and a lockable lid 632. It should be noted that container 410 (shown in FIG. 6A) might have different dimensions than the container 610 shown in FIG. 6B.
  • the container 410 and the container 610 each fit within a second container 630 there may be a need for more or less material when providing a zippered end or sealable end on the container, such as the container 610 shown in FIG. 6B.
  • the container 610 is also provided with a vapor resistant barrier 620 having a rate OfO 2 flow in the range of 0.0003 to 70cc / 100 in 2 / 24 hrs.
  • a vapor resistant barrier can be foil attached to polyethylene as a laminate, a laminate of polyester and mylar or the like.
  • a vapor resistant barrier 620 can be provided on polyethylene or plastic such as a plastic bag, paper, such as a sack, cardboard or any other container.
  • FIG. 7 is a flow diagram of a method 700 of packing which employs the packaging systems 600, 602 shown in FIGs. 6A and 6B.
  • the method 700 includes placing a first container within a second container 710.
  • the first container includes a vapor resistant material.
  • a mercury- containing device or devices are placed in the first container, as depicted by reference numeral 712.
  • the mercury device can be any type of device. As shown in FIGs.
  • the mercury device is a battery or plurality of batteries.
  • the mercury device can be placed in the first containers 712 as a packaging method for originally packaging the products or as a packaging method for recycling spent mercury devices. Once the mercury devices are placed within the first container 610, 410, the open end of 412, 612 of the container 410, 610, respectively, is sealed. The open end 612 of the container 610 is sealed using a sealing device that is provided at the open end 612, in the case of the container 610.
  • sealing can include folding or rolling the open end, placing the folded end of the container 410 on top of the unfolded or unrolled portion of the container 410 and placing the lockable lid 632 onto the second container 630 to retain the folded end in place.
  • sealing does not necessarily mean a sealant or adhesive has to be used.
  • sealing can include providing an adhesive at the open end, clamping the open end or a folded open end or taping the open end 412 shut. Tape can also be used to retain a folded open end of a container 410. Once the open end is sealed, the second container is sealed as depicted by reference numeral 716.
  • the method 700 can be used either to return spent mercury devices to a selected location for recycling or can be used to package originally manufactured equipment for shipping to a store for resale or shipping to an end user.
  • the packaging systems 600, 602 can be used to ship out newly manufactured or originally manufactured equipment, emptied and then used to return or deliver spent mercury devices to a recycling center or back to the original manufacturer for recycling.
  • the packaging method 700 can be used to ship or store products.
  • FIG. 9 is a flowchart of an example embodiment of a packaging method 900 using the packaging system discussed above.
  • the system for packaging 900 can be used to ship or store products, such as mercury containing products.
  • the packaging method 900 includes placing a sealable enclosure on a pallet 908 and then placing mercury devices on the pallet within the sealable enclosure, as depicted by reference 910.
  • Mercury devices that are placed on the pallet may be devices that are already in containers or larger separate independent devices.
  • the sealable enclosure is then sealed as depicted by reference number 912.
  • the sealable enclosure includes a vapor resistant barrier.
  • the packaging method 900 can be used to ship or store products.
  • FIG. 10 is a perspective view of a system 1000 for packaging, according to an example embodiment.
  • the system for packaging 1000 can be used to ship or store products, such as mercury containing products.
  • the packaging system 1000 includes a first container 410 having a vapor resistant barrier 420 and having an open end 412.
  • the vapor resistant barrier has an O 2 transmission rate in the range of 0.0003 to 70 cc / 100 in 2 / 24 hrs. In some embodiments of the invention, the vapor resistant barrier has an O 2 transmission rate in the range of 0.0004 to 35 cc / 100 in 2 / 24 hrs.
  • the vapor resistant barrier can be any sort of vapor resistant barrier and the container can be any type of container.
  • the container has an open end 412 which can be sealed as mentioned previously sealing can be accomplished by any means such as merely folding the container near the open end 412 and retaining the folded end in the folded position.
  • the container may also take any form.
  • the container 410 may be a plastic like material, a paper like material, and may be flexible or inflexible, hi one example embodiment, the container 410 includes a bag that has a vapor resistant barrier 420.
  • the bag is formed of a foil laminate material that includes a layer of polyethylene plastic and a layer of foil vapor barrier.
  • the foil vapor barrier 420 is located on the outer surface of the container 410.
  • One such bag is available from PolyLam Products of a Williamsville, NY. Another bag maker is Armand Manufacturing Inc. of Henderson, NV.
  • the bag is made from stock that is obtained from Ludlow Coated Products, Inc. of Columbus, GA, U.S.A. as MIL- PRDF-131 J class 1 material.
  • Ludlow Coated Products refers to the material as foil-O-Rad 2175-B.
  • the stock material is also available from Cadillac Products as MIL-PRDF-13 IJ, type 1, class 1 material.
  • Cadillac Products refers to the material as CADPAC-N.
  • the bag is shown as loosely fitting around a second container 1010 it should be noted that the first container or bag 410 can be formed or dimensioned to closely fit about the container 1010.
  • a closed end 414 of the container 410 includes gussets so that it fits more closely around a square rectangular end of the container 1010.
  • the container 1010 fits within the container 410.
  • the container 1010 as shown in FIG. 10, is a corrugated box that receives one or more fluorescent lamps such as fluorescent lamps 1060, 1062.
  • the box 1010 is made of a single layer of corrugated cardboard. In some instances a fluorescent lamp 1060, 1062 may break during shipment.
  • the corrugated cardboard of the second container 1010 prevents glass material from a broken lamp 1060, 1062 from puncturing or cutting or otherwise forming an opening which will allow vapor to escape from the first container 410.
  • the second container 1010 does not necessarily have to be made of corrugated material it can be made of any type of material which will tend to prevent or reduce the possibility of a mercury device, such as fluorescent lamps 1060, 1062, from puncturing or otherwise causing an opening in the container 410 that includes the vapor resistant layer 420.
  • the box 1010 includes a set of flaps at each end 1012, 1014 of the box.
  • the flaps allow the box to be formed on site. In other words, the box 1010 can be shipped flat so as to save on space and then formed at the site where it will be loaded either with original lamps or spent fluorescent lamps 1060, 1062.
  • Each end of the box or second container 1010 is sealed. At least one end, such as end 1012 is sealed after the second container 1010 is loaded or filled with mercury devices such as fluorescent lamps 1060, 1062.
  • the box or second container 1010 can be of any size for holding various mercury devices. For example in one embodiment the box is sized so as to fit approximately 146 t-8 4 foot lamps. In another embodiment the box is sized to fit approximately 46 t-8 8 foot lamps. After the mercury devices, such as fluorescent lamps 1060, 1062 are placed in the box the open end 1012 is closed and sealed. The open end of the first container 410 that includes the vapor barrier 420 is then sealed by any of the means or in any fashion as discussed above
  • FIG. 11 is a flowchart of an example embodiment of a packaging method 1100 using the packaging system 1000 shown in FIG. 10.
  • the packaging method 1100 includes forming a box or second container, as depicted by reference number 1110. One open end of the container is then sealed as depicted by reference numeral 1112. The box or second container is then placed within the first container as depicted by reference numeral 1114. The box or second container is then loaded with mercury devices as depicted by reference numeral 1116. Mercury devices can include any type of mercury device but as shown in FIG. 10 the mercury devices are fluorescent lamps. Fluorescent lamps contain mercury. After the second container is loaded with mercury devices, the open end of the box is sealed as depicted by reference numeral 1118 and the first container is then sealed as depicted by reference numeral 1120.
  • the packaging method 1100 can be used to ship or store products.
  • FIG. 12 is a schematic diagram of a packaging system 1200 according to an example embodiment of the invention.
  • the system for packaging 1200 can be used to ship or store products, such as mercury containing products.
  • the packaging system 1200 includes the first container 410 having a vapor resistant barrier 420.
  • the first container 410 includes an open end 412 and a closed end 414.
  • the packaging system 1200 also includes a second container 1010 that has an open end 1012 and a closed end 1014.
  • the second container 1010 is positioned within the first container 410.
  • Mercury devices such as fluorescent lamps 1060, 1062 are positioned within the second container 1010.
  • the first container 410 and the second container 1010 fit within a third container 1210.
  • the third container includes an open end 1212 and a closed end 1214.
  • the third container is formed of a single layer of corrugated materials, such as cardboard.
  • the open end 1212 includes a set of flaps so that the open end 1212 may be closed.
  • the closed end 1214 also includes flaps.
  • the second container 1010 fits with an adequate clearance within the third container 1210 so that the first container 410 is pinched or substantially immobilized. The result is a double walled container having a vapor barrier between a first and a second wall, hi the alternative one can think of having a first corrugated box 1010 within a second corrugated box 1210 with a vapor barrier between the box 1010 and the boxl210.
  • the box 1010 can be thought of as an inner box while the box 1210 can be thought of as an outer box.
  • the box 1010 substantially prevents or inhibits waste materials or mercury devices from forming an opening in the container 410 having the vapor resistant barrier 420 while the outer box 1210 substantially prevents other outside elements from breaking the vapor barrier 420 of the first container 410.
  • the container including the vapor barrier substantially lessens the flow of gas into and out of the container. This reduction in the flow of gas not only contains various vapors but also is thought to further reduce the breakage of lamps within the containers.
  • the lamp tubes are vacuum sealed so when a lamp breaks, gas moves to equalize the pressure.
  • Using a vapor barrier substantially lessens the amount of gas, such as air, moving within the container or moving from outside the container to the inside of the container.
  • Gas movement can break glass so lessening the amount of gas movement also may lessen the amount of breakage of lamps within the container.
  • the gas trapped within first container also may act as a cushion. The cushioning effect of the trapped gas may further reduce breakage of lamps within the first container 410.
  • the first and second container are then slid into the outer box or third container 1210.
  • the first container 410, inner box or second container 1010, and outer box or third container 1210 can each or all be kept closed during storage.
  • mercury devices such as lamps are placed into and fill the inner box.
  • the inner box or second container 1010 is full all of the edges of the inner box and specifically the open end 1012 of the inner box are sealed.
  • the first container 410 and specifically the open end 412 of the first container 410 are also sealed, as depicted by reference numeral 1320.
  • FIG. 8 is a flow diagram of a method 1400 that includes packaging mercury with a vapor resistant material 1410, and storing the mercury at a selected location 1420.
  • Packaging mercury with a vapor resistant material 1410 includes packaging elemental mercury, packaging a waste material including mercury, packaging a product including mercury, packaging a waste product including mercury, or the like.
  • a vapor resistant barrier could be placed on the inside of the third container 1210 or outer box, and the vapor barrier could be provided on either the inside or the outside of the inner box or second container 1010.
  • the first container 410 includes a vapor resistant barrier.
  • the material used to form the vapor barrier is the same type of stock material as discussed above.

Abstract

A containment (1200) system includes a vapor resistant container (420) for a material (1060) , and a seal for the vapor resistant container (420) .

Description

SHIPPING AND STORAGE CONTAINERS
BACKGROUND
Human exposure to such biotoxins as lead, asbestos, pesticides and tobacco has been successfully reduced over the past few years. Now the risks of mercury exposure are coming to the attention of the public. Many people have been exposed to mercury through fish consumption, vaccinations and dental amalgam fillings. Potentially hazardous products that contain mercury such as thermometers, batteries and fluorescent lamps are a normal part of everyday life. These sources all contribute to chronic low-level exposure to a pervasive biotoxin that, like lead, pesticides or tobacco, can ruin people's health. Recent studies have linked mercury exposure to increased risk of heart attack in men, to autism and other neurological disorders in children, and to dangerous levels of mercury in the blood of women of childbearing age.
Mercury is unique in that in its solid form it actually has many of the properties of a liquid, including the ability to form a vapor. Mercury vapor can be harmful. Mercury vapor can cause effects in the central and peripheral nervous systems, lungs, kidneys, skin and eyes in humans. It is also mutagenic and affects the immune system. Acute exposure to high concentrations of mercury vapor causes severe respiratory damage, while chronic exposure to lower levels is primarily associated with central nervous system damage.
Chronic exposure to mercury is also associated with behavioral changes and alterations in peripheral nervous system. Pulmonary effects of mercury vapor inhalation include diffuse interstitial pneumonitis with profuse fibrinous exudation. Glomerular dysfunction and proteinuria have been observed in mercury-exposed workers. Chronic mercury exposure can cause discoloration of the cornea and lens, eyelid tremor and, rarely, disturbances of vision and extraocular muscles. Delayed hypersensitivity reactions have been reported in individuals exposed to mercury vapor. Mercury vapor is reported to be mutagenic in humans, causing aneuploidy in lymphocytes of exposed workers. A recent study of exposure to broken "low-mercury" lamps by the New Jersey Department of Environment Protection entitled "Release of Mercury from Broken Fluorescent Bulbs" demonstrated that elevated airborne levels of mercury exist in the vicinity of recently broken lamps, and most likely exceed occupational exposure limits. Because it is very likely that discarded fluorescent bulbs will be broken during conventional waste handling, there is a concern that occupational exposures to workers handling waste materials may occur. In the United States, 700 million fluorescent and other mercury- containing lamps are removed from service every year. Mercury-containing lamps were added to the Federal Universal Waste Regulations in January of 2000. Other mercury-containing products that are regulated as hazardous waste include dental amalgam, batteries, thermostats, medical devices such thermometers and blood pressure cuffs, and electronics with switches and other mercury components. Regulations govern their packaging, transport and disposal. Most waste haulers and landfills will no longer accept any type of mercury product, including low-mercury lamps so products containing mercury cannot be merely thrown away. Rather, these items must be removed from the normal waste stream and recycled or returned for special handling to minimize environmental impact. Generators of mercury waste are increasingly concerned about the potential long-term and short-term health risks posed by exposure to such materials of employees handling packages with hazardous waste. Many carriers are reluctant to ship hazardous materials due to concerns that some items that contain hazardous materials are fragile and may be prone to breakage during shipment.
BRIEF DESCRIPTION OF THE FIGURES
Embodiments of the present invention are illustrated by way of example and not limitation in the Figures of the accompanying drawings in which:
FIG. 1 shows a user recycling waste, according to an example embodiment of a waste recycling process.
FIG. 2 is a block diagram giving an overview of an example embodiment of a waste recycling system, corresponding to the waste recycling process illustrated in FIG. 1.
FIG. 3 shows examples of products that may be shipped using the packaging system and method as either new products or during recycling, according to an example embodiment. FIG. 4 is a schematic diagram of a system for packaging, according to an example embodiment.
FIG. 5 is a flow chart of an example embodiment of the packaging method using the packaging system shown in FIG. 4.
FIG. 6A is a schematic diagram of a system for packaging, according to an example embodiment. FIG. 6B is a schematic diagram of a system for packaging, according to an example embodiment. FIG. 7 is a flow chart of an example embodiment of the packaging method using the packaging system shown in FIG. 6. FIG. 8 is a flow diagram of a method 1400 that includes packaging mercury, according to an example embodiment.
FIG. 9 is a flow chart of an example embodiment of a packaging method using the packaging system shown in FIG. 8.
FIG. 10 is a perspective view of a system for packaging, according to an example embodiment. FIG. 11 is a flow chart of an example embodiment of a packaging method using the packaging system shown in FIG. 10. FIG. 12 is a schematic diagram of a system for packaging, according to an example embodiment.
FIG. 13 is a flow chart of an example embodiment of the packaging method using the packaging system shown in FIG. 12. DETAILED DESCRIPTION
In the following detailed description, reference is made to the accompanying drawings that form a part hereof. These drawings show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural or logical changes can be made without departing from the scope of the present invention.
The present invention is directed to several aspects of a convenient, safe and efficient method and system for packaging either originally manufactured products or wastes that need to be recycled at a recycling location. The originally manufactured products generally include elements that, after expiration of the useful life of the product, are generally termed waste. AU manufactured products are potentially subject to rough handling or extreme conditions during storage and shipping. Breakage, in some instances, could result in exposure to a harmful element or component that is part of the originally manufactured product. The packaging system and method discussed herein is useful both in recycling spent products as well as original shipping containers. Set forth below is one embodiment of a recycling method and system in which the inventive packaging method and system are used. FIG. 1 shows a user recycling waste, according to an example embodiment of a waste recycling process 100. First, a user accesses online ordering and places an order for various types of empty containers 102. The empty containers 400 (shown in FIG. 4) include one or more of the example embodiments of the method and system for packaging that is further detailed below. The method and system of packaging includes containers 400 (shown in FIG. 4) that are specially designed or adapted to hold at least one kind of waste. (Various kinds of waste are illustrated in FIG. 3.) One example container is a box that can safely accommodate 4-foot - fluorescent tubes. Another example container 600 is a heavy duty, locking-lid bucket with handles for recycling mercury-containing products such as batteries or thermostats. The order may be placed over a network, such as the Internet or by phone or fax. Alternatively, the order may be part of an automatic reorder program. These containers are then shipped to the user 104, who puts waste, such as fluorescent lamps into the containers 106. The filled waste containers are picked up by one or more shippers and taken to waste recycling facilities 108. After the waste is recycled at the recycling facilities 110, proof of recycling is available to the user 112. FIG. 2 is a block diagram giving an overview 200 of an example embodiment of a waste recycling system, corresponding to the waste recycling process 100, illustrated in FIG. 1. FIG. 2 shows the basic communication between the user 202 and the waste recycling system 204 to carry out the process 100 of FIG. 1. A waste recycling process describes how it is done, while a waste recycling system describes what is doing it. In FIG. 1 , when the user places an order for various types of empty waste containers 102, the order is communicated from the user 202 to the waste recycling system 204, as shown in FIG. 2. When, in FIG. 1, these containers are shipped to the user 104, the waste recycling system 204 arranges the shipping for the user 202. When the user fills the containers 106 and returns them 108, they are returned to the waste recycling system 204 from the user 202. When recycling is complete 110, proof of recycling 112 is communicated from the waste recycling system 204 to the user 202. The assignee of this patent also has a patent application (U.S. Serial Number 09/821,947) that further details different example embodiments and systems for recycling, which is hereby incorporated by reference.
As mentioned above, the packaging system and method discussed herein is useful both in recycling spent products as well as original shipping containers. The containers can also be used to store a product or products before or after shipping the containers. In one embodiment of the invention, it is contemplated that originally manufactured products could be removed from an original shipping container as they are used. Once the original shipping container is empty, spent products could be placed or stored in the shipping container and returned for recycling. With respect to the original shipping containers that are reused, the user would not have to place an order for various types of empty waste containers 102, have the order communicated from the user 202 to the waste recycling system 204. FIG. 3 shows examples of products that may be shipped or stored as new products or that may be shipped for the purpose of recycling and that use the system and method for packaging. In various embodiments, the method and system for packaging may be used to ship or store different kinds of products 300, such as lamps 302, batteries 304, lighting ballasts 306, computers 308, printers 310, televisions 312, electrical equipment 314, thermostats 316, thermometers 318, relays 320, switches 322, or other products containing mercury 324. The system and method of packaging may also be used to ship mercury in its elemental form. Some additional mercury containing products are manometers, dental amalgams, mercury spill kits, calcium phosphate, ignitron tubes, telephone switches, rectifiers, activated carbon, and mercury contaminated soil. These products and similar mercury containing products or waste will be termed as a mercury device. The packaging system and method may also be used to ship other products or recyclable waste 326 other than mercury devices. Of course, the products and wastes that can be shipped are subject to various laws and regulations in various jurisdictions. These laws and regulations may also change over time so some of the products that currently are designated as not shippable may be designated as shippable in the future. Some laws or regulations require certain types of containers for amounts by weight of a material. The shipping and storage container and systems and methods for packaging described herein are not meant to supplant laws or regulations related to shipping products but can be used to ship products within the parameters of the laws and regulations in a jurisdiction.
FIG. 4 is a schematic diagram of a system for packaging 400, according to an example embodiment of the invention. The system for packaging 400 can be used to ship or store products, such as mercury containing products. The system for packaging includes a container 410 that includes a vapor resistant barrier 420. A vapor resistant barrier has an O2 transmission rate in the range of 0.0003 to 70 cc / 100 in2/ 24 hrs. hi some embodiments of the invention, the vapor resistant barrier has an O2 transmission rate in the range of 0.000 to 35 cc / 100 in2/ 24 hrs. The vapor resistant barrier 420 can be any sort of vapor resistant barrier and the container can be any type of container 410. The container 410 has an open end 412 which can be sealed. Sealing can be accomplished by any means, including folding the portion of the container 410 proximate the open end 412. The folded portion of the container 410 may be retained with an object that contacts the folded portion, or may be retained with an adhesive, such as various types of tape, hi another embodiment of the invention, the end can be provided with a fastener for fastening one side of the container to another side of the container. One type of fastener includes a channel and channel-locking member that is pressed to engage the channel with the channel locking member and form a seal. This is commonly referred to as zipping the container to a sealed position. In some embodiments, a zipper element is moved in the channel and the channel-locking member. The zipper element can be moved between a sealed position and an unsealed position. Li one example embodiment, the container 410 includes a bag that has a vapor resistant barrier 420. The bag is formed of a foil laminate material that includes a layer of polyethylene plastic and a layer including a foil vapor barrier. The foil vapor barrier 420 is located on the outer surface of the bag. One such bag is available from Poly Lam Products, Corp. of Williamsville, NY. Another bag maker is Armand Manufacturing Inc. of Henderson, NV. The bags are made from stock that is obtained form Ludlow Coated Products, Inc. of Columbus, GA, USA as MIL-PRDF-131J Class 1 type material. Ludlow Coated Products refers to the material as Foil-O-Rad 2175-B. The stock material for the bag is also available from Cadillac Products Packaging Company of Troy, MI as MIL- PRDF-13 IJ, Type 1, Class 1 material. Cadillac Products refers to the material as CAD PAK N. The bag is dimensioned to enclose a mercury device or a plurality of mercury devices.
It should be noted that other bags also include vapor resistant barriers 410. The other bags are formed of material include vapor resistant barrier made of products such as polyester, mylar, or nylon. The vapor resistant bags, when used as part of the apparatus described herein and according to methods set forth herein, keep mercury levels below specified limits of 0.1 mg/meter3 eight hour time weighted average mercury permissible exposure limit .
FIG. 5 is a flow chart of an example embodiment of the packaging method 500 using the packaging system 400 shown in FIG. 4. The packaging method 500 includes placing a mercury device in a container, as depicted by reference 510 and sealing the open end of the container, as depicted by reference numeral 512. Sealing the open end of the container can include folding the open end of the container and then placing an object over the folded end to retain the folded end in position, or can include folding the open end of the container and placing an adhesive such as a tape product over the fold. Sealing the open end can also include bonding one side of the open end to the other side of the open end using an adhesive or a tape or thermally bonding the material of the area near the open end to one another. In other embodiments, sealing the open end 512 can include engaging a channel with a mating pertruperence, such as closing a zip lock type enclosure, hi some embodiments of the invention the container with the mercury devices therein is then shipped, as depicted by reference 514. The packaging method 500 can be used to ship or store products. FIG. 6A and 6B are isometric views of a system for packaging, according to another example embodiment. Many of the elements shown in FIG. 6 A are the same as those shown in FIG. 6B. Accordingly, similar or same elements carry the same reference numbers in FIG. 6 A and 6B. The system for packaging 600 can be used to ship or store products, such as mercury containing products. The packaging system 600 includes the container 410 having an open end 412. The container 410 also includes a vapor resistant barrier 420. In one embodiment of the invention the container 410 and the vapor resistant material 420 are made of a laminate of polyethylene in foil that is available from Ludlow Products or Cadillac Products. In other embodiments of the invention a mylar/polyester can be used to form the container 410 and the vapor barrier 420. The container 410 can be any sort of material including a plastic such as polyethylene, paper, or the like. The vapor barrier generally has a transmission rate of O2 in the range of .0003 to 70 cc / 100 in2/ 24 hrs. It should be noted that the container 410 can be formed in any type of shape as needed or desired. The packaging system 600 further includes a second container 630. As shown in FIG. 6 A the second container 630 is a hard-sided, plastic bucket. The second container 630 also includes a lockable lid 632 as shown in FIG. 6 A. It should be noted that the second container 630 is not limited to a plastic bucket but could also be steel drum, trash can, dumpster, rolloff or the like. The first container 410 and specifically the open end 412 are not provided with any type of feature, such as a feature for sealing the open end of the first container 410. The shipping system 600 can be used for originally manufactured devices or to recycle spent devices. In one embodiment of the invention, originally manufactured devices are shipped using the packaging system 600. The originally manufactured devices are put to use or sold or set out for sale. Devices that need to be recycled can then be placed into the shipping system 600 for return to a recycling center or to the original manufacturer. FIG. 6B shows another embodiment of a packaging system 602. The system for packaging 602 can be used to ship or store products, such as mercury containing products. The packaging system 602 includes the first container 610 having a vapor resistant film 620. The container 610 also includes a zippered end or a sealable end. The packaging system 602 also includes a second container 630 and a lockable lid 632. It should be noted that container 410 (shown in FIG. 6A) might have different dimensions than the container 610 shown in FIG. 6B. Although the container 410 and the container 610 each fit within a second container 630 there may be a need for more or less material when providing a zippered end or sealable end on the container, such as the container 610 shown in FIG. 6B. Again the container 610 is also provided with a vapor resistant barrier 620 having a rate OfO2 flow in the range of 0.0003 to 70cc / 100 in2/ 24 hrs. A vapor resistant barrier can be foil attached to polyethylene as a laminate, a laminate of polyester and mylar or the like. In addition, a vapor resistant barrier 620 can be provided on polyethylene or plastic such as a plastic bag, paper, such as a sack, cardboard or any other container. Simply put, the container 410, 610 is not limited to any particular material and can be a plastic, such as polyethylene, paper, or cardboard or the like. It is also contemplated that the container 410, 610 could also be another hard-sided bucket made of any of a number of materials. FIG. 7 is a flow diagram of a method 700 of packing which employs the packaging systems 600, 602 shown in FIGs. 6A and 6B. The method 700 includes placing a first container within a second container 710. As discussed above, the first container includes a vapor resistant material. A mercury- containing device or devices are placed in the first container, as depicted by reference numeral 712. The mercury device can be any type of device. As shown in FIGs. 6A and 6B the mercury device is a battery or plurality of batteries. The mercury device can be placed in the first containers 712 as a packaging method for originally packaging the products or as a packaging method for recycling spent mercury devices. Once the mercury devices are placed within the first container 610, 410, the open end of 412, 612 of the container 410, 610, respectively, is sealed. The open end 612 of the container 610 is sealed using a sealing device that is provided at the open end 612, in the case of the container 610. When the container 410 has a open end 412, sealing can include folding or rolling the open end, placing the folded end of the container 410 on top of the unfolded or unrolled portion of the container 410 and placing the lockable lid 632 onto the second container 630 to retain the folded end in place. In other words sealing does not necessarily mean a sealant or adhesive has to be used. In an alternative example embodiment, sealing can include providing an adhesive at the open end, clamping the open end or a folded open end or taping the open end 412 shut. Tape can also be used to retain a folded open end of a container 410. Once the open end is sealed, the second container is sealed as depicted by reference numeral 716. Again the method 700 can be used either to return spent mercury devices to a selected location for recycling or can be used to package originally manufactured equipment for shipping to a store for resale or shipping to an end user. In some embodiments of the invention, the packaging systems 600, 602 can be used to ship out newly manufactured or originally manufactured equipment, emptied and then used to return or deliver spent mercury devices to a recycling center or back to the original manufacturer for recycling. The packaging method 700 can be used to ship or store products.
Yet another example embodiment of a packaging system used to ship or store products, such as mercury containing products or hazardous material, , includes a pallet and a zippered or sealable enclosure of sufficient size to enclose the mercury containing products or hazardous material on the pallet. Hazardous material includes hazardous products or hazardous waste. In some example embodiments, the zippered or sealable enclosure is a bag. The zippered or sealable enclosure is provided with the vapor resistant layer. The zippered or sealable enclosure is placed on the pallet. Mercury containing products or hazardous material is then placed on the pallet. Once the mercury containing material or the hazardous material is placed on the pallet, the zippered or sealable enclosure is positioned around the mercury containing material or the hazardous material. The zippered or sealable enclosure is then sealed. In this way, the mercury containing material or hazardous material placed on the pallet is sealed.
FIG. 9 is a flowchart of an example embodiment of a packaging method 900 using the packaging system discussed above. The system for packaging 900 can be used to ship or store products, such as mercury containing products. The packaging method 900 includes placing a sealable enclosure on a pallet 908 and then placing mercury devices on the pallet within the sealable enclosure, as depicted by reference 910. Mercury devices that are placed on the pallet may be devices that are already in containers or larger separate independent devices.
The sealable enclosure is then sealed as depicted by reference number 912. The sealable enclosure includes a vapor resistant barrier. The packaging method 900 can be used to ship or store products.
FIG. 10 is a perspective view of a system 1000 for packaging, according to an example embodiment. The system for packaging 1000 can be used to ship or store products, such as mercury containing products. The packaging system 1000 includes a first container 410 having a vapor resistant barrier 420 and having an open end 412. The vapor resistant barrier has an O2 transmission rate in the range of 0.0003 to 70 cc / 100 in2/ 24 hrs. In some embodiments of the invention, the vapor resistant barrier has an O2 transmission rate in the range of 0.0004 to 35 cc / 100 in2/ 24 hrs. The vapor resistant barrier can be any sort of vapor resistant barrier and the container can be any type of container. The container has an open end 412 which can be sealed as mentioned previously sealing can be accomplished by any means such as merely folding the container near the open end 412 and retaining the folded end in the folded position. The container may also take any form. The container 410 may be a plastic like material, a paper like material, and may be flexible or inflexible, hi one example embodiment, the container 410 includes a bag that has a vapor resistant barrier 420. The bag is formed of a foil laminate material that includes a layer of polyethylene plastic and a layer of foil vapor barrier. The foil vapor barrier 420 is located on the outer surface of the container 410. One such bag is available from PolyLam Products of a Williamsville, NY. Another bag maker is Armand Manufacturing Inc. of Henderson, NV. The bag is made from stock that is obtained from Ludlow Coated Products, Inc. of Columbus, GA, U.S.A. as MIL- PRDF-131 J class 1 material. Ludlow Coated Products refers to the material as foil-O-Rad 2175-B. The stock material is also available from Cadillac Products as MIL-PRDF-13 IJ, type 1, class 1 material. Cadillac Products refers to the material as CADPAC-N.
Although the bag is shown as loosely fitting around a second container 1010 it should be noted that the first container or bag 410 can be formed or dimensioned to closely fit about the container 1010. In one embodiment of the invention a closed end 414 of the container 410 includes gussets so that it fits more closely around a square rectangular end of the container 1010. The container 1010 fits within the container 410. The container 1010, as shown in FIG. 10, is a corrugated box that receives one or more fluorescent lamps such as fluorescent lamps 1060, 1062. The box 1010 is made of a single layer of corrugated cardboard. In some instances a fluorescent lamp 1060, 1062 may break during shipment. The corrugated cardboard of the second container 1010 prevents glass material from a broken lamp 1060, 1062 from puncturing or cutting or otherwise forming an opening which will allow vapor to escape from the first container 410. The second container 1010 does not necessarily have to be made of corrugated material it can be made of any type of material which will tend to prevent or reduce the possibility of a mercury device, such as fluorescent lamps 1060, 1062, from puncturing or otherwise causing an opening in the container 410 that includes the vapor resistant layer 420.
The box 1010 includes a set of flaps at each end 1012, 1014 of the box. The flaps allow the box to be formed on site. In other words, the box 1010 can be shipped flat so as to save on space and then formed at the site where it will be loaded either with original lamps or spent fluorescent lamps 1060, 1062. Each end of the box or second container 1010 is sealed. At least one end, such as end 1012 is sealed after the second container 1010 is loaded or filled with mercury devices such as fluorescent lamps 1060, 1062. The box or second container 1010 can be of any size for holding various mercury devices. For example in one embodiment the box is sized so as to fit approximately 146 t-8 4 foot lamps. In another embodiment the box is sized to fit approximately 46 t-8 8 foot lamps. After the mercury devices, such as fluorescent lamps 1060, 1062 are placed in the box the open end 1012 is closed and sealed. The open end of the first container 410 that includes the vapor barrier 420 is then sealed by any of the means or in any fashion as discussed above.
FIG. 11 is a flowchart of an example embodiment of a packaging method 1100 using the packaging system 1000 shown in FIG. 10. The packaging method 1100 includes forming a box or second container, as depicted by reference number 1110. One open end of the container is then sealed as depicted by reference numeral 1112. The box or second container is then placed within the first container as depicted by reference numeral 1114. The box or second container is then loaded with mercury devices as depicted by reference numeral 1116. Mercury devices can include any type of mercury device but as shown in FIG. 10 the mercury devices are fluorescent lamps. Fluorescent lamps contain mercury. After the second container is loaded with mercury devices, the open end of the box is sealed as depicted by reference numeral 1118 and the first container is then sealed as depicted by reference numeral 1120. The packaging method 1100 can be used to ship or store products.
FIG. 12 is a schematic diagram of a packaging system 1200 according to an example embodiment of the invention. The system for packaging 1200 can be used to ship or store products, such as mercury containing products. The packaging system 1200 includes the first container 410 having a vapor resistant barrier 420. The first container 410 includes an open end 412 and a closed end 414. The packaging system 1200 also includes a second container 1010 that has an open end 1012 and a closed end 1014. The second container 1010 is positioned within the first container 410. Mercury devices such as fluorescent lamps 1060, 1062 are positioned within the second container 1010. The first container 410 and the second container 1010 fit within a third container 1210. The third container includes an open end 1212 and a closed end 1214. Each of the open end 1212 and the closed end 1214 are sealable. The dimensions of the third container 1210 can be of any of dimension however in one particular embodiment the third container 1210 has dimensions that are close enough to the second container 1010 so that the first container 410 may be pinched or fit without moving the first container 410. In other words, there is a clearance between the first container 1010 and a second container 1210 that is sufficient to allow relatively little movement of the first container 410 with respect to either the second container 1010 or the third container 1210.
In one example embodiment, the third container is formed of a single layer of corrugated materials, such as cardboard. The open end 1212 includes a set of flaps so that the open end 1212 may be closed. The closed end 1214 also includes flaps. In one example embodiment, the second container 1010 fits with an adequate clearance within the third container 1210 so that the first container 410 is pinched or substantially immobilized. The result is a double walled container having a vapor barrier between a first and a second wall, hi the alternative one can think of having a first corrugated box 1010 within a second corrugated box 1210 with a vapor barrier between the box 1010 and the boxl210. The box 1010 can be thought of as an inner box while the box 1210 can be thought of as an outer box. The box 1010 substantially prevents or inhibits waste materials or mercury devices from forming an opening in the container 410 having the vapor resistant barrier 420 while the outer box 1210 substantially prevents other outside elements from breaking the vapor barrier 420 of the first container 410. The container including the vapor barrier substantially lessens the flow of gas into and out of the container. This reduction in the flow of gas not only contains various vapors but also is thought to further reduce the breakage of lamps within the containers. The lamp tubes are vacuum sealed so when a lamp breaks, gas moves to equalize the pressure. Using a vapor barrier substantially lessens the amount of gas, such as air, moving within the container or moving from outside the container to the inside of the container. Gas movement can break glass so lessening the amount of gas movement also may lessen the amount of breakage of lamps within the container. In addition, the gas trapped within first container also may act as a cushion. The cushioning effect of the trapped gas may further reduce breakage of lamps within the first container 410.
FIG. 13 is a flowchart of an example embodiment of a packaging method 1300 using the packaging system 1200 shown in FIG. 12. As shown in FIG. 13 the initial step is to form the inner package 1010 and specifically to form the closed end 1014 of the inner package 1010 by securely taping and sealing all of the edges of a designated end of the inner box or box 1010. Next the inner box or second container 1010 is fit within or slid into the first container 410 that includes the vapor barrier 420, as depicted by the illustration found having the reference numeral 1312. The outer box or container 1210 and specifically the closed end 1212 of the outer box is formed by securely taping and sealing all edges of one end of the outer box or third container 1210, as depicted by reference numeral 1314. As depicted by reference numeral 1316 the first and second container are then slid into the outer box or third container 1210. The first container 410, inner box or second container 1010, and outer box or third container 1210 can each or all be kept closed during storage. As depicted by reference numeral 1318 mercury devices such as lamps are placed into and fill the inner box. Once the inner box or second container 1010 is full all of the edges of the inner box and specifically the open end 1012 of the inner box are sealed. The first container 410 and specifically the open end 412 of the first container 410 are also sealed, as depicted by reference numeral 1320. Once the inner box or second container 1010 as well as the first container 410 are sealed the open end 1212 of the outer box or third container is then sealed, as depicted by reference numeral 1322. This is merely one embodiment of the method 1300 for using the packaging system 1200 shown in FIG. 12. The packaging method 1300 can be used to ship or store products. FIG. 8 is a flow diagram of a method 1400 that includes packaging mercury with a vapor resistant material 1410, and storing the mercury at a selected location 1420. Packaging mercury with a vapor resistant material 1410 includes packaging elemental mercury, packaging a waste material including mercury, packaging a product including mercury, packaging a waste product including mercury, or the like. Packaging mercury with a vapor resistant material 1410 includes packaging mercury in a bag that includes vapor resistant material, packaging mercury in a wrap that includes vapor resistant material, lining a container with a vapor resistant material, or the like. It should be understood that there is no limitation on the size of the container. It should also be pointed out that the method 1400 can be used for shipping or storing of materials or for a combination of shipping and storing of materials. For example, the container could be as large as a dumpster or waste roll-off, or could be as small as a container for shipping new batteries or lamps.. It should be noted when looking at both FIGs. 12 and 13 that any one of the first container 410, second container 1010 and third container 1210 can be provided with a vapor resistant barrier. For example, a vapor resistant barrier could be placed on the inside of the third container 1210 or outer box, and the vapor barrier could be provided on either the inside or the outside of the inner box or second container 1010. As shown the first container 410 includes a vapor resistant barrier. The material used to form the vapor barrier is the same type of stock material as discussed above.
It is to be understood that the above description it is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those skilled in the art, upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the mil scope of equivalents to which such claims are entitled.
Although the present invention has been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the disclosed subject matter. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.

Claims

1. A container comprising: a first container; a substantially vapor resistant enclosure enclosing the first container; and a second container, wherein the first container and the gas impermeable enclosure fit within the second container.
2. The container of claim 1 wherein the substantially vapor resistant enclosure includes a bag.
3. The container of claim 1 wherein the substantially vapor resistant enclosure includes a sealable bag including a laminate of foil and poly.
4. The container of claim 1 wherein the substantially vapor resistant enclosure includes a bag including a laminate of foil and poly, the substantially vapor resistant enclosure further comprising a zipper type seal.
5. The container of claim 4 further comprising an adhesive, wherein the bag is sealed by folding an open end and placing the adhesive over the folded end.
6. The container of claim 4 further comprising an adhesive, wherein the bag is sealed by folding an open end a plurality of times and placing the adhesive over the folded end.
7. The container of claim 1 wherein the substantially vapor resistant enclosure is sized to fit the first container.
8. The container of claim 1 wherein the substantially vapor resistant enclosure has an O2 transmission rate in the range of 0.0003 to 70 cc / 100 in2/ 24 hrs .
9. The container of claim 1 wherein the substantially vapor resistant enclosure has an O2 transmission rate in the range of 0.0004 to 35 cc / 100 in2/ 24 hrs.
10. The container of claim 1 wherein the substantially vapor resistant enclosure has an O2 transmission rate in the range of 0.0005 to 10 cc / 100 in2/ 24 hrs.
11. A containment system comprising: a vapor resistant container for a hazardous material; and a seal for the vapor resistant container.
12. The containment system of claim 11 wherein the hazardous material includes mercury.
13. The containment system of claim 11 wherein the hazardous material includes mercury waste.
14. The containment system of claim 11 wherein the hazardous material includes mercury products.
15. The containment system of claim 11 wherein the substantially vapor resistant enclosure has an O2 transmission rate in the range of 0.0003 to 70 cc / 100 in2/ 24 hrs .
16. The containment system of claim 11 wherein the substantially vapor resistant enclosure has an O2 transmission rate in the range of 0.0004 to 35 cc / 100 in2/ 24 hrs.
17. The containment system of claim 11 wherein the substantially vapor resistant enclosure has an O2 transmission rate in the range of 0.0005 to 10 cc / 100 in2/ 24 hrs.
18. The containment system of claim 11 wherein the resistant container includes a bag having a first layer of foil and a second layer of poly.
19. The containment system of claim 11 wherein the resistant container further comprises a second container, the sealed vapor resistant container positioned within the second container.
20. The containment system of claim 19 wherein the resistant container includes a bag having a first layer of foil and a second layer of poly, the bag including gussets.
21. The containment system of claim 19 further including a third container adapted to fit over a mercury device, the third container fitting within the second container, the vapor resistant container fitting between the third container and the second container.
22. The containment system of claim 21 wherein the vapor resistant container includes a bag, the third container made of a material to prevent puncturing of the vapor resistant material by the mercury device.
23. The containment system of claim 22 wherein the third container substantially prevents relative motion between the mercury device and the bag.
24. A method for recycling mercury comprising: placing mercury in a substantially vapor resistant container; and shipping the mercury to a selected location.
25. The method of claim 24 wherein the mercury is part of a waste material.
26. The method of claim 24 wherein the mercury is part of a mercury product.
27. The method of claim 24 wherein the substantially vapor resistant container has an O2 transmission rate in the range of 0.0003 to 70 cc / 100 in2/ 24 hrs .
28. The method of claim 24 wherein the substantially vapor resistant container has an O2 transmission rate in the range of 0.0004 to 35 cc / 100 in2/ 24 hrs.
29. The method of claim 24 wherein the substantially vapor resistant container has an O2 transmission rate in the range of 0.0005 to 10 cc / 100 in2/ 24 hrs.
30. The method of claim 24 wherein placing the mercury containing product in a substantially vapor resistant container further comprises: placing mercury in a puncture resistant container; and placing the puncture resistant container within a bag having a substantially vapor resistant barrier.
31. The method of claim 30 further comprising sealing the bag having a substantially vapor resistant barrier.
32. The method of claim 31 wherein sealing the bag having a substantially vapor resistant barrier further includes folding an open end of the bag.
33. The method of claim 31 wherein sealing the bag further includes clipping the folded end.
34. The method of claim 31 wherein sealing the bag further includes adhering the folded end.
35. The method of claim 31 wherein sealing the bag having a vapor resistant barrier further includes zipping an open end of the bag to a sealed position.
36. The method of claim 30 further comprising placing the puncture resistant container and the bag in a second puncture resistant container.
37. The method of claim 36 further comprising sealing the second puncture resistant container.
38. The method of claim 36 further comprising shipping the second puncture resistant container that includes a mercury device within a first container and positioned in a vapor resistant bag.
39. A method comprising: placing mercury in a vapor resistant container; and storing the mercury at a selected location.
40. The method of claim 39 wherein the mercury is part of a mercury product.
41. The method of claim 39 wherein the mercury is part of a mercury waste material.
42. A method comprising: packaging mercury with a vapor resistant material; and storing the mercury at a selected location.
43. The method of claim 42 wherein packaging mercury with a vapor resistant material includes packaging elemental mercury.
44. The method of claim 42 wherein packaging mercury with a vapor resistant material includes packaging a waste material including mercury.
45. The method of claim 42 wherein packaging mercury with a vapor resistant material includes packaging a product including mercury.
46. The method of claim 42 wherein packaging mercury with a vapor resistant material includes packaging a waste product including mercury.
47. The method of claim 42 wherein packaging mercury with a vapor resistant material includes packaging mercury in a bag that includes vapor resistant material.
48. The method of claim 42 wherein packaging mercury with a vapor resistant material includes packaging mercury in a wrap that includes vapor resistant material.
PCT/US2006/013825 2005-04-13 2006-04-13 Shipping and storage containers WO2006113328A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE200660016755 DE602006016755D1 (en) 2005-04-13 2006-04-13 Container system for dangerous glass lamps
MX2007012661A MX2007012661A (en) 2005-04-13 2006-04-13 Shipping and storage containers.
EP20060750007 EP1868921B1 (en) 2005-04-13 2006-04-13 Container system for hazardous glass lamps
DK06750007T DK1868921T3 (en) 2005-04-13 2006-04-13 Container system for hazardous glass lamps
CA2603849A CA2603849C (en) 2005-04-13 2006-04-13 Shipping and storage containers
AT06750007T ATE480479T1 (en) 2005-04-13 2006-04-13 CONTAINER SYSTEM FOR DANGEROUS GLASS LAMPS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/105,181 2005-04-13
US11/105,181 US7631758B2 (en) 2005-04-13 2005-04-13 Shipping and storage containers

Publications (2)

Publication Number Publication Date
WO2006113328A2 true WO2006113328A2 (en) 2006-10-26
WO2006113328A3 WO2006113328A3 (en) 2007-01-04

Family

ID=35308375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/013825 WO2006113328A2 (en) 2005-04-13 2006-04-13 Shipping and storage containers

Country Status (10)

Country Link
US (3) US7631758B2 (en)
EP (1) EP1868921B1 (en)
AT (1) ATE480479T1 (en)
CA (1) CA2603849C (en)
DE (1) DE602006016755D1 (en)
DK (1) DK1868921T3 (en)
ES (1) ES2351615T3 (en)
MX (1) MX2007012661A (en)
PT (1) PT1868921E (en)
WO (1) WO2006113328A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1925566A1 (en) * 2006-11-21 2008-05-28 Christian Breuer Packaging for dangerous goods, particularly for inflammable substances
US8047367B2 (en) 2005-04-13 2011-11-01 Vaporlok Technology, Llc Shipping and storage containers

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8393898B2 (en) * 2004-04-22 2013-03-12 Charles McCary Apparatus for filtering dental solid waste
US20070225540A1 (en) * 2006-03-27 2007-09-27 Kelly Laurence C Method and apparatus for mitigating mercury vapor emissions during transportation of mercuty containing universal waste
US9038829B2 (en) * 2007-10-07 2015-05-26 Brown University Nanostructured sorbent materials for capturing environmental mercury vapor
US20090095133A1 (en) * 2007-10-12 2009-04-16 Maggio Edward T Methods, compositions, and devices for safe storage, transport, disposal and recycling of mercury containing light bulbs
US8491865B2 (en) * 2008-02-28 2013-07-23 Brown University Nanostructured sorbent materials for capturing environmental mercury vapor
US20100056305A1 (en) * 2008-08-26 2010-03-04 Hebert Edmund A Recyclable golf ball and method therefor
US20110049045A1 (en) * 2008-10-07 2011-03-03 Brown University Nanostructured sorbent materials for capturing environmental mercury vapor
WO2011100833A1 (en) 2010-02-19 2011-08-25 Michael Colligan Reusable, recyclable, collapsible fluorescent tube container
US8641693B2 (en) * 2010-05-18 2014-02-04 Kci Licensing, Inc. Reduced-pressure canisters and methods for recycling
US10157689B2 (en) 2014-12-17 2018-12-18 Savannah River Nuclear Solutions, Llc Reinforced radiological containment bag
US10340049B2 (en) 2016-08-04 2019-07-02 Savannah River Nuclear Solutions, Llc Alpha/beta radiation shielding materials

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL27648C (en)
GB191510508A (en) 1914-10-13 1915-10-07 Arthur John Smith Improvements in Paper Bag Seals.
US1427351A (en) * 1922-02-01 1922-08-29 Goldsmith Bros Smelting & Refi Container for mercury
GB951191A (en) 1960-02-22 1964-03-04 Entones Ltd Improvements in metal containers for refined mercury
US3999653A (en) * 1975-03-11 1976-12-28 The Dow Chemical Company Packaging for hazardous liquids
US4058479A (en) * 1975-05-12 1977-11-15 Aerojet-General Corporation Filter-lined container for hazardous solids
US4182447A (en) * 1977-07-27 1980-01-08 Ira Kay Device for storing, transporting and mixing reactive ingredients
US4712711A (en) * 1982-03-05 1987-12-15 Occidental Chemical Corporation Container for transporting hazardous chemicals
US4416382A (en) * 1982-03-22 1983-11-22 Bethlehem Apparatus Company, Inc. Mercury container
IT1183613B (en) * 1985-05-13 1987-10-22 Anibiotici Cristallizzati Ster COMPOSITE CONTAINER FOR SOLID STERILE PRODUCTS
JPS62265600A (en) * 1986-05-12 1987-11-18 秩父セメント株式会社 Pressure regulator for storage-transport-disposal vessel
US5199795A (en) * 1988-10-14 1993-04-06 Rousseau Research, Inc. Packaging for shipment and containment of hazardous wastes
US4978028A (en) * 1989-01-23 1990-12-18 American Sterilizer Company Disposable biohazardous waste material container
US4968624A (en) * 1989-04-25 1990-11-06 Baxter International Inc. Large volume flexible containers
US4964509A (en) * 1990-02-09 1990-10-23 Minnesota Mining And Manufacturing Co. Universal shipping container for hazardous liquids
US5664112A (en) * 1992-03-02 1997-09-02 Alternative Systems, Inc. Integrated hazardous substances management unit
US5823379A (en) * 1993-10-20 1998-10-20 Amersham International Plc Sealed container for hazardous material
US5511657A (en) * 1993-12-30 1996-04-30 Gnau, Iii; J. Russell Container for disposing of hazardous medical waste
DE4413011A1 (en) 1994-04-15 1995-10-19 Ruhrkohle Ag Container for hazardous waste from underground mines
US5720789A (en) * 1994-09-06 1998-02-24 Lockheed Idaho Technologies Company Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter
US5615795A (en) * 1995-01-03 1997-04-01 Tipps; Steven V. Hazardous materials container
DE19619527A1 (en) * 1996-05-15 1997-11-20 Hoechst Ag Catalyst systems based on rhodium complex compounds with diphosphine ligands and their use in the production of aldehydes
US5553708A (en) * 1995-06-05 1996-09-10 Bethlehem Apparatus Co., Inc. Packaging for shipping spent fluorescent lamps
WO1997013254A1 (en) 1995-10-04 1997-04-10 British Nuclear Fuels Plc Compacter for compacting containers containing hazardous waste
US5992634A (en) * 1995-11-20 1999-11-30 Johns Manville International, Inc. Package, product and method that facilitates disposal of spent products containing hazardous waste
DE29618735U1 (en) 1996-10-28 1996-12-05 Karlsruhe Forschzent Waste container for harmful substances with a lid closure according to the double lid principle
US5826722A (en) * 1997-02-07 1998-10-27 Ets, Inc. Lamp packaging
AU7110098A (en) 1997-04-10 1998-10-30 Nucon Systems, Inc. Large size, thick-walled ceramic containers
US6155772A (en) * 1997-11-14 2000-12-05 Beale; Aldon Evans Lift-liner apparatus with improved weight-carrying capacity
US6003666A (en) * 1997-12-17 1999-12-21 Chemtrace Corporation Method and apparatus for storing and shipping hazardous materials
US6189330B1 (en) * 1998-01-06 2001-02-20 Campbell Soup Company Container, system and process for shipping and storing food products and method for recycling shipping and storage containers
SE513129C2 (en) * 1998-11-27 2000-07-10 Hans Georgii Storage containers for storing hazardous materials
US6152672A (en) * 1999-04-01 2000-11-28 Alson; William B. Segregated hazardous waste container system
SE514082C2 (en) * 1999-04-26 2000-12-18 Hans Georgii Device for storing hazardous materials and ways of enclosing hazardous materials in a concrete container body
US6299008B1 (en) 1999-09-28 2001-10-09 Boh Environmental, Llc Transport and storage system
US6435226B1 (en) * 1999-12-08 2002-08-20 Mark D. Shaw Method and apparatus for breaching and venting sealed inner containers within a drum
DE10107155A1 (en) * 2001-02-15 2002-08-29 Peroxid Chemie Gmbh & Co Kg Safety container arrangement for holding dangerous liquids, in particular an organic peroxide
US20040197034A1 (en) * 2001-08-28 2004-10-07 Carlos Matias Flexible container for liquids
US6901941B2 (en) * 2002-07-10 2005-06-07 Air Products And Chemicals, Inc. Vessel with optimized purge gas flow and method using same
DE20215657U1 (en) * 2002-10-11 2004-02-19 WEW Westerwälder Eisenwerk GmbH Double-walled tank container
GB0226388D0 (en) 2002-11-13 2002-12-18 Supreme Plastics Holdings Ltd Improvements in plastic bags and like containers
US6892933B2 (en) * 2002-12-19 2005-05-17 Joseph J. Sullivan, Jr. Packaging system for shipping liquid or particulate material
US7631758B2 (en) 2005-04-13 2009-12-15 Vaporlok Technology, Llc Shipping and storage containers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8047367B2 (en) 2005-04-13 2011-11-01 Vaporlok Technology, Llc Shipping and storage containers
EP1925566A1 (en) * 2006-11-21 2008-05-28 Christian Breuer Packaging for dangerous goods, particularly for inflammable substances

Also Published As

Publication number Publication date
CA2603849C (en) 2013-11-26
EP1868921A2 (en) 2007-12-26
DE602006016755D1 (en) 2010-10-21
US20100083621A1 (en) 2010-04-08
US7631758B2 (en) 2009-12-15
ES2351615T3 (en) 2011-02-08
US20120012582A1 (en) 2012-01-19
DK1868921T3 (en) 2011-01-03
US20050252792A1 (en) 2005-11-17
CA2603849A1 (en) 2006-10-26
MX2007012661A (en) 2008-03-10
WO2006113328A3 (en) 2007-01-04
US8047367B2 (en) 2011-11-01
ATE480479T1 (en) 2010-09-15
PT1868921E (en) 2010-12-14
EP1868921B1 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
US7631758B2 (en) Shipping and storage containers
CA1297073C (en) Package with means for releasing aromatic substance on opening
US6161695A (en) Protective packaging unit
US4436203A (en) Tamper resistant packaging device
US5885630A (en) Multiflavor gum packaging system using a volatile-flavor adsorber
WO1994003378A1 (en) Biomedical material shipment kit and method
US5427238A (en) Mailer for sharp medical waste
TWI314124B (en) Protective packaging for medicament dispenser and combination of a medicament dispenser and a protective package
AU2010249478A1 (en) Concealable waste disposal wrap
US20110219951A1 (en) Method and mitigating mercury vapor emissions during storing, staging, handling and transportation of mercury containing universal waste
JP4258252B2 (en) Air freshener packaging material
KR100577868B1 (en) A package for a vaginal ring
GB2254306A (en) Packaging food products
CA2717211A1 (en) Reinforcing member for sealed container
WO2013112980A1 (en) Packaging and methods of packaging particulate solids
US20040118802A1 (en) Safety seal for potent product
RU159913U1 (en) PACKING FOR PRODUCTS TO BE FINISHED STERILIZATION
GB2258206A (en) Package for sterile articles
RU2758629C1 (en) Method for packaging an object
US11672880B2 (en) Methods and devices for sterilizing medical equipment
JP6225634B2 (en) Bag body and method for manufacturing bag body
JP2006056595A (en) Double vacuum packaging bag
CA2291604C (en) Display packaging for fruits or vegetables
EP0044857A1 (en) Method and means for packing gas containers
JPH0356280A (en) Packaging of process cartridge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2603849

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/012661

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006750007

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU