WO2007021449A2 - Implants for use in brachytherapy and other radiation therapy that resist migration and rotation - Google Patents

Implants for use in brachytherapy and other radiation therapy that resist migration and rotation Download PDF

Info

Publication number
WO2007021449A2
WO2007021449A2 PCT/US2006/028398 US2006028398W WO2007021449A2 WO 2007021449 A2 WO2007021449 A2 WO 2007021449A2 US 2006028398 W US2006028398 W US 2006028398W WO 2007021449 A2 WO2007021449 A2 WO 2007021449A2
Authority
WO
WIPO (PCT)
Prior art keywords
protrusions
radioactive
sleeve
strand
therapeutic member
Prior art date
Application number
PCT/US2006/028398
Other languages
French (fr)
Other versions
WO2007021449A3 (en
Inventor
Gary A. Lamoureux
James Matons
Warren Johnston
Matthew Bouffard
Warren Rice
Original Assignee
Worldwide Medical Technologies Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Worldwide Medical Technologies Llc filed Critical Worldwide Medical Technologies Llc
Publication of WO2007021449A2 publication Critical patent/WO2007021449A2/en
Publication of WO2007021449A3 publication Critical patent/WO2007021449A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1027Interstitial radiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N2005/1019Sources therefor
    • A61N2005/1023Means for creating a row of seeds, e.g. spacers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N2005/1019Sources therefor
    • A61N2005/1024Seeds

Definitions

  • Patent Application No. by Gary A. Lamoureux et al., filed July 20, 2006, and entitled DEVICES TO RESIST MIGRATION AND ROTATION OF IMPLANTS USED IN BRACHYTHERAPY AND OTHER RADIATION THERAPY (Attorney Docket No. WORLD-01017US1), each of which is incorporated herein by reference.
  • This invention relates to radiotherapy. More particularly, it relates to implants for use in brachytherapy, and in particular to therapeutic members, spacers and strands that are used to resist migration and rotation of radioactive sources. The invention also relates to implantable radiopaque markers that resist migration and rotation.
  • Brachytherapy is a general term covering medical treatment which involves placement of radioactive sources near a diseased tissue and may involve the temporary or permanent implantation or insertion of radioactive sources into the body of a patient.
  • the radioactive sources are thereby located in proximity to the area of the body which is being treated. This has the advantage that a high dose of radiation may be delivered to the treatment site with relatively low doses of radiation to surrounding or intervening healthy tissue.
  • Exemplary radioactive sources include radioactive seeds, radioactive rods and radioactive coils.
  • Brachytherapy has been used or proposed for use in the treatment of a variety of conditions, including arthritis and cancer.
  • Exemplary cancers that may be treated using brachytherapy include breast, brain, liver and ovarian cancer and especially prostate cancer in men.
  • treatment for prostate cancer may involve the temporary implantation of radioactive sources (e.g., rods) for a calculated period, followed by their subsequent removal.
  • the radioactive sources e.g., seeds
  • the radioactive sources may be permanently implanted in the patient and left to decay to an inert state over a predictable time.
  • the use of temporary or permanent implantation depends on the isotope selected and the duration and intensity of treatment required.
  • Permanent implants for prostate treatment include radioisotopes with relatively short half lives and lower energies relative to temporary seeds.
  • Exemplary permanently implantable sources include iodine- 125, palladium- 103 or cesium-131 as the radioisotope.
  • the radioisotope can be encapsulated in a biocompatible casing (e.g., a titanium casing) to form a "seed" which is then implanted.
  • Temporary implants for the treatment of prostate cancer may involve iridium-192 as the radioisotope. For temporary implants, radioactive rods are often used.
  • Radioactive seeds are typically smooth sealed containers or capsules of a biocompatible material, e.g., titanium or stainless steel, containing a radioisotope within the sealed chamber that permits radiation to exit through the container/chamber walls.
  • a biocompatible material e.g., titanium or stainless steel
  • Other types of implantable radioactive sources for use in radiotherapy are radioactive rods and radioactive coils, as mentioned above.
  • the implantation of radioactive sources for brachytherapy is carried out using minimally-invasive techniques such as, e.g., techniques involving needles and/or catheters. It is possible to calculate a desired location for each radioactive source which will give the desired radiation dose profile. This can be done using knowledge of the radioisotope content of each source, the dimensions of the source, accurate knowledge of the dimensions of the tissue or tissues in relation to which the source is to be placed, plus knowledge of the position of the tissue relative to a reference point.
  • the dimensions of tissues and organs within the body for use in such dosage calculations may be obtained prior to or during placement of the radioactive sources by using conventional diagnostic imaging techniques including X-ray imaging, magnetic resonance imaging (MRT), computed tomography (CT) imaging, fluoroscopy and ultrasound imaging.
  • MRT magnetic resonance imaging
  • CT computed tomography
  • ultrasound imaging e.g., ultrasound imaging or fluoroscopy techniques which offer the advantage of low risk and convenience to both patient and surgeon.
  • the surgeon can also monitor the position of the relatively large needle used in implantation procedures using ultrasound or other imaging.
  • radioactive sources e.g., seeds, rods or coils
  • the radioactive sources may on some occasions migrate within a patient's body away from the initial site of implantation. This is undesirable from a clinical perspective, as migration may lead to underdosing of a tumor or other diseased tissue and/or exposure of healthy tissue to radiation. Additionally, there have been reported incidents where a migrated seed implant has caused a pulmonary embolism. Accordingly, there is a need to reduce the tendency for radioactive sources to migrate within a patient's body.
  • Radioactive sources may also on some occasions rotate or twist from the original orientation at which the seed was implanted. This is also undesirable from a clinical perspective, because the radiation pattern of the sources may be directional, thereby causing underdosing or overdosing of a tumor or other diseased tissue and/or exposure of healthy tissue to radiation. Accordingly, there is also a need to reduce the tendency for radioactive sources to rotate within a patient's body.
  • U.S. Patent No. 6,632,176 discloses a radioactive seed having a biocompatible container with at least one part of a surface of the container being roughened, shaped or otherwise treated so that it is no longer smooth.
  • the roughening, shaping or other treatment is achieved by: forcing the seed container through a ridged or serrated dye or a threading device to impart grooves on the outer surface of the container; milling the seed container; using a wire brush, file, or sandpaper to roughen the outer surface of the container; etching using a laser or water- jet cutter, or by electrolytic etching; blasting (e.g., sand blasting); or electroplating.
  • Disadvantages of the radioactive seeds disclosed in the '176 patent is that they are not off the shelf seeds, but rather, are custom seeds whose manufacturing cost is likely higher than that of a typical radioactive seed.
  • the integrity of the container may indeed be affected by the roughing, shaping and other treatments suggested in the '176 patent.
  • the radioactive seeds having such roughened, shaped or otherwise treated containers may be subject to government certification or re-certification. Further, the modified containers may affect the directional radiation pattern of the seed, potentially resulting in adverse clinical results. Accordingly, it is preferred that the means of reducing the tendency for radioactive seeds to migrate and/or rotate within a patient's body overcome the above mentioned disadvantages.
  • radiopaque markers are often implanted into the patient at or near the target, so that the radiation can be accurately focused. Once implanted, such markers are intended to remain at the site of implantation. However, the markers may on some occasions migrate and/or rotate within a patient's body away from the initial site of implantation. This is undesirable because it is the locations of the markers that are used to determine where to focus the radiation treatments. Accordingly, there is a need to reduce the tendency for such markers to migrate and/or rotate within a patient's body.
  • Embodiments of the present invention are directed to therapeutic members and strands for use in brachytherapy.
  • Such members and strands are designed to reduce the tendency for the members and strands (and thus the radioactive sources therein) to migrate and/or rotate within a patient's body.
  • a member includes a radioactive source and a material that encapsulates the radioactive source.
  • Such encapsulating material which is preferably, but not necessarily, bioabsorbable, is likely polymeric or some other plastic material.
  • An outer surface of the encapsulating material includes at least one protrusion, and preferably a plurality of protrusions, to reduce the tendency of the member to migrate and rotate within a patient's body after implantation.
  • one or more of the protrusions extend in a radial direction (e.g., perpendicular or at an acute angle) with respect to a longitudinal axis of the radioactive source.
  • One or more protrusions may also extend in a longitudinal direction with respect to the radioactive source.
  • Such protrusions can have various shapes, such as, but not limited to, square, rectangular, circular, oval, triangular, pyramidal and semi-spherical, or combinations thereof.
  • the one or more protrusions include one or more ribs that form one or more rings or a helix about a radial circumference of the radioactive source.
  • the plurality of protrusions forms an irregular pattern on the outer surface of the encapsulating polymeric material.
  • the plurality of protrusions can form a surface that resembles a rough stucco surface.
  • the encapsulating material is used to form an anchor mechanism that extends from at least one of the longitudinal ends of the radioactive seed to reduce a tendency of the member to migrate and rotate within a patient's body after implantation.
  • a void is formed between the anchor mechanism and the portion of the material that encapsulates the radioactive source, to allow patient tissue to enter the void after implantation.
  • embodiments of the present invention are also directed to spacers, which are used to separate radioactive sources from one another, wherein the spacers include protrusions and/or anchor mechanisms, similar to those described above.
  • Embodiments of the present invention are also directed to strands that include protrusions and/or anchor mechanisms, similar to those described above.
  • Such strands include a plurality of radioactive sources that are spaced apart from one another at desired intervals.
  • Embodiments of the present invention are also directed to spacers and strands that include portions that are biased to open after implantation, to thereby engage surrounding tissue.
  • Embodiments of the present invention are also directed to radiopaque markers that include protrusions and/or anchor mechanisms, similar to those described above, to reduce the tendency of the markers to migrate and rotate within a patient's body after implantation.
  • Embodiments of the present invention are also directed to an anchor mechanism that includes a sleeve to fit around a structure, such as a radioactive source, a thermal ablation implant, a spacer, a strand or a radiopaque marker.
  • a structure such as a radioactive source, a thermal ablation implant, a spacer, a strand or a radiopaque marker.
  • One or more wing is connected to the sleeve by a corresponding living hinge that enables the wing to be folded against the structure during implantation of the structure in a patient.
  • the living hinge biases the wing such that one end of the wing moves away from the structure to engage surrounding patient tissue after implantation of the structure into a patient. This engagement of the wing with the tissue reduces a tendency for the structure to migrate and rotate after implantation.
  • Embodiments of the present invention are also directed to an anchor mechanism that includes a sleeve to fit around a structure, such as a radioactive source, a thermal ablation implant, a spacer, a strand or a radiopaque marker.
  • the sleeve has a bore that extends an entire longitudinal length of the sleeve, and through which the structure fits, such that a portion of the structure can extend out from each longitudinal end of the sleeve.
  • One or more protrusion extends from an outer surface of the sleeve to engage surrounding patient tissue after implantation of the structure into a patient, to thereby reduce a tendency for the structure to migrate and rotate after implantation.
  • FIG. IA is a side view of a therapeutic member according to an embodiment of the present invention.
  • FIG. IB is a perspective view of the therapeutic member shown in FIG. IA.
  • FIGS. 2-5 are side views of therapeutic members according to various embodiments of the present invention.
  • FIG. 6A is a side view of a therapeutic member according to a further embodiment of the present invention.
  • FIG. 6B is a perspective view of the therapeutic member shown in FIG. 6A.
  • FIG. 7A is a side view of a therapeutic member according to another embodiment of the present invention.
  • FIG. 7B is a perspective view of the therapeutic member shown in FIG. 7 A.
  • FIG. 8A is a side view of a member with tabs
  • FIG. 8B is a perspective view of the member shown in FIG. 8A
  • FIG. 8C is a side view of the therapeutic member of
  • FIGS. 8 A and 8B after the tabs have been shaped into anchor mechanisms;
  • FIG. 8D is a perspective view of the member shown in FIG. 8C;
  • FIG. 8E is an end view of the therapeutic member shown in FIGS. 8C and 8D.
  • FIG. 9 is a side view of an exemplary applicator that can be used to implant therapeutic members of the present invention into a patient's body.
  • FIG. 1OA is a perspective view of a spacer according to an embodiment of the present invention, in an open position;
  • FIG. 1OB is a perspective view of the spacer in
  • FIG. 1OA in a closed position
  • FIG. 1OC is a perspective view of the spacer of FIGS.
  • FIG. 11 is a side view of a strand according to an embodiment of the present invention.
  • FIG. 12 is a side view of a strand according to another embodiment of the present invention.
  • FIG. 13 is a perspective view of a strand that includes portions which are biased to open after implantation, and thereby engage tissue surrounding the strand, to prevent migration and rotation of the strand.
  • FIG. 14A is a side view illustrating an anchor mechanism according to an embodiment of the present invention, it its closed position;
  • FIG. 14B is a perspective view of the anchor mechanism of FIG. 14A, in its closed position;
  • FIG. 14C is a side view of the anchor mechanism of FIGS. 14A and 14B, in its open position;
  • FIG. 14D is a perspective view of the anchor mechanism of FIGS. 14A-C, in its open position.
  • FIG. 15A is a side view illustrating an anchor mechanism according to another embodiment of the present invention.
  • FIG. 15B is a perspective view of the anchor mechanism of FIG. 15 A.
  • FIG. 15C is a side view illustrating an anchor mechanism according to a further embodiment of the present invention.
  • FIG. 15D is a perspective view of the anchor mechanism of FIG. 15C.
  • each member 100 includes a radioactive source 102 (shown in dashed line) and a material 104 that encapsulates the radioactive source 102.
  • the radioactive source 102 can be a radioactive seed, a radioactive rod, or a radioactive coil, but is not limited thereto.
  • the material 104 is preferably, but not necessarily, bioabsorbable. In accordance with an embodiment, the material 104 is also bioadherent. Additionally, the material 104 is preferably a polymeric material or some other plastic. Also shown in FIG.
  • an outer surface of the encapsulating material 104 includes protrusions 106 to reduce a tendency of the member 100 to migrate and rotate within a patient's body after implantation.
  • a longitudinal axis of the radioactive source 102 is also the longitudinal axis of the therapeutic member 100.
  • the overall shape of the therapeutic member 100, excluding the protrusions 106, can be cylindrical with flat ends 120 and 122, cylindrical with rounded (e.g., bullet shaped) ends 120 and 122 or rectangular, but is not limited thereto.
  • the protrusions that are used to reduce a tendency of the member to migrate and rotate can be of any number of different shapes and sizes, or combinations thereof.
  • the protrusions 106 are shown as being square or rectangular knobs that cause the outer surface of the therapeutic member 100 to resemble a knobby tire.
  • the protrusions 106 can form a plurality of rows (e.g., four rows) which are regularly spaced about the member 100, e.g., with each row extending in a direction that is 90 degrees from the adjacent rows.
  • the protrusions can protrude in a more random or irregular fashion.
  • Exemplary dimensions for one of the protrusions 106 in FIG. IB is shown as being 0.010 x 0.008 x 0.003 inches.
  • protrusions 106 can have similar dimensions, or the dimensions of the protrusions may vary. For example, it is possible that the protrusions within a row have similar dimensions, but the dimensions differ for different rows. For a more specific example, another row of protrusions 106 have dimensions of 0.006 x 0.005 x 0.002 inches. These are just a few examples. One of ordinary skill in the art will appreciate from this description that the protrusions can have other dimensions while being within the scope of the present invention. [0043] Preferably, the protrusions extend at least 0.002 inches so that they can sufficiently grip into patient tissue (analogous to a knobby tire gripping soft dirt). The protrusions 106 can extend radially from the therapeutic member 100.
  • the protrusions 106 extend in directions that are generally perpendicular to the longitudinal axis 103 of the therapeutic member 100 and the source (e.g., seed) 102 therein.
  • the protrusions 106 may alternatively or additionally extend at other angles with respect to the longitudinal axis 103.
  • protrusions may extend at 45 degrees with respect to the longitudinal axis 103.
  • each half of the member 100 can have protrusions 106 at a 45 degree angle facing towards the middle of the member 100, or towards the ends of the member 100.
  • Various other angles, and combinations of angles, are also possible.
  • the protrusions are shown as extending from the length of the therapeutic member. However, the protrusions may also extend from the longitudinal ends of the therapeutic member.
  • the protrusions 206 of a therapeutic member 200 are cylindrical.
  • a therapeutic member 300 includes protrusions 306 that resemble bumps or semi-spheres.
  • the protrusions 406 of a therapeutic member 400 are triangular, and in the embodiment of FIG. 5 the protrusions 506 of a therapeutic member 500 are pyramidal.
  • the various protrusions are shown as having a common orientation, it is also within the scope of the present invention that the protrusions have different orientations.
  • different triangular protrusions 506 can have different orientations.
  • the protrusions are ribs 608 that encircle the underlying sourcel02.
  • Four ribs 608 are shown in FIGS. 6A and 6B.
  • the ribs can be helical (i.e., spiral).
  • the ribs can form counter balancing screw threads (i.e., opposing helixes).
  • the threads on one half of the member can be right hand threads, while the threads on the other half of the member can be left hand threads.
  • the plurality of protrusions can form an irregular pattern on the outer surface of the encapsulating polymeric material 104.
  • the protrusions can form what resembles a rough stucco like surface, e.g., as shown in FIGS. 7A and 7B.
  • the radioactive sources 102 are radioactive seeds
  • the seeds 102 can be of various types having low energy and low half-life such as Iodine seeds, known as 1-125 seeds, including a welded titanium capsule containing iodine 125 adsorbed on a silver rod, or Palladium 103 seeds. Seeds may also have there isotope adsorbed on ceramic beads, resin beads, silver beads, graphite pellets, porous ceramic rods, copper cores, etc. Seed can have various different shapes, such as, but not limited to, cylindrical with flat ends, cylindrical with rounded (e.g., bullet shaped) and spherical. Exemplary dimensions of a seed 102 are 0.18 inches in length and 0.0315 inches in diameter. Exemplary seeds are listed below in Table 1, but embodiments of the present invention should not be limited to the seeds listed therein.
  • seeds 102 can be manufactured using indium 192, cesium 131, gold 198, yttrium 90 and/or phosphorus 32. Further radioactive isotopes used to manufacture seeds are not limited to these examples, but can include other sources of different types of radiation.
  • seeds such as those described in U.S. Patent No. 6,248,057, which is incorporated herein by reference, can be used with the present invention.
  • These seeds include radiation delivery devices, drug delivery devices, and combinations of radiation and drug delivery devices in the form of beads, seeds, particles, rods, gels, and the like.
  • the bioabsorbable structure can have a predefined persistence which is the same as or substantially longer than a half life of the radioactive member contained in the bioabsorbable structure.
  • the radioactive sources 102 need not be seeds.
  • the radioactive sources 102 can be rods, e.g., metallic rods coated with a radioactive isotope such as palladium 103, etc.
  • the radioactive sources 102 may also be radioactive coils, such as those described in U.S. Patent No. 6,419,621, which is incorporated herein by reference, and those available from RadioMed Corporation of Tyngsboro, MA, under the trademarks GENETRA and RADIO COIL.
  • an implant that utilizes thermal ablation to treat cancer can be used.
  • One such implant which is marketed under the trademark ThremoRod, and is available from Ablation Technologies of San Diego, CA, is a permanently implantable cobalt-palladium alloy rod that produces heat (e.g., 70 degrees C) through oscillation of a magnetic field.
  • the material 104 is used to encapsulate the thermal ablation implant and to form protrusions, as described above, to resist migration and rotation of the implant.
  • the radioactive sources can include a radiopaque marker, which is typically made of a dense, high atomic number material, such as gold or tungsten, which can block the transmission of X-rays so that the radioactive source can be detected by using X-ray imaging techniques. This can be accomplished, e.g., by including a ball, rod or wire constructed of a dense, high atomic number material, such as gold or tungsten, within the container of a radioactive source (e.g., seed). Alternatively, the radioactive seed (or other source) can be at least partially coated with a radiopaque material.
  • the therapeutic members of the present invention can be manufactured in various manners.
  • a molding process such as compression molding or injection molding can be used.
  • a radioactive source is placed into an embossing mold that includes the inverse (i.e., negative) of the pattern of projections that is to be embossed on the outer surface of the polymeric material.
  • a bioabsorbable polymer or some other plastic material is introduced into the mold at a temperature that is above the melt point of the material such that the material flows around the seed within the mold cavity.
  • the material is then allowed to set within the mold, e.g., by cooling the mold. After the material has set, the mold is opened, and the finished therapeutic member with a plurality of polymeric projections is removed.
  • an encapsulating material is molded around the seed, and then the protrusions are produced in a secondary process, e.g., by machining, crimping or otherwise altering the shape of the encapsulating material to form protrusions.
  • the protrusions are formed in the encapsulating material prior to the seed being placed into the material.
  • the protrusions can be doughnut shaped pieces that are slid over the radioactive source implant. These are just a few examples. Other techniques for producing the protrusions are also within the scope of the present invention.
  • a mold can include purposeful protrusions, or can simply be a rough surface that was formed when casting or otherwise manufacturing the mold.
  • the metal of the mold would be machined such that a member produced using the mold would have a generally smooth surface.
  • the mold is left rough, so that the member 700 formed using the mold would have random protrusions.
  • a radioactive source 102 is encapsulated within a polymeric material, and then protrusions are attached to the outer surface of the encapsulating material in a secondary process.
  • particles or strands can be attached to the outer surface to thereby form the protrusions.
  • the outer surface of the encapsulating material can be made tacky by heating the material, coating the material with a biocompatible adhesive, or otherwise wetting the material.
  • the particles or strands can then be attached to the outer surface of the material, e.g., by sprinkling the particles or strands onto the outer surface, or rolling the encapsulated source in the particle or strands.
  • Such particles or strands should be biocompatible, and can also bioabsorbable.
  • the particle or strands can be made of the same material as the material 104 that encapsulates the radioactive source 102, but this is not necessary.
  • the container of the radioactive source be coated with a biocompatible adhesive, and that the particles or strands are directly attached to the container of the radioactive source, to thereby form the protrusions that resist migration and rotation.
  • the material 104 can be molded or otherwise formed around a source 102 such that a tab 808 extends longitudinally (i.e., axially) from each longitudinal end of the encapsulated radioactive source 102, as shown in FIGS. 8 A and 8B. Li a secondary process, each tab 808 is heated and formed into an anchor mechanism 810, shown in FIGS. 8C and 8D.
  • the main body of the member 800 (within which the seed 102 is located) can be held in place while each tab 808 is melted into a desired shape by pushing against the tab 808 with a heated surface or mold that is moved toward the main body of the member.
  • the heated surface or mold that is used to melt the tab 808 can simply be a flat surface, which will cause the anchor mechanism 810 to have an amorphous shape.
  • the mold that is used to melt the tab 808 can be shaped to cause the anchor mechanism 810 to have a specific shape, such as a square, as shown in FIGS 8C and 8D.
  • FIG. 8E which is an end view of the member 800 shown in FIGS. 8C and 8D, includes exemplary dimensions in inches. [0056] In FIGS.
  • the anchor mechanism 810 is square shaped, hi alternative embodiments the anchor mechanisms can have other shapes.
  • the anchor mechanism 810 can be amorphous, rectangular, triangular, trapezoidal, etc.
  • an outer surface 812 of the anchor mechanism 810 is generally perpendicular to the longitudinal axis 103 of the radioactive source 102, as shown in FIGS. 8C and 8D.
  • a void or groove 814 is formed between the main portion of the member and the anchor mechanism 810, thereby allowing patient tissue to occupy this void 814 to reduce the tendency for the member 800, and the radioactive source 102 therein, to migrate or rotate.
  • the anchor mechanism 810 be located at each longitudinal end of the therapeutic member 800, as shown in FIGS. 8C and 8D.
  • the anchor mechanism 810 can be located at only one of the longitudinal ends of the member, hi FIGS. 8A-8E the outer surface of the main body of the therapeutic member 800 is shown as being generally cylindrical and smooth. However, this need not be the case.
  • the embodiments of FIGS. 1-7 discussed above can be combined with the embodiments of FIGS. 8A-8E. For example, a same mold that is used to form the protrusions of FIGS.
  • the radioactive sources 102 can be coated with or contain a drug and/or hormone. Alternatively, a drug and/or hormone can be included in the encapsulating material 104 that is used for form the protrusions or anchor mechanisms of the present invention.
  • Example types of materials 104 that are bioabsorbable include, but are not limited to, synthetic polymers and copolymers of glycolide and lactide, polydioxanone and the like. Such polymeric materials are more fully described in U.S. Pat. Nos. 3,565,869, 3,636,956, 4,052,988 and European Patent Publication No. 0030822, all of which are incorporated herein by reference.
  • bioabsorbable polymeric materials that can be used to produce the therapeutic members of embodiments of the present invention are polymers made by Ethicon, Inc., of Somerville, NJ., under the trademarks "MONOCRYL” (polyglycoprone 25), “MAXON” (Glycolide and Trimethylene Carbonate), “VICRYL” (polyglactin 910) and “PDS II” (polydioxanone).
  • MONOCRYL polyglycoprone 25
  • MAXON Glycolide and Trimethylene Carbonate
  • VICRYL polyglactin 910
  • PDS II polydioxanone
  • bioabsorbable materials include poly(glycolic acid) (PGA) and poly(-L-lactic acid) (PLLA), polyester amides of glycolic or lactic acids such as polymers and copolymers of glycolate and lactate, polydioxanone and the like, or combinations thereof.
  • PGA poly(glycolic acid)
  • PLLA poly(-L-lactic acid)
  • polyester amides of glycolic or lactic acids such as polymers and copolymers of glycolate and lactate, polydioxanone and the like, or combinations thereof.
  • Such materials are more fully described in U.S. Pat. No. 5,460,592 which is hereby incorporated by reference.
  • Further exemplary bioabsorbable polymers and polymer compositions that can be used in this invention are described in the following patents which are hereby incorporated by reference: U.S. Pat. No.
  • bioabsorbable polymers and polymer compositions can include bioabsorbable fillers, such as those described in U.S. Pat. No. 4,473,670 (which is incorporated by reference) which discloses a composition of a bioabsorbable polymer and a filler comprising a poly(succinimide); and U.S. Pat. No. 5,521,280 (which is incorporated by reference) which discloses bioabsorbable polymers and a filler of finely divided sodium chloride or potassium chloride.
  • bioabsorbable fillers such as those described in U.S. Pat. No. 4,473,670 (which is incorporated by reference) which discloses a composition of a bioabsorbable polymer and a filler comprising a poly(succinimide); and U.S. Pat. No. 5,521,280 (which is incorporated by reference) which discloses bioabsorbable polymers and a filler of finely divided sodium chloride or potassium chloride.
  • the final hardness of a polymer of the therapeutic members of the present invention should preferably be in a range from 20 to 80 durometer and more preferably in the range of 20-40 durometer. However, members with other hardnesses are also within the scope of the present invention.
  • the material 104 is bioabsorbable
  • the bioabsorbable material should preferably be absorbed in living tissue in a period of time of from about 70 to about 120 days, but can be manufactured to be absorbed anywhere in a range from 1 week to 1 year or more, depending on the therapeutic plan for a specific patient.
  • the material 104 should also be biocompatible, whether or not it is bioabsorbable.
  • the material 104 may also be bio-adhesive.
  • the minimum thickness of the material 104 that encapsulates the source 102 should be about 0.002 inches. Such minimum thickness would occur at locations where there is not a protrusion.
  • the preferred thickness of the material 104 where there is not a protrusion is about 0.004 inches.
  • the protrusions preferably extend at least 0.002 inches so that they can sufficiently grip into patient tissue. Such extension of the protrusions is that which is beyond the underlying thickness of the material 104.
  • the protrusions are preferably separated from one another a sufficient distance such that the voids formed between the protrusions allow patient tissue to occupy these voids to reduce the tendency for the therapeutic member, and the radioactive source 102 therein, to migrate or rotate.
  • these voids or spaces between protrusions are at least 0.010 inches, so that patient tissue can fit into these spaces.
  • the overall dimensions of the therapeutic members of the present invention are limited by the inner diameter of the needle that is to be used to implant the members. For example, the larger the inner diameter of the needle, the more the protrusions can extend.
  • polymer as used herein, is also meant to include copolymers.
  • Table 2 below provides examples of bioabsorbable polymers suitable for use in producing embodiments of the present invention, along with specific characteristics (e.g., melting points) of the various polymers. A further discussion of such bioabsorbable polymers can be found in an article by John C. Middleton and Arthur J. Tipton entitled “Synthetic Biodegradable Polymers as Medical Devices,” published March 1998 in Medical Plastics and Bio-materials, which article is incorporated herein by reference.
  • FIG. 9 illustrates an exemplary applicator 900, often referred to as a MICKTM applicator, that can be used to implant the therapeutic members of the present invention at variable spaced locations within a patient's body.
  • a MICKTM applicator is available from Mick Radio-Nuclear Instruments, Inc., of Mount Vernon, NY.
  • the applicator 900 includes a hollow needle 912 insertable into the patient's body, a needle chuck 913 for releasably holding the needle 912, a. magazine 914 for holding and dispensing therapeutic members of the present invention (containing seeds or other radioactive sources) into the needle chuck 913, a main barrel 916 connected to the needle chuck 913. Also shown in FIG.
  • the applicator 900 also includes a base frame member along which the needle 912, the needle chuck 913, the magazine 914 and the main barrel 916 are slidably mounted.
  • the frame member includes an abutment end 922 adapted to abut a surface of the patient's body or a template (not shown) fixed with respect to the body, a barrel collar 924 through which the main barrel 916 is slidable, and two rods 926 (only one can be seen in the side view of FIG. 9) extending between and fixedly attached to the abutment end 922 and the collar 924.
  • the collar 924 is equipped with a finger ring 928 for receiving a finger of a user.
  • the applicator 900 is designed to allow the needle 912 to be moved in different increments with respect to the base frame.
  • the main barrel 916 includes rows of detents or indentations 952 that extend along the length of the barrel 916, with each row having different indentation spacing (only one row is shown in FIG. 9)
  • the applicator 900 can have a first row of indentations spaced at 3.75 mm, a second row of indentations spaced at 4.0 mm, a third row of indentations spaced at 5.0 mm, a fourth row of indentations spaced at 5.5 mm, and a fifth row of indentations at 6.0 mm. These spacings can be changed as desired by using an applicator having a main barrel with other indentation spacings.
  • the barrel collar 924 includes a fixed portion 955 and a spacing dial 956 rotatably mounted on the fixed portion 955. An operator can turn the dial 956 relative to the fixed portion 955 to select one of the rows or series of indentations.
  • the magazine 914 includes a magazine head 933 and a cartridge 934 in which therapeutic members of the present invention can be stacked parallel to each other.
  • a spring-loaded magazine plunger 938 is biased against the therapeutic members (each of which includes a radioactive source 102) at the upper end of the magazine 914 to facilitate movement of the therapeutic members into the needle chuck 913 and to provide an indication to the operator that a therapeutic member has been dispensed from the cartridge 934.
  • the cartridge 934 can be preloaded with a plurality of therapeutic members of the present invention (e.g., up to 20 members, each with a radioactive source 102) and then screwed into the magazine head 933.
  • the cartridge 934 can be keyed to the needle chuck 913 to prevent its incorrect insertion into the needle chuck 913.
  • the needle 912 is inserted into a patient in an area where a single radioactive source or row of radioactive sources is to be implanted. Then, the needle chuck 913 of the body of the applicator 900 is coupled with the protruding end of the needle 912 to prepare the applicator 900 for use.
  • An initial radioactive source spacing can be set by adjusting the spacing dial 956 to select a particular row of indentations 952 on the main barrel 916 corresponding to the desired spacing.
  • the stylet 917 which is initially fully extended in the needle 912, is then retracted from the needle 912 and the needle chuck 913, enabling a therapeutic member (including a radioactive source) from the magazine 914 to be positioned in the chuck 913 for movement into the needle 912.
  • the therapeutic member is moved into the chuck and the extended magazine plunger 938 will move further into the magazine 914, which will indicate to the operator that a member has been positioned for transfer into the needle 912.
  • the stylet 917 is then pushed through the barrel 916 against the therapeutic member, forcing the member through the needle 912 and into the patient's body.
  • the needle 912 is withdrawn from the patient's body by a particular distance so that the next radioactive source to be implanted is spaced apart from the first radioactive source.
  • the stylet 917 is again retracted to enable the next therapeutic member (with a radioactive source) from the magazine 914 to be positioned for movement into the needle 912.
  • the stylet 917 is then advanced through the needle 912 to force the therapeutic member into the patient's body at a desired distance away from the first member. This procedure is repeated for subsequent therapeutic member implants.
  • the stylet 917 is preferably a vented stylet that includes a vent that extends the length of the stylet, as described in U.S. Patent No. 6,554,760, which is incorporated herein by reference.
  • Embodiments of the present invention are directed to therapeutic members that include protrusions and/or anchor mechanisms that reduce the tendency for the therapeutic member and the radioactive source therein to migrate and rotate within a patient's body after implantation.
  • Embodiments of the present invention are also directed to cartridges, similar to 934, that are pre-loaded with such therapeutic members.
  • inventions of the present invention relate to therapeutic members that include a single radioactive source (a single seed, rod or coil). It is also possible that embodiments of the present invention can be used together with elongated members known as strands that include multiple radioactive sources that are spaced from one another, e.g., as described in U.S. Patent Application No. 10/035,083, which was filed on December 28, 2001, and which is incorporated herein by reference. More specifically, one or more therapeutic member as described in FIGS. 1-7, which each include a single radioactive source 102, can be used together with one or more strand that includes multiple radioactive sources.
  • a single needle can be loaded with a therapeutic member having a single radioactive source as well as with a strand having multiple radioactive sources, thereby allowing for implantation of both during the same procedure that include insertion and removal of the needle.
  • This would be useful e.g., where a first radioactive source in a row of radioactive sources is to be located near a patient's bladder or urethra. If a strand of radioactive sources were being implanted, and the end of the strand were inserted too far and into the patient causing it to enter the bladder or urethra, then the entire strand would have to be removed from the patient.
  • seeds are sometimes implanted into a patient by preloading a hollow needle with seeds and spacers that are used to maintain a desired distance between a row of seeds, e.g., as described in U.S. Patent No. 6,554,760, which is incorporated herein by reference.
  • the seeds and spacers are deployed from the hollow needle using a stylet, which preferably includes a radial vent that extends the length of the stylet, to reduce the mislocation of the radioactive sources in the needle track due to vacuum phenomena occurring as the needle and stylet are withdrawn, hi such implants, the first and last seeds are the most likely seeds to migrate and/or rotate, however the other seeds, as well as the spacers, may also migrate and/or rotate within the needle track.
  • therapeutic members of the present invention can be used.
  • a seed can be encapsulated by a material that includes protrusions that will resist the migration and rotation of the seed therein
  • protrusions can be added to the spacers that are used to maintain the desired distances between the radioactive sources.
  • spacers with protrusions can be made in manners similar to those explained above.
  • protrusions can be added to preexisting spacers (e.g., cylindrical spacers) by encapsulating the spacer with a material within which protrusions are formed.
  • spacers can be manufactured to include protrusions.
  • spacers can be formed, e.g., using an embossing mold, or by machining, crimping or otherwise forming protrusions in an outer surface of the spacers.
  • the spacers with protrusions can be used together with therapeutic members having protrusions, or with radioactive sources that do not have protrusions. When used with radioactive sources not having protrusions, the spacers with protrusions would preferably be located at both longitudinal ends of the radioactive sources, to thereby trap the radioactive sources in place.
  • spacers For example, if five radioactive seeds were to be implanted in a single needle track, six such spacers can be used (i.e., four spacers each of which separate pairs of seeds, and a spacer prior to the first seed, and a spacer following the last seed).
  • the spacers that are located between seeds preferably include protrusions similar to those explained with reference to FIGS. 1- 7.
  • the spacers that are located prior to the first seed and following the last seed in the needle track can include protrusions similar to those explained with reference to FIGS. 1- 7, or can include anchor mechanisms similar to those described above with reference to FIGS. 8A-8D.
  • the spacers with protrusions can be made entirely from a bioabsorbable material, examples of which are listed above.
  • the spacers with protrusions can be made from a non-bioabsorbable material which is biocompatible.
  • the spacer is made of a body that is biocompatible but non-bioabsorbable, which is encapsulated within a bioabsorbable material that is used to form the protrusions.
  • FIGS. 10A- 1OC illustrate a spacer 1000 according to another embodiment of the present invention.
  • the spacer 1000 includes two halves 1002 and 1004 that are connected by a living hinge 1006.
  • the halves 1002 and 1004 are shown as being half cylinders, but other shapes are also possible.
  • the living hinge 1006 is biased such that after the spacer is folded into its closed position (FIG. 10B), the spacer tends to open up such that a gap 1008 forms between the two halves (FIG. 10C). This can be accomplished, e.g., by molding the two halves 1002 and 1004 and the living hinge 1006 in the open position shown in FIG. 1OA.
  • the two haves 1002 and 1004 can then be folded toward one another along the living hinge 1006 to place the spacer 1000 in the closed position shown in FIG. 1OB, at which point the spacer can be inserted into a hollow needle used to implant spacers and radioactive sources in a patient.
  • the spacer 1000 will tend to open or unfold along the living hinge 1006, causing an outer surface of the spacer 1000 to thereby engage the patient tissue that surrounds the spacer 1000. This engagement with patient tissue will cause the spacer to resist migration and rotation.
  • protrusions such as those discussed above, can be added to the outer surface of the spacer.
  • the spacer 1000 can be made entirely from a bioabsorbable material, examples of which are listed above. Alternatively, the spacer 1000 can be made from a non- bioabsorbable material which is biocompatible.
  • an entire strand 1100 that includes multiple radioactive sources (e.g., seeds) 102, or portions of the strand 1100 can include the protrusions of the present invention, e.g., as shown in FIG. 11. Because a typical strand includes polymeric material that attaches multiple radioactive sources to one another at desired spacings, a strand is not as susceptible to migration and twisting as loose radioactive sources. Nevertheless, it is still possible that that radioactive sources within the strands, especially the radioactive sources located near the distal ends of the strand, can migrate and/or twist.
  • the anchor mechanism e.g., 810) disclosed above with reference to FIGS. 8A-8E can be located at one or both longitudinal distal ends of a strand 1200 that includes multiple radioactive sources 102, e.g., as shown in FIG. 12.
  • the strands 1100 and 1200 can be manufactured using similar molding processes that were used to produce the therapeutic members of the present invention.
  • radioactive sources 102 can be placed into an embossing mold that allows the radioactive sources 102 to be spaced at the appropriate intervals in a cavity of the embossing mold that is shaped to the desired final dimensions, including the protrusions, of the strand.
  • the spacings between the radioactive sources 102 can be of different lengths, if the preoperative therapeutic plan so specifies.
  • Spacers (not shown) can be placed between radioactive sources 102 to keep a desired spacing between the radioactive sources, if desired.
  • Alternative means for maintaining the spacings between adjacent radioactive sources may be used, as is known in the art.
  • the strand 1200 can be manufactured in a similar fashion as was just described, and as was described above with reference to FIGS. 8A-8E.
  • a resulting strand (e.g., 1100 or 1200) is a single solid monofilament of a polymer with the radioactive sources 102 spaced within the monofilament and encapsulated at the appropriate intervals.
  • the strand is preferably axially flexible.
  • the strand preferably has sufficient column strength along its longitudinal axis so that the strand can be urged out of a hollow needle without the strand folding upon itself.
  • the intervals can be selected to be any distance or combination of distances that are optimal for the treatment plan of the patient.
  • a strand can be made by inserting (i.e., pushing) radioactive sources and spacers through an opening in one end of an elongated hollow tube of bioabsorbable material. Additional details of a seed pusher that can be used in this process are described in U.S. Patent No. 6,761,680, which was incorporated herein by reference above.
  • the protrusions of the present invention can be formed on the outer surface of the hollow tube prior to or after the insertion of the radioactive sources and spacers.
  • a strand can be constructed using a pair of pre-formed elongated members of bioabsorbable material that are shaped like half-shells, as described in U.S. Patent No. 6,761,680, which is incorporated herein by reference.
  • the two half-shells can be separate from one another.
  • the two half shells can be connected by a living hinge along their length.
  • the radioactive sources and spacers are placed within a first one of half-shells.
  • the second half-shell is then mated with the first half-shell, and the half-shells are fused together (e.g., using ultrasonic welding or heat), thereby fixing the radioactive sources and spacers inside.
  • the protrusions of the present invention can be formed on the outer surface of such half-shells before or after the radioactive sources and spacers are placed therein.
  • a strand can be made by inserting the seeds and spacers into a tube of braded bioabsorbable material. Additional details of such a braded bioabsorbable tube are described in U.S. Patent No. 5,460,592, which is incorporated herein by reference. Protrusions can then be added, e.g., by slipping doughnut shaped rings over the breaded material. Such doughnut shaped rings can also be slipped over any other type of strand that has a generally cylindrical outer surface.
  • one or more spacers 1000 that are biased to open can be incorporated into a strand 1300, as shown in FIG. 13.
  • the spacers 1000 can be incorporated into the strand 1300 in various manners, such as by insert molding them into the strand.
  • the spacers 1000 When the strand 1300 including such spacers 1000 is inserted into a hollow needle, the spacers 1000 will be kept in their closed position by the inner wall of the needle. However, once implanted in a patient, the spacers 1000 will at least partially open and engage the tissue surrounding the spacer, thereby anchoring the entire strand 1300. More generally, portions of the strand 1300 can be biased such that they at least partially open or expand to engage tissue surrounding the strand. As shown in FIG. 13, the portions of the strand that open to engage surrounding tissue can be at one or both distal ends of the strand and/or at locations between the distal ends. In FIG.
  • the living hinges 1006 are shown as being along the length of the strand 1300. However, this need not be the case.
  • a living hinge can be located at one or both of the longitudinal ends of the strand, and thus be perpendicular to the length of the strand.
  • Embodiments of the present invention are also directed to radiopaque markers that include protrusions and/or anchor mechanisms, similar to those described above, to reduce the tendency of the markers to migrate and rotate within a patient's body after implantation.
  • markers can be made entirely or partially of a radiopaque material.
  • a radiopaque material is often a dense, high atomic number material, such as gold or tungsten, which can block the transmission of X-rays or other radiation so that the markers can be detected using X-ray or other radiation imaging techniques.
  • a marker can be a ball, rod or wire constructed from gold or tungsten.
  • the marker can be a container that includes a ball, rod or wire of radiopaque material, or a container at least partially coated with a radiopaque material.
  • VISICOIL VISICOIL
  • the marker can be encapsulated in a polymeric material within which protrusions and/or anchor mechanisms are formed, in any of the manners described above.
  • a marker can be manufactured to include protrusions and/or anchor mechanisms.
  • the markers can be implanted within a patient that will be undergoing external beam radiation therapy. If the patient is to also undergo brachytherapy, then the markers can implanted at the same time that radiation sources are being implanted into the patient, hi specific embodiments, radiopaque markers can be included in spacers and/or strands of the present invention. By including a marker within a spacer or strand that includes protrusions and/or anchor mechanisms, the marker therein will also be resistant to migration and rotation.
  • an anchor mechanism 1400 includes a sleeve 1404 to which are attached, by living hinges 1406, wings 1408.
  • the wings 1408 are shown as being generally rectangular, but can have other shapes. Two wings 1408 are shown, but more are less can be used.
  • the sleeve 1404 is intended to be placed around an underlying structure 1402, which can be a radioactive source (e.g., seed, rod or coil), a thermal ablation implant, a spacer, a strand, or a radiopaque marker.
  • Each living hinge 1406 is biased in its open position (FIGS. 14A and 14B), such that after the wings 1408 are folded into their closed positions (FIGS.
  • the wings 1408 will tend to open. This can be accomplished, e.g., by molding the anchor mechanism 1400 in the open position shown in FIGS. 14A and 14B. After being placed around an underlying structure 1402, the wings 1408 can then be folded inward along the living hinges 1406 to be in the closed position shown in FIGS. 14C and 14D. When in the closed position, the entire structure, including the underlying structure 1402 and anchor mechanism 1400, can be inserted into a hollow needle used to implant the structure in a patient. The inner wall of the hollow needle will keep the wings 1408 in their closed position.
  • the anchor mechanism 1400 can be made entirely from a bioabsorbable material, examples of which are listed above. Alternatively, the anchor mechanism can be made from a non-bioabsorbable material which is biocompatible.
  • an anchor mechanism 1500 includes a sleeve 1504 from which extends a plurality of protrusions 1506.
  • the sleeve 1504 is intended to be placed around an underlying structure 1502, which can be a radioactive source (e.g., seed, rod or coil), a thermal ablation implant, a spacer, a strand, or a radiopaque marker, prior to implantation of the structure 1502.
  • the protrusions 1506 extending from the sleeve 1504 will reduce a tendency of the underlying structure to migrate and rotate within a patient's body after the structure (with the anchor mechanism 1500 around it) is implanted.
  • a bore 1508 extends through the anchor mechanism 1500 to form the sleeve 1504.
  • the shape of the bore 1508 is generally similar to the shape of the outer diameter of the underlying structure 1502.
  • the inner diameter 1508 of the sleeve 1504 (which is the outer diameter of the bore 1508) is sized so that there is an interference fit between the underlying structure 1502 and the sleeve 1504. This can be accomplished by having the inner diameter 1508 of the sleeve 1504 slightly smaller than the outer diameter of the underlying structure 1502.
  • the sleeve 1504 can be heat shrunk to tightly fit around the structure 1502.
  • a biocompatible and preferably bioabsorbable adhesive can be used to secure the sleeve 1504 to the underlying structure 1502.
  • Other mechanisms of securing the sleeve 1504 to the structure 1502 are also within the scope of the present invention.
  • the underlying structure 1502 is an elongated strand (e.g., including a plurality of radioactive sources along its longitudinal length)
  • more than one anchor mechanism 1500 can be placed around the strand, e.g., one slightly inward from each longitudinal end of the strand.
  • the anchor mechanism 1500 can be made entirely from a bio-absorbable material, examples of which are listed above.
  • the anchor mechanism can be made from a non-bio-absorbable material which is bio-compatible.
  • the protrusions 1506 are shown as being square or rectangular knobs that cause the outer surface of the anchor mechanism 1500 to resemble a knobby tire.
  • the protrusions 1506 can form a plurality of rows (e.g., four rows) which are regularly spaced about the sleeve 1504, e.g., with each row extending in a direction that is 90 degrees from the adjacent rows.
  • the protrusions can protrude in a more random or irregular fashion.
  • Exemplary dimensions for one of the protrusions 1506 are 0.010 x 0.008 x 0.003 inches.
  • AU of the protrusions 1506 can have similar dimensions, or the dimensions of the protrusions may vary.
  • the protrusions within a row have similar dimensions, but the dimensions differ for different rows.
  • another row of protrusions 1506 may have dimensions of 0.006 x 0.005 x 0.002 inches. These are just a few examples.
  • the protrusions can have other dimensions while being within the scope of the present invention.
  • the protrusions 1506 extend at least 0.002 inches so that they can sufficiently grip into patient tissue (analogous to a knobby tire gripping soft dirt).
  • the protrusions 1506 can extend radially from the sleeve 1504.
  • the protrusions 1506 extend in directions that are generally perpendicular to a longitudinal axis 1503 of the sleeve 1504 and the structure (e.g., seed) 1502 therein.
  • the protrusions 1506 may alternatively or additionally extend at other angles with respect to the longitudinal axis 1503.
  • protrusions may extend at 45 degrees with respect to the longitudinal axis 1503.
  • each half of the sleeve 1504 can have protrusions 1506 at a 45 degree angle facing towards the middle of the sleeve 1504, or towards the ends of the sleeve 1504.
  • protrusions 1506 at a 45 degree angle facing towards the middle of the sleeve 1504, or towards the ends of the sleeve 1504.
  • Various other angles, and combinations of angles, are also possible.
  • the protrusions of the anchor mechanism can be cylindrical (e.g., similar to as in FIG. 2), resemble bumps or semi-spheres (e.g., similar to as in FIG. 3), triangular (similar to as in FIG. 4), or pyramidal (similar as in FIG. 5). These are just a few examples of the shapes of the protrusions. One of ordinary skill in the art reading this description would appreciate that other shapes are also possible. It should also be understood that an anchor mechanism of the present invention can include protrusions of numerous different shapes, including, but not limited to, the shapes discussed above. The various protrusions are shown as having a common orientation, but can have different orientations. [0097] hi a further embodiment, shown in FIGS.
  • the protrusions of the anchor mechanism 1500 are ribs 1506' that encircle the sleeve 1504. Two ribs 1506' are shown in FIGS. 15C and 15D. However, it should be understood that more or less ribs 1506' can be included. It should also be understood the ribs can be helical (i.e., spiral), hi one specific embodiment, the ribs can form counter balancing screw threads (i.e., opposing helixes). For example, the threads on one half of the member can be right hand threads, while the threads on the other half of the member can be left hand threads.
  • the plurality of protrusions can form an irregular pattern on the outer surface of a sleeve 1504.
  • the anchor mechanism 1500 is placed about the underlying structure 1502 so that a portion of the underlying structure 1502 extends from each longitudinal end of the anchor mechanism 1500, as is the case in FIGS. 15A-15D. This reduces the chances that the anchor mechanism 1500 will become separated from the underlying structure 1502. hi other words, it is preferred that the anchor mechanism 1500 not be attached to just one longitudinal end of the underlying structure 1502, which would increase the possibility that the anchor mechanism 1500 may separate from the underlying structure 1502, e.g., if the underlying structure slips out.
  • the anchor mechanism 1500 does not extend from one of the longitudinal ends of the underlying structure 1502
  • the anchor mechanism 1500 does not lengthen the underlying structure 1502. This is beneficial in that the anchor mechanism will not affect the depths at which the underlying structure can be implanted, nor will it affect the distances that can be achieved between a pair of underlying structures (e.g., a pair of radioactive seeds). Additionally, this will allow for more precise placement of the structure 1500 during implantation.
  • the longitudinal length of the anchor mechanism 1500 i.e., the length of the sleeve 1504
  • the bore 1508 should extend the entire length of the anchor mechanism.
  • a plurality of radioactive seeds, with an anchor mechanism 1500 of the present invention fit around each of the seeds (or at least some of the seeds), can be loaded into a cartridge.
  • a cartridge e.g., 934
  • Embodiments of the present invention are also directed to therapeutic members for use in brachytherapy and other radiation treatment. Ln.
  • such a therapeutic member includes an underlying structure (e.g., a radioactive source, a thermal ablation implant, a spacer, a strand or a radiopaque marker), with a sleeve to fit around the structure.
  • the sleeve has a bore that extends an entire longitudinal length of the sleeve, and through which the structure fits, such that a portion of the structure extends out from each longitudinal end of the sleeve.
  • One or more protrusion extends from the sleeve for engaging the patient tissue after implantation of the therapeutic member, to thereby reduce a tendency for the therapeutic member to migrate and rotate after implantation.

Abstract

Therapeutic members and strands for use in brachytherapy are designed to reduce the tendency for the members and strands (and thus the radioactive sources, thermal ablation implants and/or radiopaque makers, etc. therein) to migrate and/or rotate within a patient's body. In one embodiment a member includes a radioactive source and a material that encapsulates the radioactive source. Such encapsulating material, which is preferably, but not necessarily, bioabsorbable, is likely polymeric or some other plastic material. An outer surface of the encapsulating material includes at least one protrusion, and preferably a plurality of protrusions, to reduce the tendency of the member to migrate and rotate within a patient's body after implantation. Other embodiments are also provided.

Description

IMPLANTS FOR USE IN BRACHYTHERAPY AND OTHER RADIATION THERAPY THAT RESIST MIGRATION AND ROTATION
Priority Claim
[0001] This application claims priority to U.S. Patent Application No. 11/187,411, by Gary A. Lamoureux et al, filed July 22, 2005, and entitled IMPLANTS FOR USE DSf BRACHYTHERAPY AND OTHER RADIATION THERAPY THAT RESIST MIGRATION AND ROTATION (Attorney Docket No. WORLD-01017US0), and U.S.
Patent Application No. , by Gary A. Lamoureux et al., filed July 20, 2006, and entitled DEVICES TO RESIST MIGRATION AND ROTATION OF IMPLANTS USED IN BRACHYTHERAPY AND OTHER RADIATION THERAPY (Attorney Docket No. WORLD-01017US1), each of which is incorporated herein by reference.
Field of the Invention
[0002] This invention relates to radiotherapy. More particularly, it relates to implants for use in brachytherapy, and in particular to therapeutic members, spacers and strands that are used to resist migration and rotation of radioactive sources. The invention also relates to implantable radiopaque markers that resist migration and rotation.
Background
[0003] Brachytherapy is a general term covering medical treatment which involves placement of radioactive sources near a diseased tissue and may involve the temporary or permanent implantation or insertion of radioactive sources into the body of a patient. The radioactive sources are thereby located in proximity to the area of the body which is being treated. This has the advantage that a high dose of radiation may be delivered to the treatment site with relatively low doses of radiation to surrounding or intervening healthy tissue. Exemplary radioactive sources include radioactive seeds, radioactive rods and radioactive coils.
[0004] Brachytherapy has been used or proposed for use in the treatment of a variety of conditions, including arthritis and cancer. Exemplary cancers that may be treated using brachytherapy include breast, brain, liver and ovarian cancer and especially prostate cancer in men. For a specific example, treatment for prostate cancer may involve the temporary implantation of radioactive sources (e.g., rods) for a calculated period, followed by their subsequent removal. Alternatively, the radioactive sources (e.g., seeds) may be permanently implanted in the patient and left to decay to an inert state over a predictable time. The use of temporary or permanent implantation depends on the isotope selected and the duration and intensity of treatment required. [0005] Permanent implants for prostate treatment include radioisotopes with relatively short half lives and lower energies relative to temporary seeds. Exemplary permanently implantable sources include iodine- 125, palladium- 103 or cesium-131 as the radioisotope. The radioisotope can be encapsulated in a biocompatible casing (e.g., a titanium casing) to form a "seed" which is then implanted. Temporary implants for the treatment of prostate cancer may involve iridium-192 as the radioisotope. For temporary implants, radioactive rods are often used.
[0006] Conventional radioactive seeds are typically smooth sealed containers or capsules of a biocompatible material, e.g., titanium or stainless steel, containing a radioisotope within the sealed chamber that permits radiation to exit through the container/chamber walls. Other types of implantable radioactive sources for use in radiotherapy are radioactive rods and radioactive coils, as mentioned above.
[0007] Preferably, the implantation of radioactive sources for brachytherapy is carried out using minimally-invasive techniques such as, e.g., techniques involving needles and/or catheters. It is possible to calculate a desired location for each radioactive source which will give the desired radiation dose profile. This can be done using knowledge of the radioisotope content of each source, the dimensions of the source, accurate knowledge of the dimensions of the tissue or tissues in relation to which the source is to be placed, plus knowledge of the position of the tissue relative to a reference point. The dimensions of tissues and organs within the body for use in such dosage calculations may be obtained prior to or during placement of the radioactive sources by using conventional diagnostic imaging techniques including X-ray imaging, magnetic resonance imaging (MRT), computed tomography (CT) imaging, fluoroscopy and ultrasound imaging. [0008] During the placement of the radioactive sources into position, a surgeon can monitor the position of tissues such as the prostate gland using, e.g., ultrasound imaging or fluoroscopy techniques which offer the advantage of low risk and convenience to both patient and surgeon. The surgeon can also monitor the position of the relatively large needle used in implantation procedures using ultrasound or other imaging. [0009] Once implanted, radioactive sources (e.g., seeds, rods or coils) are intended to remain at the site of implantation. However, the radioactive sources may on some occasions migrate within a patient's body away from the initial site of implantation. This is undesirable from a clinical perspective, as migration may lead to underdosing of a tumor or other diseased tissue and/or exposure of healthy tissue to radiation. Additionally, there have been reported incidents where a migrated seed implant has caused a pulmonary embolism. Accordingly, there is a need to reduce the tendency for radioactive sources to migrate within a patient's body.
[0010] Radioactive sources may also on some occasions rotate or twist from the original orientation at which the seed was implanted. This is also undesirable from a clinical perspective, because the radiation pattern of the sources may be directional, thereby causing underdosing or overdosing of a tumor or other diseased tissue and/or exposure of healthy tissue to radiation. Accordingly, there is also a need to reduce the tendency for radioactive sources to rotate within a patient's body.
[0011] Efforts have been made to reduce the tendency for radioactive seeds to migrate within a patient's body. For example, U.S. Patent No. 6,632,176 discloses a radioactive seed having a biocompatible container with at least one part of a surface of the container being roughened, shaped or otherwise treated so that it is no longer smooth. According to the '176 patent, the roughening, shaping or other treatment is achieved by: forcing the seed container through a ridged or serrated dye or a threading device to impart grooves on the outer surface of the container; milling the seed container; using a wire brush, file, or sandpaper to roughen the outer surface of the container; etching using a laser or water- jet cutter, or by electrolytic etching; blasting (e.g., sand blasting); or electroplating. [0012] Disadvantages of the radioactive seeds disclosed in the '176 patent is that they are not off the shelf seeds, but rather, are custom seeds whose manufacturing cost is likely higher than that of a typical radioactive seed. Additionally, even though the '176 patent says that the treatment process should not compromise the integrity of the container, the integrity of the container may indeed be affected by the roughing, shaping and other treatments suggested in the '176 patent. Additionally, because the containers themselves are being changed, the radioactive seeds having such roughened, shaped or otherwise treated containers may be subject to government certification or re-certification. Further, the modified containers may affect the directional radiation pattern of the seed, potentially resulting in adverse clinical results. Accordingly, it is preferred that the means of reducing the tendency for radioactive seeds to migrate and/or rotate within a patient's body overcome the above mentioned disadvantages. [0013] When performing external beam radiation procedures such as intensity modulated radiation therapy (IMRT) and conformal radiation therapy (CRT) it is important that a target for radiation be accurately identified. To accomplish this, radiopaque markers (sometime referred to as fiducial or fiduciary markers) are often implanted into the patient at or near the target, so that the radiation can be accurately focused. Once implanted, such markers are intended to remain at the site of implantation. However, the markers may on some occasions migrate and/or rotate within a patient's body away from the initial site of implantation. This is undesirable because it is the locations of the markers that are used to determine where to focus the radiation treatments. Accordingly, there is a need to reduce the tendency for such markers to migrate and/or rotate within a patient's body.
Summary of the Invention
[0014] Embodiments of the present invention are directed to therapeutic members and strands for use in brachytherapy. Such members and strands, as will be understood from the detailed description, are designed to reduce the tendency for the members and strands (and thus the radioactive sources therein) to migrate and/or rotate within a patient's body. [0015] In one embodiment a member includes a radioactive source and a material that encapsulates the radioactive source. Such encapsulating material, which is preferably, but not necessarily, bioabsorbable, is likely polymeric or some other plastic material. An outer surface of the encapsulating material includes at least one protrusion, and preferably a plurality of protrusions, to reduce the tendency of the member to migrate and rotate within a patient's body after implantation. [0016] In accordance with an embodiment, one or more of the protrusions extend in a radial direction (e.g., perpendicular or at an acute angle) with respect to a longitudinal axis of the radioactive source. One or more protrusions may also extend in a longitudinal direction with respect to the radioactive source. Such protrusions can have various shapes, such as, but not limited to, square, rectangular, circular, oval, triangular, pyramidal and semi-spherical, or combinations thereof. [0017] hi accordance with an embodiment, the one or more protrusions include one or more ribs that form one or more rings or a helix about a radial circumference of the radioactive source.
[0018] hi accordance with another embodiment, the plurality of protrusions forms an irregular pattern on the outer surface of the encapsulating polymeric material. For example, the plurality of protrusions can form a surface that resembles a rough stucco surface.
[0019] In another embodiment, the encapsulating material is used to form an anchor mechanism that extends from at least one of the longitudinal ends of the radioactive seed to reduce a tendency of the member to migrate and rotate within a patient's body after implantation. In accordance with an embodiment, a void is formed between the anchor mechanism and the portion of the material that encapsulates the radioactive source, to allow patient tissue to enter the void after implantation. [0020] Embodiments of the present invention are also directed to spacers, which are used to separate radioactive sources from one another, wherein the spacers include protrusions and/or anchor mechanisms, similar to those described above.
[0021] Embodiments of the present invention are also directed to strands that include protrusions and/or anchor mechanisms, similar to those described above. Such strands include a plurality of radioactive sources that are spaced apart from one another at desired intervals.
[0022] Embodiments of the present invention are also directed to spacers and strands that include portions that are biased to open after implantation, to thereby engage surrounding tissue.
[0023] Embodiments of the present invention are also directed to radiopaque markers that include protrusions and/or anchor mechanisms, similar to those described above, to reduce the tendency of the markers to migrate and rotate within a patient's body after implantation.
[0024] Embodiments of the present invention are also directed to an anchor mechanism that includes a sleeve to fit around a structure, such as a radioactive source, a thermal ablation implant, a spacer, a strand or a radiopaque marker. One or more wing is connected to the sleeve by a corresponding living hinge that enables the wing to be folded against the structure during implantation of the structure in a patient. The living hinge biases the wing such that one end of the wing moves away from the structure to engage surrounding patient tissue after implantation of the structure into a patient. This engagement of the wing with the tissue reduces a tendency for the structure to migrate and rotate after implantation.
[0025] Embodiments of the present invention are also directed to an anchor mechanism that includes a sleeve to fit around a structure, such as a radioactive source, a thermal ablation implant, a spacer, a strand or a radiopaque marker. The sleeve has a bore that extends an entire longitudinal length of the sleeve, and through which the structure fits, such that a portion of the structure can extend out from each longitudinal end of the sleeve. One or more protrusion extends from an outer surface of the sleeve to engage surrounding patient tissue after implantation of the structure into a patient, to thereby reduce a tendency for the structure to migrate and rotate after implantation.
[0026] This summary is not intended to be a complete description of the invention. Other features, aspects, objects and advantages of the invention can be obtained from a review of the specification, the figures, and the claims.
Brief Description of the Drawings
[0027] FIG. IA is a side view of a therapeutic member according to an embodiment of the present invention; and FIG. IB is a perspective view of the therapeutic member shown in FIG. IA.
[0028] FIGS. 2-5 are side views of therapeutic members according to various embodiments of the present invention.
[0029] FIG. 6A is a side view of a therapeutic member according to a further embodiment of the present invention; and FIG. 6B is a perspective view of the therapeutic member shown in FIG. 6A.
[0030] FIG. 7A is a side view of a therapeutic member according to another embodiment of the present invention; and FIG. 7B is a perspective view of the therapeutic member shown in FIG. 7 A.
[0031] FIG. 8A is a side view of a member with tabs; FIG. 8B is a perspective view of the member shown in FIG. 8A; FIG. 8C is a side view of the therapeutic member of
FIGS. 8 A and 8B after the tabs have been shaped into anchor mechanisms; FIG. 8D is a perspective view of the member shown in FIG. 8C; and FIG. 8E is an end view of the therapeutic member shown in FIGS. 8C and 8D.
[0032] FIG. 9 is a side view of an exemplary applicator that can be used to implant therapeutic members of the present invention into a patient's body.
[0033] FIG. 1OA is a perspective view of a spacer according to an embodiment of the present invention, in an open position; FIG. 1OB is a perspective view of the spacer in
FIG. 1OA in a closed position; and FIG. 1OC is a perspective view of the spacer of FIGS.
1OA and 1OB in a partially opened position.
[0034] FIG. 11 is a side view of a strand according to an embodiment of the present invention. [0035] FIG. 12 is a side view of a strand according to another embodiment of the present invention.
[0036] FIG. 13 is a perspective view of a strand that includes portions which are biased to open after implantation, and thereby engage tissue surrounding the strand, to prevent migration and rotation of the strand.
[0037] FIG. 14A is a side view illustrating an anchor mechanism according to an embodiment of the present invention, it its closed position; FIG. 14B is a perspective view of the anchor mechanism of FIG. 14A, in its closed position; FIG. 14C is a side view of the anchor mechanism of FIGS. 14A and 14B, in its open position; and FIG. 14D is a perspective view of the anchor mechanism of FIGS. 14A-C, in its open position.
[0038] FIG. 15A is a side view illustrating an anchor mechanism according to another embodiment of the present invention. FIG. 15B is a perspective view of the anchor mechanism of FIG. 15 A. [0039] FIG. 15C is a side view illustrating an anchor mechanism according to a further embodiment of the present invention. FIG. 15D is a perspective view of the anchor mechanism of FIG. 15C.
Detailed Description
[0040] Embodiments of the present invention relate to therapeutic members for use in treatments such as brachytherapy. As shown in FIGS. IA and IB, each member 100 includes a radioactive source 102 (shown in dashed line) and a material 104 that encapsulates the radioactive source 102. The radioactive source 102 can be a radioactive seed, a radioactive rod, or a radioactive coil, but is not limited thereto. The material 104 is preferably, but not necessarily, bioabsorbable. In accordance with an embodiment, the material 104 is also bioadherent. Additionally, the material 104 is preferably a polymeric material or some other plastic. Also shown in FIG. 1 is that an outer surface of the encapsulating material 104 includes protrusions 106 to reduce a tendency of the member 100 to migrate and rotate within a patient's body after implantation. Also shown in FIG. IB (in dotted line) is a longitudinal axis of the radioactive source 102, which is also the longitudinal axis of the therapeutic member 100. The overall shape of the therapeutic member 100, excluding the protrusions 106, can be cylindrical with flat ends 120 and 122, cylindrical with rounded (e.g., bullet shaped) ends 120 and 122 or rectangular, but is not limited thereto. [0041] The protrusions that are used to reduce a tendency of the member to migrate and rotate can be of any number of different shapes and sizes, or combinations thereof. For example, in FIGS. IA and IB the protrusions 106 are shown as being square or rectangular knobs that cause the outer surface of the therapeutic member 100 to resemble a knobby tire. The protrusions 106 can form a plurality of rows (e.g., four rows) which are regularly spaced about the member 100, e.g., with each row extending in a direction that is 90 degrees from the adjacent rows. Alternatively, the protrusions can protrude in a more random or irregular fashion. [0042] Exemplary dimensions for one of the protrusions 106 in FIG. IB is shown as being 0.010 x 0.008 x 0.003 inches. All of the protrusions 106 can have similar dimensions, or the dimensions of the protrusions may vary. For example, it is possible that the protrusions within a row have similar dimensions, but the dimensions differ for different rows. For a more specific example, another row of protrusions 106 have dimensions of 0.006 x 0.005 x 0.002 inches. These are just a few examples. One of ordinary skill in the art will appreciate from this description that the protrusions can have other dimensions while being within the scope of the present invention. [0043] Preferably, the protrusions extend at least 0.002 inches so that they can sufficiently grip into patient tissue (analogous to a knobby tire gripping soft dirt). The protrusions 106 can extend radially from the therapeutic member 100. For example, in the embodiments shown, the protrusions 106 extend in directions that are generally perpendicular to the longitudinal axis 103 of the therapeutic member 100 and the source (e.g., seed) 102 therein. The protrusions 106 may alternatively or additionally extend at other angles with respect to the longitudinal axis 103. For example, protrusions may extend at 45 degrees with respect to the longitudinal axis 103. hi a specific embodiment, each half of the member 100 can have protrusions 106 at a 45 degree angle facing towards the middle of the member 100, or towards the ends of the member 100. Various other angles, and combinations of angles, are also possible.
[0044] In FIGS. IA and IB, and FIGS. 2-5 discussed below, the protrusions are shown as extending from the length of the therapeutic member. However, the protrusions may also extend from the longitudinal ends of the therapeutic member.
[0045] In another embodiment, shown in FIG. 2, the protrusions 206 of a therapeutic member 200 are cylindrical. In still another embodiment, shown in FIG. 3, a therapeutic member 300 includes protrusions 306 that resemble bumps or semi-spheres. In the embodiment shown in FIG. 4 the protrusions 406 of a therapeutic member 400 are triangular, and in the embodiment of FIG. 5 the protrusions 506 of a therapeutic member 500 are pyramidal. These are just a few examples of the shapes of the protrusions. One of ordinary skill in the art reading this description would appreciate that other shapes are also possible. It should also be understood that a therapeutic member of the present invention can include protrusions of numerous different shapes, including, but not limited to, the shapes shown in FIGS. 1-5. While in the FIGS, the various protrusions are shown as having a common orientation, it is also within the scope of the present invention that the protrusions have different orientations. For example, in FIG. 5, different triangular protrusions 506 can have different orientations. [0046] In a further embodiment, shown in FIGS. 6A and 6B, the protrusions are ribs 608 that encircle the underlying sourcel02. Four ribs 608 are shown in FIGS. 6A and 6B. However, it should be understood that more or less ribs 608 can be included. It should also be understood the ribs can be helical (i.e., spiral). In one specific embodiment, the ribs can form counter balancing screw threads (i.e., opposing helixes). For example, the threads on one half of the member can be right hand threads, while the threads on the other half of the member can be left hand threads.
[0047] In another embodiment, the plurality of protrusions can form an irregular pattern on the outer surface of the encapsulating polymeric material 104. For example, the protrusions can form what resembles a rough stucco like surface, e.g., as shown in FIGS. 7A and 7B.
[0048] In the embodiments where the radioactive sources 102 are radioactive seeds, the seeds 102 can be of various types having low energy and low half-life such as Iodine seeds, known as 1-125 seeds, including a welded titanium capsule containing iodine 125 adsorbed on a silver rod, or Palladium 103 seeds. Seeds may also have there isotope adsorbed on ceramic beads, resin beads, silver beads, graphite pellets, porous ceramic rods, copper cores, etc. Seed can have various different shapes, such as, but not limited to, cylindrical with flat ends, cylindrical with rounded (e.g., bullet shaped) and spherical. Exemplary dimensions of a seed 102 are 0.18 inches in length and 0.0315 inches in diameter. Exemplary seeds are listed below in Table 1, but embodiments of the present invention should not be limited to the seeds listed therein.
Figure imgf000012_0001
Table 1. Seed Manufacturers and Common Types of Seeds
[0049] Alternatively, seeds 102 can be manufactured using indium 192, cesium 131, gold 198, yttrium 90 and/or phosphorus 32. Further radioactive isotopes used to manufacture seeds are not limited to these examples, but can include other sources of different types of radiation.
[0050] In addition it is to be understood that other types of seeds can be used. For example, seeds such as those described in U.S. Patent No. 6,248,057, which is incorporated herein by reference, can be used with the present invention. These seeds include radiation delivery devices, drug delivery devices, and combinations of radiation and drug delivery devices in the form of beads, seeds, particles, rods, gels, and the like.
These particular seeds are absorbable wherein the radiation member or drug delivery member is contained within, for example, absorbable polymers such as those listed below or in the above-referenced patent, hi such seeds, the bioabsorbable structure can have a predefined persistence which is the same as or substantially longer than a half life of the radioactive member contained in the bioabsorbable structure. These above bioabsorbable seeds can be used in the same manner as the seeds described herein with respect to the invention. As mentioned above, the radioactive sources 102 need not be seeds. For example, the radioactive sources 102 can be rods, e.g., metallic rods coated with a radioactive isotope such as palladium 103, etc. The radioactive sources 102 may also be radioactive coils, such as those described in U.S. Patent No. 6,419,621, which is incorporated herein by reference, and those available from RadioMed Corporation of Tyngsboro, MA, under the trademarks GENETRA and RADIO COIL. In accordance with an alternative embodiment, rather than using a radioactive source, an implant that utilizes thermal ablation to treat cancer can be used. One such implant, which is marketed under the trademark ThremoRod, and is available from Ablation Technologies of San Diego, CA, is a permanently implantable cobalt-palladium alloy rod that produces heat (e.g., 70 degrees C) through oscillation of a magnetic field. In such embodiments, the material 104 is used to encapsulate the thermal ablation implant and to form protrusions, as described above, to resist migration and rotation of the implant.
[0051] To allow X-ray detection of the radioactive sources, the radioactive sources can include a radiopaque marker, which is typically made of a dense, high atomic number material, such as gold or tungsten, which can block the transmission of X-rays so that the radioactive source can be detected by using X-ray imaging techniques. This can be accomplished, e.g., by including a ball, rod or wire constructed of a dense, high atomic number material, such as gold or tungsten, within the container of a radioactive source (e.g., seed). Alternatively, the radioactive seed (or other source) can be at least partially coated with a radiopaque material. [0052] The therapeutic members of the present invention can be manufactured in various manners. For example, a molding process, such as compression molding or injection molding can be used. In one example, a radioactive source is placed into an embossing mold that includes the inverse (i.e., negative) of the pattern of projections that is to be embossed on the outer surface of the polymeric material. Before or after the source (e.g., seed) is placed in the mold, a bioabsorbable polymer or some other plastic material is introduced into the mold at a temperature that is above the melt point of the material such that the material flows around the seed within the mold cavity. The material is then allowed to set within the mold, e.g., by cooling the mold. After the material has set, the mold is opened, and the finished therapeutic member with a plurality of polymeric projections is removed. In other embodiments, an encapsulating material is molded around the seed, and then the protrusions are produced in a secondary process, e.g., by machining, crimping or otherwise altering the shape of the encapsulating material to form protrusions. In still other embodiments, the protrusions are formed in the encapsulating material prior to the seed being placed into the material. In still further embodiments, the protrusions can be doughnut shaped pieces that are slid over the radioactive source implant. These are just a few examples. Other techniques for producing the protrusions are also within the scope of the present invention.
[0053] For the embodiment of FIGS. 7 A and 7B, where the outer surface or the member 700 resembles a rough stucco surface, a mold can include purposeful protrusions, or can simply be a rough surface that was formed when casting or otherwise manufacturing the mold. Typically, the metal of the mold would be machined such that a member produced using the mold would have a generally smooth surface. However, in accordance with an embodiment of the present invention the mold is left rough, so that the member 700 formed using the mold would have random protrusions. [0054] In another embodiment, a radioactive source 102 is encapsulated within a polymeric material, and then protrusions are attached to the outer surface of the encapsulating material in a secondary process. For example, while the outer surface of the encapsulating material is tacky, particles or strands can be attached to the outer surface to thereby form the protrusions. The outer surface of the encapsulating material can be made tacky by heating the material, coating the material with a biocompatible adhesive, or otherwise wetting the material. The particles or strands can then be attached to the outer surface of the material, e.g., by sprinkling the particles or strands onto the outer surface, or rolling the encapsulated source in the particle or strands. Such particles or strands should be biocompatible, and can also bioabsorbable. The particle or strands can be made of the same material as the material 104 that encapsulates the radioactive source 102, but this is not necessary. It is also possible that the container of the radioactive source be coated with a biocompatible adhesive, and that the particles or strands are directly attached to the container of the radioactive source, to thereby form the protrusions that resist migration and rotation. [0055] hi another embodiment, the material 104 can be molded or otherwise formed around a source 102 such that a tab 808 extends longitudinally (i.e., axially) from each longitudinal end of the encapsulated radioactive source 102, as shown in FIGS. 8 A and 8B. Li a secondary process, each tab 808 is heated and formed into an anchor mechanism 810, shown in FIGS. 8C and 8D. More specifically, the main body of the member 800 (within which the seed 102 is located) can be held in place while each tab 808 is melted into a desired shape by pushing against the tab 808 with a heated surface or mold that is moved toward the main body of the member. The heated surface or mold that is used to melt the tab 808 can simply be a flat surface, which will cause the anchor mechanism 810 to have an amorphous shape. Alternatively, the mold that is used to melt the tab 808 can be shaped to cause the anchor mechanism 810 to have a specific shape, such as a square, as shown in FIGS 8C and 8D. FIG. 8E, which is an end view of the member 800 shown in FIGS. 8C and 8D, includes exemplary dimensions in inches. [0056] In FIGS. 8C-8E, the anchor mechanism 810 is square shaped, hi alternative embodiments the anchor mechanisms can have other shapes. For example, the anchor mechanism 810 can be amorphous, rectangular, triangular, trapezoidal, etc. hi accordance with specific embodiments, an outer surface 812 of the anchor mechanism 810 is generally perpendicular to the longitudinal axis 103 of the radioactive source 102, as shown in FIGS. 8C and 8D. A void or groove 814 is formed between the main portion of the member and the anchor mechanism 810, thereby allowing patient tissue to occupy this void 814 to reduce the tendency for the member 800, and the radioactive source 102 therein, to migrate or rotate.
[0057] It is preferred that the anchor mechanism 810 be located at each longitudinal end of the therapeutic member 800, as shown in FIGS. 8C and 8D. However, in alternative embodiments the anchor mechanism 810 can be located at only one of the longitudinal ends of the member, hi FIGS. 8A-8E the outer surface of the main body of the therapeutic member 800 is shown as being generally cylindrical and smooth. However, this need not be the case. The embodiments of FIGS. 1-7 discussed above can be combined with the embodiments of FIGS. 8A-8E. For example, a same mold that is used to form the protrusions of FIGS. 1-7 can be used to form the tabs 808, which can then shaped into the anchor mechanisms 810 in a secondary process after the members have been removed from the mold, hi still another embodiment, the anchor mechanisms 810 can be formed by an embossing mold similar to that used to form the protrusions of FIGS. 1-7. [0058] The radioactive sources 102 can be coated with or contain a drug and/or hormone. Alternatively, a drug and/or hormone can be included in the encapsulating material 104 that is used for form the protrusions or anchor mechanisms of the present invention. [0059] Example types of materials 104 that are bioabsorbable include, but are not limited to, synthetic polymers and copolymers of glycolide and lactide, polydioxanone and the like. Such polymeric materials are more fully described in U.S. Pat. Nos. 3,565,869, 3,636,956, 4,052,988 and European Patent Publication No. 0030822, all of which are incorporated herein by reference. Specific examples of bioabsorbable polymeric materials that can be used to produce the therapeutic members of embodiments of the present invention are polymers made by Ethicon, Inc., of Somerville, NJ., under the trademarks "MONOCRYL" (polyglycoprone 25), "MAXON" (Glycolide and Trimethylene Carbonate), "VICRYL" (polyglactin 910) and "PDS II" (polydioxanone). [0060] Other exemplary bioabsorbable materials include poly(glycolic acid) (PGA) and poly(-L-lactic acid) (PLLA), polyester amides of glycolic or lactic acids such as polymers and copolymers of glycolate and lactate, polydioxanone and the like, or combinations thereof. Such materials are more fully described in U.S. Pat. No. 5,460,592 which is hereby incorporated by reference. Further exemplary bioabsorbable polymers and polymer compositions that can be used in this invention are described in the following patents which are hereby incorporated by reference: U.S. Pat. No. 4,052,988 which discloses compositions comprising extruded and oriented filaments of polymers of p- dioxanone and l,4-dioxepan-2-one; U.S. Pat. No. 3,839,297 which discloses compositions comprising poly[L(-)lactide-co-glycolide] suitable for use as absorbable sutures; U.S. Pat. No. 3,297,033 which discloses the use of compositions comprising polyglycolide homopolymers as absorbable sutures; U.S. Pat. No. 2,668,162 which discloses compositions comprising high molecular weight polymers of glycolide with lactide; U.S. Pat. No. 2,703,316 which discloses compositions comprising polymers of lactide and copolymers of lactide with glycolide; U.S. Pat. No. 2,758,987 which discloses compositions comprising optically active homopolymers of L(-) lactide i.e. poly L- Lactide; U.S. Pat. No. 3,636,956 which discloses compositions of copolymers of L(-) lactide and glycolide having utility as absorbable sutures; U.S. Pat. No. 4,141,087 which discloses synthetic absorbable crystalline isomorphic copolyoxylate polymers derived from mixtures of cyclic and linear diols; U.S. Pat. No. 4,441,496 which discloses copolymers of p-dioxanone and 2,5-morpholinediones; U.S. Pat. No. 4,452,973 which discloses poly(glycolic acid)/poly(oxyalkylene) ABA triblock copolymers; U.S. Pat. No. 4,510,295 which discloses polyesters of substituted benzoic acid, dihydric alcohols, and glycolide and/or lactide; U.S. Pat. No. 4,612,923 which discloses surgical devices fabricated from synthetic absorbable polymer containing absorbable glass filler; U.S. Pat. No. 4,646,741 which discloses a surgical fastener comprising a blend of copolymers of lactide, glycolide, and poly(p-dioxanone); U.S. Pat. No. 4,741,337 which discloses a surgical fastener made from a glycolide-rich blend of polymers; U.S. Pat. No. 4,916,209 which discloses bioabsorbable semi-crystalline depsipeptide polymers; U.S. Pat. No. 5,264,540 which discloses bioabsorbable aromatic polyanhydride polymers; and U.S. Pat. No. 4,689,424 which discloses radiation sterilizable absorbable polymers of dihydric alcohols. If desired, to further increase the mechanical stiffness of the molded embodiments of the present invention, bioabsorbable polymers and polymer compositions can include bioabsorbable fillers, such as those described in U.S. Pat. No. 4,473,670 (which is incorporated by reference) which discloses a composition of a bioabsorbable polymer and a filler comprising a poly(succinimide); and U.S. Pat. No. 5,521,280 (which is incorporated by reference) which discloses bioabsorbable polymers and a filler of finely divided sodium chloride or potassium chloride. [0061] The final hardness of a polymer of the therapeutic members of the present invention should preferably be in a range from 20 to 80 durometer and more preferably in the range of 20-40 durometer. However, members with other hardnesses are also within the scope of the present invention. Where the material 104 is bioabsorbable, the bioabsorbable material should preferably be absorbed in living tissue in a period of time of from about 70 to about 120 days, but can be manufactured to be absorbed anywhere in a range from 1 week to 1 year or more, depending on the therapeutic plan for a specific patient. The material 104 should also be biocompatible, whether or not it is bioabsorbable. The material 104 may also be bio-adhesive.
[0062] hi accordance with an embodiment of the present invention,- the minimum thickness of the material 104 that encapsulates the source 102 should be about 0.002 inches. Such minimum thickness would occur at locations where there is not a protrusion. The preferred thickness of the material 104 where there is not a protrusion is about 0.004 inches. As mentioned above, the protrusions preferably extend at least 0.002 inches so that they can sufficiently grip into patient tissue. Such extension of the protrusions is that which is beyond the underlying thickness of the material 104. The protrusions are preferably separated from one another a sufficient distance such that the voids formed between the protrusions allow patient tissue to occupy these voids to reduce the tendency for the therapeutic member, and the radioactive source 102 therein, to migrate or rotate. Preferably, these voids or spaces between protrusions are at least 0.010 inches, so that patient tissue can fit into these spaces. The overall dimensions of the therapeutic members of the present invention are limited by the inner diameter of the needle that is to be used to implant the members. For example, the larger the inner diameter of the needle, the more the protrusions can extend.
[0063] The term polymer, as used herein, is also meant to include copolymers. Table 2 below provides examples of bioabsorbable polymers suitable for use in producing embodiments of the present invention, along with specific characteristics (e.g., melting points) of the various polymers. A further discussion of such bioabsorbable polymers can be found in an article by John C. Middleton and Arthur J. Tipton entitled "Synthetic Biodegradable Polymers as Medical Devices," published March 1998 in Medical Plastics and Bio-materials, which article is incorporated herein by reference.
Figure imgf000018_0001
Table 2. Biodegradable polymers, properties and degradation time
[0064] FIG. 9 illustrates an exemplary applicator 900, often referred to as a MICK™ applicator, that can be used to implant the therapeutic members of the present invention at variable spaced locations within a patient's body. Such an applicator 900 is available from Mick Radio-Nuclear Instruments, Inc., of Mount Vernon, NY. [0065] The applicator 900 includes a hollow needle 912 insertable into the patient's body, a needle chuck 913 for releasably holding the needle 912, a. magazine 914 for holding and dispensing therapeutic members of the present invention (containing seeds or other radioactive sources) into the needle chuck 913, a main barrel 916 connected to the needle chuck 913. Also shown in FIG. 9 is a stylet 917 extendable through the main barrel 916, the needle chuck 913, and a bore of the needle 912. The applicator 900 also includes a base frame member along which the needle 912, the needle chuck 913, the magazine 914 and the main barrel 916 are slidably mounted. The frame member includes an abutment end 922 adapted to abut a surface of the patient's body or a template (not shown) fixed with respect to the body, a barrel collar 924 through which the main barrel 916 is slidable, and two rods 926 (only one can be seen in the side view of FIG. 9) extending between and fixedly attached to the abutment end 922 and the collar 924. The collar 924 is equipped with a finger ring 928 for receiving a finger of a user.
[0066] The applicator 900 is designed to allow the needle 912 to be moved in different increments with respect to the base frame. For this purpose, the main barrel 916 includes rows of detents or indentations 952 that extend along the length of the barrel 916, with each row having different indentation spacing (only one row is shown in FIG. 9) For example, the applicator 900 can have a first row of indentations spaced at 3.75 mm, a second row of indentations spaced at 4.0 mm, a third row of indentations spaced at 5.0 mm, a fourth row of indentations spaced at 5.5 mm, and a fifth row of indentations at 6.0 mm. These spacings can be changed as desired by using an applicator having a main barrel with other indentation spacings.
[0067] The barrel collar 924 includes a fixed portion 955 and a spacing dial 956 rotatably mounted on the fixed portion 955. An operator can turn the dial 956 relative to the fixed portion 955 to select one of the rows or series of indentations. [0068] The magazine 914 includes a magazine head 933 and a cartridge 934 in which therapeutic members of the present invention can be stacked parallel to each other. A spring-loaded magazine plunger 938 is biased against the therapeutic members (each of which includes a radioactive source 102) at the upper end of the magazine 914 to facilitate movement of the therapeutic members into the needle chuck 913 and to provide an indication to the operator that a therapeutic member has been dispensed from the cartridge 934.
[0069] The cartridge 934 can be preloaded with a plurality of therapeutic members of the present invention (e.g., up to 20 members, each with a radioactive source 102) and then screwed into the magazine head 933. The cartridge 934 can be keyed to the needle chuck 913 to prevent its incorrect insertion into the needle chuck 913. [0070] In the operation, the needle 912 is inserted into a patient in an area where a single radioactive source or row of radioactive sources is to be implanted. Then, the needle chuck 913 of the body of the applicator 900 is coupled with the protruding end of the needle 912 to prepare the applicator 900 for use. An initial radioactive source spacing can be set by adjusting the spacing dial 956 to select a particular row of indentations 952 on the main barrel 916 corresponding to the desired spacing. The stylet 917, which is initially fully extended in the needle 912, is then retracted from the needle 912 and the needle chuck 913, enabling a therapeutic member (including a radioactive source) from the magazine 914 to be positioned in the chuck 913 for movement into the needle 912. When the style 917 is retracted, the therapeutic member is moved into the chuck and the extended magazine plunger 938 will move further into the magazine 914, which will indicate to the operator that a member has been positioned for transfer into the needle 912. The stylet 917 is then pushed through the barrel 916 against the therapeutic member, forcing the member through the needle 912 and into the patient's body. [0071] After a first member (including a radioactive source) has been implanted, the needle 912 is withdrawn from the patient's body by a particular distance so that the next radioactive source to be implanted is spaced apart from the first radioactive source. Then, the stylet 917 is again retracted to enable the next therapeutic member (with a radioactive source) from the magazine 914 to be positioned for movement into the needle 912. The stylet 917 is then advanced through the needle 912 to force the therapeutic member into the patient's body at a desired distance away from the first member. This procedure is repeated for subsequent therapeutic member implants. Additional details of this process and the applicator 900 can be found in U.S. Patent No. 5,860,909, which is incorporated herein by reference. This is just one example of a device that can be used to implant therapeutic members of the present invention. Other devices may also be used, while still being within the scope of the present invention. For example, rather than using cartridges as described above, therapeutic members of the present invention (and optionally, spacers therebetween) can be preloaded into a needle that is used to implant a row of such members (and optionally, spacers therebetween) in a single needle track. [0072] The conventional stylet 917 that is used with an applicator, such as a Mick™ applicator, is made using a solid wire. However, this can result in the mislocation of the sources in the needle track due to vacuum phenomena occurring as the needle and stylet are withdrawn. To overcome this problem, the stylet 917 is preferably a vented stylet that includes a vent that extends the length of the stylet, as described in U.S. Patent No. 6,554,760, which is incorporated herein by reference.
[0073] Embodiments of the present invention, as described above, are directed to therapeutic members that include protrusions and/or anchor mechanisms that reduce the tendency for the therapeutic member and the radioactive source therein to migrate and rotate within a patient's body after implantation. Embodiments of the present invention are also directed to cartridges, similar to 934, that are pre-loaded with such therapeutic members.
[0074] The above mentioned embodiments of the present invention relate to therapeutic members that include a single radioactive source (a single seed, rod or coil). It is also possible that embodiments of the present invention can be used together with elongated members known as strands that include multiple radioactive sources that are spaced from one another, e.g., as described in U.S. Patent Application No. 10/035,083, which was filed on December 28, 2001, and which is incorporated herein by reference. More specifically, one or more therapeutic member as described in FIGS. 1-7, which each include a single radioactive source 102, can be used together with one or more strand that includes multiple radioactive sources.
[0075] For example, a single needle can be loaded with a therapeutic member having a single radioactive source as well as with a strand having multiple radioactive sources, thereby allowing for implantation of both during the same procedure that include insertion and removal of the needle. This would be useful, e.g., where a first radioactive source in a row of radioactive sources is to be located near a patient's bladder or urethra. If a strand of radioactive sources were being implanted, and the end of the strand were inserted too far and into the patient causing it to enter the bladder or urethra, then the entire strand would have to be removed from the patient. However, if the first radioactive source implanted was within a therapeutic member of the present invention, and that radioactive source got into the bladder or urethra, then it would be possible to remove the single first radioactive source without removing strand that followed the first radioactive source. [0076] As mentioned above, seeds (or other radioactive sources) are sometimes implanted into a patient by preloading a hollow needle with seeds and spacers that are used to maintain a desired distance between a row of seeds, e.g., as described in U.S. Patent No. 6,554,760, which is incorporated herein by reference. The seeds and spacers are deployed from the hollow needle using a stylet, which preferably includes a radial vent that extends the length of the stylet, to reduce the mislocation of the radioactive sources in the needle track due to vacuum phenomena occurring as the needle and stylet are withdrawn, hi such implants, the first and last seeds are the most likely seeds to migrate and/or rotate, however the other seeds, as well as the spacers, may also migrate and/or rotate within the needle track. To reduce migration of the seeds, therapeutic members of the present invention can be used. That is, a seed can be encapsulated by a material that includes protrusions that will resist the migration and rotation of the seed therein, hi another embodiment, protrusions can be added to the spacers that are used to maintain the desired distances between the radioactive sources. Such spacers with protrusions can be made in manners similar to those explained above. For example, protrusions can be added to preexisting spacers (e.g., cylindrical spacers) by encapsulating the spacer with a material within which protrusions are formed. Alternatively, spacers can be manufactured to include protrusions. Such spacers can be formed, e.g., using an embossing mold, or by machining, crimping or otherwise forming protrusions in an outer surface of the spacers. The spacers with protrusions can be used together with therapeutic members having protrusions, or with radioactive sources that do not have protrusions. When used with radioactive sources not having protrusions, the spacers with protrusions would preferably be located at both longitudinal ends of the radioactive sources, to thereby trap the radioactive sources in place. For example, if five radioactive seeds were to be implanted in a single needle track, six such spacers can be used (i.e., four spacers each of which separate pairs of seeds, and a spacer prior to the first seed, and a spacer following the last seed). The spacers that are located between seeds preferably include protrusions similar to those explained with reference to FIGS. 1- 7. The spacers that are located prior to the first seed and following the last seed in the needle track can include protrusions similar to those explained with reference to FIGS. 1- 7, or can include anchor mechanisms similar to those described above with reference to FIGS. 8A-8D. The spacers with protrusions can be made entirely from a bioabsorbable material, examples of which are listed above. Alternatively, the spacers with protrusions can be made from a non-bioabsorbable material which is biocompatible. In still another embodiment, the spacer is made of a body that is biocompatible but non-bioabsorbable, which is encapsulated within a bioabsorbable material that is used to form the protrusions.
[0077] FIGS. 10A- 1OC illustrate a spacer 1000 according to another embodiment of the present invention. As shown in FIGS. 10A- 1OC, the spacer 1000 includes two halves 1002 and 1004 that are connected by a living hinge 1006. The halves 1002 and 1004 are shown as being half cylinders, but other shapes are also possible. The living hinge 1006 is biased such that after the spacer is folded into its closed position (FIG. 10B), the spacer tends to open up such that a gap 1008 forms between the two halves (FIG. 10C). This can be accomplished, e.g., by molding the two halves 1002 and 1004 and the living hinge 1006 in the open position shown in FIG. 1OA. The two haves 1002 and 1004 can then be folded toward one another along the living hinge 1006 to place the spacer 1000 in the closed position shown in FIG. 1OB, at which point the spacer can be inserted into a hollow needle used to implant spacers and radioactive sources in a patient. Once implanted in the patient, the spacer 1000 will tend to open or unfold along the living hinge 1006, causing an outer surface of the spacer 1000 to thereby engage the patient tissue that surrounds the spacer 1000. This engagement with patient tissue will cause the spacer to resist migration and rotation. To further resist migration and rotation, protrusions, such as those discussed above, can be added to the outer surface of the spacer. The spacer 1000 can be made entirely from a bioabsorbable material, examples of which are listed above. Alternatively, the spacer 1000 can be made from a non- bioabsorbable material which is biocompatible.
[0078] In accordance with other embodiments of the present invention, an entire strand 1100 that includes multiple radioactive sources (e.g., seeds) 102, or portions of the strand 1100, can include the protrusions of the present invention, e.g., as shown in FIG. 11. Because a typical strand includes polymeric material that attaches multiple radioactive sources to one another at desired spacings, a strand is not as susceptible to migration and twisting as loose radioactive sources. Nevertheless, it is still possible that that radioactive sources within the strands, especially the radioactive sources located near the distal ends of the strand, can migrate and/or twist. By including protrusions that extend from the strand, the tendency for the strand or portions of the strand to migrate and/or twist can be reduced. Such protrusions can extend from portions of the strand where radioactive sources are located, but can alternatively or additionally extend from other portions of the strand, such as the portions of the strand between the radioactive sources. [0079] hi another embodiment of the present invention, the anchor mechanism (e.g., 810) disclosed above with reference to FIGS. 8A-8E can be located at one or both longitudinal distal ends of a strand 1200 that includes multiple radioactive sources 102, e.g., as shown in FIG. 12.
[0080] The strands 1100 and 1200 can be manufactured using similar molding processes that were used to produce the therapeutic members of the present invention. For example, to produce the strand 1100, radioactive sources 102 can be placed into an embossing mold that allows the radioactive sources 102 to be spaced at the appropriate intervals in a cavity of the embossing mold that is shaped to the desired final dimensions, including the protrusions, of the strand. AU the spacings between the radioactive sources 102 can be of different lengths, if the preoperative therapeutic plan so specifies. Spacers (not shown) can be placed between radioactive sources 102 to keep a desired spacing between the radioactive sources, if desired. Alternative means for maintaining the spacings between adjacent radioactive sources may be used, as is known in the art. The strand 1200 can be manufactured in a similar fashion as was just described, and as was described above with reference to FIGS. 8A-8E.
[0081] In accordance with specific embodiments of the present invention, a resulting strand (e.g., 1100 or 1200) is a single solid monofilament of a polymer with the radioactive sources 102 spaced within the monofilament and encapsulated at the appropriate intervals. The strand is preferably axially flexible. However, the strand preferably has sufficient column strength along its longitudinal axis so that the strand can be urged out of a hollow needle without the strand folding upon itself. Again, the intervals can be selected to be any distance or combination of distances that are optimal for the treatment plan of the patient. [0082] In another embodiment, a strand can be made by inserting (i.e., pushing) radioactive sources and spacers through an opening in one end of an elongated hollow tube of bioabsorbable material. Additional details of a seed pusher that can be used in this process are described in U.S. Patent No. 6,761,680, which was incorporated herein by reference above. The protrusions of the present invention can be formed on the outer surface of the hollow tube prior to or after the insertion of the radioactive sources and spacers.
[0083] hi a further embodiment, a strand can be constructed using a pair of pre-formed elongated members of bioabsorbable material that are shaped like half-shells, as described in U.S. Patent No. 6,761,680, which is incorporated herein by reference. The two half-shells can be separate from one another. Alternatively, the two half shells can be connected by a living hinge along their length. The radioactive sources and spacers are placed within a first one of half-shells. The second half-shell is then mated with the first half-shell, and the half-shells are fused together (e.g., using ultrasonic welding or heat), thereby fixing the radioactive sources and spacers inside. The protrusions of the present invention can be formed on the outer surface of such half-shells before or after the radioactive sources and spacers are placed therein.
[0084] hi still another embodiment, a strand can be made by inserting the seeds and spacers into a tube of braded bioabsorbable material. Additional details of such a braded bioabsorbable tube are described in U.S. Patent No. 5,460,592, which is incorporated herein by reference. Protrusions can then be added, e.g., by slipping doughnut shaped rings over the breaded material. Such doughnut shaped rings can also be slipped over any other type of strand that has a generally cylindrical outer surface. [0085] hi another embodiment, one or more spacers 1000 that are biased to open (as described above with reference to FIG. 10) can be incorporated into a strand 1300, as shown in FIG. 13. The spacers 1000 can be incorporated into the strand 1300 in various manners, such as by insert molding them into the strand. When the strand 1300 including such spacers 1000 is inserted into a hollow needle, the spacers 1000 will be kept in their closed position by the inner wall of the needle. However, once implanted in a patient, the spacers 1000 will at least partially open and engage the tissue surrounding the spacer, thereby anchoring the entire strand 1300. More generally, portions of the strand 1300 can be biased such that they at least partially open or expand to engage tissue surrounding the strand. As shown in FIG. 13, the portions of the strand that open to engage surrounding tissue can be at one or both distal ends of the strand and/or at locations between the distal ends. In FIG. 13, the living hinges 1006 are shown as being along the length of the strand 1300. However, this need not be the case. For example, a living hinge can be located at one or both of the longitudinal ends of the strand, and thus be perpendicular to the length of the strand.
[0086] Embodiments of the present invention are also directed to radiopaque markers that include protrusions and/or anchor mechanisms, similar to those described above, to reduce the tendency of the markers to migrate and rotate within a patient's body after implantation. Such markers can be made entirely or partially of a radiopaque material. Such a radiopaque material is often a dense, high atomic number material, such as gold or tungsten, which can block the transmission of X-rays or other radiation so that the markers can be detected using X-ray or other radiation imaging techniques. For example, a marker can be a ball, rod or wire constructed from gold or tungsten. Alternatively, the marker can be a container that includes a ball, rod or wire of radiopaque material, or a container at least partially coated with a radiopaque material. One commercially available marker is marketed under the trademark VISICOIL and is available from RadioMed Corporation of Tyngsboro, MA. These are just a few examples of such markers. One of ordinary skill in the art will understand that other markers are also possible. To add the protrusions and/or anchor mechanisms to an existing marker, the marker can be encapsulated in a polymeric material within which protrusions and/or anchor mechanisms are formed, in any of the manners described above. Alternatively, a marker can be manufactured to include protrusions and/or anchor mechanisms. [0087] The markers can be implanted within a patient that will be undergoing external beam radiation therapy. If the patient is to also undergo brachytherapy, then the markers can implanted at the same time that radiation sources are being implanted into the patient, hi specific embodiments, radiopaque markers can be included in spacers and/or strands of the present invention. By including a marker within a spacer or strand that includes protrusions and/or anchor mechanisms, the marker therein will also be resistant to migration and rotation.
[0088] In another embodiment, shown in FIGS. 14A-14D, an anchor mechanism 1400 includes a sleeve 1404 to which are attached, by living hinges 1406, wings 1408. The wings 1408 are shown as being generally rectangular, but can have other shapes. Two wings 1408 are shown, but more are less can be used. The sleeve 1404 is intended to be placed around an underlying structure 1402, which can be a radioactive source (e.g., seed, rod or coil), a thermal ablation implant, a spacer, a strand, or a radiopaque marker. Each living hinge 1406 is biased in its open position (FIGS. 14A and 14B), such that after the wings 1408 are folded into their closed positions (FIGS. 14C and 14D), the wings 1408 will tend to open. This can be accomplished, e.g., by molding the anchor mechanism 1400 in the open position shown in FIGS. 14A and 14B. After being placed around an underlying structure 1402, the wings 1408 can then be folded inward along the living hinges 1406 to be in the closed position shown in FIGS. 14C and 14D. When in the closed position, the entire structure, including the underlying structure 1402 and anchor mechanism 1400, can be inserted into a hollow needle used to implant the structure in a patient. The inner wall of the hollow needle will keep the wings 1408 in their closed position. Because of the biasing of the living hinges 1406, once implanted in the patient, the wings 1408 will tend to open or unfold along the living hinges 1406, causing the wings 1408 to thereby engage the surrounding patient tissue. This engagement will resist migration and rotation of the structure 1402. To further resist migration and rotation, protrusions, such as those discussed above, can be added to the wings 1408 and/or sleeve 1404. The anchor mechanism 1400 can be made entirely from a bioabsorbable material, examples of which are listed above. Alternatively, the anchor mechanism can be made from a non-bioabsorbable material which is biocompatible.
[0089] In another embodiment, shown in FIGS. 15A-15B, an anchor mechanism 1500 includes a sleeve 1504 from which extends a plurality of protrusions 1506. The sleeve 1504 is intended to be placed around an underlying structure 1502, which can be a radioactive source (e.g., seed, rod or coil), a thermal ablation implant, a spacer, a strand, or a radiopaque marker, prior to implantation of the structure 1502. The protrusions 1506 extending from the sleeve 1504 will reduce a tendency of the underlying structure to migrate and rotate within a patient's body after the structure (with the anchor mechanism 1500 around it) is implanted. [0090] A bore 1508 extends through the anchor mechanism 1500 to form the sleeve 1504. In accordance with specific embodiments of the present invention, the shape of the bore 1508 is generally similar to the shape of the outer diameter of the underlying structure 1502. Thus, if the underlying structure 1502 is a cylindrical radioactive seed, the shape of the bore 1508 is cylindrical, in accordance with specific embodiments. [0091] In accordance with an embodiment, the inner diameter 1508 of the sleeve 1504 (which is the outer diameter of the bore 1508) is sized so that there is an interference fit between the underlying structure 1502 and the sleeve 1504. This can be accomplished by having the inner diameter 1508 of the sleeve 1504 slightly smaller than the outer diameter of the underlying structure 1502. Alternatively, the sleeve 1504 can be heat shrunk to tightly fit around the structure 1502. In another embodiment a biocompatible and preferably bioabsorbable adhesive can be used to secure the sleeve 1504 to the underlying structure 1502. Other mechanisms of securing the sleeve 1504 to the structure 1502 are also within the scope of the present invention. Where the underlying structure 1502 is an elongated strand (e.g., including a plurality of radioactive sources along its longitudinal length), more than one anchor mechanism 1500 can be placed around the strand, e.g., one slightly inward from each longitudinal end of the strand. [0092] The anchor mechanism 1500 can be made entirely from a bio-absorbable material, examples of which are listed above. Alternatively, the anchor mechanism can be made from a non-bio-absorbable material which is bio-compatible. [0093] In FIGS. 15A and 15B the protrusions 1506 are shown as being square or rectangular knobs that cause the outer surface of the anchor mechanism 1500 to resemble a knobby tire. The protrusions 1506 can form a plurality of rows (e.g., four rows) which are regularly spaced about the sleeve 1504, e.g., with each row extending in a direction that is 90 degrees from the adjacent rows. Alternatively, the protrusions can protrude in a more random or irregular fashion.
[0094] Exemplary dimensions for one of the protrusions 1506 are 0.010 x 0.008 x 0.003 inches. AU of the protrusions 1506 can have similar dimensions, or the dimensions of the protrusions may vary. For example, it is possible that the protrusions within a row have similar dimensions, but the dimensions differ for different rows. For a more specific example, another row of protrusions 1506 may have dimensions of 0.006 x 0.005 x 0.002 inches. These are just a few examples. One of ordinary skill in the art will appreciate from this description that the protrusions can have other dimensions while being within the scope of the present invention. [0095] Preferably, the protrusions 1506 extend at least 0.002 inches so that they can sufficiently grip into patient tissue (analogous to a knobby tire gripping soft dirt). The protrusions 1506 can extend radially from the sleeve 1504. For example, in the embodiments shown, the protrusions 1506 extend in directions that are generally perpendicular to a longitudinal axis 1503 of the sleeve 1504 and the structure (e.g., seed) 1502 therein. The protrusions 1506 may alternatively or additionally extend at other angles with respect to the longitudinal axis 1503. For example, protrusions may extend at 45 degrees with respect to the longitudinal axis 1503. In a specific embodiment, each half of the sleeve 1504 can have protrusions 1506 at a 45 degree angle facing towards the middle of the sleeve 1504, or towards the ends of the sleeve 1504. Various other angles, and combinations of angles, are also possible.
[0096] In another embodiment, the protrusions of the anchor mechanism can be cylindrical (e.g., similar to as in FIG. 2), resemble bumps or semi-spheres (e.g., similar to as in FIG. 3), triangular (similar to as in FIG. 4), or pyramidal (similar as in FIG. 5). These are just a few examples of the shapes of the protrusions. One of ordinary skill in the art reading this description would appreciate that other shapes are also possible. It should also be understood that an anchor mechanism of the present invention can include protrusions of numerous different shapes, including, but not limited to, the shapes discussed above. The various protrusions are shown as having a common orientation, but can have different orientations. [0097] hi a further embodiment, shown in FIGS. 15C and 15D, the protrusions of the anchor mechanism 1500 are ribs 1506' that encircle the sleeve 1504. Two ribs 1506' are shown in FIGS. 15C and 15D. However, it should be understood that more or less ribs 1506' can be included. It should also be understood the ribs can be helical (i.e., spiral), hi one specific embodiment, the ribs can form counter balancing screw threads (i.e., opposing helixes). For example, the threads on one half of the member can be right hand threads, while the threads on the other half of the member can be left hand threads. [0098] In another embodiment, the plurality of protrusions can form an irregular pattern on the outer surface of a sleeve 1504. [0099] It is preferred that the anchor mechanism 1500 is placed about the underlying structure 1502 so that a portion of the underlying structure 1502 extends from each longitudinal end of the anchor mechanism 1500, as is the case in FIGS. 15A-15D. This reduces the chances that the anchor mechanism 1500 will become separated from the underlying structure 1502. hi other words, it is preferred that the anchor mechanism 1500 not be attached to just one longitudinal end of the underlying structure 1502, which would increase the possibility that the anchor mechanism 1500 may separate from the underlying structure 1502, e.g., if the underlying structure slips out. Also, where the anchor mechanism 1500 does not extend from one of the longitudinal ends of the underlying structure 1502, the anchor mechanism 1500 does not lengthen the underlying structure 1502. This is beneficial in that the anchor mechanism will not affect the depths at which the underlying structure can be implanted, nor will it affect the distances that can be achieved between a pair of underlying structures (e.g., a pair of radioactive seeds). Additionally, this will allow for more precise placement of the structure 1500 during implantation.
[0100] For a portion of the underlying structure 1502 to extend from each longitudinal end of the anchor mechanism 1500, the longitudinal length of the anchor mechanism 1500 (i.e., the length of the sleeve 1504) should be less than the length of the underlying structure 1502. Additionally, for a portion of the underlying structure 1502 to extend from each longitudinal end of the anchor mechanism 1500, the bore 1508 should extend the entire length of the anchor mechanism.
[0101] Li accordance with specific embodiments of the present invention, where the underlying structure is a radioactive seed, a plurality of radioactive seeds, with an anchor mechanism 1500 of the present invention fit around each of the seeds (or at least some of the seeds), can be loaded into a cartridge. Examples of such a cartridge (e.g., 934) were discussed above with reference to FIG. 9. This would enable the seeds, with the anchor mechanisms 1500 fit around them, to be implanted into patient tissue using an applicator, such as applicator 900 described with reference to FIG. 9. [0102] Embodiments of the present invention are also directed to therapeutic members for use in brachytherapy and other radiation treatment. Ln. accordance with an embodiment such a therapeutic member includes an underlying structure (e.g., a radioactive source, a thermal ablation implant, a spacer, a strand or a radiopaque marker), with a sleeve to fit around the structure. The sleeve has a bore that extends an entire longitudinal length of the sleeve, and through which the structure fits, such that a portion of the structure extends out from each longitudinal end of the sleeve. One or more protrusion extends from the sleeve for engaging the patient tissue after implantation of the therapeutic member, to thereby reduce a tendency for the therapeutic member to migrate and rotate after implantation. [0103] The previous description of the preferred embodiments is provided to enable any person skilled in the art to make or use the embodiments of the present invention. While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.

Claims

What is Claimed is:
1. A therapeutic member configured to be implanted in a similar manner as loose radioactive seeds are implanted, for use in brachytherapy, comprising: a single radioactive source; and a polymeric material molded to encapsulate the single radioactive source; wherein an outer surface of the encapsulating material includes one or more protrusions to reduce a tendency of the member to migrate and rotate within a patient's body after implantation.
2. The therapeutic member of claim 1 , wherein the one or more protrusions are made from the polymeric material that encapsulates the single radioactive source.
3. The therapeutic member of claim 2, wherein the polymeric material is bio- absorbable.
4. The therapeutic member of claim 1, wherein the one or more protrusions are made of a non bio-absorbable material that is attached to the encapsulating material.
5. The therapeutic member of claim 1, wherein the single radioactive source comprises a single radioactive seed that includes radioactive material contained within a metallic housing, and wherein the polymeric material is molded to completely encapsulate the metallic housing of the seed.
6. The therapeutic member of claim 1, wherein an outer surface of the encapsulating material includes a plurality of ribbed shaped protrusions.
7. The therapeutic member of claim 1, wherein the one or more protrusions are defined by a shape of a mold that is used to encapsulate the seed.
8. The therapeutic member of claim 1, wherein the one or more protrusions include one or more ribs that encircle a radial circumference of the radioactive source.
9. The therapeutic member of claim 8, wherein the one or more ribs form one or more ring or a helix about the radial circumference of the radioactive source.
10. The therapeutic member of claim 8, wherein each rib extends at least 0.002 inches beyond portions of the material where there is not a protrusion.
11. The therapeutic member of claim 1, wherein the outer surface of the encapsulating material includes a plurality of the protrusions.
12. The therapeutic member of claim 1, wherein at least one of the plurality of protrusions extend at an acute angle with respect to a longitudinal axis of the radioactive source.
13. The therapeutic member of claim 1, wherein at least one of the plurality of protrusions extend in a radial direction with respect to the radioactive source.
14. The therapeutic member of claim 13, wherein one or more of the plurality of protrusions have one of the following shapes: square; rectangular; circular; triangular; pyramidal; oval; and semi-spherical.
15. The therapeutic member of claim 1, wherein the plurality of protrusions form an irregular pattern on the outer surface of the encapsulating material.
16. The therapeutic member of claim 15, wherein the plurality of protrusions form a surface that resembles a rough stucco surface.
17. The therapeutic member of claim 1, wherein a thickness of the material that encapsulates the single radioactive seed is at least 0.002 inches.
18. The therapeutic member of claim 1, wherein at least one of the one or more protrusions extends at least 0.002 inches beyond portions of the material where there is not a protrusion.
19. The therapeutic member of claim 1, wherein the single radioactive source comprises a single radioactive rod.
20. The therapeutic member of claim 1, wherein the single radioactive source comprises a single radioactive coil.
21. The therapeutic member of claim 1, wherein the single radioactive source includes first and second longitudinal ends, and wherein the one or more protrusions include an anchor mechanism that extends from at least one of the longitudinal ends of the single radioactive source.
22. The therapeutic member of claim 1, wherein the single radioactive source includes first and second longitudinal ends, and wherein the one or more protrusions are located between the longitudinal ends of the single radioactive source.
23. A therapeutic member configured to be implanted in a similar manner as loose radioactive seeds are implanted, for use in brachytherapy, comprising: a single radioactive source; and a polymeric material that encapsulates at least a portion of the single radioactive source; wherein an outer surface of the encapsulating material includes one or more protrusions to reduce a tendency of the member to migrate and rotate within a patient's body after implantation.
24. A brachytherapy device, comprising: a cartridge configured for use with a brachytherapy applicator; and a plurality of anchor seeds stacked parallel to one another within the cartridge; wherein each anchor seed includes a radioactive seed that is at least partially encapsulated by a polymeric material; and wherein each anchor seed includes at least one protrusion on an outer surface of the encapsulating material to a reduce a tendency for the anchor seed to migrate and rotate within a body after the anchor seed is implanted.
25. The device of claim 24, wherein each radioactive seed includes first and second longitudinal ends, and wherein the at least one protrusion extends from at least one of the longitudinal ends.
26. The device of claim 24, wherein each radioactive seed includes first and second longitudinal ends, and wherein the at least one protrusion is located between the longitudinal ends.
27. The device of claim 24, wherein the polymeric material is bio-absorbable.
28. A strand for use in brachytherapy, comprising: an elongate unitary member of bio-absorbable material; and a plurality of radioactive sources spaced apart from one another and encapsulated within the unitary member; wherein an outer surface of the elongate unitary member includes a plurality of protrusions to reduce a tendency of the strand to migrate and rotate within a patient's body after implantation.
29. The strand of claim 28, wherein the protrusions are made from the same bio- absorbable material as the elongate unitary member.
30. The strand of claim 28, wherein the protrusions are made from a bio-compatible material that is not bio-absorbable.
31. The strand of claim 28, wherein at least one of the protrusions comprises an anchor mechanism that extends from a longitudinal end of the elongate unitary member.
32. The strand of claim 28, wherein each radioactive source comprises a radioactive seed that includes radioactive material contained within a metallic housing, and wherein the bio-absorbable material is molded to encapsulate the metallic housing of each seed.
33. The strand of claim 28, wherein the radioactive sources comprise a radioactive rods or coils.
34. The strand of claim 28, wherein at least one of the protrusions extends at least 0.002 inches beyond portions of the bio-absorbable material where there is not a protrusion.
35. A strand for use in brachytherapy, comprising: an elongate unitary member of plastic material; and a plurality of radioactive sources spaced apart from one another and encapsulated with the plastic material; wherein a plurality of protrusions extend from an outer surface of the elongate member of plastic material, the protrusions to reduce a tendency of the strand to migrate and rotate within a patient's body after implantation.
36. The strand of claim 35, wherein at least one of the protrusions extends at least 0.002 inches beyond portions of the material where there is not a protrusion.
37. A strand for use in brachytherapy, comprising: an elongate unitary member of bio-absorbable material including first and second longitudinal ends; a plurality of radioactive sources spaced apart from one another and encapsulated with the bio-absorbable material; and an anchor mechanism that extends from at least one of the first and second longitudinal ends of the elongate member to reduce a tendency of the strand to migrate and rotate within a patient's body after implantation.
38. The strand of claim 37, wherein the anchor mechanism is formed from the bio- absorbable material.
39. The strand of claim 37, wherein the bio-absorbable material is polymeric.
40. The strand of claim 37, wherein a void is formed between the anchor mechanism and a portion of the bio-absorbable material that encapsulates the radioactive source that is closest to the anchor mechanism, the void to allow patient tissue to enter the void after implantation.
41. A spacer for use in separating implanted radioactive sources from one another, wherein the spacer includes first and second longitudinal ends and a portion therebetween, wherein the spacer is configured to be placed between a pair of radioactive sources such that one of the radioactive sources is adjacent the first longitudinal end of the spacer, and the other one of the radioactive sources is adjacent the second longitudinal end of the spacer, and wherein at least one protrusion extends from the portion of the spacer, between the first and second longitudinal ends, to reduce a tendency for the spacer to migrate and rotate within a patient's body after implantation.
42. The spacer of claim 41 , wherein the spacer is made of a bio-absorbable material.
43. The spacer of claim 41, wherein the spacer includes a non-bio-absorbable body that is at least partially encapsulated with a polymeric material that is molded around the body, wherein an outer surface of the encapsulating polymeric material includes the at least one protrusion.
44. A spacer for use in separating radioactive sources from one another, comprising: a first half; a second half; and a living hinge that connects the first and second halves and biases the first and second halves such that after the first and second halves are folded toward one another the first and second halves tend to unfold, causing the first and second halves to engage surrounding patient tissue after implantation and thereby reducing a tendency for the spacer to migrate and rotate after implantation.
45. The spacer of claim 44, wherein an outer surface of at least one of the first and second halves includes one or more protrusions.
46. A marker for use in radiation treatment, comprising: a marker body including a radiopaque material; and a polymeric material that encapsulates at least a portion of the marker body; wherein an outer surface of the encapsulating material includes one or more protrusions to reduce a tendency of the marker to migrate and rotate within a patient's body after implantation.
47. The marker of claim 46, wherein the polymeric material is bio-absorbable.
48. An anchor mechanism, comprising: a sleeve to fit around a structure that is a radioactive source, a thermal ablation implant, a spacer, a strand or a radiopaque marker; and one or more wings connected to the sleeve by a corresponding living hinge that enables the wing to be folded against the structure during implantation of the structure in a patient, wherein the living hinge biases the wing such that one end of the wing moves away from the structure to engage surrounding patient tissue after implantation of the structure into a patient, to thereby reduce a tendency for the structure to migrate and rotate after implantation.
49. An anchor mechanism to reduce a tendency for a structure to migrate and rotate after implantation of the structure into a patient, where the structure is a radioactive source, a thermal ablation implant, a spacer, a strand or a radiopaque marker, the anchor mechanism comprising: a sleeve to fit around the structure; said sleeve having a bore that extends an entire longitudinal length of said sleeve, and through which the structure fits, such that a portion of the structure extends out from each longitudinal end of said sleeve; and one or more protrusion that extends from an outer surface of said sleeve to engage surrounding patient tissue after implantation of the structure into a patient, to thereby reduce a tendency for the structure to migrate and rotate after implantation.
50. The anchor mechanism of claim 49, wherein an inner diameter of said sleeve is slightly smaller than an outer diameter of the structure so that an interference fit is provided therebetween.
51. The anchor mechanism of claim 49, wherein said sleeve is adapted to be heat shrunk to the structure.
52. The anchor mechanism of claim 49, wherein said sleeve is adapted to be adhered to the structure.
53. The anchor mechanism of claim 49, wherein said one or more protrusion comprises a plurality of protrusions.
54. The anchor mechanism of claim 49, wherein said one or more protrusion comprises one or more rib.
55. The anchor mechanism of claim 49, wherein said sleeve and said protrusions are bioabsorbable.
56. The anchor mechanism of claim 49, wherein said sleeve and said protrusions are biocompatible.
57. A therapeutic member for use in brachytherapy and other radiation treatment, comprising: a structure that is a radioactive source, a thermal ablation implant, a spacer, a strand or a radiopaque marker; a sleeve to fit around said structure; said sleeve having a bore that extends an entire longitudinal length of said sleeve, and through which said structure fits, such that a portion of said structure extends out from each longitudinal end of said sleeve; and one or more protrusion that extends from an outer surface of said sleeve to engage surrounding patient tissue after implantation of the therapeutic member into a patient, to thereby reduce a tendency for the therapeutic member to migrate and rotate after implantation.
58. The therapeutic member of claim 57, wherein said structure comprises a radioactive source.
59. The therapeutic member of claim 57, wherein said structure comprises a strand that includes a plurality of radioactive sources.
60. The therapeutic member of claim 57, wherein an inner diameter of said sleeve is slightly smaller than an outer diameter of said structure so that an interference fit is provided therebetween.
61. The therapeutic member of claim 57, wherein said sleeve is heat shrunk to said structure.
62. The therapeutic member of claim 57, wherein said sleeve is adhered to said structure.
63. The therapeutic member of claim 57, wherein said one or more protrusion comprises a plurality of protrusions.
64. The therapeutic member of claim 57, wherein said one or more protrusion comprises one or more rib.
65. The therapeutic member of claim 57, wherein said sleeve and said protrusions are bioabsorbable.
66. The therapeutic member of claim 57, wherein said sleeve and said protrusions are biocompatible.
67. A method for use in brachytherapy and other radiation treatment, comprising: providing a structure that is a radioactive source, a thermal ablation implant, a spacer, a strand or a radiopaque marker; fitting a sleeve around the structure such that a portion of the structure extends out from each longitudinal end of the sleeve, wherein the sleeve includes one or more protrusion that extends from an outer surface of the sleeve; loading the structure, with the sleeve around the structure, into a hollow needle; and using the hollow needle to implant the structure, with the sleeve around the structure, into patient tissue; wherein the one or more protrusion is for engaging the patient tissue after implantation of the structure, with the sleeve around the structure, to thereby reduce a tendency for the structure to migrate and rotate after implantation.
68. The method of claim 67, wherein the structure is a radioactive source.
PCT/US2006/028398 2005-07-22 2006-07-21 Implants for use in brachytherapy and other radiation therapy that resist migration and rotation WO2007021449A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/187,411 US7736293B2 (en) 2005-07-22 2005-07-22 Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
US11/187,411 2005-07-22
US11/489,895 US7972261B2 (en) 2005-07-22 2006-07-20 Devices to resist migration and rotation of implants used in brachytherapy and other radiation therapy
US11/489,895 2006-07-20

Publications (2)

Publication Number Publication Date
WO2007021449A2 true WO2007021449A2 (en) 2007-02-22
WO2007021449A3 WO2007021449A3 (en) 2007-12-06

Family

ID=37679994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/028398 WO2007021449A2 (en) 2005-07-22 2006-07-21 Implants for use in brachytherapy and other radiation therapy that resist migration and rotation

Country Status (2)

Country Link
US (8) US7736293B2 (en)
WO (1) WO2007021449A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2401022A2 (en) * 2009-02-26 2012-01-04 Biocompatibles Uk Ltd. Therapeutic member including a rail to resist movement within a needle used in brachytherapy and other radiation therapy
CN113164713A (en) * 2018-12-07 2021-07-23 贝克顿·迪金森公司 Injection molding sleeve and method of making same

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668737B2 (en) 1997-10-10 2014-03-11 Senorx, Inc. Tissue marking implant
US7637948B2 (en) 1997-10-10 2009-12-29 Senorx, Inc. Tissue marking implant
US7651505B2 (en) 2002-06-17 2010-01-26 Senorx, Inc. Plugged tip delivery for marker placement
US6725083B1 (en) 1999-02-02 2004-04-20 Senorx, Inc. Tissue site markers for in VIVO imaging
US8498693B2 (en) 1999-02-02 2013-07-30 Senorx, Inc. Intracorporeal marker and marker delivery device
US20090216118A1 (en) 2007-07-26 2009-08-27 Senorx, Inc. Polysaccharide markers
US7983734B2 (en) 2003-05-23 2011-07-19 Senorx, Inc. Fibrous marker and intracorporeal delivery thereof
US6862470B2 (en) 1999-02-02 2005-03-01 Senorx, Inc. Cavity-filling biopsy site markers
US9820824B2 (en) 1999-02-02 2017-11-21 Senorx, Inc. Deployment of polysaccharide markers for treating a site within a patent
US8361082B2 (en) 1999-02-02 2013-01-29 Senorx, Inc. Marker delivery device with releasable plug
US6575991B1 (en) 1999-06-17 2003-06-10 Inrad, Inc. Apparatus for the percutaneous marking of a lesion
WO2002041786A2 (en) 2000-11-20 2002-05-30 Senorx, Inc. Tissue site markers for in vivo imaging
US20060036158A1 (en) 2003-11-17 2006-02-16 Inrad, Inc. Self-contained, self-piercing, side-expelling marking apparatus
US7877133B2 (en) 2003-05-23 2011-01-25 Senorx, Inc. Marker or filler forming fluid
EP2085049B1 (en) * 2003-08-11 2019-06-19 Cook Medical Technologies LLC Surgical implant with penetrating tip
US20050273002A1 (en) 2004-06-04 2005-12-08 Goosen Ryan L Multi-mode imaging marker
US10357328B2 (en) 2005-04-20 2019-07-23 Bard Peripheral Vascular, Inc. and Bard Shannon Limited Marking device with retractable cannula
US7736293B2 (en) * 2005-07-22 2010-06-15 Biocompatibles Uk Limited Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
CA2562580C (en) 2005-10-07 2014-04-29 Inrad, Inc. Drug-eluting tissue marker
US8170647B2 (en) * 2006-01-20 2012-05-01 Best Medical International, Inc Fiduciary markers and method of use thereof
US20090216063A1 (en) * 2008-01-29 2009-08-27 Biocompatibles Uk Limited Bio-absorbable brachytherapy strands
US8771162B2 (en) * 2010-04-23 2014-07-08 Eckert & Ziegler Bebig S. A. Spacers for use in brachytherapy, radiotherapy, and other medical therapy
WO2008027402A2 (en) * 2006-08-29 2008-03-06 Civatech Oncology Brachytherapy devices and related methods and computer program products
ES2443526T3 (en) 2006-10-23 2014-02-19 C.R. Bard, Inc. Breast marker
US9579077B2 (en) 2006-12-12 2017-02-28 C.R. Bard, Inc. Multiple imaging mode tissue marker
EP2101670B1 (en) 2006-12-18 2013-07-31 C.R.Bard, Inc. Biopsy marker with in situ-generated imaging properties
US20080199646A1 (en) * 2007-02-15 2008-08-21 Medtronic Vascular, Inc. Inline Particle Deposition Extrusion
US20090024225A1 (en) * 2007-07-16 2009-01-22 Stubbs James B Implant for Targeting Therapeutic Procedure
US20090030260A1 (en) * 2007-07-25 2009-01-29 Mick Radio-Nuclear Instruments, Inc. Seed anchor
US9089707B2 (en) 2008-07-02 2015-07-28 The Board Of Regents, The University Of Texas System Systems, methods and devices for paired plasticity
US20090163889A1 (en) * 2007-11-26 2009-06-25 Microtransponder, Inc. Biodelivery System for Microtransponder Array
US8457757B2 (en) 2007-11-26 2013-06-04 Micro Transponder, Inc. Implantable transponder systems and methods
WO2009099767A2 (en) 2008-01-31 2009-08-13 C.R. Bard, Inc. Biopsy tissue marker
EP2293842B1 (en) 2008-05-02 2020-08-12 Civatech Oncology Brachytherapy devices and related methods
US9327061B2 (en) 2008-09-23 2016-05-03 Senorx, Inc. Porous bioabsorbable implant
US20100113866A1 (en) * 2008-11-03 2010-05-06 Ian Lee Goldman Atraumatic medical device anchoring and delivery system
US9907638B2 (en) 2008-11-03 2018-03-06 Ian L. Goldman Atraumatic medical device anchoring and delivery system with enhanced anchoring
WO2010077244A1 (en) 2008-12-30 2010-07-08 C.R. Bard Inc. Marker delivery device for tissue marker placement
US9174028B2 (en) * 2009-03-02 2015-11-03 Positive Energy, Llc Rough bio-absorbable strands for seed placement
US8764619B2 (en) * 2009-04-21 2014-07-01 Breast Microseed Llc Brachytherapy fiducial needle fixation system and method
US9936892B1 (en) * 2009-05-04 2018-04-10 Cortex Manufacturing Inc. Systems and methods for providing a fiducial marker
US8663210B2 (en) 2009-05-13 2014-03-04 Novian Health, Inc. Methods and apparatus for performing interstitial laser therapy and interstitial brachytherapy
WO2010135440A1 (en) * 2009-05-22 2010-11-25 Medtronic, Inc. A cover having self-anchoring protrusions for use with an implantable medical device
US9014787B2 (en) * 2009-06-01 2015-04-21 Focal Therapeutics, Inc. Bioabsorbable target for diagnostic or therapeutic procedure
WO2012061348A2 (en) * 2010-11-01 2012-05-10 Civatech Oncology Brachytherapy devices and related methods providing bioaborbability and/or asymmetric irradiation
WO2012154988A2 (en) * 2011-05-11 2012-11-15 The Regents Of The University Of California Fiduciary markers and methods of placement
US9492573B2 (en) 2011-07-06 2016-11-15 Serene, Llc Method of treating cholangiocarcinoma and apparatus
US8798716B1 (en) * 2011-11-03 2014-08-05 Solstice Corporation Fiducial markers and related methods
US20130289389A1 (en) 2012-04-26 2013-10-31 Focal Therapeutics Surgical implant for marking soft tissue
WO2013191510A1 (en) * 2012-06-22 2013-12-27 서울대학교 산학협력단 Medical metal material for in vivo insertion, comprising in vivo movement-preventing means
EP2887994B1 (en) 2012-08-24 2019-02-20 Boston Scientific Corporation Device for improving brachytherapy
WO2014205076A1 (en) 2013-06-20 2014-12-24 Source Production & Equipment Co., Inc. Radioactive therapeutic device with fixation
USD715942S1 (en) 2013-09-24 2014-10-21 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD716450S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD715442S1 (en) 2013-09-24 2014-10-14 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD716451S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
EP3171820B1 (en) 2014-07-25 2022-11-16 Hologic, Inc. Implantable devices and techniques for oncoplastic surgery
US9821174B1 (en) 2015-02-06 2017-11-21 Gammatile Llc Radioactive implant planning system and placement guide system
US10543379B2 (en) 2015-10-23 2020-01-28 Boston Scientific Scimed, Inc. Radioactive stents
US10159850B2 (en) 2016-01-06 2018-12-25 Covidien Lp Brachytherapy clip and applicator
US10888710B1 (en) 2016-11-29 2021-01-12 Gt Medical Technologies, Inc. Transparent loading apparatus
CN106693216A (en) * 2017-02-06 2017-05-24 中国人民解放军总医院 Titanium alloy gold label implant and gold label syringe
CN106730418A (en) * 2017-02-06 2017-05-31 浙江荣诚医疗科技有限公司 A kind of titanium mark implant
CN106730419A (en) * 2017-02-06 2017-05-31 浙江荣诚医疗科技有限公司 A kind of cobalt alloy gold mark implant
US11219502B2 (en) 2017-09-11 2022-01-11 Medtronic Advanced Energy, Llc Transformative shape-memory polymer tissue cavity marker devices, systems and deployment methods
US11324567B2 (en) 2018-02-01 2022-05-10 Medtronic Advanced Energy, Llc Expandable tissue cavity marker devices, systems and deployment methods
TW202019355A (en) 2018-07-29 2020-06-01 瑞士商Bvw控股公司 Biliary stent
US11504546B2 (en) 2019-02-28 2022-11-22 Cowles Ventures, Llc Needle guidance device for brachytherapy and method of use
US11524176B2 (en) 2019-03-14 2022-12-13 Cowles Ventures, Llc Locator for placement of fiducial support device method
CN110339471A (en) * 2019-07-08 2019-10-18 重庆医科大学 It is a kind of can radiation protection radiopharmaceutical rotation injection device
US11224761B1 (en) * 2019-11-19 2022-01-18 Pointsource Technologies, Llc Radioactive therapeutic device
US11383093B1 (en) 2019-12-06 2022-07-12 Hoseon LEE Radiation release capsule
US20210353960A1 (en) * 2020-05-13 2021-11-18 Isoray Medical, Inc. Device for shielding implantable radioactive sources to achieve directional dosing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210316B1 (en) * 1998-08-12 2001-04-03 Syntheon, Llc Radioactive therapeutic seeds and methods of making the same
US20040024453A1 (en) * 2001-08-03 2004-02-05 Glaucoma Research Technologies, Inc. Method and intra sclera implant for treatment of glaucoma and presbyopia
US20040109823A1 (en) * 2000-11-16 2004-06-10 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US20040158118A1 (en) * 2003-02-10 2004-08-12 Drobnik Christopher D. Terminus-spacer component of a string comprising one or more spacer components and one or more implantation seeds
US6805898B1 (en) * 2000-09-28 2004-10-19 Advanced Cardiovascular Systems, Inc. Surface features of an implantable medical device

Family Cites Families (238)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US691100A (en) * 1897-12-28 1902-01-14 Edward Bennis Furnace.
US732928A (en) * 1903-02-21 1903-07-07 Robert M Dixon Gas-lamp.
US1578945A (en) 1923-01-08 1926-03-30 Sanford M Withers Radium needle structure
US2067589A (en) 1935-10-08 1937-01-12 Louis C Antrim Fertilizing stick
US2153889A (en) 1937-07-20 1939-04-11 J A Deknatel & Son Inc Suture
US2575138A (en) 1948-10-29 1951-11-13 Charles E Slaughter Method and apparatus for packaging and package
US2703316A (en) * 1951-06-05 1955-03-01 Du Pont Polymers of high melting lactide
US2668162A (en) * 1952-03-20 1954-02-02 Du Pont Preparation of high molecular weight polyhydroxyacetic ester
US2758987A (en) 1952-06-05 1956-08-14 Du Pont Optically active homopolymers containing but one antipodal species of an alpha-monohydroxy monocarboxylic acid
US3187752A (en) 1962-04-27 1965-06-08 American Cyanamid Co Non-absorbable silicone coated sutures and method of making
US3297033A (en) * 1963-10-31 1967-01-10 American Cyanamid Co Surgical sutures
US3351049A (en) * 1965-04-12 1967-11-07 Hazleton Nuclear Science Corp Therapeutic metal seed containing within a radioactive isotope disposed on a carrier and method of manufacture
US3565869A (en) 1968-12-23 1971-02-23 American Cyanamid Co Extrudable and stretchable polyglycolic acid and process for preparing same
US3993073A (en) 1969-04-01 1976-11-23 Alza Corporation Novel drug delivery device
CA927032A (en) 1969-06-30 1973-05-22 H. Beacham Harry Flame-retardant resin compositions
BE758156R (en) 1970-05-13 1971-04-28 Ethicon Inc ABSORBABLE SUTURE ELEMENT AND ITS
US3839297A (en) 1971-11-22 1974-10-01 Ethicon Inc Use of stannous octoate catalyst in the manufacture of l(-)lactide-glycolide copolymer sutures
US3752630A (en) 1972-01-05 1973-08-14 Takagi H Apparatus for continuous production of thermoplastic synthetic resin tube with heat-shrinking property
US4351337A (en) 1973-05-17 1982-09-28 Arthur D. Little, Inc. Biodegradable, implantable drug delivery device, and process for preparing and using the same
US3811426A (en) 1973-05-21 1974-05-21 Atomic Energy Commission Method and apparatus for the in-vessel radiation treatment of blood
US4052988A (en) 1976-01-12 1977-10-11 Ethicon, Inc. Synthetic absorbable surgical devices of poly-dioxanone
US4141087A (en) * 1977-01-19 1979-02-27 Ethicon, Inc. Isomorphic copolyoxalates and sutures thereof
US4086914A (en) 1977-02-11 1978-05-02 Edwin Bailey Moore Implant injector
US4167179A (en) 1977-10-17 1979-09-11 Mark Kirsch Planar radioactive seed implanter
US4247406A (en) 1979-04-23 1981-01-27 Widder Kenneth J Intravascularly-administrable, magnetically-localizable biodegradable carrier
US4416308A (en) 1979-11-30 1983-11-22 Bower James F Flexible one-way valve and method of producing
US4343931A (en) 1979-12-17 1982-08-10 Minnesota Mining And Manufacturing Company Synthetic absorbable surgical devices of poly(esteramides)
US4402308A (en) 1980-11-03 1983-09-06 Scott Walter P Medical implantation device
US4509506A (en) 1981-05-11 1985-04-09 Minnesota Mining & Manufacturing Co. Shielding device for radioactive seed
US4689424A (en) 1981-08-06 1987-08-25 Ethicon, Inc. Radiation sterilizable absorbable polymeric materials and methods for manufacturing the same
US4416659A (en) 1981-11-09 1983-11-22 Eli Lilly And Company Sustained release capsule for ruminants
US4379138A (en) 1981-12-28 1983-04-05 Research Triangle Institute Biodegradable polymers of lactones
US4441496A (en) * 1982-02-08 1984-04-10 Ethicon, Inc. Copolymers of p-dioxanone and 2,5-morpholinediones and surgical devices formed therefrom having accelerated absorption characteristics
US4427005A (en) 1982-03-04 1984-01-24 Tener William S Apparatus and method for treating breast tumors
US4452973A (en) * 1982-11-12 1984-06-05 American Cyanamid Company Poly(glycolic acid)/poly(oxyethylene) triblock copolymers and method of manufacturing the same
US4510295A (en) * 1983-01-20 1985-04-09 Ethicon, Inc. Absorbable polymers of substituted benzoic acid
US4473670A (en) 1983-05-25 1984-09-25 Ethicon, Inc. Salt-filled absorbable polymers
US4612923A (en) 1983-12-01 1986-09-23 Ethicon, Inc. Glass-filled, absorbable surgical devices
EP0165993A1 (en) 1983-12-27 1986-01-02 The Board Of Trustees Of The Leland Stanford Junior University Catheter for treatment of tumors and method for using same
US4621638A (en) 1984-07-30 1986-11-11 Pfizer Hospital Products Group, Inc. Hard elastic sutures
US4646741A (en) * 1984-11-09 1987-03-03 Ethicon, Inc. Surgical fastener made from polymeric blends
US4697575A (en) 1984-11-21 1987-10-06 Henry Ford Hospital Delivery system for interstitial radiation therapy including substantially non-deflecting elongated member
US4754745A (en) 1984-11-21 1988-07-05 Horowitz Bruce S Conformable sheet material for use in brachytherapy
US4702228A (en) 1985-01-24 1987-10-27 Theragenics Corporation X-ray-emitting interstitial implants
US4741337A (en) * 1985-07-17 1988-05-03 Ethicon, Inc. Surgical fastener made from glycolide-rich polymer blends
DE3682723D1 (en) 1985-08-15 1992-01-16 Asahi Denka Kogyo Kk RADIATION SENSITIZER.
US4700692A (en) 1985-12-23 1987-10-20 Baumgartner George C Surgical implantation method and apparatus
US4706652A (en) 1985-12-30 1987-11-17 Henry Ford Hospital Temporary radiation therapy
US4763642A (en) 1986-04-07 1988-08-16 Horowitz Bruce S Intracavitational brachytherapy
US4744755A (en) * 1986-08-13 1988-05-17 Ross Systems Corporation Dental implant and method for installing same
US4772287A (en) * 1987-08-20 1988-09-20 Cedar Surgical, Inc. Prosthetic disc and method of implanting
US4847505A (en) 1987-11-02 1989-07-11 Best Industries, Inc. Storage and transport containers for radioactive medical materials
US4916209A (en) * 1987-12-23 1990-04-10 Pfizer Inc. Bioabsorbable polydepsipeptide, preparation and use thereof
US4936823A (en) 1988-05-04 1990-06-26 Triangle Research And Development Corp. Transendoscopic implant capsule
IL86549A (en) 1988-05-30 1991-04-15 Hydro Plan Eng Ltd Process and installation for producing a drip irrigation conduit
US4891165A (en) 1988-07-28 1990-01-02 Best Industries, Inc. Device and method for encapsulating radioactive materials
US4946435A (en) 1988-10-24 1990-08-07 Best Industries, Inc. Flexible sealed radioactive film for radiotherapy, and method of making same
US5205289A (en) 1988-12-23 1993-04-27 Medical Instrumentation And Diagnostics Corporation Three-dimensional computer graphics simulation and computerized numerical optimization for dose delivery and treatment planning
US5030195A (en) 1989-06-05 1991-07-09 Nardi George L Radioactive seed patch for prophylactic therapy
US5129906A (en) * 1989-09-08 1992-07-14 Linvatec Corporation Bioabsorbable tack for joining bodily tissue and in vivo method and apparatus for deploying same
US5059166A (en) 1989-12-11 1991-10-22 Medical Innovative Technologies R & D Limited Partnership Intra-arterial stent with the capability to inhibit intimal hyperplasia
GB2245559A (en) 1990-06-25 1992-01-08 Farmos Oy Bioceramic system for delivery of a bioactive compound.
AT397468B (en) 1990-07-11 1994-04-25 Oesterr Forsch Seibersdorf SPOTLIGHT HOLDER AND METHOD AND DEVICE FOR PRODUCING THE SAME
US5100417A (en) * 1990-07-13 1992-03-31 American Cyanamid Company Suture anchor and driver assembly
US5342283A (en) 1990-08-13 1994-08-30 Good Roger R Endocurietherapy
US6099457A (en) 1990-08-13 2000-08-08 Endotech, Inc. Endocurietherapy
US5620700A (en) 1990-10-30 1997-04-15 Alza Corporation Injectable drug delivery system and method
BE1005080A3 (en) 1991-07-19 1993-04-13 Solvay Soc Anomyme Flexible film, and resilient biodegradable polymer based lactic acid may be suitable especially for making medical dressing.
US5242373A (en) 1991-09-17 1993-09-07 Scott Walter P Medical seed implantation instrument
US5324503A (en) 1992-02-06 1994-06-28 Mallinckrodt Medical, Inc. Iodo-phenylated chelates for x-ray contrast
US5424288A (en) 1992-02-28 1995-06-13 Order; Stanley E. Method of treating solid tumor cancers utilizing macro aggregated proteins and colloidal radioactive phosphorous
EP0627941A1 (en) 1992-02-28 1994-12-14 ORDER, Stanley E. Use of aggregated proteins to prolong retention time of a therapeutic agent adjacent a targeted site such as a tumor
US5264540A (en) 1992-07-20 1993-11-23 Ethicon, Inc. Aromatic polyanhydrides
US5391139A (en) 1992-09-03 1995-02-21 William Beaumont Hospital Real time radiation treatment planning system
US5397816A (en) * 1992-11-17 1995-03-14 Ethicon, Inc. Reinforced absorbable polymers
US5486360A (en) 1993-04-22 1996-01-23 St. Joseph Health Centre Method of treating tumour cells using catalase
US5405309A (en) 1993-04-28 1995-04-11 Theragenics Corporation X-ray emitting interstitial implants
WO1995003036A1 (en) 1993-07-19 1995-02-02 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
US5886026A (en) 1993-07-19 1999-03-23 Angiotech Pharmaceuticals Inc. Anti-angiogenic compositions and methods of use
WO1995010267A1 (en) 1993-10-08 1995-04-20 The United States Of America, Represented By The Secretary, Department Of Health And Human Services Use of nitric oxide-releasing compounds as hypoxic cell radiation sensitizers
US5460592A (en) 1994-01-24 1995-10-24 Amersham Holdings, Inc. Apparatus and method for making carrier assembly for radioactive seed carrier
AU2768295A (en) 1994-07-11 1996-02-09 Hoechst Marion Roussel, Inc. Method of treating a neoplastic disease state by conjunctive therapy with 2'-fluoromethylidene derivatives and radiation or chemotherapy
US5626862A (en) 1994-08-02 1997-05-06 Massachusetts Institute Of Technology Controlled local delivery of chemotherapeutic agents for treating solid tumors
DK0777503T3 (en) 1994-08-19 2000-03-20 Biomat Bv Radiopaque polymers and processes for their preparation
US5538429A (en) * 1994-11-08 1996-07-23 Mayclin; Thomas J. Dental crown construction and method
US5626829A (en) 1994-11-16 1997-05-06 Pgk, Enterprises, Inc. Method and apparatus for interstitial radiation of the prostate gland
DE69631884T2 (en) 1995-07-12 2005-03-10 Valtion Teknillinen Tutkimuskeskus THERMOPLASTIFIED STARCH AND METHOD OF MANUFACTURING THEREOF
US5833593A (en) 1995-11-09 1998-11-10 United States Surgical Corporation Flexible source wire for localized internal irradiation of tissue
US5713828A (en) 1995-11-27 1998-02-03 International Brachytherapy S.A Hollow-tube brachytherapy device
WO1997022379A2 (en) 1995-12-18 1997-06-26 Kerisma Medical Products, L.L.C. Fiberoptic-guided interstitial seed manual applicator and seed cartridge
IT1282585B1 (en) 1996-02-08 1998-03-31 Europ POLYESTEREPOLYCARBONATE BLOCK COPOLYMERS CONTAINING SEGMENTS OF POLES (CAPROLACTONE) AND THEIR USE FOR THE PREPARATION OF MATRICES
US5761877A (en) 1996-02-23 1998-06-09 Quandt; W. Gerald System for individual dosage medication distribution
US6241962B1 (en) 1996-06-24 2001-06-05 Dupont Pharmaceuticals Company Radiopharmaceutical compositions and matrices and uses thereof
US5860909A (en) 1996-10-18 1999-01-19 Mick Radio Nuclear Instruments, Inc. Seed applicator for use in radiation therapy
US5755704A (en) 1996-10-29 1998-05-26 Medtronic, Inc. Thinwall guide catheter
US5871437A (en) 1996-12-10 1999-02-16 Inflow Dynamics, Inc. Radioactive stent for treating blood vessels to prevent restenosis
US6039684A (en) 1997-12-11 2000-03-21 Allegheny University Of The Health Sciences Non-lethal conditioning methods for the treatment of acquired immunodeficiency syndrome
FI965067A0 (en) 1996-12-17 1996-12-17 Jvs Polymers Oy Implantmaterial som kan plastiseras
US6312374B1 (en) 1997-03-06 2001-11-06 Progenix, Llc Radioactive wire placement catheter
JP3970377B2 (en) * 1997-04-25 2007-09-05 沖電気工業株式会社 Optical semiconductor device and manufacturing method thereof
DE19723895C2 (en) 1997-06-06 1999-06-02 Yoon Jick Dipl Ing Lee Biodegradable polyester urethanes, process for their preparation and their use
US6340367B1 (en) 1997-08-01 2002-01-22 Boston Scientific Scimed, Inc. Radiopaque markers and methods of using the same
US6440058B1 (en) 1997-08-01 2002-08-27 North American Scientific, Inc. Radioactive seeds and method for using same
JP3559902B2 (en) 1997-10-06 2004-09-02 グンゼ株式会社 Artificial dura and method for producing artificial dura
US6419621B1 (en) 1997-10-24 2002-07-16 Radiomed Corporation Coiled brachytherapy device
US6030333A (en) 1997-10-24 2000-02-29 Radiomed Corporation Implantable radiotherapy device
JP2001523651A (en) 1997-11-14 2001-11-27 デュポン ファーマシューティカルズ カンパニー Method for selective oxidation of organic compounds
US6561967B2 (en) 1997-12-12 2003-05-13 Bruno Schmidt Interstitial brachytherapy device and method
US6213932B1 (en) 1997-12-12 2001-04-10 Bruno Schmidt Interstitial brachytherapy device and method
US5938583A (en) 1997-12-29 1999-08-17 Grimm; Peter D. Precision implant needle and method of using same in seed implant treatment of prostate cancer
US6593247B1 (en) * 1998-02-11 2003-07-15 Applied Materials, Inc. Method of depositing low k films using an oxidizing plasma
JP2002502676A (en) 1998-02-12 2002-01-29 ロバート、ロバートソン Low energy brachytherapy source with capsules
US6540693B2 (en) 1998-03-03 2003-04-01 Senorx, Inc. Methods and apparatus for securing medical instruments to desired locations in a patients body
US6360116B1 (en) 1998-02-27 2002-03-19 Varian Medical Systems, Inc. Brachytherapy system for prostate cancer treatment with computer implemented systems and processes to facilitate pre-operative planning and post-operative evaluations
US6327490B1 (en) 1998-02-27 2001-12-04 Varian Medical Systems, Inc. Brachytherapy system for prostate cancer treatment with computer implemented systems and processes to facilitate pre-implantation planning and post-implantation evaluations with storage of multiple plan variations for a single patient
US5928130A (en) 1998-03-16 1999-07-27 Schmidt; Bruno Apparatus and method for implanting radioactive seeds in tissue
DE19815568C2 (en) * 1998-03-31 2000-06-08 Bebig Isotopentechnik Und Umwe Process for the production of medical radioactive ruthenium radiation sources by electrolytic deposition of radioactive ruthenium on a carrier, radiation sources produced with this process and electrolysis cell for producing radioactive ruthenium layers
JP2002510656A (en) 1998-04-03 2002-04-09 デュポン ファーマシューティカルズ カンパニー Inorganic substances for radiopharmaceutical delivery systems
US6010446A (en) 1998-05-20 2000-01-04 Grimm; Peter D. Spacer element for radioactive seed implant treatment of prostate cancer
US6086942A (en) 1998-05-27 2000-07-11 International Brachytherapy S.A. Fluid-jet deposition of radioactive material for brachytherapy devices
US6053858A (en) 1998-06-04 2000-04-25 Advanced Cardiovascular Systems, Inc. Radiation source
US6159143A (en) 1998-06-17 2000-12-12 Scimed Life Systems, Inc. Method and device for delivery of therapeutic agents in conjunction with isotope seed placement
WO2000006243A2 (en) 1998-07-28 2000-02-10 Innerdyne, Inc. Absorbable brachytherapy and chemotherapy delivery devices and methods
US6080099A (en) 1998-08-12 2000-06-27 Syntheon, Llc Radioactive therapeutic seeds
US6007475A (en) 1998-08-12 1999-12-28 Cns Technology, Inc. Radioactive therapeutic seeds
US6387034B1 (en) 1998-08-17 2002-05-14 Georia Tech Research Corporation Brachytherapy treatment planning method and apparatus
US20010047185A1 (en) 1998-08-22 2001-11-29 Stanley Satz Radioactivatable composition and implantable medical devices formed therefrom
IL126341A0 (en) 1998-09-24 1999-05-09 Medirad I R T Ltd Radiation delivery devices and methods of making same
EP0993843B1 (en) 1998-10-14 2006-04-26 Terumo Kabushiki Kaisha Radiation source delivery wire and catheter assembly for radiation therapy
US6200255B1 (en) 1998-10-30 2001-03-13 University Of Rochester Prostate implant planning engine for radiotherapy
US6689043B1 (en) 1998-11-06 2004-02-10 Amersham Plc Products and methods for brachytherapy
CA2345620A1 (en) 1998-11-06 2000-05-18 Nycomed Amersham Plc Products and methods for brachytherapy
DE69925629T2 (en) 1998-11-20 2006-05-04 Amersham Health As PROCESS AND DEVICE FOR WELDING
US6471631B1 (en) 1998-11-27 2002-10-29 Syntheon, Llc Implantable radiation therapy device having controllable radiation emission
US6132359A (en) 1999-01-07 2000-10-17 Nycomed Amersham Plc Brachytherapy seeds
ES2284481T3 (en) 1999-02-25 2007-11-16 Ge Healthcare Limited TOOLS AND MEDICAL DEVICES WITH AN IMPROVED ULTRASOUND VISIBILITY.
US6200258B1 (en) 1999-08-10 2001-03-13 Syntheon, Llc Radioactive therapeutic seed having selective marker configuration
US6482143B1 (en) * 1999-02-28 2002-11-19 Syntheon, Llc Raidoactive therapeutic seed having selective marker configuration
US6132947A (en) 1999-03-10 2000-10-17 Eastman Kodak Company Cyan coupler, and stabilizer-containing photographic element and process
US6200256B1 (en) 1999-03-17 2001-03-13 The Trustees Of Columbia University In The City Of New York Apparatus and method to treat a disease process in a luminal structure
US6132677A (en) 1999-04-26 2000-10-17 Lockheed Martin Energy Research Corporation Method for making radioactive metal articles having small dimensions
WO2000064538A1 (en) 1999-04-28 2000-11-02 Medi Physics, Inc. Products and methods for brachytherapy
US6426145B1 (en) 1999-05-20 2002-07-30 Scimed Life Systems, Inc. Radiopaque compositions for visualization of medical devices
US6482178B1 (en) 1999-05-21 2002-11-19 Cook Urological Incorporated Localization device with anchoring barbs
BRPI0010966B1 (en) * 1999-05-26 2016-05-17 Amersham Plc method of sterilizing one or more radioactive seeds
MXPA02000375A (en) * 1999-07-14 2002-07-30 Novoste Corp Radioactive source train.
US6595908B2 (en) 1999-07-23 2003-07-22 Nucletron B.V. Method for analyzing amount of activity
US6221003B1 (en) 1999-07-26 2001-04-24 Indigo Medical, Incorporated Brachytherapy cartridge including absorbable and autoclaveable spacer
US6267718B1 (en) 1999-07-26 2001-07-31 Ethicon, Endo-Surgery, Inc. Brachytherapy seed cartridge
US6264599B1 (en) * 1999-08-10 2001-07-24 Syntheon, Llc Radioactive therapeutic seeds having fixation structure
EP1081508A3 (en) * 1999-08-30 2002-01-16 Fuji Photo Film Co., Ltd. Method and apparatus for recording and reading out images
DE19942611C1 (en) * 1999-08-31 2001-07-05 Ethicon Gmbh Reinforced flat implant
AU8026600A (en) 1999-10-15 2001-04-30 Deschutes Medical Products, Inc. Brachytherapy instrument and methods
US6398709B1 (en) 1999-10-19 2002-06-04 Scimed Life Systems, Inc. Elongated member for intravascular delivery of radiation
US6264600B1 (en) 1999-10-21 2001-07-24 Peter D. Grimm Hollow suture member with radioactive seeds positioned therein for treatment of prostate cancer
US6436026B1 (en) 1999-10-22 2002-08-20 Radiomed Corporation Flexible, continuous, axially elastic interstitial brachytherapy source
US20030144570A1 (en) 1999-11-12 2003-07-31 Angiotech Pharmaceuticals, Inc. Compositions and methods for treating disease utilizing a combination of radioactive therapy and cell-cycle inhibitors
WO2001036007A2 (en) 1999-11-12 2001-05-25 Angiotech Pharmaceuticals, Inc. Compositions of a combination of radioactive therapy and cell-cycle inhibitors
US6450937B1 (en) 1999-12-17 2002-09-17 C. R. Bard, Inc. Needle for implanting brachytherapy seeds
US6575888B2 (en) * 2000-01-25 2003-06-10 Biosurface Engineering Technologies, Inc. Bioabsorbable brachytherapy device
US6358195B1 (en) 2000-03-09 2002-03-19 Neoseed Technology Llc Method and apparatus for loading radioactive seeds into brachytherapy needles
US6846283B2 (en) 2000-03-09 2005-01-25 Neoseed Technology Llc Methods and apparatus for loading radioactive seeds into brachytherapy needles
US6450938B1 (en) 2000-03-21 2002-09-17 Promex, Llc Brachytherapy device
US6428504B1 (en) 2000-04-06 2002-08-06 Varian Medical Systems, Inc. Multipurpose template and needles for the delivery and monitoring of multiple minimally invasive therapies
US6438401B1 (en) 2000-04-28 2002-08-20 Alpha Intervention Technology, Inc. Indentification and quantification of needle displacement departures from treatment plan
US6403916B1 (en) 2000-05-12 2002-06-11 Isostar International, Inc. System and automated method for producing welded end closures in thin-walled metal tubes
GB0011581D0 (en) * 2000-05-15 2000-07-05 Nycomed Amersham Plc Grooved brachytherapy
US6616594B2 (en) 2000-05-18 2003-09-09 Integrated Implant Systems, L.L.C. Cartridge-moveable shield
US6572525B1 (en) 2000-05-26 2003-06-03 Lisa Yoshizumi Needle having an aperture for detecting seeds or spacers loaded therein and colored seeds or spacers
US6537192B1 (en) * 2000-06-05 2003-03-25 Mentor Corporation Automated radioisotope seed loader system for implant needles
US6616593B1 (en) 2000-06-05 2003-09-09 Mentor Corporation Automated radioisotope seed cartridge
MXPA03000528A (en) 2000-07-17 2004-09-10 Medi Physics Inc Carrier-free 103.
US6500109B2 (en) 2000-07-21 2002-12-31 Tayman Medical, Inc. Prostate treatment template
US6582178B2 (en) * 2000-08-14 2003-06-24 Daniel G. Petruccelli Mini-modual manufacturing environmental
NL1016101C2 (en) 2000-09-05 2002-03-07 Nucletron Bv Row of radioactive seeds and non-radioactive spacers and connecting element therefor.
US6949064B2 (en) 2000-10-20 2005-09-27 Bard Brachytherapy, Inc. Brachytherapy seed deployment system
WO2003028808A2 (en) * 2000-10-25 2003-04-10 Lamoureux Gary A Pre-loaded needle assembly
PL203978B1 (en) 2000-11-01 2009-11-30 Medi Physics Inc Radioactive member and method of making
US6450939B1 (en) 2000-11-06 2002-09-17 Peter D. Grimm Hinged spacer element for joining radioactive seeds used in treatment of cancer
WO2002038199A2 (en) * 2000-11-08 2002-05-16 Theragenics Corporation Radioactive source wire and delivery catheter for brachytherapy
US6612976B2 (en) 2000-11-13 2003-09-02 Isotech, L.L.C. Radioactive medical devices and methods of making radioactive medical devices
US6926657B1 (en) 2000-11-14 2005-08-09 Medi-Physics, Inc. Device for loading radioactive seeds
US6746661B2 (en) 2000-11-16 2004-06-08 Microspherix Llc Brachytherapy seed
US6638205B1 (en) * 2000-11-17 2003-10-28 Mds (Canada) Inc. Radioactive medical device for radiation therapy
DE10058163C2 (en) 2000-11-22 2003-07-10 Bebig Isotopen Und Medizintech Method and applicator for positioning and / or ejecting radiation sources via hollow needles into biological tissue
US6719242B2 (en) 2000-12-01 2004-04-13 Sonoco Development, Inc. Composite core
US6723037B2 (en) 2000-12-15 2004-04-20 Kawasumi Laboratories, Inc. Protective tool for therapeutic material delivery device, cartridge for therapeutic material delivery device, and a therapeutic material delivery device
US6472675B2 (en) 2000-12-15 2002-10-29 Theragenics Corporation Container for storing and shipping needle cartridges
EP1232770A1 (en) * 2001-02-15 2002-08-21 AEA Technology QSA GmbH Radioactive capsule seed
US6800055B2 (en) * 2001-02-21 2004-10-05 Cordis Corporation Low attenuating radioactive seeds
US6572527B2 (en) 2001-02-23 2003-06-03 Mentor Corporation Radioactive seed-holding device
US6669621B2 (en) 2001-03-14 2003-12-30 Cordis Corporation Method and assembly for containing radioactive materials
US6497646B1 (en) 2001-03-14 2002-12-24 Cordis Corporation Intravascular radiotherapy source ribbon having variable radiopacity
US6726617B1 (en) 2001-04-09 2004-04-27 Bruno Schmidt Cartridge and applicator
US20020169354A1 (en) 2001-05-10 2002-11-14 Munro John J. Brachytherapy systems and methods
US6723052B2 (en) 2001-06-07 2004-04-20 Stanley L. Mills Echogenic medical device
US6549802B2 (en) 2001-06-07 2003-04-15 Varian Medical Systems, Inc. Seed localization system and method in ultrasound by fluoroscopy and ultrasound fusion
US20030097035A1 (en) * 2001-07-18 2003-05-22 Tucker Robert D. Combination radiation and thermal energy source
US6656106B2 (en) 2001-08-17 2003-12-02 Bruno Schmidt Device for checking seeds in brachytherapy needle
US6755775B2 (en) 2001-08-30 2004-06-29 North American Scientific, Inc. Apparatus and method for loading a brachytherapy seed cartridge
IN2014DN10834A (en) * 2001-09-17 2015-09-04 Psivida Inc
US6761680B2 (en) 2001-11-02 2004-07-13 Richard A. Terwilliger Delivery system and method for interstitial radiation therapy using seed strands constructed with preformed strand housing
US6639237B2 (en) 2001-11-02 2003-10-28 Mentor Corporation Brachytherapy medical devices
US6786858B2 (en) 2001-11-02 2004-09-07 Ideamatrix, Inc. Delivery system and method for interstitial radiotherapy using hollow seeds
US6820318B2 (en) 2001-11-02 2004-11-23 Ideamatrix, Inc. System for manufacturing interstitial radiation therapy seed strands
US7074291B2 (en) 2001-11-02 2006-07-11 Worldwide Medical Technologies, L.L.C. Delivery system and method for interstitial radiation therapy using strands constructed with extruded strand housings
US7060020B2 (en) * 2001-11-02 2006-06-13 Ideamatrix, Inc. Delivery system and method for interstitial radiation therapy
US7094198B2 (en) 2001-11-02 2006-08-22 Worldwide Medical Technologies, Llc Delivery system and method for interstitial radiation therapy using seed elements with ends having one of projections and indentations
KR100453130B1 (en) 2001-11-21 2004-10-15 한국과학기술연구원 Sequentially Ordered Biodegradable Lactide(Glycolide or Lactide/Glycolide)/ε-Caprolactone Multi-Block Copolymer and Process for the Preparation Thereof
AU2003216103A1 (en) 2002-01-25 2003-09-02 Mick Radio-Nuclear Instruments, Inc. Disposable and shielded seed and spacer magazine
CA2474359A1 (en) * 2002-01-29 2003-08-07 Sicel Technologies, Inc. Implantable sensor housing and fabrication methods
DE10204818C2 (en) 2002-02-06 2003-11-27 Eurotope Entwicklungsgesellsch Device and method for loading implantation needles with radiation sources from radiation source chains for interstitial brachytherapy of tissue
IL148994A (en) * 2002-04-04 2009-02-11 Shai Amisar Intravenous catheter assembly
US20030191355A1 (en) 2002-04-04 2003-10-09 Ferguson Patrick J. Hollow bioabsorbable elements for positioning material in living tissue
US6837844B1 (en) 2002-05-14 2005-01-04 Med-Tec Iowa, Inc. Seed cartridge for radiation therapy
US6656107B1 (en) 2002-05-24 2003-12-02 Mentor Corporation Brachytherapy seed applicators
NL1020740C2 (en) 2002-06-03 2003-12-08 Nucletron Bv Method and device for the temporary introduction and placement of at least one energy-emitting source in an animal body.
EP1551509B1 (en) 2002-09-10 2008-10-29 Cianna Medical, Inc. Brachytherapy apparatus
US20060121080A1 (en) 2002-11-13 2006-06-08 Lye Whye K Medical devices having nanoporous layers and methods for making the same
US6969344B2 (en) 2003-02-10 2005-11-29 Bard Brachytherapy, Inc. End portion of first implantation seed spacer that receives and holds any one of implantation seed and second implantation seed spacer
US7322928B2 (en) 2003-03-17 2008-01-29 Medi-Physics, Inc. Products and methods for brachytherapy
US20040225174A1 (en) 2003-05-06 2004-11-11 Fuller Donald B. Method for computed tomography-ultrasound interactive prostate brachytherapy
US7316706B2 (en) * 2003-06-20 2008-01-08 Medtronic Vascular, Inc. Tensioning device, system, and method for treating mitral valve regurgitation
US6989543B2 (en) 2003-08-15 2006-01-24 C.R. Bard, Inc. Radiation shielding container for radioactive sources
CA2577665C (en) 2003-08-20 2013-03-26 International Brachytherapy, S.A. Plastic brachytherapy sources
WO2005115543A1 (en) 2004-05-20 2005-12-08 Wisconsin Alumni Research Foundation Directionally emitting radioactive sources for brachytherapy
US7425195B2 (en) 2004-08-13 2008-09-16 Core Oncology, Inc. Radiation shielding device
US7662082B2 (en) * 2004-11-05 2010-02-16 Theragenics Corporation Expandable brachytherapy device
US20060142772A1 (en) * 2004-12-29 2006-06-29 Ralph James D Surgical fasteners and related implant devices having bioabsorbable components
KR20070104574A (en) 2004-12-30 2007-10-26 신벤션 아게 Combination comprising an agent providing a signal, an implant material and a drug
US7736293B2 (en) * 2005-07-22 2010-06-15 Biocompatibles Uk Limited Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
US8187159B2 (en) * 2005-07-22 2012-05-29 Biocompatibles, UK Therapeutic member including a rail used in brachytherapy and other radiation therapy
JP5042029B2 (en) 2005-10-18 2012-10-03 オリンパス株式会社 Endoscopic treatment tool
US20070118151A1 (en) * 2005-11-21 2007-05-24 The Brigham And Women's Hospital, Inc. Percutaneous cardiac valve repair with adjustable artificial chordae
US20070270781A1 (en) 2006-01-06 2007-11-22 Robert Burgermeister Medical delivery system and method for delivery of a medically useful payload
US8170647B2 (en) 2006-01-20 2012-05-01 Best Medical International, Inc Fiduciary markers and method of use thereof
US20070224234A1 (en) 2006-03-22 2007-09-27 Mark Steckel Medical devices having biodegradable polymeric regions
US20090216063A1 (en) 2008-01-29 2009-08-27 Biocompatibles Uk Limited Bio-absorbable brachytherapy strands

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210316B1 (en) * 1998-08-12 2001-04-03 Syntheon, Llc Radioactive therapeutic seeds and methods of making the same
US6805898B1 (en) * 2000-09-28 2004-10-19 Advanced Cardiovascular Systems, Inc. Surface features of an implantable medical device
US20040109823A1 (en) * 2000-11-16 2004-06-10 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US20040024453A1 (en) * 2001-08-03 2004-02-05 Glaucoma Research Technologies, Inc. Method and intra sclera implant for treatment of glaucoma and presbyopia
US20040158118A1 (en) * 2003-02-10 2004-08-12 Drobnik Christopher D. Terminus-spacer component of a string comprising one or more spacer components and one or more implantation seeds

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2401022A2 (en) * 2009-02-26 2012-01-04 Biocompatibles Uk Ltd. Therapeutic member including a rail to resist movement within a needle used in brachytherapy and other radiation therapy
EP2401022A4 (en) * 2009-02-26 2012-09-12 Biocompatibles Uk Ltd Therapeutic member including a rail to resist movement within a needle used in brachytherapy and other radiation therapy
AU2010218112B2 (en) * 2009-02-26 2014-11-20 Eckert & Ziegler Bebig S.A. Therapeutic member for use in brachytherapy deliverable to an implant site
CN113164713A (en) * 2018-12-07 2021-07-23 贝克顿·迪金森公司 Injection molding sleeve and method of making same
EP3890817A4 (en) * 2018-12-07 2022-04-06 Becton, Dickinson and Company Injection molded cannula and method for making same

Also Published As

Publication number Publication date
US8795146B2 (en) 2014-08-05
US8192345B2 (en) 2012-06-05
US7736293B2 (en) 2010-06-15
US20090312594A1 (en) 2009-12-17
WO2007021449A3 (en) 2007-12-06
US8790235B2 (en) 2014-07-29
US7972261B2 (en) 2011-07-05
US20090099402A1 (en) 2009-04-16
US20090124894A1 (en) 2009-05-14
US8114007B2 (en) 2012-02-14
US20070021643A1 (en) 2007-01-25
US20090124846A1 (en) 2009-05-14
US20070021642A1 (en) 2007-01-25
US20100210892A1 (en) 2010-08-19
US20090149692A1 (en) 2009-06-11
US8021291B2 (en) 2011-09-20

Similar Documents

Publication Publication Date Title
US7972261B2 (en) Devices to resist migration and rotation of implants used in brachytherapy and other radiation therapy
US8366598B2 (en) Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
US7008368B2 (en) Method for making treatment strands
US7211039B2 (en) Strand with end plug
US20020177748A1 (en) Brachytherapy systems and methods
US20120178984A1 (en) Bio-absorbable brachytherapy strands
WO2004101026A2 (en) Delivery system and method for interstitial radiation therapy using seed strands with custom end spacing
US7878964B1 (en) Echogenic spacers and strands
US7874976B1 (en) Echogenic strands and spacers therein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06824772

Country of ref document: EP

Kind code of ref document: A2