WO2006137360A1 - モータ駆動回路およびそれを用いたディスク装置 - Google Patents

モータ駆動回路およびそれを用いたディスク装置 Download PDF

Info

Publication number
WO2006137360A1
WO2006137360A1 PCT/JP2006/312243 JP2006312243W WO2006137360A1 WO 2006137360 A1 WO2006137360 A1 WO 2006137360A1 JP 2006312243 W JP2006312243 W JP 2006312243W WO 2006137360 A1 WO2006137360 A1 WO 2006137360A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
mask
circuit
phase
level
Prior art date
Application number
PCT/JP2006/312243
Other languages
English (en)
French (fr)
Inventor
Makoto Kuwamura
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005179263A external-priority patent/JP4890796B2/ja
Priority claimed from JP2005305989A external-priority patent/JP4864416B2/ja
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Priority to US11/917,918 priority Critical patent/US7855523B2/en
Publication of WO2006137360A1 publication Critical patent/WO2006137360A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/20Driving; Starting; Stopping; Control thereof
    • G11B19/28Speed controlling, regulating, or indicating

Definitions

  • the present invention relates to a motor drive circuit that controls the rotation of a motor including a stator having a plurality of coils and a magnetic rotor.
  • Brushless DC motors are used to rotate a disc in an electronic device using a disc-type medium such as a portable CD (Compact Disc) device or a DVD (Digital Versatile Disc).
  • Brushless direct current (DC) motors generally include a rotor having permanent magnets and a stator having a plurality of star-connected coils of a plurality of phases, and the coils are controlled by controlling the current supplied to the coils. Excited and driven by rotating the rotor relative to the stator.
  • Brushless DC motors generally include sensors such as Hall elements and optical encoders to detect the rotational position of the rotor. The current supplied to the coils of each phase is determined according to the position detected by the sensor. Switch to give proper torque to the rotor.
  • a sensorless motor that detects the rotational position of the rotor without using a sensor such as a Hall element has also been proposed (see, for example, Patent Document 1).
  • a sensorless motor detects the induced voltage generated in the coil by measuring the potential of the midpoint wiring of the motor to obtain position information.
  • Patent Document 2 As described as a problem to be solved by the invention, in such a sensorless motor, spike-like noise is generated in the counter electromotive voltage generated in each coil due to counter electromotive noise, etc. There is a problem that the rotation of the motor becomes unstable.
  • Patent Document 1 Japanese Patent Laid-Open No. 3-207250
  • Patent Document 2 Japanese Patent Laid-Open No. 10-243685
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a motor drive circuit capable of stably rotating by removing noise.
  • One embodiment of the present invention relates to a motor drive circuit that drives a multiphase motor by supplying a drive current.
  • the motor drive circuit compares the back electromotive force generated in the coils of each phase of the multiphase motor with the multiphase midpoint voltage, respectively, and generates a first square wave signal of each phase; Masking processing to remove the noise component of the first rectangular wave signal of each phase output from the back electromotive detection comparator and output as the second rectangular wave signal of each phase, and the second rectangular wave of each phase Based on the signal, an output circuit that supplies drive current to the coils of each phase of the multiphase motor and the edge of the second rectangular wave signal of each phase are detected, and a frequency generation signal that switches the level for each detected edge is generated.
  • a frequency generation circuit and a mask signal generation circuit that generates a mask signal having a predetermined level for a period obtained by multiplying a pulse width of the frequency generation signal by a predetermined coefficient after the level transition of the frequency generation signal.
  • the mask circuit performs a masking process for invalidating the level fluctuation of the first rectangular wave signal while the mask signal is at a predetermined level.
  • the period for invalidating the fluctuation of the first rectangular wave signal defined by the mask signal changes according to the pulse width of the frequency generation signal, that is, the rotation speed of the motor. Even when the rotational speed of the motor fluctuates, the back electromotive noise or the like can be suitably removed from the first rectangular wave signal, and the motor can be rotated stably.
  • the mask signal generation circuit is reset at each level transition of the frequency generation signal, a counter that starts counting, a register that holds a count value at the time of reset counted by the counter, and a count value that is held in the register
  • a mask width setting unit for outputting a mask signal having a pulse width corresponding to a numerical value obtained by multiplying a predetermined coefficient.
  • the register may hold a count value of the previous frequency generation signal with respect to the mask signal to be output. In this case, since the rotation speed of the immediately preceding motor is reflected in the mask time, stable driving can be achieved even when the rotation speed of the motor is rapidly changed.
  • the mask signal generation circuit may output a mask signal having a predetermined fixed value as a pulse width at the start of driving of the multiphase motor.
  • the frequency signal can be fixed by fixing the pulse width of the mask signal at the start of driving the motor.
  • Another aspect of the present invention also relates to a motor drive circuit that drives a multiphase motor by supplying a drive current.
  • This motor drive circuit compares the drive voltage that flows through the coils of each phase of the multiphase motor into voltage, and compares the detection voltage output from the current-voltage converter with the control voltage that indicates the torque.
  • the pulse modulation comparator and the pulse modulation comparator are referred to and the comparison signal output is referred to.
  • the detection voltage reaches the control voltage and the power is instructed to indicate the non-energized state of the coil of each phase for a predetermined off time
  • the pulse signal generation circuit that generates a pulse signal that becomes the second level that indicates the energization state of the coil of each phase during the other periods, and a predetermined signal after the pulse signal transits to the first level.
  • a mask signal generating circuit that generates a mask signal that is at a predetermined level during a period until the first mask time elapses and a period after the transition to the second level until a predetermined second mask time elapses; , The back electromotive force voltage generated in each phase coil of the phase motor is compared with the midpoint voltage of each phase coil to generate the first square wave signal of each phase, and the mask signal generation Referring to the mask signal output from the circuit, perform masking processing to invalidate the level fluctuation of the first rectangular wave signal of each phase output from the back-EMF detection comparator while the mask signal is at a predetermined level.
  • a mask circuit that outputs a second rectangular wave signal of a phase, and an output circuit that intermittently supplies a drive current to the coils of each phase of the multiphase motor based on the second rectangular wave signal and pulse signal of each phase.
  • the energization of the coils of each phase of the multiphase motor is controlled based on the pulse signal whose off time is constant and the on time changes according to the torque.
  • the period from the positive edge and the negative edge of the pulse signal until the predetermined mask time elapses is set as the mask period, so that the pulse signal is applied to each phase coil.
  • the back electromotive noise generated every period can be removed, and the phase switching timing can be suitably set.
  • the first mask time may be set shorter than the off time. In this case, it is possible to reliably provide a detection period for detecting the zero cross of the back electromotive voltage after the first mask time has elapsed. Further, the first mask time may be set to be equal to or shorter than the second mask time.
  • the noise signal generation circuit includes a counter circuit that starts counting off time triggered by the level transition of the comparison signal, and becomes the first level during the period from the level transition of the comparison signal to the completion of counting. Thereafter, a pulse signal transitioning to the second level may be output.
  • the mask signal generation circuit may include a counter circuit that outputs the first and second mask times triggered by the transition of the pulse signal.
  • the off time and the mask time can be suitably set based on the system clock signal. Time adjustment is easy.
  • the pulse signal generation circuit and the mask signal generation circuit start counting on the basis of the level transition of the comparison signal, and the level transitions after the off-time elapses and the level after the second mask time elapses.
  • the first counter circuit that outputs the second mask signal that makes a transition and the first mask that starts counting when the level transition of the pulse signal output from the first counter circuit triggers and the level transitions after the first mask time has elapsed
  • a second counter circuit that outputs a signal, and may be configured integrally, and a logical operation result of the first mask signal and the second mask signal may be output as a mask signal.
  • a motor drive circuit according to an aspect may be integrated on a single semiconductor substrate. “Integrated integration” includes the case where all of the circuit components are formed on a semiconductor substrate and the case where the main components of the circuit are integrated. A resistor, a capacitor, or the like may be provided outside the semiconductor substrate. In this case, the circuit area can be reduced.
  • This disk device includes a spindle motor that is a multiphase motor for rotating the disk, and the motor drive circuit according to any one of the above-described modes for driving the spindle motor. According to this aspect, the influence of back electromotive noise is suppressed. In addition, the rotational speed of the disk can be stabilized.
  • noise can be suitably removed by a motor drive circuit that performs pulse drive.
  • FIG. 1 is a circuit diagram showing a configuration of a motor drive circuit according to an embodiment.
  • FIG. 2 (a) to (m) are time charts showing the operating state of the motor drive circuit of FIG.
  • FIG. 3 (a) to (m) are time charts showing the operating state of the motor drive circuit of FIG. 1 during acceleration of the motor.
  • FIG. 4 is a block diagram showing a configuration of a disk device on which the motor drive circuit of FIGS. 1 and 5 is mounted.
  • FIG. 5 is a circuit diagram showing a configuration of a motor drive circuit according to a second embodiment.
  • FIG. 6 is a block diagram showing an example of the configuration of a pulse signal generation circuit and a mask signal generation circuit.
  • FIG. 7 (a) to (f) are time charts showing the operating state of the motor drive circuit of FIG.
  • FIGS. 8 (a) and 8 (b) are time charts showing the U-phase back electromotive force voltage, midpoint voltage, and mask signal.
  • FIGS. 9A to 9F are time charts showing operation states of the motor drive circuit of FIG. 5 when the control voltage is low.
  • FIG. 1 is a circuit diagram showing a configuration of a motor drive circuit 100 according to the first embodiment.
  • the motor drive circuit 100 supplies a drive current to a sensorless brushless DC motor (hereinafter simply referred to as “motor”) 50 to control rotation.
  • the motor 50 is a three-phase DC motor including U-phase, V-phase, and W-phase coils 50a to 50c.
  • the motor drive circuit 100 includes a back electromotive force detection comparator 10, a mask circuit 12, an output circuit 14, a frequency generation circuit 20, and a mask signal generation circuit 30.
  • the motor drive circuit 100 is a functional IC integrated on a single semiconductor substrate.
  • the back electromotive force detection comparator 10 compares the back electromotive voltages Vu to Vw generated in the coils 50a to 50c of each phase of the motor 50 with the midpoint voltage Vn of the multi-phase coil, respectively.
  • Wave signal Pu ⁇ Pw is generated.
  • the first square wave signal Pu is high when Vu> Vn, and low when Vu ⁇ Vn.
  • the first rectangular wave signal Pv is high when Vv> Vn, and low when Vv> Vn
  • the first rectangular wave signal Pw is high when Vw> Vn, and when Vw> Vn. Become low level.
  • the mask circuit 12 performs a masking process for removing noise components of the first rectangular wave signals Pv to Pw of each phase output from the back electromotive force detection comparator 10, and the second rectangular wave signals Mu to Output as Mw.
  • the output circuit 14 supplies a drive current to the coils 50a to 50c of each phase of the motor 50 based on the second rectangular wave signals Mu to Mw of each phase.
  • the frequency generation circuit 20 is a position detection circuit for detecting the position of the rotor.
  • the frequency generation circuit 20 detects the transition edges of the second rectangular wave signals Mu to Mw of each phase, and performs the detection for each detected edge. Generates a frequency generation signal SigFG whose bell switches between high level and low level.
  • the frequency generation signal SigFG is an exclusive OR of the second rectangular wave signals Mu to Mw ( It can be generated by calculating (Exclusive-OR).
  • the mask signal generation circuit 30 generates a mask signal MSK that is at a high level during a period obtained by multiplying the pulse width Tp of the frequency generation signal SigFG by a predetermined coefficient.
  • the pulse width Tp of the frequency generation signal SigFG is the time from the transition of the signal level to the next transition.
  • the mask signal MSK is output to the mask circuit 12.
  • the mask signal generation circuit 30 includes a counter 32, a register 34, and a mask width setting circuit 36.
  • the counter 32 counts the clock signal CK to which an external force is also input.
  • the counter 32 receives the frequency generation signal SigFG, and each time the signal level is switched, the count value CNT is reset and starts counting again.
  • the register 34 sequentially holds the count value CNT at the time of reset every time the counter 32 is reset.
  • the mask width setting circuit 36 outputs a mask signal MSK that becomes high level for a period corresponding to a numerical value obtained by multiplying the count value CNT held in the register 34 by a predetermined coefficient a.
  • the mask circuit 12 disables the level fluctuation of the first rectangular wave signals Pu to Pw during a period when the mask signal MSK is at a high level after any of the first rectangular wave signals Pu to Pw transitions. Perform the sking process. That is, even when the signal level of the first rectangular wave signals Pu to Pw varies during the period when the mask signal MSK is at the high level, the variation is not reflected in the second rectangular wave signals Mu to Mw. On the other hand, during the period when the mask signal MSK is at a low level, the second rectangular wave signals Mu to Mw are equal to the first rectangular wave signals Pu to Pw, respectively.
  • the output circuit 14 controls the current supplied to the three-phase coils 50a to 50c constituting the stator of the motor 50.
  • the output circuit 14 includes a drive signal synthesis circuit 16 and a power transistor circuit 18.
  • the power transistor circuit 18 includes six switching transistors Trl to Tr6, and currents supplied to the coils 50a to 50c are turned on and off by turning on and off the transistors Trl to Tr6. On / off of the transistors Trl to Tr6 is controlled by the drive signal synthesis circuit 16.
  • the drive signal synthesis circuit 16 generates drive signals Duu to Dul to be applied to the gates of the transistors Trl to Tr6 based on the second rectangular wave signals Mu to Mw output from the mask circuit 12.
  • FIG. 2 (a) ⁇ (m) is a time chart showing the operating state of the motor drive circuit 100.
  • FIG. Figures 2 (a) to (c) show the back electromotive voltages Vu to Vw generated in the coils 50a to 50c of each phase of the motor 50, and (d) shows the midpoint voltage Vn of the coils 50a to 50c.
  • Figures (e) to (g) show the first rectangular wave signals Pu to Pw, (1!)
  • To (j) show the second rectangular wave signals Mu to Mw
  • (k) show the frequency generation signal SigFG.
  • the figure (1) shows the count value CNT held in the register 34, and the figure (m) shows the mask signal MSK.
  • a drive current is supplied to the coils 50a to 50c by the output circuit 14, and the resulting counter electromotive voltages Vu to Vw are periodic signals whose phases are shifted from each other by 120 °.
  • the back electromotive force detection comparator 10 compares the back electromotive force voltages Vu to Vw and the midpoint voltage Vn, respectively, and generates first rectangular wave signals Pu to Pw.
  • Spike-like counter electromotive noise Nvl to ⁇ 3 is generated in the counter electromotive voltages Vu to Vw, and this counter electromotive noise appears as Npl to Np3 in the first rectangular wave signals Pu to Pw.
  • the frequency generation circuit 20 detects this rising edge (positive edge) and switches the frequency generation signal SigF G to the low level.
  • the counter 32 of the mask signal generation circuit 30 is reset simultaneously with the transition of the frequency generation signal SigFG and starts a new count.
  • the mask signal MSK is at a high level.
  • the mask circuit 12 invalidates the level fluctuation of the first rectangular wave signals Pu to Pw while the mask signal MSK is at the high level. Therefore, when focusing on the W phase, the noise component Npl that appears in the first rectangular wave signal Pw does not appear in the second rectangular wave signal Mw, and a flat signal from which the influence of back electromotive noise has been removed can be obtained.
  • the mask signal MSK becomes low level
  • the first rectangular wave signal Pw becomes normal level
  • the mask signal MSK is at a low level
  • the mask circuit 12 outputs the second rectangular wave signal Mw following the level fluctuation of the first rectangular wave signal Pw.
  • the frequency generation circuit 20 detects the falling edge (negative edge) of the second rectangular wave signal Mw and switches the frequency generation signal SigFG to the low level force high level.
  • the counter 32 is reset again at time T3, and the count value cntl so far is written to the register 34.
  • the mask signal MSK is set to the noise level during X Tck.
  • the predetermined coefficient ⁇ may be set to about 13 Z16.
  • Back electromotive noise ⁇ 2 occurs at time ⁇ 4, and back electromotive noise Np2 appears in the first rectangular wave signal Pv. At time T4 when the back electromotive noise Nv2 appears, the mask signal MSK is at a high level, so no noise component appears in the second rectangular wave signal Mv.
  • the mask circuit 12 Since the mask signal MSK is at low level at time ⁇ 5, the mask circuit 12 sets the second rectangular wave signal Mv to high level at the same time as the first rectangular wave signal Pv becomes high level.
  • the frequency generation circuit 20 detects the positive edge of the second rectangular wave signal Mv and switches the frequency generation signal SigFG to a low level.
  • the mask time Tmsk by the mask signal MSK is changed according to the pulse width Tp of the frequency generation signal SigFG, that is, the rotation speed of the motor 50. .
  • the rotation speed of the motor 50 fluctuates, back electromotive noise and the like can be suitably removed from the first rectangular wave signals Vu to Vw, and the motor can be rotated stably.
  • the register 34 holds a count value CNT for the frequency generation signal SigFG immediately before the mask signal MSK to be output, and based on the count value, Set the mask time Tmsk of the mask signal MSK.
  • the mask time Tmsk reflects the previous rotation speed of the motor 50, so that stable driving can be achieved even when the rotation speed of the motor is rapidly changed.
  • FIGS. 3A to 3M are time charts showing the operating state of the motor drive circuit 100 when the motor 50 is accelerated.
  • Figures 3 (a) to (! N) show the waveforms corresponding to Figures 2 (a) to (! N), respectively.
  • the time for supplying the drive current to the coils 50a to 50c of each phase becomes shorter.
  • the back electromotive force Vu to Vw and the first rectangular wave The period time of signals Pu to Pw and second square wave signal Mu to Mw is gradually shortened.
  • the cycle time of the second rectangular wave signal Mu to Mw is shortened, the time Tp for the transition of the signal level of the frequency generation signal SigFG is also shortened, and the count value CN ⁇ of the counter 32 held in the register 34 is decreased. Go.
  • the mask time mSK time Tmsk set by the mask width setting circuit 36 gradually decreases as the motor 50 speed increases.
  • the mask signal generation circuit 30 may set the mask time Tmsk of the mask signal MSK to a predetermined fixed value regardless of the pulse width Tp of the frequency generation signal SigFG at the start of driving of the motor 50. Immediately after the start of driving of the motor 50, no count value is held in the register 34. Therefore, the mask time Tmsk of the mask signal MSK is determined with a fixed value that is determined in advance as an initial value, and back electromotive noise is generated from the first rectangular wave signals Pu to Pw based on the mask time T msk of the mask signal MSK. Remove.
  • the motor 50 is stably driven during the period until the drive start force reaches the predetermined rotational speed. Can be rotated.
  • the same operation causes the mask time Tmsk of the mask signal MSK to increase gradually, and the back electromotive noise can be suitably removed.
  • FIG. 4 is a block diagram showing a configuration of a disk device 200 on which the motor drive circuit 100 of FIG. 1 is mounted.
  • the disc device 200 is a unit that performs recording and reproduction processing on an optical disc such as a CD or a DVD, and is mounted on an electronic device such as a CD player, a DVD player, or a personal computer.
  • the disk device 200 includes a pickup 210, a signal processing unit 212, a motor 50, and a motor driving circuit 100.
  • the pickup 210 writes desired data by irradiating the disk 214 with a laser, or reads the data written on the disk 214 by reading the reflected light.
  • the signal processing unit 212 performs necessary signal processing such as amplification processing, AZD conversion, or DZA conversion on data read / written by the pickup 210.
  • Motor 50 This is a spindle motor provided for rotating the shaft 214. Since the disk device 200 shown in FIG. 4 is particularly required to be downsized, a sensorless type using a hall element or the like as the motor 50 is used.
  • the motor drive circuit 100 according to the present embodiment can be suitably used for stably driving such a sensorless spindle motor.
  • FIG. 5 is a circuit diagram showing a configuration of a motor drive circuit 100 according to the second embodiment.
  • the motor drive circuit 100 controls the rotation by supplying a drive current to a sensorless brushless DC motor (hereinafter simply referred to as “motor 50”) by a pulse drive system.
  • motor 50 is a three-phase DC motor including U-phase, V-phase, and W-phase coils 50a to 50c.
  • the motor drive circuit 100 includes a back electromotive force detection comparator 10, a mask circuit 12, an output circuit 14, a current / voltage conversion unit 40, a pulse modulation comparator 42, a pulse signal generation circuit 44, and a mask signal generation circuit 64.
  • the motor drive circuit 100 is a functional IC integrated on a single semiconductor substrate.
  • the back electromotive force detection comparator 10 compares the back electromotive voltages Vu to Vw generated in the coils 50a to 50c of each phase of the motor 50 with the midpoint voltage Vn of the multi-phase coil, respectively.
  • Wave signal Pu ⁇ Pw is generated.
  • the first square wave signal Pu is high when Vu> Vn, and low when Vu ⁇ Vn.
  • the first rectangular wave signal Pv is high when Vv> Vn, and low when Vv> Vn
  • the first rectangular wave signal Pw is high when Vw> Vn, and when Vw> Vn. Become low level.
  • the mask circuit 12 performs a masking process for removing noise components of the first rectangular wave signals Pv to Pw of each phase output from the back electromotive force detection comparator 10 using a mask signal Smsk described later. Output as the second rectangular wave signal Mu ⁇ Mw of the phase.
  • the output circuit 14 is based on the second rectangular wave signals Mu to Mw of each phase and the pulse signal Vpulse output from the pulse signal generation circuit 44 described later, and the coils of each phase constituting the stator of the motor 50 The electric current supplied to 50a-50c is controlled.
  • the output circuit 14 includes a drive signal synthesis circuit 16 and a power transistor circuit 18.
  • Parrot The one-transistor circuit 18 includes six switching transistors Trl to Tr6, and controls which of the coils 50a to 50c is supplied with current according to the on / off combination of the transistors Trl to Tr6. By controlling the time ratio, pulse driving is performed to adjust the torque.
  • the transistors Trl to Tr6 are all MOSFETs. One ends of the transistors Trl, Tr3, Tr5 are commonly connected to a power supply line to which a power supply voltage Vdd is applied, and the other ends are connected to the coils 50a, 50b, 50c of each phase of the motor 50.
  • each of the transistors Tr2, Tr4, Tr6 is connected to the transistors Trl, Tr3, Tr5 and the coils 50a, 50b, 50c of each phase. On / off of the transistors Trl to Tr6 is controlled by the drive signal synthesis circuit 16.
  • the drive signal synthesis circuit 16 synthesizes the second rectangular wave signals Mu to Mw output from the mask circuit 12 and a pulse signal Vpulse output from the pulse signal generation circuit 44 described later by logical operation, Drive signals Duu to Du 1 to be applied to the gates of the transistors Trl to Tr6 are generated. That is, based on the second rectangular wave signals Mu to Mw, which set of transistors is turned on and which coil is energized is determined. In the present embodiment, it may be energized at 180 degrees or energized at 120 degrees.
  • a current-voltage converter 40 is provided between the node 7-transistor circuit 18 and the ground.
  • the current-voltage converter 40 includes a conversion resistor R1.
  • a voltage drop proportional to the drive current flowing in the coils 50a, 50b, 50c of each phase of the motor 50 is generated in the conversion resistor R1.
  • the current-voltage converter 40 outputs the voltage drop generated by the conversion resistor R1 as the detection voltage Vdet.
  • the detection voltage Vdet output from the current-voltage conversion unit 40 is input to the non-inverting input terminal of the pulse modulation comparator 42.
  • a control voltage Vctrl indicating an externally input torque is input to the inverting input terminal of the pulse modulation comparator 42.
  • the pulse modulation comparator 42 compares the detection voltage Vdet output from the current-voltage converter 40 with the control voltage Vctrl.
  • the comparison signal Vcmp output from the pulse modulation comparator 42 is Vd High level when et> Vctrl, low level when Vdet> Vctrl.
  • the comparison signal Vcmp output from the pulse modulation comparator 42 is input to the pulse signal generation circuit 44.
  • the pulse signal generation circuit 44 refers to the comparison signal Vcmp output from the pulse modulation comparator 42, and the period from when the comparison signal Vcmp transitions to a high level until a predetermined off time Toff elapses, Outputs a pulse signal Vpulse that is low level (first level) and high level (second level) during other periods.
  • the noise signal Vpulse is low during the predetermined off time Toff after the detection voltage Vdet reaches the control voltage Vctrl, and is high during the other periods.
  • the off time Toff is set to a number / z s, more specifically 5.7 s as an example.
  • the noise signal generation circuit 44 can be configured using, for example, a counter circuit that starts counting the off time Toff triggered by the level transition of the comparison signal Vcmp.
  • the counter circuit outputs a pulse signal Vpulse that goes low during the period from the level transition of the comparison signal Vcmp to the completion of counting and then transitions to the high level.
  • the low level (first level) of the pulse signal Vpulse is associated with the de-energized state of the coils 50a to 50c of each phase, and the high level (second level) thereof is the coils 50a to 50 of each phase.
  • the pulse signal Vpulse alternately repeats the high level and the mouth level, a current flows intermittently in the coils 50a to 50c of the motor 50 and is driven by pulses.
  • the pulse signal Vpulse generated by the motor drive circuit 100 has a constant off time Toff and changes according to a control voltage Vctrl that indicates torque. That is, the motor 50 is pulse-driven by a pulse frequency modulation (PFM) method in which the off-time is constant and the frequency changes according to the torque.
  • PFM pulse frequency modulation
  • the mask signal generation circuit 64 refers to the pulse signal Vp pulse output from the pulse signal generation circuit 44 and generates a mask signal Smsk.
  • the mask signal generation circuit 64 sets the mask signal Smsk to the high level for a period from when the pulse signal Vpulse transitions to the low level (first level) until the predetermined first mask time Tmskl elapses.
  • this mask sets the mask signal Smsk to high level during a period from when the pulse signal Vpulse transitions to high level (second level) until a predetermined second mask time Tmsk2 elapses.
  • the first mask time Tmskl is set to be shorter than the off time Tof beam.
  • the first mask time Tmskl is preferably set to be equal to or shorter than the second mask time Tmsk2.
  • the mask signal generation circuit 64 can be configured to include, for example, a counter circuit that counts the first mask time Tmskl and the second mask time Tmsk2 triggered by the transition of the pulse signal Vpulse.
  • the counter circuit counts 4.7 s every time the pulse signal Vpulse transitions, that is, triggered by the positive edge and negative edge, and sets the mask signal Smsk to high level during the counting period.
  • FIG. 6 is a block diagram showing an example of the configuration of the pulse signal generation circuit 44 and the mask signal generation circuit 64.
  • the pulse signal generation circuit 44 and the mask signal generation circuit 64 in FIG. 6 are configured integrally including a first counter circuit 46, a second counter circuit 48, and an OR gate 62.
  • the first counter circuit 46 starts counting upon the level transition of the comparison signal Vcmp.
  • the first counter circuit 46 outputs a pulse signal Vpulse that is at a low level for a period between the start of counting and the off time Toff.
  • the first counter circuit 46 outputs the second mask signal Smsk2 that is at a high level during the period from the start of counting until the second mask time Tmsk2 elapses.
  • the second counter circuit 48 starts counting when the pulse signal Vpulse output from the first counter circuit 46 transitions to a low level as well.
  • the second counter circuit 48 outputs the first mask signal Smskl that becomes high level from the start of counting until the first mask time Tmskl elapses.
  • the OR gate 62 outputs the logical sum of the first mask signal Smskl and the second mask signal Smsk2 as the mask signal Smsk.
  • the mask signal Smsk is output to the mask circuit 12.
  • the mask circuit 12 performs a masking process for removing noise components of the first rectangular wave signals Pv to Pw of each phase output from the back electromotive force detection comparator 10 using the mask signal Smsk, and 2Square wave signal Mu ⁇ Mw is output.
  • the mask circuit 12 performs a masking process for invalidating the level fluctuation of the first rectangular wave signals Pv to Pw of each phase output from the back electromotive force detection comparator 10 while the mask signal Smsk is at a high level.
  • Lines 2 and 2 are output as the second rectangular wave signals Mu to Mw of each phase.
  • the second rectangular wave signals Mu to Mw are equal to the first rectangular wave signals Pu to Pw, respectively.
  • the output circuit 14 intermittently supplies the drive current to the coils of each phase of the multiphase motor based on the second rectangular wave signals Mu to Mw of each phase and the pulse signal Vpulse.
  • the drive signal synthesizing circuit 16 synthesizes the second rectangular wave signals Mu to Mw output from the mask circuit 12 and the pulse signal Vpulse output from the pulse signal generation circuit 44 by a logical operation, and generates the transistors Trl to Tr6. Generate drive signals Duu to Dul to be applied to the gate.
  • FIG. 5 (f) is a time chart showing the operating state of the motor drive circuit 100 in FIG. 5, in which the pulse signal Vpulse is generated in the Norse signal generation circuit 44, and the mask signal Smsk is generated in the mask signal generation circuit 64. It shows how it is generated.
  • Fig. 7 (a) shows the detection voltage Vdet
  • Fig. 7 (b) shows the comparison signal Vcmp
  • Fig. 7 (c) shows the pulse signal Vpulse
  • Fig. 7 (d) shows the first mask signal.
  • FIG. 4E shows the second mask signal S msk2
  • FIG. 5F shows the mask signal Smsk.
  • the pulse signal Vpulse becomes high level (second level).
  • the transistors Trl and Tr4 of the drive signal synthesis circuit 16 are turned on. Which transistor combination is turned on varies depending on the position of the rotor, and is determined based on the second rectangular wave signals Mu to Mw.
  • a drive current flows from the power supply line to the paths of the transistor Trl, the coils 50a and 50b, and the transistor Tr4, and the drive current starts to increase with time.
  • the drive current flows to the ground via the conversion resistor R1 of the current-voltage conversion unit 40. Since the detection voltage Vdet is proportional to the drive current, it starts to increase with time after time tO.
  • the comparison signal Vcmp output from the pulse modulation comparator 42 becomes high level.
  • the pulse signal generation circuit 44 sets the pulse signal Vpulse to low level (first level).
  • the drive signal synthesis circuit 16 turns off the transistors Trl and Tr4.
  • the mask signal generation circuit 64 sets the first mask signal Smskl to high level, and at time t2 after the passage of the first mask time Tmskl, 1Switch the mask signal Smskl to low level.
  • the pulse signal generation circuit 44 switches the pulse signal Vpulse to the noise level from time tl to time t3 after the lapse of the off time Toff. At time t3, the transistors Trl and Tr4 are turned on again.
  • the mask signal generation circuit 64 sets the second mask signal Smsk2 to high level, and at time t4 after the second mask time Tmsk2 has passed, 2Switch the mask signal Smsk2 to low level.
  • the mask signal Smsk can be obtained by the logical sum of the first mask signal Smskl and the second mask signal Smsk2.
  • the mask signal Smsk is output to the mask circuit 12, and the mask circuit 12 performs a masking process for invalidating the level fluctuations of the first rectangular wave signals Pu to Pw while the mask signal Smsk is at a high level.
  • FIG. 8 (a) is a time chart showing the back electromotive voltage Vu and the midpoint voltage Vn of the U-phase coil of the motor 50
  • FIG. 8 (b) is a time chart showing the mask signal Smsk.
  • FIG. 8 is a force showing a waveform when the motor 50 is driven by 180-degree energization. The present invention is not limited to this, and may be 120-degree energization.
  • the solid line shows the U-phase counter electromotive voltage Vu
  • the broken line shows the midpoint voltage Vn.
  • the period of fluctuation of the back electromotive force Vu varies depending on the frequency of pulse drive.
  • the U-phase counter electromotive voltage Vu is affected by the driving state of the V-phase and W-phase.
  • the V phase and W phase counter electromotive voltages Vv and Vw are both low level ⁇ 1 and the V phase and W phase counter electromotive voltages Vv and V w are either The high level period ⁇ 2 is repeated.
  • the U-phase counter electromotive voltage Vu is fixed at a high level.
  • both the V-phase and W-phase back electromotive voltages Vv and Vw are at high level ⁇ 3 and either the V-phase or W-phase back electromotive voltages Vv or V w are at low level.
  • the period ⁇ 4 is repeated.
  • the motor drive circuit 100 performs phase switching based on the back electromotive voltage Vu generated in the coils 50a to 50c, and drives the sensorless motor.
  • the back electromotive voltage detection comparator 10 compares the back electromotive voltage Vu with the midpoint voltage Vn to generate the first rectangular wave signal Pu.
  • the back electromotive voltage Vu in FIG. 8A is generated according to the period of the spike-like back electromotive noise Nx force pulse drive. Therefore, when the magnitude relationship between the midpoint voltage Vn and the back electromotive voltage Vu is reversed by the spike-like back electromotive noise, this back electromotive noise also appears in the first rectangular wave signal Pu.
  • the mask signal Smsk becomes a high level for a predetermined mask time from the positive edge and negative edge of the pulse signal Vpulse that is the source of pulse driving.
  • the mask circuit 12 invalidates the level fluctuation of the first rectangular wave signal Pu while the mask signal Smsk output from the mask signal generation circuit 64 is at a high level. Therefore, the noise component of the first rectangular wave signal Pu that appears while the mask signal Smsk is at a high level does not appear in the second rectangular wave signal Mu.
  • V-phase and W-phase are processed in the same manner, and second rectangular wave signals Mv and Mw in which noise components are masked from the first rectangular wave signals Pv and Pw are generated.
  • the motor drive circuit 100 drives the motor 50 in pulses by repeating the above operation.
  • the high level is set to a high level for a predetermined time each time the energization to the coil of the motor 50 is switched on and off by pulse drive.
  • a mask signal Smsk is generated. Therefore, the back electromotive noise generated when the energization of the coil of the motor 50 is switched can be suitably removed by the mask signal Smsk that becomes high level in accordance with this timing.
  • the neck cross where the back electromotive voltage intersects occurs during the period in which the mask signal Smsk is at the low level. Can be detected reliably and the phases can be switched. Furthermore, in this embodiment, since the relationship between the first mask time Tmskl and the second mask time Tmsk2 is set so that Tmskl ⁇ Tmsk2, the detection time when the mask signal Smsk is at a low level is ensured. Can be ensured.
  • the off-time changes depending on the torque. In this case, if the torque becomes high and the off time becomes short, it becomes difficult to set the mask.
  • the motor drive circuit 100 according to the present embodiment employs the PFM method that is less than the PWM method, the off-time Toff of a predetermined period can be secured immediately before the on-time when back electromotive noise appears. The mask time can be set reliably.
  • FIGS. 9A to 9F are time charts showing the operating state of the motor drive circuit 100 of FIG. 5 when the control voltage Vctrl is low.
  • the energization time of the coil of the motor 50 is shorter than the second mask time Tmsk2. Therefore, zero cross detection is not performed during the on-time.
  • Toff and Tmskl are set, the mask signal Smsk is at a low level for a certain period immediately before the pulse signal Vpulse is at a high level, so that zero crossing can be reliably detected.
  • FIG. 4 is a block diagram showing a configuration of a disk device 200 equipped with the motor drive circuit 100 of FIG.
  • the disk device 200 is a unit that performs recording and reproduction processing on an optical disk such as a CD or DVD, and is mounted on an electronic device such as a CD player, a DVD player, or a personal computer.
  • the disk device 200 includes a pickup 210, a signal processing unit 212, a motor 50, and a motor drive circuit 100.
  • the pickup 210 irradiates the disk 214 with a laser to write desired data. Alternatively, the data written on the disk 214 is read by reading the reflected light.
  • the signal processing unit 212 performs necessary signal processing such as amplification processing, AZD conversion, or DZA conversion on data read / written by the pickup 210.
  • the motor 50 is a spindle motor provided for rotating the disk 214. Since the disk device 200 shown in FIG. 4 is particularly required to be downsized, a sensorless type using a hall element or the like as the motor 50 is used.
  • the motor drive circuit 100 according to the present embodiment can be suitably used for stably driving such a sensorless spindle motor.
  • the present invention can also be suitably used for driving a sensorless motor other than three-phase.
  • the back electromotive force detection comparator 10 uses the back electromotive voltage Vu to Vw generated in the coils 50a to 50c of each phase of the motor 50 as the midpoint voltage Vn of each phase coil.
  • the first rectangular wave signals Pu to Pw may be generated by dividing the voltage using a resistor and comparing the divided voltages.
  • the motor drive circuit 100 is integrated.
  • the present invention is not limited to this.
  • the transistors Trl to Tr6 constituting the power transistor circuit 18 and the conversion resistor R1 may be provided outside the motor drive circuit 100 as a discrete element or chip part! /.
  • the present invention can be used in motor drive technology.

Abstract

 逆起検出コンパレータ10は、逆起電圧Vu~Vwをコイルの中点電圧Vnと比較し、第1矩形波信号Pu~Pwを生成する。マスク回路12は、第1矩形波信号Pu~Pwをマスキングし、第2矩形波信号Mu~Mwとして出力する。出力回路14は、第2矩形波信号Mu~Mwにもとづき、コイル50a~50cに駆動電流を供給する。周波数発生回路20は、第2矩形波信号Mu~Mwのエッジごとにレベルが切り替わる周波数発生信号SigFGを生成する。マスク信号生成回路30は、周波数発生信号SigFGのレベル遷移後、周波数発生信号SigFGのパルス幅Tpに係数を乗じた期間、ハイレベルとなるマスク信号MSKを生成する。マスク回路12は、マスク信号MSKがハイレベルの期間、第1矩形波信号Pu~Pwのレベル変動を無効化する。

Description

明 細 書
モータ駆動回路およびそれを用いたディスク装置
技術分野
[0001] 本発明は、複数のコイルを有するステータと磁性を有するロータとを含むモータの 回転を制御するモータ駆動回路に関する。
背景技術
[0002] ポータブル CD (Compact Disc)装置や、 DVD (Digital Versatile Disc)など 、ディスク型メディアを使用した電子機器において、そのディスクを回転させるために ブラシレス直流モータが用いられる。ブラシレス直流(DC)モータは、一般に、永久磁 石を備えたロータと、スター結線された複数の相のコイルを備えたステータとを備えて おり、コイルに供給する電流を制御することによりコイルを励磁し、ロータをステータに 対して相対回転させて駆動する。ブラシレス DCモータは、ロータの回転位置を検出 するために、一般に、ホール素子や光学エンコーダなどのセンサを備えており、セン サにより検出された位置に応じて、各相のコイルに供給する電流を切り換えて、ロー タに適切なトルクを与える。
[0003] モータをより小型化するために、ホール素子などのセンサを利用せずにロータの回 転位置を検出するセンサレスモータも提案されている (たとえば、特許文献 1参照)。 センサレスモータは、たとえばモータの中点配線の電位を計測することにより、コイル に発生する誘導電圧を検出して位置情報を得る。
[0004] 特許文献 2において、発明が解決しょうとする課題として説明されるように、こうした センサレスモータにおいては、逆起ノイズなどによって各コイルに発生する逆起電圧 にスパイク状のノイズが発生し、モータの回転が不安定となるという問題がある。 特許文献 1:特開平 3 - 207250号公報
特許文献 2:特開平 10— 243685号公報
発明の開示
発明が解決しょうとする課題
[0005] こうした逆起ノイズによる影響を低減するために、本出願人は上述の特許文献 2に おいて、逆起ノイズが発生する所定期間の間、逆起ノイズによる信号レベルの遷移を マスクして当該逆起ノイズがモータの駆動に影響を低減する技術を提案した。特許 文献 2で提案した技術では、逆起ノイズをマスクする期間を所定の値に固定して!/、る ため、モータの回転数が大きく変化するアプリケーションにおいては、モータの安定 性に改善の余地があった。
[0006] 本発明はこうした状況に鑑みてなされたものであり、その目的は、ノイズを除去して 回転を安定ィ匕可能なモータ駆動回路の提供にある。
課題を解決するための手段
[0007] 本発明のある態様は、多相モータに駆動電流を供給して駆動するモータ駆動回路 に関する。このモータ駆動回路は、多相モータの各相のコイルに発生する逆起電圧 を多相の中点電圧とそれぞれ比較し、各相の第 1矩形波信号を生成する逆起検出コ ンパレータと、逆起検出コンパレータから出力される各相の第 1矩形波信号のノイズ 成分を除去するマスキング処理を行 、、各相の第 2矩形波信号として出力するマスク 回路と、各相の第 2矩形波信号にもとづき、多相モータの各相のコイルに駆動電流を 供給する出力回路と、各相の第 2矩形波信号のエッジを検出し、検出したエッジ毎に レベルが切り替わる周波数発生信号を生成する周波数発生回路と、周波数発生信 号のレベル遷移後、周波数発生信号のパルス幅に所定の係数を乗じた期間、所定 レベルとなるマスク信号を生成するマスク信号生成回路と、を備える。マスク回路は、 マスク信号が所定レベルの期間、第 1矩形波信号のレベル変動を無効化するマスキ ング処理を行う。
[0008] この態様によると、マスク信号により規定される第 1矩形波信号の変動を無効化する 期間は、周波数発生信号のパルス幅、すなわちモータの回転数に応じて変化するこ とになるため、モータの回転数が変動した場合においても、第 1矩形波信号から逆起 ノイズなどを好適に除去し、モータを安定に回転させることができる。
[0009] マスク信号生成回路は、周波数発生信号のレベル遷移ごとにリセットされ、カウント を開始するカウンタと、カウンタによりカウントされたリセット時のカウント値を保持する レジスタと、レジスタに保持されたカウント値に所定の係数を乗じて得られる数値に応 じたパルス幅を有するマスク信号を出力するマスク幅設定部と、を含んでもょ 、。 [0010] レジスタは、出力すべきマスク信号に対して 1つ前の周波数発生信号のカウント値 を保持してもよい。この場合、マスク時間には、直前のモータの回転数が反映される ため、モータの回転数を急激に変化させる場合にも、安定に駆動することができる。
[0011] マスク信号生成回路は、多相モータの駆動開始時において、所定の固定値をパル ス幅として有するマスク信号を出力してもよ 、。
モータの駆動開始時において、マスク信号のパルス幅を固定することにより、周波 数信号を固定することができる。
[0012] 本発明の別の態様も、多相モータに駆動電流を供給して駆動するモータ駆動回路 に関する。このモータ駆動回路は、多相モータの各相のコイルに流れる駆動電流を 電圧に変換する電流電圧変換部と、電流電圧変換部から出力される検出電圧を、ト ルクを指示する制御電圧と比較するパルス変調コンパレータと、パルス変調コンパレ 一タカ 出力される比較信号を参照し、検出電圧が制御電圧に達して力 所定のォ フ時間の間、各相のコイルの不通電状態を指示する第 1レベルとなり、それ以外の期 間、各相のコイルの通電状態を指示する第 2レベルとなるパルス信号を生成するパ ルス信号生成回路と、パルス信号が第 1レベルに遷移してから、所定の第 1マスク時 間が経過するまでの期間と、第 2レベルに遷移してから、所定の第 2マスク時間が経 過するまでの期間、所定レベルとなるマスク信号を生成するマスク信号生成回路と、 多相モータの各相のコイルに発生する逆起電圧を各相のコイルの中点電圧とそれぞ れ比較し、各相の第 1矩形波信号を生成する逆起検出コンパレータと、マスク信号生 成回路から出力されるマスク信号を参照し、マスク信号が所定レベルの期間、逆起検 出コンパレータから出力される各相の第 1矩形波信号のレベル変動を無効化するマ スキング処理を行い、各相の第 2矩形波信号として出力するマスク回路と、各相の第 2矩形波信号およびパルス信号にもとづき、多相モータの各相のコイルに駆動電流 を間欠的に供給する出力回路と、を備える。
[0013] この態様によると、多相モータの各相のコイルの通電は、オフ時間が一定で、トルク に応じてオン時間が変化するパルス信号にもとづいて制御される。この場合において 、パルス信号のポジエッジ、ネガエッジから、それぞれ所定のマスク時間が経過する までの期間をマスク期間として設定することにより、各相のコイルに、パルス信号の周 期毎に発生する逆起ノイズを除去し、相切り替えのタイミングを好適に設定することが できる。
[0014] 第 1マスク時間は、オフ時間より短く設定されてもよい。この場合、第 1マスク時間の 経過後、逆起電圧のゼロクロスを検出する検出期間を確実に設けることができる。ま た、第 1マスク時間は、第 2マスク時間以下に設定されてもよい。
[0015] ノ ルス信号生成回路は、比較信号のレベル遷移を契機として、オフ時間のカウント を開始するカウンタ回路を含み、比較信号のレベル遷移から、カウント完了までの期 間、第 1レベルとなり、その後、第 2レベルに遷移するパルス信号を出力してもよい。 マスク信号生成回路は、パルス信号の遷移を契機として、第 1、第 2マスク時間を力 ゥントするカウンタ回路を含んでもょ 、。
[0016] パルス信号生成回路や、マスク信号生成回路をカウンタ回路を用いて構成すること により、オフ時間やマスク時間を、システムのクロック信号にもとづいて好適に設定す ることができ、また、その時間の調整が容易となる。
[0017] パルス信号生成回路およびマスク信号生成回路は、比較信号のレベル遷移を契 機としてカウントを開始し、オフ時間の経過後にレベルが遷移するパルス信号と、第 2 マスク時間の経過後にレベルが遷移する第 2マスク信号を出力する第 1カウンタ回路 と、第 1カウンタ回路から出力されるパルス信号のレベル遷移を契機としてカウントを 開始し、第 1マスク時間の経過後にレベルが遷移する第 1マスク信号を出力する第 2 カウンタ回路と、を含んで一体に構成され、第 1マスク信号と第 2マスク信号の論理演 算結果を、マスク信号として出力してもよい。
[0018] ある態様のモータ駆動回路は、 1つの半導体基板上に一体集積化されてもよい。「 一体集積化」とは、回路の構成要素のすべてが半導体基板上に形成される場合や、 回路の主要構成要素が一体集積化される場合が含まれ、回路定数の調節用に一部 の抵抗やキャパシタなどが半導体基板の外部に設けられていてもよい。この場合、回 路面積を縮小することができる。
[0019] 本発明の別の態様は、ディスク装置である。このディスク装置は、ディスクを回転さ せる多相モータであるスピンドルモータと、スピンドルモータを駆動する上述の 、ずれ かの態様のモータ駆動回路と、を備える。この態様〖こよると、逆起ノイズの影響御抑 え、ディスクの回転数を安定ィ匕することができる。
発明の効果
[0020] 本発明によれば、パルス駆動を行うモータ駆動回路にぉ 、て、ノイズを好適に除去 することができる。
図面の簡単な説明
[0021] [図 1]実施の形態に係るモータ駆動回路の構成を示す回路図である。
[図 2]図 2 (a)〜 (m)は、図 1のモータ駆動回路の動作状態を示すタイムチャートであ る。
[図 3]図 3 (a)〜(m)は、図 1のモータ駆動回路のモータの加速時における動作状態 を示すタイムチャートである。
[図 4]図 1、図 5のモータ駆動回路を搭載したディスク装置の構成を示すブロック図で ある。
[図 5]第 2の実施の形態に係るモータ駆動回路の構成を示す回路図である。
[図 6]パルス信号生成回路、マスク信号生成回路の構成の一例を示すブロック図であ る。
[図 7]図 7 (a)〜 (f)は、図 5のモータ駆動回路の動作状態を示すタイムチャートである
[図 8]図 8 (a)、(b)は、 U相の逆起電圧、中点電圧、マスク信号を示すタイムチャート である。
[図 9]図 9 (a)〜(f)は、制御電圧が低い場合の、図 5のモータ駆動回路の動作状態を 示すタイムチャートである。
符号の説明
[0022] 100 モータ駆動回路、 10 逆起検出コンパレータ、 12 マスク回路、 14 出 力回路、 20 周波数発生回路、 30 マスク信号生成回路、 32 カウンタ、 34 レジスタ、 40 電流電圧変換部、 42 パルス変調コンパレータ、 44 パルス信号 生成回路、 46 第 1カウンタ回路、 48 第 2カウンタ回路、 62 ORゲート、 64 マスク信号生成回路、 50 モータ、 200 ディスク装置、 214 ディスク。 発明を実施するための最良の形態
[0023] 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に 示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし 、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく 例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずし も発明の本質的なものであるとは限らない。
[0024] (第 1の実施の形態)
図 1は、第 1の実施の形態に係るモータ駆動回路 100の構成を示す回路図である。 モータ駆動回路 100は、センサレスブラシレス DCモータ(以下、単に「モータ」という) 50に駆動電流を供給して回転を制御する。モータ 50は、 U相、 V相、 W相のコイル 5 0a〜50cを含む 3相 DCモータである。
[0025] モータ駆動回路 100は、逆起検出コンパレータ 10、マスク回路 12、出力回路 14、 周波数発生回路 20、マスク信号生成回路 30を含む。モータ駆動回路 100は、 1つの 半導体基板上に一体集積化された機能 ICである。
[0026] 逆起検出コンパレータ 10は、モータ 50の各相のコイル 50a〜50cに発生する逆起 電圧 Vu〜Vwを多相のコイルの中点電圧 Vnとそれぞれ比較し、各相の第 1矩形波 信号 Pu〜Pwを生成する。第 1矩形波信号 Puは、 Vu>Vnのときハイレベル、 Vu< Vnのときローレベルとなる。同様に、第 1矩形波信号 Pvは、 Vv>Vnのときハイレべ ル、 Vvく Vnのときローレベルとなり、第 1矩形波信号 Pwは、 Vw>Vnのときハイレ ベル、 Vwく Vnのときローレベルとなる。
[0027] マスク回路 12は、逆起検出コンパレータ 10から出力される各相の第 1矩形波信号 Pv〜Pwのノイズ成分を除去するマスキング処理を行 、、各相の第 2矩形波信号 Mu 〜Mwとして出力する。出力回路 14は、各相の第 2矩形波信号 Mu〜Mwにもとづき 、モータ 50の各相のコイル 50a〜50cに駆動電流を供給する。
[0028] 周波数発生回路 20は、ロータの位置を検出するための位置検出回路であって、各 相の第 2矩形波信号 Mu〜Mwの信号の遷移エッジを検出し、検出したエッジ毎にレ ベルがハイレベルとローレベルとで切り替わる周波数発生信号 SigFGを生成する。 たとえば、周波数発生信号 SigFGは、第 2矩形波信号 Mu〜Mwの排他的論理和( Exclusive - OR)を演算することにより生成することができる。
[0029] マスク信号生成回路 30は、周波数発生信号 SigFGのパルス幅 Tpに所定の係数を 乗じた期間、ハイレベルとなるマスク信号 MSKを生成する。周波数発生信号 SigFG のパルス幅 Tpとは、信号レベルが遷移してから、次に遷移するまでの時間をいう。マ スク信号 MSKは、マスク回路 12へと出力される。
[0030] マスク信号生成回路 30は、カウンタ 32、レジスタ 34、マスク幅設定回路 36を含む。
カウンタ 32には、外部力も入力されるクロック信号 CKをカウントする。カウンタ 32には 、周波数発生信号 SigFGが入力されており、その信号レベルが切り替わるごとにカウ ント値 CNTがリセットされ、再びカウントを開始する。レジスタ 34は、カウンタ 32がリセ ットされるごとに、リセット時のカウント値 CNTを逐次保持する。マスク幅設定回路 36 は、レジスタ 34に保持されたカウント値 CNTに所定の係数 aを乗じて得られる数値 に対応する期間、ハイレベルとなるマスク信号 MSKを出力する。
[0031] マスク回路 12は、第 1矩形波信号 Pu〜Pwのいずれかが遷移してから、マスク信号 MSKがハイレベルの期間、第 1矩形波信号 Pu〜Pwのレベル変動を無効化するマ スキング処理を行う。すなわち、マスク信号 MSKがハイレベルの期間は、第 1矩形波 信号 Pu〜Pwの信号レベルが変動しても、その変動は第 2矩形波信号 Mu〜Mwに は反映されない。一方、マスク信号 MSKがローレベルの期間は、第 2矩形波信号 M u〜Mwは、それぞれ第 1矩形波信号 Pu〜Pwと等しくなる。
[0032] 出力回路 14は、モータ 50のステータを構成する 3相のコイル 50a〜50cに供給す る電流を制御する。出力回路 14は、ドライブ信号合成回路 16、パワートランジスタ回 路 18を含む。パワートランジスタ回路 18は、 6個のスイッチング用のトランジスタ Trl 〜Tr6を備え、トランジスタ Trl〜Tr6のオンオフによりコイル 50a〜50cに供給される 電流がオンオフされる。トランジスタ Trl〜Tr6のオンオフは、ドライブ信号合成回路 1 6により制御される。
[0033] ドライブ信号合成回路 16は、マスク回路 12から出力される第 2矩形波信号 Mu〜M wにもとづき、トランジスタ Trl〜Tr6のゲートに印加すべきドライブ信号 Duu〜Dulを 生成する。
[0034] 以上のように構成されたモータ駆動回路 100の動作について説明する。図 2 (a)〜 (m)は、モータ駆動回路 100の動作状態を示すタイムチャートである。図 2 (a)〜(c) は、モータ 50の各相のコイル 50a〜50cに発生する逆起電圧 Vu〜Vwを、同図(d) はコイル 50a〜50cの中点電圧 Vnを、同図(e)〜(g)は第 1矩形波信号 Pu〜Pwを、 同図(1!)〜 (j)は第 2矩形波信号 Mu〜Mwを、同図(k)は周波数発生信号 SigFGを 、同図(1)はレジスタ 34に保持されるカウント値 CNTを、同図(m)はマスク信号 MSK を表す。
[0035] コイル 50a〜50cには、出力回路 14によって駆動電流が供給され、その結果生じる 逆起電圧 Vu〜Vwは、互いに 120° づっ位相がずれた周期信号となる。逆起検出 コンパレータ 10は、逆起電圧 Vu〜Vwと中点電圧 Vnをそれぞれ比較し、第 1矩形波 信号 Pu〜Pwを生成する。逆起電圧 Vu〜Vwには、スパイク状の逆起ノイズ Nvl〜 Νν3が発生しており、第 1矩形波信号 Pu〜Pwにも、この逆起ノイズが Npl〜Np3と して現れる。
[0036] 時刻 TOに第 2矩形波信号 Muがローレべルカ ハイレベルへと遷移すると、周波数 発生回路 20は、この立ち上がりエッジ (ポジエッジ)を検出し、周波数発生信号 SigF Gをローレベルに切り替える。マスク信号生成回路 30のカウンタ 32は、周波数発生 信号 SigFGが遷移すると同時にリセットされ、あらたなカウントを開始する。
[0037] 逆起ノイズ Nvlが現れる時刻 T1において、マスク信号 MSKはハイレベルである。
上述のように、マスク回路 12は、マスク信号 MSKがハイレベルの期間、第 1矩形波 信号 Pu〜Pwのレベル変動を無効化する。したがって、 W相に着目すると、第 2矩形 波信号 Mwに第 1矩形波信号 Pwに現れるノイズ成分 Nplは現れず、逆起ノイズの影 響が除去された平坦な信号が得られる。
[0038] 時刻 T2にマスク信号 MSKがローレベルとなり、時刻 T3に第 1矩形波信号 Pwが口 一レベルとなる。時刻 3において、マスク信号 MSKはローレベルであって、マスク回 路 12は、第 1矩形波信号 Pwのレベル変動に追従した第 2矩形波信号 Mwを出力す るため、第 2矩形波信号 Mwもローレベルとなる。周波数発生回路 20は、第 2矩形波 信号 Mwの立ち下がりエッジ (ネガエッジ)を検出し、周波数発生信号 SigFGをロー レベル力 ハイレベルに切り替える。カウンタ 32は、時刻 T3に再度リセットされ、それ までのカウント値 cntlをレジスタ 34に書き込む。このカウント値 cntlは、図中 Tplで 示す周波数発生信号 SigFGのパルス幅 Tplに応じた値となる。すなわち、カウンタ 3 2に入力されるのクロック信号 CKの周期時間を Tckとすると、 cntl =TplZTckとな る。
[0039] マスク幅設定回路 36は、マスク幅設定回路 36に書き込まれたカウント値 cntlに所 定の係数 aを乗じて得られる値( a X cntl)に対応したマスク期間 Tmskl = a X cn tl X Tckの間、マスク信号 MSKをノヽィレベルとする。たとえば、所定の係数 αは 13 Z16程度に設定してもよい。時刻 Τ4に逆起ノイズ Νν2が発生し、第 1矩形波信号 Pv に逆起ノイズ Np2が現れる。逆起ノイズ Nv2が現れる時刻 T4は、マスク信号 MSKが ハイレベルであるため、第 2矩形波信号 Mvにノイズ成分は現れない。時刻 Τ5にマス ク信号 MSKはローレベルであるため、マスク回路 12は、第 1矩形波信号 Pvがハイレ ベルとなると同時に第 2矩形波信号 Mvをハイレベルとする。周波数発生回路 20は、 第 2矩形波信号 Mvのポジエッジを検出し、周波数発生信号 SigFGをローレベルに 切り替える。
[0040] このように、本実施の形態に係るモータ駆動回路 100によれば、マスク信号 MSK によるマスク時間 Tmskを、周波数発生信号 SigFGのパルス幅 Tp、すなわちモータ 50の回転数に応じて変化させる。その結果、モータ 50の回転数が変動した場合に おいても、第 1矩形波信号 Vu〜Vwから逆起ノイズなどを好適に除去し、モータを安 定に回転させることができる。
[0041] さらに、マスク信号生成回路 30において、レジスタ 34は、出力すべきマスク信号 M SKに対して 1つ前の周波数発生信号 SigFGに対するカウント値 CNTを保持し、この カウント値にもとづ 、てマスク信号 MSKのマスク時間 Tmskを設定する。その結果、 マスク時間 Tmskには、直前のモータ 50の回転数が反映されるため、モータの回転 数を急激に変化させる場合にも、安定に駆動することができる。
[0042] 図 3 (a)〜(m)は、モータ 50の加速時におけるモータ駆動回路 100の動作状態を 示すタイムチャートである。図 3 (a)〜(! n)は、図 2 (a)〜(! n)とそれぞれ対応した波 形を示している。
モータ 50の回転数が上昇するにしたがって、各相のコイル 50a〜50cに駆動電流 を供給する時間は短くなつていく。その結果、逆起電圧 Vu〜Vwおよび第 1矩形波 信号 Pu〜Pw、第 2矩形波信号 Mu〜Mwの周期時間は徐々に短くなつていく。第 2 矩形波信号 Mu〜Mwの周期時間が短くなると、周波数発生信号 SigFGの信号レべ ルが遷移する時間 Tpも短くなり、レジスタ 34に保持されるカウンタ 32のカウント値 CN Τは小さくなつていく。その結果、マスク幅設定回路 36により設定されるマスク信号 Μ SKのマスク時間 Tmskは、モータ 50の回転数の上昇にともない、徐々に短くなつて いく。
[0043] マスク信号生成回路 30は、モータ 50の駆動開始時において、マスク信号 MSKの マスク時間 Tmskを、周波数発生信号 SigFGのパルス幅 Tpにかかわらず、所定の固 定値に設定してもよい。モータ 50の駆動開始直後においては、レジスタ 34にはいか なるカウント値も保持されていない。そこで、あら力じめ定めた固定値を初期値として マスク信号 MSKのマスク時間 Tmskを決定し、このマスク信号 MSKのマスク時間 T mskにもとづき、第 1矩形波信号 Pu〜Pwから逆起ノイズを除去する。その後、上述 のように周波数発生信号 SigFGのパルス幅 Tpに応じてマスク信号 MSKのマスク時 間 Tmskを設定することにより、駆動開始力 所定の回転数に達するまでの期間、安 定にモータ 50を回転させることができる。
[0044] 同様に、モータ 50の減速時においても、同様の動作によって、マスク信号 MSKの マスク時間 Tmskが徐々に長くなつていき、逆起ノイズを好適に除去することができる
[0045] つぎに、本実施の形態に係るモータ駆動回路 100のアプリケーションについて説明 する。図 4は、図 1のモータ駆動回路 100を搭載したディスク装置 200の構成を示す ブロック図である。ディスク装置 200は、 CDや DVDなどの光ディスクに対して記録、 再生処理を行うユニットであり、 CDプレイヤや DVDプレイヤ、パーソナルコンビユー タなどの電子機器に搭載される。ディスク装置 200は、ピックアップ 210、信号処理部 212、モータ 50、モータ駆動回路 100を含む。
ピックアップ 210は、ディスク 214にレーザを照射して所望のデータを書き込み、あ るいは、反射した光を読み込むことによりディスク 214に書き込まれたデータを読み出 す。信号処理部 212は、ピックアップ 210により読み書きするデータに対して増幅処 理、 AZD変換あるいは DZA変換など必要な信号処理を行う。モータ 50は、デイス ク 214を回転させるために設けられたスピンドルモータである。図 4に示すようなディ スク装置 200は、特に小型化が要求されるため、モータ 50としてホール素子などを用 Vヽな 、センサレスタイプが用 、られる。本実施の形態に係るモータ駆動回路 100は、 このようなセンサレスのスピンドルモータを安定に駆動するために好適に用いることが できる。
[0046] (第 2の実施の形態)
図 5は、第 2の実施の形態に係るモータ駆動回路 100の構成を示す回路図である。 モータ駆動回路 100は、センサレスブラシレス DCモータ(以下、単に「モータ 50」とい う)にパルス駆動方式により駆動電流を供給して回転を制御する。本実施の形態にお いて、モータ 50は、 U相、 V相、 W相のコイル 50a〜50cを含む 3相 DCモータである
[0047] モータ駆動回路 100は、逆起検出コンパレータ 10、マスク回路 12、出力回路 14、 電流電圧変換部 40、パルス変調コンパレータ 42、パルス信号生成回路 44、マスク 信号生成回路 64、を含む。モータ駆動回路 100は、 1つの半導体基板上に一体集 積ィ匕された機能 ICである。
[0048] 逆起検出コンパレータ 10は、モータ 50の各相のコイル 50a〜50cに発生する逆起 電圧 Vu〜Vwを多相のコイルの中点電圧 Vnとそれぞれ比較し、各相の第 1矩形波 信号 Pu〜Pwを生成する。第 1矩形波信号 Puは、 Vu>Vnのときハイレベル、 Vu< Vnのときローレベルとなる。同様に、第 1矩形波信号 Pvは、 Vv>Vnのときハイレべ ル、 Vvく Vnのときローレベルとなり、第 1矩形波信号 Pwは、 Vw>Vnのときハイレ ベル、 Vwく Vnのときローレベルとなる。
[0049] マスク回路 12は、後述するマスク信号 Smskを用いて、逆起検出コンパレータ 10か ら出力される各相の第 1矩形波信号 Pv〜Pwのノイズ成分を除去するマスキング処理 を行い、各相の第 2矩形波信号 Mu〜Mwとして出力する。
[0050] 出力回路 14は、各相の第 2矩形波信号 Mu〜Mwと、後述するパルス信号生成回 路 44から出力されるパルス信号 Vpulseにもとづき、モータ 50のステータを構成する 各相のコイル 50a〜50cに供給する電流を制御する。
[0051] 出力回路 14は、ドライブ信号合成回路 16、パワートランジスタ回路 18を含む。パヮ 一トランジスタ回路 18は、 6個のスイッチング用のトランジスタ Trl〜Tr6を備え、トラ ンジスタ Trl〜Tr6のオンオフの組み合わせにより、いずれのコイル 50a〜50cに電 流を供給するかを制御するとともに、オンオフの時間比率を制御することにより、トル クを調節するパルス駆動を行う。本実施の形態において、トランジスタ Trl〜Tr6は、 いずれも MOSFETである。トランジスタ Trl、 Tr3、 Tr5は、一端が、電源電圧 Vdd の印加される電源ラインに共通に接続され、他端が、モータ 50の各相のコイル 50a、 50b、 50c〖こ接続される。トランジスタ Tr2、 Tr4、 Tr6は、一端がトランジスタ Trl、 Tr 3、 Tr5および各相のコイル 50a、 50b、 50cに接続される。トランジスタ Trl〜Tr6の オンオフは、ドライブ信号合成回路 16により制御される。
[0052] ドライブ信号合成回路 16は、マスク回路 12から出力される第 2矩形波信号 Mu〜M wと、後述のパルス信号生成回路 44から出力されるパルス信号 Vpulseを論理演算 により合成して、トランジスタ Trl〜Tr6のゲートに印加すべきドライブ信号 Duu〜Du 1を生成する。すなわち、第 2矩形波信号 Mu〜Mwにもとづいて、いずれの組のトラ ンジスタをオンして、いずれのコイルを通電するかを決定する。本実施の形態では、 1 80度通電を行ってもよいし、 120度通電を行ってもよい。また、パルス信号 Vpulseに もとづいて、オンオフの時間比率を調節し、トルク制御を行うために、ハイサイド側のト ランジスタ Trl、 Tr3、 Tr5のみ、ローサイド側のトランジスタ Tr2、 Tr4、 Tr6のみ、あ るいは両方をスイッチング動作させてもょ 、。
[0053] ノ^ 7—トランジスタ回路 18と接地間には、電流電圧変換部 40が設けられる。電流 電圧変換部 40は、変換抵抗 R1を含んで構成される。変換抵抗 R1には、モータ 50 の各相のコイル 50a、 50b、 50cに流れる駆動電流に比例した電圧降下が発生する。 電流電圧変換部 40は、変換抵抗 R1で発生した電圧降下を、検出電圧 Vdetとして 出力する。
[0054] パルス変調コンパレータ 42の非反転入力端子には、電流電圧変換部 40から出力 される検出電圧 Vdetが入力される。パルス変調コンパレータ 42の反転入力端子に は、外部から入力されるトルクを指示する制御電圧 Vctrlが入力される。パルス変調 コンパレータ 42は、電流電圧変換部 40から出力される検出電圧 Vdetを、制御電圧 Vctrlと比較する。パルス変調コンパレータ 42から出力される比較信号 Vcmpは、 Vd et>Vctrlのときハイレベル、 Vdetく Vctrlのときローレベルとなる。パルス変調コン パレータ 42から出力される比較信号 Vcmpは、パルス信号生成回路 44に入力される
[0055] パルス信号生成回路 44は、パルス変調コンパレータ 42から出力される比較信号 V cmpを参照し、比較信号 Vcmpがハイレベルに遷移してから、所定のオフ時間 Toff が経過するまでの期間、ローレベル(第 1レベル)となり、それ以外の期間ハイレベル (第 2レベル)となるパルス信号 Vpulseを出力する。言い換えれば、ノ ルス信号 Vpul seは、検出電圧 Vdetが制御電圧 Vctrlに達してから所定のオフ時間 Toffの間、ロー レベルとなり、それ以外の期間ハイレベルとなる。たとえば、オフ時間 Toffは、数/ z s 、より具体的には、一例として 5. 7 sに設定される。
[0056] ノ ルス信号生成回路 44は、たとえば、比較信号 Vcmpのレベル遷移を契機として、 オフ時間 Toffのカウントを開始するカウンタ回路を用いて構成することができる。この 場合、カウンタ回路は、比較信号 Vcmpのレベル遷移から、カウント完了までの期間 、ローレベルとなり、その後、ハイレベルに遷移するパルス信号 Vpulseを出力する。
[0057] ここで、パルス信号 Vpulseのローレベル(第 1レベル)は、各相のコイル 50a〜50c の不通電状態と対応付けられ、そのハイレベル(第 2レベル)は各相のコイル 50a〜5 Ocの通電状態と対応付けられる。すなわち、パルス信号 Vpulseが、ハイレベルと口 一レベルを交互に繰り返すことにより、モータ 50のコイル 50a〜50cには、電流が間 欠的に流れることになり、パルス駆動される。
[0058] 本実施の形態に係るモータ駆動回路 100により生成されるパルス信号 Vpulseは、 オフ時間 Toffが一定で、オン時間がトルクを指示する制御電圧 Vctrlに応じて変化 する。すなわち、オフ時間が一定で、トルクに応じてその周波数が変化するパルス周 波数変調(PFM : Pulse Frequency Modulation)方式によってモータ 50をパル ス駆動する。
[0059] マスク信号生成回路 64は、パルス信号生成回路 44から出力されるパルス信号 Vp ulseを参照し、マスク信号 Smskを生成する。マスク信号生成回路 64は、パルス信号 Vpulseがローレベル(第 1レベル)に遷移してから、所定の第 1マスク時間 Tmsklが 経過するまでの期間、マスク信号 Smskをハイレベルに設定する。さらに、このマスク 信号生成回路 64は、パルス信号 Vpulseがハイレベル(第 2レベル)に遷移してから、 所定の第 2マスク時間 Tmsk2が経過するまでの期間、マスク信号 Smskをハイレベル に設定する。
[0060] 本実施の形態において、第 1マスク時間 Tmsklは、オフ時間 Tofはり短く設定する のが望ましい。また、第 1マスク時間 Tmsklは、第 2マスク時間 Tmsk2以下に設定さ れることが望ましい。本実施の形態では、 Tmskl =Tmsk2=4. sに設定するも のとする。
[0061] マスク信号生成回路 64は、たとえば、パルス信号 Vpulseの遷移を契機として、第 1 マスク時間 Tmskl、第 2マスク時間 Tmsk2をカウントするカウンタ回路を含んで構成 することができる。この場合、カウンタ回路は、パルス信号 Vpulseが遷移するごとに、 すなわちポジエッジとネガエッジを契機として 4. 7 sをカウントし、カウント期間中、 マスク信号 Smskをハイレベルとする。
[0062] ノ ルス信号生成回路 44およびマスク信号生成回路 64は、以下のように構成しても よい。図 6は、パルス信号生成回路 44、マスク信号生成回路 64の構成の一例を示す ブロック図である。
[0063] 図 6のパルス信号生成回路 44、マスク信号生成回路 64は、第 1カウンタ回路 46、 第 2カウンタ回路 48、 ORゲート 62を含んで一体に構成される。第 1カウンタ回路 46 は、比較信号 Vcmpのレベル遷移を契機としてカウントを開始する。第 1カウンタ回路 46は、カウントを開始してからオフ時間 Toffの経過する間での期間、ローレベルとな るパルス信号 Vpulseを出力する。また、第 1カウンタ回路 46は、カウントを開始して から、第 2マスク時間 Tmsk2が経過するまでの期間、ハイレベルとなる第 2マスク信号 Smsk2を出力する。
[0064] 第 2カウンタ回路 48は、第 1カウンタ回路 46から出力されるパルス信号 Vpulseがハ ィレベル力もローレベルに遷移すると、これを契機としてカウントを開始する。第 2カウ ンタ回路 48は、カウントを開始してから、第 1マスク時間 Tmsklが経過するまでの期 間、ハイレベルとなる第 1マスク信号 Smsklを出力する。 ORゲート 62は、第 1マスク 信号 Smsklと第 2マスク信号 Smsk2の論理和を、マスク信号 Smskとして出力する。 マスク信号 Smskは、マスク回路 12へと出力される。 [0065] マスク回路 12は、マスク信号 Smskを用いて、逆起検出コンパレータ 10から出力さ れる各相の第 1矩形波信号 Pv〜Pwのノイズ成分を除去するマスキング処理を行い、 各相の第 2矩形波信号 Mu〜Mwとして出力する。より具体的には、マスク回路 12は 、マスク信号 Smskがハイレベルの期間、逆起検出コンパレータ 10から出力される各 相の第 1矩形波信号 Pv〜Pwのレベル変動を無効化するマスキング処理を行 、、各 相の第 2矩形波信号 Mu〜Mwとして出力する。
[0066] すなわち、マスク信号 MSKがハイレベルの期間は、第 1矩形波信号 Pu〜Pwの信 号レベルが変動しても、その変動は第 2矩形波信号 Mu〜Mwには反映されない。一 方、マスク信号 MSKがローレベルの期間は、第 2矩形波信号 Mu〜Mwは、それぞ れ第 1矩形波信号 Pu〜Pwと等しくなる。
[0067] 上述したように、出力回路 14は、各相の第 2矩形波信号 Mu〜Mwおよびパルス信 号 Vpulseにもとづき、多相モータの各相のコイルに前記駆動電流を間欠的に供給 する。ドライブ信号合成回路 16は、マスク回路 12から出力される第 2矩形波信号 Mu 〜Mwと、パルス信号生成回路 44から出力されるパルス信号 Vpulseを論理演算に より合成して、トランジスタ Trl〜Tr6のゲートに印加すべきドライブ信号 Duu〜Dul を生成する。
[0068] 以上のように構成されたモータ駆動回路 100の動作について説明する。図 7 (a)〜
(f)は、図 5のモータ駆動回路 100の動作状態を示すタイムチャートであり、ノルス信 号生成回路 44において、パルス信号 Vpulseが生成され、マスク信号生成回路 64に おいて、マスク信号 Smskが生成される様子を示す。
[0069] 図 7 (a)は、検出電圧 Vdetを、同図(b)は、比較信号 Vcmpを、同図(c)は、パルス 信号 Vpulseを、同図(d)は、第 1マスク信号 Smsklを、同図(e)は、第 2マスク信号 S msk2を、同図(f)は、マスク信号 Smskを示す。以下の説明では、コイル 50a、 50bに 電流が流れる場合につ!、て説明する。
[0070] 時刻 tOに、パルス信号 Vpulseがハイレベル(第 2レベル)となる。パルス信号 Vpuls eがハイレベルとなると、ドライブ信号合成回路 16は、トランジスタ Trl、 Tr4がオンす る。いずれのトランジスタの組み合わせがオンするかは、ロータの位置に応じて変化 するものであり、第 2矩形波信号 Mu〜Mwにもとづいて決定される。 [0071] トランジスタ Trl、 Tr4がオンすると、電源ラインから、トランジスタ Trl、コイル 50a、 50b、トランジスタ Tr4の経路に駆動電流が流れ、この駆動電流は時間とともに上昇 し始める。駆動電流は、電流電圧変換部 40の変換抵抗 R1を介して接地に流れる。 検出電圧 Vdetは、駆動電流に比例するため、時刻 tO以降、時間とともに上昇し始め る。
[0072] 時刻 tlに、検出電圧 Vdetが制御電圧 Vctrlに達すると、パルス変調コンパレータ 4 2から出力される比較信号 Vcmpはハイレベルとなる。比較信号 Vcmpがハイレベル となると、パルス信号生成回路 44は、パルス信号 Vpulseをローレベル(第 1レベル) とする。パルス信号 Vpulseがローレベルのとき、ドライブ信号合成回路 16は、トラン ジスタ Trl、 Tr4をオフする。
[0073] マスク信号生成回路 64は、時刻 tlにパルス信号 Vpulseがハイレベルからローレべ ルに遷移すると、第 1マスク信号 Smsklをハイレベルとし、第 1マスク時間 Tmskl経 過後の時刻 t2に、第 1マスク信号 Smsklをローレベルに切り換える。
[0074] パルス信号生成回路 44は、時刻 tlから、オフ時間 Toffの経過後の時刻 t3に、パ ルス信号 Vpulseをノヽィレベルに切り換える。時刻 t3に、トランジスタ Trl、Tr4は再び オンする。
[0075] マスク信号生成回路 64は、時刻 t3にパルス信号 Vpulseがローレベルからハイレべ ルに遷移すると、第 2マスク信号 Smsk2をハイレベルとし、第 2マスク時間 Tmsk2経 過後の時刻 t4に、第 2マスク信号 Smsk2をローレベルに切り換える。マスク信号 Sms kは、第 1マスク信号 Smsklと第 2マスク信号 Smsk2の論理和によって得ることができ る。このマスク信号 Smskは、マスク回路 12に出力され、マスク回路 12は、マスク信号 Smskがハイレベルの期間、第 1矩形波信号 Pu〜Pwのレベル変動を無効化するマ スキング処理を行う。
[0076] 図 8 (a)は、モータ 50の U相のコイルの逆起電圧 Vuおよび中点電圧 Vnを、同図(b )は、マスク信号 Smskを示すタイムチャートである。図 8は、 180度通電によりモータ 50を駆動する場合の波形を示している力 本発明はこれに限定されるものではなぐ 120度通電などであってもよい。同図において、実線が U相の逆起電圧 Vuを、破線 が中点電圧 Vnを示す。 V相、 W相についても、同様の波形が位相が 60度シフトして 現れる。パルス駆動の周波数によって、逆起電圧 Vuの変動の周期は変化する。 180 度通電を行う場合、図 8に示すように、 V相、 W相の駆動状態によって、 U相の逆起 電圧 Vuは影響を受けることになる。すなわち、時刻 tO〜tlの期間では、 V相、 W相 の逆起電圧 Vv、 Vwがともにローレベルの期間 φ 1と、 V相、 W相の逆起電圧 Vv、 V wのいずれか一方がハイレベルの期間 φ 2と、を繰り返す。時刻 tl〜t2の期間では、 U相の逆起電圧 Vuはハイレベルに固定される。時刻 t2〜t3の期間では、 V相、 W相 の逆起電圧 Vv、 Vwがともにハイレベルの期間 φ 3と、 V相、 W相の逆起電圧 Vv、 V wのいずれか一方がローレベルの期間 φ 4と、を繰り返す。
[0077] 上述したように、実施の形態に係るモータ駆動回路 100が、コイル 50a〜50cに発 生する逆起電圧 Vu〜にもとづいて相切り替えを行い、センセレスのモータを駆動す る。具体的には、逆起検出コンパレータ 10によって、逆起電圧 Vuと、中点電圧 Vnを 比較し、第 1矩形波信号 Puが生成する。
[0078] ここで、図 8 (a)の逆起電圧 Vuには、スパイク状の逆起ノイズ Nx力 パルス駆動の 周期に応じて発生している。したがって、このスパイク状の逆起ノイズによって、中点 電圧 Vnと、逆起電圧 Vuの大小関係が反転すると、第 1矩形波信号 Puにも、この逆 起ノイズが現れる。
[0079] マスク信号 Smskは、図 8 (b)に示すように、パルス駆動のもととなるパルス信号 Vpu lseのポジエッジと、ネガエッジから所定のマスク時間、ハイレベルとなる。マスク回路 12は、マスク信号生成回路 64から出力されるマスク信号 Smskがハイレベルの期間 、第 1矩形波信号 Puのレベル変動を無効化する。したがって、マスク信号 Smskがハ ィレベルの期間に現れる第 1矩形波信号 Puのノイズ成分は、第 2矩形波信号 Muに は現れないことになる。その結果、 U相の逆起電圧 Vuと、中点電圧 Vnが交差するゼ 口クロス点を好適に検出し、相の切り替えを良好に行うことができる。
[0080] V相、 W相についても同様に処理され、第 1矩形波信号 Pv、 Pwからノイズ成分がマ スクされた第 2矩形波信号 Mv、 Mwが生成される。
[0081] モータ駆動回路 100は、以上の動作を繰り返し行うことにより、モータ 50をパルス駆 動する。本実施の形態に係るモータ駆動回路 100によれば、パルス駆動によりモー タ 50のコイルへの通電のオン、オフを切り換えるたびに、所定時間ハイレベルとなる マスク信号 Smskが生成される。したがって、モータ 50のコイルへの通電が切り替わ ることにより発生する逆起ノイズを、このタイミングに併せてハイレベルとなるマスク信 号 Smskによって好適に除去することができる。
[0082] また、本実施の形態に係るモータ駆動回路 100によれば、逆起電圧が交差するゼ 口クロスは、マスク信号 Smskがローレベルの期間に発生することになるため、このゼ 口クロスを確実に検出して、相を切り換えることができる。さらに、本実施の形態では、 第 1マスク時間 Tmsklと、第 2マスク時間 Tmsk2の関係を、 Tmskl≥Tmsk2となる ように設定しているため、マスク信号 Smskがローレベルとなる検出時間を、確実に確 保することができる。
[0083] もし、パルス幅変調(PWM : Pulse Width Modulation)方式によってモータを 駆動した場合、トルクに応じてオフ時間が変化することになる。この場合、トルクが高く なり、オフ時間が短くなると、マスクの設定が困難になる。一方、本実施の形態に係る モータ駆動回路 100では、 PWM方式でなぐ PFM方式を採用するため、逆起ノイズ が現れるオン時間の直前に、所定期間のオフ時間 Toffを確保することができるため 、マスク時間を確実に設定することができる。
[0084] 図 9 (a)〜(f)は、制御電圧 Vctrlが低い場合の図 5のモータ駆動回路 100の動作 状態を示すタイムチャートである。この場合、モータ 50のコイルの通電時間が第 2マ スク時間 Tmsk2よりも短くなる。したがって、オン時間中のゼロクロス検出は行わない 。この場合においても、 Toffく Tmsklとしているため、パルス信号 Vpulseがハイレ ベルとなる直前の、ある期間は、マスク信号 Smskがローレベルとなるため、ゼロクロス を確実に検出することができる。
[0085] 最後に、本実施の形態に係るモータ駆動回路 100のアプリケーションについて説 明する。図 4は、図 5のモータ駆動回路 100を搭載したディスク装置 200の構成を示 すブロック図である。ディスク装置 200は、 CDや DVDなどの光ディスクに対して記録 、再生処理を行うユニットであり、 CDプレイヤや DVDプレイヤ、パーソナルコンビュ ータなどの電子機器に搭載される。ディスク装置 200は、ピックアップ 210、信号処理 部 212、モータ 50、モータ駆動回路 100を含む。
[0086] ピックアップ 210は、ディスク 214にレーザを照射して所望のデータを書き込み、あ るいは、反射した光を読み込むことによりディスク 214に書き込まれたデータを読み出 す。信号処理部 212は、ピックアップ 210により読み書きするデータに対して増幅処 理、 AZD変換あるいは DZA変換など必要な信号処理を行う。モータ 50は、デイス ク 214を回転させるために設けられてスピンドルモータである。図 4に示すようなディ スク装置 200は、特に小型化が要求されるため、モータ 50としてホール素子などを用 Vヽな 、センサレスタイプが用 、られる。本実施の形態に係るモータ駆動回路 100は、 このようなセンサレスのスピンドルモータを安定に駆動するために好適に用いることが できる。
[0087] 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それ らの各構成要素や各処理プロセスの組合せに 、ろ 、ろな変形例が可能なこと、また そうした変形例も本発明の範囲にあることは当業者に理解されるところである。
[0088] 実施の形態では、 3相モータを駆動する場合について説明したが、本発明は 3相以 外のセンサレスモータの駆動にも好適に用いることができる。
[0089] また、実施の形態において、逆起検出コンパレータ 10は、モータ 50の各相のコィ ル 50a〜50cに発生する逆起電圧 Vu〜Vwを各相のコイルの中点電圧 Vnとそれぞ れ比較したが、必要に応じて抵抗を用いて分圧し、分圧された電圧を比較することに より第 1矩形波信号 Pu〜Pwを生成してもよい。
[0090] 実施の形態で説明した信号のハイレベル、ローレベルのロジックの設定は一例であ つて、論理回路ブロックの構成には様々な変形例が考えられ、こうした変形例も本発 明の範囲に含まれる。
[0091] 実施の形態では、モータ駆動回路 100がー体集積化される場合について説明した がこれには限定されず、たとえば、パワートランジスタ回路 18を構成するトランジスタ Trl〜Tr6や、変換抵抗 R1は、モータ駆動回路 100の外部にディスクリート素子や チップ部品として設けられてもよ!/、。
[0092] 実施の形態にもとづき、本発明を説明したが、実施の形態は、本発明の原理、応用 を示しているにすぎないことはいうまでもなぐ実施の形態には、請求の範囲に規定さ れた本発明の思想を離脱しない範囲において、多くの変形例や配置の変更が可能 であることは 、うまでもな!/、。 産業上の利用可能性
本発明は、モータ駆動技術に利用することができる。

Claims

請求の範囲
[1] 多相モータに駆動電流を供給して駆動するモータ駆動回路であって、
前記多相モータの各相のコイルに発生する逆起電圧を前記各相の中点電圧とそ れぞれ比較し、各相の第 1矩形波信号を生成する逆起検出コンパレータと、 前記逆起検出コンパレータから出力される前記各相の第 1矩形波信号のノイズ成 分を除去するマスキング処理を行い、各相の第 2矩形波信号として出力するマスク回 路と、
前記各相の第 2矩形波信号にもとづき、前記多相モータの各相のコイルに駆動電 流を供給する出力回路と、
前記各相の第 2矩形波信号のエッジを検出し、検出したエッジ毎にレベルが切り替 わる周波数発生信号を生成する周波数発生回路と、
前記周波数発生信号のレベル遷移後、前記周波数発生信号のパルス幅に所定の 係数を乗じた期間、所定レベルとなるマスク信号を生成するマスク信号生成回路と、 を備え、前記マスク回路は、前記マスク信号が前記所定レベルの期間、前記第 1矩 形波信号のレベル変動を無効化するマスキング処理を行うことを特徴とするモータ駆 動回路。
[2] 前記マスク信号生成回路は、
前記周波数発生信号のレベル遷移ごとにリセットされ、カウントを開始するカウンタ と、
前記カウンタによりカウントされたリセット時のカウント値を保持するレジスタと、 前記レジスタに保持されたカウント値に前記所定の係数を乗じて得られる数値に応 じたパルス幅を有するマスク信号を出力するマスク幅設定部と、
を含むことを特徴とする請求項 1に記載のモータ駆動回路。
[3] 前記マスク信号生成回路は、
前記多相モータの駆動開始時において、所定の固定値をパルス幅として有する前 記マスク信号を出力することを特徴とする請求項 1に記載のモータ駆動回路。
[4] 多相モータに駆動電流を供給して駆動するモータ駆動回路であって、
前記多相モータの各相のコイルに流れる駆動電流を電圧に変換する電流電圧変 換部と、
前記電流電圧変換部から出力される検出電圧を、トルクを指示する制御電圧と比 較するパルス変調コンパレータと、
前記パルス変調コンパレータ力も出力される比較信号を参照し、前記検出電圧が 前記制御電圧に達して力 所定のオフ時間の間、前記各相のコイルの不通電状態 を指示する第 1レベルとなり、それ以外の期間、前記各相のコイルの通電状態を指示 する第 2レベルとなるパルス信号を生成するパルス信号生成回路と、
前記パルス信号が前記第 1レベルに遷移してから、所定の第 1マスク時間が経過す るまでの期間と、前記第 2レベルに遷移してから、所定の第 2マスク時間が経過するま での期間、所定レベルとなるマスク信号を生成するマスク信号生成回路と、
前記多相モータの各相のコイルに発生する逆起電圧を前記各相のコイルの中点電 圧とそれぞれ比較し、各相の第 1矩形波信号を生成する逆起検出コンパレータと、 前記マスク信号生成回路から出力される前記マスク信号を参照し、前記マスク信号 が前記所定レベルの期間、前記逆起検出コンパレータから出力される前記各相の第 1矩形波信号のレベル変動を無効化するマスキング処理を行 、、各相の第 2矩形波 信号として出力するマスク回路と、
前記各相の第 2矩形波信号および前記パルス信号にもとづき、前記多相モータの 各相のコイルに前記駆動電流を間欠的に供給する出力回路と、
を備えることを特徴とするモータ駆動回路。
[5] 前記第 1マスク時間は、前記オフ時間より短く設定されることを特徴とする請求項 4 に記載のモータ駆動回路。
[6] 前記第 1マスク時間は、前記第 2マスク時間以下に設定されることを特徴とする請求 項 4または 5に記載のモータ駆動回路。
[7] 前記パルス信号生成回路は、
前記比較信号のレベル遷移を契機として、前記オフ時間のカウントを開始するカウ ンタ回路を含み、前記比較信号のレベル遷移から、カウント完了までの期間、前記第
1レベルとなり、その後、前記第 2レベルに遷移する前記パルス信号を出力することを 特徴とする請求項 4または 5に記載のモータ駆動回路。
[8] 前記マスク信号生成回路は、前記パルス信号の遷移を契機として、前記第 1、第 2 マスク時間をカウントするカウンタ回路を含むことを特徴とする請求項 4または 5に記 載のモータ駆動回路。
[9] 前記パルス信号生成回路および前記マスク信号生成回路は、
前記比較信号のレベル遷移を契機としてカウントを開始し、前記オフ時間の経過後 にレベルが遷移する前記パルス信号と、前記第 2マスク時間の経過後にレベルが遷 移する第 2マスク信号を出力する第 1カウンタ回路と、
前記第 1カウンタ回路力 出力される前記パルス信号のレベル遷移を契機として力 ゥントを開始し、前記第 1マスク時間の経過後にレベルが遷移する第 1マスク信号を 出力する第 2カウンタ回路と、
を含んで一体に構成され、前記第 1マスク信号と前記第 2マスク信号の論理演算結 果を、前記マスク信号として出力することを特徴とする請求項 4または 5に記載のモー タ駆動回路。
[10] 1つの半導体基板上に一体集積化されたことを特徴とする請求項 1から 5のいずれ かに記載のモータ駆動回路。
[11] ディスクを回転させる多相モータであるスピンドルモータと、
前記スピンドルモータを駆動する請求項 1から 5のいずれかに記載のモータ駆動回 路と、
を備えることを特徴とするディスク装置。
PCT/JP2006/312243 2005-06-20 2006-06-19 モータ駆動回路およびそれを用いたディスク装置 WO2006137360A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/917,918 US7855523B2 (en) 2005-06-20 2006-06-19 Motor driving circuit and disc apparatus using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005179263A JP4890796B2 (ja) 2005-06-20 2005-06-20 モータ駆動回路およびそれを用いたディスク装置
JP2005-179263 2005-06-20
JP2005305989A JP4864416B2 (ja) 2005-10-20 2005-10-20 モータ駆動回路およびそれを用いたディスク装置
JP2005-305989 2005-10-20

Publications (1)

Publication Number Publication Date
WO2006137360A1 true WO2006137360A1 (ja) 2006-12-28

Family

ID=37570388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312243 WO2006137360A1 (ja) 2005-06-20 2006-06-19 モータ駆動回路およびそれを用いたディスク装置

Country Status (4)

Country Link
US (1) US7855523B2 (ja)
KR (1) KR20080028363A (ja)
TW (1) TW200707896A (ja)
WO (1) WO2006137360A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI342106B (en) * 2007-12-28 2011-05-11 Feeling Technology Corp Method for controlling a direct current brushless motor, and control circuit
JP5711910B2 (ja) * 2010-07-29 2015-05-07 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー モータ駆動回路
EP2888809A1 (en) * 2012-08-22 2015-07-01 Koninklijke Philips N.V. Rectifying circuit and method for an unbalanced two phase dc grid
JP7037462B2 (ja) * 2018-09-19 2022-03-16 株式会社東芝 モータ駆動装置
JP2023115742A (ja) * 2022-02-08 2023-08-21 ローム株式会社 モータドライバ回路、それを用いた位置決め装置、ハードディスク装置、モータの駆動方法
US11798587B1 (en) * 2022-03-14 2023-10-24 Western Digital Technologies, Inc. Reducing noise in back EMF sensing for data storage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299283A (ja) * 1998-02-16 1999-10-29 Rohm Co Ltd センサレスモ―タドライバ
JP2003244983A (ja) * 2002-02-20 2003-08-29 Matsushita Electric Ind Co Ltd モータ駆動装置およびモータ駆動方法
JP2004015946A (ja) * 2002-06-10 2004-01-15 Toshiba Corp ランドリー機器のモータ駆動回路装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2875529B2 (ja) * 1987-10-31 1999-03-31 ソニー株式会社 センサレスブラシレスモータの駆動装置
US5001405A (en) 1989-09-27 1991-03-19 Seagate Technology, Inc. Position detection for a brushless DC motor
JPH10174484A (ja) * 1996-12-10 1998-06-26 Zexel Corp 直流ブラシレスモータ駆動装置
JP3874482B2 (ja) 1997-02-24 2007-01-31 ローム株式会社 3相ブラシレスモータの駆動回路及び駆動ic
KR100546814B1 (ko) * 1998-02-16 2006-01-26 로무 가부시키가이샤 센서레스 모터드라이버
JP4514108B2 (ja) * 2004-05-28 2010-07-28 ローム株式会社 ブラシレスモータ駆動制御回路及びそれを用いたブラシレスモータ装置
JP4698241B2 (ja) * 2005-02-01 2011-06-08 ルネサスエレクトロニクス株式会社 モータ駆動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299283A (ja) * 1998-02-16 1999-10-29 Rohm Co Ltd センサレスモ―タドライバ
JP2003244983A (ja) * 2002-02-20 2003-08-29 Matsushita Electric Ind Co Ltd モータ駆動装置およびモータ駆動方法
JP2004015946A (ja) * 2002-06-10 2004-01-15 Toshiba Corp ランドリー機器のモータ駆動回路装置

Also Published As

Publication number Publication date
US20100201295A1 (en) 2010-08-12
US7855523B2 (en) 2010-12-21
TW200707896A (en) 2007-02-16
KR20080028363A (ko) 2008-03-31

Similar Documents

Publication Publication Date Title
JP5731755B2 (ja) モータの駆動回路
JP4877764B2 (ja) モータ駆動回路、方法およびそれらを用いたディスク装置
US8093847B2 (en) Motor drive circuit, method, and disc device using the same
JP4010912B2 (ja) モータ駆動制御回路及びモータ駆動装置
JP5566044B2 (ja) モータ駆動回路および駆動方法、および波形データの生成方法、それらを利用したハードディスク装置
JP4963246B2 (ja) モータ駆動回路、駆動方法ならびにそれらを用いたディスク装置
US20090021199A1 (en) Motor Driving Integrated Circuit
WO2006137360A1 (ja) モータ駆動回路およびそれを用いたディスク装置
JP4880339B2 (ja) モータ駆動回路および方法ならびにそれを用いたディスク装置
JP4860980B2 (ja) モータ駆動回路およびそれを用いたディスク装置
JP4890796B2 (ja) モータ駆動回路およびそれを用いたディスク装置
JP4880340B2 (ja) モータ駆動回路および方法ならびにそれを用いたディスク装置
JP4896568B2 (ja) モータ駆動回路、方法およびそれらを用いたディスク装置
JP4864416B2 (ja) モータ駆動回路およびそれを用いたディスク装置
JP2006296088A (ja) モータ制御装置及びモータ制御方法
JP2005328644A (ja) モータ駆動装置、モータ制御装置及びモータ駆動方法
JP5171079B2 (ja) モータ駆動回路、駆動方法ならびにそれらを用いたディスク装置
JP2007282314A (ja) モータ駆動装置およびモータ駆動方法
JP2012005328A (ja) センサレスモータ駆動装置および駆動方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680018559.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077028516

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11917918

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06766907

Country of ref document: EP

Kind code of ref document: A1