WO2007032172A1 - プラズマ発生装置およびプラズマ発生方法 - Google Patents

プラズマ発生装置およびプラズマ発生方法 Download PDF

Info

Publication number
WO2007032172A1
WO2007032172A1 PCT/JP2006/315958 JP2006315958W WO2007032172A1 WO 2007032172 A1 WO2007032172 A1 WO 2007032172A1 JP 2006315958 W JP2006315958 W JP 2006315958W WO 2007032172 A1 WO2007032172 A1 WO 2007032172A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
electrode
tube
pores
plasma generation
Prior art date
Application number
PCT/JP2006/315958
Other languages
English (en)
French (fr)
Inventor
Takehiko Sato
Tatsuyuki Nakatani
Tatsuo Kimura
Original Assignee
Tohoku University
Toyo Advanced Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University, Toyo Advanced Technologies Co., Ltd. filed Critical Tohoku University
Priority to EP06782697.4A priority Critical patent/EP1933605B1/en
Priority to JP2007535401A priority patent/JP4798635B2/ja
Priority to US11/992,007 priority patent/US8168130B2/en
Publication of WO2007032172A1 publication Critical patent/WO2007032172A1/ja
Priority to US13/437,488 priority patent/US8501106B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/14Plasma, i.e. ionised gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32348Dielectric barrier discharge

Definitions

  • the present invention relates to a plasma generation apparatus and a plasma generation method, and more particularly to a plasma generation apparatus and a plasma generation method for generating plasma in pores of a thin tube.
  • Patent Document 1 there is a reaction tube that supplies a reactive gas that performs stable discharge in the atmosphere without using helium gas, and a first tube that is disposed opposite to the reaction tube and acts on the reaction gas.
  • a plasma processing apparatus that includes a second electrode, supplies high frequency power to the first and second electrodes to excite a reaction gas, and processes a substrate to be processed with the generated plasma.
  • Patent Document 2 in order to generate a uniform discharge plasma under a pressure in the vicinity of atmospheric pressure regardless of the gas atmosphere during processing, a solid dielectric is installed on at least one opposing surface of the opposing electrode. A technique for applying a pulsed electric field between opposing electrodes is disclosed.
  • Patent Document 1 is a technique in which a reaction gas flowing in a reaction tube is converted into plasma, and the plasma is injected onto an object to be processed in reaction tube force.
  • a surface treatment technique for performing a surface treatment on an object to be processed placed on the second electrode plate both of which are based on a relatively large apparatus.
  • Patent Literatures 3 to 5 disclose plasma sterilization apparatuses for use in narrow tubes.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-184759
  • Patent Document 2 JP-A-10-154598
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2003-135571
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2003-210556
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2005-46264
  • Patent Documents 1 and 2 are based on the premise of a relatively large device, and are intended for surface treatment, so that it is very difficult to apply them to sterilization in narrow tubes.
  • Patent Documents 3 to 5 are techniques for plasma sterilization devices for use in narrow tubes.
  • gas is introduced into a tube and a plasma generator is inserted into the force tube for sterilization.
  • the plasma generator has a dielectric base force with a plurality of electrodes, it is made too small.
  • a force discharge part that inserts a discharge part into a tube and moves the discharge part has an acicular electrode and a planar electrode, so the inner diameter is smaller than several mm.
  • the present invention has been made in view of the strong point, and an object of the present invention is to provide a method and an apparatus for generating plasma reliably and simply in a narrow tube having a small tube diameter. It is in. Means for solving the problem
  • a plasma generator of the present invention is a plasma generator for generating plasma in the pores of a thin tube, and includes a conductive member covered with an insulator or a dielectric. And a first electrode that is inserted into a hole of the narrow tube to generate plasma and a power source that applies an AC voltage or a pulse voltage to the first electrode.
  • a power source that applies an AC voltage or a pulse voltage to the first electrode.
  • the inner diameter of the thin tube is preferably 0.05 mm or more.
  • the AC voltage or the pulse voltage is installed outside the narrow tube, and connected to the power source and applied to the first electrode.
  • Two electrodes are further provided.
  • a ground electrode that is installed outside the narrow tube and is connected to the power source and to which the AC voltage or the pulse voltage is applied between the first electrode and the ground electrode is further provided. I have.
  • the AC voltage or the pulse voltage is applied between the first electrode and the first electrode while being installed in the hole of the thin tube and connected to the power source.
  • An electrode is further provided.
  • the apparatus further includes a second electrode that is installed in the hole of the thin tube and is in an electrically floating state.
  • a ground electrode that is installed in a hole of the thin tube and that is connected to the power source and to which the AC voltage or pulse voltage is applied between the first electrode and the ground electrode is provided.
  • a gas inflow member for allowing gas to flow into the pores of the narrow tube is further provided.
  • a gas removing member for removing gas in the pores of the narrow tube is further provided.
  • surface treatment of the inner wall of the thin tube is performed by the plasma.
  • the plasma sterilizes the pores of the capillary tube.
  • a first plasma generation method of the present invention is a plasma generation method for generating plasma in the pores of a narrow tube, and the conductive material covered with an insulator or a dielectric in the pores of the narrow tube.
  • an AC voltage or a pulse voltage is applied between the first electrode and a second electrode placed outside the capillary tube. Generate plasma.
  • an alternating voltage or a pulse voltage is applied between the first electrode and a ground electrode placed outside the capillary tube, thereby generating plasma. Is generated.
  • an AC voltage or a pulse voltage is applied between the first electrode and a second electrode installed inside the tube wall of the capillary tube. Apply to generate plasma.
  • an AC voltage or a pulse voltage is applied between the first electrode and the second electrode placed in the hole of the capillary tube. Apply to generate plasma.
  • a second electrode that is in an electrically floating state is further inserted into the pores of the thin tube.
  • an AC voltage or a pulse voltage is applied between the first electrode and a ground electrode placed in a hole of the capillary tube. To generate plasma.
  • gas is allowed to flow into the pores of the narrow tube.
  • the method further includes the step of causing a gas to flow into the pores of the narrow tube after the plasma generating step.
  • the method further includes a step of removing the internal force gas in the pores of the narrow tube.
  • sterilization of the pores of the thin tube is performed by the plasma.
  • a second plasma generation method of the present invention is a plasma generation method in which plasma is generated on at least one of an outside of a narrow tube made of an insulator or a dielectric and having a conductor inside the tube wall and inside a hole.
  • An electrode installation step of installing an electrode outside the capillary, and applying an AC voltage or a pulse voltage between the electrode and the conductor to generate plasma on at least one of the outside of the capillary and the hole.
  • a third plasma generation method of the present invention is a plasma generation method for generating plasma in the pores of a narrow tube made of an insulator or a dielectric and having a conductor inside the tube wall.
  • a fourth plasma generation method of the present invention is a plasma generation method for generating plasma in the pores of a thin tube made of an insulator or a dielectric and having a conductor inside the tube wall, wherein the thin tube An electrode installation step of installing an electrode in the vacant hole, and a plasma generation step of generating plasma in the vacancy of the narrow tube by applying an AC voltage or a pulse voltage to the electrode.
  • the plasma is generated by inserting the first electrode having an insulating or dielectric force coating into the capillary tube, the plasma can be generated even in a capillary tube having an inner diameter of several mm or less.
  • the plasma generator of Embodiment 1 is shown in FIG.
  • This plasma generator is a device for generating plasma in the pores of the narrow tube 10, and the first electrode 30 inserted into the pores of the narrow tube 10 (already inserted in FIG. 1), and the narrow tube 10 And a power source 40 for applying an AC voltage or a pulse voltage between the first electrode 30 and the second electrode 20.
  • the first electrode 30 has a configuration in which a coating 32 made of an insulator or a dielectric is applied to the surface of the conductive member 31.
  • the conductive member 31 may be any material as long as it has conductivity such as metal, carbon, and organic conductive material. In this embodiment, it is a copper wire.
  • the insulation constituting the coating 32 is an electrically insulating polymer such as fluorine resin such as PFA, PTFE or FEP, polyimide resin, or electrically insulating polymer such as diamond-like carbon (DLC).
  • An inorganic substance etc. can be mentioned.
  • the dielectric constituting the coating 32 include substances having a high dielectric constant such as barium titanate.
  • the coating 32 is formed of Teflon (registered trademark), which is a fluorine resin.
  • the conductive member 31 and the coating 32 have high heat resistance, specifically, those that do not deteriorate when held at 50 ° C. for 1 hour.
  • the conductive member 31 is preferably coated with metal, carbon, etc.32 is a fluorine resin, polyimide resin, DLC, titanate Um is preferred.
  • the thin tube 10 may be made of any material. However, a higher electric field can be applied between the first electrode 30 and the second electrode 20 as the insulating property of the thin tube 10 is higher, and as a result, plasma is easily generated.
  • the second electrode 20 is a ground electrode that is grounded by the ground line 50, and is connected to the power source 40 by the connection line 60.
  • the shape and material of the second electrode 20 are not particularly limited.
  • the shape of the second electrode 20 may be any shape such as a flat plate shape, a cylindrical shape, a mesh shape, or a wire shape.
  • the material of the second electrode 20 may be any material as long as it is conductive, such as metal, carbon, or an organic conductive material.
  • the surface of the second electrode 20 may be covered with an insulator.
  • the second electrode 20 is a metal plate whose surface is covered with an insulator.
  • the power source 40 is a force that applies an AC voltage or a pulse voltage.
  • the first electrode 30 and the second electrode such as the shape, material, and length of the first electrode 30, and the material and thickness of the capillary tube 10, etc. Since the plasma intensity is greatly affected by the distance from the first electrode 30, the gas type and temperature around the first electrode 30, etc., and the intensity of the plasma, the applied voltage is important for plasma generation. Since it is the electric field intensity around the first electrode 30, the frequency of the AC voltage or pulse voltage and the magnitude of the voltage are not particularly limited. As shown in Fig. 3, when a pulse voltage that changes in polarity (from + to 1 or from 1 to +) or a pulse that rises from 0 V is preferred, the pulse voltage is continuously applied. Is preferred because it occurs continuously. The pulse voltage continuously supplied in this way can be said to be a square wave AC voltage.
  • the frequency and voltage of the power supply 40 are not particularly limited, but the frequency is 0.
  • L 00MHz is preferred to be 50 ⁇ ⁇ 1 ⁇ ⁇ ⁇ ⁇ considering the ease of generating plasma that is preferred as a power supply for practical use.
  • a voltage of IV to 500 kV is preferably IV to LOOkV from the viewpoint of ease of handling of a device that is easy to generate plasma.
  • the electric field strength in the vicinity of the first electrode 30 is 10 5 VZm or more and 10 1 ( Zm or less is preferred. .
  • a linear first electrode 30 is inserted into a thin tube 10 such as a catheter.
  • the tube 10 can be made of flexible material such as PVC, polyurethane, silicone, and Teflon (registered trademark)
  • the tube 10 can be bent relatively freely, but the first electrode 30 is also made of copper wire (conductive).
  • the capillary tube 10 in which the first electrode 30 is inserted is placed on the second electrode 20.
  • the tube 10 may be placed straight on the second electrode 20, but if the tube 10 is longer than the size (area) of the second electrode 20, The thin tube 10 may be bent and placed on the second electrode 20.
  • an alternating voltage or a pulse voltage is applied between the first electrode 30 and the second electrode 20 to generate plasma.
  • the distance force between the first electrode 30 and the second electrode 20 on the second electrode 20 in the length direction of the first electrode 30 is the same as the length of the first electrode 30 even if the capillary tube 10 is curved.
  • the generated electric field intensity is almost constant in the length direction of the first electrode 30. Accordingly, a substantially constant plasma is continuously generated in the length direction of the first electrode 30.
  • the degree of plasma generation can be determined by the degree of light emission around the first electrode 30 and the discharge current per unit length in the length direction of the first electrode 30.
  • the degree of plasma emission can be easily confirmed by visual observation if the thin tube 10 has translucency. In this case, even if the thin tube 10 is not transparent, it can be visually confirmed if the light emitted by the plasma is transmitted by several percent or more.
  • the first electrode 30 including the conductive member 31 covered with the insulator or the dielectric is inserted into the hole of the capillary tube 10, and the first electrode 30 is inserted. Since the plasma is generated by applying an AC voltage or pulse voltage to the electrode 30, the plasma is generated in the holes even if the inner diameter of the capillary tube 10 is reduced by making the first electrode 30 smaller or thinner. It is possible to make it. For example, use 0.08 mm copper wire for the conductive member 31 and If Teflon (registered trademark) having a thickness of 0. Olmm is used as the cover 32, the first electrode 30 can be inserted in the case of the capillary 10 having an inner diameter larger than 0.1 mm.
  • the plasma generator described in Patent Document 4 It is very difficult to insert the plasma generator described in Patent Document 4 into the narrow tube 10 having such a small inner diameter. Further, in the present embodiment, plasma is generated around the entire periphery of the first electrode 30, so that the entire inside of the pores of the thin tube 10 can be plasma-treated at once, and the plasma treatment can be performed in a short time. In addition, the plasma generator of this embodiment has a very simple structure and can reduce the manufacturing cost. Plasma generation is easy and can be performed by a trained person.
  • the tip of the first electrode 30 is connected to the second electrode 20. It is conceivable that the cover 32 at the tip of the first electrode 30 is made far away from the other, or the coating 32 at the tip of the first electrode 30 is made thicker than the other parts, or a material having higher insulation and dielectric properties than other parts. The former can be easily applied when both ends of the thin tube 10 are open.
  • the generation of plasma may not be uniform in the length direction of the first electrode 30. That is, the generation of plasma may be discontinuous in the length direction of the first electrode 30, or the plasma generation intensity may be non-uniform!
  • the plasma generator according to the second embodiment is obtained by adding a gas introduction unit 80 to the plasma generator according to the first embodiment. Since the plasma generating apparatus and the plasma generating method according to the present embodiment are mostly the same as those of the first embodiment, the differences will mainly be described.
  • an adapter 70 is attached to the opening of the thin tube 10 into which the first electrode 30 of the thin tube 10 is inserted, and a predetermined gas is introduced from the gas introduction unit 80 into the pores of the thin tube 10.
  • Adapter 70 and gas inlet 80 are connected by a pipe.
  • the gas introduction unit 80 for example, an apparatus in which a pressure reducing valve is attached to a compressed gas container can be exemplified.
  • a given gas is a gas selected by the purpose of generating the plasma. is there. For example, when Ar or He is introduced into the narrow tube 10, plasma is more easily generated than in the atmosphere. When oxygen is introduced, ozone and oxygen radicals are generated.
  • a gas containing the organic molecule may be introduced.
  • a gas containing a monomer may be introduced.
  • the adapter 70 is attached to the opening of the thin tube 10.
  • a gas introduction unit 80 is connected to the adapter 70.
  • the first electrode 30 is inserted into the hole of the thin tube 10 through the adapter 70.
  • the thin tube 10 is placed on the second electrode 20.
  • a predetermined gas is allowed to flow into the pores of the thin tube 10 from the gas introduction unit 80, and an alternating voltage or a pulse voltage is applied between the first electrode 30 and the second electrode 20. Generate plasma.
  • the gas may continue to flow when the voltage is applied, or the gas may be first applied after the gas is first introduced into the holes and the voltage applied. If the end of the capillary tube 10 opposite to the adapter 70 is open, it is preferable to keep the gas flowing each time a voltage is applied.
  • the first electrode 30 may be first inserted into the hole of the thin tube 10, and the adapter 70 may be attached to the opening of the thin tube as well.
  • any gas can be introduced into the pores, so that more effective processing can be performed depending on the purpose of the plasma processing.
  • sterilization with other active species is performed in a short time and at a low voltage, the inner wall of the thin tube 10 is etched in a short time and uniformly over the entire surface, or the active group is chemically applied to the inner wall of the thin tube 10. Bonding, coating, etc. can be performed.
  • plasma treatment later, active species and harmful gases remaining in the narrow tube 10 can be quickly removed by injecting another gas, so that it is possible to perform plasma treatment without worrying about remaining internal contamination.
  • Fig. 5 shows the results of plasma irradiation with different voltage levels and processing time (voltage application time).
  • ATTEST290 and 290G from 3M were used.
  • Nos. 1291 and 1294 shown in the upper and lower parts of FIG. 5 are bioindicator numbers used for the judgment. Whether or not sterilization was possible was determined based on whether or not the number of bacteria decreased by 5 digits or more. If the number of bacteria decreased by 5 digits or more due to plasma treatment, it was determined that sterilization was possible (indicated by a circle in the figure), and if it did not decrease, it was determined that sterilization was strong (indicated by X in the figure). The numbers in the table are the number of times judged to be ⁇ or X (number of tests). In addition, control is what plasma processing was not performed.
  • a first electrode coated with Teflon (registered trademark) on a 018 mm copper wire was inserted, and an AC voltage was applied to perform surface treatment (etching) in the capillary tube. Both ends of the thin tube were open.
  • the power supply used was an AC power supply that is a sine wave with a frequency of 6 kHz.
  • the applied voltage was 8 kV.
  • FIG. 10 is a laser micrograph (magnification 3000 times) of the inner wall of the thin tube with voltage applied for 2 minutes!
  • FIG. 11 shows a laser micrograph (magnified 3000 times) of the inner wall of a capillary tube after plasma treatment.
  • the untreated inner wall has fine irregularities, but when the plasma treatment is performed, the inner walls are etched, and this irregularity disappears!
  • the plasma generator according to Embodiment 3 generates plasma using a conductive member embedded in a thin tube.
  • the thin tube used in the present embodiment has a conductor 22 embedded in the tube wall of the thin tube 11, and also has an insulating or dielectric force.
  • An example of such a capillary 11 is a certain type of catheter.
  • the thin tube is made of polyurethane, and the conductor 22 is a copper wire.
  • the plasma generator according to the present embodiment includes a power source 40 and an electrode 20 installed outside the thin tube 11.
  • the conductor 22 in the thin tube 11 can also be referred to as a first electrode
  • the electrode 20 installed outside the thin tube 11 can also be referred to as a second electrode. Since the electrode (second electrode) 20 and the power source 40 are the same as those in the first embodiment, description thereof is omitted.
  • the thin tube 11 is first placed on the electrode 20.
  • the electrode 20 is installed outside the narrow tube 11.
  • the conductor 22 and the power source 40 are connected, and the electrode 20 and the power source 40 are connected via the connection line 60.
  • the electrode 20 is not grounded. These connections may be made before the thin tube 11 is placed on the electrode 20.
  • an AC voltage or a pulse voltage is applied between the conductor 22 and the electrode 20 by the power source 40.
  • plasma is generated on at least one of the outside of the narrow tube 11 and the hole around the conductor 22.
  • the plasma generation location is determined by the relative positional relationship between the conductor 22 and the electrode 20. For example, when the conductor 22 is positioned so as to face the electrode 20 across the hole, the plasma is mainly generated in the hole and is outside the narrow tube 11. Hardly occurs.
  • sterilization can be performed, and surface treatment (roughening, coating, hydrophilization, etc.) of at least one of the inner wall and outer wall of the thin tube 11 can be performed.
  • plasma is generated using the conductor 22 in the thin tube 11, so that the structure of the apparatus itself is simple and plasma can be generated easily.
  • plasma can be generated in the holes regardless of the diameter of the holes, and the plasma treatment can be performed in the holes having a very small diameter.
  • the plasma generator according to Embodiment 4 is obtained by adding a gas removal unit 90 to the plasma generator of Embodiment 2. Since parts other than the gas removal unit 90 are the same as those in the second embodiment, the differences from the second embodiment will be described.
  • the gas removing unit 90 is connected to the adapter 70 via a pipe.
  • the gas and the active species remaining in the pores are removed by the gas removal unit 90.
  • a vacuum pump can be exemplified, and a gas pump that can quickly remove the gas or active species remaining in the thin tube 10 or adsorbed on the inner wall is preferable.
  • the end of the narrow tube 10 opposite to the end to which the adapter 70 is attached is closed.
  • the gas removal unit 90 may be used before plasma is generated. For example, when performing plasma treatment in a specific gas atmosphere, the air in the pores of the narrow tube 10 is previously removed by the gas removal unit 90, and then gas is introduced from the gas introduction unit 80 to perform plasma treatment. It can be performed. As a result, the specific plasma process can be performed reliably and without causing another process as a side effect.
  • the plasma generating apparatus is the same as the first embodiment except that the connection between the power source and the second electrode is different, and the rest is the same.
  • the second electrode 20 is only grounded and is not directly connected to the power source 40.
  • the power source 40 is also grounded by the ground electrode 65, it can be said that the second electrode 20 and the power source 40 are indirectly connected through the ground.
  • both the second electrode 20 and the power supply 40 are substantially grounded without bothering to provide a ground electrode is also included in the present embodiment.
  • the power source 40 is connected to the outer wall of the plasma generator, the outer wall of the plasma generator is grounded and is in contact with the floor material.
  • This embodiment has the same effects as the first embodiment.
  • the plasma generating apparatus according to the sixth embodiment is different from that of the fourth embodiment because the configuration of the second electrode is different from that of the fourth embodiment, and the others are substantially the same.
  • the second electrode 132 has a configuration in which a wire-like conductive member 102 is covered with a coating 105 that also has an insulating or dielectric force.
  • the configuration is the same as that of the first electrode 131 in which the wire-like conductive member 101 is covered with the coating 105.
  • the first electrode 131 and the second electrode 132 are arranged in parallel to each other, and a part of the covering 105 of both the electrodes 131 and 132 is connected so that the parallel relationship is fixed, and the parallel electrode pair 100 is integrated. It has become. Therefore, even if the first electrode 131 is inserted into the hole of the thin tube 10, the parallel state of both the electrodes 131 and 132 is maintained.
  • the materials and configurations of the conductive members 101 and 102 and the covering 105 of both electrodes 131 and 132 are the same as those of the first electrode 30 of the first embodiment.
  • the second electrode 132 is inserted into the pores of the thin tube 10 together with the first electrode 131. Then, an AC voltage or a pulse voltage is applied to the first electrode 131 connected to the power source 40.
  • the AC voltage or pulse voltage is the same as that described in the first embodiment.
  • the second electrode 132 which is a covered electric wire, is arranged almost in parallel along the first electrode 131, which is a covered electric wire, and is inserted into the thin tube 10 as a parallel electrode pair 100. Since an alternating voltage or a pulse voltage is applied between 131 and 132, plasma can be easily generated in the narrow tube 10 as in the first embodiment.
  • this embodiment The same plasma treatment (surface treatment, sterilization, etc.) as in Embodiment 4 can be performed in the same manner, and the same effect is obtained.
  • the plasma generating apparatus according to the seventh embodiment is different from the sixth embodiment mainly because the connection between the sixth electrode 132, the second electrode 132, and the power source 40 is different and the others are almost the same. To do.
  • the second electrode 132 exists as a part of the parallel electrode pair 100 that is parallel to the first electrode 131 in the capillary 10 as in the sixth embodiment, as shown in FIG. Then, the first electrode 131 is separated from the thin tube 10 and the adapter 70, and the separated second electrode connecting portion 132 ′ is grounded. The power supply 40 is also grounded.
  • the plasma generating apparatus of the present embodiment can perform the same plasma treatment as that of the sixth embodiment by the same method, and has the same effect.
  • the plasma generating apparatus according to the eighth embodiment is different from the seventh embodiment in that the seventh electrode and the second electrode 132 are not grounded! Explained.
  • the second electrode 132 exists as a part of the parallel electrode pair 100 that is parallel to the first electrode 131 in the capillary tube 10 as in the sixth embodiment, as shown in FIG. Therefore, the second electrode connecting portion 132, which is separated from the first electrode 131 outside the capillary tube 10 and the adapter 70, is not connected to either the power source 40 or the first electrode 131. It is not grounded and is in an electrically floating state. The power supply 40 is grounded. Even when the second electrode 132 is in an electrically floating state, plasma is generated around the first electrode 131 in the capillary tube 10.
  • the plasma generating apparatus of the present embodiment performs the same plasma treatment as that of the seventh embodiment by the same method. Can be done and produces the same effect.
  • the plasma generating apparatus according to the ninth embodiment is different from that of the sixth embodiment because the configuration of the second electrode is different from that of the sixth embodiment and the other parts are substantially the same.
  • the second electrode 133 has a structure in which the conductive member is exposed without having a coating.
  • the material for the conductive member include metals, carbon, and organic conductors.
  • the second electrode 133 is adhered to the outer surface of the coating 105 of the first electrode 131 and is disposed substantially parallel to the first electrode 131.
  • the second electrode 133 exists as a parallel electrode pair 109 together with the first electrode 131 inside and outside the thin tube 10 and is connected to the power source 40 and connected to the first electrode 131.
  • AC voltage or pulse voltage is applied to The AC voltage or the Norse voltage is the same as that described in the first embodiment.
  • the plasma generating apparatus of the present embodiment can perform the same plasma treatment as that of the sixth embodiment by the same method, and has the same effect.
  • the plasma generator according to the tenth embodiment is different from the third embodiment in that the configuration of the second electrode, the gas introduction unit, and the gas removal unit exist, and that the power supply is grounded. Since the others are almost the same, the description will focus on the differences from the third embodiment.
  • the plasma generator of this embodiment has a conductor 22 embedded in the tube wall of the thin tube 11, and the thin tube 11 has a structure as shown in FIG.
  • the electrode 134 has a wire-like conductive member force inserted into the hole and covered with an insulator or a dielectric.
  • the conductor 22 and the electrode 134 are connected to a power source 40, and an AC voltage or a pulse voltage is applied between them as in the first embodiment.
  • the power source 40 is grounded and the electrode 134 is connected to the ground wire.
  • the force electrode 134 that generates plasma around the conductor 22 is disposed in the pores of the narrow tube 11, so that more plasma is generated in the narrow tube 11. .
  • the gas introduction unit 80 of the present embodiment is the same as that described in the second embodiment, and the gas removal unit 90 is the same as that described in the fourth embodiment. Therefore, the plasma generator of this embodiment
  • the raw apparatus can perform the same plasma treatment as in the fourth embodiment by the same method, and has the same effect. Further, the effect of the third embodiment is also achieved.
  • the shape of the conductive member of the first electrode is not limited to a linear shape, and may be any shape such as a plate shape or a foil shape.
  • the thin tube may be formed of a conductive member (for example, metal).
  • the second electrode is not required outside the narrow tube, and plasma is generated in the narrow tube if the thin tube is grounded or connected to a power source.
  • the discharge generated in the first electrode is not particularly limited to dielectric barrier discharge, glow discharge, corona discharge, and the like. Any type of discharge may be used as long as plasma is generated.
  • the plasma treatment may be performed by attaching a gas introduction part or a gas removal part as in Embodiments 2 and 4 and introducing a predetermined gas.
  • the second electrode may not be grounded.
  • the shape, size, length, material, etc. of the narrow tube are not particularly limited.
  • the outer shape and the hole shape may be a polygon other than a circle, an ellipse, or other shapes, or the shape and inner diameter may change in the length direction of the thin tube.
  • one end or both ends of the capillary tube may be closed.
  • the tip of the first electrode may be placed in a thin tube, or may be taken out of the thin tube.
  • the tips of the second electrodes 132 and 133 and the electrode 134 may be placed in the thin tube or may be taken out of the thin tube.
  • At least one of the gas introduction unit 80 and the gas removal unit 90 may not be installed.
  • the second electrode may have a coating.
  • the electrode 134 may be grounded without being connected to the power source 40, It may be in an electrically floating state.
  • the electrode 134 may be a bare conductive member without a coating. Also, if the conductor 22 is grounded or electrically buoyant without being connected to the power source 40, and the AC voltage or pulse voltage is applied to the electrode 134, plasma will be generated in the same way! / ,.
  • an insertion member for inserting the first electrode or the parallel electrode pair into the thin tube may be provided. It is preferable that the insertion member has a function of freely adjusting the advancing direction of the first electrode or the parallel electrode pair even if the narrow tube is bent.
  • the first electrode and the second electrode are not connected and may be separated from each other.
  • a distance adjusting member for adjusting the distance between the first electrode and the second electrode may be further provided. Plus, if the distance between the two electrodes can be adjusted at any position, it is possible to adjust the occurrence position of the message arbitrarily.
  • the power source may be grounded or may be grounded or not.
  • the second electrode is preferably connected to the ground side of the power supply, but the method of connecting the second electrode is not limited to this.
  • the plasma generation apparatus and the plasma generation method according to the present invention can easily generate plasma in a narrow tube, and are useful as a sterilization process in the narrow tube, a surface treatment of the inner wall of the narrow tube, and the like. It is.
  • FIG. 1 is a schematic perspective view of a plasma generator according to Embodiment 1.
  • FIG. 2 is a cross-sectional view of a first electrode.
  • FIG. 3 is a diagram showing a pulse voltage.
  • FIG. 4 is a schematic perspective view of a plasma generator according to Embodiment 2.
  • FIG. 5 is a table showing the results of the sterilization test of Example 1.
  • FIG. 6 is a cross-sectional view of a thin tube according to Embodiment 3.
  • FIG. 7 is a schematic perspective view of a plasma generator according to Embodiment 3.
  • FIG. 8 is a schematic perspective view of a plasma generator according to a fifth embodiment.
  • 9 A schematic perspective view of the plasma generator according to the fourth embodiment.
  • FIG. 10 This is an enlarged photo substitute drawing of the surface of the treated product according to Example 2.
  • FIG. 11 is an enlarged photo-substituting drawing of the surface of an untreated product according to Example 1 of Example 2.
  • FIG. 12 A schematic perspective view of a plasma generator according to Embodiment 6.
  • FIG. 13 is a cross-sectional view of a parallel electrode pair according to Embodiment 6.
  • FIG. 14 A schematic perspective view of the plasma generator according to the seventh embodiment.
  • FIG. 15 is a schematic perspective view of the plasma generator according to the eighth embodiment.
  • FIG. 16 is a schematic perspective view of the plasma generator according to the ninth embodiment.
  • FIG. 17 is a cross-sectional view of a parallel electrode pair according to Embodiment 9.
  • FIG. 18 is a schematic perspective view of the plasma generator according to the tenth embodiment. Explanation of symbols

Abstract

【課題】管径が小さな細管内に確実にかつ簡便にプラズマを発生させる方法及び装置を提供する。 【解決手段】絶縁体または誘電体により被覆された導電性部材からなる第1の電極30を細管10内に挿入する。この細管10を第2の電極20の上に置き、第1の電極30と第2の電極20との間に電源40によって交流電圧またはパルス電圧を印加する。すると、細管10内の第1の電極20の周りにプラズマが発生する。

Description

明 細 書
プラズマ発生装置およびプラズマ発生方法
技術分野
[0001] 本発明は、プラズマ発生装置およびプラズマ発生方法に関し、特に細管の空孔内 にプラズマを発生させるプラズマ発生装置及びプラズマ発生方法に関するものであ る。
背景技術
[0002] 従来より洗浄やエッチング、成膜等を行うのにプラズマを利用して行う方法が知られ ている。
[0003] 特許文献 1には、ヘリウムガスを使用することなく大気中で安定した放電を行うベぐ 反応ガスを供給する反応管と、反応管を挟んで対向配置され反応ガスに作用する第 1,第 2の電極とを備え、第 1,第 2の電極に高周波電力を供給して反応ガスを励起し 、発生させたプラズマで被処理基板を処理するプラズマ処理装置が開示されて ヽる
[0004] 特許文献 2には、処理の際のガス雰囲気を問わず、大気圧近傍の圧力下で均一な 放電プラズマを発生させるため、対向電極の少なくとも一方の対向面に固体誘電体 を設置し、対向電極間にパルス化された電界を印加する技術が開示されている。
[0005] 特許文献 1に開示されている技術は反応管中を流れる反応ガスをプラズマにして、 そのプラズマを反応管力 被処理物に噴射させるものであり、特許文献 2に開示され ている技術は、第 2電極板上に載せられた被処理物の表面処理を行うものであり、い ずれも比較的大きな装置を前提としている表面処理の技術である。
[0006] 一方、プラズマを滅菌や殺菌に用いる研究も進められている。従来の医療用滅菌 方法として、高圧蒸気滅菌、酸化エチレンガス滅菌、放射線滅菌とともに過酸化水素 ガスプラズマ滅菌が実際に行われている力 これらは高温であったり、用いるガス (酸 化工チレンガス)が危険なものであったり、大気下での使用ができないものであったり 、脱気に 1週間以上力かったりするなどの問題があった。このような問題を解決すると ともに、現在では実用的な滅菌方法がほとんど見当たらない細管内の滅菌を行うた めに、特許文献 3〜5には細管内用のプラズマ滅菌装置が開示されて 、る。
特許文献 1 :特開 2002— 184759号公報
特許文献 2 :特開平 10— 154598号公報
特許文献 3 :特開 2003— 135571号公報
特許文献 4:特開 2003— 210556号公報
特許文献 5 :特開 2005— 46264号公報
発明の開示
発明が解決しょうとする課題
[0007] 特許文献 1, 2に記載されている技術は比較的大きな装置を前提としており、また、 表面処理を目的としているので、細管内の滅菌に応用することは非常に困難である。
[0008] 特許文献 3〜5に記載されて 、る技術は細管内用のプラズマ滅菌装置の技術では ある。しかしながら、特許文献 3に記載の技術では、管内にガスを導入して力 管内 にプラズマ発生器を挿入して滅菌を行うが、プラズマ発生器は複数の電極と誘電体 ベース力 なるのであまり小さくすることができず、数 mm以下の管径の細管内の滅 菌には使用できないという課題がある。特許文献 4に記載の技術では、管内に放電 部を挿入してその放電部を移動させるのである力 放電部が針状電極と面状電極と を有しているので内径が数 mmよりも小さい管内に挿入することは非常に困難であり 、細い管に用いることができないという課題がある。特許文献 5に記載の技術では、放 電プラズマにより滅菌作用を有する化学的活性種を形成して、それを管内に導入す るため、管が長いと途中で活性が消失して滅菌効果が消滅したり、管全体を殺菌す るのに非常に長時間力かってしまうという課題がある。
[0009] また、細管内の表面処理をプラズマを用いて行おうとする場合も、特許文献 1〜5に 記載されている技術では、同様の理由で管径が数 mm未満の細管には適用すること ができないため、径が数 mm以下の細管の空孔内をプラズマを用いてエッチング等 の表面処理することは従来はできな力つた。
[0010] 本発明は、力かる点に鑑みてなされたものであり、その目的とするところは、管径が 小さい細管内に確実にかつ簡便にプラズマを発生させる方法及び装置を提供するこ とにある。 課題を解決するための手段
[0011] 上記課題を解決するために、本発明のプラズマ発生装置は、細管の空孔内にブラ ズマを発生させるプラズマ発生装置であって、絶縁体または誘電体により被覆された 導電性部材を備え、前記細管の空孔内に挿入されてプラズマを発生させる第 1の電 極と、前記第 1の電極に交流電圧またはパルス電圧を印加する電源とを備えた構成 を有している。このような構成を有していると、誘電体バリア放電などの放電によって 絶縁体または誘電体力もなる被覆の表面にプラズマが発生する。細管の内径に応じ て導電性部材の径と被覆の厚みを調整すればよぐ細管の内径が数 mm以下 (例え ば 3mm以下)であっても細管の空孔内にプラズマを発生させることができる。第 1の 電極の扱いやすさを考えると、細管内径は、 0. 05mm以上が好ましい。
[0012] ある好適な実施形態において、前記細管の外側に設置されるとともに、前記電源に 接続されて前記第 1の電極との間に前記交流電圧またはパルス電圧が印加される第
2の電極をさらに備えている。
[0013] ある好適な実施形態において、前記細管の外側に設置されるとともに、前記電源に 接続されて前記第 1の電極との間に前記交流電圧またはパルス電圧が印加される接 地電極をさらに備えている。
[0014] ある好適な実施形態において、前記細管の空孔内に設置されるとともに、前記電源 に接続されて前記第 1の電極との間に前記交流電圧またはパルス電圧が印加される 第 2の電極をさらに備えている。
[0015] ある好適な実施形態において、前記細管の空孔内に設置されるとともに、電気的に フローティング状態である第 2の電極をさらに備えている。
[0016] ある好適な実施形態において、前記細管の空孔内に設置されるとともに、前記電源 に接続されて前記第 1の電極との間に前記交流電圧またはパルス電圧が印加される 接地電極をさらに備えて!/ヽる。
[0017] ある好適な実施形態において、前記細管の空孔内にガスを流入させるガス流入部 材をさらに備えている。
[0018] ある好適な実施形態において、前記細管の空孔内の気体を除去する気体除去部 材をさらに備えている。 [0019] ある好適な実施形態において、前記プラズマによって前記細管の内壁の表面処理 を行う。
[0020] ある好適な実施形態において、前記プラズマによって前記細管の空孔内の滅菌を 行う。
[0021] 本発明の第 1のプラズマ発生方法は、細管の空孔内にプラズマを発生させるプラズ マ発生方法であって、前記細管の空孔内に絶縁体または誘電体により被覆された導 電性部材を備えた第 1の電極を挿入する電極挿入工程と、前記第 1の電極に交流電 圧またはパルス電圧を印加して前記細管の空孔内にプラズマを発生させるプラズマ 発生工程とを含む。
[0022] ある好適な実施形態にぉ ヽて、前記プラズマ発生工程では、前記第 1の電極と前 記細管の外側に置かれた第 2の電極との間に交流電圧またはパルス電圧を印加して プラズマを発生させる。
[0023] ある好適な実施形態にぉ ヽて、前記プラズマ発生工程では、前記第 1の電極と前 記細管の外側に置かれた接地電極との間に交流電圧またはパルス電圧を印加して プラズマを発生させる。
[0024] ある好適な実施形態にぉ ヽて、前記プラズマ発生工程では、前記第 1の電極と前 記細管の管壁内部に設置された第 2の電極との間に交流電圧またはパルス電圧を 印加してプラズマを発生させる。
[0025] ある好適な実施形態にぉ ヽて、前記プラズマ発生工程では、前記第 1の電極と前 記細管の空孔内に置かれた第 2の電極との間に交流電圧またはパルス電圧を印加 してプラズマを発生させる。
[0026] ある好適な実施形態において、前記電極挿入工程では、前記細管の空孔内に電 気的にフローティング状態である第 2の電極をさらに挿入する。
[0027] ある好適な実施形態にぉ ヽて、前記プラズマ発生工程では、前記第 1の電極と前 記細管の空孔内に置かれた接地電極との間に交流電圧またはパルス電圧を印加し てプラズマを発生させる。
[0028] ある好適な実施形態において、前記プラズマ発生工程では、前記細管の空孔内に ガスを流入させる。 [0029] ある好適な実施形態において、前記プラズマ発生工程の後に、前記細管の空孔内 にガスを流人させる工程をさらに含む。
[0030] ある好適な実施形態において、前記プラズマ発生工程の後に、前記細管の空孔内 力 気体を除去する工程をさらに含む。
[0031] ある好適な実施形態にぉ 、て、前記プラズマ発生工程では、前記プラズマによって 前記細管の内壁の表面処理を行う。
[0032] ある好適な実施形態にぉ 、て、前記プラズマ発生工程では、前記プラズマによって 前記細管の空孔内の滅菌を行う。
[0033] 本発明の第 2のプラズマ発生方法は、絶縁体また誘電体よりなるとともに管壁内部 に導電体を有する細管の外側および空孔内の少なくとも一方にプラズマを発生させ るプラズマ発生方法であって、前記細管の外側に電極を設置する電極設置工程と、 前記電極と前記導電体との間に交流電圧またはパルス電圧を印加して前記細管の 外側および空孔内の少なくとも一方にプラズマを発生させるプラズマ発生工程とを含 む。
[0034] 本発明の第 3のプラズマ発生方法は、絶縁体または誘電体よりなるとともに管壁内 部に導電体を有する細管の空孔内にプラズマを発生させるプラズマ発生方法であつ て、前記細管の空孔内に電極を設置する電極設置工程と、前記導電体に交流電圧 またはパルス電圧を印加して前記細管の空孔内にプラズマを発生させるプラズマ発 生工程とを含む。
[0035] 本発明の第 4のプラズマ発生方法は、絶縁体または誘電体よりなるとともに管壁内 部に導電体を有する細管の空孔内にプラズマを発生させるプラズマ発生方法であつ て、前記細管の空孔内に電極を設置する電極設置工程と、前記電極に交流電圧ま たはパルス電圧を印加して前記細管の空孔内にプラズマを発生させるプラズマ発生 工程とを含む。
発明の効果
[0036] 絶縁体または誘電体力 なる被覆を有する第 1の電極を細管に挿入してプラズマを 発生させるので、内径が数 mm以下の細管内であってもプラズマを発生させることが できる。 発明を実施するための最良の形態
[0037] 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の図面におい ては、説明の簡潔化のため、実質的に同一の機能を有する構成要素を同一の参照 符号で示す。
[0038] (実施形態 1)
実施形態 1のプラズマ発生装置を図 1に示す。このプラズマ発生装置は、細管 10の 空孔内にプラズマを発生させる装置であり、細管 10の空孔内に挿入される(図 1では 既に挿入されている)第 1の電極 30と、細管 10の外側に設置されている第 2の電極 2 0と、第 1の電極 30と第 2の電極 20との間に交流電圧あるいはパルス電圧を印加する 電源 40とを備えている。
[0039] 第 1の電極 30は、図 2に示すように導電性部材 31の表面に絶縁体または誘電体か らなる被覆 32が施されている構成を有している。導電性部材 31は金属やカーボン、 有機導電性材料など導電性を有して ヽればどのようなものであっても構わな ヽ。本実 施形態では銅線として 、る。
[0040] 被覆 32を構成する絶縁体は、 PFAや PTFE、 FEPなどのフッ素榭脂、ポリイミド榭 脂などの電気絶縁性のポリマー、ある 、はダイヤモンドライクカーボン (DLC)のような 電気絶縁性の無機物などを挙げることができる。また、被覆 32を構成する誘電体とし ては、チタン酸バリウムなどの誘電率が高い物質を挙げることができる。本実施形態 ではフッ素榭脂であるテフロン (登録商標)により被覆 32を形成した。
[0041] ここで仮定として被覆 32がない場合を考えると、導電性部材 31の特定部位に放電 が集中してしまい、プラズマ発生箇所が当該特定部位の周辺のみとなつて細管 10の 空孔内全体にプラズマが生じなかったり、細管 10が放電により破壊されてしまう可能 性が非常に高い。
[0042] また、第 1の電極 30と第 2の電極 20との間に交流電圧あるいはパルス電圧を印加 して第 1の電極 30の周囲にプラズマを発生させると第 1の電極 30の温度が上がるた め、導電性部材 31および被覆 32は耐熱性が高いもの、具体的には 50°Cで 1時間保 持したときに劣化しないものが好ましい。耐熱性の点からは、導電性部材 31は金属 やカーボン等が好ましぐ被覆 32はフッ素榭脂ゃポリイミド榭脂、 DLC、チタン酸バリ ゥムなどが好ましい。
[0043] 細管 10の材質はどのようなものでも構わない。ただ、細管 10の絶縁性が高いほど 第 1の電極 30と第 2の電極 20との間に高い電界を印加することができ、結果としてプ ラズマが容易に発生するようになる。
[0044] 第 2の電極 20は接地線 50により接地されている接地電極であり、電源 40と接続線 60により接続されている。第 2の電極 20の形状や材質は特に限定されない。例えば 、第 2の電極 20の形状は、平板状、円筒状、メッシュ状あるいはワイヤ状など、どのよ うなものであってもよい。第 2の電極 20の材質は、金属、カーボンあるいは有機導電 材料など導電性であればどのようなものでもよい。さらに第 2の電極 20の表面は絶縁 体で覆われて 、ても構わな ヽ。本実施形態では金属板の表面に絶縁体を被覆した ものを第 2の電極 20とした。
[0045] 電源 40は交流電圧あるいはパルス電圧を印加するものである力 第 1の電極 30の 形状や材質、長さなど、細管 10の材質や厚みなど、第 1の電極 30と第 2の電極 20と の距離、第 1の電極 30の周囲のガス種や温度等々でプラズマが発生するかしないか ということ及びプラズマの強度が大きく影響されるため、また、プラズマの発生にとって 重要なのは印加電圧ではなく第 1の電極 30の周囲の電界強度であるため、交流電 圧あるいはパルス電圧の周波数や電圧の大きさは特に限定されない。パルス電圧は 図 3に示すように、極性の変わる(+から一、または一から + )パルス、あるいは 0Vか ら立ち上がるパルスが好ましぐパルス電圧が時間的に連続して供給されるとプラズ マが連続して発生するので、好ましい。このように連続して供給されるパルス電圧は、 方形波の交流電圧とも言える。
[0046] なお、電源 40の周波数や電圧は特に限定されな 、と上で述べたが、周波数は 0.
1Hz〜: L 00MHzが電源装置として実用上好ましぐプラズマの発生しやすさを考慮 すると 50Ηζ〜1ΜΗζが好ましい。電圧は、 lV〜500kVがプラズマが発生し易くで 好ましぐ装置の扱いやすさの点で IV〜: LOOkVが好ましい。また、電源 40に yり交 流電圧またはパルス電圧が第 1の電極 30に印加された際の第 1の電極 30近辺の電 界強度は、 105VZm以上 101( Zm以下が好まし 、。
[0047] 次に本実施形態のプラズマ発生装置を用いたプラズマを発生させる方法を説明す る。
[0048] まず、例えばカテーテルのような細管 10に線状である第 1の電極 30を挿入する。細 管 10が PVCやポリウレタン、シリコーン、テフロン (登録商標)のような柔軟性のある 材質力もなる場合は、細管 10は比較的自由に曲げられるが、第 1の電極 30も銅線( 導電性部材) 31とテフロン (登録商標)被覆 32からなるので、細管 10の曲がりに応じ て第 1の電極 30も曲がって揷人されて!、く。
[0049] プラズマを発生させたい領域の全てに第 1の電極 30が挿入されたら、第 1の電極 3 0が挿入された状態の細管 10を第 2の電極 20の上に置く。この時図 1に示すように細 管 10を真っ直ぐにして第 2の電極 20上に置いてもよいが、第 2の電極 20の大きさ(面 積)に比べて細管 10が長い場合は、細管 10を湾曲させて第 2の電極 20の上に載せ ても構わない。
[0050] それから、第 1の電極 30と第 2の電極 20との間に交流電圧またはパルス電圧を印 カロしてプラズマを発生させる。細管 10を第 2の電極 20の上に真っ直ぐに置いた場合 は、第 1の電極 30と第 2の電極 20との距離力 第 2の電極 20上では第 1の電極 30の 長さ方向においてどこでもほぼ一定になるし、細管 10を湾曲させておいた場合も同 様に第 1の電極 30と第 2の電極 20との距離は第 1の電極 30の長さ方向にお!、てどこ でもほぼ一定になるので、発生する電界強度は第 1の電極 30の長さ方向においてほ ぼ一定になる。従って、第 1の電極 30の長さ方向において連続してほぼ一定のプラ ズマが発生する。なお、プラズマの発生度合いは第 1の電極 30周囲の発光度合いや 、第 1の電極 30の長さ方向における単位長さあたりの放電電流によって判断すること ができる。プラズマの発光度合いは、細管 10が透光性を有していれば目視により容 易に確認できる。この場合、細管 10が透明ではなくても、プラズマが発する光を数% 以上透過させれば目視による確認は可能である。
[0051] これまで説明したように、本実施形態では絶縁体または誘電体により被覆された導 電性部材 31を備えた第 1の電極 30を細管 10の空孔内に挿入し、この第 1の電極 30 に交流電圧またはパルス電圧を印加させてプラズマを発生させるので、第 1の電極 3 0を小さくしたり細くすることで、細管 10の内径が小さくなつても空孔内でプラズマを 発生させることが可能である。例えば導電性部材 31に 0. 08mmの銅線を用い、被 覆 32として厚み 0. Olmmのテフロン (登録商標)を用いれば、内径が 0. 1mmよりも 大きい細管 10であればこの第 1の電極 30を挿入することが可能である。このように内 径が小さい細管 10には、特許文献 4に記載のプラズマ発生装置を挿入することは非 常に困難である。また、本実施形態では第 1の電極 30の周囲全体にプラズマが発生 するので、細管 10の空孔内全体を一度にプラズマ処理することができ、短時間でプ ラズマ処理を行うことができる。また、本実施形態のプラズマ発生装置は非常に簡単 な構造であり、製造コストを低くできる。そして、プラズマ発生も容易にかつ被熟練者 でも行える。
[0052] 本実施形態のプラズマ発生装置において、第 1の電極 30の長さ方向において連続 してほぼ均一にプラズマを発生させるためには、第 1の電極 30の先端を第 2の電極 2 0から遠く離しておくか、第 1の電極 30の先端の被覆 32を他の部分よりも厚くする又 は絶縁性や誘電性が他の部分よりも高い素材とすることが考えられる。前者は、細管 10の両端が開口している場合に簡単に適用することができる。
[0053] また、第 1の電極 30のうち先端以外の部分においても、ある一部が他の部分よりも プラズマ発生強度が大き力つたり小さ力つたりしても、プラズマ処理の目的によっては 何ら問題とならない場合があるので、第 1の電極 30の長さ方向においてプラズマの 発生が均一でなくても構わない。つまり、第 1の電極 30の長さ方向においてプラズマ の発生が不連続であったり、プラズマ発生強度が不均一であっても構わな!/、。
[0054] (実施形態 2)
実施形態 2に係るプラズマ発生装置は、図 4に示すように、実施形態 1に係るプラズ マ発生装置にガス導入部 80を加えたものである。本実施形態に係るプラズマ発生装 置およびプラズマ発生方法は実施形態 1と大部分が同じであるので、異なっている点 を主に説明する。
[0055] 本実施形態では、細管 10の第 1の電極 30を挿入させる細管 10の開口部にァダプ タ 70を取り付けてガス導入部 80から細管 10の空孔内に所定のガスを導入する。ァ ダプタ 70とガス導入部 80とは管によって連結されている。ガス導入部 80としては、例 えば圧縮ガス容器に減圧弁を取り付けた装置を例としてあげることができる。所定の ガスというのは、種々のガスの中力もプラズマ発生の目的によって選択されたガスで ある。例えば Arや Heを細管 10内に導入すると大気下よりもプラズマが発生しやすく なる。また、酸素を導入するとオゾンや酸素ラジカルが発生する。細管 10の内壁に例 えば特定の有機物分子を結合させた ヽ場合は、当該有機物分子を含むガスを導入 すればよい。また、細管 10の内壁に榭脂コーティングしたい場合は、モノマーを含む ガスを導入すればよい。
[0056] 次に本実施形態のプラズマ発生装置を用いたプラズマを発生させる方法につ!、て 説明する。
[0057] まず細管 10の開口部にアダプタ 70を取り付ける。アダプタ 70にはガス導入部 80が 連結されている。それからアダプタ 70を通して第 1の電極 30を細管 10の空孔内に揷 入する。そして、細管 10を第 2の電極 20の上に置く。
[0058] その次にガス導入部 80から所定のガスを細管 10の空孔内に流入させ、さらに第 1 の電極 30と第 2の電極 20との間に交流電圧またはパルス電圧を印加してプラズマを 発生させる。ガスは電圧印加時にずっと流し続けてもよいし、最初に空孔内にガスを 流入させた後にガスの導入を止めて電圧印加を行ってもよい。細管 10のアダプタ 70 を取付ているのとは反対側の端部が開口している場合は、ガスを電圧印加時にずつ と流し続けることが好ましい。
[0059] それからプラズマの発生を終了させた後に、プラズマ発生中に導入していたガスと 同種のあるいは異種のガスを細管 10の空孔内に流入させて、空孔内に残っているプ ラズマ発生時導入ガスあるいはプラズマにより化学変化したガスや活性種を細管 10 力も全て排出し除去する。なお、ガス除去が不要な場合にはこの工程を行う必要は ない。
[0060] また、最初の工程において、先に第 1の電極 30を細管 10の空孔内に挿入して、後 力もアダプタ 70を細管の開口に取り付けてもよい。
[0061] 本実施形態では、実施形態 1の効果に加えて、任意のガスを空孔内に導入できる ので、プラズマ処理の目的に応じてより有効な処理を行うことができる。例えば、ォゾ ンゃ他の活性種による滅菌処理を短時間且つ低い電圧で行ったり、細管 10内壁の エッチング処理を短時間で且つ全面的に均一に行ったり、細管 10内壁に活性基を 化学結合させたり、コーティングを行ったり等を行うことができる。また、プラズマ処理 後に細管 10内に残っている活性種や有害気体などを別のガスを流入させることによ り速やかに除去できるので、内部汚染が残っている心配のないプラズマ処理を行うこ とがでさる。
[0062] 次に本実施形態のプラズマ処理装置を用いた実施例により、プラズマを用いた滅 菌と表面処理について説明をする。
[0063] <実施例 1 >
外径 5mm、内径 3mm、長さ lmの PVC製細管の空孔内に、径 0. 254mmの銅線 にテフロン (登録商標)を被覆した第 1の電極を挿入して交流電圧を印加し、細管内 の滅菌を行った。細管の両端は封止した。また、電源は周波数 6kHzの正弦波であ る交流電源を用いた。印加電圧の大きさはピークトウピークで表して 、る。
[0064] 電圧の大きさと、処理時間(電圧印加時間)とを変えてプラズマ照射した結果を図 5 に示す。滅菌できたか否かの判定には、 3M社の ATTEST290及び 290Gを用いた 。図 5の上段と下段に示す No. 1291および 1294は、判定に用いたバイオインジケ ータの番号である。なお、滅菌できた力否かの判定は、菌数が 5桁以上減少した力否 かで行った。プラズマ処理によって菌数が 5桁以上減少したら、滅菌できたと判定(図 では〇で表して 、る)し、減少しなかったら滅菌できな力つたと判定(図では Xで表し ている)した。表の数字は、〇または Xと判定した回数 (試験数)である。なお、 control は、プラズマ処理を行わなかったものである。
[0065] 図 5の上段からわ力るように、印加電圧を 13kVにすると、処理時間 5分で 5回の試 験のうち 5回とも滅菌ができた。一方印加電圧を 10kVにすると処理時間が 10分にな つて初めて複数回の試験において全ての試験で滅菌成功となった。また、図 5下段 の結果より、印加電圧 15kVでは少なくとも印加電圧 13kVと同等の滅菌能力がある ことがわ力つた。従来の酸ィ匕エチレンガスを用いた滅菌装置や過酸ィ匕水素ガスを用 いた滅菌装置を使用して滅菌を行うと、滅菌が終了するのに数時間以上かかる上、 酸ィ匕エチレンガスはだつきに 1週間力かるので、本実施例は従来の方法に比べて桁 違いに早く滅菌を行うことができる。
[0066] <実施例 2>
外径 0. 7mm、内径 0. 5mm、長さ 48mmのポリウレタン製細管の空孔内に、径 0. 018mmの銅線にテフロン (登録商標)を被覆した第 1の電極を挿入して交流電圧を 印加し、細管内の表面処理 (エッチング)を行った。細管の両端は開放とした。また、 電源は周波数 6kHzの正弦波である交流電源を用いた。印加電圧は 8kVとした。
[0067] 図 10は電圧を 2分間印力!]した細管内壁のレーザ顕微鏡写真(3000倍)である。ま た、比較のために図 11にプラズマ処理を行って 、な 、(未処理)細管内壁のレーザ 顕微鏡写真(3000倍)を示す。未処理の内壁には微細な凹凸があるが、プラズマ処 理を行うと内壁がエッチングされるため、この凹凸が消失して!/、ることがわ力る。
[0068] (実施形態 3)
実施形態 3に係るプラズマ発生装置は、細管中に埋め込まれた導電性部材を利用 してプラズマ発生を行うものである。
[0069] 本実施形態において用いられる細管は、図 6に示すように細管 11の管壁の内部に 導電体 22が埋め込まれていて、絶縁体または誘電体力もなるものである。このような 細管 11としては、ある種のカテーテルを例として挙げることができる。本実施形態で は細管はポリウレタンよりなり導電体 22は銅線である。
[0070] 本実施形態に係るプラズマ発生装置は、図 7に示すように電源 40と細管 11の外側 に設置される電極 20とを備えている。なお、細管 11中の導電体 22を第 1の電極、細 管 11の外側に設置される電極 20を第 2の電極と言うこともできる。電極 (第 2の電極) 20と電源 40に関しては、実施形態 1と同じであるので、説明を省略する。
[0071] 本実施形態では、まず電極 20の上に細管 11を載せる。これにより細管 11の外側 に電極 20が設置されたことになる。次に導電体 22と電源 40とを接続し、電極 20と電 源 40とを接続線 60を介して接続する。本実施形態では、電極 20は接地していない 。なお、これらの接続は、細管 11を電極 20の上に載せる前に行っておいても構わな い。
[0072] それから、導電体 22と電極 20との間に電源 40によって交流電圧またはパルス電圧 を印加する。この印加により導電体 22の周囲である細管 11の外側および空孔内の 少なくとも一方にプラズマが発生する。プラズマの発生場所は導電体 22と電極 20と の相対的な位置関係によって決まる。例えば導電体 22が空孔を挟んで電極 20と対 向するような位置にある場合は、プラズマは主に空孔内に発生し、細管 11の外側に はほとんど発生しない。このようにプラズマを発生させることにより、滅菌を行ったり、 細管 11の内壁および外壁の少なくとも一方の表面処理 (粗化、コーティング、親水化 など)を行うことができる。
[0073] 本実施形態では細管 11中の導電体 22を利用してプラズマの発生を行わせるので 、装置自体の構造が簡単なものになり、容易にプラズマを発生させることができる。ま た、空孔の径によらず空孔内にプラズマを発生することができ、非常に径の小さな空 孔内のプラズマ処理を行うことができる。
[0074] (実施形態 4)
実施形態 4に係るプラズマ発生装置は、図 9に示すように実施形態 2のプラズマ発 生装置に気体除去部 90を追加したものである。気体除去部 90以外の部分は実施形 態 2と同じであるので、実施形態 2と異なるところを説明する。
[0075] 気体除去部 90は、管を介してアダプタ 70に連結されて 、る。本実施形態では、プ ラズマを発生させて細管 10の空孔内の滅菌や表面処理などを行った後に気体除去 部 90により空孔内に残っているガスや活性種を除去する。気体除去部 90としては、 真空ポンプを例示することができ、細管 10の残存している、あるいは内壁に吸着され ているガスや活性種を速やかに除去できるものが好ましい。この場合、細管 10の、ァ ダプタ 70が取り付けられている端部とは反対側の端部は閉じていることが好ましい。
[0076] なお、気体除去部 90はプラズマを発生させる前に用いても構わな 、。例えば、特 定のガス雰囲気下でプラズマ処理を行いたい場合は、予め細管 10の空孔内の空気 を気体除去部 90により除去してカゝらガス導入部 80からガスを導入してプラズマ処理 を行うことができる。これにより特定のプラズマ処理を確実にかつ副作用となる別の処 理が生じることなく行うことができる。
[0077] 本実施形態では、実施形態 2の効果にカ卩えて、プラズマ処理後の空孔内のガスや 活性種を速やかに且つほぼ全て除去することが簡単にできるという効果、およびブラ ズマ処理を行う前に空孔内のクリーニングを行えるという効果を奏する。
[0078] (実施形態 5)
実施形態 5に係るプラズマ発生装置は、実施形態 1とは電源と第 2の電極との接続 が異なるだけで他は同じであるので、異なっているところのみを説明する。 [0079] 本実施形態においては、図 8に示すように第 2の電極 20は接地されているだけであ り、電源 40とは直接には接続されていない。し力しながら、電源 40も接地電極 65に よって接地しているので第 2の電極 20と電源 40とはグラウンドを介して間接的に接続 されているといえる。なお、第 2の電極 20および電源 40の双方において、接地電極 をわざわざ設けないで実質的に接地させている場合も本実施形態に含まれる。例え ば電源 40はプラズマ発生装置の外壁に接続されて ヽて、プラズマ発生装置の外壁 が接地されて 、る床材と接触して 、る場合などである。
[0080] 本実施形態は、実施形態 1と同じ効果を奏する。
[0081] (実施形態 6)
実施形態 6に係るプラズマ発生装置は、実施形態 4と第 2の電極の構成が異なって おり他はほぼ同じであるので、実施形態 4とは異なっているところを中心に説明する。
[0082] 本実施形態においては、図 12、図 13に示すように、第 2の電極 132はワイヤ状の 導電性部材 102に絶縁体または誘電体力もなる被覆 105がなされている構成であり 、ワイヤ状の導電性部材 101に被覆 105がなされている第 1の電極 131と同じ構成で ある。第 1の電極 131と第 2の電極 132とは互いに平行に配置され、その平行関係が 固定されるように両電極 131, 132の被覆 105の一部が繋がって一体となって平行 電極対 100となっている。従って、第 1の電極 131を細管 10の空孔内に挿入しても、 両電極 131, 132の平行状態は保持される。なお、両電極 131, 132の導電性部材 101, 102および被覆 105の材料や構成などは実施形態 1の第 1の電極 30と同じで ある。
[0083] 第 2の電極 132は、実施形態 1乃至 5とは異なり、第 1の電極 131とともに細管 10の 空孔内に挿入される。そして電源 40に接続されて第 1の電極 131との間に交流電圧 あるいはパルス電圧が印加される。交流電圧あるいはパルス電圧にっ ヽては実施形 態 1で説明したものと同じである。
[0084] 本実施形態では、被覆電線である第 1の電極 131に沿って被覆電線である第 2の 電極 132がほぼ平行に配置されて平行電極対 100として細管 10内に挿入され、両 電極 131, 132間に交流電圧あるいはパルス電圧が印加されているので、実施形態 1と同様に細管 10内にプラズマを容易に発生させることができる。また本実施形態は 、実施形態 4と同じプラズマ処理 (表面処理や滅菌など)を同様の方法で行うことがで き、同じ効果を奏する。
[0085] なお、第 1の電極 131の先端にプラズマの発生が集中しないように、第 1の電極 13 1の先端のみを被覆 105を他の部分よりも厚くする又は絶縁性や誘電性が他の部分 よりも高 、素材とすることが好ま U、。このようにすると第 1の電極 131の長さ方向にお いてほぼ均一にプラズマを発生させることが可能となる。
[0086] (実施形態 7)
実施形態 7に係るプラズマ発生装置は、実施形態 6と第 2の電極 132と電源 40との 接続が異なっており他はほぼ同じであるので、実施形態 6と異なっているところを中 心に説明する。
[0087] 本実施形態において、第 2の電極 132は、図 14に示すように細管 10内においては 実施形態 6と同様に第 1の電極 131と平行である平行電極対 100の一部として存して おり、細管 10およびアダプタ 70の外側で第 1の電極 131から離れていき、その離れ た第 2の電極接続部分 132'は接地している。また、電源 40も接地されている。
[0088] 本実施形態のプラズマ発生装置は、実施形態 6と同じプラズマ処理を同じ方法で 行うことができ、同じ効果を奏する。
[0089] (実施形態 8)
実施形態 8に係るプラズマ発生装置は、実施形態 7と第 2の電極 132が接地してい な!、ことが異なっており他はほぼ同じであるので、実施形態 7と異なって 、るところを 中心に説明する。
[0090] 本実施形態において、第 2の電極 132は、図 15に示すように細管 10内においては 実施形態 6と同様に第 1の電極 131と平行である平行電極対 100の一部として存して おり、細管 10およびアダプタ 70の外側で第 1の電極 131から離れていき、その離れ た第 2の出極接続部分 132,は電源 40、第 1の電極 131のどちらにも接続されず接 地もされておらず、電気的にフローティング状態となっている。また、電源 40は接地さ れている。第 2の電極 132が電気的にフローティング状態であっても細管 10内の第 1 の電極 131の周辺にはプラズマが発生する。
[0091] 本実施形態のプラズマ発生装置は、実施形態 7と同じプラズマ処理を同じ方法で 行うことができ、同じ効果を奏する。
[0092] (実施形態 9)
実施形態 9に係るプラズマ発生装置は、実施形態 6と第 2の電極の構成が異なって おり他はほぼ同じであるので、実施形態 6と異なっているところを中心に説明する。
[0093] 本実施形態においては、図 16、図 17に示すように第 2の電極 133は、被覆を有し ておらず導電性部材が剥き出しとなって 、る構成である。この導電性部材の材料とし ては、金属、カーボン、有機導電体などが挙げられる。
[0094] 第 2の電極 133は第 1の電極 131の被覆 105の外表面に接着されて第 1の電極 13 1とほぼ平行に配置されている。そして細管 10の内外において実施形態 6と同様に、 第 2の電極 133は第 1の電極 131とともに平行電極対 109として存しており、電源 40 に接続されていて第 1の電極 131との間に交流電圧またはパルス電圧を印加される 。交流電圧あるいはノ ルス電圧については実施形態 1で説明したものと同じである。
[0095] 本実施形態のプラズマ発生装置は、実施形態 6と同じプラズマ処理を同じ方法で 行うことができ、同じ効果を奏する。
[0096] (実施形態 10)
実施形態 10に係るプラズマ発生装置は、実施形態 3と第 2の電極の構成およびガ ス導入部、気体除去部が存して 、ること及び電源が接地されて 、ることが異なってお り他はほぼ同じであるので、実施形態 3と異なっているところを中心に説明する。
[0097] 本実施形態のプラズマ発生装置は、図 6に示すように、細管 11の管壁内部に埋め 込まれた導電体 22を有しており、そして、図 18に示すように細管 11の空孔内に挿入 されて 、る、絶縁体または誘電体により被覆されたワイヤ状の導電性部材力 なる電 極 134を有している。導電体 22および電極 134は電源 40に接続されており、それら の間には実施形態 1と同様に交流電圧ある 、はパルス電圧が印加される。電源 40は 接地されており、電極 134が接地線に接続されている。交流電圧あるいはパルス電 圧が印加されると、導電体 22の周囲にプラズマが発生する力 電極 134が細管 11の 空孔内に配置されて 、るので、細管 11内にプラズマがより多く発生する。
[0098] 本実施形態のガス導入部 80は実施形態 2で説明したものと同じであり、気体除去 部 90はは実施形態 4で説明したものと同じである。従って本実施形態のプラズマ発 生装置は実施形態 4と同じプラズマ処理を同じ方法で行うことができ、同じ効果を奏 する。また、実施形態 3の効果も奏する。
[0099] (その他の実施形態)
上記の実施形態は本発明の例であり、本発明はこれらの例に限定されない。例え ば、第 1の電極の導電性部材の形状は線状に限定されず、板状、箔状等どのような 形状でもよい。
[0100] また実施形態 1, 2, 4, 5において、細管を導電性部材 (例えば金属)により形成し ても構わない。この場合は、細管の外部に第 2の電極が不要となり、細管を接地した り、電源と接続させたり等すれば細管内にプラズマが発生する。
[0101] 第 1の電極に発生する放電は、誘電体バリア放電やグロ一放電、コロナ放電など特 に限定されな 、。プラズマが発生すればどのような放電形態であっても構わな 、。
[0102] 実施形態 3, 5の装置において、実施形態 2, 4のようにガス導入部や気体除去部を 取り付けて、所定のガスを導入してプラズマ処理を行っても構わな ヽ。
[0103] 実施形態 1〜4において、第 2の電極と電源 40との接続を行わなくても構わない。
[0104] 実施形態 1〜3において、第 2の電極は接地しなくても構わない。
[0105] 細管の形状ゃ径の大きさ、長さ、素材などは特に限定されない。細管の横断面に おいて外形や空孔の形状が円形以外の多角形や楕円、その他の形状であっても構 わないし、細管の長さ方向において形状や内径が変化していても構わない。また、細 管の一方の端部または両方の端部が閉鎖されて 、ても構わな 、。
[0106] いずれの実施形態においても第 1の電極の先端は、細管の中に入れておいても構 わないし、細管の外に出しても構わない。また、実施形態 6乃至 10において第 2の電 極 132, 133や電極 134の先端も細管の中に入れておいても構わないし、細管の外 に出しても構わない。
[0107] 実施形態 6乃至 10において、ガス導入部 80および気体除去部 90の少なくとも一 方は設置しなくても構わな 、。
[0108] また、実施形態 6から 8の何れかにお 、て、第 2の電極は被覆を有して ヽなくても構 わない。
[0109] 実施形態 10において、電極 134は電源 40に接続させないで接地させてもよいし、 電気的にフローティング状態としておいても構わない。また、電極 134に被覆の無い 剥き出しの導電性部材を用いてもよい。また、導電体 22を電源 40に接続させないで 接地させたり電気的に浮力ゝせておき、電極 134に交流電圧あるいはパルス電圧を印 カロしても同じようにプラズマが発生するので構わな!/、。
[0110] さらに第 1の電極または平行電極対を細管内に挿入させる挿入部材を備えていて も構わない。挿入部材は細管が曲がっていても第 1の電極又は平行電極対の進行方 向を自在に調整できる機能を有して 、ることが好ま U、。
[0111] 実施形態 6乃至 9において第 1の電極と第 2の電極とは繋がっておらず、離れてい てもよい。この時、第 1の電極と第 2の電極との距離を調整する距離調整部材をさらに 備えて 、てもよ 、。任意の位置で 2つの電極間距離を調整することができるとプラス、 マの発生位置を任意に調節できる。
[0112] V、ずれの実施形態にぉ 、ても電源は接地されて 、ても接地されて 、なくてもどちら でもよい。接地されている場合、第 2の電極が存しているときは、第 2の電極が電源の 接地側に接続されていることが好ましいが第 2の電極の接続方法はこれに限定され ない。
産業上の利用可能性
[0113] 以上説明したように、本発明に係るプラズマ発生装置およびプラズマ発生方法は、 細管中で簡単にプラズマを発生させることができ、細管中の滅菌処理や、細管内壁 の表面処理等として有用である。
図面の簡単な説明
[0114] [図 1]実施形態 1に係るプラズマ発生装置の模式的な斜視図である。
[図 2]第 1の電極の断面図である。
[図 3]パルス電圧を示す図である。
[図 4]実施形態 2に係るプラズマ発生装置の模式的な斜視図である。
[図 5]実施例 1の滅菌テストの結果を示す表である。
[図 6]実施形態 3に係る細管の断面図である。
[図 7]実施形態 3に係るプラズマ発生装置の模式的な斜視図である。
[図 8]実施形態 5に係るプラズマ発生装置の模式的な斜視図である。 圆 9]実施形態 4に係るプラズマ発生装置の模式的な斜視図である。
1—
[図 〇 10]実施例 2に係る処理品の表面の拡大写真代用図面である。
1—
[図 11]1実— 施例 2に係る未処理品の表面の拡大写真代用図面である。 圆 12]実施形態 6に係るプラズマ発生装置の模式的な斜視図である。
[図 13]実施形態 6に係る平行電極対の断面図である。
圆 14]実施形態 7に係るプラズマ発生装置の模式的な斜視図である。 圆 15]実施形態 8に係るプラズマ発生装置の模式的な斜視図である。 圆 16]実施形態 9に係るプラズマ発生装置の模式的な斜視図である。
[図 17]実施形態 9に係る平行電極対の断面図である。
圆 18]実施形態 10に係るプラズマ発生装置の模式的な斜視図である。 符号の説明
細管
20 第 2の電極
22 導電体
30 第 1の電極
31 導電性部材
32 被覆
40 電源
50 接地線
60, 65 接 線
70 アダプタ
80 ガス導入部
90 気体除去部
101 導電性部材
102 導電性部材
105 被覆
131 第 1の電極
132 第 2の電極 第 2の電極 電極

Claims

請求の範囲
[1] 細管の空孔内にプラズマを発生させるプラズマ発生装置であって、
絶縁体または誘電体により被覆された導電性部材を備え、前記細管の空孔内に挿 入されてプラズマを発生させる第 1の電極と、
前記第 1の電極に交流電圧またはパルス電圧を印加する電源と
を備えた、プラズマ発生装置。
[2] 前記細管の外側に設置されるとともに、前記電源に接続されて前記第 1の電極との 間に前記交流電圧またはパルス電圧が印加される第 2の電極をさらに備えた、請求 項 1に記載のプラズマ発生装置。
[3] 前記細管の外側に設置されるとともに、前記電源に接続されて前記第 1の電極との 間に前記交流電圧またはパルス電圧が印加される接地電極をさらに備えた、請求項
1に記載のプラズマ発生装置。
[4] 前記細管の空孔内にガスを流入させるガス流入部材をさらに備えた、請求項 1から
3の 、ずれか一つに記載のプラズマ発生装置。
[5] 前記細管の空孔内の気体を除去する気体除去部材をさらに備えた、請求項 1から 4 の!、ずれか一つに記載のプラズマ発生装置。
[6] 前記プラズマによって前記細管の内壁の表面処理を行う、請求項 1から 5のいずれ か一つに記載のプラズマ発生装置。
[7] 前記プラズマによって前記細管の空孔内の滅菌を行う、請求項 1から 5のいずれか 一つに記載のプラズマ発生装置。
[8] 細管の空孔内にプラズマを発生させるプラズマ発生方法であって、
前記細管の空孔内に絶縁体または誘電体により被覆された導電性部材を備えた第
1の電極を挿入する電極挿入工程と、
前記第 1の電極に交流電圧またはパルス電圧を印加して前記細管の空孔内にブラ ズマを発生させるプラズマ発生工程と
を含む、プラズマ発生方法。
[9] 前記プラズマ発生工程では、前記第 1の電極と前記細管の外側に置かれた第 2の 電極との間に交流電圧またはパルス電圧を印加してプラズマを発生させる、請求項 8 に記載のプラズマ発生方法。
[10] 前記プラズマ発生工程では、前記第 1の電極と前記細管の外側に置かれた接地電 極との間に交流電圧またはパルス電圧を印加してプラズマを発生させる、請求項 8に 記載のプラズマ発生方法。
[11] 前記プラズマ発生工程では、前記第 1の電極と前記細管の管壁内部に設置された 第 2の電極との間に交流電圧またはパルス電圧を印加してプラズマを発生させる、請 求項 8に記載のプラズマ発生方法。
[12] 前記プラズマ発生工程では、前記細管の空孔内にガスを流入させる、請求項 8から
11の 、ずれか一つに記載のプラズマ発生方法。
[13] 前記プラズマ発生工程の後に、前記細管の空孔内にガスを流入させる工程をさら に含む、請求項 8から 12の 、ずれか一つに記載のプラズマ発生方法。
[14] 前記プラズマ発生工程の後に、前記細管の空孔内から気体を除去する工程をさら に含む、請求項 8から 13の 、ずれか一つに記載のプラズマ発生方法。
[15] 前記プラズマ発生工程では、前記プラズマによって前記細管の内壁の表面処理を 行う、請求項 8から 14のいずれか一つに記載のプラズマ発生方法。
[16] 前記プラズマ発生工程では、前記プラズマによって前記細管の空孔内の滅菌を行 う、請求項 8から 14の 、ずれか一つに記載のプラズマ発生方法。
[17] 絶縁体または誘電体よりなるとともに管壁内部に導電体を有する細管の外側および 空孔内の少なくとも一方にプラズマを発生させるプラズマ発生方法であって、 前記細管の外側に電極を設置する電極設置工程と、
前記電極と前記導電体との間に交流電圧またはパルス電圧を印加して前記細管の 外側および空孔内の少なくとも一方にプラズマを発生させるプラズマ発生工程と を含む、プラズマ発生方法。
[18] 前記細管の空孔内に設置されるとともに、前記電源に接続されて前記第 1の電極と の間に前記交流電圧またはパルス電圧が印加される第 2の電極をさらに備えた、請 求項 1に記載のプラズマ発生装置。
[19] 前記細管の空孔内に設置されるとともに、電気的にフローティング状態である第 2の 電極をさらに備えた、請求項 1に記載のプラズマ発生装置。
[20] 前記第 2の電極は、絶縁体または誘電体により被覆された導電性部材を備えてい る、請求項 18または 19に記載のプラズマ発生装置。
[21] 前記細管の空孔内に設置されるとともに、前記電源に接続されて前記第 1の電極と の間に前記交流電圧またはパルス電圧が印加される接地電極をさらに備えた、請求 項 1に記載のプラズマ発生装置。
[22] 前記接地電極は、絶縁体または誘電体により被覆された導電性部材を備えている
、請求項 21に記載のプラズマ発生装置。
[23] 前記細管の空孔内にガスを流入させるガス流入部材をさらに備えた、請求項 18か ら 22のいずれか一つに記載のプラズマ発生装置。
[24] 前記細管の空孔内の気体を除去する気体除去部材をさらに備えた、請求項 18から
23のいずれか一つに記載のプラズマ発生装置。
[25] 前記プラズマによって前記細管の内壁の表面処理を行う、請求項 18から 24のいず れか一つに記載のプラズマ発生装置。
[26] 前記プラズマによって前記細管の空孔内の滅菌を行う、請求項 18から 24のいずれ か一つに記載のプラズマ発生装置。
[27] 前記プラズマ発生工程では、前記第 1の電極と前記細管の空孔内に置かれた第 2 の電極との間に交流電圧またはパルス電圧を印加してプラズマを発生させる、請求 項 8に記載のプラズマ発生方法。
[28] 前記電極挿入工程では、前記細管の空孔内に電気的にフローティング状態である 第 2の電極をさらに挿入する、請求項 8に記載のプラズマ発生方法。
[29] 前記プラズマ発生工程では、前記第 1の電極と前記細管の空孔内に置かれた接地 電極との間に交流電圧またはパルス電圧を印加してプラズマを発生させる、請求項 8 に記載のプラズマ発生方法。
[30] 前記プラズマ発生工程では、前記細管の空孔内にガスを流入させる、請求項 27か ら 29のいずれか一つに記載のプラズマ発生方法。
[31] 前記プラズマ発生工程の後に、前記細管の空孔内にガスを流入させる工程をさら に含む、請求項 27から 30のいずれか一つに記載のプラズマ発生方法。
[32] 前記プラズマ発生工程の後に、前記細管の空孔内から気体を除去する工程をさら に含む、請求項 27から 31のいずれか一つに記載のプラズマ発生方法。
[33] 前記プラズマ発生工程では、前記プラズマによって前記細管の内壁の表面処理を 行う、請求項 27から 32のいずれか一つに記載のプラズマ発生方法。
[34] 前記プラズマ発生工程では、前記プラズマによって前記細管の空孔内の滅菌を行 う、請求項 27から 32のいずれか一つに記載のプラズマ発生方法。
[35] 絶縁体または誘電体よりなるとともに管壁内部に導電体を有する細管の空孔内に プラズマを発生させるプラズマ発生方法であって、
前記細管の空孔内に電極を設置する電極設置工程と、
前記導電体に交流電圧またはパルス電圧を印加して前記細管の空孔内にプラズ マを発生させるプラズマ発生工程と
を含む、プラズマ発生方法。
[36] 絶縁体または誘電体よりなるとともに管壁内部に導電体を有する細管の空孔内に プラズマを発生させるプラズマ発生方法であって、
前記細管の空孔内に電極を設置する電極設置工程と、
前記電極に交流電圧またはパルス電圧を印加して前記細管の空孔内にプラズマを 発生させるプラズマ発生工程と
を含む、プラズマ発生方法。
PCT/JP2006/315958 2005-09-16 2006-08-11 プラズマ発生装置およびプラズマ発生方法 WO2007032172A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06782697.4A EP1933605B1 (en) 2005-09-16 2006-08-11 Plasma generating device and plasma generating method
JP2007535401A JP4798635B2 (ja) 2005-09-16 2006-08-11 プラズマ発生装置およびプラズマ発生方法
US11/992,007 US8168130B2 (en) 2005-09-16 2006-08-11 Plasma generation system and plasma generation method
US13/437,488 US8501106B2 (en) 2005-09-16 2012-04-02 Plasma generation system and plasma generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005269989 2005-09-16
JP2005-269989 2005-09-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/992,007 A-371-Of-International US8168130B2 (en) 2005-09-16 2006-08-11 Plasma generation system and plasma generation method
US13/437,488 Continuation US8501106B2 (en) 2005-09-16 2012-04-02 Plasma generation system and plasma generation method

Publications (1)

Publication Number Publication Date
WO2007032172A1 true WO2007032172A1 (ja) 2007-03-22

Family

ID=37864770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315958 WO2007032172A1 (ja) 2005-09-16 2006-08-11 プラズマ発生装置およびプラズマ発生方法

Country Status (4)

Country Link
US (2) US8168130B2 (ja)
EP (1) EP1933605B1 (ja)
JP (1) JP4798635B2 (ja)
WO (1) WO2007032172A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130343A (ja) * 2006-11-20 2008-06-05 Kyoto Univ プラズマ生成装置、表面処理装置、表示装置、および流体改質装置
JP2008240039A (ja) * 2007-03-26 2008-10-09 Tohoku Univ 気泡発生装置および気泡発生方法
JP2008243481A (ja) * 2007-03-26 2008-10-09 Tohoku Univ プラズマ発生装置およびプラズマ発生方法
JP2008264086A (ja) * 2007-04-17 2008-11-06 Saga Univ プラズマ滅菌装置
JP2008286539A (ja) * 2007-05-15 2008-11-27 Hitachi High-Technologies Corp 自動分析装置の反応セル、および自動分析装置用反応セルの表面仕上法
WO2009020105A1 (ja) * 2007-08-03 2009-02-12 Saga University プラズマ滅菌装置及び方法
JP2009160494A (ja) * 2007-12-28 2009-07-23 Tohoku Univ 還元水生成装置および還元水生成方法
WO2009127540A1 (de) * 2008-04-18 2009-10-22 Plasmatreat Gmbh Vorrichtung zum behandeln einer inneren oberfläche eines werkstücks
JP2010051557A (ja) * 2008-08-28 2010-03-11 Yoshida Dental Mfg Co Ltd 歯科用診療装置及び歯科用流体管路殺菌装置
JP2011504404A (ja) * 2007-11-21 2011-02-10 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インク. プラズマ場を使用する自己滅菌装置
JP2011247904A (ja) * 2011-08-29 2011-12-08 Hitachi High-Technologies Corp 自動分析装置用反応セルの製造方法
JP2013519188A (ja) * 2010-01-26 2013-05-23 ライプニッツ−インスティテュート ファー プラズマフォーチュング ウント テクノロジー イー.ヴイ. 中空体内での放電発生装置及び方法
WO2014119349A1 (ja) * 2013-02-04 2014-08-07 株式会社クリエイティブ テクノロジー プラズマ発生装置
JP2014176819A (ja) * 2013-03-15 2014-09-25 U-Vix Corp 内表面処理装置及び内表面処理方法
CN109644546A (zh) * 2016-09-02 2019-04-16 夏普株式会社 等离子体生成元件
JP2022009584A (ja) * 2015-09-07 2022-01-14 プラズマティカ リミテッド 医療装置ビューポートの曇り防止

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120100524A1 (en) * 2009-03-16 2012-04-26 Drexel University Tubular floating electrode dielectric barrier discharge for applications in sterilization and tissue bonding
DE102009060627B4 (de) * 2009-12-24 2014-06-05 Cinogy Gmbh Elektrodenanordnung für eine dielektrisch behinderte Plasmabehandlung
WO2011091842A1 (de) * 2010-01-26 2011-08-04 Leibniz-Institut Für Plasmaforschung Und Technologie E. V. Vorrichtung und verfahren zur trockenen reinigung, aktivierung, beschichtung, modifikation und biologischen dekontamination der innenwände von schläuchen, rohren und anderen hohlkörpern
US20130053762A1 (en) * 2011-08-25 2013-02-28 Michael Rontal Method and apparatus for cold plasma treatment of internal organs
DE102012218734A1 (de) * 2012-10-15 2014-04-17 Robert Bosch Gmbh Lüftungsleitung für ein Lüftungssystem zur Luftförderung, Lüftungssystem zur Luftförderung und Verfahren zum Reinigen einer Lüftungsleitung
CN103025040B (zh) * 2012-12-06 2015-05-27 河北大学 利用水电极产生大面积沿面放电的装置
CN106282973A (zh) * 2015-06-26 2017-01-04 核工业西南物理研究院 用于管内壁镀膜的装置及方法
CN108905545A (zh) * 2018-09-11 2018-11-30 北京振戎融通通信技术有限公司 可自动清洗介质阻挡放电管的低温等离子体废气处理部件
KR102294297B1 (ko) 2020-05-28 2021-08-26 한국생산기술연구원 전극 연결체가 구비된 플라즈마 방전관 및 그 제작 방법
DE102020208754B3 (de) * 2020-07-14 2021-12-09 Aerocom Gmbh & Co. Communicationssysteme Desinfektionssystem für Rohrpostanlagen
TWI826900B (zh) * 2021-03-03 2023-12-21 日商斯庫林集團股份有限公司 電漿產生裝置及基板處理裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003135571A (ja) * 2001-11-07 2003-05-13 Toshiba Corp プラズマ殺菌装置
JP2004527073A (ja) * 2001-02-12 2004-09-02 エスイー・プラズマ・インコーポレーテッド 大気圧で低温プラズマを発生させる装置
JP2004285187A (ja) * 2003-03-20 2004-10-14 Rikogaku Shinkokai 炭化水素の部分酸化方法およびマイクロリアクタ装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1329278A (fr) * 1962-07-19 1963-06-07 Thomson Houston Comp Francaise Générateur d'énergie électrique
US3305466A (en) * 1965-07-26 1967-02-21 Evans Ruthanna Mccoy Method of and apparatus for reacting gas and solids
US3569751A (en) * 1967-12-05 1971-03-09 Litton Systems Inc High voltage generator
US3674666A (en) * 1970-08-19 1972-07-04 Richard N Foster Enhancing reaction rates
GB1374764A (en) * 1970-12-23 1974-11-20 British Railways Board Electrode boiler
US3742301A (en) * 1972-05-11 1973-06-26 W Burris Corona generator
US4362632A (en) * 1974-08-02 1982-12-07 Lfe Corporation Gas discharge apparatus
JPS5944797A (ja) * 1982-09-07 1984-03-13 増田 閃一 物体の静電的処理装置
US5302343A (en) * 1987-02-25 1994-04-12 Adir Jacob Process for dry sterilization of medical devices and materials
US5316739A (en) * 1991-08-20 1994-05-31 Bridgestone Corporation Method and apparatus for surface treatment
US5938854A (en) * 1993-05-28 1999-08-17 The University Of Tennessee Research Corporation Method and apparatus for cleaning surfaces with a glow discharge plasma at one atmosphere of pressure
JP2803017B2 (ja) * 1993-06-07 1998-09-24 工業技術院長 抗血栓性医用材料及び医療用具並びにこれらの製造方法、製造装置及びプラズマ処理装置
US5932116A (en) * 1995-06-05 1999-08-03 Tohoku Unicom Co., Ltd. Power supply for multi-electrode discharge
JP3040358B2 (ja) * 1996-05-24 2000-05-15 積水化学工業株式会社 グロー放電プラズマ処理方法及びその装置
DE19807742A1 (de) * 1998-02-24 1999-10-21 Ruediger Haaga Gmbh Vorrichtung zum Sterilisieren eines Behälters mittels eines Niederdruck-Plasmas
DE19916478A1 (de) * 1999-04-13 2000-10-19 Ruediger Haaga Gmbh Verfahren zum Evakuieren eines Plasmasterilisations-Reaktors
US6441554B1 (en) * 2000-11-28 2002-08-27 Se Plasma Inc. Apparatus for generating low temperature plasma at atmospheric pressure
JP2002184795A (ja) 2000-12-14 2002-06-28 Hitachi Ltd 半導体装置の製造方法
JP3835983B2 (ja) 2000-12-14 2006-10-18 松下電器産業株式会社 プラズマ処理装置およびプラズマ処理方法
DE10116502B4 (de) * 2001-04-03 2004-02-19 Viöl, Wolfgang, Prof. Dr. Verfahren und Vorrichtung zur Ausbildung eines Plasmastrahls
US7011790B2 (en) * 2001-05-07 2006-03-14 Regents Of The University Of Minnesota Non-thermal disinfection of biological fluids using non-thermal plasma
US6685803B2 (en) * 2001-06-22 2004-02-03 Applied Materials, Inc. Plasma treatment of processing gases
JP2003210556A (ja) 2002-01-18 2003-07-29 Toshiba Corp 管用プラズマ滅菌装置
JP4414765B2 (ja) * 2002-02-20 2010-02-10 パナソニック電工株式会社 プラズマ処理装置及びプラズマ処理方法
DE112004000057B4 (de) * 2003-05-27 2008-09-25 Matsushita Electric Works, Ltd., Kadoma Plasmabehandlungsapparat und Plasmabehandlungsverfahren
JP2005046264A (ja) 2003-07-31 2005-02-24 Toshiba Corp 管用滅菌装置および滅菌方法
US7536975B2 (en) * 2004-08-18 2009-05-26 Wisconsin Alumni Research Foundation Plasma-assisted disinfection of milking machines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004527073A (ja) * 2001-02-12 2004-09-02 エスイー・プラズマ・インコーポレーテッド 大気圧で低温プラズマを発生させる装置
JP2003135571A (ja) * 2001-11-07 2003-05-13 Toshiba Corp プラズマ殺菌装置
JP2004285187A (ja) * 2003-03-20 2004-10-14 Rikogaku Shinkokai 炭化水素の部分酸化方法およびマイクロリアクタ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1933605A4 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130343A (ja) * 2006-11-20 2008-06-05 Kyoto Univ プラズマ生成装置、表面処理装置、表示装置、および流体改質装置
JP2008240039A (ja) * 2007-03-26 2008-10-09 Tohoku Univ 気泡発生装置および気泡発生方法
JP2008243481A (ja) * 2007-03-26 2008-10-09 Tohoku Univ プラズマ発生装置およびプラズマ発生方法
JP2008264086A (ja) * 2007-04-17 2008-11-06 Saga Univ プラズマ滅菌装置
JP2008286539A (ja) * 2007-05-15 2008-11-27 Hitachi High-Technologies Corp 自動分析装置の反応セル、および自動分析装置用反応セルの表面仕上法
EP1994988B1 (en) * 2007-05-15 2017-01-25 Hitachi High-Technologies Corporation Reaction cuvette for automatic analyzer and method of surface treatment for reaction cuvette
US20100209292A1 (en) * 2007-08-03 2010-08-19 Saga University Plasma sterilizing device and method
JP5403753B2 (ja) * 2007-08-03 2014-01-29 国立大学法人佐賀大学 プラズマ滅菌方法
WO2009020105A1 (ja) * 2007-08-03 2009-02-12 Saga University プラズマ滅菌装置及び方法
CN101772354B (zh) * 2007-08-03 2013-05-01 国立大学法人佐贺大学 等离子体灭菌装置和方法
US8696983B2 (en) 2007-08-03 2014-04-15 Saga University Plasma sterilizing device and method
US10646605B2 (en) 2007-11-21 2020-05-12 University Of Florida Research Foundation, Inc. Self-sterilizing device using plasma fields
JP2011504404A (ja) * 2007-11-21 2011-02-10 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インク. プラズマ場を使用する自己滅菌装置
US9757487B2 (en) 2007-11-21 2017-09-12 University Of Florida Research Foundation, Inc. Self-sterilizing device using plasma fields
JP2009160494A (ja) * 2007-12-28 2009-07-23 Tohoku Univ 還元水生成装置および還元水生成方法
WO2009127540A1 (de) * 2008-04-18 2009-10-22 Plasmatreat Gmbh Vorrichtung zum behandeln einer inneren oberfläche eines werkstücks
JP2011523162A (ja) * 2008-04-18 2011-08-04 プラズマトリート ゲゼルシャフト ミット ベシュレンクテル ハフツング ワークの内面を処理する装置
JP2010051557A (ja) * 2008-08-28 2010-03-11 Yoshida Dental Mfg Co Ltd 歯科用診療装置及び歯科用流体管路殺菌装置
JP2013519188A (ja) * 2010-01-26 2013-05-23 ライプニッツ−インスティテュート ファー プラズマフォーチュング ウント テクノロジー イー.ヴイ. 中空体内での放電発生装置及び方法
JP2011247904A (ja) * 2011-08-29 2011-12-08 Hitachi High-Technologies Corp 自動分析装置用反応セルの製造方法
WO2014119349A1 (ja) * 2013-02-04 2014-08-07 株式会社クリエイティブ テクノロジー プラズマ発生装置
CN104938038A (zh) * 2013-02-04 2015-09-23 株式会社创意科技 等离子体产生装置
US9536709B2 (en) 2013-02-04 2017-01-03 Creative Technology Corporation Plasma generator
JPWO2014119349A1 (ja) * 2013-02-04 2017-01-26 株式会社クリエイティブテクノロジー プラズマ発生装置
JP2014176819A (ja) * 2013-03-15 2014-09-25 U-Vix Corp 内表面処理装置及び内表面処理方法
JP2022009584A (ja) * 2015-09-07 2022-01-14 プラズマティカ リミテッド 医療装置ビューポートの曇り防止
JP7084079B2 (ja) 2015-09-07 2022-06-14 プラズマティカ リミテッド 室内のプラズマによって内視鏡の遠位端を処理すること
CN109644546A (zh) * 2016-09-02 2019-04-16 夏普株式会社 等离子体生成元件

Also Published As

Publication number Publication date
US20120187086A1 (en) 2012-07-26
US8501106B2 (en) 2013-08-06
US20100065415A1 (en) 2010-03-18
JP4798635B2 (ja) 2011-10-19
EP1933605B1 (en) 2019-05-15
US8168130B2 (en) 2012-05-01
EP1933605A1 (en) 2008-06-18
EP1933605A4 (en) 2014-04-30
JPWO2007032172A1 (ja) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4798635B2 (ja) プラズマ発生装置およびプラズマ発生方法
KR101573231B1 (ko) 플라즈마 발생 전극모듈, 플라즈마 발생 전극 집합체 및 이를 이용한 플라즈마 발생장치
US20110022043A1 (en) Device for the treatment of surfaces with a plasma generated by an electrode over a solid dielectric via a dielectrically impeded gas discharge
JP2008034184A (ja) 細線状大気圧放電プラズマの生成方法および生成装置
US20120107896A1 (en) Method for Treating a Biological Material Comprising Living Cells
WO2009123243A1 (ja) プラズマ生成装置及び方法
JP5403753B2 (ja) プラズマ滅菌方法
KR102077208B1 (ko) 저온 플라즈마 표면처리 장치
WO2010107746A1 (en) Methods and devices for treating surfaces with surface plasma
JP5070644B2 (ja) 還元水生成装置および還元水生成方法
US10116124B2 (en) Ion generator and method of manufacturing the same
WO2013129806A1 (ko) 바이오-메디컬 응용을 위해 플라즈마를 이용하는 질환세포 및 병원성 미생물의 사멸 방법
JP4902842B2 (ja) プラズマ発生方法およびプラズマ発生装置
KR101813558B1 (ko) 프락셔널 플라즈마를 이용한 피부 치료장치
JP5190834B2 (ja) 気泡発生方法
JP2004103257A (ja) イオン発生素子およびこれを備えたイオン発生装置、ならびに電気機器
JP2008047372A (ja) プラズマ発生装置
KR101841555B1 (ko) 플라즈마를 이용한 이미용장치
KR102283376B1 (ko) 치아 임플란트 표면 친수화용 플라즈마 장치 및 치아 임플란트 표면 친수화 방법
JP5193483B2 (ja) プラズマ発生装置およびプラズマ発生方法
KR101950065B1 (ko) 플라즈마 발생 필름 생산 방법
KR100949111B1 (ko) 대기압에서 상온 플라즈마를 발생시키는 장치
JP2017035281A (ja) プラズマ照射装置用ハンドピース
JP2004164900A (ja) イオン発生素子およびそれを備えたイオン発生装置
JP2012094523A (ja) プラズマ発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007535401

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006782697

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11992007

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE