WO2007040563A2 - Nanostructured friction enhancement using fabricated microstructure - Google Patents

Nanostructured friction enhancement using fabricated microstructure Download PDF

Info

Publication number
WO2007040563A2
WO2007040563A2 PCT/US2005/042224 US2005042224W WO2007040563A2 WO 2007040563 A2 WO2007040563 A2 WO 2007040563A2 US 2005042224 W US2005042224 W US 2005042224W WO 2007040563 A2 WO2007040563 A2 WO 2007040563A2
Authority
WO
WIPO (PCT)
Prior art keywords
nano
fibers
substrate
length
contact surface
Prior art date
Application number
PCT/US2005/042224
Other languages
French (fr)
Other versions
WO2007040563A3 (en
Inventor
Ronald S. Fearing
Carmel Majidi
Richard Groff
Original Assignee
The Regents Of The University Of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Regents Of The University Of California filed Critical The Regents Of The University Of California
Publication of WO2007040563A2 publication Critical patent/WO2007040563A2/en
Publication of WO2007040563A3 publication Critical patent/WO2007040563A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/31Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive effect being based on a Gecko structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23907Pile or nap type surface or component
    • Y10T428/23957Particular shape or structure of pile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber

Definitions

  • This application generally relates to the fabrication and utilization of micron-scale structures. More particularly, this application relates to nanostructured friction enhancement using a fabricated nanostructure.
  • Biological nanohair adhesive systems found, for example, in geckos, feature setae (hairs) with a hierarchical branching structure terminating in small, flat plates, called spatulae. Gecko setae observed in nature are not found in a clumped state, i.e., stuck to one another. Adhesive nano-f ⁇ bers inspired by these biological examples have traditionally been designed to avoid clumping of the hairs. Previous work provides necessary conditions on hair geometry to avoid clumping, for example 1) under the assumption that a spatula at the end of the hair is capable of providing up to some fixed maximum force (see, Metin Sitti and Ronald S.
  • a fabricated microstructure comprises a substrate and a plurality of nano-fibers attached to the substrate.
  • the nano-fibers have an elasticity modulus E, an interfacial energy per unit length of contact w, a length L, a radius R, and are oriented at an angle ⁇ 0 relative to the substrate.
  • the length L of the nano-fibers is greater than 0.627 ⁇ o R 2 (E/w) 1/2 with ⁇ 0 in radians.
  • a method of forming a fabricated microstructure to adhere in shear to a contact surface comprises forming a substrate and forming a plurality of nano-fibers attached to the substrate.
  • the nano-fibers can have an elasticity modulus E, an interfacial energy per unit length of contact w, a length L, a radius R, and can be oriented at an angle ⁇ 0 relative to the substrate.
  • the length L of the nano-fibers can be greater than 0.627 ⁇ o R 2 (E/w) 1/2 with ⁇ 0 in radians.
  • a method of adhering in shear a fabricated microstructure to a contact surface is also described herein.
  • the method comprises obtaining a substrate having a plurality of nano- fibers attached to the substrate and placing the substrate on the contact surface.
  • the nano- fibers can have an elasticity modulus E, an interfacial energy per unit length of contact w, a length L, a radius R, and can be oriented at an angle ⁇ 0 relative to the substrate.
  • the length L of the nano-fibers can be greater than 0.627 ⁇ o R 2 (E/w) 1/2 with ⁇ 0 in radians.
  • Fig. 1 illustrates a fabricated microstructure array to adhere in shear to a contact surface.
  • Fig. 2 illustrates clumps of epoxy nano-fibers approximately arranged in a hex- lattice configuration.
  • Fig. 3 illustrates clumps of polyimide nano-fibers arranged in an irregular-lattice configuration.
  • Fig. 4 illustrates that when a nano-fiber adheres in shear to a contact surface, a portion of the length of the nano-fiber makes contact with the contact surface.
  • Fig. 5 illustrates an embodiment of the fabricated microstructure where the tip geometry of the nano-fiber is a T-shaped terminal.
  • Fig. 6 illustrates nano-fibers disposed on a substrate at a certain distance from each another.
  • Fig. 7 illustrates a clump of nano-fibers.
  • Fig. 8 illustrates theoretical and experimentally observed clump diameter as a function of nano-fiber length.
  • Fig. 9 A illustrates a square lattice configuration.
  • Fig. 9B illustrates a hexagonal lattice configuration.
  • Fig. 1OA illustrates the energies involved with joining a small clump in a square lattice configuration.
  • Fig. 1 OB illustrates the energies involved with joining a small clump in a hexagonal lattice configuration.
  • array 102 includes a plurality of nano-fibers 104 attached to a substrate 106.
  • nano-fibers 104 have an elasticity modulus E, an interfacial energy per unit length of contact w, a length L, and a radius R.
  • nano-fibers 104 are biased at an angle ⁇ 0 relative to substrate 106 (see, U.S. Patent Application Serial No. 10/197,763, titled ADHESIVE MICROSTRUCTURE AND METHOS OF FORMING SAME, filed on July 17, 2002, which is incorporated herein by reference in its entirety).
  • nano-fibers 104 have a high aspect ratio (ratio of length L to radius R).
  • length L of nano-fibers 104 is greater than 0.621 ⁇ o R 2 (E/w) m with ⁇ 0 in radians.
  • the high aspect ratio of nano-fibers 104 allows the ends of nano-fibers 104 to bend to come in intimate contact with contact surface 108 without storing enough elastic strain energy to cause the ends to spring off contact surface 108.
  • the ends of nano-fibers 104 can be pre-bent, for example by plastic deformation. In this manner, the ends of nano-fibers 104 with a high aspect ratio act as spatulas without requiring specially formed spatular structures.
  • nano-fibers 104 can provide adhesion with a ratio between shear force and normal force of 300 to 1.
  • nano-fibers 104 are disposed on substrate 106 with a high packing density.
  • nano-fibers 104 are disposed on substrate 106 with a linear spacing greater than 0.188(L/i?) 2 (wAE) 1/2 .
  • the linear spacing can be greater than 0A45(L/W) 2 (w/E) m , which allows formation of small clumps. Due to surface forces (van der Waals or capillary action), an individual nano-fiber 104 with a high aspect ratio, though able to support its own weight, may easily become attached to substrate 106.
  • the high packing density allows nano-fibers 104 to form clumps, which allows individual nano-fibers 104 to mutually support each other.
  • Preload forces can supply enough energy to break apart the clumps and allow nano-fibers 104 to come into contact with contact surface 108 to which array 102 is being applied. It should be recognized that there are design tradeoffs in the aspect ratio of nano-fibers 104 (higher ratios allow nano-fibers 104 to conform to surfaces better, but form bigger clumps) and clump size (bigger clumps keep more nano-fibers 104 supported, but require more energy to break apart to achieve contact with contact surface 108).
  • nano-fibers 104 are disposed on substrate 106 in a square-lattice configuration. As will be described in more detail below, disposing nano-fibers 104 on substrate 106 using a square-lattice configuration allows interaction between clumps of nano-fibers 104 and contact surface 108 to more easily break up the clumps and allow nano-fibers 104 to adhere to contact surface 108.
  • clumps of epoxy nano-fibers 104 are depicted that are 0.2 microns in diameter, 60 microns in length, with centers spaced 0.3 microns apart in an approximately hex-lattice configuration.
  • clumps of polyimide nano-fibers 104 are depicted that are 0.6 microns in diameter, 20 um in length, with centers approximately 1.8 microns in an irregular-lattice configuration.
  • nano-fiber 104 when a nano-fiber 104 adheres in shear to contact surface 108, a portion of the length of nano-fiber 104 makes contact with contact surface 108.
  • nano-fiber 104 must be sufficiently slender (high aspect ratio) in order for such a configuration to be mechanically stable under external loading.
  • nano-fiber 104 can be fabricated with a curve at the end to reduce elastic bending energy required to make side contact with substrate 106, and increase stability.
  • nano-fiber 104 when nano-fiber 104 adheres in shear to contact surface 108, nano-fiber 104 is oriented an angle Q 0 with respect to contact surface 108, and makes contact with contact surface 108 over a length L - a, such that a is the length of the unattached portion of nano-fiber 104.
  • the total potential energy of the system is:
  • ⁇ (s) is the slope of nano-fiber 104 at a distance s from contact
  • E is the elastic modulus
  • / is the area moment of inertia
  • w is the interfacial energy per unit length of contact.
  • the first term represents the increase in free surface energy
  • the second term is the increase in elastic strain energy
  • the final term follows from the work of the external shear load
  • V V2EAw (7)
  • the shear resistance is ⁇ W2EAw , where n is the number of nan ⁇ -fibers 104 in contact with contact surface 108. This assumes that nano-fibers 104 are being dragged parallel to their axis of contact. If nano-fibers 104 are pulled in a direction that is deflected from the contact axis by an angle a, then the necessary shear for peeling is better approximated by min ⁇ V2EAw , w/(l - cos ⁇ ) ⁇ .
  • the stiffness, EI/L 2 of an individual nano-fiber 104 is less than 2w/ ⁇ 0 2 in order for it to be able to make contact along its side during pull-off.
  • the critical buckling strength is ⁇ 2 EI/4L 2 , which implies that for compressive loads greater than ⁇ 2 w/2 ⁇ 0 2 , contact surface 108 will make direct contact with substrate 106.
  • w is typically ⁇ 1 nN
  • the frictional resistance is approximately ⁇ P, where ⁇ is the coefficient of friction and P is the compressive load.
  • is between 0.1 and 1.
  • array 102 Combining the two cases of zero and finite compressive load, array 102 follows Coulomb's law of friction:
  • V ⁇ P + V ad (8)
  • V a d is the sum of min ⁇ ⁇ /2EAW , w/(l - cos ⁇ ) ⁇ all nano-fibers 104 on array 102 in contact with contact surface 108.
  • P approaches zero, the value of V/P approaches infinity since V ad is finite.
  • nano-fibers 104 having length L and radius R are disposed on substrate 106, and are separated by a distance ⁇ from each other. Nano-fibers 104 can bind to each other rather than to contact surface 108.
  • the distance ⁇ that adjacent nano-fibers 104 must be separated in order to avoid binding can be expressed in terms of the design parameters E, I, w, and L:
  • nano-fibers 104 must be spaced at least a distance ( ⁇ o apart.
  • a suitable packing density can be achieved with nano- fibers 104 of radius 100 nm, whereas larger nano-fibers 104 with micron width would need to be exceedingly long for side contact with contact surface 108, and hence excessively sparse to avoid inter-fiber binding.
  • the first term is the elastic energy of the clump and the second term is the sum of the elastic energy in the detached nano-fibers 104.
  • the amount of nano-fibers 104 in each clump can be predicted for a specific geometry and spacing of nano-fibers 104. Assuming that nano-fibers 104 clump in the manner illustrated in Fig. 7:
  • Planar regular lattices can either be square (Fig. 9A) or hexagonal (Fig. 9B). With reference to Fig. 9A, in a square lattice, if the inter-fiber spacing is d s , then the density (nano- fibers 104 per unit area) will be:
  • inter-fiber spacing For equivalent densities, square packing will have smaller inter-fiber spacing than hexagonal packing. Specifically, choosing inter-fiber spacing of:
  • strain energies for example, if the strain energy is monotonic increasing and convex in d.
  • the total strain energy stored in the eight neighbors is:
  • the square packed system is more difficult to get into and easier to get out of the clumped configuration.
  • nano-fibers 104 are normally in the clumped state.
  • square packing will make it easier for interaction with contact surface 108 to break up the clumps and allow nano-fibers 104 to adhere to contact surface 108.
  • Fig. 1OA depicts the energies involved with joining a small clump in a square- lattice configuration.
  • Fig. 1OB depicts the energies involved with joining a small clump in a hexagonal-lattice configuration.
  • locations 1002 correspond to the location of the base of nano-fibers.
  • Locations 1004 correspond to the location of the tips of nano-fibers.
  • Arrows 1006 indicate the distance to join the clump.
  • Dots 1008 indicate contacts made with other nano-fibers.
  • the interfacial energy per unit length between a pair of contacting nano-fibers can be reasonably estimated by analogy to JKR contact for spheres.
  • JKR contact for spheres.
  • two parallel cylinders of radius R, Young's modulus E, and Poisson modulus ⁇ will make contact over a finite area even in the absence of an external load as long as a sufficient preload is applied and surface energy, ⁇ , is assumed.
  • the total energy, i.e., the sum of strain and surface energy, per unit length for two cylinders contacting with width 2c along their length, is given by:
  • the center-to-center spacing for nano-fibers 104 is A+2R. From this, the density of nano-fibers 104 in a square packed array is:
  • the density in a hexagonally packed array can be found in a similar fashion.
  • An upper bound on the predicted pulloff forces is given by assuming all nano-fibers 104 in array 102 engage with contact surface 108. This is a loose upper bound, since a small percentage of nano- fibers 104 generally engage.
  • the bound on normal pulloff force for array 102 is given by pT, where T is given by Equation 5, while the bound on shear pulloff force is pV, where V is given by equation 7.
  • the shear pulloff force of array 102 is:
  • the ratio of shear to normal remains the same as for the individual hair.

Abstract

Described herein are fabricated microstructures to adhere in shear to a contact surface. A fabricated microstructure comprises a substrate and a plurality of nano-fibers attached to the substrate. The nano-fibers have an elasticity modulus E, an interfacial energy per unit length of contact w, a length L, a radius R, and are oriented at an angle θo relative to the substrate. The length L of the nano-fibers is greater than 0.627θo R2(E/w)1/2 with θo in radians. Also described herein is a method of forming a fabricated microstructure to adhere in shear to a contact surface and a method of adhering in shear a fabricated microstructure to a contact surface.

Description

NANOSTRUCTURED FRICTION ENHANCEMENT USING FABRICATED
MICROSTRUCTURE
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit under 35 USC 119(e) of U.S. Provisional Application No. 60/629,799, filed November 19, 2004, which is incorporated in its entirety herein by reference.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT
[0002] This invention was made with Government support under Grant (contract) No. NMA 501-03-1-2017 awarded by the National Imagery and Mapping Agency and No. EEC- 0304730 awarded by the National Science Foundation. The Government has certain rights in this invention.
BACKGROUND
1. Field
[0003] This application generally relates to the fabrication and utilization of micron-scale structures. More particularly, this application relates to nanostructured friction enhancement using a fabricated nanostructure.
2. Related Art
[0004] There is an ongoing need for improved adhesives. Improved adhesives have applications ranging from everyday aspects of life (e.g., tape, fasteners, and toys) to high technology (e.g., removal of microscopic particles from semiconductor wafers, transporting fiber optic devices, and assembly of sub-mm mechanisms, particularly those including micro- fabricated components, or components that cannot tolerate grippers, adhesives, or vacuum manipulators).
[0005] Adhesive mechanisms in nature have been studied, but have not been fully understood or exploited. For example, Geckos are exceptional in their ability to rapidly climb up smooth vertical surfaces. The mechanism of adhesion used by Geckos, Anolis lizards, some skinks, and some insects, has been debated for nearly a century. SUMMARY
[0006] Biological nanohair adhesive systems, found, for example, in geckos, feature setae (hairs) with a hierarchical branching structure terminating in small, flat plates, called spatulae. Gecko setae observed in nature are not found in a clumped state, i.e., stuck to one another. Adhesive nano-fϊbers inspired by these biological examples have traditionally been designed to avoid clumping of the hairs. Previous work provides necessary conditions on hair geometry to avoid clumping, for example 1) under the assumption that a spatula at the end of the hair is capable of providing up to some fixed maximum force (see, Metin Sitti and Ronald S. Fearing, Synthetic Gecko Foot-Hair Micro/Nano-Structures for Future Wall- Climbing Robots, IEEE International Conference on Robotics and Automation, September 2002, which is incorporated herein by reference in its entirety) or 2) under the assumption that hairs stick along their length due to surface forces (see, A. Jagota and S. Bennison, Mechanics and Adhesion through a Fibrillar Microstructure, Integrative and Comparative Biology, 42:1140-1145, 2002, which is incorporated herein by reference in its entirety). Engineered nano-fiber systems (see, A.K. Geim, et al. Microfabricating adhesive mimicking gecko foot-hair, Nature Materials 2, pp461-463, June 1, 2003, which is incorporated herein by reference in its entirety) have expressly avoided configurations in which hairs clump, choosing instead to employ short, fat hairs. In Geim, for example, the hairs are 0.5μm in diameter, 2μm long with centers spaced 1.6μm apart.
[0007] Described herein are fabricated microstructures to adhere in shear to a contact surface. A fabricated microstructure comprises a substrate and a plurality of nano-fibers attached to the substrate. The nano-fibers have an elasticity modulus E, an interfacial energy per unit length of contact w, a length L, a radius R, and are oriented at an angle θ0 relative to the substrate. The length L of the nano-fibers is greater than 0.627θo R2(E/w)1/2 with θ0 in radians.
[0008] Also described herein is a method of forming a fabricated microstructure to adhere in shear to a contact surface. The method comprises forming a substrate and forming a plurality of nano-fibers attached to the substrate. The nano-fibers can have an elasticity modulus E, an interfacial energy per unit length of contact w, a length L, a radius R, and can be oriented at an angle θ0 relative to the substrate. The length L of the nano-fibers can be greater than 0.627θo R2(E/w)1/2 with θ0 in radians. [0009] Also described herein is a method of adhering in shear a fabricated microstructure to a contact surface. The method comprises obtaining a substrate having a plurality of nano- fibers attached to the substrate and placing the substrate on the contact surface. The nano- fibers can have an elasticity modulus E, an interfacial energy per unit length of contact w, a length L, a radius R, and can be oriented at an angle θ0 relative to the substrate. The length L of the nano-fibers can be greater than 0.627θo R2(E/w)1/2 with θ0 in radians.
DESCRIPTION OF DRAWING FIGURES
[0010] Fig. 1 illustrates a fabricated microstructure array to adhere in shear to a contact surface.
[0011] Fig. 2 illustrates clumps of epoxy nano-fibers approximately arranged in a hex- lattice configuration.
[0012] Fig. 3 illustrates clumps of polyimide nano-fibers arranged in an irregular-lattice configuration.
[0013] Fig. 4 illustrates that when a nano-fiber adheres in shear to a contact surface, a portion of the length of the nano-fiber makes contact with the contact surface.
[0014] Fig. 5 illustrates an embodiment of the fabricated microstructure where the tip geometry of the nano-fiber is a T-shaped terminal.
[0015] Fig. 6 illustrates nano-fibers disposed on a substrate at a certain distance from each another.
[0016] Fig. 7 illustrates a clump of nano-fibers.
[0017] Fig. 8 illustrates theoretical and experimentally observed clump diameter as a function of nano-fiber length.
[0018] Fig. 9 A illustrates a square lattice configuration.
[0019] Fig. 9B illustrates a hexagonal lattice configuration.
[0020] Fig. 1OA illustrates the energies involved with joining a small clump in a square lattice configuration. [0021] Fig. 1 OB illustrates the energies involved with joining a small clump in a hexagonal lattice configuration.
DETAILED DESCRIPTION
[0022] With reference to Fig. 1, in one exemplary embodiment, a fabricated microstructure array 102 to adhere in shear to a contact surface 108 is depicted. In the present exemplary embodiment, array 102 includes a plurality of nano-fibers 104 attached to a substrate 106. In the present exemplary embodiment, nano-fibers 104 have an elasticity modulus E, an interfacial energy per unit length of contact w, a length L, and a radius R. To improve adhesion to contact surface 108, nano-fibers 104 are biased at an angle θ0 relative to substrate 106 (see, U.S. Patent Application Serial No. 10/197,763, titled ADHESIVE MICROSTRUCTURE AND METHOS OF FORMING SAME, filed on July 17, 2002, which is incorporated herein by reference in its entirety).
[0023] In the present exemplary embodiment, nano-fibers 104 have a high aspect ratio (ratio of length L to radius R). In particular, length L of nano-fibers 104 is greater than 0.621 θ o R2(E/w)m with θ0 in radians. The high aspect ratio of nano-fibers 104 allows the ends of nano-fibers 104 to bend to come in intimate contact with contact surface 108 without storing enough elastic strain energy to cause the ends to spring off contact surface 108. To prevent spring back even further, the ends of nano-fibers 104 can be pre-bent, for example by plastic deformation. In this manner, the ends of nano-fibers 104 with a high aspect ratio act as spatulas without requiring specially formed spatular structures. In one exemplary embodiment, nano-fibers 104 can provide adhesion with a ratio between shear force and normal force of 300 to 1.
[0024] In the present exemplary embodiment, nano-fibers 104 are disposed on substrate 106 with a high packing density. In particular, nano-fibers 104 are disposed on substrate 106 with a linear spacing greater than 0.188(L/i?)2(wAE)1/2. Alternatively, the linear spacing can be greater than 0A45(L/W)2(w/E)m, which allows formation of small clumps. Due to surface forces (van der Waals or capillary action), an individual nano-fiber 104 with a high aspect ratio, though able to support its own weight, may easily become attached to substrate 106. The high packing density allows nano-fibers 104 to form clumps, which allows individual nano-fibers 104 to mutually support each other. Preload forces can supply enough energy to break apart the clumps and allow nano-fibers 104 to come into contact with contact surface 108 to which array 102 is being applied. It should be recognized that there are design tradeoffs in the aspect ratio of nano-fibers 104 (higher ratios allow nano-fibers 104 to conform to surfaces better, but form bigger clumps) and clump size (bigger clumps keep more nano-fibers 104 supported, but require more energy to break apart to achieve contact with contact surface 108).
[0025] In the present exemplary embodiment, nano-fibers 104 are disposed on substrate 106 in a square-lattice configuration. As will be described in more detail below, disposing nano-fibers 104 on substrate 106 using a square-lattice configuration allows interaction between clumps of nano-fibers 104 and contact surface 108 to more easily break up the clumps and allow nano-fibers 104 to adhere to contact surface 108.
[0026] For example, with reference to Fig. 2, clumps of epoxy nano-fibers 104 are depicted that are 0.2 microns in diameter, 60 microns in length, with centers spaced 0.3 microns apart in an approximately hex-lattice configuration. With reference to Fig. 3, clumps of polyimide nano-fibers 104 are depicted that are 0.6 microns in diameter, 20 um in length, with centers approximately 1.8 microns in an irregular-lattice configuration.
I. Adhesion Force of Nano-fibers
[0027] With reference to Fig. 4, when a nano-fiber 104 adheres in shear to contact surface 108, a portion of the length of nano-fiber 104 makes contact with contact surface 108. As demonstrated in the following analysis, nano-fiber 104 must be sufficiently slender (high aspect ratio) in order for such a configuration to be mechanically stable under external loading. In addition, nano-fiber 104 can be fabricated with a curve at the end to reduce elastic bending energy required to make side contact with substrate 106, and increase stability.
A. Peel Strength
[0028] As depicted in Fig. 4, when nano-fiber 104 adheres in shear to contact surface 108, nano-fiber 104 is oriented an angle Q0 with respect to contact surface 108, and makes contact with contact surface 108 over a length L - a, such that a is the length of the unattached portion of nano-fiber 104. For a normal pull-offload P acting at the base of nano- fibers 104, the total potential energy of the system is:
Ut =wa+ J— (θ')2ds- JPsin(θ)ds
2 (1)
0 where, θ(s) is the slope of nano-fiber 104 at a distance s from contact, E is the elastic modulus, /is the area moment of inertia, and w is the interfacial energy per unit length of contact.
[0029] At equilibrium, the total potential is minimum with respect to the configuration variable a and the function θ(s). Assuming that Q0 is sufficiently small such that sin θ & θ., equation (1) simplifies to:
υt «wa+ ||(ef -pe tas. (2)
The integral is minimized with respect to θ(s) if the integrand, defined as F(s, θ, θ'), satisfies the equation:
£- ^ = O . (3) δθ ds 9Θ1 v J
for the boundary conditions θ(0) = 0 and θ(a) = θ0. (See, Lanczos, C, The Variational Principles of Mechanics, New York: Dover, pg. 60 (1970), which is incorporated herein by reference in its entirety.) Solving the resulting ODE for θ(s) and substituting this into equation (2) gives an expression for Ut only in terms of the length a. Lastly, setting δϋtfda = 0, it follows that at equilibrium:
Figure imgf000007_0001
which is largest when a = θo Λ/2EI/w . Hence, the maximum allowable pull-off force (i.e., peel strength) is:
T
Figure imgf000007_0002
B. Shear Strength
[0030] If only a shear force, V, is applied, then bond failure is more likely to depend on strain energy stored in elongation of nano-fiber 104 rather than bending. If, under the presence of a constant V, the length of the unattached portion of nano-fiber 104 increases by an infinitesimally small amount δa, the potential energy changes by an amount:
Figure imgf000008_0001
where the first term represents the increase in free surface energy, the second term is the increase in elastic strain energy, and the final term follows from the work of the external shear load.
[0031] Since Ut is minimized at equilibrium, δUt = 0, which implies that:
V = V2EAw (7)
Approximating T ∞ (2/L)V2Elw and noting that/ = πR /4 and A = πR , where R is the radius of nano-fiber 104, the ratio between the shear and peel strength is found to be equal to the aspect ratio L/R: 1. This is a very large difference and for more slender nano-fibers 104 the ratio can be as high as 300:1. It should be noted that for tip geometries in which peeling is not permitted, such as a sphere or a T-shaped terminal (as depicted in Fig. 5), the shear to pull off ratio is greatly reduced to 0.1:1 or 1 :1, depending on the magnitude of the friction coefficient.
C. Enhanced Friction
[0032] With reference to Fig. 1, assuming that stresses are uniformly distributed among nano-fibers 104, the shear resistance is ιW2EAw , where n is the number of nanό-fibers 104 in contact with contact surface 108. This assumes that nano-fibers 104 are being dragged parallel to their axis of contact. If nano-fibers 104 are pulled in a direction that is deflected from the contact axis by an angle a, then the necessary shear for peeling is better approximated by min{ V2EAw , w/(l - cos α)}.
[0033] According to equation (1), the stiffness, EI/L2, of an individual nano-fiber 104 is less than 2w/θ0 2 in order for it to be able to make contact along its side during pull-off. The critical buckling strength, however, is π2EI/4L2, which implies that for compressive loads greater than π2w/2θ0 2, contact surface 108 will make direct contact with substrate 106. Noting that w is typically ~ 1 nN, under most finite compressive loads, sliding involves only contact surface 108 and substrate 106, in which case the frictional resistance is approximately μP, where μ is the coefficient of friction and P is the compressive load. Typically, μ is between 0.1 and 1.
[0034] Combining the two cases of zero and finite compressive load, array 102 follows Coulomb's law of friction:
V = μP + Vad (8)
where μ is between 0.1 and 1 and the shear strength Vad is the sum of min{ Λ/2EAW , w/(l - cos α)} all nano-fibers 104 on array 102 in contact with contact surface 108. As P approaches zero, the value of V/P approaches infinity since Vad is finite.
II. Clump Size Prediction
[0035] With reference to Fig. 6, nano-fibers 104 having length L and radius R are disposed on substrate 106, and are separated by a distance Δ from each other. Nano-fibers 104 can bind to each other rather than to contact surface 108. The distance Δ that adjacent nano-fibers 104 must be separated in order to avoid binding can be expressed in terms of the design parameters E, I, w, and L:
Figure imgf000009_0001
With reference again to Fig. 1, in the absence of any external load, it follows from equation (1), with P = O, that side contact with contact surface 108 is only possible if:
Figure imgf000009_0002
This implies, then, that for a fixed stiffness, EI, nano-fibers 104 must be spaced at least a distance (θo
Figure imgf000009_0003
apart. For I = πR /4, where R is the radius of nano-fibers 104, and assuming typical values of E = 1 GPa and w = 1 nN, the necessary spacing of nano-fibers 104 is on the order of i?2/(0.01 um). Hence, a suitable packing density can be achieved with nano- fibers 104 of radius 100 nm, whereas larger nano-fibers 104 with micron width would need to be exceedingly long for side contact with contact surface 108, and hence excessively sparse to avoid inter-fiber binding. [0036] Treating a clump of nano-fibers 104 as a single large nano-fiber 104, it follows from linear beam theory that the strain energy for a clump of n nano-fibers 104 under a shear load Vis Ueιj = V2L3ZOn2EI. If the outer ring of nano-fibers 104, which number m = Wn , detach from the clump, then the clump radius reduces to (Vn" -2)R , resulting in an area fraction of Ac = (Vn -2)2 /n for the entire array. The elastic energy, becomes:
Figure imgf000010_0001
where the first term is the elastic energy of the clump and the second term is the sum of the elastic energy in the detached nano-fibers 104. Note that it is assumed here that the shear load V is uniformly distributed among the nano-fibers 104. Defining Wadto be the net change in surface energy for each of the circumferential nano-fibers 104 that binds to contact surface 108 after detaching from the clump, the change in total energy is approximately AU = Ueι,2 - Ueij - mW By the principle of least work, AU= 0 at equilibrium. Solving for V:
Figure imgf000010_0002
This is the force needed to begin breaking the clump of nano-fibers 104. The necessary force increases with clump size, and so it is desirable for the clumps to be as small as possible.
[0037] In the case that clumping does occur, the amount of nano-fibers 104 in each clump can be predicted for a specific geometry and spacing of nano-fibers 104. Assuming that nano-fibers 104 clump in the manner illustrated in Fig. 7:
w « 0.89— J^- (13) p RA \ E
where wp is the width of the clump and γ is the surface energy of the material. This model tends to overestimate observed clump size, as shown in Fig. 8, but serves as a useful tool for nano-fiber 104 design.
III. Lattice Structures [0038] Planar regular lattices can either be square (Fig. 9A) or hexagonal (Fig. 9B). With reference to Fig. 9A, in a square lattice, if the inter-fiber spacing is ds, then the density (nano- fibers 104 per unit area) will be:
Figure imgf000011_0001
With reference to Fig. 9B, in a hexagonal lattice with inter-fiber spacing da, then the density will be:
3dh
It follows that for equivalent densities, square packing will have smaller inter-fiber spacing than hexagonal packing. Specifically, choosing inter-fiber spacing of:
Figure imgf000011_0002
provides equivalent densities for hexagonal and square lattices. Since adhesion forces are monotonic in the number of engaged nano-fibers 104, hexagonal packing would naively seem beneficial, since for a given inter-fiber spacing, more nano-fibers 104 can be packed into an area. Some analysis, however, demonstrates that square packing offers advantages over hexagonal packing with respect to the energy clumping.
[0039] In particular, with reference to Figs. 9A and 9B, when a neighboring nano-fiber 104 joins the clump, the strain energy in that nano-fiber 104 increases. This strain energy is monotonic in distance, and is written as Est(d), where d is the distance the tip must move. For
the present, consider Est (d) = — kd2 , though the argument holds for a more general class of
strain energies (for example, if the strain energy is monotonic increasing and convex in d). For the square lattice (Fig. 9A), the total strain energy stored in the eight neighbors is:
Esl,s = 4Esl{ds)+ 4Es,y2ds)
= 6kd;
while for the hexagonal lattice (Fig. 9B) the strain energy stored in the six neighbors is:
EsU, = 6Esl {dh)
(18)
= 2s[3kd * [0040] In this region for both hexagonal and square packing, the number of contacts with other nano-fibers 104 in this small clump is 12. For now, assume that each of these contacts provides the same reduction in adhesive potential energy, -Ead- (Actually, in the clumping model described herein, nano-fibers 104 that are farther away would have provided a smaller drop in adhesive potential energy, which would further benefit the square lattice configuration.) Thus, the total change in potential for square packing is:
E, = 4Esl{ds)+4Es,(42ds)~l2Ead
Figure imgf000012_0001
and for hexagonal packing is:
Eh = 6EΛ [dh)- \2E, ad
(20)
= 2-j3kd,2 -12E -'.ad
[0041] With the current form of Est(d) (or more generally, if Est(d) is is convex and monotonically non-decreasing in d, a quite natural assumption for an elastic beam, point forces at the end of the beam give a quadratic strain energy), then the potential energy of the clumped square packed system will be higher than the potential energy of the clumped hexagonal packed system: *Est{42ds)-6Esl{dh) „„
Figure imgf000012_0002
[0042] Thus, the square packed system is more difficult to get into and easier to get out of the clumped configuration. For densely packed nano-fibers 104, nano-fibers 104 are normally in the clumped state. With reference to FIG. 1 , square packing will make it easier for interaction with contact surface 108 to break up the clumps and allow nano-fibers 104 to adhere to contact surface 108.
[0043] Fig. 1OA depicts the energies involved with joining a small clump in a square- lattice configuration. Fig. 1OB depicts the energies involved with joining a small clump in a hexagonal-lattice configuration. In Figs. 1OA and 1OB, locations 1002 correspond to the location of the base of nano-fibers. Locations 1004 correspond to the location of the tips of nano-fibers. Arrows 1006 indicate the distance to join the clump. Dots 1008 indicate contacts made with other nano-fibers. IV. Interfacial Energy
[0044] The interfacial energy per unit length between a pair of contacting nano-fibers, herein referred to as w, can be reasonably estimated by analogy to JKR contact for spheres. (See K. L. Johnson, K. Kendall, A. D. Roberts, Surface Energy and the Contact of Elastic Solids, Proc. Roy. Soc. Lond. A, Vol. 324, pp. 301-313 (1971), which is incorporated herein by reference in its entirety.) Similarly, two parallel cylinders of radius R, Young's modulus E, and Poisson modulus υ, will make contact over a finite area even in the absence of an external load as long as a sufficient preload is applied and surface energy, γ, is assumed. The total energy, i.e., the sum of strain and surface energy, per unit length for two cylinders contacting with width 2c along their length, is given by:
Figure imgf000013_0001
Solving - — =0 for c and solving for the interfacial energy w gives: dc
Figure imgf000013_0002
V. Predicted Forces for Adhesive Arrays
[0045] With reference to Fig. 1, the center-to-center spacing for nano-fibers 104 is A+2R. From this, the density of nano-fibers 104 in a square packed array is:
The density in a hexagonally packed array can be found in a similar fashion. An upper bound on the predicted pulloff forces is given by assuming all nano-fibers 104 in array 102 engage with contact surface 108. This is a loose upper bound, since a small percentage of nano- fibers 104 generally engage. The bound on normal pulloff force for array 102 is given by pT, where T is given by Equation 5, while the bound on shear pulloff force is pV, where V is given by equation 7. Specifically, the shear pulloff force of array 102 is:
Figure imgf000013_0003
The ratio of shear to normal remains the same as for the individual hair.

Claims

CLAIMS We claim:
1. A fabricated microstructure to adhere in shear to a contact surface, the fabricated microstructure comprising: a substrate; and a plurality of nano-fibers attached to the substrate, wherein the nano-fibers have an elasticity modulus E, an interfacial energy per unit length of contact w, a length L, a radius R, and are oriented at an angle θ0 relative to the substrate, and wherein the length L of the nano-fibers is greater than 0.627θo R2(E/w)1/2 with θ0 in radians.
2. The fabricated microstructure of claim 1 , wherein the nano-fibers are disposed on the substrate with a linear spacing greater than 0.188(L/R)2(w/E)1/2.
3. The fabricated microstructure of claim 2, wherein the angle θ0 is between 0.35 and 1.22 radians, radius R is between 0.025 urn and 1 um.
4. The fabricated microstructure of claim 3, wherein the length L of the nano-fiber is greater than 5 microns.
5. The fabricated microstructure of claim 1, wherein the nano-fibers are disposed on the substrate with a linear spacing greater than 0.445 (L/W) (w/E) .
6. The fabricated microstructure of claim 1, wherein the plurality of nano-fibers are disposed on the substrate in a square-lattice configuration.
7. The fabricated microstructure of claim 1 , wherein a ratio of the length L to the radius R is equal to a ratio of shear force to normal pull-off force.
8. The fabricated microstructure of claim 7, wherein the ratio of the length L to the radius R is greater than 20 to 1.
9. The fabricated microstructure of claim I, wherein each nano-fiber includes a first end attached to the substrate and a free second end opposite the first end, and wherein a portion of the length of the nano-fibers contact the contact surface.
10. The fabricated microstructure of claim 1 , wherein, when the nano-fibers adhere in shear to the contact surface, the nano-fibers bend and adhere along a portion of their length.
11. The fabricated microstructure of claim 1, wherein the nano-fibers include T-shaped ends that contact the contact surface to resist peeling.
12. The fabricated microstructure of claim 1, wherein the nano-fibers are cylindrical.
13. A method of forming a fabricated microstructure to adhere in shear to a contact surface, comprising: forming a substrate; and forming a plurality of nano-fibers attached to the substrate, wherein the nano-fibers have an elasticity modulus E, an interfacial energy per unit length of contact w, a length L, a radius R, and are oriented at an angle θ0 relative to the substrate, and wherein the length L of the nano-fibers is greater than 0.627θo R2(E/w)1/2 with θ0 in radians.
14. The method of claim 13, wherein the nano-fibers are disposed on the substrate with a linear spacing greater than 0.188(L/R)2(w/E)1/2.
15. The method of claim 14, wherein the angle θ0 is between 20 and 70 degrees, radius R is between 0.025 um and 1 um.
16. The method of claim 15, wherein the length L of the nano-fiber is greater than 5 microns.
17. The method of claim 13, wherein the nano-fibers are disposed on the substrate with a linear spacing greater than 0.445(L/W)2(w/E)1/2.
18. The method of claim 13 , wherein the plurality of nano-fibers are disposed on the substrate in a square-lattice configuration.
19. The method of claim 13, wherein a ratio of the length L to the radius R is equal to a ratio of shear force to normal pull-off force.
20. A method of adhering in shear a fabricated microstructure to a contact surface, comprising: obtaining a a substrate having a plurality of nano-fibers attached to the substrate, wherein the nano-fibers have an elasticity modulus E, an interfacial energy per unit length of contact w, a length L, a radius R, and are oriented at an angle θ0 relative to the substrate, and wherein the length L of the nano-fibers is greater than 0.627θo R2(E/w)1/2 with θ0 in radians; and placing the substrate having the plurality of nano-fibers on the contact surface.
PCT/US2005/042224 2004-11-19 2005-11-17 Nanostructured friction enhancement using fabricated microstructure WO2007040563A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62979904P 2004-11-19 2004-11-19
US60/629,799 2004-11-19

Publications (2)

Publication Number Publication Date
WO2007040563A2 true WO2007040563A2 (en) 2007-04-12
WO2007040563A3 WO2007040563A3 (en) 2007-12-27

Family

ID=37906592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/042224 WO2007040563A2 (en) 2004-11-19 2005-11-17 Nanostructured friction enhancement using fabricated microstructure

Country Status (2)

Country Link
US (1) US7799423B2 (en)
WO (1) WO2007040563A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476982B2 (en) 2005-02-28 2009-01-13 Regents Of The University Of California Fabricated adhesive microstructures for making an electrical connection
US7709087B2 (en) 2005-11-18 2010-05-04 The Regents Of The University Of California Compliant base to increase contact for micro- or nano-fibers
US7828982B2 (en) 1999-12-20 2010-11-09 The Regents Of The University Of California Adhesive microstructure and method of forming same
US8309201B2 (en) 2006-08-23 2012-11-13 The Regents Of The University Of California Symmetric, spatular attachments for enhanced adhesion of micro- and nano-fibers
US8703032B2 (en) 2009-10-14 2014-04-22 Simon Fraser University Biomimetic dry adhesives and methods of production therefor
WO2016134062A1 (en) * 2015-02-17 2016-08-25 Lehigh University Controlling friction characteristics of resilient members using near-surface microstructures

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479318B2 (en) * 2003-09-08 2009-01-20 E.I. Du Pont De Nemours And Company Fibrillar microstructure and processes for the production thereof
WO2007062025A1 (en) * 2005-11-22 2007-05-31 Lehigh University Synthetic fibrillar structure and method of making thereof
US8535791B2 (en) * 2006-06-30 2013-09-17 The University Of Akron Aligned carbon nanotube-polymer materials, systems and methods
US8524092B2 (en) * 2006-12-14 2013-09-03 Carnegie Mellon University Dry adhesives and methods for making dry adhesives
WO2008076390A2 (en) * 2006-12-14 2008-06-26 Carnegie Mellon University Dry adhesives and methods for making dry adhesives
US8206631B1 (en) 2008-09-18 2012-06-26 Carnegie Mellon University Methods of making dry adhesives
KR101006547B1 (en) 2008-09-29 2011-01-07 서울대학교산학협력단 Method for fabricating nano-structure form
WO2010148322A1 (en) * 2009-06-19 2010-12-23 Under Armour, Inc. Nanoadhesion structures for sporting gear
US7951464B2 (en) * 2009-09-02 2011-05-31 General Electric Company Composite material with fiber alignment
US9574113B2 (en) 2010-10-21 2017-02-21 Alfred J. Crosby High capacity easy release extended use adhesive devices
US20130192992A1 (en) 2010-10-21 2013-08-01 Peter Mardilovich Adhesion-promoting surface
US8703267B2 (en) 2010-11-03 2014-04-22 Kimberly-Clark Worldwide, Inc. Synthetic gecko adhesive attachments
US8783634B2 (en) 2011-09-30 2014-07-22 Adam P. Summers Suction device
US8877072B2 (en) 2011-10-10 2014-11-04 Ranjana Sahai Three-dimensional fractal graduated-branching hierarchical structures and fabrication method thereof
EP2804919A4 (en) * 2012-01-19 2015-09-09 Univ Tulane Use of shear to incorporate tilt into the microstructure of reversible gecko-inspired adhesives
JP2015510530A (en) 2012-01-19 2015-04-09 ユニバーシテイ・オブ・マサチユセツツ Two-sided and multi-sided bonding equipment
WO2014123936A1 (en) 2013-02-06 2014-08-14 University Of Massachusetts Weight-bearing adhesives with adjustable angles
US9360029B2 (en) * 2013-03-01 2016-06-07 The Boeing Company Frictional Coupling
WO2014152485A1 (en) 2013-03-14 2014-09-25 University Of Masssachusetts Devices for application and load bearing and method of using the same
US9603419B2 (en) 2013-03-15 2017-03-28 University Of Massachusetts High capacity easy release extended use adhesive closure devices
US10155318B2 (en) * 2017-03-16 2018-12-18 Perception Robotics, Inc. Systems and methods for post-treatment of dry adhesive microstructures
KR102424216B1 (en) * 2017-05-03 2022-07-21 막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우. GRIPTING DEVICES AND METHOD OF MANUFACTURING GRIPING DEVICES
WO2019089960A1 (en) * 2017-11-01 2019-05-09 Bvw Holding Ag Microstructured phase interfacial device
US11167426B2 (en) * 2019-06-18 2021-11-09 Flexiv Ltd. Robot with gripper and fibrillar, directional adhesive assembly
WO2021011255A1 (en) 2019-07-12 2021-01-21 Biovisics Medical, Inc. Ocular therapy modes and systems
CN114293315B (en) * 2022-01-05 2023-02-17 江南大学 Preparation method of composite material with lattice structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372364B1 (en) * 1999-08-18 2002-04-16 Microcoating Technologies, Inc. Nanostructure coatings
US20030082371A1 (en) * 1993-10-29 2003-05-01 3M Innovative Properties Company Pressure-sensitive adhesives having microstructured surfaces
US20030124312A1 (en) * 2002-01-02 2003-07-03 Kellar Autumn Adhesive microstructure and method of forming same
US20030208888A1 (en) * 2002-05-13 2003-11-13 Fearing Ronald S. Adhesive microstructure and method of forming same

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545831A (en) * 1982-09-13 1985-10-08 The Mount Sinai School Of Medicine Method for transferring a thin tissue section
US4704745A (en) * 1987-02-09 1987-11-10 Reaver Phyllis E Garment fastener attachment for brassiere strap
US5077870A (en) * 1990-09-21 1992-01-07 Minnesota Mining And Manufacturing Company Mushroom-type hook strip for a mechanical fastener
US5264722A (en) * 1992-06-12 1993-11-23 The United States Of America As Represented By The Secretary Of The Navy Nanochannel glass matrix used in making mesoscopic structures
US5392498A (en) * 1992-12-10 1995-02-28 The Proctor & Gamble Company Non-abrasive skin friendly mechanical fastening system
EP1157743B1 (en) * 1993-10-28 2009-03-11 Houston Advanced Research Center Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions
US5843657A (en) * 1994-03-01 1998-12-01 The United States Of America As Represented By The Department Of Health And Human Services Isolation of cellular material under microscopic visualization
JPH09121908A (en) * 1995-11-06 1997-05-13 Ykk Corp Hook-and-loop fastener and its manufacturing method and device
US5959200A (en) * 1997-08-27 1999-09-28 The Board Of Trustees Of The Leland Stanford Junior University Micromachined cantilever structure providing for independent multidimensional force sensing using high aspect ratio beams
US6159596A (en) 1997-12-23 2000-12-12 3M Innovative Properties Company Self mating adhesive fastener element articles including a self mating adhesive fastener element and methods for producing and using
US6713151B1 (en) * 1998-06-24 2004-03-30 Honeywell International Inc. Compliant fibrous thermal interface
US6055680A (en) * 1998-10-21 2000-05-02 Tolbert; Gerard C. Collapsible toilet plunger
US7132161B2 (en) * 1999-06-14 2006-11-07 Energy Science Laboratories, Inc. Fiber adhesive material
US20040009353A1 (en) * 1999-06-14 2004-01-15 Knowles Timothy R. PCM/aligned fiber composite thermal interface
US6913075B1 (en) * 1999-06-14 2005-07-05 Energy Science Laboratories, Inc. Dendritic fiber material
US6737160B1 (en) * 1999-12-20 2004-05-18 The Regents Of The University Of California Adhesive microstructure and method of forming same
US6393327B1 (en) * 2000-08-09 2002-05-21 The United States Of America As Represented By The Secretary Of The Navy Microelectronic stimulator array
JP2002307398A (en) 2001-04-18 2002-10-23 Mitsui Chemicals Inc Method for manufacturing micro structure
US6722026B1 (en) * 2001-09-25 2004-04-20 Kla-Tencor Corporation Apparatus and method for removably adhering a semiconductor substrate to a substrate support
US7294397B2 (en) * 2002-05-29 2007-11-13 E.I. Du Pont De Nemors And Company Fibrillar microstructure for conformal contact and adhesion
US7056409B2 (en) * 2003-04-17 2006-06-06 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US7175723B2 (en) 2003-10-03 2007-02-13 The Regents Of The University Of California Structure having nano-fibers on annular curved surface, method of making same and method of using same to adhere to a surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030082371A1 (en) * 1993-10-29 2003-05-01 3M Innovative Properties Company Pressure-sensitive adhesives having microstructured surfaces
US6372364B1 (en) * 1999-08-18 2002-04-16 Microcoating Technologies, Inc. Nanostructure coatings
US20030124312A1 (en) * 2002-01-02 2003-07-03 Kellar Autumn Adhesive microstructure and method of forming same
US20030208888A1 (en) * 2002-05-13 2003-11-13 Fearing Ronald S. Adhesive microstructure and method of forming same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHAH ET AL.: 'Modeling and Design of Biomimetic Adhesives Inspired by Gecko Foot-Hairs', [Online] 20 March 2005, Retrieved from the Internet: <URL:http://www.web.archive.org/web/20050320224318> *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7828982B2 (en) 1999-12-20 2010-11-09 The Regents Of The University Of California Adhesive microstructure and method of forming same
US7476982B2 (en) 2005-02-28 2009-01-13 Regents Of The University Of California Fabricated adhesive microstructures for making an electrical connection
US8610290B2 (en) 2005-02-28 2013-12-17 Lewis & Clark College Fabricated adhesive microstructures for making an electrical connection
US7709087B2 (en) 2005-11-18 2010-05-04 The Regents Of The University Of California Compliant base to increase contact for micro- or nano-fibers
US8309201B2 (en) 2006-08-23 2012-11-13 The Regents Of The University Of California Symmetric, spatular attachments for enhanced adhesion of micro- and nano-fibers
US8703032B2 (en) 2009-10-14 2014-04-22 Simon Fraser University Biomimetic dry adhesives and methods of production therefor
US9963616B2 (en) 2009-10-14 2018-05-08 Simon Fraser University Biomimetic dry adhesives and methods of production therefor
WO2016134062A1 (en) * 2015-02-17 2016-08-25 Lehigh University Controlling friction characteristics of resilient members using near-surface microstructures

Also Published As

Publication number Publication date
US7799423B2 (en) 2010-09-21
US20060202355A1 (en) 2006-09-14
WO2007040563A3 (en) 2007-12-27

Similar Documents

Publication Publication Date Title
WO2007040563A2 (en) Nanostructured friction enhancement using fabricated microstructure
US6872439B2 (en) Adhesive microstructure and method of forming same
US10307941B2 (en) Methods of forming dry adhesive structures
US20080014465A1 (en) Actively switchable nano-structured adhesive
Li et al. Recent developments in gecko-inspired dry adhesive surfaces from fabrication to application
Brodoceanu et al. Hierarchical bioinspired adhesive surfaces—a review
US7709087B2 (en) Compliant base to increase contact for micro- or nano-fibers
Yao et al. Mechanics of robust and releasable adhesion in biology: Bottom–up designed hierarchical structures of gecko
US7074294B2 (en) Structures, systems and methods for joining articles and materials and uses therefor
Federle Why are so many adhesive pads hairy?
US20060005362A1 (en) Methods for modifying the surfaces of a solid and microstructured surfaces with encreased adherence produced with said methods
US9517610B2 (en) Grippers based on opposing van der Waals adhesive pads
Persson Biological adhesion for locomotion on rough surfaces: basic principles and a theorist's view
Han et al. A miniaturized wall-climbing segment robot inspired by caterpillar locomotion
Majidi et al. Clumping and packing of hair arrays manufactured by nanocasting
KR102424216B1 (en) GRIPTING DEVICES AND METHOD OF MANUFACTURING GRIPING DEVICES
Son et al. Dual adaptation of a flexible shape memory polymer adhesive
Brely et al. Numerical implementation of multiple peeling theory and its application to spider web anchorages
WO2008024885A2 (en) Symmetric, spatular attachments for enhanced adhesion of micro-and nano-fibers
Lanzetta et al. Gripping by controllable wet adhesion using a magnetorheological fluid
Liu et al. A strong and reversible adhesive fibrillar surface based on an advanced composite with high strength and strong adhesion
US8728602B2 (en) Multi-component adhesive system
Majumder et al. Bio-inspired adhesion and adhesives: controlling adhesion by micro-nano structuring of soft surfaces
Kligerman et al. Biomimetic wall-shaped hierarchical micro-structure: numerical simulation of sliding inception
JP2014107319A (en) Member for adhesion having controllable adhesive strength

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 05858562

Country of ref document: EP

Kind code of ref document: A2