WO2007017873A2 - Wlan operating on multiple adjacent bands - Google Patents

Wlan operating on multiple adjacent bands Download PDF

Info

Publication number
WO2007017873A2
WO2007017873A2 PCT/IL2006/000919 IL2006000919W WO2007017873A2 WO 2007017873 A2 WO2007017873 A2 WO 2007017873A2 IL 2006000919 W IL2006000919 W IL 2006000919W WO 2007017873 A2 WO2007017873 A2 WO 2007017873A2
Authority
WO
WIPO (PCT)
Prior art keywords
access point
access
access points
station
uplink
Prior art date
Application number
PCT/IL2006/000919
Other languages
French (fr)
Other versions
WO2007017873A3 (en
Inventor
Eran Shpak
Original Assignee
Extricom Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Extricom Ltd. filed Critical Extricom Ltd.
Publication of WO2007017873A2 publication Critical patent/WO2007017873A2/en
Publication of WO2007017873A3 publication Critical patent/WO2007017873A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures

Definitions

  • the present invention relates generally to wireless communications, and specifically to methods and devices for improving the performance of wireless local area networks.
  • WLANs Wireless local area networks
  • IEEE 802.11 IEEE 802.11a, S02.11b and 802.11g extensions to the original standard, in order to enable higher data rates.
  • the 802.11a standard envisions data rates up to 54 Mbps over short distances in a 5 GHz band, while 802.11b defines data rates up to 22 Mbps in the 2.4 GHz band.
  • 802.11 is used to refer collectively to the original IEEE 802.11 standard and all its variants and extensions, unless specifically noted otherwise.
  • the 802.11 standard provides a mechanism for collision avoidance based on clear channel assessment (CCA), which requires a station to refrain from transmitting when it senses other transmissions on its frequency channel. In practice, this mechanism is of limited utility and can place a heavy burden on different BSSs operating on the same frequency channel. Therefore, in high data-rate 802.11 WLANs known in the art, access points in mutual proximity must use different frequency channels. Theoretically, the 802.11b and 802.
  • Hg standards define 14 frequency channels in the 2.4 GHz band, spaced about 5 MHz apart.
  • the usable 802.11b signal in each channel occupies approximately 20-25 MHz of the frequency spectrum.
  • 802.11 WLANs operating in the 2.4 GHz band in the United States actually have only three frequency channels from which to choose (channels 1, 6 and 11, with channel spacing of 25 MHz.
  • channels 1, 6 and 11 In the 5 GHz band, with channel spacing of 20 MHz, a larger number of frequency channels is available, but the choice is still limited.
  • Access points are typically set to operate on one of these channels, and mobile stations tune their radios to the available frequency.
  • the actual data rate for communication between an access point and mobile stations that it serves is chosen from a list of possible data rates by negotiation between the access point and mobile stations.
  • multirate support in the 802.11 environment is described in section 9.6 (page 95) of ANSI/IEEE Standard 802.11 (1999 Edition), entitled Part 11 : Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, which is incorporated herein by reference.
  • MAC Wireless LAN Medium Access Control
  • PHY Physical Layer
  • maximum-rate communication is possible only when the access point and mobile stations are close together and subject to good signal/noise conditions.
  • the data rate typically drops as the distance between the access point and mobile stations increases.
  • Each access point and mobile station announces the rates that may be used to communicate with it in the "supported rates" field of management frames that it transmits, as described in section 7.2.3 of the above-mentioned standard.
  • U.S. Patent Application Publications US 2004/0162037 Al and US 2004/0160929 Al describe access points for use in a wireless local area network (WLAN), which are capable of communicating on multiple frequency channels simultaneously.
  • WLAN wireless local area network
  • Each such access point comprises multiple wireless communication units, each comprising its own radio transceiver.
  • Each transceiver is tuned for operation on a different, respective frequency channel of the WLAN. Therefore, from the point of view of the stations in the WLAN, each multi-channel access point behaves effectively as though it were a set of several collocated single-channel access points.
  • Some embodiments of the present invention provide methods and devices that resolve the conflict of simultaneous transmission and reception on adjacent channels in a WLAN.
  • the access points in the WLAN are configured and controlled so that within a service region of the WLAN, uplink signals transmitted by a station at any given location on either frequency channel are received by at least two of the access points. Operations of the access points are then coordinated so that when one of the access points is transmitting on a given frequency channel, at least one neighboring access point is listening on the other frequency channel.
  • stations may transmit uplink signals at any time (subject to the normal collision- avoidance methods dictated by the applicable WLAN standard), and will generally be assured that at least one access point will receive and respond to the uplink signals notwithstanding concurrent downlink transmission on an adjacent frequency channel or channels.
  • the access point that is to respond to the mobile station is assigned by arbitration among the access points themselves or, alternatively, by a centralized access manager function. Schemes that can be used to provide this sort of coordination among access points are described, for example, in the above-mentioned US 2004/0160929 Al and in U.S. Patent Application Publication US 2003/0206532 Al.
  • the access point that is chosen to respond to a given station is not necessarily the same one that received the uplink signal from the station.
  • the access points instruct the stations to transmit uplink signals at a rate slower than the downlink transmission rate.
  • the downlink transmission rate of each access point is determined so that each station will be able to receive and decode downlink signals from at least one of the access points at the maximum rate supported by the wireless medium at the location of the station.
  • the access point Upon determining the rate to use for the downlink transmission to a given station or group of stations, the access point instructs the stations to use an uplink transmission rate that is lower than the downlink rate. At this lower rate, at least two access points are typically able to receive and decode the uplink signals from each station.
  • a method for communication including: deploying a plurality of access points, including at least first and second access points, which have respective coverage areas and are configured to operate on a common frequency channel, in a service region of a wireless local area network (WLAN), so that the coverage areas of the access points overlap; selecting the first access point to transmit downlink signals to a station in the service region of the WLAN; setting a downlink data rate for transmission of the downlink signals from the first access point to the station; and instructing the station to transmit uplink signals at an uplink data rate that is less than the downlink data rate, so that the uplink signals can be received and decoded by both the first and second access points.
  • WLAN wireless local area network
  • the access points include at least first and second radio transceivers, which are collocated at a location of the first access point, and which are configured to operate on at least first and second respective, adjacent frequency channels, and instructing the station to transmit the uplink signals at the uplink data rate enables the second access point to receive and decode the uplink signals on the first frequency channel while the second radio transceiver transmits downlink signals on the second frequency channel.
  • the method includes, while the first radio transceiver at the first access point is receiving the uplink signals on the first frequency channel, instructing the first access point to delay transmission of the downlink signals on the second frequency channel.
  • deploying the access points includes linking the access points to communicate over a communication medium, and wherein selecting the first access point includes appointing the first access point to transmit the downlink signals by sending messages to and from the access points over the communication medium.
  • sending the messages includes receiving an initial uplink signal from the station at both the first and second access points, reporting receipt of the initial uplink signal by sending first and second messages from the first and second access points over the communication medium, and choosing the first access point to respond to the initial uplink signal responsively to the first and second messages.
  • appointing the first access point includes receiving the first and second messages over the communication medium at an access manager, and sending at least a third message from the access manager to the first access point, so as to instruct the first access point to transmit the downlink signals and to inform the first access point of the downlink and uplink data rates.
  • setting the downlink data rate includes choosing a first rate from a list of available data rates in the WLAN, and instructing the station includes choosing a second rate from the list.
  • the data rates in the list are spaced by predetermined increments, and the second rate is lower than the first rate by one increment.
  • choosing the first rate includes assessing channel conditions in the WLAN, and selecting a maximal rate from the list that is compatible with the channel conditions.
  • apparatus for communication including: a plurality of access points, including at least first and second access points, which have respective coverage areas and are configured to operate on a common frequency channel, and which are arranged for deployment in a service region of a wireless local area network (WLAN) so that the coverage areas of the access points overlap; and an access manager, which is configured to communicate with the access points, so as to select the first access point to transmit downlink signals to a station in the service region of the WLAN, to set a downlink data rate for transmission of the downlink signals from the first access point to the station, and to cause at least one of the access points to instruct the station to transmit uplink signals at an uplink data rate that is less than the downlink data rate, so that the uplink signals can be received and decoded by both the first and second access points.
  • WLAN wireless local area network
  • Fig. 1 is a block diagram that schematically illustrates a wireless LAN
  • WLAN wireless local area network
  • Fig. 2 is a block diagram that schematically shows details of a multi-channel access point, in accordance with an embodiment of the invention
  • Fig. 3 is a diagram that schematically shows coverage areas of access points in a WLAN at different transmission rates, in accordance with an embodiment of the invention.
  • Fig. 1 is a block diagram that schematically illustrates a wireless LAN
  • System 20 comprises multiple access points 22, 24, 26, 28, which comprise radio interfaces for data communication with stations 32, 34, 36, 38 on multiple frequency channels. At least some of the access points (or all of the access points) have multiple radio transceivers, which are configured to transmit and receive signals on different, respective frequency channels.
  • the radio transceivers may share common antennas, as described in the above-mentioned US 2004/0162037 Al, or they may alternatively use separate antennas for the different frequency channels.
  • the stations typically comprise computing devices, such as desktop, portable or handheld devices, which may be mobile or stationary.
  • the access points and stations communicate with one another in accordance with one of the standards in the LEEE 802.11 family and observe the 802.11 MAC layer conventions described in the above-mentioned 802.11 standard.
  • the principles of the present invention may also be applied, mutatis mutandis, in other wireless environments, such as Bluetooth networks, personal area networks (IEEE 802.15), wireless metropolitan area networks (IEEE 802.16) and Ultra Wideband (UWB) networks.
  • the access points are interconnected by a communication medium, typically comprising a wired LAN 42 with a hub 40, such as an Ethernet switching hub.
  • LAN 42 serves as the distribution system (DS) for exchanging data between the access points and the hub.
  • the hub is also linked to an external network 46, such as the Internet, via an access line 48, so as to enable the stations to send and receive data through the access points to and from the external network.
  • the access points in system 20 are typically closely spaced, so that radio waves in a given frequency channel may reach each station from multiple access points simultaneously, and radio messages transmitted by the stations may be received at multiple access points.
  • an access manager 44 controls downlink transmissions by access points 22, 24, 26, 28 in order to enhance the coverage and performance of the WLAN system.
  • the access points may have overlapping service areas and operate on the same frequency channels, in contrast to WLAN systems known in the art.
  • the access points share the same BSS identifier (BSSID).
  • BSSID BSS identifier
  • Manager 44 selects one of the access points to communicate with each station on the appropriate frequency channel. Techniques and protocols that may be used in selecting the access point that is to communicate with each station are described generally, for example, in U.S. Patent 6,799,054 and in U.S. Patent Application Publications US 2003/0206532 Al, US 2004/0063455 Al and US 2004/0156399 Al, whose disclosures are incorporated herein by reference.
  • manager 44 is shown as a separate unit within system 20, coupled to hub 40.
  • the function of manager 44 may be integrated into the hub or into one of the access points, or distributed among the access points (assuming the hub or access points to have suitable processing resources for carrying out this function).
  • the access points may communicate with the manager function over a dedicated medium, either wire or wireless, rather than over LAN 42.
  • embodiments of the present invention may require certain modifications to the functionality of conventional 802.11 access points in order to perform the operations described herein, the novel operation of the access points and of manager 44 is transparent to stations 32, 34, 36, 38, which operate in accordance with the 802.11 standard without modification.
  • a station when a station sends an uplink signal, the signal is received by multiple access points simultaneously.
  • the receiving access points send messages over LAN 42 (or over another medium) to manager 44, which then selects the access point to acknowledge the uplink signal and send downlink communications to the station.
  • manager 44 Each of stations 32, 34, 36 and 38 is thus assigned by manager 44 to one of access points 22, 24, 26 and 28. This association is dynamic, and may change in response to movement of the station within the service region of the WLAN or other changes in traffic or network conditions, for example.
  • Fig. 2 is a block diagram that schematically shows details of access point 22, in accordance with an embodiment of the present invention.
  • the other access points in WLAN system 20 are typically similarly constructed.
  • Each access point comprises multiple wireless physical layer interfaces (WLAN PHY) 50, 52, each of which comprises a radio transceiver, which transmits and receives signals via at least one of antennas 54, 56, on a respective frequency channel of the WLAN.
  • WLAN PHY wireless physical layer interfaces
  • Each WLAN PHY may be connected to multiple antennas for purposes of diversity. Additionally or alternatively, interfaces 50 and 52 may share antennas, as described, for example, in the above-mentioned US 2004/0162037 Al.
  • access point 22 is shown in this figure as comprising two WLAN PHYs and two antennas, the access point may alternatively be configured to comprise a larger number of WLAN PHYs, and thus may accommodate a larger number of frequency channels.
  • a medium access control (MAC) processor 58, 60 performs higher-level message processing functions in each frequency channel in conjunction with the corresponding PHY 50, 52.
  • Processors 58 and 60 perform MAC-level processing of the uplink packets received by PHYs 50 and 52 from the stations, and generates downlink packets for transmission by PHYs 50 and 52, in accordance with the 802.11 standard (or any other applicable WLAN standard) and subject to instructions from manager 44.
  • processors 58 and 60 are typically responsible for messaging over LAN 42, as described above, to determine which of the access points is to serve each station.
  • MAC processors 58 and 60 are linked to LAN 42 through a multiplexer/demultiplexer 61 to a single LAN physical layer interface (LAN PHY) 62, typically an Ethernet PHY device.
  • LAN PHY LAN physical layer interface
  • a multiplexing/demultiplexing function of this sort is described in the above-mentioned US 2004/0160929 Al, and permits the multiple MAC processors to share the same LAN interface.
  • data frames transmitted over LAN 42 between access point 22 and hub 40 may contain chunks of data for different frequency channels, as well as control messages passed between the access point and manager 44.
  • each MAC processor may have its own LAN interface, although this approach is less economical in terms of LAN resources.
  • Logical and control elements of access point 22 may comprise either hard-wired or programmable components with appropriate software, as will be apparent to those skilled in the art.
  • Access point 22 is thus capable of transmitting downlink signals on multiple frequency channels simultaneously, as well as receiving and processing uplink signals on multiple channels simultaneously.
  • a problem may occur, however, if the access point is to transmit a downlink signal on one channel while simultaneously receiving an uplink signal on an adjacent channel: Because the frequency channels are closely spaced, and the analog filters in PHY 50 and 52 do not have perfectly sharp cutoff at the channel edges, some energy will spill over from the transmitting channel into the receive circuit of the receiving channel. Because PHYs 50 and 52 and antennas 54 and 56 are close together, this spillover may be strong enough to overwhelm the uplink signal.
  • the access points are distributed so that in general, at least two access points can receive the uplink signals from each station, and the stations transmit their uplink signals in such a way that both receiving access points can decode the uplink signals.
  • this redundant uplink coverage is achieved by instructing the stations to operate at a reduced uplink transmission rate, so as to increase the range over which the uplink signals can be received and decoded.
  • Fig. 3 is a diagram that schematically shows coverage areas of access points in a WLAN at different transmission rates, in accordance with an embodiment of the invention. This figure exemplifies the technique described above for ensuring reception of uplink signals.
  • Each access point 22, 24, 26, 28 has an inner coverage area 72, such that stations within this area are capable of receiving downlink transmissions from the access point at a maximal data rate. (As explained above, it is assumed that at least some of these access points transmit and receive signals on multiple frequency channels, and Fig.
  • the access points in the WLAN be laid out and configured in such a way that this maximal data rate, which pertains in area 72 of each access point, is the highest data rate supported by the applicable WLAN standard.
  • the maximal data rate in coverage area 72 may be smaller than the highest supported data rate.
  • the actual data rate is set in practice by a capability exchange between the access point and the stations that it serves, as described in the above- referenced sections of the 802.11 standard.
  • the access points be distributed within the service region of the WLAN so that each station in the service region falls within inner coverage area 72 of a single access point, as shown in Fig. 3. Under these circumstances, the downlink transmission rate to all stations is maximized, while the cost of the WLAN system is optimized, since there are no more access points than are needed for this purpose.
  • manager 44 in WLAN system 20 assigns an access point to communicate with each station, so that each station receives downlink signals from no more than one access point at any given time.
  • station 32 receives its downlink signals from access point 22.
  • the access points At a data rate less than the maximal data rate, the access points have respective extended coverage areas 74.
  • the extended coverage areas have double the radius of inner coverage areas 72, so that each station in the service region of the WLAN will fall within the extended coverage areas of two or more of the access points.
  • the "service region" of the WLAN should be understood in this context to comprise the region in which the access points are expected to give full coverage, i.e., the union of coverage areas 72, and not outlying parts of extended coverage areas 74 that may be covered incidentally.
  • station 32 At the lower data rate, station 32, for example, is capable of communicating with both access point 22 and access point 24.
  • manager 44 determines that access point 22 has received the signal most strongly, and assigns access point 22 to serve this station. 2) Based on the standard negotiation sequence carried out between access point 22 and station 32, manager 44 determines the maximal data rate at which the access point can effectively transmit downlink signals to the station and instructs the access point to use this data rate for downlink.
  • Manager 44 selects an uplink rate that is at least one increment slower than the downlink rate.
  • the manager instructs access point 22 to send a message (for example, an associate response or probe response message) to station 32 indicating to the station that it should transmit uplink signals at this rate.
  • the uplink data rate is reduced relative to the downlink rate, so that station 32 falls within the extended coverage areas of both access point 22 and access point 24 on uplink, as illustrated in Fig. 3. Therefore, if the station transmits an uplink signal on its given frequency channel while either of these access points is transmitting a downlink signal on an adjacent frequency channel, the other access point will still receive, decode and report the uplink signal to manager 44.
  • the uplink transmission rates in a conventional WLAN will not provide this sort of protection against adjacent channel transmission: In a conventional WLAN, each station is associated with only a single access point - rather than being able to communicate simultaneously with multiple access points, as in the embodiments described above. Consequently, if the access point with which a given station is associated happens to be transmitting on the adjacent channel, uplink signals transmitted by the station may be lost.
  • manager 44 When either of access points 22 and 24 receives an uplink signal from station 32, manager 44 will then instruct access point 22 to respond by transmitting a downlink signal on the frequency channel of station 32. Notwithstanding the reduced uplink rate, the downlink signal is transmitted at the maximal data rate. Typically, manager 44 instructs access point 22 to send the appropriate downlink signal immediately. Alternatively, if the manager determines that the access point is in the midst of receiving an uplink signal on the adjacent frequency channel, it may delay this downlink transmission in order to avoid interfering with the uplink reception.
  • the manager may instruct the other access point to transmit the downlink signal while access point 22 is receiving the uplink signal on the adjacent channel.
  • the principles of the present invention may similarly be applied in WLAN systems using three or more frequency channels.
  • the dual-channel access points described above make particularly advantageous use of hardware and communication resources, the principles of the present invention may also be applied, mutatis mutandis, to solve problems of interference and uplink signal reception that may occur among single -channel access points that are closely spaced in a multi-channel WLAN environment.
  • the radio transceivers of these access points are considered to be "collocated" if they are sufficiently close together so that transmission by one of the transceivers on one frequency channel causes substantial interference with reception by another transceiver on an adjacent frequency channel.

Abstract

ABSTRACT A method for communication includes deploying a plurality of access points (22, 24, 26, 28), which have respective coverage areas and are configured to operate on a common frequency channel, in a service region of a wireless local area network (WLAN), so that the coverage areas of the access points overlap. A first access point is selected to transmit downlink signals to a station (32, 34, 36, 38) in the service region of the WLAN at a certain downlink data rate. The station is instructed to transmit uplink signals at an uplink data rate that is less than the downlink data rate, so that the uplink signals can be received and decoded by both the first and second access points.

Description

WLAN OPERATING ON MULTIPLE ADJACENT BANDS
FIELD OF THE INVENTION
The present invention relates generally to wireless communications, and specifically to methods and devices for improving the performance of wireless local area networks.
BACKGROUND OF THE INVENTION
Wireless local area networks (WLANs) are gaining in popularity, and new wireless applications are being developed. The original WLAN standards, such as "Bluetooth" and IEEE 802.1 1, were designed to enable communications at 1-2 Mbps in a band around 2.4 GHz. More recently, IEEE working groups have defined the 802.11a, S02.11b and 802.11g extensions to the original standard, in order to enable higher data rates. The 802.11a standard, for example, envisions data rates up to 54 Mbps over short distances in a 5 GHz band, while 802.11b defines data rates up to 22 Mbps in the 2.4 GHz band. In the context of the present patent application and in the claims, the term "802.11" is used to refer collectively to the original IEEE 802.11 standard and all its variants and extensions, unless specifically noted otherwise.
The theoretical capability of new WLAN technologies to offer high communication bandwidth to mobile users is severely hampered by the practical limitations of wireless communications. Indoor propagation of radio frequencies is not isotropic, because radio waves are influenced by building layout and furnishings. Therefore, even when wireless access points are carefully positioned throughout a building, some "black holes" generally remain - areas with little or no radio reception. Furthermore, 802.11 wireless links can operate at full speed only under conditions of high signal/noise ratio. Signal strength scales inversely with the distance of the mobile station from its access point, and therefore so does communication speed. A single mobile station with poor reception due to distance or radio propagation problems can slow down WLAN access for all other users in its basic service set (BSS - the group of mobile stations communicating with the same access point in a conventional 802.11 WLAN). The natural response to these practical difficulties would be to distribute a greater number of access points within the area to be served. If a receiver receives signals simultaneously from two sources of similar strength on the same frequency channel, however, it is generally unable to decipher either signal. The 802.11 standard provides a mechanism for collision avoidance based on clear channel assessment (CCA), which requires a station to refrain from transmitting when it senses other transmissions on its frequency channel. In practice, this mechanism is of limited utility and can place a heavy burden on different BSSs operating on the same frequency channel. Therefore, in high data-rate 802.11 WLANs known in the art, access points in mutual proximity must use different frequency channels. Theoretically, the 802.11b and 802. Hg standards define 14 frequency channels in the 2.4 GHz band, spaced about 5 MHz apart. The usable 802.11b signal in each channel, however, occupies approximately 20-25 MHz of the frequency spectrum. For this reason, and because of regulatory limitations, 802.11 WLANs operating in the 2.4 GHz band in the United States actually have only three frequency channels from which to choose (channels 1, 6 and 11, with channel spacing of 25 MHz. In the 5 GHz band, with channel spacing of 20 MHz, a larger number of frequency channels is available, but the choice is still limited.) Access points are typically set to operate on one of these channels, and mobile stations tune their radios to the available frequency.
The actual data rate for communication between an access point and mobile stations that it serves is chosen from a list of possible data rates by negotiation between the access point and mobile stations. For example, "multirate support" in the 802.11 environment is described in section 9.6 (page 95) of ANSI/IEEE Standard 802.11 (1999 Edition), entitled Part 11 : Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, which is incorporated herein by reference. As a rule, maximum-rate communication is possible only when the access point and mobile stations are close together and subject to good signal/noise conditions. The data rate typically drops as the distance between the access point and mobile stations increases. Each access point and mobile station announces the rates that may be used to communicate with it in the "supported rates" field of management frames that it transmits, as described in section 7.2.3 of the above-mentioned standard.
SUMMARY OF THE INVENTION
U.S. Patent Application Publications US 2004/0162037 Al and US 2004/0160929 Al describe access points for use in a wireless local area network (WLAN), which are capable of communicating on multiple frequency channels simultaneously. Each such access point comprises multiple wireless communication units, each comprising its own radio transceiver. Each transceiver is tuned for operation on a different, respective frequency channel of the WLAN. Therefore, from the point of view of the stations in the WLAN, each multi-channel access point behaves effectively as though it were a set of several collocated single-channel access points.
When a multi-channel access point transmits downlink signals on one channel, the ability of the access point to receive signals at the same time on other, adjacent channels in the same band (such as the 2,400-2,483.5 MHz band) may be seriously compromised. Even with bandpass filtering, spillover of the strong signals from the transmission channel into the adjacent receiver channel can overwhelm the weaker signals that may be received simultaneously from stations in the WLAN. This problem may similarly occur when WLAN access points operating on adjacent frequency channels are located in close proximity to one another. As a result, much of the benefit of multi-channel WLAN operation may be lost.
Some embodiments of the present invention provide methods and devices that resolve the conflict of simultaneous transmission and reception on adjacent channels in a WLAN. For this purpose, the access points in the WLAN are configured and controlled so that within a service region of the WLAN, uplink signals transmitted by a station at any given location on either frequency channel are received by at least two of the access points. Operations of the access points are then coordinated so that when one of the access points is transmitting on a given frequency channel, at least one neighboring access point is listening on the other frequency channel. As a result, stations may transmit uplink signals at any time (subject to the normal collision- avoidance methods dictated by the applicable WLAN standard), and will generally be assured that at least one access point will receive and respond to the uplink signals notwithstanding concurrent downlink transmission on an adjacent frequency channel or channels. When an access point receives the uplink signal from a given station, the access point that is to respond to the mobile station is assigned by arbitration among the access points themselves or, alternatively, by a centralized access manager function. Schemes that can be used to provide this sort of coordination among access points are described, for example, in the above-mentioned US 2004/0160929 Al and in U.S. Patent Application Publication US 2003/0206532 Al. The access point that is chosen to respond to a given station is not necessarily the same one that received the uplink signal from the station.
In some embodiments of the present invention, the access points instruct the stations to transmit uplink signals at a rate slower than the downlink transmission rate. Typically, the downlink transmission rate of each access point is determined so that each station will be able to receive and decode downlink signals from at least one of the access points at the maximum rate supported by the wireless medium at the location of the station. Upon determining the rate to use for the downlink transmission to a given station or group of stations, the access point instructs the stations to use an uplink transmission rate that is lower than the downlink rate. At this lower rate, at least two access points are typically able to receive and decode the uplink signals from each station.
There is therefore provided, in accordance with an embodiment of the present invention, a method for communication, including: deploying a plurality of access points, including at least first and second access points, which have respective coverage areas and are configured to operate on a common frequency channel, in a service region of a wireless local area network (WLAN), so that the coverage areas of the access points overlap; selecting the first access point to transmit downlink signals to a station in the service region of the WLAN; setting a downlink data rate for transmission of the downlink signals from the first access point to the station; and instructing the station to transmit uplink signals at an uplink data rate that is less than the downlink data rate, so that the uplink signals can be received and decoded by both the first and second access points.
In some embodiments, the access points include at least first and second radio transceivers, which are collocated at a location of the first access point, and which are configured to operate on at least first and second respective, adjacent frequency channels, and instructing the station to transmit the uplink signals at the uplink data rate enables the second access point to receive and decode the uplink signals on the first frequency channel while the second radio transceiver transmits downlink signals on the second frequency channel. In one embodiment, the method includes, while the first radio transceiver at the first access point is receiving the uplink signals on the first frequency channel, instructing the first access point to delay transmission of the downlink signals on the second frequency channel.
In disclosed embodiments, deploying the access points includes linking the access points to communicate over a communication medium, and wherein selecting the first access point includes appointing the first access point to transmit the downlink signals by sending messages to and from the access points over the communication medium. Typically, sending the messages includes receiving an initial uplink signal from the station at both the first and second access points, reporting receipt of the initial uplink signal by sending first and second messages from the first and second access points over the communication medium, and choosing the first access point to respond to the initial uplink signal responsively to the first and second messages. In one embodiment, appointing the first access point includes receiving the first and second messages over the communication medium at an access manager, and sending at least a third message from the access manager to the first access point, so as to instruct the first access point to transmit the downlink signals and to inform the first access point of the downlink and uplink data rates. Typically, setting the downlink data rate includes choosing a first rate from a list of available data rates in the WLAN, and instructing the station includes choosing a second rate from the list. In a disclosed embodiment, the data rates in the list are spaced by predetermined increments, and the second rate is lower than the first rate by one increment. Additionally or alternatively, choosing the first rate includes assessing channel conditions in the WLAN, and selecting a maximal rate from the list that is compatible with the channel conditions.
There is also provided, in accordance with an embodiment of the present invention, apparatus for communication, including: a plurality of access points, including at least first and second access points, which have respective coverage areas and are configured to operate on a common frequency channel, and which are arranged for deployment in a service region of a wireless local area network (WLAN) so that the coverage areas of the access points overlap; and an access manager, which is configured to communicate with the access points, so as to select the first access point to transmit downlink signals to a station in the service region of the WLAN, to set a downlink data rate for transmission of the downlink signals from the first access point to the station, and to cause at least one of the access points to instruct the station to transmit uplink signals at an uplink data rate that is less than the downlink data rate, so that the uplink signals can be received and decoded by both the first and second access points.
The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which: BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a block diagram that schematically illustrates a wireless LAN
(WLAN) system, in accordance with an embodiment of the invention;
Fig. 2 is a block diagram that schematically shows details of a multi-channel access point, in accordance with an embodiment of the invention; and Fig. 3 is a diagram that schematically shows coverage areas of access points in a WLAN at different transmission rates, in accordance with an embodiment of the invention.
DETAILED DESCRIPTION OF EMBODIMENTS Fig. 1 is a block diagram that schematically illustrates a wireless LAN
(WLAN) system 20, in accordance with a preferred embodiment of the present invention. System 20 comprises multiple access points 22, 24, 26, 28, which comprise radio interfaces for data communication with stations 32, 34, 36, 38 on multiple frequency channels. At least some of the access points (or all of the access points) have multiple radio transceivers, which are configured to transmit and receive signals on different, respective frequency channels. The radio transceivers may share common antennas, as described in the above-mentioned US 2004/0162037 Al, or they may alternatively use separate antennas for the different frequency channels. The stations typically comprise computing devices, such as desktop, portable or handheld devices, which may be mobile or stationary.
In the exemplary embodiments described hereinbelow, it is assumed that the access points and stations communicate with one another in accordance with one of the standards in the LEEE 802.11 family and observe the 802.11 MAC layer conventions described in the above-mentioned 802.11 standard. The principles of the present invention, however, may also be applied, mutatis mutandis, in other wireless environments, such as Bluetooth networks, personal area networks (IEEE 802.15), wireless metropolitan area networks (IEEE 802.16) and Ultra Wideband (UWB) networks.
The access points are interconnected by a communication medium, typically comprising a wired LAN 42 with a hub 40, such as an Ethernet switching hub. LAN 42 serves as the distribution system (DS) for exchanging data between the access points and the hub. Typically, the hub is also linked to an external network 46, such as the Internet, via an access line 48, so as to enable the stations to send and receive data through the access points to and from the external network. The access points in system 20 are typically closely spaced, so that radio waves in a given frequency channel may reach each station from multiple access points simultaneously, and radio messages transmitted by the stations may be received at multiple access points. In WLAN systems known in the art, under these circumstances, the stations would receive downlink messages from two or more of the access points, which would probably result in inability of the stations to communicate with any of the access points. In system 20, however, an access manager 44 controls downlink transmissions by access points 22, 24, 26, 28 in order to enhance the coverage and performance of the WLAN system. The access points may have overlapping service areas and operate on the same frequency channels, in contrast to WLAN systems known in the art. Typically, for each frequency channel, the access points share the same BSS identifier (BSSID). Manager 44 selects one of the access points to communicate with each station on the appropriate frequency channel. Techniques and protocols that may be used in selecting the access point that is to communicate with each station are described generally, for example, in U.S. Patent 6,799,054 and in U.S. Patent Application Publications US 2003/0206532 Al, US 2004/0063455 Al and US 2004/0156399 Al, whose disclosures are incorporated herein by reference.
For conceptual clarity, manager 44 is shown as a separate unit within system 20, coupled to hub 40. In practice, the function of manager 44 may be integrated into the hub or into one of the access points, or distributed among the access points (assuming the hub or access points to have suitable processing resources for carrying out this function). Additionally or alternatively, the access points may communicate with the manager function over a dedicated medium, either wire or wireless, rather than over LAN 42. Although embodiments of the present invention may require certain modifications to the functionality of conventional 802.11 access points in order to perform the operations described herein, the novel operation of the access points and of manager 44 is transparent to stations 32, 34, 36, 38, which operate in accordance with the 802.11 standard without modification. Usually, in system 20, when a station sends an uplink signal, the signal is received by multiple access points simultaneously. The receiving access points send messages over LAN 42 (or over another medium) to manager 44, which then selects the access point to acknowledge the uplink signal and send downlink communications to the station. Each of stations 32, 34, 36 and 38 is thus assigned by manager 44 to one of access points 22, 24, 26 and 28. This association is dynamic, and may change in response to movement of the station within the service region of the WLAN or other changes in traffic or network conditions, for example.
Fig. 2 is a block diagram that schematically shows details of access point 22, in accordance with an embodiment of the present invention. The other access points in WLAN system 20 are typically similarly constructed. Each access point comprises multiple wireless physical layer interfaces (WLAN PHY) 50, 52, each of which comprises a radio transceiver, which transmits and receives signals via at least one of antennas 54, 56, on a respective frequency channel of the WLAN. Each WLAN PHY may be connected to multiple antennas for purposes of diversity. Additionally or alternatively, interfaces 50 and 52 may share antennas, as described, for example, in the above-mentioned US 2004/0162037 Al. Although access point 22 is shown in this figure as comprising two WLAN PHYs and two antennas, the access point may alternatively be configured to comprise a larger number of WLAN PHYs, and thus may accommodate a larger number of frequency channels.
A medium access control (MAC) processor 58, 60 performs higher-level message processing functions in each frequency channel in conjunction with the corresponding PHY 50, 52. Processors 58 and 60 perform MAC-level processing of the uplink packets received by PHYs 50 and 52 from the stations, and generates downlink packets for transmission by PHYs 50 and 52, in accordance with the 802.11 standard (or any other applicable WLAN standard) and subject to instructions from manager 44. In addition, processors 58 and 60 are typically responsible for messaging over LAN 42, as described above, to determine which of the access points is to serve each station. MAC processors 58 and 60 are linked to LAN 42 through a multiplexer/demultiplexer 61 to a single LAN physical layer interface (LAN PHY) 62, typically an Ethernet PHY device. A multiplexing/demultiplexing function of this sort is described in the above-mentioned US 2004/0160929 Al, and permits the multiple MAC processors to share the same LAN interface. Thus, data frames transmitted over LAN 42 between access point 22 and hub 40 may contain chunks of data for different frequency channels, as well as control messages passed between the access point and manager 44. Alternatively, each MAC processor may have its own LAN interface, although this approach is less economical in terms of LAN resources. The functional blocks of access point 22 shown in Fig. 2 are chosen for conceptual clarity, and do not necessarily represent the physical components that might actually be used to implement the design shown here. The functional blocks shown in the figure may be combined into one or more custom integrated circuit components, or they may alternatively be broken into a larger number of custom or off-shelf components. Logical and control elements of access point 22 may comprise either hard-wired or programmable components with appropriate software, as will be apparent to those skilled in the art.
Access point 22, as illustrated in Fig. 2, is thus capable of transmitting downlink signals on multiple frequency channels simultaneously, as well as receiving and processing uplink signals on multiple channels simultaneously. A problem may occur, however, if the access point is to transmit a downlink signal on one channel while simultaneously receiving an uplink signal on an adjacent channel: Because the frequency channels are closely spaced, and the analog filters in PHY 50 and 52 do not have perfectly sharp cutoff at the channel edges, some energy will spill over from the transmitting channel into the receive circuit of the receiving channel. Because PHYs 50 and 52 and antennas 54 and 56 are close together, this spillover may be strong enough to overwhelm the uplink signal. If only one access point is able to receive the uplink signal from the station in question, the uplink signal may be lost, and the station will have to retransmit. Therefore, in embodiments of the present invention, the access points are distributed so that in general, at least two access points can receive the uplink signals from each station, and the stations transmit their uplink signals in such a way that both receiving access points can decode the uplink signals. In an embodiment that is described hereinbelow, this redundant uplink coverage is achieved by instructing the stations to operate at a reduced uplink transmission rate, so as to increase the range over which the uplink signals can be received and decoded. In consequence, even if one of the receiving access points is simultaneously transmitting a downlink signal on an adjacent channel, at least one other access point will be able to receive and decode the uplink signal, and will therefore report the uplink reception to manager 44. (The collision avoidance mechanisms specified by the 802.11 standard prevent the stations from transmitting uplink signals simultaneously with downlink transmission on the same channel.)
Fig. 3 is a diagram that schematically shows coverage areas of access points in a WLAN at different transmission rates, in accordance with an embodiment of the invention. This figure exemplifies the technique described above for ensuring reception of uplink signals. Each access point 22, 24, 26, 28 has an inner coverage area 72, such that stations within this area are capable of receiving downlink transmissions from the access point at a maximal data rate. (As explained above, it is assumed that at least some of these access points transmit and receive signals on multiple frequency channels, and Fig. 3 can be assumed to represent the coverage areas of the access points on one of these frequency channels.) It is desirable that the access points in the WLAN be laid out and configured in such a way that this maximal data rate, which pertains in area 72 of each access point, is the highest data rate supported by the applicable WLAN standard. Alternatively, when the access points are more sparsely distributed, and/or under conditions of high noise or interference, the maximal data rate in coverage area 72 may be smaller than the highest supported data rate. In any case, the actual data rate is set in practice by a capability exchange between the access point and the stations that it serves, as described in the above- referenced sections of the 802.11 standard. For efficient use of WLAN resources, it is desirable that the access points be distributed within the service region of the WLAN so that each station in the service region falls within inner coverage area 72 of a single access point, as shown in Fig. 3. Under these circumstances, the downlink transmission rate to all stations is maximized, while the cost of the WLAN system is optimized, since there are no more access points than are needed for this purpose. Of course, in actual WLAN environments (as opposed to the ideal layout shown in Fig. 3) in which the principles of the present invention are employed, there may be larger areas of overlap between coverage areas 72, in order to avoid coverage holes. (By contrast, in WLANs known in the art, adjacent access points generally operate on different frequency channels, and overlap between the coverage areas of access points that operate on the same frequency channel is avoided.) As noted above, manager 44 in WLAN system 20 assigns an access point to communicate with each station, so that each station receives downlink signals from no more than one access point at any given time. Thus, in the example shown in Fig. 3, station 32 receives its downlink signals from access point 22.
At a data rate less than the maximal data rate, the access points have respective extended coverage areas 74. In the example shown in Fig. 3, the extended coverage areas have double the radius of inner coverage areas 72, so that each station in the service region of the WLAN will fall within the extended coverage areas of two or more of the access points. (The "service region" of the WLAN should be understood in this context to comprise the region in which the access points are expected to give full coverage, i.e., the union of coverage areas 72, and not outlying parts of extended coverage areas 74 that may be covered incidentally.) At the lower data rate, station 32, for example, is capable of communicating with both access point 22 and access point 24. Typically, reducing the data rate by one increment on the list of data rates supported by the applicable 802.11 standard is sufficient to double the coverage radius. Table I below shows the rate increments that are typically available in different 802.11 variants: TABLE I - 802.11 RATES
802.11b 802.Ha/g
I Mb/s 6 Mb/s
2 Mb/s 9 Mb/s
5.5 Mb/s 12 Mb/s
11 Mb/s 18 Mb/s
24 Mb/s
36 Mb/s
48 Mb/s
54 Mb/s
In a typical use scenario, the above-mentioned features of access point coverage in WLAN system 20 are implemented in the following manner to assure consistent multi-channel coverage:
1) When station 32 begins communication with the WLAN (typically by sending an uplink probe request or associate request signal on a given frequency channel), manager 44 determines that access point 22 has received the signal most strongly, and assigns access point 22 to serve this station. 2) Based on the standard negotiation sequence carried out between access point 22 and station 32, manager 44 determines the maximal data rate at which the access point can effectively transmit downlink signals to the station and instructs the access point to use this data rate for downlink.
3) Manager 44 selects an uplink rate that is at least one increment slower than the downlink rate. The manager instructs access point 22 to send a message (for example, an associate response or probe response message) to station 32 indicating to the station that it should transmit uplink signals at this rate.
As a result of this sequence, the uplink data rate is reduced relative to the downlink rate, so that station 32 falls within the extended coverage areas of both access point 22 and access point 24 on uplink, as illustrated in Fig. 3. Therefore, if the station transmits an uplink signal on its given frequency channel while either of these access points is transmitting a downlink signal on an adjacent frequency channel, the other access point will still receive, decode and report the uplink signal to manager 44. (In this regard, it should be understood that simply reducing the uplink transmission rates in a conventional WLAN will not provide this sort of protection against adjacent channel transmission: In a conventional WLAN, each station is associated with only a single access point - rather than being able to communicate simultaneously with multiple access points, as in the embodiments described above. Consequently, if the access point with which a given station is associated happens to be transmitting on the adjacent channel, uplink signals transmitted by the station may be lost.)
When either of access points 22 and 24 receives an uplink signal from station 32, manager 44 will then instruct access point 22 to respond by transmitting a downlink signal on the frequency channel of station 32. Notwithstanding the reduced uplink rate, the downlink signal is transmitted at the maximal data rate. Typically, manager 44 instructs access point 22 to send the appropriate downlink signal immediately. Alternatively, if the manager determines that the access point is in the midst of receiving an uplink signal on the adjacent frequency channel, it may delay this downlink transmission in order to avoid interfering with the uplink reception. Further alternatively, if the manager determines that there is another access point (for example, access point 24) that is also in range to transmit the downlink signal to station 32, the manager may instruct the other access point to transmit the downlink signal while access point 22 is receiving the uplink signal on the adjacent channel.
Although the embodiments described hereinabove relate to radio communication on two adjacent frequency channels, the principles of the present invention may similarly be applied in WLAN systems using three or more frequency channels. Furthermore, although the dual-channel access points described above (as shown in Fig. 2) make particularly advantageous use of hardware and communication resources, the principles of the present invention may also be applied, mutatis mutandis, to solve problems of interference and uplink signal reception that may occur among single -channel access points that are closely spaced in a multi-channel WLAN environment. In the context of the present patent application and in the claims, the radio transceivers of these access points are considered to be "collocated" if they are sufficiently close together so that transmission by one of the transceivers on one frequency channel causes substantial interference with reception by another transceiver on an adjacent frequency channel.
It will thus be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.

Claims

1. A method for communication, comprising: deploying a plurality of access points, comprising at least first and second access points, which have respective coverage areas and are configured to operate on a common frequency channel, in a service region of a wireless local area network (WLAN), so that the coverage areas of the access points overlap; selecting the first access point to transmit downlink signals to a station in the service region of the WLAN; setting a downlink data rate for transmission of the downlink signals from the first access point to the station; and instructing the station to transmit uplink signals at an uplink data rate that is less than the downlink data rate, so that the uplink signals can be received and decoded by both the first and second access points.
2. The method according to claim 1, wherein the access points comprise at least first and second radio transceivers, which are collocated at a location of the first access point, and which are configured to operate on at least first and second respective, adjacent frequency channels, and wherein instructing the station to transmit the uplink signals at the uplink data rate enables the second access point to receive and decode the uplink signals on the first frequency channel while the second radio transceiver transmits downlink signals on the second frequency channel.
3. The method according to claim 2, and comprising, while the first radio transceiver at the first access point is receiving the uplink signals on the first frequency channel, instructing the first access point to delay transmission of the downlink signals on the second frequency channel.
4. The method according to claim 1, wherein deploying the access points comprises linking the access points to communicate over a communication medium, and wherein selecting the first access point comprises appointing the first access point to transmit the downlink signals by sending messages to and from the access points over the communication medium.
5. The method according to claim 4, wherein sending the messages comprises receiving an initial uplink signal from the station at both the first and second access points, reporting receipt of the initial uplink signal by sending first and second messages from the first and second access points over the communication medium, and choosing the first access point to respond to the initial uplink signal responsively to the first and second messages.
6. The method according to claim 5, wherein appointing the first access point comprises receiving the first and second messages over the communication medium at an access manager, and sending at least a third message from the access manager to the first access point, so as to instruct the first access point to transmit the downlink signals and to inform the first access point of the downlink and uplink data rates.
7. The method according to any of claims 1-6, wherein setting the downlink data rate comprises choosing a first rate from a list of available data rates in the WLAN, and wherein instructing the station comprises choosing a second rate from the list.
8. The method according to claim 7, wherein the data rates in the list are spaced by predetermined increments, and wherein the second rate is lower than the first rate by one increment.
9. The method according to claim 7, wherein choosing the first rate comprises assessing channel conditions in the WlAN, and selecting a maximal rate from the list that is compatible with the channel conditions.
10. Apparatus for communication, comprising: a plurality of access points, comprising at least first and second access points, which have respective coverage areas and are configured to operate on a common frequency channel, and which are arranged for deployment in a service region of a wireless local area network (WLAN) so that the coverage areas of the access points overlap; and an access manager, which is configured to communicate with the access points, so as to select the first access point to transmit downlink signals to a station in the service region of the WLAN, to set a downlink data rate for transmission of the downlink signals from the first access point to the station, and to cause at least one of 5 the access points to instruct the station to transmit uplink signals at an uplink data rate that is less than the downlink data rate, so that the uplink signals can be received and decoded by both the first and second access points.
11. The apparatus according to claim 10, wherein the access points comprise at least first and second radio transceivers, which are collocated at a location of the first
10 access point, and which are configured to operate on at least first and second respective, adjacent frequency channels, and wherein instructing the station to transmit the uplink signals at the uplink data rate enables the second access point to receive and decode the uplink signals on the first frequency channel while the second radio transceiver transmits downlink signals
15 on the first frequency channel.
12. The apparatus according to claim 11, wherein the access manager is operative, while the first radio transceiver at the first access point is receiving the uplink signals on the first frequency channel, to instruct the first access point to delay transmission of the downlink signals on the second frequency channel.
20 13. The apparatus according to any of claims 10-12, and comprising a communication medium linking the access points and the access manager, wherein the access point is adapted to appoint the first access point to transmit the downlink signals by sending messages to and from the access points over the communication medium.
O 5 14. The apparatus according to claim 13, wherein the first and second access points are adapted to receive and decode an initial uplink signal from the station and to report receipt of the initial uplink signal to the access manager by sending respective first and second messages over the communication medium, and wherein the access manager is adapted to appoint the first access point to respond to the initial uplink signal responsively to the first and second messages by sending at least a third message from the access manager to the first access point.
15. The apparatus according to any of claims 10-12, wherein the access manager is adapted to choose the downlink and uplink data rate from a list of available data rates in the WLAN.
16. The apparatus according to claim 15, wherein the data rates in the list are spaced by predetermined increments, and wherein the uplink data rate is lower than the downlink data rate by one increment.
17. The apparatus according to claim 15, wherein the access manager is adapted to assess channel conditions in the WLAN, and to select a maximal rate from the list that is compatible with the channel conditions for use as the downlink data rate.
PCT/IL2006/000919 2005-08-11 2006-08-09 Wlan operating on multiple adjacent bands WO2007017873A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/202,256 2005-08-11
US11/202,256 US7813738B2 (en) 2005-08-11 2005-08-11 WLAN operating on multiple adjacent bands

Publications (2)

Publication Number Publication Date
WO2007017873A2 true WO2007017873A2 (en) 2007-02-15
WO2007017873A3 WO2007017873A3 (en) 2007-09-13

Family

ID=37727705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2006/000919 WO2007017873A2 (en) 2005-08-11 2006-08-09 Wlan operating on multiple adjacent bands

Country Status (2)

Country Link
US (1) US7813738B2 (en)
WO (1) WO2007017873A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349399A (en) * 2013-07-24 2015-02-11 中国移动通信集团公司 WLAN system and method for realizing uplink and downlink coverage matching in WLAN system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355757B2 (en) * 2005-10-06 2013-01-15 Broadcom Corporation System and method providing low power operation in a multimode communication device
US8027299B2 (en) 2005-11-25 2011-09-27 Gal Zuckerman Hybrid system having multiple downlink channels and a single uplink channel
US7606536B1 (en) * 2006-04-03 2009-10-20 Rockwell Collins, Inc. Temporal co-site interference reduction
US8520613B2 (en) 2010-05-17 2013-08-27 Qualcomm Incorporated Optimization of the presence information refresh for a wireless device
US8588844B2 (en) 2010-11-04 2013-11-19 Extricom Ltd. MIMO search over multiple access points
US9060351B2 (en) 2011-12-23 2015-06-16 Broadcom Corporation Decoupled downlink and uplink
KR20140063334A (en) * 2012-11-16 2014-05-27 삼성전자주식회사 Apparatus and method for connecting to a local area communication in a portable terminal
US20140226740A1 (en) 2013-02-13 2014-08-14 Magnolia Broadband Inc. Multi-beam co-channel wi-fi access point
EP3304995B1 (en) * 2015-06-05 2020-03-18 Telefonaktiebolaget LM Ericsson (PUBL) First communication device, second communication device and methods therein for sending and decoding, respectively, downlink information
US11637612B2 (en) 2015-08-25 2023-04-25 Cellium Technologies, Ltd. Macro-diversity using hybrid transmissions via twisted pairs
CN106211179B (en) * 2016-09-12 2019-11-26 东南大学 A kind of access point deployment and method for channel allocation of wireless cloud computing system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6505045B1 (en) * 2000-04-10 2003-01-07 Carnegie Mellon University Method for configuring and assigning channels for a wireless network
US20030117973A1 (en) * 2001-12-21 2003-06-26 Thermond Jeffrey L. Wireless access point management in a campus environment

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639332A (en) 1986-06-30 1988-01-16 Nec Corp Digital subscriber radio system
US4789983A (en) * 1987-03-05 1988-12-06 American Telephone And Telegraph Company, At&T Bell Laboratories Wireless network for wideband indoor communications
US4935925A (en) * 1987-03-11 1990-06-19 Aristacom International, Inc. Adaptive digital network interface
IL100213A (en) * 1990-12-07 1995-03-30 Qualcomm Inc CDMA microcellular telephone system and distributed antenna system therefor
FI97838C (en) * 1992-05-06 1997-02-25 Nokia Telecommunications Oy the cellular network system
DE4322863C2 (en) * 1993-07-09 1995-05-18 Ant Nachrichtentech Cellular antenna system
US5960344A (en) * 1993-12-20 1999-09-28 Norand Corporation Local area network having multiple channel wireless access
DE69433872T2 (en) * 1994-10-26 2005-07-14 International Business Machines Corp. Medium access control scheme for wireless local area networks with interleaved variable length time division frames
JPH11501194A (en) * 1995-12-22 1999-01-26 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ System for communicating between a group of devices
FR2746991B1 (en) * 1996-03-28 1998-06-12 Nortel Matra Cellular RADIO STATION WITH CIRCULAR POLARIZATION ANTENNAS
US5923702A (en) * 1996-06-10 1999-07-13 Breeze Wireless Communications Ltd. Frequency hopping cellular LAN system
US6047175A (en) * 1996-06-28 2000-04-04 Aironet Wireless Communications, Inc. Wireless communication method and device with auxiliary receiver for selecting different channels
US6097705A (en) * 1997-01-06 2000-08-01 Cabletron Systems, Inc. Buffered repeater with independent ethernet collision domains
US5982779A (en) * 1997-05-28 1999-11-09 Lucent Technologies Inc. Priority access for real-time traffic in contention-based networks
US5912921A (en) * 1997-08-20 1999-06-15 Intermec Ip Corp. Concurrent multiple data rate communications in a wireless local area network
US6192026B1 (en) * 1998-02-06 2001-02-20 Cisco Systems, Inc. Medium access control protocol for OFDM wireless networks
US6741643B1 (en) * 1998-04-15 2004-05-25 Telecommunications Research Laboratories Asymmetric equalization system for data transmission
US6259898B1 (en) * 1998-05-05 2001-07-10 Telxon Corporation Multi-communication access point
US6381458B1 (en) * 1998-05-15 2002-04-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for soft handoff control based on access network capacity
GB9811071D0 (en) * 1998-05-23 1998-07-22 Ncr Int Inc Automated teller machine
US6590884B1 (en) * 1999-01-07 2003-07-08 Texas Instruments Incorporated Method and apparatus providing spatial diversity within an indoor network
JP2001016163A (en) 1999-04-30 2001-01-19 Adtec:Kk Device and system for radio transmission
US6560443B1 (en) * 1999-05-28 2003-05-06 Nokia Corporation Antenna sharing switching circuitry for multi-transceiver mobile terminal and method therefor
US6580704B1 (en) * 1999-08-26 2003-06-17 Nokia Corporation Direct mode communication method between two mobile terminals in access point controlled wireless LAN systems
FI111113B (en) * 1999-11-18 2003-05-30 Nokia Corp Dissemination of measurement data in a communication system
US6567396B1 (en) * 1999-12-13 2003-05-20 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive throughput in packet data communication systems using idle time slot scheduling
US6732163B1 (en) * 2000-01-05 2004-05-04 Cisco Technology, Inc. System for selecting the operating frequency of a communication device in a wireless network
US6463303B1 (en) * 2000-01-11 2002-10-08 Metawave Communications Corporation Beam forming and switching architecture
US7028186B1 (en) * 2000-02-11 2006-04-11 Nokia, Inc. Key management methods for wireless LANs
US7173922B2 (en) * 2000-03-17 2007-02-06 Symbol Technologies, Inc. Multiple wireless local area networks occupying overlapping physical spaces
US6529164B1 (en) * 2000-03-31 2003-03-04 Ge Medical Systems Information Technologies, Inc. Object location monitoring within buildings
US6636737B1 (en) * 2000-04-10 2003-10-21 Carnegie Mellon University Method for assigning channels for access points of a wireless network
US6711148B1 (en) * 2000-04-10 2004-03-23 Carnegie Mellon University Method for configuring a wireless network
US6807146B1 (en) * 2000-04-21 2004-10-19 Atheros Communications, Inc. Protocols for scalable communication system using overland signals and multi-carrier frequency communication
US6647015B2 (en) * 2000-05-22 2003-11-11 Sarnoff Corporation Method and apparatus for providing a broadband, wireless, communications network
WO2001095557A2 (en) * 2000-06-07 2001-12-13 Conexant Systems, Inc. Method and apparatus for medium access control in powerline communication network systems
JP3673149B2 (en) * 2000-07-11 2005-07-20 クラリオン株式会社 High speed roaming method for wireless LAN
US6522307B2 (en) * 2000-07-14 2003-02-18 Lg Electronics Inc. Antenna sharing apparatus of base station in W-CDMA system
US7146636B2 (en) * 2000-07-24 2006-12-05 Bluesocket, Inc. Method and system for enabling centralized control of wireless local area networks
US6671284B1 (en) * 2000-08-04 2003-12-30 Intellon Corporation Frame control for efficient media access
US6947483B2 (en) * 2000-08-18 2005-09-20 Nortel Networks Limited Method, apparatus, and system for managing data compression in a wireless network
US6560448B1 (en) * 2000-10-02 2003-05-06 Intersil Americas Inc. DC compensation system for a wireless communication device configured in a zero intermediate frequency architecture
WO2002065707A2 (en) * 2000-12-26 2002-08-22 Bluesocket, Inc. Methods and systems for clock synchronization across wireless networks
US7046690B2 (en) 2001-01-16 2006-05-16 At&T Corp. Interference suppression methods for 802.11
US6801767B1 (en) * 2001-01-26 2004-10-05 Lgc Wireless, Inc. Method and system for distributing multiband wireless communications signals
US6675012B2 (en) 2001-03-08 2004-01-06 Nokia Mobile Phones, Ltd. Apparatus, and associated method, for reporting a measurement summary in a radio communication system
US6888805B2 (en) * 2001-03-23 2005-05-03 Qualcomm Incorporated Time multiplexed transmission scheme for a spread spectrum communication system
US6771933B1 (en) * 2001-03-26 2004-08-03 Lgc Wireless, Inc. Wireless deployment of bluetooth access points using a distributed antenna architecture
EP1454458A2 (en) * 2001-05-01 2004-09-08 Koninklijke Philips Electronics N.V. Handoff in radio communication arrangements
US20020197984A1 (en) * 2001-06-22 2002-12-26 Tadlys Ltd. Flexible wireless local networks
US20040141522A1 (en) * 2001-07-11 2004-07-22 Yossi Texerman Communications protocol for wireless lan harmonizing the ieee 802.11a and etsi hiperla/2 standards
JP3660278B2 (en) * 2001-07-13 2005-06-15 松下電器産業株式会社 Base station apparatus, mobile station apparatus, radio communication system, and radio communication method
ATE365337T1 (en) * 2001-09-05 2007-07-15 Newbury Networks Inc POSITION DETECTION AND LOCATION TRACKING IN A WIRELESS NETWORK
US20030137959A1 (en) * 2001-09-24 2003-07-24 Nebiker Robert M. Flexible-link multi-media communication
JP3600578B2 (en) * 2001-09-29 2004-12-15 株式会社東芝 Wireless communication system and wireless LAN access point
US7289529B2 (en) * 2001-10-31 2007-10-30 At&T Corp. Method and system for optimally serving stations on wireless LANs using a controlled contention/resource reservation protocol of the IEEE 802.11e standard
US20030087645A1 (en) * 2001-11-08 2003-05-08 Kim Byoung-Jo J. Frequency assignment for multi-cell IEEE 802.11 wireless networks
US7151795B1 (en) * 2001-12-31 2006-12-19 Arraycomm Llc Method and apparatus for increasing spectral efficiency using mitigated power near band-edge
US7672274B2 (en) * 2002-01-11 2010-03-02 Broadcom Corporation Mobility support via routing
US6968198B2 (en) * 2002-02-15 2005-11-22 M/A-Com, Inc. Data passing method and apparatus for wireless communication system
US6882833B2 (en) * 2002-02-22 2005-04-19 Blue7 Communications Transferring data in a wireless communication system
US20030174681A1 (en) * 2002-03-18 2003-09-18 Philippe Gilberton Method and apparatus for indicating the presence of a wireless local area network by detecting energy fluctuations
US7054627B1 (en) * 2002-04-29 2006-05-30 Advanced Micro Devices, Inc. Method and system for locating a wireless network access point at a mobile computing device
US20040054774A1 (en) * 2002-05-04 2004-03-18 Instant802 Networks Inc. Using wireless network access points for monitoring radio spectrum traffic and interference
US20030206532A1 (en) * 2002-05-06 2003-11-06 Extricom Ltd. Collaboration between wireless lan access points
US6907229B2 (en) * 2002-05-06 2005-06-14 Extricom Ltd. Enhancing wireless LAN capacity using transmission power control
US6799054B2 (en) * 2002-05-06 2004-09-28 Extricom, Ltd. Collaboration between wireless LAN access points using wired lan infrastructure
US7184407B1 (en) * 2002-05-10 2007-02-27 Cisco Systems Wireless Networking (Australia) Pty Limited Detecting, reporting and mitigating hidden nodes in a wireless data network
US20040204105A1 (en) * 2002-05-24 2004-10-14 Ying-Chang Liang Method and apparatus for a base station with multiple distributed antennas to communicate with mobile stations
US7113498B2 (en) * 2002-06-05 2006-09-26 Broadcom Corporation Virtual switch
US20030235170A1 (en) * 2002-06-21 2003-12-25 Trainin Solomon B. Method, apparatus, and system for distributed access points for wireless local area network (LAN)
US20040013135A1 (en) * 2002-07-17 2004-01-22 Yoram Haddad System and method for scheduling traffic in wireless networks
US7697549B2 (en) * 2002-08-07 2010-04-13 Extricom Ltd. Wireless LAN control over a wired network
GB2394861A (en) * 2002-10-30 2004-05-05 Hewlett Packard Co Dual-mode wireless local area network access point
US6785558B1 (en) * 2002-12-06 2004-08-31 Lgc Wireless, Inc. System and method for distributing wireless communication signals over metropolitan telecommunication networks
US20040162037A1 (en) * 2003-02-18 2004-08-19 Eran Shpak Multi-channel WLAN transceiver with antenna diversity
JP4295023B2 (en) * 2003-02-25 2009-07-15 株式会社エヌ・ティ・ティ・ドコモ System, apparatus and method for controlling network
US8452294B2 (en) * 2003-04-23 2013-05-28 Qualcomm Incorporated In-band ate indicator methods and apparatus
US7047046B2 (en) * 2003-06-19 2006-05-16 Ipr Licensing, Inc. Antenna steering for an access point based upon probe signals
US7382757B2 (en) * 2003-09-23 2008-06-03 Motorola, Inc. Method for supporting a plurality of subscribers operating on different frequency bands using a single access point
US8842657B2 (en) * 2003-10-15 2014-09-23 Qualcomm Incorporated High speed media access control with legacy system interoperability
US8027326B2 (en) * 2004-01-12 2011-09-27 Xocyst Transfer Ag L.L.C. Method and system for high data rate multi-channel WLAN architecture
US7885293B2 (en) * 2005-03-08 2011-02-08 Qualcomm Incorporated Methods and apparatus for implementing and using a maximum rate option indicator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6505045B1 (en) * 2000-04-10 2003-01-07 Carnegie Mellon University Method for configuring and assigning channels for a wireless network
US20030117973A1 (en) * 2001-12-21 2003-06-26 Thermond Jeffrey L. Wireless access point management in a campus environment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349399A (en) * 2013-07-24 2015-02-11 中国移动通信集团公司 WLAN system and method for realizing uplink and downlink coverage matching in WLAN system
CN104349399B (en) * 2013-07-24 2018-02-23 中国移动通信集团公司 A kind of method and wlan system that up-downgoing covering matching is realized in wlan system

Also Published As

Publication number Publication date
US20070037595A1 (en) 2007-02-15
WO2007017873A3 (en) 2007-09-13
US7813738B2 (en) 2010-10-12

Similar Documents

Publication Publication Date Title
US7813738B2 (en) WLAN operating on multiple adjacent bands
US20040162037A1 (en) Multi-channel WLAN transceiver with antenna diversity
AU2006232217B2 (en) Method and apparatus for selecting a multi-band access point to associate with a multi-band mobile station
US8451816B2 (en) Multi-mode WLAN/PAN MAC
US9131504B2 (en) Method to enable Wi-Fi direct usage in radar bands
US20180176844A1 (en) Seamless mobility in wireless networks
US8787309B1 (en) Seamless mobility in wireless networks
EP2286524B1 (en) Techniques for spatial reuse in wireless personal area networks based on virtual time divisional multiple access
JP4619077B2 (en) Frequency band allocation device
CN105898853B (en) Wireless communication system and method for controlling wireless communication of multiple wireless communication stations
TWI330045B (en) Wireless device and method for radio control
Park et al. Millimeter-wave multi-Gigabit WLAN: Challenges and feasibility
KR20160101440A (en) Apparatus and Method for LTE-U Coexistence with WiFi in Unlicensed Bands
EP2996435B1 (en) User device and radio base station
CN106411381B (en) Data transmission method and device
JP2002521988A (en) Apparatus, method and system for improving communication network capacity
EP2995162B1 (en) Method and device for determining wlan channel
KR100555923B1 (en) Wireless LAN System and method of using the same
CN107006014A (en) With with user plane decouple and control plane multi-band cellular network
EP2790452B1 (en) Techniques enabling dynamic bandwidth reservation in a wireless personal area network
EP1597840A2 (en) Multiplex communication between access points and hub
US11902912B2 (en) Adaptive equivalent isotropically radiated power (EIRP) for multi-link devices in a single regulatory sub-band
US8355747B1 (en) Enhanced coverage and throughput using multiple wireless technologies
WO2018097859A1 (en) Method and apparatus for wireless communication with improved performance
KR20100030603A (en) Relay station for cell information exchange between adjacent bss over air links in cellular systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC OF 020708

122 Ep: pct application non-entry in european phase

Ref document number: 06780382

Country of ref document: EP

Kind code of ref document: A2