WO2006133783A1 - Flüssigkristallines medium und flüssigkristallanzeige mit 1,2-difluorethenverbindungen - Google Patents

Flüssigkristallines medium und flüssigkristallanzeige mit 1,2-difluorethenverbindungen Download PDF

Info

Publication number
WO2006133783A1
WO2006133783A1 PCT/EP2006/004708 EP2006004708W WO2006133783A1 WO 2006133783 A1 WO2006133783 A1 WO 2006133783A1 EP 2006004708 W EP2006004708 W EP 2006004708W WO 2006133783 A1 WO2006133783 A1 WO 2006133783A1
Authority
WO
WIPO (PCT)
Prior art keywords
compounds
alkyl
liquid
atoms
formulas
Prior art date
Application number
PCT/EP2006/004708
Other languages
English (en)
French (fr)
Inventor
Michael Wittek
Markus Czanta
Harald Hirschmann
Volker Reiffenrath
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to EP06742977A priority Critical patent/EP1891181B1/de
Priority to DE502006006182T priority patent/DE502006006182D1/de
Priority to JP2008516156A priority patent/JP5421591B2/ja
Priority to CN2006800208215A priority patent/CN101193999B/zh
Priority to KR1020087000765A priority patent/KR101485189B1/ko
Priority to US11/917,284 priority patent/US7651742B2/en
Priority to AT06742977T priority patent/ATE458033T1/de
Publication of WO2006133783A1 publication Critical patent/WO2006133783A1/de
Priority to US12/631,046 priority patent/US7923079B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D309/04Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • C09K19/16Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon double bonds, e.g. stilbenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3048Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0459Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF=CF- chain, e.g. 1,2-difluoroethen-1,2-diyl
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0466Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF2O- chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3422Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition

Definitions

  • Liquid-crystalline medium and liquid-crystal display with 1,2-difluoroethene compounds Liquid-crystalline medium and liquid-crystal display with 1,2-difluoroethene compounds
  • the present invention relates to a liquid-crystalline medium containing 1, 2-Difluoretheneducationen, and its use for electro-optical purposes and displays containing this medium.
  • New 1,2-difluoroethene compounds of the invention are disclosed.
  • Liquid crystals are mainly used as dielectrics in display devices, since the optical properties of such substances can be influenced by an applied voltage. electro-optical
  • Devices based on liquid crystals are well known to the person skilled in the art and can be based on various effects. Such devices include, for example, dynamic scattering cells, DAP cells (upright phase deformation), guest / host cells, twisted nematic (TN) cells, super-twisted nematic (STN) cells, SBE cells ("superbirefringence effect”) and OMI cells ("optical mode interference").
  • DAP cells upright phase deformation
  • guest / host cells guest / host cells
  • twisted nematic (TN) cells twisted nematic
  • STN super-twisted nematic
  • SBE cells super-twisted nematic
  • OMI cells optical mode interference
  • the IPS cells in-plane switching
  • the TN, STN and IPS cells are currently commercially interesting applications for the media according to the invention.
  • the liquid crystal materials must have good chemical and thermal stability and good stability against electric fields and electromagnetic radiation. Further, the liquid crystal materials should have a low viscosity and give short response times, low threshold voltages and high contrast in the cells.
  • nematic or cholesteric mesophase should have a suitable mesophase at usual operating temperatures, ie in the widest possible range below and above room temperature, for example, for the above-mentioned cells a nematic or cholesteric mesophase.
  • liquid As a rule, crystals are used as mixtures of several components, so it is important that the components are readily miscible with one another.
  • Other properties, such as electrical conductivity, dielectric anisotropy and optical anisotropy, must meet different requirements depending on the type of cell and the field of application. For example, materials for cells of twisted nematic structure should have positive dielectric anisotropy and low electrical conductivity.
  • Such matrix liquid crystal displays are known.
  • active elements i.e., transistors
  • non-linear elements for individual switching of the individual pixels.
  • active matrix whereby one can distinguish two types:
  • MOS Metal Oxide Semiconductor
  • TFT Thin-film transistors
  • the TN effect is usually used as the electro-optic effect.
  • TFTs made of compound semiconductors such as CdSe or TFTs based on polycrystalline or amorphous silicon. The latter technology is being worked on worldwide with great intensity.
  • the TFT matrix is applied on the inside of one glass plate of the display, while the other glass plate on the inside carries the transparent counter electrode. Compared to the size of the pixel electrode, the TFT is very small and practically does not disturb the image.
  • This technology can also be extended to fully color-capable image representations, wherein a mosaic of red, green and blue filters is arranged such that each one filter element is opposite to a switchable image element.
  • the TFT displays usually operate as TN cells with crossed polarizers in transmission and are backlit.
  • Such MFK displays are particularly suitable for TV applications (for example pocket televisions) or for high-information displays for computer applications (laptops) and in the automobile or aircraft industry.
  • reflective liquid crystal displays are also of particular interest. These reflective liquid crystal displays use the ambient light for information presentation. Thus, they consume significantly less energy than backlit liquid crystal displays of appropriate size and resolution. Since the TN effect is characterized by a very good contrast, such reflective displays are still easy to read even in bright ambient conditions. This is already from simple reflective TN displays as they are in z. As watches and calculators are used known. However, the principle is also on high-quality, higher-resolution active matrix driven displays such. B. TFT displays applicable.
  • the invention has for its object to provide media especially for such MFK, TN or STN displays that have the disadvantages mentioned above not or only to a lesser extent, and preferably at the same time very high resistivities and low threshold voltages. It has now been found that this object can be achieved if used in ads according to the invention media.
  • the media according to the invention are distinguished by very low rotational viscosities ⁇ i in combination with a high clearing point (T ⁇ p ) and good low-temperature properties.
  • JP 06329566 A and US 5380461 A describe fluorinated stilbenes which are partially related to the components of the mixtures of the present invention. Synthesis methods for this class of compounds are disclosed there.
  • the invention relates to a liquid-crystalline medium having a positive dielectric anisotropy based on a mixture of compounds, characterized in that it contains one or more compounds of the formula I.
  • Ring A is a left or right aligned ring system of
  • Alkyl or alkoxy radical having 1 to 15 C-atoms, wherein in these radicals also one or more CH 2 groups each independently of one another by -C ⁇ C-, -CH CH-, -O-, -CO-O- or -O-CO- can be replaced so that O atoms are not directly linked, and
  • L 1 , L 2 , L 3 , L 4 , L 5 and L 6 are each independently H or F, and
  • L 1 or L 2 are particularly preferably F.
  • L 1 and L 2 are more preferably H.
  • X is preferably F, Cl, OCF 3 , CF 3 , SF 5 , OCHF 2 , OC 2 F 5 , OC 3 F 7 , OCHFCF 3 , OCF 2 CHFCF 3 or an alkyl radical having 1 to 8 C atoms.
  • R 1 preferably represents an unsubstituted, straight-chain 1-6 C alkyl or alkoxy radical or a corresponding 2-6 C alkenyl radical, very particularly a 1-6 C n-alkyl radical.
  • the substituent X preferably denotes F, Cl, OCF 3 , CF 3 , SF 5 , OCHF 2 , OC 2 F 5 , OC 3 F 7 , OCHFCF 3 or OCF 2 CHFCF 3 , particularly preferably F, CF 3 or OCF 3 , and most preferably F or OCF 3 .
  • m is preferably O or 1.
  • the other structural units R 1 , ring A, Z 1 , X and L 1 "6 have the meanings given above and the preferred meanings given above.
  • the compounds of the formula I have a wide range of applications. Depending on the choice of substituents, these compounds may serve as base materials from which liquid crystalline media are predominantly composed; However, it is also possible to add compounds of the formulas I to liquid-crystalline base materials from other classes of compounds in order, for example, to influence the dielectric and / or optical anisotropy of such a dielectric and / or to optimize its threshold voltage and / or its viscosity.
  • the compounds of the formula I are colorless in the pure state and form liquid-crystalline mesophases in a temperature range which is favorably located for the electro-optical use. Chemically and thermally, they are stable.
  • the compounds according to the invention alone and in mixtures, have a particularly low rotational viscosity compared with other compounds having comparable physicochemical properties. In addition, they show very good overall properties, in particular with regard to the ratio of the rotational viscosity to the clearing point ( ⁇ -i / KIp.).
  • the ring A is preferably a ring system selected from the formulas
  • rings can be aligned on both sides.
  • the ring A is preferably a ring system selected from the formulas
  • Preferred compounds according to the invention are characterized in that, independently of one another,
  • X is F, -OCF 3 , -CF 3 , CN, 1 -6 C n-alkyl, or 1 -6 C n-alkoxy, in particular F or -OCF 3 ,
  • L 3 and L 4 are preferably H.
  • R 1 , ring A, X 1 L 1 , L 2 , L 5 and L 6 are as defined above.
  • Particularly preferred compounds of the formula I 1 in which the ring A is a tetrahydroyran ring are compounds of the formula Ic:
  • R 1 in formula I is an alkyl radical and / or an alkoxy radical, this may be straight-chain or branched. Preferably, it is straight-chain, has 2, 3, 4, 5, 6 or 7 carbon atoms and thus preferably ethyl, propyl, butyl, pentyl, hexyl, heptyl, ethoxy, propoxy, butoxy, pentoxy, hexoxy or heptoxy, furthermore methyl , Octyl, nonyl, decyl, 5 undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, methoxy, octoxy, nonoxy, decoxy, undecoxy, dodecoxy, tridecoxy or tetradedoxy.
  • 6-oxaheptyl 2-, 3-, 4-, 5-, 6-, or 7-oxo-octyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-oxanonyl, 2-, 3 -, 4-, 5-, 6-, 7-, 8- or 9-oxadexyl.
  • R 1 is an alkyl radical in which one CH 2 group is replaced by -O- and one by -CO-, these are preferably adjacent.
  • these 5 contain an acyloxy group -CO-O- or an oxycarbonyl group -O-CO-.
  • these are straight-chain and have 2 to 6 carbon atoms.
  • acryloyloxymethyl 2-acryloyl-oxyethyl, 3-acryloyloxypropyl, 4-acryloyloxybutyl, 5-acryloyloxypentyl, 6-acryloyloxyhexyl, 7-acryloyloxyheptyl, 8-acryloyloxyoctyl, 9-acryloyl-oxynonyl, 10-acryloyloxydecyl, methacryloyloxymethyl, 2 Methacryloyl oxyethyl, 3-methacryloyloxypropyl, 4-methacryloyloxybutyl, 5-methacryloxyxypentyl, 6-methacryloyloxyhexyl, 7-methacryloyloxyheptyl, 8-methacryloyloxyoctyl, 9-methacryloyloxynonyl.
  • R 1 is an alkyl or alkenyl radical which is monosubstituted by CN or CF 3 , this radical is preferably straight-chain. The substitution by CN or CF 3 is in any position.
  • R 1 is an alkyl or alkenyl radical which is at least monosubstituted by halogen
  • this radical is preferably straight-chain and halogen is preferably F or Cl. In the case of multiple substitution, halogen is preferably F.
  • the resulting radicals also include perfluorinated ones
  • the fluoro or chloro substituent may be in any position, but preferably in the ⁇ position.
  • Branched groups of this type usually contain no more than one chain branch.
  • branched radicals R 1 are isopropyl, 2-butyl
  • R 1 represents an alkyl radical in which two or more CH 2 groups have been replaced by -O- and / or -CO-O-, this may be straight-chain or branched. Preferably, it is branched and has 3 to 12 carbon atoms.
  • the compounds of the formulas I are prepared by methods known per se, as described in the literature (eg in the standard works such as Houben-Weyl, Methods of Organic Chemistry, Georg Thieme Verlag, Stuttgart), namely under Reaction conditions which are known and suitable for the reactions mentioned.
  • Scheme 1 shows how the difluoroethene compounds 3 according to the invention can be prepared by palladium-catalyzed linking of a chlorodifluoroethene compound of the formula 1 with a boronic acid compound of the formula 2.
  • the formula 3 is analogous to formula I.
  • the radicals Ar 1 and Ar 2 represent correspondingly substituted, aromatic ring systems.
  • the starting compounds of the formula 1 can be from a
  • Aryl halide 4 by halogen-metal exchange and reaction with chlorotrifluoroethylene produce.
  • the desired E-isomer of the formula 3 is obtained in excess to the Z-isomer.
  • the desired isomer can be readily isolated by chromatography and crystallization.
  • the invention also electro-optical displays (in particular STN or MFK displays with two plane-parallel support plates, which form a cell with a border, integrated non-linear elements for switching individual pixels on the support plates and an in-cell nematic liquid crystal composition having positive dielectric anisotropy and high resistivity) containing such media and the use of these media for electro-optical purposes.
  • electro-optical displays in particular STN or MFK displays with two plane-parallel support plates, which form a cell with a border, integrated non-linear elements for switching individual pixels on the support plates and an in-cell nematic liquid crystal composition having positive dielectric anisotropy and high resistivity
  • liquid-crystal mixtures according to the invention enable a significant expansion of the available parameter space.
  • achievable combinations of clearing point, low temperature viscosity, thermal stability and dielectric anisotropy far surpass existing prior art materials.
  • the liquid-crystal mixtures according to the invention make it possible, while maintaining the nematic phase to -20 ° C and preferably to -30 ° C, particularly preferably to -40 0 C, a clearing point above 60 0 C, preferably above 65 ° C, more preferably above 70 0 C. simultaneously achieving dielectric anisotropy values ⁇ > 3, preferably> 5, in particular also> 7, and a high value for the resistivity, whereby excellent STN and MFK displays can be achieved.
  • the mixtures are characterized by very low rotational viscosities.
  • the rotational viscosities ⁇ i are below 90 mPas, preferably below 80 mPas, more preferably below 70 mPas.
  • the operating voltages are at the same time, depending on the selected dielectric
  • the MFK displays according to the invention preferably operate in the first transmission minimum according to Gooch and Tarry [CH. Gooch and HA Tarry, Electron. Lett. 10, 2-4, 1974; CH. Gooch and HA Tarry, Appl. Phys., Vol.
  • the flow viscosity V 2 O at 20 0 C is preferably ⁇ 60 mm 2 -s ⁇ ⁇ more preferably ⁇ 50 mm 2 s' 1.
  • the rotational viscosity ⁇ i of the mixtures according to the invention at 20 ° C is preferably ⁇ 80 mPa-s, particularly preferably ⁇ 70 mPa-s.
  • the nematic phase range preferably has a width extending from at least 90 0 C, in particular of at least 100 ° C this range preferably at least from -20 ° to + 7O 0 C
  • the tilt angle In addition to the rotational viscosity ⁇ i, the tilt angle also influences the
  • Particularly preferred liquid-crystalline media contain one or more compounds from the formulas 1-1 to I-30:
  • R 1 has the meaning given in formula I.
  • Particularly preferred among the three-ring compounds are those of the formulas I-7, 1-8, 1-10, 1-13, 1-14, 1-16, 1-19, I-22, I-23, I-24, I -27 and I-28, especially those of formulas I-8 and 1-14.
  • the liquid-crystalline medium is characterized in that the proportion of compounds of the formula I in the total mixture is 0.5 to 40% by weight; it is preferably 4 to 20% by weight.
  • the medium contains one, two or more compounds of formulas 1-1 to I-30;
  • the medium additionally contains one or more compounds selected from the group consisting of the general formulas II to VI:
  • x c F 1 Cl halogenated alkyl, halogenated alkenyl, halogenated oxalkyl, halogenated alkenyloxy or halogenated alkoxy having up to 6 C atoms,
  • Y 1 to Y 4 are each independently H or F
  • the medium additionally contains one or more compounds selected from the group consisting of the general formulas VII to XIII:
  • R 0 n-alkyl, oxaalkyl, fluoroalkyl or alkenyl, each having up to 9 C atoms,
  • Y 1 to Y 4 are each independently H or F
  • X 0 here is preferably F, Cl, CF 3 , OCF 3 or OCHF 2 .
  • R 0 here preferably denotes alkyl, alkoxy, oxaalkyl, fluoroalkyl or alkenyl, each having up to 6 C atoms.
  • the medium additionally contains one or more compounds of the formulas Ea to Ed
  • R 0 n-alkyl, oxaalkyl, fluoroalkyl or alkenyl each having up to 9 carbon atoms.
  • the proportion of compounds of formula I is in the total mixture 0.5 to 40 wt.%, Particularly preferably 1 to 30 wt.%;
  • the proportion of the compounds of the formulas E-a to E-d is preferably 5-30% by weight, in particular 5-25% by weight;
  • the proportion of compounds of the formulas I to VI together in the total mixture is at least 30% by weight;
  • the proportion of compounds of the formulas II to VI in the total mixture is 30 to 80 wt.%;
  • - ( ⁇ Vx 0 is preferably - ( ⁇ R - (O) - F, - ( ⁇ V F, Y 2 F
  • the medium contains compounds of the formulas II, III, IV, V and / or VI;
  • R 0 in all compounds is preferably straight-chain alkyl or alkenyl having 2 to 7 C atoms;
  • the medium contains further compounds from the class of fluorinated terphenyls with R 0 and / or X 0 , as defined below, as end groups, preferably selected from the following group consisting of the general formulas XIV and XV:
  • R 0 n-alkyl, oxaalkyl, fluoroalkyl or alkenyl, each having up to 9 C atoms,
  • At least one of the 1, 4-phenylene rings is monosubstituted or polysubstituted by fluorine atoms.
  • XIV two of the phenylenes are preferably substituted by at least one fluorine atom or one of the phenylenes is substituted by 2 fluorine atoms; In compounds of the formula XV, one of the phenylenes is preferably substituted by at least one fluorine atom.
  • X 0 here is preferably F, Cl, CF 3 , OCF 3 or
  • R 0 here preferably denotes alkyl, alkoxy, oxaalkyl,
  • Fluoroalkyl or alkenyl each having up to 6 carbon atoms.
  • the compounds of the formula XIV are preferably compounds of the formulas XIV-1 to XIV-5:
  • each R 0 is independently defined as for the formula XIV.
  • the proportion of the compounds of the formulas XIV and XV is preferably 0-25% by weight, in particular 2-20% by weight and very particularly 5-15% by weight;
  • the compounds of the formula XV are preferably a compound of the formula XV-1:
  • R 0 is as defined for the formula XV.
  • the medium contains further compounds, preferably selected from the following group consisting of the general formulas XVI to XVIII:
  • R 0 n-alkyl, oxaalkyl, fluoroalkyl or alkenyl, each having up to 9 C atoms,
  • the 1,4-phenylene rings may additionally be substituted by CN, chlorine or fluorine.
  • the 1, 4-phenylene rings are mono- or polysubstituted by fluorine atoms.
  • the medium additionally contains one, two, three or more, preferably two or three compounds of the formulas
  • the proportion of the compounds of the formulas 01 and / or 02 in the mixtures according to the invention is preferably from 0 to 15% by weight, in particular from 1 to 12% by weight and very particularly preferably from 3 to 10% by weight.
  • the medium preferably contains 5-35% by weight of compound IVa.
  • the medium preferably contains one, two or three compounds of the formula IVa, in which X 0 denotes F or OCF 3 .
  • the medium preferably contains one or more compounds of the formulas IIa to Mg,
  • R 0 n-alkyl, oxaalkyl, fluoroalkyl or alkenyl, each having up to 9 carbon atoms
  • R 0 is preferably methyl, ethyl, n-propyl, n-butyl and n-pentyl.
  • the medium preferably contains one or more compounds of the formulas K-1 to K-12 (in general K),
  • R c n-alkyl, oxaalkyl, fluoroalkyl or alkenyl, each having up to 9 carbon atoms
  • the proportion of compounds of the formulas K (K-1 to K-12) is preferably from 5 to 50% by weight, particularly preferably from 10 to 40% by weight.
  • the proportion of the compounds of the formula IVb and / or IVc in which X 0 is fluorine and R 0 is CH 3 , C 2 H 5 , nC 3 H 7 , nC 4 H 9 or nC 5 Hn is 2 to 20% by weight in the total mixture. %, in particular 2 to 15 wt.%.
  • the medium preferably contains compounds of the formulas II to VI, in which R 0 is methyl.
  • the medium according to the invention particularly preferably contains compounds of the formulas
  • the medium preferably contains one, two or more, preferably one or two, dioxane compounds of the formulas,
  • the proportion of the dioxane compounds D-1 and / or D-2 in the mixtures according to the invention is preferably 0-25% by weight, in particular 0-20% by weight and very particularly preferably 0-15% by weight.
  • the medium preferably contains one, two or more, preferably one or two pyran compounds of the formulas P-1 to P-4,
  • R 0 n-alkyl, oxaalkyl, fluoroalkyl or alkenyl, each having up to 9 carbon atoms
  • the medium additionally contains one, two or more dinuclear compounds of the formulas Z-1 to Z-9 (generally Z),
  • R 1a and R 2a are each independently H, CH 3 , C 2 H 5 or nC 3 H 7 , and
  • R 0 n-alkyl, oxaalkyl, fluoroalkyl or alkenyl, each having up to 9 carbon atoms
  • Alkyl, alkyl * and alkenyl have the meanings given below.
  • the proportion of compounds of the formulas Z-1 to Z-9 is in total 5 to 70% by weight, preferably 15 to 50% by weight.
  • the proportion of compounds of the formula Z-5 per se is preferably from 10 to 60% by weight, preferably from 15 to 50% by weight.
  • the medium consists essentially of compounds selected from the group consisting of the general formulas I to VI, K-1 to K-121 and from Z-1 to Z-9.
  • the medium additionally contains one or more UV-stabilizing compounds, in particular a quaterphenyl compound.
  • UV-stabilizing compounds in particular a quaterphenyl compound.
  • Particularly preferred are mono- or polyfluorinated quaterphenyl compounds of the formula
  • n 1 to 8.
  • the medium additionally contains one, two or more compounds with fused rings of the formulas AN1 to AN11:
  • R 0 has the meanings given above;
  • the mixtures according to the invention are distinguished in particular by the fact that they have clearing points of> 70 0 C and threshold voltages of ⁇ 2.0 V.
  • the mixtures according to the invention are distinguished, in particular, by having a dielectric anisotropy of ⁇ > 3 and preferably of ⁇ > 5.
  • alkyl or “alkyl *" embraces straight-chain and branched alkyl groups having 1-7 carbon atoms, in particular the straight-chain groups methyl, ethyl, propyl, butyl, pentyl, hexyl and heptyl. Groups of 1-5 carbon atoms are generally preferred.
  • alkenyl includes straight-chain and branched alkenyl groups having 2-7 carbon atoms, in particular the straight-chain groups.
  • Preferred alkenyl groups are C 2 -C 7 -I E-alkenyl, C 4 -C 7 -EE- Alkenyl, C 5 -C 7 -4 alkenyl, C 6 -C 7 -5 alkenyl and C 7 -6 alkenyl, especially C 2 -C 7 -I E-alkenyl, C 4 -C 7 3E-alkenyl and C 5 -C 7 -4 alkenyl.
  • alkenyl groups are vinyl, 1E-propenyl, 1E-butenyl, 1E-pentenyl, 1E-hexenyl, 1E-heptenyl, 3-butenyl, 3E-pentenyl, 3E-hexenyl, 3E-heptenyl, 4- Pentenyl, 4Z-hexenyl, 4E-hexenyl, 4Z-heptenyl, 5-hexenyl, 6-heptenyl and the like. Groups of up to 5
  • Carbon atoms are generally preferred.
  • fluoroalkyl preferably includes straight-chain fluoro-terminated groups, i. Fluoromethyl, 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl and 7-fluoroheptyl. Other positions of the fluorine are not excluded.
  • oxaalkyl or "alkoxy” preferably comprises straight-chain radicals of the formula C n H 2n + iO- (CH 2 ) m > where n and m are each independently 1 to 6, m can also be 0.
  • R 0 and X 0 By suitably selecting the meanings of R 0 and X 0 , the response times, the threshold voltage, the steepness of the transmission characteristics, etc. can be modified as desired.
  • 1 E-alkenyl radicals, 3E-alkenyl radicals, 2E-alkenyloxy radicals and the like usually lead to shorter response times, improved nematic tendencies and a higher ratio of the elastic constants k 33 (bend) and kn (splay) compared to alkyl or alkoxy.
  • 4-Alkenyl radicals, 3-alkenyl radicals and the like generally give lower threshold voltages and smaller values of k 33 / k n compared to alkyl and alkoxy radicals.
  • a -CH 2 CH 2 group generally results in higher values of Wk 11 compared to a single covalent bond.
  • Higher values of k 33 / kn allow, for example, flatter transmission characteristics in TN cells with 90 ° twist (to achieve shades of gray) and steeper transmission characteristics in STN, SBE and OMI cells (higher multiplexability) and vice versa.
  • the optimum ratio of the compounds of the formulas I and K + Z + II + III + IV + V + VI depends largely on the desired properties, on the choice of the components of the formulas I, II, III, IV, V and / or VI and the choice of other optionally present components.
  • the total amount of compounds of the formulas I and the cocomponents given in the mixtures according to the invention is not critical.
  • the mixtures may therefore contain one or more other components to optimize various properties.
  • the observed effect on the response times and the threshold voltage is generally greater the higher the total concentration of compounds of the formulas I and the cocomponents indicated.
  • a favorable synergistic effect with the compounds of the formula I leads to particularly advantageous properties.
  • mixtures containing compounds of the formula I and of the formula IVa are distinguished by their low threshold voltage.
  • the individual compounds that can be used in the media of the invention are either known or can be prepared analogously to the known compounds.
  • the structure of the MFK display of polarizers, electrode base plates and electrodes with surface treatment according to the invention corresponds to the usual construction for such displays.
  • the term of the usual construction is broad and includes all modifications and modifications of the MFK display, in particular matrix display elements based on poly-Si TFT or MIM.
  • a significant difference of the displays of the invention on the basis of the usual twisted nematic cell is the choice of the liquid crystal parameters of the liquid crystal layer.
  • the preparation of the liquid crystal mixtures which can be used according to the invention is carried out in a conventional manner.
  • the desired amount of the components used in lesser amount is dissolved in the constituent of the main component, expediently at elevated temperature.
  • an organic solvent e.g. in acetone, chloroform or methanol, and to remove the solvent again after thorough mixing, for example by distillation.
  • the dielectrics may also other, known in the art and described in the literature additives such.
  • UV stabilizers such as Tinuvin ® Fa. Ciba, antioxidants, radical scavengers, etc. included.
  • 0-15% pleochroic dyes or chiral dopants may be added. Suitable stabilizers and dopants are mentioned below in Tables C and D.
  • the threshold voltage V 10 denotes the voltage for 10% transmission (viewing direction perpendicular to the plate surface).
  • t on denotes the switch-on time and t O ft the switch-off time at an operating voltage corresponding to 2.0 times the value of V 10 .
  • ⁇ n denotes the optical anisotropy.
  • denotes the dielectric
  • Anisotropy ( ⁇ ⁇ - ⁇ ⁇ , where ⁇ n is the dielectric constant parallel to the longitudinal molecular axes and ⁇ x the dielectric constant perpendicular to it).
  • the electro-optical data are measured (ie, at a d ⁇ .DELTA.n value of 0.5 microns) in a TN ZeIIe the 1st minimum at 20 ° C measured not unless expressly stated otherwise.
  • the optical data are measured at 20 ° C., unless expressly stated otherwise.
  • liquid-crystalline mixtures are particularly preferred.
  • Compounds of formulas I contain at least one, two, three or four compounds from Table B.
  • the mixtures preferably contain 0-10% by weight, in particular 0.01-5% by weight and particularly preferably 0.01-3% by weight of dopants.
  • Stabilizers which can be added, for example, to the mixtures according to the invention are mentioned below.
  • the dielectric anisotropy ⁇ of the individual substances is determined at 20 ° C and 1 kHz. 10% by weight of the substances to be investigated are dissolved in the dielectrically positive mixture ZLI-4792 (Merck KGaA) and the measured value extrapolated to a concentration of 100%.
  • the optical anisotropy ⁇ n is determined at 20 ° C and a wavelength of 589.3 nm. It is also determined by extrapolation of the values at 10% by weight.
  • Vio threshold voltage characteristic voltage at a relative contrast of 10%
  • V 90 saturation voltage characteristic voltage at a relative contrast of 90%, ki elastic constant spreading deformation (also kn) k 3 elastic constant bending deformation, also k 33 k 3 / ki ratio of k 3 to k ⁇

Abstract

Die vorliegende Erfindung betrifft ein flüssigkristallines Medium enthaltend 1 ,2-Difluorethenverbindungen der allgemeinen Formel (I), worin R1, Ring A, Z1, Z2, m, X und L1-6 wie in Anspruch 1 definiert sind. Die Erfindung betrifft auch die Verwendung des Mediums für elektrooptische Zwecke und dieses Medium enthaltende Anzeigen. Neue 1,2-Difluorethenverbindungen mit drei und mehr Ringen werden offenbart.

Description

Flüssigkristallines Medium und Flüssigkristallanzeige mit 1,2- Difluorethenverbindungen
Die vorliegende Erfindung betrifft ein flüssigkristallines Medium enthaltend 1 ,2-Difluorethenverbindungen, sowie dessen Verwendung für elektrooptische Zwecke und dieses Medium enthaltende Anzeigen. Neue erfindungsgemäße 1 ,2-Difluorethenverbindungen werden offenbart.
Flüssige Kristalle werden vor allem als Dielektrika in Anzeigevorrichtungen verwendet, da die optischen Eigenschaften solcher Substanzen durch eine angelegte Spannung beeinflusst werden können. Elektrooptische
Vorrichtungen auf der Basis von Flüssigkristallen sind dem Fachmann bestens bekannt und können auf verschiedenen Effekten beruhen. Derartige Vorrichtungen sind beispielsweise Zellen mit dynamischer Streuung, DAP-Zellen (Deformation aufgerichteter Phasen), Gast/Wirt- Zellen, TN-Zellen mit verdrillt nematischer ("twisted nematic") Struktur, STN-Zellen ("super-twisted nematic"), SBE-Zellen ("superbirefringence effect") und OMI-Zellen ("optical mode interference"). Die gebräuchlichsten Anzeigevorrichtungen beruhen auf dem Schadt-Helfrich-Effekt und besitzen eine verdrillt nematische Struktur. Daneben gibt es auch Zellen, die mit einem elektrischen Feld parallel zur Substrat- und Flüssigkristallebene arbeiten, wie den IPS-Zellen („in-plane switching"). Vor allem die TN-, STN- und IPS-Zellen sind derzeit kommerziell interessante Einsatzgebiete für die erfindungsgemäßen Medien.
Die Flüssigkristallmaterialien müssen eine gute chemische und thermische Stabilität und eine gute Stabilität gegenüber elektrischen Feldern und elektromagnetischer Strahlung besitzen. Ferner sollten die Flüssigkristallmaterialien eine niedrige Viskosität aufweisen und in den Zellen kurze Ansprechzeiten, tiefe Schwellenspannungen und einen hohen Kontrast ergeben.
Weiterhin sollten sie bei üblichen Betriebstemperaturen, d.h. in einem möglichst breiten Bereich unterhalb und oberhalb Raumtemperatur, eine geeignete Mesophase besitzen, beispielsweise für die oben genannten Zellen eine nematische oder cholesterische Mesophase. Da Flüssig- kristalle in der Regel als Mischungen mehrerer Komponenten zur Anwendung gelangen, ist es wichtig, dass die Komponenten untereinander gut mischbar sind. Weitere Eigenschaften, wie die elektrische Leitfähigkeit, die dielektrische Anisotropie und die optische Anisotropie, müssen je nach Zellentyp und Anwendungsgebiet unterschiedlichen Anforderungen genügen. Beispielsweise sollten Materialien für Zellen mit verdrillt nematischer Struktur eine positive dielektrische Anisotropie und eine geringe elektrische Leitfähigkeit aufweisen.
Beispielsweise sind für Matrix-Flüssigkristallanzeigen mit integrierten nicht- linearen Elementen zur Schaltung einzelner Bildpunkte (MFK-Anzeigen)
Medien mit großer positiver dielektrischer Anisotropie, breiten nematischen Phasen, relativ niedriger Doppelbrechung, sehr hohem spezifischen Widerstand, guter UV- und Temperaturstabilität und geringerem Dampfdruck erwünscht.
Derartige Matrix-Flüssigkristallanzeigen sind bekannt. Als nichtlineare Elemente zur individuellen Schaltung der einzelnen Bildpunkte können beispielsweise aktive Elemente (d.h. Transistoren) verwendet werden. Man spricht dann von einer "aktiven Matrix", wobei man zwei Typen unterscheiden kann:
1. MOS (Metal Oxide Semiconductor) oder andere Dioden auf Silizium- Wafer als Substrat.
2. Dünnfilm-Transistoren (TFT) auf einer Glasplatte als Substrat.
Die Verwendung von einkristallinem Silizium als Substratmaterial beschränkt die Displaygröße, da auch die modulartige Zusammensetzung verschiedener Teildisplays an den Stößen zu Problemen führt.
Bei dem aussichtsreicheren Typ 2, welcher bevorzugt ist, wird als elektro- optischer Effekt üblicherweise der TN-Effekt verwendet. Man unterscheidet zwei Technologien: TFTs aus Verbindungshalbleitern wie z.B. CdSe oder TFTs auf der Basis von polykristallinem oder amorphem Silizium. An letzterer Technologie wird weltweit mit großer Intensität gearbeitet. Die TFT-Matrix ist auf der Innenseite der einen Glasplatte der Anzeige aufgebracht, während die andere Glasplatte auf der Innenseite die transparente Gegenelektrode trägt. Im Vergleich zu der Größe der Bildpunkt-Elektrode ist der TFT sehr klein und stört das Bild praktisch nicht. Diese Technologie kann auch für voll farbtaugliche Bilddarstellungen erweitert werden, wobei ein Mosaik von roten, grünen und blauen Filtern derart angeordnet ist, dass je ein Filterelement einem schaltbaren Bildelement gegenüber liegt.
Die TFT-Anzeigen arbeiten üblicherweise als TN-Zellen mit gekreuzten Polarisatoren in Transmission und sind von hinten beleuchtet.
Der Begriff MFK-Anzeigen umfasst hier jedes Matrix-Display mit integrierten nichtlinearen Elementen, d.h. neben der aktiven Matrix auch Anzeigen mit passiven Elementen wie Varistoren oder Dioden (MIM = Metall-Isolator-Metall).
Derartige MFK-Anzeigen eignen sich insbesondere für TV-Anwendungen (z.B. Taschenfernseher) oder für hochinformative Displays für Rechneranwendungen (Laptop) und im Automobil- oder Flugzeugbau.
Neben Problemen hinsichtlich der Winkelabhängigkeit des Kontrastes und der Schaltzeiten resultieren bei MFK-Anzeigen Schwierigkeiten bedingt durch nicht ausreichend hohen spezifischen Widerstand der Flüssigkristallmischungen [TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H.,
SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris; STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Adressing of Television Liquid Crystal Displays, p. 145 ff, Paris]. Mit abnehmendem Widerstand verschlechtert sich der Kontrast einer MFK- Anzeige und es kann das Problem der "after image elimination" auftreten. Da der spezifische Widerstand der Flüssigkristallmischung durch Wechselwirkung mit den inneren Oberflächen der Anzeige im allgemeinen über die Lebenszeit einer MFK-Anzeige abnimmt, ist ein hoher (Anfangs)- Widerstand sehr wichtig, um akzeptable Standzeiten zu erhalten. - A -
Insbesondere bei low-volt-Mischungen war es bisher nicht möglich, sehr hohe spezifische Widerstände zu realisieren. Weiterhin ist es wichtig, dass der spezifische Widerstand eine möglichst geringe Zunahme bei steigender Temperatur sowie nach Temperatur- und/oder UV-Belastung zeigt. Besonders nachteilig sind auch die Tieftemperatureigenschaften der Mischungen aus dem Stand der Technik. Gefordert wird, dass auch bei tiefen Temperaturen keine Kristallisation und/oder smektische Phasen auftreten und die Temperaturabhängigkeit der Viskosität möglichst gering ist. Die MFK-Anzeigen aus dem Stand der Technik genügen somit nicht den heutigen Anforderungen.
Neben Flüssigkristallanzeigen, die eine Hintergrundbeleuchtung verwenden, also transmissiv und gegebenenfalls transflektiv betrieben werden, sind besonders auch reflektive Flüssigkristallanzeigen interessant. Diese reflektiven Flüssigkristallanzeigen benutzen das Umgebungslicht zur Informationsdarstellung. Somit verbrauchen sie wesentlich weniger Energie als hintergrundbeleuchtete Flüssigkristallanzeigen mit entsprechender Größe und Auflösung. Da der TN-Effekt durch einen sehr guten Kontrast gekennzeichnet ist, sind derartige reflektive Anzeigen auch bei hellen Umgebungsverhältnissen noch gut abzulesen. Dies ist bereits von einfachen reflektiven TN-Anzeigen wie sie in z. B. Armbanduhren und Taschenrechnern verwendet werden, bekannt. Jedoch ist das Prinzip auch auf hochwertige, höher auflösende Aktiv-Matrix angesteuerte Anzeigen wie z. B. TFT-Displays anwendbar. Hier ist wie bereits bei den allgemeinen üblichen transmissiven TFT-TN-Anzeigen die Verwendung von Flüssig- kristallen mit niedriger Doppelbrechung (Δn) nötig, um eine geringe optische Verzögerung (d • Δn) zu ereichen. Diese geringe optische Verzögerung führt zu einer meist akzeptablen geringen Blickwinkelabhängigkeit des Kontrastes (vgl. DE 30 22 818). Bei reflektiven Anzeigen ist die Verwendung von Flüssigkristallen mit kleiner Doppelbrechung noch wichtiger als bei transmissiven Anzeigen, da bei reflektiven Anzeigen die effektive Schichtdicke, die das Licht durchquert, ungefähr doppelt so groß ist wie bei transmissiven Anzeigen mit derselben Schichtdicke.
Es besteht somit immer noch ein großer Bedarf nach MFK-Anzeigen mit sehr hohem spezifischen Widerstand bei gleichzeitig großem Arbeitstemperaturbereich, kurzen Schaltzeiten auch bei tiefen Temperaturen und niedriger Schwellenspannung, die diese Nachteile nicht oder nur in geringerem Maße zeigen.
Bei TN-(Schadt-Helfrich)-Zellen sind Medien erwünscht, die folgende Vorteile in den Zellen ermöglichen:
erweiterter nematischer Phasenbereich (insbesondere zu tiefen Temperaturen)
- lagerstabil, auch bei extrem tiefen Temperaturen
Schaltbarkeit bei extrem tiefen Temperaturen (out-door-use, Automobil, Avionik)
. erhöhte Beständigkeit gegenüber UV-Strahlung (längere Lebensdauer)
Mit den aus dem Stand der Technik zur Verfügung stehenden Medien ist es nicht möglich, diese Vorteile unter gleichzeitigem Erhalt der übrigen Parameter zu realisieren.
Bei höher verdrillten Zellen (STN) sind Medien erwünscht, die eine höhere Multiplexierbarkeit und/oder kleinere Schwellenspannung und/oder breitere nematische Phasenbereiche (insbesondere bei tiefen Temperaturen) ermöglichen. Hierzu ist eine weitere Ausdehnung des zur Verfügung stehenden Parameterraumes (Klärpunkt, Übergang smektisch-nematisch bzw. Schmelzpunkt, Viskosität, dielektrische Größen, elastische Größen) dringend erwünscht.
Der Erfindung liegt die Aufgabe zugrunde, Medien insbesondere für derartige MFK-, TN- oder STN-Anzeigen bereitzustellen, welche die oben angegebenen Nachteile nicht oder nur in geringerem Maße, und vorzugsweise gleichzeitig sehr hohe spezifische Widerstände und niedrige Schwellenspannungen aufweisen. Es wurde nun gefunden, dass diese Aufgabe gelöst werden kann, wenn man in Anzeigen erfindungsgemäße Medien verwendet. Die erfindungsgemäßen Medien zeichnen sich durch sehr kleine Rotationsviskositäten γi in Kombination mit einem hohen Klärpunkt (Tαp) und guten Tieftemperatureigenschaften aus.
In der JP 06329566 A und in der US 5380461 A werden fluorierte Stilbene beschrieben, die mit den Komponenten der Mischungen der vorliegenden Erfindung teilweise verwandt sind. Synthesemethoden zu dieser Verbindungsklasse werden dort offenbart.
Gegenstand der Erfindung ist ein flüssigkristallines Medium mit positiver dielektrischer Anisotropie auf der Basis eines Gemisches von Verbindungen, dadurch gekennzeichnet, dass es eine oder mehrere Verbindungen der Formel I
Figure imgf000007_0001
enthält,
worin
R1 einen halogenierten oder unsubstituierten Alkyl- oder Alkoxyrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH2-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CH=CH-, -O-, -CO-O- oder -O-CO- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind,
Ring A ein nach links oder rechts ausgerichtetes Ringsystem der
Formeln
Figure imgf000008_0001
Z1, Z2 eine Einfachbindung, -OC-, -CF=CF-, -CH=CH-, -CF2O-, oder -CH2CH2-, wobei mindestens eine Gruppe aus Z1 und Z2 die Gruppe -CF=CF- bedeutet,
X F, Cl, CN, SF5 oder einen halogenierten oder unsubstituierten
Alkyl- oder Alkoxyrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH2-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CH=CH-, -O-, -CO-O- oder -O-CO- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind, und
L1, L2, L3, L4, L5 und L6 jeweils unabhängig voneinander H oder F, und
m O, 1 oder 2,
bedeuten.
Bevorzugt bedeuten 2, 3 oder 4 der Substituenten L1, L2, L3 und L4 in der Formel I Wasserstoff und die übrigen F. Besonders bevorzugt sind Medien mit Verbindungen der Formel I, worin L5 und L6 = H bedeuten. Für den Fall, dass m = O ist, sind besonders bevorzugt L1 oder L2 F. Für den Fall, dass m = 1 oder 2 ist, sind besonders bevorzugt L1 und L2 H. X bedeutet vorzugsweise F, Cl, OCF3, CF3, SF5, OCHF2, OC2F5, OC3F7, OCHFCF3, OCF2CHFCF3 oder einen Alkylrest mit 1 bis 8 C-Atomen. Ganz besonders bevorzugt sind Verbindungen, worin X einen Substituenten F, Cl, OCF3 oder eine geradkettigen Alkylrest mit 1 bis 6 C-Atomen bedeutet. R1 steht bevorzugt für einen unsubstituierten, geradkettigen 1 -6 C Alkyl- oder Alkoxyrest oder einen entsprechenden 2-6 C Alkenylrest, ganz besonders für einen 1 -6 C n-Alkylrest.
Zur Erzielung von Mischungen mit besonders hoher dielektrischer
Anisotropie bedeutet der Substituent X bevorzugt F, Cl, OCF3, CF3, SF5, OCHF2, OC2F5, OC3F7, OCHFCF3 oder OCF2CHFCF3, besonders bevorzugt F, CF3 oder OCF3, und ganz besonders bevorzugt F oder OCF3.
Das Bindeglied Z1 bedeutet bevorzugt eine Einfachbindung oder -CF=CF-. Das Bindeglied Z2 bedeutet bevorzugt -CF=CF- oder -CF2O-. m ist bevorzugt O oder 1.
Ein weiterer Gegenstand der Erfindung sind Verbindungen der Formel I, worin m 1 oder 2 und Z2 eine Brücke -CF=CF- bedeutet (Verbindungen Ia). Dabei besitzen in den erfindungsgemäßen Verbindungen der Formel I die übrigen Strukturteile R1, Ring A, Z1, X und L1"6 die oben angegebenen Bedeutungen sowie die oben angegebenen bevorzugten Bedeutungen.
Die Verbindungen der Formeln I besitzen einen breiten Anwendungsbereich. In Abhängigkeit von der Auswahl der Substituenten können diese Verbindungen als Basismaterialien dienen, aus denen flüssigkristalline Medien zum überwiegenden Teil zusammengesetzt sind; es können aber auch Verbindungen der Formeln I zu flüssigkristallinen Basismaterialien aus anderen Verbindungsklassen zugesetzt werden, um beispielsweise die dielektrische und/oder optische, Anisotropie eines solchen Dielektrikums zu beeinflussen und/oder um dessen Schwellenspannung und/oder dessen Viskosität zu optimieren.
Die Verbindungen der Formeln I sind in reinem Zustand farblos und bilden flüssigkristalline Mesophasen in einem für die elektrooptische Verwendung günstig gelegenen Temperaturbereich. Chemisch und thermisch sind sie stabil. Die erfindungsgemäßen Verbindungen besitzen allein und in Mischungen eine besonders niedrige Rotationsviskosität gegenüber anderen Verbindungen mit vergleichbaren physikalisch-chemischen Eigenschaften. Außerdem zeigen sie sehr gute Gesamteigenschaften, insbesondere im Hinblick auf das Verhältnis der Rotationsviskosität zum Klärpunkt (γ-i/KIp.).
Für den Fall, dass m = 1 oder 2 und Z1 eine Gruppe -CF=CF- bedeutet, so ist der Ring A bevorzugt ein Ringsystem ausgewählt aus den Formeln
Figure imgf000010_0001
wobei die Ringe nach beiden Seiten ausgerichtet sein können.
Für den Fall, dass m = 1 oder 2 und Z2 eine Gruppe -CF=CF- bedeutet, so ist der Ring A bevorzugt ein Ringsystem ausgewählt aus den Formeln
Figure imgf000010_0002
oder
Figure imgf000010_0003
insbesondere der Formeln
Figure imgf000011_0001
Bevorzugte Verbindungen gemäß der Erfindung sind dadurch gekennzeichnet, dass, unabhängig voneinander,
m 1 bedeutet,
Z2 -CF=CF- und Z1 eine Einfachbindung,
X F, -OCF3, -CF3, CN, 1 -6 C n-Alkyl, oder 1 -6 C n-Alkoxy, insbesondere F oder -OCF3,
L5, L6 H, oder
R1 1 -7 C Alkyl oder 2-7 C Alkylen
bedeutet.
Für den Fall, dass Z2 eine Gruppe -CF=CF- bedeutet, sind L3 und L4 bevorzugt H.
Besonders bevorzugte erfindungsgemäße Verbindungen sind dadurch gekennzeichnet, dass genau eine Gruppe aus Z1 und Z2 eine Gruppe -CF=CF- darstellt. Folglich sind besonders bevorzugte erfindungsgemäße Verbindungen die der allgemeinen Formel Ib:
Figure imgf000011_0002
worin R1, Ring A, X1 L1, L2, L5 und L6 wie oben definiert sind. Besonders bevorzugte Verbindungen der Formel I1 worin der Ring A ein Tetrahydroyranring ist sind Verbindungen der Formel Ic:
Figure imgf000012_0001
Q Falls R1 in Formel I einen Alkylrest und/oder einen Alkoxyrest bedeutet, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig, hat 2, 3, 4, 5, 6 oder 7 C-Atome und bedeutet demnach bevorzugt Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Ethoxy, Propoxy, Butoxy, Pentoxy, Hexoxy oder Heptoxy, ferner Methyl, Octyl, Nonyl, Decyl, 5 Undecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl, Methoxy, Octoxy, Nonoxy, Decoxy, Undecoxy, Dodecoxy, Tridecoxy oder Tetradedoxy.
Oxaalkyl bedeutet vorzugsweise geradkettiges 2-Oxapropyl (= Methoxy- methyl), 2-(= Ethoxymethyl) oder 3-Oxabutyl (= 2-Methoxyethyl), 2-, 3- Q oder 4-Oxapentyl, 2-, 3-, 4- oder 5-Oxahexyl, 2-, 3-, 4-, 5- oder
6-Oxaheptyl, 2-, 3-, 4-, 5-, 6-, oder 7-Oxaoctyl, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Oxanonyl, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder 9-Oxadexyl.
Falls R1 einen Alkylrest bedeutet, in dem eine CH2-Gruppe durch -CH=CH- 5 ersetzt ist, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig und hat 2 bis 10 C-Atome. Er bedeutet demnach besonders Vinyl, Prop-1-, oder Prop-2-enyl, BuM -, 2- oder But-3-enyl, Pent-1-, 2-, 3- oder Pent-4-enyl, Hex-1-, 2-, 3-, 4- oder Hex-5-enyl, Hept-1 -, 2-, 3-, 4-, 5- oder Hept-6-enyl, Oct-1 -, 2-, 3-, 4-, 5-, 6- oder 0 Oct-7-enyl, Non-1 -, 2-, 3-, 4-, 5-, 6-, 7- oder Non-8-enyl, Dec-1 -, 2-, 3-, A-, 5-, 6-, 7-, 8- oder Dec-9-enyl.
Falls R1 einen Alkylrest bedeutet, in dem eine CH2-Gruppe durch -O- und eine durch -CO- ersetzt ist, so sind diese bevorzugt benachbart. Somit 5 beinhalten diese eine Acyloxygruppe -CO-O- oder eine Oxycarbonylgruppe -O-CO-. Vorzugsweise sind diese geradkettig und haben 2 bis 6 C-Atome. Sie bedeuten demnach besonders Acetyloxy, Propionyloxy, Butyryloxy, Pentanoyloxy, Hexanoyloxy, Acetyloxymethyl, Propionyloxymethyl, Butyryloxymethyl, Pentanoyloxymethyl, 2-Acetyloxyethyl, 2-Propionyl- oxyethyl, 2-Butyryloxyethyl, 2-Acetyloxypropyl, 3-Propionyl-oxypropyl, 4-Acetyl-oxybutyl, Methoxycarbonyl, Ethoxycarbonyl, Propoxy-carbonyl, Butoxycarbonyl, Pentoxycarbonyl, Methoxycarbonylmethyl,
Ethoxycarbonylmethly, Propoxycarbonylmethyl, Butoxycarbonylmethyl, 2-(Methoxycarbonyl)ethyl, 2-(Ethoxycarbonyl)ethyl, 2-(Propoxycarbonyl)- ethyl, 3-(Methoxycarbonyl)-propyl, 3-(Ethoxy-carbonyl)-propyl oder 4-(Methoxycarbonyl)-butyl.
Falls R1 einen Alkylrest bedeutet, in dem eine CH2-Gruppe durch unsub- stituiertes oder substituiertes -CH=CH- und eine benachbarte CH2-Gruppe durch CO oder CO-O oder O-CO ersetzt ist, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig und hat 4 bis 12 C- Atome. Er bedeutet demnach besonders Acryloyloxymethyl, 2-Acryloyl- oxyethyl, 3-Acryloyloxypropyl, 4-Acryloyloxybutyl, 5-Acryloyloxypentyl, 6-Acryloyloxyhexyl, 7-Acryloyloxyheptyl, 8-Acryloyloxyoctyl, 9-Acryloyl- oxynonyl, 10-Acryloyloxydecyl, Methacryloyloxymethyl, 2-Methacryloyl- oxyethyl, 3-Methacryloyloxypropyl, 4-Methacryloyloxybutyl, 5-Methacryl- oyloxypentyl, 6-Methacryloyloxyhexyl, 7-Methacryloyloxyheptyl, 8-Methacryloyloxyoctyl, 9-Methacryloyloxynonyl.
Falls R1 einen einfach durch CN oder CF3 substituerten Alkyl- oder Alkenyl- rest bedeutet, so ist dieser Rest vorzugsweise geradkettig. Die Substitution durch CN oder CF3 ist in beliebiger Position.
Falls R1 einen mindestens einfach durch Halogen substituierten Alkyl- oder Alkenylrest bedeutet, so ist dieser Rest vorzugsweise geradkettig und Halogen ist vorzugsweise F oder Cl. Bei Mehrfachsubstitution ist Halogen vorzugsweise F. Die resultierenden Reste schließen auch perfluorierte
Reste ein. Bei Einfachsubstitution kann der Fluor- oder Chlorsubstituent in beliebiger Position sein, vorzugsweise jedoch in ω-Position.
Verbindungen mit verzweigten Flügelgruppen R1 können gelegentlich wegen einer besseren Löslichkeit in den üblichen flüssigkristallinen Basismaterialien von Bedeutung sein, insbesondere aber als chirale Dotierstoffe, wenn sie optisch aktiv sind. Smektische Verbindungen dieser Art eignen sich als Komponenten für ferroelektrische Materialien.
Verzweigte Gruppen dieser Art enthalten in der Regel nicht mehr als eine Kettenverzweigung. Bevorzugt verzweigte Reste R1 sind Isopropyl, 2-Butyl
(= 1-Methylpropyl), Isobutyl (= 2-Methylpropyl), 2-Methylbutyl, Isopentyl (= 3-Methylbutyl), 2-Methylpentyl, 3-Methylpentyl, 2-Ethylhexyl, 2-Propyl- pentyl, Isopropoxy, 2-Methylpropoxy, 2-Methylbutoxy, 3-Methylbutoxy, 2-Methylpentoxy, 3-Methylpentoxy, 2-Ethylhexoxy, 1 -Methylhexoxy, 1 -Methylheptoxy.
Falls R1 einen Alkylrest darstellt, in dem zwei oder mehr CH2-Gruppen durch -O- und/oder -CO-O- ersetzt sind, so kann dieser geradkettig oder verzweigt sind. Vorzugsweise ist er verzweigt und hat 3 bis 12 C-Atome. Er bedeutet demnach besonders Bis-carboxy-methyl, 2,2-Bis-carboxy-ethyl, 3,3-Bis-carboxy-propyl, 4,4-Bis-carboxy-butyl, 5,5-Bis-carboxy-pentyl, 6,6- Bis-carboxy-hexyl, 7,7-Bis-carboxy-heptyl, 8,8-Bis-carboxy-octyl, 9,9-Bis- carboxy-nonyl, 10,10-Bis-carboxy-decyl, Bis-(methoxy-carbonyl)-methyl, 2,2-Bis-(methoxycarbonyl)-ethyl, 3,3-Bis-(methoxy-carbonyl)-propyl, 4,4- Bis-(methoxycarbonyl)-butyl, 5,5-Bis-(methoxy-carbonyl)-pentyl, 6,6-Bis- (methoxycarbonyl)-hexyl, 7,7-Bis-(methoxy-carbonyl)-heptyl, 8,8-Bis- (methoxycarbonyl)-octyl, Bis-(ethoxycarbonyl)-methyl, 2,2-Bis- (ethoxycarbonyl)-ethyl, 3,3-Bis-(ethoxycarbonyl)-propyl, 4,4-Bis- (ethoxycarbonyl)-butyl, 5,5-Bis-(ethoxycarbonyl)-hexyl.
Die Verbindungen der Formeln I werden nach an sich bekannten Methoden dargestellt, wie sie in der Literatur (z. B. in den Standardwerken wie Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme- Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktions- bedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.
Geeignete Verfahren zur Herstellung sind in Schema 1 und Schema 2 skizziert.
Figure imgf000015_0001
1 2 3
Schema 1. Herstellung der 1 ,2-Difluorethenverbindungen. Ar1 und Ar2 stehen z. B. für substituierte Benzolringe.
Figure imgf000015_0002
4 5 1
Schema 2. Herstellung der Chlordifluorethenverbindungen 1.
Schema 1 zeigt, wie durch Palladium-katalysierte Verknüpfung einer Chlordifluorethenverbindung der Formel 1 mit einer Boronsäureverbindung der Formel 2 die erfindungsgemäßen Difluorethenverbindungen 3 hergestellt werden können. Die Formel 3 ist analog zu Formel I. Die Reste Ar1 und Ar2 stellen entsprechend substituierte, aromatische Ringsysteme dar.
Die Ausgangsverbindungen der Formel 1 lassen sich aus einem
Arylhalogenid 4 durch Halogen-Metall-Austausch und Reaktion mit Chlortrifluorethylen herstellen. Bei der dargestellten Synthesestrategie fällt das gewünschte E-Isomer der Formel 3 im Überschuss zum Z-Isomer an. Das gewünschte Isomer lässt sich chromatographisch und durch Kristallisation leicht isolieren.
Gegenstand der Erfindung sind auch elektrooptische Anzeigen (insbesondere STN- oder MFK-Anzeigen mit zwei planparallelen Trägerplatten, die mit einer Umrandung eine Zelle bilden, integrierten nicht-linearen Elementen zur Schaltung einzelner Bildpunkte auf den Trägerplatten und einer in der Zelle befindlichen nematischen Flüssigkristallmischung mit positiver dielektrischer Anisotropie und hohem spezifischem Widerstand), die derartige Medien enthalten sowie die Verwendung dieser Medien für elektrooptische Zwecke.
Die erfindungsgemäßen Flüssigkristallmischungen ermöglichen eine bedeutende Erweiterung des zur Verfügung stehenden Parameterraumes. Die erzielbaren Kombinationen aus Klärpunkt, Viskosität bei tiefer Temperatur, thermischer Stabilität und dielektrischer Anisotropie übertreffen bei weitem bisherige Materialien aus dem Stand der Technik.
Die Verbindungen der Formel I werden erfindungsgemäß mit weiteren hochpolaren Komponenten mit Δε > 8 und mit einer oder mehreren neutralen Komponenten (-1 ,5 < Δε < 3), die - wenigstens zum Teil - gleichzeitig eine geringe optische Anisotropie (Δn < 0,08) besitzen, kombiniert um die flüssigkristallinen Medien zu erhalten.
Die erfindungsgemäßen Flüssigkristallmischungen ermöglichen es unter Beibehaltung der nematischen Phase bis -20 °C und bevorzugt bis -30 °C, besonders bevorzugt bis -40 0C, einen Klärpunkt oberhalb 60 0C, vorzugsweise oberhalb 65 °C, besonders bevorzugt oberhalb 70 0C, gleichzeitig dielektrische Anisotropiewerte Δε > 3, vorzugsweise > 5, insbesondere auch > 7 und einen hohen Wert für den spezifischen Widerstand zu erreichen, wodurch hervorragende STN- und MFK- Anzeigen erzielt werden können. Insbesondere sind die Mischungen durch sehr geringe Rotationsviskositäten gekennzeichnet. Die Rotationsviskositäten γi liegen unterhalb 90 rnPa-s, vorzugsweise unterhalb 80 mPa-s, besonders bevorzugt unter 70 mPa-s. Die Operationsspannungen liegen gleichzeitig, abhängig von der gewählten dielektrischen
Anisotropie des Mediums, bei niedrigen Werten.
Es versteht sich, dass durch geeignete Wahl der Komponenten der erfindungsgemäßen Mischungen auch höhere Klärpunkte (z.B. oberhalb 90 °C) bei höheren Schwellenspannungen oder niedrigere Klärpunkte bei niedrigeren Schwellenspannungen unter Erhalt der anderen vorteilhaften Eigenschaften realisiert werden können. Ebenso können bei entsprechend wenig erhöhten Viskositäten Mischungen mit größerem Δε und somit geringen Schwellen oder Mischungen mit höheren Klärpunkten erhalten werden. Die erfindungsgemäßen MFK-Anzeigen arbeiten vorzugsweise im ersten Transmissionsminimum nach Gooch und Tarry [CH. Gooch und H.A. Tarry, Electron. Lett. 10, 2-4, 1974; CH. Gooch und H.A. Tarry, Appl. Phys., Vol. 8, 1575-1584, 1975], wobei hier neben besonders günstigen elektrooptischen Eigenschaften, wie z.B. hohe Steilheit der Kennlinie und geringe Winkelabhängigkeit des Kontrastes (DE 3022818 A1) bei gleicher Schwellenspannung wie in einer analogen Anzeige im zweiten Minimum, eine kleinere dielektrische Anisotropie ausreichend ist. Hierdurch lassen sich unter Verwendung der erfindungsgemäßen Mischungen im ersten Minimum deutlich höhere spezifische Widerstände verwirklichen als bei Mischungen mit Cyanverbindungen. Der Fachmann kann durch geeignete Wahl der einzelnen Komponenten und deren Gewichtsanteilen mit einfachen Routinemethoden die für eine vorgegebene Schichtdicke der MFK-Anzeige erforderliche Doppelbrechung einstellen.
Die Fließviskosität v2o bei 20 0C ist vorzugsweise < 60 mm2-s~\ besonders bevorzugt < 50 mm2 s"1. Die Rotationsviskosität γi der erfindungsgemäßen Mischungen bei 20 °C ist vorzugsweise < 80 mPa-s, besonders bevorzugt < 70 mPa-s. Der nematische Phasenbereich hat vorzugsweise eine Breite von mindestens 900C, insbesondere von mindestens 100°C Vorzugsweise erstreckt sich dieser Bereich mindestens von -20° bis +7O0C
Bei Flüssigkristallanzeigen ist eine kleine Schaltzeit erwünscht. Dies gilt besonders für Anzeigen für die Videowiedergabe. Für derartige Anzeigen werden Schaltzeiten (Summe: ton + W von maximal 16 ms benötigt. Die
Obergrenze der Schaltzeit wird durch die Bildwiederholfrequenz bestimmt.
Neben der Rotationsviskosität γi beeinflußt auch der Tiltwinkel die
Schaltzeit.
Messungen des "Voltage Holding-ratio" (HR) [S. Matsumoto et al., Liquid Crystals 5, 1320 (1989); K. Niwa et al., Proc. SID Conference, San Francisco, June 1984, p. 304 (1984); G. Weber et al., Liquid Crystals 5, 1381 (1989)] haben ergeben, dass erfindungsgemäße Mischungen enthaltend Verbindungen der Formel I eine deutlich kleinere Abnahme des HR mit steigender Temperatur aufweisen als analoge Mischungen enthaltend anstelle den Verbindungen der Formel I Cyanophenyl- cyclohexane der Formel
R
Figure imgf000018_0001
Besonders bevorzugte Flüssigkristalline Medien enthalten eine oder mehrere Verbindungen aus den Formeln 1-1 bis I-30:
Figure imgf000018_0002
Figure imgf000019_0001
Figure imgf000020_0001
35
Figure imgf000021_0001
35
Figure imgf000022_0001
worin R1 die in Formel I angegebene Bedeutung hat.
Von diesen bevorzugten Verbindungen sind besonders bevorzugt unter Verbindungen mit zwei Ringen (m = O) solche der Formeln 1-1 , I-2, I-3, I-4 und I-5, ganz besonders die der Formeln 1-1 , 1-2 und I-4. Besonders bevorzugt unter den Dreiringverbindungen sind solche der Formeln I-7, 1-8, 1-10, 1-13, 1-14, 1-16, 1-19, I-22, I-23, I-24, I-27 und I-28, ganz besonders die der Formeln I-8 und 1-14.
Bevorzugte Ausführungsformen der erfindungsgemäßen flüssigkristallinen Medien sind im Folgenden angegeben:
Das flüssigkristallines Medium ist dadurch gekennzeichnet, dass der Anteil an Verbindungen der Formel I im Gesamtgemisch 0,5 bis 40 Gew.% beträgt; bevorzugt beträgt er 4 bis 20 Gew.%. Das Medium enthält ein, zwei oder mehrere Verbindungen der Formeln 1-1 bis I-30;
Das Medium enthält zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln Il bis VI:
Figure imgf000023_0001
worin die einzelnen Reste die folgenden Bedeutungen haben: RC n-Alkyl, Alkoxy, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen,
xc F1 Cl, halogeniertes Alkyl, halogeniertes Alkenyl, halogeniertes Oxalkyl, halogeniertes Alkenyloxy oder halogeniertes Alkoxy mit bis zu 6 C-Atomen,
Z0 -C2F4-, -CF=CF-, -C2H4-, -(CH2)4-, -OCH2-, -CH2O-,
-CF2O- oder -OCF2-,
Y1 bis Y4 jeweils unabhängig voneinander H oder F,
r O oder 1 , und
O, 1 oder 2.
Die Verbindung der Formel IV ist vorzugsweise
Figure imgf000024_0001
IVa IVb
Figure imgf000024_0002
oder
Figure imgf000024_0003
Figure imgf000025_0001
IVf
Das Medium enthält zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln VII bis XIII:
Figure imgf000025_0002
Figure imgf000026_0001
worin
R0 n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen,
X0 F, Cl, halogeniertes Alkyl, halogeniertes Alkenyl, halogeniertes Alkenyloxy oder halogeniertes Alkoxy mit bis zu 6 C-Atomen, und
Y1 bis Y4 jeweils unabhängig voneinander H oder F
bedeutet.
X0 ist hier vorzugsweise F, Cl, CF3, OCF3 oder OCHF2. R0 bedeutet hier vorzugsweise Alkyl, Alkoxy, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 6 C-Atomen.
Das Medium enthält zusätzlich eine oder mehrere Verbindungen der Formeln E-a bis E-d
Figure imgf000027_0001
worin
R0 n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen bedeutet.
Der Anteil an Verbindungen der Formel I beträgt im Gesamtgemisch 0,5 bis 40 Gew.%, besonders bevorzugt 1 bis 30 Gew.%;
Der Anteil der Verbindungen der Formeln E-a bis E-d ist vorzugsweise 5-30 Gew.%, insbesondere 5-25 Gew.%;
Der Anteil an Verbindungen der Formeln I bis VI zusammen beträgt im Gesamtgemisch mindestens 30 Gew.%; Der Anteil an Verbindungen der Formeln Il bis VI im Gesamtgemisch beträgt 30 bis 80 Gew.%;
Y1 F F
— (ÖVx0 ist vorzugsweise — (Ö}~ R — (O)- F, — (ÖV F, Y2 F
F F öy OCF3' --(O)-OCF3. — (Oj-OCF3, -(O)-CF3,
Figure imgf000028_0001
Das Medium enthält Verbindungen der Formeln II, III, IV, V und/oder VI;
R0 ist in allen Verbindungen bevorzugt geradkettiges Alkyl oder Alkenyl mit 2 bis 7 C-Atomen;
Das Medium enthält weitere Verbindungen aus der Klasse der fluorierten Terphenyle mit R0 und/oder X0, wie unten definiert, als Endgruppen, vorzugsweise ausgewählt aus der folgenden Gruppe bestehend aus den allgemeinen Formeln XIV und XV:
Figure imgf000028_0002
Figure imgf000029_0001
worin
R0 n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen,
X0 F, Cl, halogeniertes Alkyl, halogeniertes Alkenyl,
1 Q halogeniertes Alkenyloxy oder halogeniertes Alkoxy mit bis zu 6 C-Atomen, und
Ring B und C, unabhängig voneinander,
1 ,4-Phenylen mit 0, 1 , oder 2 Fluor substituiert,
15 bedeutet.
Vorzugsweise ist in Formel XIV und XV je mindestens einer der 1 ,4- Phenylenringe ein- oder mehrfach durch Fluoratome substituiert.
2Q Bevorzugt sind in Verbindungen der Formel XIV zwei der Phenylene durch mindestens ein Fluoratom substituiert oder eines der Phenylene durch 2 Fluoratome substituiert; in Verbindungen der Formel XV ist bevorzugt eines der Phenylene durch mindestens ein Fluoratom substituiert. X0 ist hier vorzugsweise F, Cl, CF3, OCF3 oder
P5 OCHF2. R0 bedeutet hier vorzugsweise Alkyl, Alkoxy, Oxaalkyl,
Fluoralkyl oder Alkenyl mit jeweils bis zu 6 C-Atomen.
Vorzugsweise handelt es sich bei Verbindungen der Formel XIV um Verbindungen der Formeln XIV-1 bis XIV-5:
Figure imgf000029_0002
35
Figure imgf000030_0001
worin R0 jeweils unabhängig voneinander wie für die Formel XIV definiert ist.
Der Anteil der Verbindungen der Formeln XIV und XV ist vorzugsweise 0-25 Gew.%, insbesondere 2-20 Gew.% und ganz besonders 5-15 Gew.%;
Vorzugsweise handelt es sich bei Verbindungen der Formel XV um eine Verbindung der Formel XV-1 :
Figure imgf000030_0002
worin R0 wie für die Formel XV definiert ist. Das Medium enthält weitere Verbindungen, vorzugsweise ausgewählt aus der folgenden Gruppe bestehend aus den allgemeinen Formeln XVI bis XVIII:
Figure imgf000031_0001
XVIII
Figure imgf000031_0002
worin
R0 n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen,
Y1 H oder F, und
X0 F, Cl, halogeniertes Alkyl, halogeniertes Alkenyl, halogeniertes Alkenyloxy oder halogeniertes Alkoxy mit bis zu 6 C-Atomen
bedeutet;
die 1 ,4-Phenylenringe können zusätzlich durch CN, Chlor oder Fluor substituiert sein. Vorzugsweise sind die 1 ,4-Phenylenringe ein- oder mehrfach durch Fluoratome substituiert.
Das Medium enthält zusätzlich ein, zwei, drei oder mehr, vorzugs- weise zwei oder drei Verbindungen der Formeln
Figure imgf000032_0001
worin "Alkyl" und "Alkyl*" die nachfolgend angegebene Bedeutung haben. Der Anteil der Verbindungen der Formeln 01 und/oder 02 in den erfindungsgemäßen Mischungen beträgt vorzugsweise O- 15 Gew.%, insbesondere 1 -12 Gew.% und ganz besonders bevorzugt 3-10 Gew.%.
Das Medium enthält vorzugsweise 5-35 Gew.% der Verbindung IVa.
Das Medium enthält vorzugsweise ein, zwei oder drei Verbindungen der Formel IVa, worin X0 F oder OCF3 bedeutet.
Das Medium enthält vorzugsweise eine oder mehrere Verbindungen der Formeln IIa bis Mg,
Figure imgf000032_0002
Figure imgf000033_0001
worin
R0 n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen
bedeutet.
In den Verbindungen der Formeln Ila-Ilg bedeutet R0 vorzugsweise Methyl, Ethyl, n-Propyl, n-Butyl und n-Pentyl.
Das Medium enthält vorzugsweise eine oder mehrere Verbindungen der Formeln K-1 bis K-12 (allgemein K),
K- 1
Figure imgf000033_0002
Figure imgf000034_0001
Figure imgf000035_0001
worin
Rc n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen
bedeutet.
Der Anteil an Verbindungen der Formeln K (K-1 bis K-12) beträgt bevorzugt 5 bis 50 Gew.%, besonders bevorzugt 10 bis 40 Gew.%.
Der Anteil der Verbindungen der Formel IVb und/oder IVc, worin X0 Fluor und R0 CH3, C2H5, n-C3H7, n-C4H9 oder n-C5Hn bedeutet, beträgt im Gesamtgemisch 2 bis 20 Gew.%, insbesondere 2 bis 15 Gew.%. Das Medium enthält vorzugsweise Verbindungen der Formeln Il bis VI, worin R0 Methyl bedeutet. Besonders bevorzugt enthält das erfindungsgemäße Medium Verbindungen der Formeln
Figure imgf000036_0001
Das Medium enthält vorzugsweise ein, zwei oder mehr, vorzugsweise ein oder zwei, Dioxan-Verbindungen der Formeln,
Figure imgf000036_0002
Figure imgf000037_0001
worin
Rü n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen
bedeutet.
Der Anteil der Dioxan-Verbindungen D-1 und/oder D-2 in den erfindungsgemäßen Mischungen beträgt vorzugsweise 0-25 Gew.%, insbesondere 0-20 Gew.% und ganz besonders bevorzugt 0-15 Gew.%.
Das Medium enthält vorzugsweise ein, zwei oder mehr, vorzugsweise ein oder zwei Pyranverbindungen der Formeln P-1 bis P-4,
Figure imgf000037_0002
Figure imgf000038_0001
worin
R0 n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen
bedeutet.
Das Medium enthält zusätzlich ein, zwei oder mehr Zweikern- Verbindungen der Formeln Z- 1 bis Z-9 (allgemein Z),
Alkyl* Z-1
Figure imgf000038_0002
Figure imgf000038_0003
Figure imgf000038_0004
Figure imgf000038_0006
Figure imgf000038_0007
Figure imgf000039_0001
Alkyl* Z-9
Figure imgf000039_0002
worin
R1a und R2a jeweils unabhängig voneinander H, CH3, C2H5 oder n-C3H7 bedeuten, und
R0 n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen
bedeutet.
Alkyl, Alkyl* und Alkenyl besitzen die nachfolgend angegebenen Bedeutungen.
Von den genannten Zweikern-Verbindungen sind besonders bevorzugt die Verbindungen Z-2, Z-5, Z-4 und Z-6, ganz besoders die
Verbindungen der Formel Z-5 mit Alkyl gleich Propyl und R1a gleich H oder Methyl, insbesondere mit R1a gleich H.
Der Anteil an Verbindungen der Formeln Z-1 bis Z-9 beträgt insgesamt 5 bis 70 Gew.%, bevorzugt 15 bis 50 Gew.%. Der Anteil an Verbindungen der Formel Z-5 für sich beträgt vorzugsweise 10 bis 60 Gew.%, bevorzugt 15 bis 50 Gew.%. Das Medium besteht im wesentlichen aus Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln I bis VI, K-1 bis K-121 und aus Z- 1 bis Z-9.
Das Medium enthält zusätzlich eine oder mehrere UV-stabilisierende Verbindungen, insbesondere eine Quaterphenylverbindung. Besonders bevorzugt sind einfach oder mehrfach fluorierte Quaterphenylverbindungen der Formel
Alkyl)
Figure imgf000040_0001
wobei t jeweils unabhängig 0, 1 oder 2 ist,
und ganz besonders der Formel
Figure imgf000040_0002
wobei n 1 bis 8 ist.
Das Medium enthält zusätzlich ein, zwei oder mehr Verbindungen mit anellierten Ringen der Formeln AN1 bis AN11 :
Figure imgf000040_0003
Figure imgf000041_0001
35
Figure imgf000042_0001
worin R0 die oben angegebenen Bedeutungen hat;
Die erfindungsgemäßen Mischungen zeichnen sich insbesondere dadurch aus, dass sie Klärpunkte von > 70 0C und Schwellenspannungen von < 2,0 V aufweisen.
Die erfindungsgemäßen Mischungen zeichnen sich insbesondere dadurch aus, dass sie eine dielektrische Anisotropie von Δε > 3 und bevorzugt von Δε > 5 aufweisen.
Es wurde gefunden, dass bereits ein relativ geringer Anteil an Verbindungen der Formeln I im Gemisch mit üblichen Flüssigkristallmaterialien, insbesondere jedoch mit einer oder mehreren Verbindungen der Formeln K, Z, II, III, IV, V und/oder VI zu einer beträchtlichen Erniedrigung der Rotationsviskositäten und der Schaltzeiten führt, wobei gleichzeitig breite nematische Phasen mit tiefen Übergangstemperaturen smektisch- nematisch beobachtet werden, wodurch die Lagerstabilität verbessert wird.
Der Ausdruck "Alkyl" bzw. "Alkyl*" umfasst geradkettige und verzweigte Alkylgruppen mit 1-7 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl und Heptyl. Gruppen mit 1 -5 Kohlenstoffatomen sind im allgemeinen bevorzugt.
Der Ausdruck "Alkenyl" umfasst geradkettige und verzweigte Alkenyl- gruppen mit 2-7 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen. Bevorzugte Alkenylgruppen sind C2-C7-I E-Alkenyl, C4-C7-3E- Alkenyl, C5-C7-4-Alkenyl, C6-C7-5-Alkenyl und C7-6-Alkenyl, insbesondere C2-C7-I E-Alkenyl, C4-C7-3E-Alkenyl und C5-C7-4-Alkenyl. Beispiele besonders bevorzugter Alkenylgruppen sind Vinyl, 1 E-Propenyl, 1 E- Butenyl, 1 E-Pentenyl, 1 E-Hexenyl, 1 E-Heptenyl, 3-Butenyl, 3E-Pentenyl, 3E-Hexenyl, 3E-Heptenyl, 4-Pentenyl, 4Z-Hexenyl, 4E-Hexenyl, 4Z- Heptenyl, 5-Hexenyl, 6-Heptenyl und dergleichen. Gruppen mit bis zu 5
Kohlenstoffatomen sind im allgemeinen bevorzugt.
Der Ausdruck "Fluoralkyl" umfasst vorzugsweise geradkettige Gruppen mit endständigem Fluor, d.h. Fluormethyl, 2-Fluorethyl, 3-Fluorpropyl, 4-Fluor- butyl, 5-Fluorpentyl, 6-Fluorhexyl und 7-Fluorheptyl. Andere Positionen des Fluors sind jedoch nicht ausgeschlossen.
Der Ausdruck "Oxaalkyl" bzw. "Alkoxy" umfasst vorzugsweise geradkettige Reste der Formel CnH2n+i-O-(CH2)m> worin n und m jeweils unabhängig voneinander 1 bis 6 bedeuten, m kann auch 0 bedeuten. Vorzugsweise ist n = 1 und m 1 -6 oder m = 0 und n = 1 -3.
Durch geeignete Wahl der Bedeutungen von R0 und X0 können die Ansprechzeiten, die Schwellenspannung, die Steilheit der Transmissions- kennlinien etc. in gewünschter Weise modifiziert werden. Beispielsweise führen 1 E-Alkenylreste, 3E-Alkenylreste, 2E-Alkenyloxyreste und dergleichen in der Regel zu kürzeren Ansprechzeiten, verbesserten nematischen Tendenzen und einem höheren Verhältnis der elastischen Konstanten k33 (bend) und k-n (splay) im Vergleich zu Alkyl- bzw. Alkoxyresten. 4-Alkenylreste, 3-Alkenylreste und dergleichen ergeben im allgemeinen tiefere Schwellenspannungen und kleinere Werte von k33/kn im Vergleich zu Alkyl- und Alkoxyresten.
Eine -CH2CH2-Gruppe führt im allgemeinen zu höheren Werten von Wk11 im Vergleich zu einer einfachen Kovalenzbindung. Höhere Werte von k33/kn ermöglichen z.B. flachere Transmissionskennlinien in TN-Zellen mit 90° Verdrillung (zur Erzielung von Grautönen) und steilere Transmissionskennlinien in STN-, SBE- und OMI-Zellen (höhere Multiplexierbarkeit) und umgekehrt. Das optimale Mengenverhältnis der Verbindungen der Formeln I und K + Z + Il + III + IV + V + VI hängt weitgehend von den gewünschten Eigenschaften, von der Wahl der Komponenten der Formeln I, II, III, IV, V und/oder VI und der Wahl weiterer gegebenenfalls vorhandener Komponenten ab.
Geeignete Mengenverhältnisse innerhalb des oben angegebenen Bereichs können von Fall zu Fall leicht ermittelt werden.
Die Gesamtmenge an Verbindungen der Formeln I und der angegebenen Cokomponenten in den erfindungsgemäßen Gemischen ist nicht kritisch. Die Gemische können daher eine oder mehrere weitere Komponenten enthalten zwecks Optimierung verschiedener Eigenschaften. Der beobachtete Effekt auf die Ansprechzeiten und die Schwellenspannung ist jedoch in der Regel umso größer je höher die Gesamtkonzentration an Verbindungen der Formeln I und der angegebenen Cokomponenten sind.
In einer besonders bevorzugten Ausführungsform enthalten die erfindungsgemäßen Medien Verbindungen der Formel Il bis VI (vorzugsweise II, III und/oder IV, insbesondere IVa), worin X0 F, OCF3, OCHF2, OCH=CF2, OCF=CF2 oder OCF2-CF2H bedeutet. Eine günstige synergistische Wirkung mit den Verbindungen der Formeln I führt zu besonders vorteilhaften Eigenschaften. Insbesondere Mischungen enthaltend Verbindungen der Formel I und der Formel IVa zeichnen sich durch ihre niedrige Schwellenspannung aus.
Die einzelnen Verbindungen, die in den erfindungsgemäßen Medien verwendet werden können, sind entweder bekannt, oder sie können analog zu den bekannten Verbindungen hergestellt werden.
Der Aufbau der erfindungsgemäßen MFK-Anzeige aus Polarisatoren, Elektrodengrundplatten und Elektroden mit Oberflächenbehandlung entspricht der für derartige Anzeigen üblichen Bauweise. Dabei ist der Begriff der üblichen Bauweise hier weit gefasst und umfasst auch alle Abwandlungen und Modifikationen der MFK-Anzeige, insbesondere auch Matrix-Anzeigeelemente auf Basis poly-Si TFT oder MIM. Ein wesentlicher Unterschied der erfindungsgemäßen Anzeigen zu den bisher üblichen auf der Basis der verdrillten nematischen Zelle besteht jedoch in der Wahl der Flüssigkristallparameter der Flüssigkristallschicht.
Die Herstellung der erfindungsgemäß verwendbaren Flüssigkristallmischungen erfolgt in an sich üblicher Weise. In der Regel wird die gewünschte Menge der in geringerer Menge verwendeten Komponenten in der den Hauptbestandteil ausmachenden Komponenten gelöst, zweckmäßig bei erhöhter Temperatur. Es ist auch möglich Lösungen der Komponenten in einem organischen Lösungsmittel, z.B. in Aceton, Chloroform oder Methanol, zu mischen und das Lösungsmittel nach Durchmischung wieder zu entfernen, beispielsweise durch Destillation.
Die Dielektrika können auch weitere, dem Fachmann bekannte und in der Literatur beschriebene Zusätze, wie z. B. UV-Stabilisatoren wie Tinuvin® der Fa. Ciba, Antioxidantien, Radikalfänger, etc. enthalten. Beispielsweise können 0-15 % pleochroitische Farbstoffe oder chirale Dotierstoffe zugesetzt werden. Geeignete Stabilisatoren und Dotierstoffe werden nachfolgend in den Tabellen C und D genannt.
Die Schwellenspannung V10 bezeichnet die Spannung für 10 % Transmission (Blickrichtung senkrecht zur Plattenoberfläche). ton bezeichnet die Einschaltzeit und tOft die Ausschaltzeit bei einer Betriebsspannung entsprechend dem 2,0fachen Wert von V10. Δn bezeichnet die optische Anisotropie. Δε bezeichnet die dielektrische
Anisotropie (Δε = εμ - ε±, wobei εn die Dielektrizitätskonstante parallel zu den Moleküllängsachsen und εx die Dielektrizitätskonstante senkrecht dazu bedeutet). Die elektro-optischen Daten werden in einer TN-ZeIIe im 1. Minimum (d.h. bei einem d Δn-Wert von 0,5 μm) bei 20 °C gemessen, sofern nicht ausdrücklich etwas anderes angegeben wird. Die optischen Daten werden bei 20 0C gemessen, sofern nicht ausdrücklich etwas anderes angegeben wird.
In der vorliegenden Anmeldung und in den folgenden Beispielen sind die Strukturen der Flüssigkristallverbindungen durch Akronyme angegeben, wobei die Transformation in chemische Formeln gemäß folgender Tabellen A und B erfolgt. Alle Reste CnH2n+I und CmH2m+i sind geradkettige Alkylreste mit n bzw. m C-Atomen; n und m sind ganze Zahlen und bedeuten vorzugsweise 0, 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 oder 12. Die Codierung gemäß Tabelle B versteht sich von selbst. In Tabelle A ist nur das Akronym für den Grundkörper angegeben. Im Einzelfall folgt getrennt vom Akronym für den Grundkörper mit einem Strich ein Code für die Substituenten R1\ R2*, L1* und L2*:
Code für R1 , R1 R2 L1 L2
R2*, Lr, L2*, L3*
Figure imgf000046_0001
nO.m CnH2n+I OCmH2m+i H H
Figure imgf000046_0002
nOCF3.F.F CnH2n+I OCF3 F F n-Vm CnH2n+I -CH=CH-CmH2m+i H H nV-Vm CnH2n+I-CH=CH- -CH=CH-CmH2m+i H H
Bevorzugte Mischungskomponenten finden sich in den Tabellen A und B. Tabelle A
Figure imgf000047_0001
PYP
Figure imgf000047_0002
PYRP
Figure imgf000047_0003
BCH
Figure imgf000047_0004
CBC
Figure imgf000047_0005
CCH
Figure imgf000047_0006
CCP
Figure imgf000047_0007
CPTP
Figure imgf000048_0001
CEPTP
Figure imgf000048_0002
ECCP
Figure imgf000048_0003
CECP
Figure imgf000048_0004
EPCH
Figure imgf000048_0005
PCH
Figure imgf000048_0006
PTP
Figure imgf000049_0001
Figure imgf000049_0002
EBCH
Figure imgf000049_0003
CPC
Figure imgf000049_0004
B
Figure imgf000049_0005
F
FET-nF
Figure imgf000049_0006
CGG
Figure imgf000049_0007
CGU
Figure imgf000050_0001
CFU
Tabelle B
Figure imgf000050_0002
BCH-n.Fm
Figure imgf000050_0003
CFU-n-F
Figure imgf000050_0004
CBC-nmF
Figure imgf000050_0005
ECCP-nm
Figure imgf000050_0006
PGP-n-m
Figure imgf000051_0001
CGU-n-F
Figure imgf000051_0002
CDU-n-F
Figure imgf000051_0003
CGG-n-F
CnH2n+1 H W θ )-COO-( O )-OCF3
CPZG-n-OT
Figure imgf000051_0004
CC-nV-Vm
Figure imgf000051_0005
CCP-Vn-m
Figure imgf000051_0006
CCG-V-F
Figure imgf000052_0001
CCP-nV-m
Figure imgf000052_0002
CCP-V-m
Figure imgf000052_0003
CC-n-V
Figure imgf000052_0004
CCQU-n-F
Figure imgf000052_0005
CC-n-V1
Figure imgf000052_0006
CCQG-n-F
Figure imgf000052_0007
CQCU-n-F
Figure imgf000052_0008
Dec-U-n-F
Figure imgf000053_0001
CWCU-n-F
Figure imgf000053_0002
CWCG-n-F
Figure imgf000053_0003
CCOC-n-m
Figure imgf000053_0004
PQU-n-F
Figure imgf000053_0005
PUQU-n-F
Figure imgf000054_0001
CGZP-n-OT
Figure imgf000054_0002
CCGU-n-F
Figure imgf000054_0003
CCQU-n-F
Figure imgf000054_0004
CUQU-n-F
Figure imgf000054_0005
Figure imgf000055_0001
PP-n-2Vm
Besonders bevorzugt sind flüssigkristalline Mischungen, die neben den
Verbindungen der Formeln I mindestens ein, zwei, drei oder vier Verbindungen aus der Tabelle B enthalten.
Tabelle C
In der Tabelle C werden mögliche Dotierstoffe angegeben, die in der Regel den erfindungsgemäßen Mischungen zugesetzt werden. Vorzugsweise enthalten die Mischungen 0-10 Gew.%, insbesondere 0,01 -5 Gew.% und besonders bevorzugt 0,01 -3 Gew.% an Dotierstoffen.
Figure imgf000055_0002
C 15
Figure imgf000055_0003
CB 15
Figure imgf000055_0004
CM 21
Figure imgf000055_0005
R/S-811
Figure imgf000056_0001
CM 44
Figure imgf000056_0002
CM 45
Figure imgf000056_0003
CM 47
Figure imgf000056_0004
R/S-3011
Figure imgf000056_0005
CN
Figure imgf000057_0001
R/S-2011
Figure imgf000057_0002
R/S-4011
Figure imgf000057_0003
R/S-5011
Tabelle D
Stabilisatoren, die beispielsweise den erfindungsgemäßen Mischungen zugesetzt werden können, werden nachfolgend genannt.
Figure imgf000057_0004
CnH2n+1
Figure imgf000057_0006
Figure imgf000057_0005
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
30
35
Figure imgf000061_0001
Die folgenden Beispiele erläutern die Erfindung, ohne sie einschränken zu sollen. Der Fachmann wird in der Lage sein, den Beispielen besonders geeignete, nicht näher beschriebene Ausführungsformen zu entnehmen und sie an unterschiedliche Randbedingungen anzupassen. Vor- und nachstehend bedeuten Prozentangaben Gewichtsprozent. Alle Temperaturen sind in Grad Celsius angegeben. Es bedeuten K = kristalliner Zustand, N = nematische Phase, Sm = smektische Phase und I = isotrope Phase. Die Angaben zwischen diesen Symbolen stellen die Übergangstemperaturen für die Reinstoffe dar.
Die physikalischen Messmethoden an Mischungen sind in beschrieben in „Merck Liquid Crystals, Physical Properties of Liquid Crystals", Nov. 1997, Merck KGaA.
Die dielektrische Anisotrope Δε der einzelnen Substanzen wird bei 20 °C und 1 kHz bestimmt. Dazu werden 10 Gew.% der zu untersuchenden Substanzen in der dielektrisch positiven Mischung ZLI-4792 (Merck KGaA) gelöst gemessen und der Messwert auf eine Konzentration von 100 % extrapoliert. Die optische Anisotropie Δn wird bei 20 °C und einer Wellenlänge von 589,3 nm bestimmt. Sie wird ebenfalls durch Extrapolation der Werte bei 10 Gew.% bestimmt.
Es bedeuten:
KIp. Klärpunkt (Phasenübergangstemperatur nematisch-isotrop), Δn optische Anisotropie (589 nm, 20°C), Δε dielektrische Anisotropie (1 kHz, 200C), ε„ - ε± ε„ Anteil der Dielektrizitätskonstante parallel zur Moleküllängsachse (1 kHz, 20 0C), εx Anteil der Dielektrizitätskonstante senkrecht zur Moleküllängsachse (1 kHz, 20 0C)
Y1 Rotationsviskosität (200C), We Tieftemperatur-Lagerstabilität in Stunden (-200C, -300C, -400C),
Vio Schwellenspannung = charakteristische Spannung bei einem relativen Kontrast von 10 %,
V90 Sättigungsspannung = charakteristische Spannung bei einem relativen Kontrast von 90 %, ki elastische Konstante Spreizdeformation (splay deformation, auch kn) k3 elastische Konstante Biegedeformation (bend deformation, auch k33) k3/ki Verhältnis von k3 zu k^
V0 kapazitive bzw. Freederickzs-Schwellenspannung
Synthesebeispiel 1.1
Figure imgf000063_0001
Durch langsame Zugabe von 141 g (70,9 mmol) 1 -Brom-4-propylbenzol zu 20 g (823 mmol) Magnesium in 200 ml trockenem THF wird eine Grignard- Lösung hergestellt. Nach 1 h Rühren unter Rückfluss wird mit 1 I THF verdünnt und auf -35 °C gekühlt. Am Trockeneiskühler werden 100 g (0,86 mol) Chlortrifluorethylen langsam eingeleitet und 1 ,5 h gerührt. Die Reaktionslösung wird auf RT erwärmt, 12 h gerührt und in eine Mischung aus Eis/2N HCl eingerührt. Die organische Phase wird abgetrennt. Die wässrige Phase wird mit MTB-Ether extrahiert. Die vereinigten organischen Phasen werden mit Wasser und NaCI-Lösung gewaschen, getrocknet und eingeengt. Das Produkt ist eine farblose Flüssigkeit.
Synthesebeispiel 1.2
Figure imgf000064_0001
Zu 18,2 g (97 mmol) Natriumorthosilikat in 50 ml Wasser werden unter Stickstoff 2,02 g (30 mmol) Bis(tricyclohexylphosphin)palladium(ll)chlorid und 0,154 ml (30 mmol) Hydraziniumhydroxid gegeben und 5 min gerührt. Dazu werden 32,5 g (142 mmol) des Produktes aus Beispiel 1.1 und 50 g (141 mmol) der Boronsäureverbindung gegeben und 12 h am Rückfluss gerührt. Anschließend wird die organische Phase abgetrennt, der Rest ausgeschüttelt und alle organischen Phasen vereinigt. Die Reinigung erfolgt durch Fraktionierung über 1 I Kieselgel mit Pentan. Die Produktfraktion wird aus kaltem Isopropanol kristallisiert. Farblose Kristalle (Schmp. 55 0C, > 99 % GC/HPLC). K 55 N 75 I.
Synthesebeispiel 2
Figure imgf000064_0002
Zu 3,75 g (19,9 mmol) Natriumorthosilikat in 10 ml Wasser werden unter Stickstoff 0,40 g (0,72 mmol) Bis(tricyclohexylphosphin)palladium(ll)chlorid und 0,35 ml (0,72 mmol) Hydraziniumchlorid gegeben und 5 min gerührt. Dazu werden 7,23 g (28 mmol) der Boronsäure und 7,50 g (27 mmol) der Chlordifluorethenverbindung gegeben und 12 h am Rückfluss gerührt. Nach der Aufarbeitung analog Beispiel 1.1 wird aus Toluol/Methanol kristallisiert (Schmp. 39 0C, > 99 % GC/HPLC). K 39 SmB 110 SmA 221 N 226 I.
KIp. 215,5 0C
Δε 8,4
Δn 0,223
Y1 249 mPa-s
Mischunqsbeispiel 1
CC-3-V 26 % Klärpunkt [°C] • 73,5
CC-3-V1 7 % Δn [589 nm, 200C]: 0,1007
CCQU-3-F 12 % Δε [1 kHz, 20 0C]: +7,8
PUQU-2-F 9 % Y1 [mPa-s, 20 0C]: 57
PUQU-3-F 12 % Vio [V]: 1,48
CCP-V-1 14 %
CCP-30CF3 8 %
CCGU-3-F 3 %
CBC-33 1 %
Figure imgf000066_0001
100%
Mischunqsbeispiel 2
CCP-30CF3 4% Klärpunkt [0C]: 78,0
CCQU-3-F 12% Δn [589 nm, 200C]: 0,102
CC-4-V 14% Δε [1 kHz, 200C]: +9,7
CC-3-V1 14% Y1 [mPa-s, 200C]: 72
PUQU-2-F 14% V10[V]: 1,34
PUQU-3-F 13 %
CCP-V-1 20 %
CCGU-3-F 5 %
Figure imgf000066_0002
100% Mischunqsbeispiel 3
CC-3-V1 17% Klärpunkt [0C]: 76,0
CC-3-V 31 % Δn [589 nm, 200C]: 0,102
PUQU-2-F 9 % Δε [1 kHz, 200C]: +5,5
PUQU-3-F 8 % γi [mPa-s, 200C]: 52
BCH-32 4% V10[V]: 1,86
CCP-V-1 14%
CCGU-3-F 9%
Figure imgf000067_0001
100%
Mischungsbeispiel 4
CC-3-V1 17% Klärpunkt [0C]: 76
CC-3-V 31 % Δn [589 nm, 200C]: 0,1023
PUQU-2-F 9 % Δε [1 kHz, 200C]: +5,5
PUQU-3-F 8 % γi [mPa-s, 200C]: 52
BCH-32 4% V10[V]: 1,86
CCP-V-1 14%
CCGU-3-F 9%
Figure imgf000067_0002
100%
Mischunαsbeispiel 5
CC-3-V1 15% Klärpunkt [0C]: 75,5
CC-3-V 31 % Δn [589 nm, 200C]: 0,1066
PUQU-2-F 8 % Δε [1 kHz, 200C]: +5,3
PUQU-3-F 8 % Y1 [mPas, 200C]: 49
Figure imgf000068_0001
CC P-V- 1 11 %
CCGU-3-F 8 %
PP-1-2V1 3 %
Figure imgf000068_0002
100%
Mischunqsbeispiel 6
PUQU-2-F 7% Klärpunkt [0C]: 77.5
PUQU-3-F 10% Δn [589 nm, 200C]: 0,1158
CC-3-V 36% Δε[1 kHz, 2O0C]: +7,1
Figure imgf000068_0003
CCGU-3-F 8% V10[V]: 1,60
BCH-32 10%
PGU-3-F 6%
Figure imgf000068_0004
100% Mischunqsbeispiel 7
CC-3-V1 18% Klärpunkt [0C]: 75
CC-3-V 31 % Δn [589 nm, 200C]: 0,1082
PUQU-2-F 8 % Δε [1 kHz, 200C]: +5,5
PUQU-3-F 11 % γi [mPa-s, 200C]: 50
BCH-32 10% V10[V]: 1,82
CCP-V-1 6%
CCGU-3-F 8%
Figure imgf000069_0001
100%
Mischunqsbeispiel 8
PUQU-3-F 18% Klärpunkt [0C]: 75,5
CC-3-V 31 % Δn [589 nm, 200C]: 0,1090
CC-3-V1 10% Δε[1 kHz, 200C]: +7,0
CCP-V-1 8 % Y1 [mPa-s, 200C]: 57
CCGU-3-F 8% V10[V]: 1,65
BCH-32 10%
PGU-3-F 7%
Figure imgf000069_0002
100%
Mischunqsbeispiel 9
PUQU-3-F 16% Klärpunkt [0C]: 75,5
CC-3-V 43% Δn [589 nm, 200C]: 0,1226
CCGU-3-F 7% Δε[1 kHz, 200C]: +7,1
BCH-32 6 % γi [mPa-s, 200C]: 56
APUQU-3-F 6 % Vi0[V]: 1,66
PGP-2-4 7 %
PGP-2-3 4 %
CBC-33 3 %
Figure imgf000070_0001
100%
Mischunqsbeispiel 10
PUQU-3-F 16% Klärpunkt [0C]: 74,5
CC-3-V 43.5% Δn [589 nm, 200C]: 0,1201
CCGU-3-F 9% Δε[1 kHz, 200C]: +7,1
BCH-32 5.5 % γi [mPa-s, 200C]: 57
APUQU-3-F 6% V10[V]: 1,64
PGP-2-4 5 %
PGP-2-3 4 %
CBC-33 3 %
Figure imgf000070_0002
100% Mischunqsbeispiel 11
PUQU-3-F 10% Klärpunkt [0C]: 75
CC-3-V 43% Δn [589 nm, 200C]: 0,1084
CC-3-V1 13% Δε[1 kHz, 200C]: +5,3
CCGU-3-F 7 % Y1 [mPa-s, 200C]: 48
APUQU-3-F 6% V10[V]: 1,88
PGP-2-4 6 %
PGP-2-3 4 %
CBC-33 3 %
Figure imgf000071_0001
100%
Mischunqsbeispiel 12
CC-3-V 40% Klärpunkt [0C]: 74,5
CC-3-V1 11 % Δn [589 nm, 200C]: 0,1187
PUQU-3-F 3 % Δε [1 kHz, 200C]: +4,6
PGU-2-F 7 % Y1 [mPa-s, 200C]: 49
PGU-3-F 10% V10[V]: 1,94
PGP-2-3 5%
PGP-2-4 3.5 %
CCP-30CF3 2%
CCP-V-1 6.5 %
CCGU-3-F 3%
CBC-33 3%
Figure imgf000071_0002
100% Mischunqsbeispiel 13
PUQU-3-F 17 % Klärpunkt [0C]: 76
CC-3-V 37 % Δn [589 nm, 200C]: 0,1193
CC-3-V1 5 % Δε [1 kHz, 200C]: +7,3
CCP-V-1 6 % Y1 [mPa-s, 200C]: 56
CCGU-3-F 8 % V10[V]: 1,64
BCH-32 10 %
PGU-3-F 5 %
PPGU-4-F 3 %
PGP-2-3 3 %
Figure imgf000072_0001
100%
Mischunqsbeispiel 14
CC-3-V1 15% Klärpunkt [0C]: 76
CC-3-V 36% Δn [589 nm, 200C]: 0,1092
PUQU-3-F 16% Δε[1 kHz, 200C]: +5,6
BCH-32 10% Y1 [mPas, 200C]: 51
CCP-V-1 4% V10[V]: 1,87
CCGU-3-F 7%
PPGU-4-F 3%
PGP-2-4 3%
Figure imgf000072_0002
100% Mischunqsbθispiel 15
PUQU-3-F 17% Klärpunkt [0C]: 75
CC-3-V 38 % Δn [589 nm, 200C]: 0,1184
CCP-V-1 9 % Δε [1 kHz, 200C]: +7,0
CCGU-3-F 10% γi [mPas, 200C]: 58
BCH-32 10% V10[V]: 1,65
PGU-3-F 6%
PGP-2-4 4%
Figure imgf000073_0001
100%
Mischunqsbeispiel 16
PGU-2-F 5 % Klärpunkt [0C] 75,0
CDU-2-F 6 % Δn [589 nm, 200C]: 0,0972
CCZU-3-F 15 % Δε [1 kHz, 20' 3C]: +8,5
CC-3-V1 13 % Y1 [mPa-s, 20' 'C]: 61
CC-3-V 21 % ki [pN, 20 0C] 13,1
CCP-V-1 6 % ks/k, [pN, 20° C] 0,95
CCP-30CF3 8 % V0 [V, 20 < O] 1,30
CCP-40CF3 6 %
PUQU-2-F 7 %
PUQU-3-F 7 %
Figure imgf000073_0002
100% Mischunqsbeispiel 17
PGU-2-F 6.5 % Klärpunkt [0C]: 75,5
CDU-2-F 4.5 % Δn [589 nm, 200C]: 0,0976
CCZU-3-F 12% Δε [1 kHz, 200C]: +8,4
CC-3-V1 13% Y1 [mPa-s, 200C]: 61
CC-3-V 21 % MpN, 20 °C] 12,6
CCP-V-1 8% ks/ki [pN, 20 °C] 1 ,02
CCP-30CF3 8% V0 [V, 200C] 1 ,29
CCP-40CF3 8%
PUQU-2-F 7%
PUQU-3-F 6%
Figure imgf000074_0001
100%
Mischunqsbeispiel 18
CC-3-V 19% Klärpunkt [0C]: 75,5
CC-3-V1 13% Δn [589 nm, 200C]: 0,0975
CCP-30CF3 8 % Δε [1 kHz, 200C]: +8,6
CCP-40CF3 8 % Y1 [mPa-s, 200C]: 65
CCP-V-1 8% MpN, 200C] 12,5
CCZU-3-F 13% ks/k! [pN, 200C] 1,01
CDU-2-F 6.5% V0[V, 20 °C] 1,27
PGU-2-F 5.5 %
PUQU-2-F 7%
PUQU-3-F 6%
Figure imgf000074_0002
100% Mischunqsbeispiel 19
CC-3-V 13 % Klärpunkt [0C] 78,5
CC-3-V1 12 % Δn [589 nm, 200C]: 0,1105
CCGU-3-F 5 % Δε [1 kHz, 20' 3C]: +11,4
CCP-30CF3 8 % γi [mPa-s, 20' 'C]: 78
CCP-V-1 10.5 % ki [pN, 20 0C] 13,0
CCZU-3-F 12 % ka/ki [pN, 20° C] 0,98
CDU-2-F 9 % V0 [V, 20 c 3C] 1,12
PGU-2-F 7.5 %
PUQU-2-F 8.5 %
PUQU-3-F 8.5 %
Figure imgf000075_0001
100%
Mischunαsbeispiel 20
CC-3-V 14.5% Klärpunkt [0C]: 79,0
CC-3-V1 12% Δn [589 nm, 200C]: 0,1097
CCGU-3-F 7 % Δε [1 kHz, 200C]: +11 ,3
CCP-30CF3 7 % γi [mPa-s, 200C]: 78
CCP-V-1 12.5% MpN, 200C] 12,4
CCZU-3-F 9% ka/ki [pN, 20 °C] 1,06
CDU-2-F 7% V0[V, 200C] 1,10
PGU-2-F 8%
PUQU-2-F 8.5 %
PUQU-3-F 8.5 %
Figure imgf000075_0002
100% Mischunqsbeispiel 21
CC-3-V 12.5% Klärpunkt [0C]: 79
CC-3-V1 12% Δn [589 nm, 200C]: 0,1100
CCGU-3-F 7 % Δε [1 kHz, 200C]: +11 ,4
CCP-30CF3 8 % γi [mPa-s, 200C]: 81
CCP-V-1 12.5% ki[pN,20°C] 12,2
CCZU-3-F 9 % ka/ki [pN, 200C] 1 ,07
CDU-2-F 9% V0[V, 200C] 1,09
PGU-2-F 7%
PUQU-2-F 8.5 %
PUQU-3-F 8.5 %
Figure imgf000076_0001
100%
Mischunqsbeispiel 22
APUQU-2-F 8 % Klärpunkt [0C] 73,0
CC-3-V 25 % Δn [589 nm, 200C]: 0,1005
CC-3-V1 13 % Δε [1 kHz, 20' 3C]: +8,6
CCP-V-1 10.5 % Y1 [mPa-s, 20 < 3C]: 59
CCP-V2-1 10 % ki [pN, 20 0C] 12,8
CDU-2-F 10 % ka/ki [pN, 20° C] 1,01
PUQU-2-F 8.5 % V0 [V, 20 c 5C] 1,28
PUQU-3-F 9 %
Figure imgf000076_0002
100% Mischunqsbeispiθl 23
APUQU-2-F 8 % Klärpunkt [0C]: 74,5
CC-3-V 26 % Δn [589 nm, 20 0C]: 0,0996
CC-3-V1 12 % Δε [1 kHz, 20 0C]: +8,5
CCP-V-1 10.5 % γi [mPa s, 20 0C]: 59
CCP-V2-1 12 % MpN, 20 0C] 12,7
CDU-2-F 8 % kg/k! [pN, 20 0C] 1 ,05
PGU-2-F 2 % V0 [V, 20 °C] 1 ,28
PUQU-2-F 7.5 %
PUQU-3-F 8 %
Figure imgf000077_0001
100 %
Mischunqsbeispiel 24
APUQU-2-F 8 % Klärpunkt [°C] 73
CC-3-V 25 % Δn [589 nm, 20 0C]: 0,1000
CC-3-V1 12 % Δε [1 kHz, 20 ' 'C]: +8,5
CCP-V-1 10.5 % γi [mPa-s, 20 ' 'C]: 60
CCP-V2-1 12 % ki [pN, 20 0C] 12,2
CDU-2-F 9.5 % ka/ki [pN, 20 ° C] 1 ,07
PGU-2-F 1.5 % V0 [V, 20 c 5C] 1 ,25
PUQU-2-F 7.5 %
PUQU-3-F 8 %
Figure imgf000077_0002
100 % Mischunqsbeispiel 25
APUQU-2-F 9% Klärpunkt [0C]: 78
CC-3-V 16% Δn [589 nm, 200C]: 0,1118
CC-3-V1 12% Δε[1 kHz, 200C]: +11,1
CCP-30CF3 7 % Y1 [mPa-s, 200C]: 74
CCP-V-1 11 %
CCP-V2-1 10%
CDU-2-F 5.5 %
PGU-2-F 5%
PUQU-2-F 10%
PUQU-3-F 10%
Figure imgf000078_0001
100%
Mischunqsbeispiel 26
APUQU-2-F 9% Klärpunkt [0C]: 79,5
CC-3-V 15.5% Δn [589 nm, 200C]: 0,1112
CC-3-V1 12% Δε[1 kHz, 200C]: +11,1
CCP-30CF3 7.5 % γi [mPa-s, 200C]: 72
CCP-V-1 11.5 %
CCP-V2-1 11 %
CDU-2-F 3.5 %
PGU-2-F 5%
PUQU-2-F 10%
PUQU-3-F 10%
Figure imgf000078_0002
100% Mischunqsbeispiel 27
APUQU-2-F 9% Klärpunkt [0C]: 78,5
CC-3-V 14.5% Δn [589 nm, 200C]: 0,1114
CC-3-V1 12% Δε[1 kHz, 200C]: +11,2
CCP-30CF3 7.5 % γi [mPas, 200C]: 76
CCP-V-1 11.5% MpN^O0C] 12,7
CCP-V2-1 11 % kg/ki [pN, 200C] 1 ,08
CDU-2-F 5% V0[V, 20 °C] 1,12
PGU-2-F 4.5 %
PUQU-2-F 10%
PUQU-3-F 10%
Figure imgf000079_0001
100%
Mischunqsbeispiel 28
CC-3-V 21 % Klärpunkt [0C] 74
CC-3-V1 6 % Δn [589 nm, 200C]: 0,1192
CCQU-2-F 11 % Δε [1 kHz, 20 0C]: +11,2
PUQU-3-F 17 % ε„ [1 kHz, 20 ° C]: +15,0
PGU-2-F 7 % Y1 [mPa-s, 20 0C]: 77
PGU-3-F 12 % Vio [V]: 1,23
CCP-V-1 17 % V90 [V]: 1,88
CCGU-3-F 3 %
Figure imgf000079_0002
100% Mischunqsbeispiel 29
CC-3-V 42% Klärpunkt [0C]: 75
CC-3-V1 12% Δn [589 nm, 200C]: 0,1210
PP-1-2V1 1 % Δε [1 kHz, 200C]: +4,3
PGU-2-F 8 % ε„ [1 kHz, 200C]: +7,2
PGU-3-F 12% Y1 [mPa-s, 200C]: 49
PGP-2-3 6% V10[V]: 2,10
PGP-2-4 5% V90[V]: 3,08
CCP-V-1 6%
Figure imgf000080_0001
100%
Mischunqsbeispiel 30
CC-3-V 41 % Klärpunkt [0C]: 74,5
CC-3-V1 6% Δn [589 nm, 200C]: 0,1204
PP-1-2V1 3% Δε [1 kHz, 200C]: +4,0
PGU-2-F 6% ε„ [1 kHz, 200C]: +7,1
PGU-3-F 8% Y1 [mPa-s, 200C]: -
Figure imgf000080_0002
PGP-2-4 6% V90 [V]: -
CCP-V-1 17%
Figure imgf000080_0003
100% Mischunαsbeispiel 31
CC-3-V 24 % Klärpunkt [0C]: 75,5
CCQU-2-F 6 % Δn [589 nm, 20 0C]: 0,1210
PUQU-3-F 17 % Δε [1 kHz, 20 0C]: +12,7
PGU-2-F 5 % ε„ [1 kHz, 20 0C]: +16,4
PGU-3-F 6 % γi [mPa s, 20 0C]: 82
CCP-30CF3 8 % V10 [V]: 1 ,21
PGP-2-3 1 % V90 [V]: 1 ,88
CCP-V-1 18 %
CCGU-3-F 3 %
Figure imgf000081_0001
100 %
Mischunqsbeispiel 32
CC-3-V 24 % Klärpunkt [0C]: 77,5
CCQU-2-F 6 % Δn [589 nm, 20 0C]: 0,1209
PUQU-3-F 17 Δε [1 kHz, 20 0C]: +12,2
PGU-2-F 5 % ε„ [1 kHz, 20 0C]: +15,9
PGU-3-F 6 % γi [mPa-s, 20 0C]: 78
CCP-30CF3 8 % Vio [V]: 1 ,25
PGP-2-3 2 % V90 [V]: 1 ,90
CCP-V-1 18 %
CCGU-3-F 4 %
Figure imgf000081_0002
100 % Mischunqsbeispiel 33
PGU-2-F 4 % Klärpunkt [0C]: 69
PUQU-2-F 8 % Δn [589 nm, 20 0C]: 0,1091
GGP-3-CL 4 % Δε [1 kHz, 20 0C]: +4,1
CC-3-V 35.5 % ε„ [1 kHz, 20 0C]: +6,9
CC-3-V1 13 % Y1 [mPa-s, 20 0C]: 47
PP-1-2V1 9 % Ic1 [pN, 20 °C] 13,0
CCP-V-1 11 % ka/ki [pN, 20 0C] 1 ,06
CCP-V2-1 2.5 % V0 [V, 20 °C] 1 ,88
BCH-32 8 %
Figure imgf000082_0001
100 %
Mischunqsbeispiel 34
CDU-2-F 2 % Klärpunkt [0C]: 75,5
PGU-2-F 3 % Δn [589 nm, 20 0C]: 0,0996
PUQU-2-F 7.5 % Δε [1 kHz; , 20 0C]: +8,7
PUQU-3-F 8 % ε„ [1 kHz, 20 0C]: +12,1
CCP-V-1 11 % γi [mPa-s, , 20 0C]: 59
CCP-V2-1 11.5 % Ic1 [pN, 20 i 0C] 12,4
CC-3-V1 12.5 % ka/ki [pN, 20 0C] 1 ,12
CC-3-V 30.5 % V0 [V, 20 ' 3C] 1 ,25
APUQU-2-F 8 %
Figure imgf000082_0002
100 % Mischunqsbeispiel 35
CDU-2-F 4.5 % Klärpunkt [0C]: 74
PGU-2-F 5 % Δn [589 nm, 20 0C]: 0,1000
PUQU-2-F 8 % Δε [1 kHz, , 20 0C]: +8,6
PUQU-3-F 8 % ε„ [1 kHz, 20 0C]: +12,1
CCP-V-1 11 % γi [mPa-s, , 20 0C]: 60
CCP-V2-1 6 % ki [pN, 20 0C] 12,1
CC-3-V1 12 % ka/ki [pN, 20 °C] 1 ,10
CC-3-V 31.5 % V0 [V, 20 ' 3C] 1 ,25
APUQU-2-F 8 %
Figure imgf000083_0001
100 %
Mischunqsbeispiel 36
CCP-30CF3 7 % Klärpunkt [0C]: 80
PGU-2-F 5.5 % Δn [589 nm, 20 0C]: 0,1096
PUQU-2-F 8.5 % Δε [1 kHz, 20 0C]: +10,9
PUQU-3-F 9 % ε„ [1 kHz, 20 0C]: +14,4
CC-3-V1 12 % γi [mPa-s, 20 0C]: 71
CC-3-V 21.5 % ki [pN, 20 0C] 13,0
CCP-V-1 11.5 % kg/k, [pN, 20 °C] 1 ,08
CCP-V2-1 10 % V0 [V, 20 0C] 1 ,15
APUQU-2-F 8.5 %
Figure imgf000083_0002
100 % Mischunqsbeispiel 37
PUQU-2-F 11 % Klärpunkt [0C]: 75
PUQU-3-F 9.5% Δn [589 nm, 200C]: 0,1001
CCP-30CF3 8% Δε[1 kHz, 200C]: +13,9
CC-3-V 25% ε„[1 kHz, 200C]: +17,9
CC-3-V1 11 % γi [mPa-s, 200C]: 79
CCZU-3-F 1.5 % kn [pN, 20 °C] 11 ,4
CCQU-3-F 10% Ic3Zk1PO0C] 1,11
CCGU-3-F 10% V0[V, 200C] 0,96
APUQU-2-F 9%
Figure imgf000084_0001
100%
Mischunαsbeispiel 38
PUQU-2-F 11 % Klärpunkt [0C]: 75,5
PUQU-3-F 9.5% Δn [589 nm, 200C]: 0,0996
CCZU-3-F 9.5 % Δε [1 kHz, 200C]: +13,4
CC-3-V 35% ε„[1 kHz, 2O0C]: +17,5
CCQU-3-F 10% γi [mPas, 200C]: 80
CCGU-3-F 9% MpN,20°C] 11,0
Figure imgf000084_0002
100%

Claims

Patentansprüche
Flüssigkristallines Medium mit positiver dielektrischer Anisotropie auf der Basis eines Gemisches von Verbindungen, dadurch gekennzeichnet, dass es eine oder mehrere Verbindungen der Formel I
Figure imgf000085_0001
enthält, worin
R1 einen halogenierten oder unsubstituierten Alkyl- oder Alkoxyrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH2-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CH=CH-, -O-, -CO-O- oder -O-CO- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind,
A1 ein nach links oder rechts ausgerichtetes Ringsystem der Formeln
Figure imgf000085_0002
Z1, Z2 eine Einfachbindung, -C≡C-, -CF=CF-, -CH=CH-, -CF2O-, oder -CH2CH2-, wobei mindestens eine Gruppe aus Z1 und Z2 die Gruppe -CF=CF- bedeutet,
X F, Cl, CN, SF5, oder einen halogenierten oder unsubstituierten Alkyl- oder Alkoxyrest mit 1 bis 15 C- Atomen, wobei in diesen Resten auch eine oder mehrere CH2-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CH=CH-, -O-, -CO-O- oder -O-CO- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind,
L1, L2, L3, L4, L5 und L6 jeweils unabhängig voneinander H oder F, und
m 0 oder 1
bedeuten.
2. Flüssigkristallines Medium gemäß Anspruch 1 , dadurch gekenn- zeichnet, dass es ein, zwei oder mehr Verbindungen der Formeln 1-1 bis I-30 enthält:
Figure imgf000086_0001
Figure imgf000087_0001
35
Figure imgf000088_0001
Figure imgf000089_0001
35
Figure imgf000090_0001
worin R1 die in Anspruch 1 angegebene Bedeutung hat und n für 1 , 2, 3, 4, 5, 6, 7 oder 8 steht.
3. Flüssigkristallines Medium gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere ausgewählte Verbindungen der allgemeinen Formeln K-1 bis K-12 enthält:
Figure imgf000091_0001
Figure imgf000092_0001
Figure imgf000093_0001
worin
Rc n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen
bedeutet.
4. Flüssigkristallines Medium gemäß mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere ausgewählte Verbindungen der allgemeinen Formeln Z-1 bis Z-9 enthält:
Alkyl* Z- 1
Figure imgf000093_0002
Figure imgf000093_0003
Figure imgf000093_0004
Figure imgf000093_0005
Z-5
Figure imgf000093_0006
Figure imgf000094_0001
Figure imgf000094_0002
Alkyl* Z-9
Figure imgf000094_0003
worin
R }1 a und i R D2a jeweils unabhängig voneinander H, CH3, C2H5 oder n-C3H7,
R0 n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen,
Alkyl, Alkyl* einen unsubstituierten n-Alkylrest mit 1 bis 7 C-Atomen, und
Alkenyl einen unsubstituierten Alkenylrest mit 2-7 C-Atomen
bedeutet.
Flüssigkristallines Medium gemäß mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln II, III, IV, V und VI enthält:
Figure imgf000095_0001
worin
Rc n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen,
Xc F, Cl, halogeniertes Alkyl, halogeniertes Alkenyl, halogeniertes Alkenyloxy oder halogeniertes Alkoxy mit bis zu 6 C-Atomen, Z0 -C2F4-, -CF=CF-, -C2H4-, -(CH2)4-, -OCH2-, -CH2O-, -CF2O- oder -OCF2-,
Y1 bis Y4 jeweils unabhängig voneinander H oder F,
O oder 1 , und
O, 1 oder 2
bedeutet.
6. Flüssigkristallines Medium gemäß mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln XIV und XV enthält:
Figure imgf000096_0001
Figure imgf000096_0002
worin
R0 n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen,
X0 F, Cl, halogeniertes Alkyl, halogeniertes Alkenyl, halogeniertes Alkenyloxy oder halogeniertes Alkoxy mit bis zu 6 C-Atomen,
Ring A und B, unabhängig voneinander,
1 ,4-Phenylen mit 0, 1 , oder 2 Fluor substituiert, und wobei je mindestens einer der 1 ,4-Phenylenringe ein- oder mehrfach durch Fluoratome substituiert ist,
bedeutet.
7. Flüssigkristallines Medium gemäß mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen der Formeln E-a bis E-d,
Figure imgf000097_0001
worin
R0 die in Anspruch 3 angegebenen Bedeutungen hat,
enthält.
8. Flüssigkristallines Medium gemäß mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es eine oder mehrere Verbindungen der Formeln IIa bis Mg,
Figure imgf000098_0001
Figure imgf000098_0002
Figure imgf000099_0001
worin
R0 die in Anspruch 3 angegebenen Bedeutungen hat,
0 enthält.
9. Flüssigkristallines Medium gemäß mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es ein oder mehrere Verbindungen der Formeln 01 und 02,
Figure imgf000099_0002
worin
5 Alkyl und Alkyl* jeweils unabhängig voneinander eine geradkettige oder verzweigte Älkylgruppe mit 1 -7 Kohlenstoffatomen bedeuten,
enthält.
Q 10. Flüssigkristallines Medium gemäß mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass es ein oder mehrere Dioxan- Verbindungen der Formeln D1 und/oder D2,
5
Figure imgf000100_0001
Figure imgf000100_0002
worin
R0 die in Anspruch 3 angegebenen Bedeutungen hat,
enthält.
11. Verwendung des flüssigkristallinen Mediums gemäß mindestens einem der Ansprüche 1 bis 10 für elektrooptische Zwecke.
12. Elektrooptische Flüssigkristallanzeige enthaltend ein flüssigkristallines Medium gemäß mindestens einem der Ansprüche 1 bis 10.
13. Verbindungen der Formel Ia
Figure imgf000100_0003
worin
R1, Ring A, L1, L2, L3, L4, L5, L6, Z1 und X die in Anspruch 1 angegebene Bedeutung haben, und m 1 oder 2
bedeutet.
14. Verbindungen gemäß Anspruch 13 der Formel Ib
Figure imgf000101_0001
worin
R1, Ring A, L1, L2, L5, L6 und X die in Anspruch 1 angegebene Bedeutung haben.
15. Verbindungen gemäß Anspruch 13 der Formel Ic
Figure imgf000101_0002
worin
R1, L1, L2, L3, L4, L5, L6 und X die in Anspruch 1 angegebene Bedeutung haben.
PCT/EP2006/004708 2005-06-13 2006-05-18 Flüssigkristallines medium und flüssigkristallanzeige mit 1,2-difluorethenverbindungen WO2006133783A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP06742977A EP1891181B1 (de) 2005-06-13 2006-05-18 Flüssigkristallines medium und flüssigkristallanzeige mit 1,2-difluorethenverbindungen
DE502006006182T DE502006006182D1 (de) 2005-06-13 2006-05-18 Flüssigkristallines medium und flüssigkristallanzeige mit 1,2-difluorethenverbindungen
JP2008516156A JP5421591B2 (ja) 2005-06-13 2006-05-18 1,2−ジフルオロエテン化合物類を含む液晶媒体および液晶ディスプレイ
CN2006800208215A CN101193999B (zh) 2005-06-13 2006-05-18 包含1,2-二氟乙烯化合物的液晶介质和液晶显示器
KR1020087000765A KR101485189B1 (ko) 2005-06-13 2006-05-18 1,2-다이플루오로에텐 화합물을 포함하는 액정 매질 및 액정 디스플레이
US11/917,284 US7651742B2 (en) 2005-06-13 2006-05-18 Liquid-crystalline medium and liquid-crystal display comprising 1,2-difluoroethene compounds
AT06742977T ATE458033T1 (de) 2005-06-13 2006-05-18 Flüssigkristallines medium und flüssigkristallanzeige mit 1,2- difluorethenverbindungen
US12/631,046 US7923079B2 (en) 2005-06-13 2009-12-04 Liquid-crystalline medium and liquid-crystal display comprising 1,2-difluoroethene compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005027171 2005-06-13
DE102005027171.5 2005-06-13

Publications (1)

Publication Number Publication Date
WO2006133783A1 true WO2006133783A1 (de) 2006-12-21

Family

ID=36789335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/004708 WO2006133783A1 (de) 2005-06-13 2006-05-18 Flüssigkristallines medium und flüssigkristallanzeige mit 1,2-difluorethenverbindungen

Country Status (9)

Country Link
US (2) US7651742B2 (de)
EP (2) EP1891181B1 (de)
JP (1) JP5421591B2 (de)
KR (1) KR101485189B1 (de)
CN (1) CN101193999B (de)
AT (2) ATE458033T1 (de)
DE (2) DE502006006182D1 (de)
TW (1) TWI394821B (de)
WO (1) WO2006133783A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143902A (ja) * 2006-12-11 2008-06-26 Merck Patent Gmbh スチルベン誘導体類、液晶混合物および電気光学的ディスプレイ
EP1956069A1 (de) * 2007-02-02 2008-08-13 Merck Patent GmbH Flüssigkristallines Medium
WO2009115226A1 (en) * 2008-03-19 2009-09-24 Merck Patent Gmbh Liquid crystalline medium and liquid crystal display
JP2009270102A (ja) * 2008-04-11 2009-11-19 Chisso Corp 液晶組成物および液晶表示素子
WO2011083677A1 (ja) 2010-01-06 2011-07-14 Jnc株式会社 液晶化合物、液晶組成物および液晶表示素子
DE102011008687A1 (de) 2010-02-11 2011-08-11 Merck Patent GmbH, 64293 Flüssigkristallanzeige und Flüssigkristallines Medium
US8506842B2 (en) 2009-05-14 2013-08-13 Jnc Corporation Liquid crystal composition and liquid crystal display device
JP5858313B2 (ja) * 2013-10-08 2016-02-10 Dic株式会社 組成物及びそれを使用した液晶表示素子
JP2016102222A (ja) * 2016-02-24 2016-06-02 Dic株式会社 ネマチック液晶組成物
EP2714843B1 (de) 2011-06-01 2016-12-21 Merck Patent GmbH Flüssigkristallines medium und flüssigkristallanzeigevorrichtung
US9695361B2 (en) 2012-10-05 2017-07-04 Dic Corporation Liquid crystal composition and liquid crystal display element using the same
JP2018035371A (ja) * 2017-11-13 2018-03-08 Dic株式会社 ネマチック液晶組成物

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006004250D1 (de) * 2005-05-25 2009-01-29 Merck Patent Gmbh Flüssigkristallines Medium und Flüssigkristallanzeige
DE102008046250B4 (de) * 2008-09-08 2011-12-01 Merck Patent Gmbh Flüssigkristallines Medium und seine Verwendung in Flüssigkristallanzeigen
US20130134355A1 (en) * 2010-08-11 2013-05-30 Jnc Petrochemical Corporation Liquid crystal composition and liquid crystal display device
CN103459554B (zh) * 2011-03-29 2018-07-10 默克专利股份有限公司 液晶介质
DE102012024126A1 (de) * 2011-12-20 2013-06-20 Merck Patent Gmbh Flüssigkristallines Medium
US9382479B2 (en) 2012-02-03 2016-07-05 Jnc Corporation Liquid crystal compound, liquid crystal composition and liquid crystal display device
KR101370950B1 (ko) 2012-07-18 2014-03-10 디아이씨 가부시끼가이샤 네마틱 액정 조성물 및 이를 사용한 액정 표시 소자
JP5282989B1 (ja) * 2012-07-18 2013-09-04 Dic株式会社 ネマチック液晶組成物及びこれを用いた液晶表示素子
EP2703472B1 (de) * 2012-08-31 2018-07-04 Merck Patent GmbH Flüssigkristallines Medium
TWI471293B (zh) * 2012-12-27 2015-02-01 Dainippon Ink & Chemicals 含氟聯苯之組成物
WO2014102971A1 (ja) * 2012-12-27 2014-07-03 Dic株式会社 フルオロビフェニル含有組成物
JP5561438B1 (ja) * 2012-12-27 2014-07-30 Dic株式会社 フルオロビフェニル含有組成物
TWI482844B (zh) * 2013-02-21 2015-05-01 Dainippon Ink & Chemicals 液晶組成物、液晶顯示元件及液晶顯示器
JP5561440B1 (ja) * 2013-03-25 2014-07-30 Dic株式会社 液晶組成物及びそれを使用した液晶表示素子
KR101542127B1 (ko) * 2013-03-25 2015-08-05 디아이씨 가부시끼가이샤 액정 조성물 및 이를 사용한 액정 표시 소자
CN103710030B (zh) * 2013-11-27 2016-01-20 合肥工业大学 一种氰基取代二苯乙烯型液晶材料及其制备工艺及应用
CN104140825B (zh) * 2014-07-22 2015-10-28 北京大学 一种具有超高双折射率的向列相液晶材料
US9783735B2 (en) 2015-04-15 2017-10-10 Samsung Display Co., Ltd. Liquid crystal display device and liquid crystal composition used therefor
EP3127989B1 (de) * 2015-08-07 2020-12-23 Merck Patent GmbH Flüssigkristallines medium
CN107312549B (zh) * 2015-09-02 2021-08-31 石家庄诚志永华显示材料有限公司 含有二甲基苯和二氟亚甲氧基连接基团的液晶化合物及其应用
DE112017003625A5 (de) * 2016-07-20 2019-04-11 Merck Patent Gmbh Difluorstilben-Derivate
CN111117658A (zh) * 2018-10-30 2020-05-08 江苏和成显示科技有限公司 液晶组合物及其显示器件

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341037A (ja) * 1989-04-18 1991-02-21 Seimi Chem Kk トランス―ジハロゲノスチルベン誘導体化合物を含有する液晶組成物
JPH03294386A (ja) * 1990-04-13 1991-12-25 Seimi Chem Kk トランス―ジハロゲノスチルベン誘導体化合物及びその用途
EP0560382A1 (de) * 1992-03-13 1993-09-15 Asahi Glass Company Ltd. Difluorethylen-Verbindungen und sie enthaltende flüssigkristalline Zusammensetzungen
JPH06329566A (ja) * 1993-05-21 1994-11-29 Asahi Glass Co Ltd ジフルオロスチルベン誘導体化合物およびそれを含有する液晶組成物
US5380461A (en) * 1990-04-13 1995-01-10 Seimi Chemical Co., Ltd. Trans-dihalogenostilbene compounds and liquid crystal electro-optical devices using them
US20010004108A1 (en) * 1999-12-17 2001-06-21 Minolta Co., Ltd. Liquid crystal composition and liquid crystal light modulating device using the liquid crystal composition
DE10124480A1 (de) * 2000-06-28 2002-01-10 Merck Patent Gmbh Pentafluorosulfuranylbenzol-Derivate
DE10151491A1 (de) * 2000-11-03 2002-05-08 Merck Patent Gmbh Flüssigkristallines Medium mit niedriger Rotationsviskosität
EP1215270A1 (de) * 2000-12-16 2002-06-19 MERCK PATENT GmbH Nematische Flüssigkristallmischung und diese enthaltende Anzeigen
DE10155073A1 (de) * 2000-12-04 2002-08-14 Merck Patent Gmbh Flüssigkristallines Medium
EP1416030A1 (de) * 2002-10-30 2004-05-06 MERCK PATENT GmbH Flüssigkristallines Medium
DE102004008638A1 (de) * 2003-03-05 2004-09-16 Merck Patent Gmbh Flüssigkristallines Medium
WO2004106460A1 (de) * 2003-05-27 2004-12-09 Merck Patent Gmbh Flüssigkristalline verbindungen mit tetrahydropyranring

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3022818C2 (de) 1980-06-19 1986-11-27 Merck Patent Gmbh, 6100 Darmstadt Flüssigkristall-Anzeigeelement
JPS58186723A (ja) * 1982-04-26 1983-10-31 Seiko Epson Corp 液晶表示装置
JP3423021B2 (ja) * 1992-03-13 2003-07-07 旭硝子株式会社 ジフルオロエチレン誘導体化合物およびそれを含有する液晶組成物
JPH09208958A (ja) 1996-01-31 1997-08-12 Seimi Chem Co Ltd 液晶組成物および液晶表示素子
DE69705625T2 (de) * 1996-08-26 2002-05-29 Chisso Corp Fluorovinylderivat-verbindung, flüssigkristallzusammensetzung und flüssigkristallanzeigevorrichtung
US6172720B1 (en) * 1997-05-23 2001-01-09 Kent Displays Incorporated Low viscosity liquid crystal material
JPH11302651A (ja) 1998-04-17 1999-11-02 Seimi Chem Co Ltd 液晶組成物および液晶表示素子
JP2001329265A (ja) * 2000-05-22 2001-11-27 Minolta Co Ltd 液晶表示素子
FR2851568B1 (fr) * 2003-02-26 2007-05-25 Nemoptic Melanges cristaux liquides nematiques pour dispositifs d'affichage bistables
JP2005206617A (ja) 2003-12-25 2005-08-04 Seimi Chem Co Ltd 液晶表示素子

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341037A (ja) * 1989-04-18 1991-02-21 Seimi Chem Kk トランス―ジハロゲノスチルベン誘導体化合物を含有する液晶組成物
JPH03294386A (ja) * 1990-04-13 1991-12-25 Seimi Chem Kk トランス―ジハロゲノスチルベン誘導体化合物及びその用途
US5380461A (en) * 1990-04-13 1995-01-10 Seimi Chemical Co., Ltd. Trans-dihalogenostilbene compounds and liquid crystal electro-optical devices using them
EP0560382A1 (de) * 1992-03-13 1993-09-15 Asahi Glass Company Ltd. Difluorethylen-Verbindungen und sie enthaltende flüssigkristalline Zusammensetzungen
JPH06329566A (ja) * 1993-05-21 1994-11-29 Asahi Glass Co Ltd ジフルオロスチルベン誘導体化合物およびそれを含有する液晶組成物
US20010004108A1 (en) * 1999-12-17 2001-06-21 Minolta Co., Ltd. Liquid crystal composition and liquid crystal light modulating device using the liquid crystal composition
DE10124480A1 (de) * 2000-06-28 2002-01-10 Merck Patent Gmbh Pentafluorosulfuranylbenzol-Derivate
DE10151491A1 (de) * 2000-11-03 2002-05-08 Merck Patent Gmbh Flüssigkristallines Medium mit niedriger Rotationsviskosität
DE10155073A1 (de) * 2000-12-04 2002-08-14 Merck Patent Gmbh Flüssigkristallines Medium
EP1215270A1 (de) * 2000-12-16 2002-06-19 MERCK PATENT GmbH Nematische Flüssigkristallmischung und diese enthaltende Anzeigen
EP1416030A1 (de) * 2002-10-30 2004-05-06 MERCK PATENT GmbH Flüssigkristallines Medium
DE102004008638A1 (de) * 2003-03-05 2004-09-16 Merck Patent Gmbh Flüssigkristallines Medium
WO2004106460A1 (de) * 2003-05-27 2004-12-09 Merck Patent Gmbh Flüssigkristalline verbindungen mit tetrahydropyranring

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 177 (C - 0829) 7 May 1991 (1991-05-07) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 128 (C - 0924) 2 April 1992 (1992-04-02) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 02 31 March 1995 (1995-03-31) *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143902A (ja) * 2006-12-11 2008-06-26 Merck Patent Gmbh スチルベン誘導体類、液晶混合物および電気光学的ディスプレイ
EP2338953A3 (de) * 2007-02-02 2012-12-26 Merck Patent GmbH Flüssigkristallines Medium
EP1956069A1 (de) * 2007-02-02 2008-08-13 Merck Patent GmbH Flüssigkristallines Medium
US7807236B2 (en) 2007-02-02 2010-10-05 Merck Patent Gesellschaft Liquid-crystalline medium
KR101463990B1 (ko) 2007-02-02 2014-11-20 메르크 파텐트 게엠베하 액정 매질
EP2338952A3 (de) * 2007-02-02 2012-12-19 Merck Patent GmbH Flüssigkristallines Medium
EP2338951A3 (de) * 2007-02-02 2012-12-19 Merck Patent GmbH Flüssigkristallines Medium
WO2009115226A1 (en) * 2008-03-19 2009-09-24 Merck Patent Gmbh Liquid crystalline medium and liquid crystal display
US8262930B2 (en) 2008-03-19 2012-09-11 Merck Patent Gesellschaft Mit Beschrankter Haftung Liquid crystalline medium and liquid crystal display
JP2009270102A (ja) * 2008-04-11 2009-11-19 Chisso Corp 液晶組成物および液晶表示素子
US8506842B2 (en) 2009-05-14 2013-08-13 Jnc Corporation Liquid crystal composition and liquid crystal display device
WO2011083677A1 (ja) 2010-01-06 2011-07-14 Jnc株式会社 液晶化合物、液晶組成物および液晶表示素子
US8940185B2 (en) 2010-01-06 2015-01-27 Jnc Corporation Liquid crystal compound, liquid crystal composition and liquid crystal display device
WO2011098202A1 (de) 2010-02-11 2011-08-18 Merck Patent Gmbh Flüssigkristallanzeige und flüssigkristallines medium
DE102011008687A1 (de) 2010-02-11 2011-08-11 Merck Patent GmbH, 64293 Flüssigkristallanzeige und Flüssigkristallines Medium
US8945420B2 (en) 2010-02-11 2015-02-03 Merck Patent Gmbh Liquid crystal display and liquid crystalline medium
EP2714843B1 (de) 2011-06-01 2016-12-21 Merck Patent GmbH Flüssigkristallines medium und flüssigkristallanzeigevorrichtung
US10450509B2 (en) 2011-06-01 2019-10-22 Merck Patent Gmbh Liquid crystal medium and liquid display
EP2714843B2 (de) 2011-06-01 2019-10-30 Merck Patent GmbH Flüssigkristallines medium und flüssigkristallanzeigevorrichtung
US9695361B2 (en) 2012-10-05 2017-07-04 Dic Corporation Liquid crystal composition and liquid crystal display element using the same
JP5858313B2 (ja) * 2013-10-08 2016-02-10 Dic株式会社 組成物及びそれを使用した液晶表示素子
JP2016102222A (ja) * 2016-02-24 2016-06-02 Dic株式会社 ネマチック液晶組成物
JP2018035371A (ja) * 2017-11-13 2018-03-08 Dic株式会社 ネマチック液晶組成物

Also Published As

Publication number Publication date
KR101485189B1 (ko) 2015-01-22
DE502006006182D1 (de) 2010-04-01
ATE519829T1 (de) 2011-08-15
EP2182041B1 (de) 2011-08-10
EP2182041A3 (de) 2010-07-07
EP1891181B1 (de) 2010-02-17
ATE458033T1 (de) 2010-03-15
US20080260971A1 (en) 2008-10-23
CN101193999B (zh) 2013-06-12
TW200708599A (en) 2007-03-01
US7651742B2 (en) 2010-01-26
US20100085529A1 (en) 2010-04-08
US7923079B2 (en) 2011-04-12
CN101193999A (zh) 2008-06-04
TWI394821B (zh) 2013-05-01
KR20080017466A (ko) 2008-02-26
JP5421591B2 (ja) 2014-02-19
EP1891181A1 (de) 2008-02-27
DE102006023898A1 (de) 2006-12-14
JP2008545804A (ja) 2008-12-18
EP2182041A2 (de) 2010-05-05

Similar Documents

Publication Publication Date Title
EP2182041B1 (de) Flüssigkristallines Medium enthaltend 1,2-Difluorethenverbindungen, sowie Flüssigkristallanzeige
EP1454975B1 (de) Flüssigkristallines Medium
EP1756247B1 (de) Flüssigkristallines medium
EP1248826B1 (de) Flüssigkristallines medium
EP1551937B1 (de) Photostabiles flüssigkristallines medium
EP2229427B1 (de) Flüssigkristallines medium
EP1658353B1 (de) Flüssigkristallines medium
EP1758966B1 (de) Flüssigkristallines medium
EP1756248B1 (de) Flüssigkristallines medium
EP1420057B1 (de) Flüssigkristallines Medium
EP1335014B1 (de) Flüssigkristallines Medium
EP1717293B1 (de) Flüssigkristallines Medium
DE102005027762A1 (de) Flüssigkristallines Medium
WO2004104137A1 (de) Flüssigkristallines medium
DE10002462B4 (de) Flüssigkristallines Medium und seine Verwendung
EP1199346B1 (de) Flüssigkristallines Medium
EP1971667B1 (de) Flüssigkristallines medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006742977

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680020821.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11917284

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008516156

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087000765

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006742977

Country of ref document: EP