WO2007036116A1 - A multiple method and system of broadcast service channel and unicast service channel - Google Patents

A multiple method and system of broadcast service channel and unicast service channel Download PDF

Info

Publication number
WO2007036116A1
WO2007036116A1 PCT/CN2006/001888 CN2006001888W WO2007036116A1 WO 2007036116 A1 WO2007036116 A1 WO 2007036116A1 CN 2006001888 W CN2006001888 W CN 2006001888W WO 2007036116 A1 WO2007036116 A1 WO 2007036116A1
Authority
WO
WIPO (PCT)
Prior art keywords
service data
broadcast service
broadcast
data
subframe
Prior art date
Application number
PCT/CN2006/001888
Other languages
English (en)
French (fr)
Inventor
Bingyu Qu
Junwei Wang
Yingzhe Ding
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37899363&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007036116(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to CN2006800117907A priority Critical patent/CN101156342B/zh
Priority to EP06775235A priority patent/EP1940060B1/en
Publication of WO2007036116A1 publication Critical patent/WO2007036116A1/zh
Priority to US12/058,686 priority patent/US8165052B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Definitions

  • the present invention relates to a channel multiplexing technique, and more particularly to a method and apparatus for multiplexing a broadcast traffic channel and a non-broadcast traffic channel. Background technique
  • multi-carrier technology has become a hotspot technology for broadband wireless communication.
  • the basic idea is to divide a wideband carrier into multiple subcarriers and simultaneously transmit data on multiple subcarriers.
  • the width of the subcarriers is smaller than the coherence bandwidth of the channel, such that the fading on each subcarrier is flat fading on the frequency selective channel, thus reducing crosstalk between user data symbols, and It does not require complex channel equalization and is suitable for the transmission of high-rate data.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • MC-CDMA Multi-Carrier CDMA
  • CDMA Multi-Carrier Direct Spread Spectrum
  • MC -DS-CDMA Multiplex Carrier-Direct Spread-CDMA
  • two-dimensional extension of time-frequency domain in addition to a variety of extension technologies based on these technologies.
  • Orthogonal Frequency Division Multiplex (OFDM) technology is a relatively representative one of multi-carrier technologies, which divides a given channel into several orthogonal subchannels in the frequency domain, and allows subcarriers.
  • FIG. 1 is a schematic diagram of a modulation and demodulation process of a conventional basic OFDM system.
  • user data is first subjected to channel coding and interleaving, and then a modulation mode is adopted ( If the coding interleaving process is modulated by BPSK, QPSK and QAM, the user data symbols are modulated by the OFDM operation, and the inverse demodulation process and the process are performed.
  • a modulation mode is adopted
  • user data symbols are first serial/parallel converted to form a plurality of low-rate sub-numbers, wherein each sub-stream occupies one sub-carrier, and each sub-stream is mapped to a corresponding sub-stream.
  • the processing on the carrier can be implemented by inverse discrete Fourier transform (IDFT, Inverse Discrete Fourier Transformation) or inverse fast Fourier transform (IFFT) processing.
  • IDFT Inverse Discrete Fourier Transformation
  • IFFT inverse fast Fourier transform
  • CP Cyclic Prefix
  • the cyclic prefix is added to the time domain signal processed by IDFT or IFFT as a guard interval, which can greatly reduce or even eliminate inter-symbol interference, and guarantee each channel.
  • the orthogonality between them greatly reduces the interference between channels.
  • MBMS Multimedia Broadcast/Multicast Service
  • LTE Long Time Evolution
  • the MBMS service mainly refers to the network side broadcasting or multicasting the same multimedia data to multiple receivers in the network at the same time.
  • the current multimedia data mainly includes some streaming services and background services.
  • the length of the added CP is set to different values according to different application scenarios.
  • the length of the short CP is TCP «4.7 s, which is mainly used in the case of non-broadcast service (Unicast); the length of the long CP is TCP «16.7 s It is mainly used in the case of multimedia broadcast multicast service (MBMS) and relatively large cell diameter.
  • MBMS multimedia broadcast multicast service
  • a short CP is used for a cell with a relatively small diameter, or when the system sends a Unicast service; when the system transmits an MBMS service, or when the diameter of the cell is relatively large; a long CP is used.
  • the system performs the processing of the Unicast service and the MBMS service by Time Division Multiple (TDM), that is, the subframe is used to transmit the MBMS service in time, and is transmitted by other subframes.
  • TDM Time Division Multiple
  • FIG. 2 is a schematic diagram of a state in which the existing Unicast service and the MBMS service are time-division multiplexed, which are used in subframes Sub-frame 0, Sub-frame 2, Sub-frame 3, and Sub-frame 6.
  • the short CP transmits the Unicast service, and the base stations between the cells independently send their own Unicast service data.
  • the long CP is used to deliver the MBMS service, where each cell sends the same MBMS service data, and the user terminal (UE, User Equipment) according to the corresponding control
  • the information is demodulated from the MBMS service data sent by the system. If the UE is at the cell edge, the multiple MBMS service signals received from the multiple cells may be combined and processed in a combined manner to improve the signal-to-noise ratio and the cell edge. Coverage.
  • the scheduling mode is scheduled according to the number of Unicast services and the Quality of Service (QOS) of the MBMS service data.
  • QOS Quality of Service
  • the MBMS is preferentially scheduled.
  • Business data otherwise, the Unicast service data is scheduled.
  • the QOS requirements of the NBMS service between multiple cells may be the same, but the QOS requirements of the Unicast service in each cell are impossible. The same is true. Therefore, when the TDM processing is performed on the two services, the scheduling mode will inevitably cause frequent switching between the MBMS service sub-frame and the Unicast service sub-frame. As a result, the system signaling overhead is greatly increased.
  • the specified mode means that only the QOS requirements of the MBMS service are considered in the two services, that is, the system specifies which sub-frames are used to transmit MBMS service data according to the delay requirements and rate requirements of the MBMS service, such as As shown in FIG. 2, the system specifies sub-frames Sub-frame 1, Sub-frame 4, and Sub-frame 5 to transmit MBMS service data according to the QOS requirements of the MBMS service, so that the specified mode ignores the delivery priority of the Unicast service. Level, this will inevitably increase the delay of the Unicast service, so it is unbearable for the Unicast service with high latency requirements. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a method for multiplexing a broadcast traffic channel and a non-broadcast traffic channel, so as to reduce the system signaling overhead occupied by the broadcast service and the Unicast service when performing time division multiplexing processing, and reduce the Unicast.
  • the transmission delay of the service is to provide a method for multiplexing a broadcast traffic channel and a non-broadcast traffic channel, so as to reduce the system signaling overhead occupied by the broadcast service and the Unicast service when performing time division multiplexing processing, and reduce the Unicast.
  • the present invention also proposes a multiplexing device for a broadcast traffic channel and a non-broadcast traffic channel.
  • a method for multiplexing a broadcast traffic channel and a non-broadcast traffic channel includes the steps of:
  • the broadcast service data and the non-broadcast service data are multiplexed into a subframe for carrying the broadcast service data and transmitted to the user terminal.
  • the time-frequency resource is reserved on the subframe carrying the broadcast service data to carry the non-broadcast service data with high priority of the service quality.
  • the method further includes the step of setting a non-broadcast service quality of service threshold; in the multiplexing process of the broadcast service data and the non-broadcast service data, the broadcast service data and the non-broadcast service quality of service threshold are exceeded.
  • the non-broadcast service data is multiplexed into a subframe for carrying broadcast service data.
  • the method further includes: after the non-broadcast service data exceeding the non-broadcast service quality of service threshold is carried in the reserved time-frequency resource, and remaining in the time-frequency resource, according to the remaining time-frequency resource The step of generating redundant broadcast service data;
  • the method further includes multiplexing the non-broadcast service data exceeding the non-broadcast service quality of service threshold and the generated redundant broadcast service data to the reserved Steps in time-frequency resources.
  • the method further comprises the steps of:
  • the user terminal separately demodulates the broadcast service multiplexed in the subframe for carrying the broadcast service data Data and redundant broadcast service data;
  • the obtained broadcast service data and the redundant broadcast service data are combined to obtain broadcast service data with high signal to noise ratio.
  • the redundant broadcast service data is broadcast service data that is to be repeatedly transmitted.
  • the redundant broadcast service data is calibration information of the broadcast service data.
  • the step of performing interference randomization processing on the non-broadcast service data is further included.
  • the performing interference randomization processing on the non-broadcast service data is performed by adding a scrambling code to the non-broadcast service data to perform scrambling;
  • Different service sending devices add different scrambling codes to the non-broadcast service data sent by themselves to perform interference randomization processing on non-broadcast service data.
  • the service sending device is a Node B in a mobile communication network.
  • the performing interference randomization processing on the non-broadcast service data is performed by performing interleaving processing on the non-broadcast service data.
  • the method further comprises the step of multiplexing the broadcast service data and the non-broadcast service data into a time domain data for forming the time domain data formed in the subframe for carrying the broadcast service data.
  • each of the service sending devices separately uses the diversity transmission mode to multiplex and transmit the same non-broadcast service data. .
  • the method further comprises the steps of:
  • the user terminal receives and demodulates the non-broadcast service data sent by the at least two service sending devices by using a diversity receiving manner
  • the non-broadcast service data sent by at least two service transmitting devices is soft combined to obtain non-broadcast service data with high SNR.
  • the service sending device is a Node B in a mobile communication network.
  • the broadcast service data and the non-broadcast service data may be multiplexed into the subframe for carrying the broadcast service data in one of the following manners: 3 ⁇ 4 frequency mode;
  • the subframe for carrying the broadcast service data may be periodically assigned by the network side.
  • the broadcast service data is a number of multimedia broadcast multicast services.
  • the non-broadcast service data includes control signaling data of the unicast service and service data of the unicast service.
  • a multiplexing device for a broadcast traffic channel and a non-broadcast traffic channel includes:
  • time-frequency resource reservation unit configured to reserve time-frequency resources for carrying non-broadcast data on a subframe that carries broadcast service data
  • a data multiplexing sending unit configured to multiplex the broadcast service data and the non-broadcast service data into the broadcast service data subframe used by the time-frequency resource reservation unit to reserve the non-broadcast service data Send to the user terminal.
  • the present invention reserves a part of time-frequency resources on a subframe for carrying broadcast service data for carrying non-broadcast (Unicast) service data, and then multiplexes broadcast service data and Unicast service data into a data for carrying broadcast service data.
  • the subframe is sent to the user terminal UE, and the UE demodulates the broadcast service data and the Unicast service data multiplexed in the subframe for carrying the broadcast service data, respectively. Therefore, when the QoS relationship between the QoS of the broadcast service and the QoS relationship of the Unicast service in the scheduling mode is used to separately schedule the broadcast service data and the Unicast service data, the MBMS service sub-frame and the Unicast service sub-frame may be frequently switched. Therefore, the disadvantages of the system signaling overhead are greatly increased;
  • the QoS of the broadcast service can be preferentially considered in the prior art, thereby causing the Unicast service.
  • the disadvantage of increased transmission delay is beneficial to reduce the transmission delay of Unicast services with higher real-time requirements.
  • FIG. 1 is a schematic diagram of a modulation and demodulation process of a conventional basic OFDM system
  • FIG. 1 is a schematic diagram of a state of time division multiplexing processing of an existing Unicast service and an MBMS service
  • FIG. 3 is a schematic diagram of a broadcast service channel and a non-broadcast service channel according to the present invention
  • FIG. 4 is a schematic diagram of an implementation process for multiplexing a MBMS service and a Unicast service with high QoS requirements in the method of the present invention
  • FIG. 5 is a state diagram of multiplexing Unicast service data and MBMS service data with high QoS requirements in an MBMS service subframe
  • FIG. 6 is a schematic diagram of an implementation process of multiplexing a MBMS service, a Unicast service with high QoS requirements, and a redundant MBMS service in the method of the present invention
  • FIG. 7 is a state diagram in which Unicast service data, MBMS service data, and redundant MBMS service data are multiplexed into an MBMS service subframe, which is higher than a preset QoS threshold;
  • FIG. 8 is a schematic diagram of an embodiment process for multiplexing MBMS service data and Unicast service data into an MBMS service subframe according to the principle of the method of the present invention
  • FIG. 9 is a flowchart showing an embodiment of performing interference multiplexing processing on Unicast service data and performing cyclic shift processing on the multiplexed time domain data when the MBMS service data and the Unicast service data are multiplexed according to the method of the present invention.
  • FIG. 10 is a schematic diagram of a process of transmitting and multiplexing data by using a diversity transmission method when a UE is in the edge of two cells covered by two Node Bs according to the principle of the method of the present invention
  • FIG. 11 is a schematic diagram of the method according to the method of the present invention. Schematic diagram of an embodiment process for multiplexing MBMS service data, Unicast service data, and redundant MBMS service data into an MBMS service subframe
  • FIG. 12 is a main composition structure of a multiplexing device for a broadcast traffic channel and a non-broadcast traffic channel according to the present invention; block diagram.
  • the object of the solution of the present invention is to alleviate the problem that the system signaling overhead is increased due to frequent switching of the MBMS service subframe in the long CP application scenario and the Unicast service subframe in the short CP application scenario caused by the existing single scheduling method. And alleviate the delay-sensitive Unicast service delay caused by the existing single specified method.
  • FIG. 3 is a flowchart of the main implementation principle of the multiplexing method of the broadcast service channel and the non-broadcast service channel according to the present invention.
  • the main implementation process is as follows:
  • a part of a time-frequency resource is reserved on a sub-frame for carrying the broadcast service data, and is used to carry non-broadcast (Unicast) service data, where the broadcast service data is carried.
  • the sub-frame can be assigned by the network side periodically.
  • the sub-frame is used in the Sub-frame for carrying the broadcast service data.
  • the reserved TF resources should preferentially carry Unicast service data with higher priority of Quality of Service (QoS).
  • the QoS threshold of a Unicast service can be preset.
  • step S20 the broadcast service data and the Unicast service data are multiplexed into the Sub-frame for carrying the broadcast service data, and are sent to the UE. Further, in order to alleviate the delay-sensitive Unicast service caused by the existing designated mode, Transmission delay, in the multiplexing process of the broadcast service data and the Unicast service data, the broadcast service data and the Unicast service data exceeding the QoS threshold of the Unicast service set above are multiplexed to the Sub- for carrying the broadcast service data. In the frame.
  • the broadcast service data and the Unicast service data may be implemented by using a frequency hopping method or a frequency division multiplexing (FDM) method, or may be time-division-recovery, when multiplexed into a Sub-frame for carrying the broadcast service data. This is done in a way (TDM).
  • FDM frequency division multiplexing
  • Step S30 The UE demodulates the broadcast service data and the Unicast multiplexed in the Sub-frame for carrying the broadcast service data, respectively, based on the broadcast service control information and the Unicast service control information (the control information is the information received from the control channel). Business data.
  • the above mentioned broadcast service data is based on the existing MBMS industry which is widely used in 3G networks.
  • the service data is more preferable, and the above-mentioned Unicast service data may include, but is not limited to, control signaling data and service data in a unicast service.
  • the following is an example of the MBMS service as a broadcast service.
  • the broadcast service mentioned in the solution of the present invention may also be other broadcast services.
  • the implementation principle is the same as the MBMS service participation implementation principle, and is not described again.
  • FIG. 4 is a schematic diagram of an implementation process of multiplexing a MBMS service and a Unicast service with high QoS requirements in the method of the present invention, that is, when the cell is scheduled to a Sub-frame of the MBMS service (MBMS service Sub-).
  • the frame can be periodically assigned by the network side according to a certain time rule.
  • the system reserves a part of the TF resources to transmit Unicast service data with high delay requirements.
  • the MBMS service data and the Unicast service data can be multiplexed in a frequency hopping mode, a TDM mode, or an FDM mode.
  • the main implementation process is as follows:
  • the Node B maps the channel-coded MBMS service data to the constellation map, and places the mapped complex signal on the sub-carriers agreed by the system, and according to the setting (the system will preset to tell the Node B which sub-carriers are available. Retaining a part of subcarriers reserved for TF resources for scheduling Unicast service data;
  • the Node B schedules Unicast service data with higher QoS requirements
  • the Node B performs channel coding on the scheduled Unicast service data, and performs constellation mapping, and places the mapped complex signal on the reserved subcarriers;
  • FIG. 5 is a state diagram in which the Unicast service data with high QoS requirements and the MBMS service data are multiplexed in the MBMS service subframe;
  • the UE After receiving the signal, the UE demodulates the MBMS service data and the Unicast service data multiplexed in the MBMS service subframe according to the MBMS service control information and the Unicast service control information, respectively.
  • step S20 there may be a case that after the Unicast service data that exceeds the QoS threshold of the Unicast service is carried in the TF resource reserved in the MBMS service subframe, there may be remaining TF resources. Situation, then the system can be based on the remaining TF resources 006 001888 How many redundant broadcast service data is generated correspondingly;
  • the Unicast service data exceeding the QoS threshold of the Unicast service and the redundant broadcast service data generated by the foregoing are multiplexed into the reserved subframe of the MBMS service.
  • the TF resource In the TF resource.
  • the broadcast service data and the redundant broadcast service data multiplexed in the subframe for carrying the broadcast service data are respectively demodulated according to the broadcast service control information, and the obtained broadcast service data is obtained.
  • the redundant broadcast service data is combined to obtain a high signal-to-noise ratio (SINR) broadcast service data.
  • the system can use part of the broadcast service data that needs to be repeatedly sent as the redundant broadcast service data according to the remaining TF resources, and can also use the check information of the broadcast service data as the redundant broadcast service data.
  • FIG. 6 is a schematic diagram of an implementation process of multiplexing a Unicast service and a redundant MBMS service with high MBMS service and QoS requirements in the method of the present invention, which is reserved in the MBMS service Sub-frame.
  • the TF resource is only used to transmit Unicast service data with high delay requirements. That is, based on the scheme of Figure 4 above, a Unicast service QoS threshold is set, and only when the Unicast service data is higher than the threshold, the scheduling is performed. At the same time, because the Unicast service of each cell is different, that is, some cells have a Unicast service that is higher than the threshold, and some cells have no Unicast service that is higher than the threshold.
  • the TF resources that are not occupied can be used to transmit the redundancy information of the MBMS service data (which may be repeated MBMS service data or check bit information of the MBMS service data), and the UE belonging to the cell can receive and demodulate MBMS service data and redundant MBMS service data, and combine MBMS service data and redundant MBMS service data to improve the signal-to-noise ratio of the MBMS service.
  • the specific implementation process is as follows:
  • Node B performs constellation mapping on the channel-coded MBMS service data, and places the mapped complex signal on the sub-carriers agreed by the system, and reserves a part of the sub-carriers for scheduling the Unicast service data according to the setting; 20.
  • the Node B schedules Unicast service data that is only higher than a preset QoS threshold.
  • the Node B performs channel coding on the scheduled Unicast service data, and performs constellation mapping, and places the mapped complex signal on the reserved subcarriers;
  • the system determines that there are remaining TF resources remaining, the system generates corresponding amount of redundant MBMS service data information according to the remaining TF resources.
  • the Node B maps the redundant MBMS service data information to the constellation map, and places the mapped complex signal on the remaining subcarriers;
  • the Node B multiplexes the Unicast service data, the MBMS service data, and the redundant MBMS service data that are higher than the preset QoS threshold into the MBMS service subframe.
  • the Unicast service data, the MBMS service data, and the redundant MBMS service data that are higher than the preset QoS threshold are multiplexed into a state diagram in the MBMS service subframe, where Sub-framel and Sub-fmme5 There is redundant MBMS service data R-MBMS, and there is no multiplexing R-MBMS data in Sub-frame4;
  • the Node B is transmitted;
  • the UE After receiving the signal, the UE demodulates the MBMS service data, the Unicast service data, and the redundancy multiplexed in the MBMS service subframe according to the MBMS control information and the Unicast control information received and demodulated on the control channel.
  • the UE combines the demodulated MBMS service data and the redundant MBMS service data to generate MBMS service data information of the high SIN.
  • FIG. 8 is a schematic diagram of an embodiment process for multiplexing MBMS service data and Unicast service data into an MBMS service subframe according to the principle of the method of the present invention.
  • This embodiment is an MBMS service data and a Unicast service data.
  • An example of multiplexing in a long CP application scenario where the network system environment implemented includes three entities: UE, Node B, and upper layer; The Node B has a service scheduling function, and the upper layer refers to a functional entity (such as an RNC and a switching side device) above the Node B.
  • the specific implementation process is as follows:
  • the upper layer sends a service status query request command to the Node B.
  • the service status query request command is used to command the Node B to query its own service status, including the QoS and the area load of each service.
  • Node B queries and counts its own service status, and sends a service status query response to the upper layer; a3.
  • the upper layer is reasonably arranged according to the service status of each Node B and the QoS of the MBMS service.
  • the upper layer sends the specified MBMS service subframe command to the Node B, and simultaneously transmits the MBMS service data to the Node B;
  • the Node B modulates the MBMS service data on the specified MBMS service subframe, and places the modulated MBMS service data on the subcarrier set by the system, and reserves a part of the TF resource on the subcarrier.
  • the channel quality indicator (CQI, Channel Quality Indicator) on the UE, the upper 4 ⁇ process is reported periodically, and may occur at any time between the above steps al ⁇ a4;
  • the Node B schedules, modulates, and then modulates the Unicast service data according to the CQI reported by the UE and the QoS requirement of the user for the Unicast service data, and then places it into the reserved TF part of the subcarrier;
  • the Node B multiplexes the MBMS service data and the Unicast service data into the MBMS service sub-frame to perform IFFT processing, parallel/serial conversion, and the like, and performs a series of OFDM conversion processing as shown in FIG. 1 above;
  • the Node B sends the multiplexed data to the UE in the cell;
  • the UE demodulates the MBMS service data and the Unicast service data sent to the UE in the received signal according to the MBMS service control information and the Unicast service control information received from the control channel.
  • FIG. 9 is a diagram illustrating interference randomization processing on Unicast service data when multiplexing MBMS service data and Unicast service data according to the method of the present invention, and multiplexing Schematic diagram of an embodiment process of cyclic shift processing of time domain data. Due to the OFDM multi-carrier technology, different Node Bs need to obtain a frequency selective diversity gain by using a cyclic shift method, because multiple Node Bs transmit The MBMS service data is usually the same, so when the Node B transmits the MBMS service data, a cyclic shift method can be used to increase the frequency selective gain.
  • the interference randomization processing method may be implemented by adding a scrambling code to the Unicast service data to perform interference; or different interleaving methods may be used to implement the interference randomization processing.
  • the specific implementation process is as follows:
  • the upper layer sends a service status query request command to the Node B, and the service status query request command is used to command the Node B to query its own service status, including the QoS and the area load of each service;
  • the Node B queries and counts its own service status, and sends a service status query response to the upper layer; b3.
  • the high layer is reasonably arranged according to the service status of each Node B and the QoS of the MBMS service.
  • the upper layer sends the specified MBMS service subframe command to the Node B, and simultaneously transmits the MBMS service data to the Node B;
  • the Node B modulates the MBMS service data on the specified MBMS service subframe, and places the modulated MBMS service data on the subcarrier set by the system, and reserves a part of the TF resource on the subcarrier.
  • the UE reports the CQI of the reserved channel, and the reporting process is periodically reported, and may occur at any time between the steps bl and b4;
  • the Node B schedules and modulates the Unicast service data according to the CQI reported by the UE and the QoS requirement of the user for the Unicast service data.
  • the Node B performs interference randomization processing on the modulated Unicast service data to reduce the interference of the neighboring cell.
  • the scrambling method is added to the Unicast service data for the scrambling mode as an example, and the scrambling process is performed.
  • the Unicast service data is mapped to the reserved TF resources on the subcarrier.
  • different Node Bs should be adopted. Different scrambling sequences to scramble the Unicast service data to be sent;
  • the Node B performs the IFFT change processing on the frequency domain data formed by multiplexing the MBMS service data and the Unicast service data into the MBMS service subframe, and performs cyclic shift processing on the time domain data after the IFFT transform processing, where the cyclic shift is performed.
  • the offset size used by the bit processing is specified by the upper layer; finally, the multiplexed time domain data is subjected to parallel/serial conversion, and the like, and a series of OFDM transform processes as shown in FIG. 1 above;
  • the Node B sends the multiplexed data to the UE in the cell;
  • the UE demodulates the MBMS service data and the Unicast service data sent to the UE in the received signal according to the MBMS service control information and the Unicast service control information received from the control channel, respectively.
  • At least two Node Bs may be used for diversity transmission, that is, when the UE is at least two covered by at least two Node Bs.
  • at least two Node Bs transmit the same Unicast service data, and use the same coding mode and interleaving mode; since at least two Node Bs transmit the same Unicast service data, there is no mutual interference.
  • the receiving UE receives the signals sent from multiple Node Bs by means of diversity reception, and demodulates the Unicast service data in the signals sent by multiple Node Bs by soft combining.
  • FIG. 10 is a schematic diagram of a process of transmitting and multiplexing data by using a diversity transmission mode when a UE is in the edge of two cells covered by two Node Bs according to the principle of the method of the present invention.
  • the process is as follows:
  • the upper layer sends a service status query request command to the Node Bl, and the delivered service status query request command is used to instruct the Node B 1 to query its own service status, including QoS and cell load of each service; C2, Node Bl queries and counts its own business status, and sends a service status query response to the upper layer; c3.
  • the upper layer makes reasonable arrangements according to the service status of each Node B and the QoS of the MBMS service.
  • the upper layer sends the specified MBMS service subframe command to Node B1, and transmits the MBMS service data to Node B1;
  • the Node Bl modulates the MBMS service data on the specified MBMS service subframe, and places the modulated MBMS service data on the subcarrier set by the system, and reserves a part of the TF resource on the subcarrier;
  • the Node B2 After performing the same processing in the foregoing steps cl ⁇ c3 on the Node B2, the Node B2 modulates the MBMS service data on the specified MBMS service subframe, and places the modulated MBMS service data on the subcarrier set by the system. And reserve a part of the TF resource on the subcarrier;
  • the Node B1 schedules and modulates the Unicast service data according to the CQI reported by the UE and the QoS requirement of the user for the Unicast service data.
  • the scheduling information of the Unicast service data is exchanged between the Node B1 and the Node B2. If the Node B1 schedules the Unicast service data of the edge cell UE, the following processing steps are performed;
  • the Node B2 modulates the Unicast service data of the UE, and performs constellation mapping to place the mapped complex signal on the subcarrier set by the system;
  • Node B1 modulates the Unicast service data of the UE, and performs constellation mapping to place the mapped complex signal on the subcarrier set by the system; the coding mode adopted by the Node B2 and the Unicast service data are processed by the Node B2.
  • the coding method used is exactly the same;
  • Node B2 performs MBT change processing on the frequency domain data formed by multiplexing the MBMS service data and the Unicast service data into the MBMS service subframe, and performs cyclic shift processing on the time domain data after the IFFT transform processing, wherein the cyclic shift
  • the offset size used by the bit processing is specified by the upper layer; finally, the multiplexed time domain data is subjected to parallel/serial conversion, and the like, and a series of OFDM transform processes as shown in FIG.
  • Node Bl multiplexes the MBMS service data and the Unicast service data into the MBMS service sub-frame to perform IFFT change processing on the frequency domain data, and cyclically shifts the time domain data after the IFFT transform processing, wherein the cyclic shift
  • the offset size used by the bit processing is specified by the upper layer; finally, the multiplexed time domain data is subjected to parallel/serial conversion, and the like, and a series of OFDM transform processes as shown in FIG. 1 above;
  • Node B2 sends the above multiplexed processed data to the UE in the edge cell;
  • Node Bl sends the above multiplexed processed data to the UE in the edge cell;
  • the UE demodulates the MBMS service data and the Unicast service data sent to the UE in the signals sent by the Node B1 and the Node B2 by using the soft combining manner according to the MBMS service control information and the Unicast service control information received from the control channel. .
  • FIG. 11 is a schematic diagram of an embodiment process for multiplexing MBMS service data, Unicast service data, and redundant MBMS service data into an MBMS service subframe according to the method principle of the present invention.
  • This embodiment is an MBMS service.
  • the upper layer refers to functional entities above the Node B (such as RNC and switching side devices, etc.).
  • the specific implementation process is as follows:
  • the upper layer sends a service status query request command to the Node B.
  • the service status query request command is used to command the Node B to query its own service status, including the QoS and the area load of each service.
  • Node B queries and counts its own service status, and sends a service status query response to the upper layer; d3.
  • the upper layer makes reasonable arrangements according to the service status of each Node B and the QoS of the MBMS service.
  • the upper layer sends the specified MBMS service subframe command to the Node B, and simultaneously transmits the MBMS service data to the Node B;
  • the Node B modulates the number of MBMS services on the specified MBMS service subframe, and places the modulated MBMS service data on the subcarrier set by the system, and reserves one on the subcarrier. Part of TF resources;
  • the UE reports a channel quality indicator (CQI), and the reporting process is periodically reported, and may occur at any time between the foregoing steps dl to d4;
  • CQI channel quality indicator
  • the Node B Based on the CQI reported by the UE and the QoS requirement of the user for the Unicast service data, the Node B only schedules and modulates the Unicast service data with the QoS higher than the predetermined threshold, and then places the reserved TF on the subcarrier. Part of;
  • the Node B checks whether the TF resource reserved in the MBMS service subframe still has TF resources remaining, and generates redundancy check information of the corresponding amount of MBMS service data according to the remaining TF resources, and places the remaining TF information on the remaining TF.
  • resources including but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to the TF resources.
  • the Node B multiplexes the MBMS service data, the Unicast service data, and the redundancy check information of the MBMS service data into the MBMS service subframe to perform IFFT processing, parallel/serial conversion, and the like as shown in FIG. a series of OFDM transform processing;
  • the Node B sends the multiplexed data to the UE in the cell;
  • the UE demodulates the MBMS service data, the Unicast service data sent to the UE, and the redundancy check information of the MBMS service data in the received signal according to the MBMS service control information and the Unicast service control information received from the control channel, respectively.
  • the dll and the UE combine the demodulated MBMS service data and the redundancy check signal IT of the MBMS service data to calculate MBMS service data with a higher SINR.
  • the method of the present invention can be used to alleviate the disadvantages of increasing system signaling overhead caused by frequent handover between MBMS service subframes and shortcast application subframes in a short CP application scenario.
  • the transmission delay problem of the delay-sensitive Unicast service data can also be alleviated, and the reliability of the UE receiving the MBMS service data and the Unicast service data is improved.
  • multiple Node B diversity transmission modes are adopted, which improves the signal-to-noise ratio of the edge cells.
  • the present invention also correspondingly proposes a multiplexing device for a broadcast traffic channel and a non-broadcast traffic channel.
  • FIG. 12 is a broadcast traffic channel of the present invention.
  • a main component block diagram of a multiplexing device with a non-broadcast traffic channel which mainly includes a time-frequency resource reservation unit 100 and a data multiplexing delivery unit 200, wherein the specific functions of each component unit are as follows: Time-frequency resource reservation unit 100 And a time-frequency resource (TF resource) is reserved on a sub-frame carrying a broadcast service data to carry non-broadcast service data;
  • the data multiplexing and sending unit 200 is configured to multiplex the broadcast service data and the non-broadcast service data into the broadcast service data of the reserved time-frequency resource processed by the time-frequency resource reservation unit 100 for carrying the non-broadcast service data.
  • the subframe is sent to the user terminal UE.

Description

Γ播业备信道与非广播业务信道的复用方法及装置 技术领域
本发明涉及信道复用技术, 尤其是涉及一种广播业务信道与非广播业务 信道的复用方法及装置。 背景技术
20世纪 90年代以来, 多载波技术成为了宽带无线通信的热点技术, 其基 本思想是将一个宽带载波划分成多个子载波, 并在划分出的多个子载波上同 时传输数据。 在多数的系统应用当中, 子载波的宽度要小于信道的相干带宽, 这样使得在频率选择性信道上, 每个子载波上的衰落为平坦衰落, 这样就减 少了用户数据符号之间的串扰, 并且不需要复杂的信道均衡, 适合于高速率 数据的传输。 现有多载波技术有多种形式, 如正交频分复用接入(OFDMA, Orthogonal Frequency Division Multiplex Access )、多载波 CDMA( MC-CDMA, Multiplex Carrier CDMA )、多载波直接扩频 CDMA( MC-DS-CDMA, Multiplex Carrier-Direct Spread-CDMA ) 以及时频域二维扩展等, 此外还包括在这些技 术基础上的多种扩展技术。
其中, 正交频分复用 (OFDM, Orthogonal Frequency Division Multiplex ) 技术是多载波技术当中比较有代表性的一种技术, 它在频域内将给定信道分 成若干正交子信道, 并且允许子载波频谱部分重叠, 因为只要满足不同子载 波之间相互正交, 就可以从重叠的子载波上分离出不同的数据信号。
请参照图 1 , 该图是现有基本的 OFDM系统的调制和解调制处理过程示 意图, 如图 1所示, 在 OFDM系统中, 用户数据首先经过信道编码和交织处 理, 然后采用某种调制方式(如采用 BPSK、 QPSK和 QAM等调制方式)对 编码交织处理后的数据进行调制以形成用户数据符号, 用户数据符号再经过 OFDM操作后调制到射频上, 其中反向的解调制处理过程与这个过程相逆, 这里不再过多赘述。 其中上述在 OFDM操作当中, 首先要将用户数据符号进行串 /并转换, 以 形成多个低速率的子数椐流, 其中每个子数据流占用一个子载波, 而每个子 数据流映射到对应子载波上的处理可以通过逆向离散傅立叶变换( IDFT, Inverse Discrete Fourier Transformation )或者逆向快速傅立叶变换(IFFT, Inverse Fast Fourier Transformation )处理来实现。 然后通过加循环前缀(CP, Cyclic Prefix )处理为 IDFT或 IFFT处理后的时域信号增加循环前缀( CP ), 以作为保护间隔, 这样可以大大减少甚至消除了码间干扰, 并且保证了各信 道间的正交性, 从而大大减少了信道间的干扰。
目前, 在 OFDM 多载波技术上实现多媒体广播组播业务 (MBMS , Multimedia Broadcast/Multicast Service ) 是长时间演进项目组织 (LTE , Long-Time Evolution ) 中比较重要的业务之一。 其中 MBMS业务主要是指网 络侧把相同的多媒体数据同时广播或组播给网絡中的多个接收者的业务, 而 目前的多媒体数据主要包括一些流业务和背景(Background )业务等。
如上所述, 为了减少多径时延所引起的码间干扰, 通常要采用在 IDFT或 IFFT处理后的时域信号中增加 CP的方法来避免, 其中加入的 CP越长, 抗多 径时延引起的码间干扰能力越强,但是长的 CP也引起了传输效率进一步降低 的问题, 所以在实际的 OFDM系统中, 加入 CP的长度要根据不同的应用场 景而设置不同的数值。
在 LTE 项目中分为短 CP 和长 CP 两种, 其中短 CP 的时间长度是 TCP«4.7 s, 其主要应用在非广播业务(Unicast ) 的情况下; 长 CP的时间长 度是 TCP«16.7 s, 其主要应用在多媒体广播组播业务(MBMS )和小区直径 比较大的情况下。对于直径比较小的小区,或当系统发送的是 Unicast业务时, 采用短 CP; 而当系统发送的是 MBMS业务时, 或小区的直径比较大时才采 用长 CP。
通常情况下, 系统是将 Unicast业务和 MBMS业务进行时分复用(TDM, Time Division Multiple )处理后进行发送的, 即在时间抽上用一些子帧来传递 MBMS业务, 用另外一些子帧来传递 Unicast业务。 请参照图 2,该图是现有 Unicast业务和 MBMS业务进行时分复用处理的 状态示意图, 图中在子帧 Sub-frame 0、 Sub-frame 2、 Sub-frame 3和 Sub-frame 6中用短 CP来传递 Unicast业务, 各个小区之间的基站相对独立的调度发送 自己的 Unicast业务数据。 在子帧 Sub-frame 1、 Sub-frame 4和 Sub-frame 5中 用长 CP来传递 MBMS业务, 其中每个小区都发送相同的 MBMS业务数据, 用户终端 (UE, User Equipment )根据相应的控制信息解调出系统发送的 MBMS业务数据, 如果 UE正处于小区边沿, 则可以利用合并方式对从多个 小区接收的多个 MBMS业务信号进行合并处理, 以此来提高信噪比和小区边 沿的覆盖率。
目前将 MBMS业务和 Unicast业务进行时分复用的方式主要有调度方式 和指定方式两种, 其中:
调度方式是根据 Unicast业务数椐和 MBMS业务数据的服务质量( QOS, Quality Of Service )来进行调度的, 当 MBMS业务数据的 QOS要求相对于 Unicast业务数据的 QOS要求较高时, 则优先调度 MBMS业务数据, 反之则 调度 Unicast业务数据。 但是由于 MBMS业务需要同时在相邻的多个小区之 间进行发送, 就导致多个小区之间 NBMS业务的 QOS要求有可能是相同的, 然而每个小区中 Unicast业务的 QOS要求却不可能都相同, 因此这种调度方 式在两种业务进行 TDM处理时,势必会造成 MBMS业务子帧和 Unicast业务 子帧之间频繁进行切换, 从而会导致系统信令的开销大大增加。
指定方式是指在两种业务中, 只考虑 MBMS业务的 QOS要求, 即系统 会根据 MBMS业务的时延要求和速率要求来指定哪些是子帧( Sub-frame )用 来传送 MBMS业务数据 , 如图 2所示, 系统就会根据 MBMS业务的 QOS要 求指定子帧 Sub-frame 1、 Sub-frame 4和 Sub-frame 5用来传递 MBMS业务数 据, 由此可见指定方式会忽略 Unicast业务的传递优先级, 这样势必会造成 Unicast业务的时延增大,因此对于时延要求较高的 Unicast业务而言是不能忍 受的。 发明内容
本发明要解决的技术问题在于提出一种广播业务信道与非广播业务信道 的复用方法, 以减小广播业务和 Unicast业务进行时分复用处理时所占用的系 统信令开销, 并减小 Unicast业务的传输时延。
相应的, 本发明还提出了一种广播业务信道与非广播业务信道的复用装 置。
为解决上述问题, 本发明提出的技术方案如下:
一种广播业务信道与非广播业务信道的复用方法, 包括步骤:
在用于承载广播业务数据的子帧上预留时频资源用来承载非广播业务数 据;
将广播业务数据和非广播业务数据复用到用于承载广播业务数据的子帧 中发送给用户终端。
较佳地, 在承载广播业务数据的子帧上预留时频资源用来承载服务质量 优先级高的非广播业务数据。
较佳地, 所述方法还包括设置非广播业务服务质量门限值的步骤; 在广播业务数据和非广播业务数据的复用过程中, 将广播业务数据和超 过非广播业务服务质量门限值的非广播业务数据复用到用于承载广播业务数 据的子帧中。
较佳地, 所述方法还包括在所述预留的时频资源中承载超过非广播业务 服务质量门限值的非广播业务数据后, 还剩于时频资源时, 根据剩余时频资 源量生成冗余广播业务数据的步骤;
在广播业务数据和非广播业务数据的复用过程中, 还包括将超过非广播 业务服务质量门限值的非广播业务数据和所述生成的冗余广播业务数据复用 到所述预留的时频资源中的步骤。
较佳地, 所述方法还包括步骤:
用户终端分别解调出复用在用于承载广播业务数据的子帧中的广播业务 数据和冗余广播业务数据; 并
对得到的广播业务数据和冗余广播业务数据进行合并处理, 以得到高信 噪比的广播业务数据。
较佳地, 所述冗余广播业务数据为准备重复发送的广播业务数据。
较佳地, 所述冗余广播业务数据为广播业务数据的校睑信息。
较佳地, 在将非广播业务数据复用到广播业务子帧的预留时频资源中之 前, 还包括对非广播业务数据进行干扰随机化处理的步骤。
较佳地, 所述对非广播业务数据进行干扰随机化处理采取在非广播业务 数据中加入扰码进行加扰的方式完成;
不同的业务发送设备在自身发送的非广播业务数据中加入不同的扰码实 现对非广播业务数据进行干扰随机化处理。
较佳地, 所述业务发送设备为移动通信网络中的 Node B。
较佳地, 所述对非广播业务数据进行干扰随机化处理采取对非广播业务 数据进行交织处理的方式完成。
较佳地, 所述方法还包括对广播业务数据和非广播业务数据复用到用于 承载广播业务数据的子帧中形成的时域数据进行循环移位处理的步骤。
较佳地 , 若所述用户终端处于至少两个业务发送装置所覆盖的至少两个 小区边缘时, 所述每个业务发送装置采取分集发射方式分别对相同的非广播 业务数据进行复用及发送。
较佳地, 所述方法还包括步骤:
用户终端采取分集接收方式接收并解调至少两个业务发送装置发来的非 广播业务数据; 并
对至少两个业务发送装置发来的非广播业务数据进行软合并处理, 以得 到高信噪比的非广播业务数据。
较佳地, 所述业务发送设备为移动通信网络中的 Node B。
较佳地, 可以采用下列方式之一将广播业务数据和非广播业务数据复用 到用于承载广播业务数据的子帧中: ¾频方式;
时分复用方式; 和
频分复用方式。
其中, 用于承载广播业务数据的子帧可以由网络侧定期进行指配。
其中所述广播业务数据为多媒体广播组播业务数椐。
其中所述非广播业务数据包括单播业务的控制信令数据和单播业务的业 务数据。
一种广播业务信道与非广播业务信道的复用装置, 包括:
时频资源预留单元, 用于在承载广播业务数据的子帧上预留时频资源用 来承载非广播 务数据;
数据复用下发单元, 用于将广播业务数据和非广播业务数据复用到由时 频资源预留单元处理后的预留有时频资源用来承载非广播业务数据的广播业 务数据子帧中发送给用户终端。
本发明能够达到的有益效果如下:
本发明通过在用于承载广播业务数据的子帧上预留部分时频资源以用来 承载非广播(Unicast )业务数据, 然后将广播业务数据和 Unicast业务数据复 用到用于承载广播业务数据的子帧中发送给用户终端 UE, UE分别解调出复 用在用于承载广播业务数据的子帧中的广播业务数据和 Unicast业务数据。从 而可以避免现有技术中采用调度方式基于广播业务的 QoS和 Unicast业务的 QoS关系来分别调度广播业务数据和 Unicast业务数据时,可能会造成 MBMS 业务子帧和 Unicast业务子帧之间频繁进行切换, 因此会导致系统信令的开销 大大增加的弊端;
此外如果将 MBMS业务子帧中预留的部分时频资源用来承载 QoS较高的 Unicast业务数据, 进而还可以避免现有技术中采用指定方式优先考虑广播业 务的 QoS, 从而会造成 Unicast业务的传输时延增大的弊端, 有利于减小实时 性要求较高的 Unicast业务的传输时延。 附图说明
图 1为现有基本的 OFDM系统的调制和解调制处理过程示意图; 图 1为现有 Unicast业务和 MBMS业务进行时分复用处理的状态示意图; 图 3 为本发明广播业务信道与非广播业务信道的复用方法的主要实现原 理流程图;
图 4为本发明方法中对 MBMS业务和 QoS要求较高的 Unicast业务进行 复用处理的实现过程示意图;
图 5 为 QoS要求较高的 Unicast业务数据和 MBMS 业务数据复用在 MBMS业务子帧中的状态图;
图 6为本发明方法中对 MBMS业务、 QoS要求较高的 Unicast业务和冗 余 MBMS业务进行复用处理的实现过程示意图;
图 7为高于预设的 QoS门限值的 Unicast业务数据、 MBMS业务数据和 冗余 MBMS业务数据复用到 MBMS业务子帧中的状态图;
图 8为基于本发明方法原理实现将 MBMS业务数据和 Unicast业务数据 复用到 MBMS业务子帧中的实施例处理过程示意图;
图 9为按照本发明方法对 MBMS业务数据和 Unicast业务数据进行复用 处理时, 对 Unicast业务数据进行干扰随机化处理, 并对复用后的时域数据进 行循环移位处理的实施例处理过程示意图;
图 10为基于本发明方法原理, 当 UE处于两个 Node B所覆盖的两个小 区边沿时, Node B采用分集发射方式发射复用后数据的处理过程示意图; 图 11为基于本发明方法原理实现将 MBMS业务数据、 Unicast业务数据和 冗余 MBMS业务数据复用到 MBMS业务子帧中的实施例处理过程示意图; 图 12为本发明广播业务信道与非广播业务信道的复用装置的主要组成结 构框图。 具体实施方式 本发明方案提出的目的在于緩解现有单一调度方法所带来的长 CP应用 场景下的 MBMS业务子帧和短 CP应用场景下的 Unicast业务子帧频繁切换而 导致系统信令开销增大的问题; 并緩解现有单一指定方法所造成的对时延敏 感的 Unicast业务时延问题。
下面将结合各个附图对本发明广播业务信道与非广播业务信道的复用方 法的主要实现原理及其具体实施方式进行详细的阐述。
请参照图 3,该图是本发明广播业务信道与非广播业务信道的复用方法的 主要实现原理流程图, 其主要实现过程如下:
步骤 S10, 在用于承载广播业务数据的子帧 (Sub-frame )上预留部分时 频资源 (TF, Time frequency )用来承载非广播 ( Unicast )业务数据, 这里用 于承载广播业务数据的 Sub-frame可以定期由网络侧进行指配;其中为了緩解 现有指定方式下所导致的对时延性敏感的 Unicast业务造成的传输时延, 这里 在用于承载广播业务数据的 Sub-frame中预留出来的 TF资源上要优先承载服 务质量( QoS )优先级较高的 Unicast业务数据。
如这里可以预先设置一个 Unicast业务的 QoS门限值。
步骤 S20, 将广播业务数据和 Unicast业务数据复用到用于承载广播业务 数据的 Sub-frame中发送给 UE; 更进一步为了緩解现有指定方式下所导致的 对时延性敏感的 Unicast业务造成的传输时延, 在广播业务数据和 Unicast业 务数据的复用过程中,要将广播业务数据和超过上述设置的 Unicast业务 QoS 门限值的 Unicast业务数据复用到用于承载广播业务数据的 Sub-frame中。
其中广播业务数据和 Unicast业务数据在复用到用于承载广播业务数据的 Sub-frame中时可以采用跳频方式来完成, 也可以频分复用 (FDM )方式来完 成, 还可以采用时分复用方式(TDM )方式来完成。
步骤 S30, UE基于广播业务控制信息和 Unicast业务控制信息(控制信 息是从控制信道接收到的信息)分别解调出复用在用于承载广播业务数据的 Sub-frame中的广播业务数据和 Unicast业务数据。
其中上述提及的广播业务数据以现有在 3G网絡中应用较多的 MBMS业 务数据更为优选, 而上述提及的 Unicast业务数据可以但不限于包括单播业务 中的控制信令数据和业务数据。 下面将以 MBMS业务作为广播业务为例进行 说明, 当然本发明方案中提及的广播业务还可以是其他广播性业务, 其实现 原理与 MBMS业务参与实现的原理相同, 就不再——赘述。
请参照图 4, 该图是本发明方法中对 MBMS 业务和 QoS要求较高的 Unicast业务进行复用处琛的实现过程示意图,即在小区调度到 MBMS业务的 Sub-frame时( MBMS业务 Sub-frame可由网络侧按照一定时间规律进行定期 指配), 系统将预留出一部分 TF资源, 以用来传送对时延要求较高的 Unicast 业务数据。 在该 Sub-frame中, MBMS业务数据和 Unicast业务数据的复用方 式可以采用跳频方式、 TDM方式或 FDM方式。 其主要实现过程如下:
1、 Node B将经过信道编码的 MBMS业务数据进行星座图映射, 并将映 射后的复信号放置在系统约定的子载波上, 并按照设置 (系统会预先设置, 告诉 Node B哪些子载波是可以保留有 TF资源的)预留出一部分子载波以供 对 Unicast业务数据进行调度;
2、 Node B对 QoS要求较高的 Unicast业务数据进行调度;
3、 Node B将调度到的 Unicast业务数据进行信道编码, 并进行星座图映 射, 将映射后的复信号放置在预留出的子载波上;
4、将 QoS要求较高的 Unicast业务数据和 MBMS业务数据进行复用,如 图 5所示, 是 QoS要求较高的 Unicast业务数据和 MBMS业务数据复用在 MBMS业务子帧中的状态图; 然后再按照现有技术中图 1的其他 OFDM处理 过程, 经过 IFFT变换、 加 CP等一系列的处理步骤后经 Node B发射出去;
5、 UE接收到信号后, 分别根据 MBMS业务控制信息和 Unicast业务控 制信息, 分别解调出复用在 MBMS业务子帧中的 MBMS业务数据和 Unicast 业务数据。
其中在上述步骤 S20中, 可能还会存在一种情况: 即在 MBMS业务子帧 中预留出的 TF资源中承载了超过 Unicast业务 QoS门限值的 Unicast业务数 据后, 可能还存在剩余 TF资源的情况, 这时系统就可以根据剩余 TF资源的 006 001888 多少生成对应量的冗余广播业务数据;
后续在广播业务数据和 Unicast业务数据的复用过程中,要将超过 Unicast 业务 QoS门限值的 Unicast业务数据和上述生成的冗余广播业务数据一起复用 到 MBMS业务子帧中预留出的 TF资源中。
这样,在 UE接收到信号时,要根据广播业务控制信息分别解调出复用在 用于承载广播业务数据的子帧中的广播业务数据和冗余广播业务数据, 并对 得到的广播业务数据和冗余广播业务数据进行合并处理, 以得到高信噪比 ( SINR ) 的广播业务数据。
其中系统根据剩余 TF 资源的多少可以将部分需要重复发送的广播业务 数据作为冗余广播业务数据, 还可以将广播业务数据的校验信息作为冗余广 播业务数据。
请参照图 6,该图是本发明方法中对 MBMS业务、 QoS要求较高的 Unicast 业务和冗余 MBMS业务进行复用处理的实现过程示意图, 由于在 MBMS业 务 Sub-frame中,预留出来的 TF资源仅仅用来传送对时延要求较高的 Unicast 业务数据, 即在上述图 4方案的基础上,设置一个 Unicast业务 QoS门限, 只 有当高于此门限的 Unicast业务数据才参加调度。同时由于各个小区的 Unicast 业务情况是不一样的, 即有的小区存在高于门限的 Unicast业务, 有的小区才艮 本没有高于门限的 Unicast业务, 另外即使存在高于门限的 Unicast业务也有 可能占不满在 MBMS业务子帧中预留出的 TF资源。 因此可以利用没有占用 的 TF资源来传送 MBMS业务数据的冗余信息(可以是重复的 MBMS业务数 据,也可以是 MBMS业务数据的校验位信息),属于该小区的 UE可以接收并 解调出 MBMS业务数据和冗余 MBMS业务数据, 并对 MBMS业务数据和冗 余 MBMS业务数据进行合并处理, 从而提高 MBMS业务的信噪比。 具体实 现过程如下:
10 Node B将经过信道编码的 MBMS业务数据进行星座图映射,并将映 射后的复信号放置在系统约定的子载波上, 并按照设置预留出一部分子载波 以供 Unicast业务数据调度; 20、 Node B对仅仅高于预先设置的 QoS门限的 Unicast业务数据进行调 度;
30、 Node B将调度到的 Unicast业务数据进行信道编码,并进行星座图映 射, 将映射后的复信号放置在预留出的子载波上;
40、 系统判断出预留出的 TF资源还有剩余时, 则才艮据其剩余 TF资源的 多少生成对应量的冗余 MBMS业务数据信息;
50、 Node B将冗余的 MBMS业务数据信息进行星座图映射,并将映射后 的复信号放置在剩余的子载波上;
60、 Node B将高于预设的 QoS门限值的 Unicast业务数据、 MBMS业务 数据和冗余 MBMS业务数据复用到 MBMS业务子帧中;
如图 7所示, 为高于预设的 QoS门限值的 Unicast业务数据、 MBMS业 务数据和冗余 MBMS 业务数据复用到 MBMS 业务子帧中的状态图, 其中 Sub-framel 和 Sub-fmme5 里面复用有冗余 MBMS 业务数据 R-MBMS , Sub-frame4里面没有复用 R-MBMS数据;
然后再按照现有技术中图 1的其他 OFDM处理过程, 经过 IFFT变换、 加 CP等一系列的处理步骤后经 Node B发射出去;
70、 UE接收到信号后, 根据在控制信道上接收并解调出来的 MBMS控 制信息和 Unicast控制信息, 分别解调出复用在 MBMS业务子帧中的 MBMS 业务数据、 Unicast业务数据和冗余 MBMS业务数据;
80、 UE对解调出来的 MBMS业务数据和冗余 MBMS业务数据进行合并 处理, 最终生成高 SIN 的 MBMS业务数据信息。
下面为几个应用本发明方案原理进行实施的实施例:
第一实施例:
请参照图 8, 该图是基于本发明方法原理实现将 MBMS 业务数据和 Unicast业务数据复用到 MBMS业务子帧中的实施例处理过程示意图,该实施 例即为 MBMS业务数据和 Unicast业务数据在长 CP应用场景下进行复用的一 个例子, 所实施在的网络系统环境包含 UE, Node B和高层三个实体; 其中 Node B具有业务调度功能, 高层是指 Node B以上的功能实体(如 RNC和交 换侧设备等)。 其具体的实施过程如下:
al、 高层发送业务状态查询请求命令给 Node B, 此下发的业务状态查询 请求命令是用于命令 Node B查询自身的业务情况,包括各个业务的 QoS和小 区负荷等;
a2、 Node B查询并统计自身的业务状况,发送业务状态查询响应给高层; a3、 高层根据各个 Node B的业务情况和 MBMS业务的 QoS, 合理安排
MBMS业务子帧; 然后高层将指定的 MBMS业务子帧命令发送给 Node B, 同时将 MBMS业务数据传送给 Node B;
a4、 Node B在指定的 MBMS业务子帧上调制 MBMS业务数据, 并将调 制后的 MBMS业务数据放置到系统设定的子载波上, 并在该子载波上预留一 部分 TF资源;
a5、 UE上 4艮信道质量指示(CQI, Channel Quality Indicator ), 该上 4艮过 程是定时上报的, 可以发生在上述步骤 al ~ a4之间的任何时刻;
a6、 Node B根据 UE上报的 CQI和用户对 Unicast业务数据的 QoS要求, 对 Unicast 业务数据进行调度, 并进行调制, 然后放置到该子载波上预留的 TF部分中;
a7、 Node B将 MBMS业务数据和 Unicast业务数据复用到 MBMS业务子 帧中后形成的频域数据进行 IFFT处理、 并 /串变换等如上图 1所示的一系列 OFDM变换处理;
a8、 Node B将上述复用处理后的数据发送给本小区中的 UE;
a9、 UE根据从控制信道接收的 MBMS业务控制信息和 Unicast业务控制 信息分别在接收到的信号中解调出 MBMS业务数据和发送给本 UE的 Unicast 业务数据。
第二实施例:
请参照图 9,该图是按照本发明方法对 MBMS业务数据和 Unicast业务数 据进行复用处理时, 对 Unicast业务数据进行干扰随机化处理 , 并对复用后的 时域数据进行循环移位处理的实施例处理过程示意图, 由于基于 OFDM多载 波技术, 不同 Node B之间需要通过使用循环移位的方法来获得频率选择性分 集增益, 因为多个 Node B发送的 MBMS业务数据通常都是相同的, 因此当 Node B发送 MBMS业务数据时,可以采用循环移位的方法来提高频率选择性 增益。此外还由于 Unicast业务数据是在 MBMS业务子帧中预留的 TF资源上 调度的, 邻小区干扰几率很大, 因此利用干扰随机化处理过程对 Unicast业务 数据进行加扰是很有必要的, 其中干扰随机化处理的方法可以采用在 Unicast 业务数据中加入扰码以进行干扰来完成; 也可以采用不同的交织方式来实现 干扰随机化处理。 其具体的实施过程如下:
bl、 高层发送业务状态查询请求命令给 Node B, 此下发的业务状态查询 请求命令是用于命令 Node B查询自身的业务情况,包括各个业务的 QoS和小 区负荷等;
b2、 Node B查询并统计自身的业务状况,发送业务状态查询响应给高层; b3、 高层根据各个 Node B的业务情况和 MBMS业务的 QoS, 合理安排
MBMS业务子帧; 然后高层将指定的 MBMS业务子帧命令发送给 Node B, 同时将 MBMS业务数据传送给 Node B;
b4、 Node B在指定的 MBMS业务子帧上调制 MBMS业务数据, 并将调 制后的 MBMS业务数据放置到系统设定的子载波上, 并在该子载波上预留一 部分 TF资源;
b5、 UE上报预留信道的 CQI, 该上报过程是定时上报的, 可以发生在步 骤 bl ~ b4之间的任何时刻;
b6、 Node B根据 UE上报的 CQI和用户对 Unicast业务数据的 QoS要求, 对 Unicast业务数据进行调度, 并进行调制;
b7、 Node B对调制后的 Unicast业务数据进行干扰随机化处理, 以降低邻 小区的干扰; 这里以采用在 Unicast业务数据中加入扰码进行加扰方式为例进 行说明, 并将加扰处理后的 Unicast业务数据映射到该子载波上预留的 TF资 源中。 其中为了达到较好的干扰随机化处理效果, 不同的 Node B之间要采用 不同的扰码序列来对要发送的 Unicast业务数据进行加扰;
b8、Node B将 MBMS业务数据和 Unicast业务数据复用到 MBMS业务子 帧中后形成的频域数据进行 IFFT变化处理, 并对 IFFT变换处理后的时域数 据进行循环移位处理, 其中循环移位处理所采用的偏移量大小由高层指定; 最后对复用后的时域数据进行并 /串变换等如上图 1所示的一系列 OFDM变换 处理;
b9、 Node B将上述复用处理后的数据发送给本小区中的 UE;
M0、 UE根据从控制信道接收的 MBMS业务控制信息和 Unicast业务控 制信息分别在接收到的信号中解调出 MBMS 业务数据和发送给本 UE 的 Unicast业务数据。
第三实施例:
当 UE处在至少两个 Node B所覆盖的至少两个小区边沿时, UE的接收 信号功率将会很低, 而干扰也会增大, 从而会造成信号的 SI 过低。 这样为 了緩解 UE在至少两个小区边沿时接收的 Unicast业务数据 SMR过低的问题, 可以采用至少两个 Node B进行分集发射的方式,即当 UE处在至少两个 Node B所覆盖的至少两个小区边沿时, 至少两个 Node B发送相同的 Unicast业务 数据, 并对此采用相同的编码方式和交织方式; 因为至少两个 Node B发送的 是相同的 Unicast业务数据, 故不存在相互干扰的问题, 其相互之间采用的扰 码序列需要完全一样或者根本就不进行扰码处理。同时接收端 UE要采用分集 接收的方式分别接收从多个 Node B发送来的信号, 并采用软合并方式解调出 多个 Node B发送来的信号中的 Unicast业务数据。
请参照图 10, 该图是基于本发明方法原理, 当 UE处于两个 Node B所覆 盖的两个小区边沿时, Node B采用分集发射方式发射复用后数据的处理过程 示意图, 其具体的实施过程如下:
cl、 高层发送业务状态查询请求命令给 Node Bl , 此下发的业务状态查询 请求命令是用于命令 Node B 1查询自身的业务情况, 包括各个业务的 QoS和 小区负荷等; c2、Node Bl查询并统计自身的业务状况,发送业务状态查询响应给高层; c3、 高层根据各个 Node B的业务情况和 MBMS业务的 QoS, 合理安排
MBMS业务子帧; 然后高层将指定的 MBMS业务子帧命令发送给 Node B1 , 同时将 MBMS业务数据传送给 Node B1;
c4、 Node Bl在指定的 MBMS业务子帧上调制 MBMS业务数据, 并将调 制后的 MBMS业务数据放置到系统设定的子载波上, 并在该子载波上预留一 部分 TF资源;
c5、在 Node B2上也进行上述步骤 cl〜c3的相同处理后, Node B2在指定 的 MBMS业务子帧上调制 MBMS业务数据, 并将调制后的 MBMS业务数据 放置到系统设定的子载波上, 并在该子载波上预留一部分 TF资源;
c6、 UE向 Node B1上 4艮预留信道的 CQI (如果 UE知道哪些是预留的信 道, 就直接上 预留信道的 CQI, 否则上报所有信道的 CQI ), 该上报过程是 定时上报的, 可以发生在上述步骤 cl〜c4之间的任何时刻;
c7、Node B1根据 UE上报的 CQI和用户对 Unicast业务数据的 QoS要求, 对 Unicast业务数据进行调度, 并进行调制;
c8、Node B1和 Node B2之间交互 Unicast业务数据的调度信息,如果 Node B1调度到边沿小区 UE的 Unicast业务数据时, 则进行下面的处理步骤;
c9、 Node B2对 UE的 Unicast业务数据进行调制, 并进行星座图映射, 以将映射后的复信号放置到系统设定的子载波上;
cl0、 Node B1对 UE的 Unicast业务数据进行调制, 并进行星座图映射, 以将映射后的复信号放置到系统设定的子载波上; 其采用的编码方式与 Node B2对 Unicast业务数据进行处理时采用的编码方式完全相同;
cll、 Node B2将 MBMS业务数据和 Unicast业务数据复用到 MBMS业务 子帧中后形成的频域数据进行 IFFT变化处理, 并对 IFFT变换处理后的时域 数据进行循环移位处理, 其中循环移位处理所采用的偏移量大小由高层指定; 最后对复用后的时域数据进行并 /串变换等如上图 1所示的一系列 OFDM变换 处理; cl2、 Node Bl将 MBMS业务数据和 Unicast业务数据复用到 MBMS业务 子帧中后形成的频域数据进行 IFFT变化处理, 并对 IFFT变换处理后的时域 数据进行循环移位处理, 其中循环移位处理所采用的偏移量大小由高层指定; 最后对复用后的时域数据进行并 /串变换等如上图 1所示的一系列 OFDM变换 处理;
cl3、 Node B2将上述复用处理后的数据发送给边沿小区中的 UE;
cl4、 Node Bl将上述复用处理后的数据发送给边沿小区中的 UE;
cl5、 UE根据从控制信道接收的 MBMS业务控制信息和 Unicast业务控 制信息, 利用软合并方式分别在 Node B1 和 Node B2发来的信号中解调出 MBMS业务数据和发送给本 UE的 Unicast业务数据。
第四实施例:
请参照图 11 ,该图是基于本发明方法原理实现将 MBMS业务数据、 Unicast 业务数据和冗余 MBMS业务数据复用到 MBMS业务子帧中的实施例处理过 程示意图, 该实施例即为 MBMS业务数据、 Unicast业务数据和冗余 MBMS 业务数据在长 CP应用场景下进行复用的一个例子,其所实施在的网络系统环 境包含 UE, Node B和高层三个实体; 其中 Node B具有业务调度功能, 高层 是指 Node B以上的功能实体(如 RNC和交换侧设备等)。 其具体的实施过程 如下:
dl、 高层发送业务状态查询请求命令给 Node B, 此下发的业务状态查询 请求命令是用于命令 Node B查询自身的业务情况,包括各个业务的 QoS和小 区负荷等;
d2、 Node B查询并统计自身的业务状况,发送业务状态查询响应给高层; d3、 高层根据各个 Node B的业务情况和 MBMS业务的 QoS, 合理安排
MBMS业务子帧; 然后高层将指定的 MBMS业务子帧命令发送给 Node B, 同时将 MBMS业务数据传送给 Node B;
d4、 Node B在指定的 MBMS业务子帧上调制 MBMS业务数椐, 并将调 制后的 MBMS业务数据放置到系统设定的子载波上, 并在该子载波上预留一 部分 TF资源;
d5、 UE上报信道质量指示(CQI ), 该上报过程是定时上报的, 可以发生 在上述步骤 dl ~ d4之间的任何时刻;
d6、 Node B根据 UE上报的 CQI和用户对 Unicast业务数据的 QoS要求, 只对 QoS高于预定门限值的 Unicast业务数据进行调度,并进行调制, 然后放 置到该子载波上预留的 TF部分中;
d7、 Node B检查 MBMS业务子帧中预留的 TF资源是否还剩余有 TF资 源, 并根据剩余 TF资源的多少, 生成对应量的 MBMS业务数据的冗余校验 信息, 并放置到剩余的 TF资源中;
d8、 Node B将 MBMS业务数据、 Unicast业务数据和 MBMS业务数据的 冗余检验信息复用到 MBMS业务子帧中后形成的频域数据进行 IFFT处理、 并 /串变换等如上图 1所示的一系列 OFDM变换处理;
d9、 Node B将上述复用处理后的数据发送给本小区中的 UE;
dl0、 UE根据从控制信道接收的 MBMS业务控制信息和 Unicast业务控 制信息分别在接收到的信号中解调出 MBMS 业务数据、 及发送给本 UE 的 Unicast业务数据和 MBMS业务数据的冗余检验信息;
dll、 UE对解调出的 MBMS业务数据和 MBMS业务数据的冗余校验信 IT进行合并处理, 以计算出 SINR更高的 MBMS业务数据。 述, 可以看的本发明方法可以很好的緩解由于长 CP应用场景下的 MBMS业 务子帧和短 CP应用场景下的 Unicast业务子帧之间频繁切换所导致的对系统 信令开销增加的弊端, 还可以緩解对时延敏感的 Unicast业务数据的传输时延 问题,提高了 UE接收 MBMS业务数据和 Unicast业务数据的可靠度。 同时当 UE处在多个小区边沿时, 采用多个 Node B分集发射的方式, 较好的提高了 边沿小区的信噪比。
相应于本发明上述提出的方法, 本发明这里还对应的提出了一种广播业 务信道与非广播业务信道的复用装置。 如图 12所示, 为本发明广播业务信道 与非广播业务信道的复用装置的主要组成结构框图, 其主要包括时频资源预 留单元 100和数据复用下发单元 200, 其中各个组成单元的具体作用如下: 时频资源预留单元 100, 用于在承载广播业务数据的子帧 (Sub-frame ) 上预留时频资源 (TF资源)用来承载非广播业务数据;
数据复用下发单元 200,用于将广播业务数据和非广播业务数据复用到由 上述时频资源预留单元 100处理后的预留有时频资源用来承载非广播业务数 据的广播业务数据子帧中发送给用户终端 UE。
其中有关本发明装置的其他相关具体实现细节请相应参照本发明上述方 法中的相关描述, 这里不再给予过多赘述。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

杈 利 要 求
1、 一种广播业务信道与非广播业务信道的复用方法, 其特征在于, 包括 步骤:
在用于承载广播业务数据的子帧上预留时频资源用来承载非广播业务数 据;
将广播业务数据和非广播业务数据复用到用于承载广播业务数据的子帧 中发送给用户终端。
2、 如权利要求 1所述的方法, 其特征在于, 在承载广播业务数据的子帧 上预留时频资源用来承载服务盾量优先级高的非广播业务数据。
3、 如权利要求 1或 2所述的方法, 其特征在于, 还包括设置非广播业务 服务质量门限值的步驟;
在广播业务数据和非广播业务数据的复用过程中, 将广播业务数据和超 过非广播业务服务盾量门限值的非广播业务数据复用到用于承载广播业务数 据的子帧中。
4、 如权利要求 3所述的方法, 其特征在于, 还包括在所述预留的时频资 源中承载超过非广播业务服务质量门限值的非广播业务数据后, 还剩于时频 资源时, 根据剩余时频资源量生成冗余广播业务数据的步骤;
在广播业务数据和非广播业务数据的复用过程中, 还包括将超过非广播 业务服务质量门限值的非广播业务数据和所述生成的冗余广播业务数据复用 到所述预留的时频资源中的步骤。
5、 如权利要求 4所述的方法, 其特征在于, 还包括步骤:
用户终端分别解调出复用在用于承载广播业务数据的子帧中的广播业务 数据和冗余广播业务数据; 并
对得到的广播业务数据和冗余广播业务数据进行合并处理。
6、 如权利要求 5所述的方法, 其特征在于, 所述冗余广播业务数据为准 备重复发送的广播业务数据。
7、 如权利要求 5所述的方法, 其特征在于, 所述冗余广播业务数据为广 播业务数据的校验信息。
8、 如权利要求 1或 2所述的方法, 其特征在于, 在将非广播业务数据复 用到广播业务子帧的预留时频资源中之前, 还包括对非广播业务数据进行干 扰随机化处理的步骤。
9、 如权利要求 8所述的方法, 其特征在于, 所述对非广播业务数据进行 干扰随机化处理采取在非广播业务数据中加入扰码进行加扰的方式完成; 不同的业务发送设备在自身发送的非广播业务数据中加入不同的扰码实 现对非广播业务数据进行干扰随机化处理。
10、 如权利要求 9所述的方法, 其特征在于, 所述业务发送设备为移动 通信网络中的 Node B。
11、 如权利要求 8 所述的方法, 其特征在于, 所述对非广播业务数据进 行干扰随机化处理采取对非广播业务数据进行交织处理的方式完成。
12、 如权利要求 1或 2所述的方法, 其特征在于, 还包括对广播业务数 据和非广播业务数据复用到用于承载广播业务数据的子帧中形成的时域数据 进行循环移位处理的步骤。
13、 如权利要求 1或 2所述的方法, 其特征在于, 若所述用户终端处于 至少两个业务发送装置所覆盖的至少两个小区边缘时, 所述每个业务发送装 置采取分集发射方式分别对相同的非广播业务数据进行复用及发送。
14、 如权利要求 13所述的方法, 其特征在于, 还包括步骤:
用户终端采取分集接收方式接收并解调至少两个业务发送装置发来的非 广播业务数据; 并
对至少两个业务发送装置发来的非广播业务数据进行软合并处理。
15、 如权利要求 14所述的方法, 其特征在于, 所述业务发送设备为移动 通信网络中的 Node B。
16、 如权利要求 1或 2所述的方法, 其特征在于, 采用下列方式之一将 广播业务数据和非广播业务数据复用到用于承载广播业务数据的子帧中: u uu //ujoii6 PCT/CN2006/001888 跳频方式;
时分复用方式; 和
频分复用方式。
17、 如权利要求 1或 2所述的方法, 其特征在于, 用于承载广播业务数 据的子帧由网络侧定期指配。
18、 如权利要求 1或 2所述的方法, 其特征在于, 所述广播业务数据为 多媒体广播组播业务数据。
19、 如权利要求 1或 2所述的方法, 其特征在于, 所述非广播业务数据 包括单播业务的控制信令数据和单播业务的业务数据。
20、 一种广播业务信道与非广播业务信道的复用装置, 其特征在于, 包 括:
时频资源预留单元, 用于在承载广播业务数据的子帧上预留时频资源用 来承载非广播业务数据;
数据复用下发单元, 用于将广播业务数据和非广播业务数据复用到由时 频资源预留单元处理后的预留有时频资源用来承载非广播业务数据的广播业 务数据子帧中发送给用户终端。
PCT/CN2006/001888 2005-09-29 2006-07-28 A multiple method and system of broadcast service channel and unicast service channel WO2007036116A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800117907A CN101156342B (zh) 2005-09-29 2006-07-28 广播业务信道与非广播业务信道的复用方法及装置
EP06775235A EP1940060B1 (en) 2005-09-29 2006-07-28 A multiple method and system of broadcast service channel and unicast service channel
US12/058,686 US8165052B2 (en) 2005-09-29 2008-03-29 Method and device for multiplexing broadcast service channel and non-broadcast service channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2005101081242A CN1941687A (zh) 2005-09-29 2005-09-29 广播业务信道与非广播业务信道的复用方法
CN200510108124.2 2005-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/058,686 Continuation US8165052B2 (en) 2005-09-29 2008-03-29 Method and device for multiplexing broadcast service channel and non-broadcast service channel

Publications (1)

Publication Number Publication Date
WO2007036116A1 true WO2007036116A1 (en) 2007-04-05

Family

ID=37899363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001888 WO2007036116A1 (en) 2005-09-29 2006-07-28 A multiple method and system of broadcast service channel and unicast service channel

Country Status (6)

Country Link
US (1) US8165052B2 (zh)
EP (2) EP1940060B1 (zh)
CN (3) CN1941687A (zh)
ES (1) ES2452922T3 (zh)
PT (1) PT1940060E (zh)
WO (1) WO2007036116A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009135193A1 (en) * 2008-05-01 2009-11-05 Qualcomm Incorporated Method and apparatus for downlink data arrival
WO2009135372A1 (zh) * 2008-05-07 2009-11-12 中兴通讯股份有限公司 多播子帧配置方法及装置
US20100009687A1 (en) * 2008-04-28 2010-01-14 Nokia Corporation System and method for enabling efficient mbms downlink radio resource re-use for other downlink traffic
CN101938712A (zh) * 2009-06-30 2011-01-05 中兴通讯股份有限公司 长期演进系统中多业务的复用方法与装置
CN101964946A (zh) * 2009-07-21 2011-02-02 中兴通讯股份有限公司 一种业务数据的接收方法及系统
US20220322309A1 (en) * 2021-04-01 2022-10-06 Qualcomm Incorporated Retransmission of semi-persistent scheduled group common downlink signaling
CN115361091A (zh) * 2022-07-15 2022-11-18 鹏城实验室 基于多用户叠加传输技术的下行混合广播单播传输方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006102746A1 (en) * 2005-03-30 2006-10-05 Nortel Networks Limited Methods and systems for transmission of orthogonal frequency division multiplexed symbols
CN101340711B (zh) * 2007-07-06 2012-05-23 中兴通讯股份有限公司 多载波增强上行接入系统的调度信息上报方法
WO2009038521A1 (en) * 2007-09-18 2009-03-26 Telefonaktiebolaget Lm Ericsson (Publ) A method and a device for reduced inter-cell interference
CN101179328B (zh) * 2007-12-05 2013-08-07 中兴通讯股份有限公司 时分双工系统中特殊时隙的配置方法和装置
US8498232B2 (en) * 2007-12-27 2013-07-30 Lg Electronics Inc. Method of transmitting data in wireless communication system
JP5188870B2 (ja) * 2008-04-28 2013-04-24 株式会社エヌ・ティ・ティ・ドコモ 基地局、移動局及び周波数分割多重通信方法
US8340011B2 (en) * 2008-05-07 2012-12-25 Qualcomm Incorporated Methods and apparatuses for increasing data transmission efficiency in a broadcast network
US8737373B2 (en) 2008-05-09 2014-05-27 Qualcomm Incorporated Signaling separate unicast and broadcast information with a common pilot
CN101616361A (zh) * 2008-06-23 2009-12-30 中兴通讯股份有限公司 一种多媒体广播和组播业务的资源调度和数据接收方法
CN102067695B (zh) * 2008-06-24 2016-03-16 夏普株式会社 无线通信系统、移动站装置以及无线接收方法
WO2010017661A1 (zh) * 2008-08-15 2010-02-18 上海贝尔股份有限公司 无线通信系统中提供mbms和单播业务的方法和装置
CN101771939B (zh) * 2008-12-30 2014-04-30 中兴通讯股份有限公司 单播业务控制信息的发送方法和装置
US8441976B2 (en) * 2009-06-29 2013-05-14 Htc Corporation Method of managing multimedia broadcast multicast service reception and related communication device
US20110013574A1 (en) * 2009-07-16 2011-01-20 Chia-Chun Hsu Method of Handling Unicast Transmission on Multimedia Broadcast Multicast Service Subframe and Related Communication Device
GB2474006B (en) * 2009-08-11 2012-05-02 Samsung Electronics Co Ltd Network element, wireless communication units and methods for scheduling communications
CN101656585B (zh) * 2009-08-27 2012-07-04 华为技术有限公司 时分复用业务调度方法和装置
KR101435848B1 (ko) * 2010-01-12 2014-08-29 엘지전자 주식회사 멀티캐리어 시스템에서 e-mbs서비스를 위한 효율적인 캐리어 스위칭 동작을 수행하기 위한 방법 및 장치
CN102148797B (zh) * 2010-02-08 2014-02-12 上海贝尔股份有限公司 合并的多数据流的传输技术
US20110243056A1 (en) * 2010-03-31 2011-10-06 Yu-Chih Jen Method for realizing MBMS under bandwidth aggregation, CoMP and relay operation
US9237553B2 (en) * 2011-07-07 2016-01-12 Qualcomm Incorporated Coexistence of priority broadcast and unicast in peer-to-peer networks
US9883488B2 (en) 2011-07-07 2018-01-30 Qualcomm Incorporated Coexistence of priority broadcast and unicast in peer-to-peer networks
US9020008B2 (en) * 2011-07-12 2015-04-28 Cisco Technology, Inc. Overlaying independent unicast frequency hopping schedules with a common broadcast schedule
CN103107871A (zh) * 2011-11-09 2013-05-15 中兴通讯股份有限公司 基于eMBMS的业务数据发送、接收方法、装置及系统
US20160099985A1 (en) * 2013-05-09 2016-04-07 Nokia Solutions And Networks Oy Combination of Unicast and Multicast User Plane Data
WO2015060191A1 (ja) * 2013-10-21 2015-04-30 京セラ株式会社 基地局及びプロセッサ
CN107889240B (zh) * 2016-09-30 2020-07-24 华为技术有限公司 一种数据传输方法和设备
WO2019174006A1 (zh) * 2018-03-15 2019-09-19 华为技术有限公司 一种数据发送方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1136737A (zh) * 1995-03-11 1996-11-27 日本电气株式会社 具有预分配的外围站的时隙分配系统
US6711177B1 (en) * 1999-06-28 2004-03-23 Rockwell Collins, Inc. Method and apparatus for managing communication resources using frame fitting
CN1585316A (zh) * 2003-08-19 2005-02-23 北京三星通信技术研究有限公司 为mbms业务建立公共传输信道的方法
US6885651B1 (en) * 2000-08-29 2005-04-26 Rockwell Collins Maintaining an adaptive broadcast channel using both transmitter directed and receiver directed broadcasts
CN1642087A (zh) * 2004-01-13 2005-07-20 三星电子株式会社 基于广播/通信会聚执行传输和接收操作的系统和方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212182B1 (en) * 1996-06-27 2001-04-03 Cisco Technology, Inc. Combined unicast and multicast scheduling
FI973837A (fi) * 1997-09-29 1999-03-30 Nokia Telecommunications Oy Tiedonsiirtoresurssien allokointi
US6477169B1 (en) * 1999-05-14 2002-11-05 Nortel Networks Limited Multicast and unicast scheduling for a network device
US7050809B2 (en) * 2001-12-27 2006-05-23 Samsung Electronics Co., Ltd. System and method for providing concurrent data transmissions in a wireless communication network
US7453898B1 (en) * 2002-03-30 2008-11-18 Cisco Technology, Inc. Methods and apparatus for simultaneously scheduling multiple priorities of packets
KR100713435B1 (ko) * 2002-05-03 2007-05-07 삼성전자주식회사 이동통신시스템에서 다중 데이터 전송률 서비스 제공 장치 및 방법
US7614071B2 (en) * 2003-10-10 2009-11-03 Microsoft Corporation Architecture for distributed sending of media data
WO2005099154A1 (en) * 2004-04-05 2005-10-20 Nokia Corporation Method to enable open loop antenna transmit diversity on channels having dedicated pilots
WO2006102746A1 (en) * 2005-03-30 2006-10-05 Nortel Networks Limited Methods and systems for transmission of orthogonal frequency division multiplexed symbols
US20070133695A1 (en) * 2005-12-09 2007-06-14 Kotzin Michael D Method and system for channel assignment of OFDM channels
US8243693B2 (en) * 2006-08-01 2012-08-14 Samsung Electronics Co., Ltd. Apparatus and method for broadcast pilot transmission in a wireless communication network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1136737A (zh) * 1995-03-11 1996-11-27 日本电气株式会社 具有预分配的外围站的时隙分配系统
US6711177B1 (en) * 1999-06-28 2004-03-23 Rockwell Collins, Inc. Method and apparatus for managing communication resources using frame fitting
US6885651B1 (en) * 2000-08-29 2005-04-26 Rockwell Collins Maintaining an adaptive broadcast channel using both transmitter directed and receiver directed broadcasts
CN1585316A (zh) * 2003-08-19 2005-02-23 北京三星通信技术研究有限公司 为mbms业务建立公共传输信道的方法
CN1642087A (zh) * 2004-01-13 2005-07-20 三星电子株式会社 基于广播/通信会聚执行传输和接收操作的系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1940060A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100009687A1 (en) * 2008-04-28 2010-01-14 Nokia Corporation System and method for enabling efficient mbms downlink radio resource re-use for other downlink traffic
EP2272264A1 (en) * 2008-04-28 2011-01-12 Nokia Corporation System and method for enabling efficient mbms downlink radio resource re-use for other downlink traffic
EP2272264A4 (en) * 2008-04-28 2014-05-14 Nokia Corp SYSTEM AND METHOD FOR EFFICIENT REUSE OF MBMS DOWNLINK RADIO RESOURCES FOR ANOTHER DOWNLINK TRAFFIC
WO2009135193A1 (en) * 2008-05-01 2009-11-05 Qualcomm Incorporated Method and apparatus for downlink data arrival
US8619684B2 (en) 2008-05-01 2013-12-31 Qualcomm Incorporated Method and apparatus for downlink data arrival
WO2009135372A1 (zh) * 2008-05-07 2009-11-12 中兴通讯股份有限公司 多播子帧配置方法及装置
CN101938712A (zh) * 2009-06-30 2011-01-05 中兴通讯股份有限公司 长期演进系统中多业务的复用方法与装置
CN101964946A (zh) * 2009-07-21 2011-02-02 中兴通讯股份有限公司 一种业务数据的接收方法及系统
US20220322309A1 (en) * 2021-04-01 2022-10-06 Qualcomm Incorporated Retransmission of semi-persistent scheduled group common downlink signaling
US11792813B2 (en) * 2021-04-01 2023-10-17 Qualcomm Incorporated Retransmission of semi-persistent scheduled group common downlink signaling
CN115361091A (zh) * 2022-07-15 2022-11-18 鹏城实验室 基于多用户叠加传输技术的下行混合广播单播传输方法
CN115361091B (zh) * 2022-07-15 2023-04-25 鹏城实验室 基于多用户叠加传输技术的下行混合广播单播传输方法

Also Published As

Publication number Publication date
EP2458758A1 (en) 2012-05-30
CN102594510B (zh) 2016-05-25
CN1941687A (zh) 2007-04-04
US8165052B2 (en) 2012-04-24
ES2452922T3 (es) 2014-04-03
CN101156342B (zh) 2012-03-21
EP1940060A4 (en) 2008-12-31
US20080175264A1 (en) 2008-07-24
CN102594510A (zh) 2012-07-18
PT1940060E (pt) 2012-06-25
CN101156342A (zh) 2008-04-02
EP2458758B1 (en) 2014-01-01
EP1940060A1 (en) 2008-07-02
EP1940060B1 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
WO2007036116A1 (en) A multiple method and system of broadcast service channel and unicast service channel
KR101000264B1 (ko) 공유된 시그널링 채널
US8737283B2 (en) Transmission device and transmission method
JP6037459B2 (ja) 資源割り当てのための方法およびシステム
US9246659B2 (en) Segment sensitive scheduling
KR100969737B1 (ko) 직교 주파수 분할 다중화에서 공유 시그널링 채널들을 위한자원 할당
JP5155403B2 (ja) 同じ無線リソースへの複数の未要求使用権サービス(ugs)ユーザの多重化
CN1701550A (zh) 在使用多路访问方案的通信系统中发送/接收数据的装置和方法
KR20050029081A (ko) 직교 주파수 분할 다중 접속 방식을 사용하는 이동 통신시스템에서 동적 자원 할당 시스템 및 방법
WO2007124675A1 (en) Method and apparatus for sharing radio resources in a wireless communications system
JP2009060611A (ja) 無線通信システム
WO2009021369A1 (fr) Procédé d'ajustement dynamique d'allocation de bloc de ressources sans fil sur la base des décalages
WO2007131419A1 (fr) Procédé et système de transmission d'un service d'émission multidestination
KR101085648B1 (ko) 무선 통신 시스템에서 채널 품질 정보를 전송하기 위한방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680011790.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006775235

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006775235

Country of ref document: EP