WO2007068132A1 - Schlauchsystem für beatmungsgeräte - Google Patents

Schlauchsystem für beatmungsgeräte Download PDF

Info

Publication number
WO2007068132A1
WO2007068132A1 PCT/CH2006/000631 CH2006000631W WO2007068132A1 WO 2007068132 A1 WO2007068132 A1 WO 2007068132A1 CH 2006000631 W CH2006000631 W CH 2006000631W WO 2007068132 A1 WO2007068132 A1 WO 2007068132A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
patient
expiratory
ventilator
ventilation
Prior art date
Application number
PCT/CH2006/000631
Other languages
English (en)
French (fr)
Inventor
Josef Brunner
Original Assignee
Hamilton Medical Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamilton Medical Ag filed Critical Hamilton Medical Ag
Priority to US12/097,734 priority Critical patent/US8181649B2/en
Priority to EP06817710.4A priority patent/EP1960025B1/de
Priority to JP2008544725A priority patent/JP2009519058A/ja
Publication of WO2007068132A1 publication Critical patent/WO2007068132A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • A61M16/204Proportional used for inhalation control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • A61M16/205Proportional used for exhalation control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • A61M16/0833T- or Y-type connectors, e.g. Y-piece
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/105Filters
    • A61M16/106Filters in a path
    • A61M16/107Filters in a path in the inspiratory path
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0036Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the breathing tube and used in both inspiratory and expiratory phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/15Detection of leaks

Definitions

  • the invention relates to a tube system for ventilators, a ventilator with such a tube system, a method for operating a ventilator, and a method for mechanical ventilation of patients.
  • two-tube systems are used.
  • Dual-lumen systems have an inspiratory tube and expiratory tube connected to the patient mask via a Y-piece.
  • the inspiratory tube is then connected to an inspiratory filter protecting the ventilator from contamination.
  • a humidifying device is arranged between a device-side and a patient-side inspiratory tube piece.
  • a flow sensor is arranged on the patient side of the Y-piece and the tube is arranged via an intermediate tube.
  • the expiratory tube connected to the Y-piece leads the breathing air back to the ventilator and is optionally equipped with a water trap.
  • the ventilator has an inspiratory valve and an expiratory valve, both of which are actively actuated.
  • the expiratory valve is closed and the inspiratory valve is opened to provide positive pressure in the lungs and tubes.
  • the expiratory valve is opened and the inspiratory valve is closed to ensure the least possible low-resistance exhalation. Thanks to the active control of the inspiratory valve and expiratory valve, end-tidal pressure can also be dosed.
  • the Applicant switches a flow sensor according to US Pat. No. 4,083,245 between the Y-piece and the mask.
  • Single-limb breathing systems are used.
  • Single-tube systems feature a single breathing tube that connects to an inspiratory ventilator that protects the ventilator from contamination, bridging the distance between the ventilator and the patient, and a mask.
  • the system is often equipped with a pressure measuring tube, which can be used to measure the pressure of respiratory air or exhaled air at the expiratory valve in order to calculate the effective ventilation of the patient.
  • a pressure measuring tube which can be used to measure the pressure of respiratory air or exhaled air at the expiratory valve in order to calculate the effective ventilation of the patient.
  • the patient is ventilated by the ventilator through the breathing tube.
  • the expiratory valve When inhaling the patient, the expiratory valve is in an inspiratory position in which an overpressure existing in the tube enters the mask and the patient's lungs. An expiration opening is closed so that the desired overpressure of the respiratory air can build up in the mask.
  • Ventilation tube defines which hole has a selected cross-section. This leakage is formed at the patient end of the hose. The exhaled air escapes through this opening. The fresh respiratory air escapes partially through this opening. Therefore, in such single tube systems, more ventilation air must be treated and delivered through the tube than the patient needs.
  • the pressure in the hose is measured during this leakage, or a mathematical approximation is made on the basis of characteristics determined by the manufacturer and characterizing the hose system.
  • the pressure in the breathing tube is released by the ventilator for a short time during exhalation. This allows a low-resistance exhalation of the patient.
  • spent exhaled air flows into the breathing tube.
  • the ventilation pressure in the breathing tube is rebuilt. During the respite until the next
  • a three-arm, ie Y-shaped, ventilator-responsive ventilator breathing circuit having an active inspiratory valve and an active expiratory valve with an inspiratory hose arm for connection to the inspiratory valve of the ventilator, an expiratory hose arm for connection to the ventilator expiratory valve, and one Ventilation hose arm designed for connection to a mask or a tube. It also has a flow sensor which is arranged or arranged to measure inspiratory volume and expiratory volume on the tubing bag. According to the invention, a defined leakage is now formed in the breathing tube arm in this tube system and the flow sensor is arranged or arranged between this leakage and the mask or the tube.
  • the leakage allows the breathing tube arm with a large volume, i. to train with a large length. Therefore, a single tube can be attached to the mask or tube so that the patient feels as if he is connected to an open single tube system.
  • the patient does not have to put up with a disruptive near-patient exhalation valve or two hoses. Only the device-like, the hose system is divided into the inspiratory hose and the Exspirationsschlaucharm.
  • Leakage has the advantage that the patient can breathe even if the device does not deliver ventilation air for some reason.
  • the patient can also defend himself against mechanical ventilation at any time.
  • the ventilation air then flows through the leakage.
  • the patient can exhale at any time, even with the exhalation valve closed.
  • These patient freedoms reduce the tightness of mechanical ventilation. Thanks to the leakage, the breathing tube is flushed before each inspiratory phase.
  • the exhaled air in the breathing tube is squeezed out by the leakage. Until the ventilation pressure is reached, with which the patient's lungs are filled, practically the entire contents of the breathing tube has flowed out of it.
  • the lungs are therefore filled with fresh respiratory air.
  • Modern ventilators have algorithms that allow the amount of air to be delivered, the pressure to be delivered, and the respiratory rate based on the flow sensor measurements. Parameter can be calculated. Losses due to indeterminate and / or defined leakage are compensated by the ventilator.
  • connection of the open breathing tube via an expiratory hose arm to an exhalation valve allows a rapid, low-resistance exhalation.
  • the hose system is composed.
  • the components are then an inspiratory tube or inspiratory tube set, an expiratory tube or expiratory tube set, a Y-piece, a breathing tube or breathing tube set of an open one-tube system and the flow sensor. If necessary, belongs Connection hose between flow sensor and mask or tube to the hose system. Under certain circumstances, the mask or the tube belongs to the tube system.
  • the flow sensor advantageously consists of a housing which has a gas inlet nozzle and a gas outlet nozzle, in which the interior of the housing between the inlet nozzle and the outlet nozzle is divided by an aperture diaphragm into two zones. In each of these zones there is a pressure measuring device or a connection to a pressure measuring device.
  • the diaphragm diaphragm is advantageously made of an elastic material. In her an opening and with the diaphragm diaphragm integrally formed flap is present, which corresponds in shape and size of the opening and is hingedly connected to the diaphragm diaphragm.
  • the edge of the opening is advantageously divergent away from the hinge-like connection, has a change in direction at a distance from the hinge-like connection in order to form a location of least width of the opening with respect to the hinge-like connection.
  • the flap is expediently formed pivotable about the hinge-like connection and is pivotable at high gas flow in front of an opening into the outflow-side zone pressure measuring opening.
  • the single flap has elasticity and the single port has a shape which ensures that the resistance of the port is constant over a large flow rate range.
  • a ventilator suitable for invasive ventilation has an active inspiratory valve, usually an active expiratory valve, and requires a three-arm tubing system to connect the inspiratory valve, patient, and expiratory valve in Y-shape. It is known to equip such tube systems with a near-patient flow sensor.
  • a ventilator with a hose system is now characterized by the fact that a defined leakage is present in a ventilation hose arm directed toward the patient, and the flow sensor is arranged between the leakage and a mask or a tube. The advantages of this leakage are described above.
  • the ventilator is operated accordingly new.
  • the ventilation air is in a known manner via an actively controlled inspiratory valve and an inspiratory tube a breathing tube and a patient side Ventilation mask or a tube zugespiesen.
  • the exhaled air is at least partially discharged in a likewise known manner via the breathing tube, an expiratory tube and an actively controlled expiratory valve.
  • the respiratory rate and the respiratory volume are monitored by means of a patient-side flow sensor. Ventilation pressure, end expiratory pressure, ventilation rate and volume of ventilation air are controlled, among other things, based on the parameters supplied by the flow sensor. With this regulation, possibly existing leaks in the tube system are quantitatively determined by means of a flow measurement in the ventilator and the flow measurement by means of the patient-side flow sensor and compensated by the ventilator.
  • the respiratory rate, the ventilation pressure, the end-expiratory pressure and the ventilation volume are monitored in a known manner with the aid of a patient-side flow sensor.
  • the inspiration valve and the expiration valve Based on the parameters determined by the flow sensor and with the aid of the gas mixer, the inspiration valve and the expiration valve, the ventilation pressure, the ventilation volume and the end-expiratory pressure are regulated in accordance with the patient. Any existing leaks are compensated by actively controlling the gas mixer, inspiratory valve and expiratory valve.
  • Fig. 1 shows schematically the known prior art with respect
  • FIG. 2 shows schematically the known prior art with respect to open
  • Fig. 3 shows schematically the prior art with respect to flow sensor.
  • Fig. 4 shows schematically the tube system according to the invention.
  • the known two-hose system shown in FIG. 1 is suitable and designed for invasive ventilation.
  • This two-hose system is therefore to be connected to a respirator 13, which is suitable for invasive ventilation.
  • a respirator 13 which is suitable for invasive ventilation.
  • Such an invasive ventilator 13 has two actively controlled valves, namely the inspiratory valve (not shown, since it is located inside the device) and the expiratory valve 29.
  • Connected expiratory tube set 27 are connected at their ends remote from the ventilator 13 to a Y-piece 21.
  • the Y-piece 21 holds the two tubes 17 and 27 together and connects them to a tube 25 leading to the patient.
  • a flow sensor 23 is arranged on the side of the Y-piece.
  • the flow sensor 23 is connected to the ventilator 13 via two air lines 31, 33.
  • In the hose sets 17 and 27 accessories may be plugged.
  • a humidifier 19 is connected at the inspiratory tube 17 at the inspiratory tube 17.
  • a water trap 35 is provided in the expiratory tube 27.
  • the breathing air of the patient flows only within the connecting tube 25 and the flow sensor 23 in both directions.
  • the content of the connecting tube 25 and the flow sensor 23 must therefore be included as a serial dead space in a calculation of the necessary volume of breath.
  • Ventilation tubes 37 are used for open single tube systems.
  • Such a known respiratory tube 37 (FIG. 2) is flowed through over its entire length in both directions by the respiratory air. So that this breathing tube 37 does not form a very large serial dead space, it has a leakage 39.
  • the leakage flows during exhalation and during the breathing space after exhaling, namely, until the necessary ventilation pressure is rebuilt, virtually all of the exhausted breathing air. From the leakage 39, however, also a part of the fresh respiratory air flows out. It is important in the installation of the breathing tube 37 between the patient and the ventilator to make sure that the leakage is close to the patient in order to keep the serial dead space as small as possible.
  • the leaking end 41 of the Ventilation hose 37 is therefore to be connected to the ventilator, the leak-tight end 43 is to be connected directly or via a Wegsschlaueh 25 to a mask.
  • Such open ventilation systems have hitherto been used only for non-invasive mask ventilation. It has hitherto seemed impossible to connect a hose of a single-hose system to a device for a two-hose system.
  • FIG. 3 shows a schematic section through the known flow sensor 23.
  • the flow sensor 23 has an inlet port 45, a first chamber 46, a second chamber 47 and an outlet port in a housing.
  • the first and second chambers 46, 47 are separated by a diaphragm 49.
  • This diaphragm 49 has an aperture and a flap 50 which fills the aperture.
  • the flap 50 is pivotable like a swing door so as to fit into one or the other chamber depending on which direction the air flow is directed.
  • the flow sensor 23 is symmetrical so that it can measure in both directions the pressure drop which arises as a result of the flow of breathing air through the opening.
  • the pressures in the chambers are supplied via the air hoses 31, 33 to the ventilator and measured in the ventilator. Due to this pressure drop, the ventilator can calculate the pressure conditions in the breathing air and the ventilation volume. These calculations are very meaningful regardless of how large a leakage between the flow sensor and the ventilator 13 is.
  • FIG. 4 shows the hose system 11 according to the invention.
  • the components are already known. However, the composition is new and has significant advantages.
  • the inspiratory tube 17 and the expiratory tube 27 are short pieces of tubing, as used for example in the tube system 10 according to Figure 1 between the filter 15 and the humidifier 19. Their length must only allow both hoses to be connected to the ventilator with one end. In this area between respirator 13 and Y-piece 21 and a humidifier 19 may be provided.
  • the Y-piece, which brings these two device-side tubes 17, 27 together and connects with the breathing tube 37 may be identical to the previously known Y-piece.
  • the subsequent breathing tube 37 is a tube according to FIG. 2 and also known. Also known are the flow sensor 23, the patient side on
  • Respiratory tube 37 is arranged.
  • the combination according to the invention of known respiratory tube components is therefore characterized in that a Y-shaped tube system is formed which has two preferably short arms 17, 17 which can be connected to an invasive ventilator 13.
  • the third arm is a long breathing tube 37 with a patient defined, defined leakage 39.
  • a flow sensor 23 and conveniently a connecting tube 25 is connected to the breathing tube.
  • a mask 57 At the connecting tube 25, a mask 57, but in some cases also a tube may be arranged.
  • a filter 15 may be provided. This filter may be provided between the device 13 and the inspiratory tube 17.
  • This hose system 11 has decisive advantages over the known hose systems:
  • a device designed for invasive ventilation with this inventive tube system can also be used for non-invasive ventilation.
  • the tubing system is minimal in weight and disability for the patient.
  • the tubing system provides maximum freedom of movement, freedom from breathing, safety in the event of errors, and minimal
  • the defined leak (39) does not have to be measured with the help of a maneuver because the proximal flow sensor (23) measures the actually delivered ventilation volume and automatically compensates for the leakage in the hose system.
  • a calibration of the flow sensor can be done in a conventional manner, during the calibration maneuver the leakage, e.g. with a finger pressed on the opening, must be closed.

Abstract

Die Erfindung betrifft ein dreiarmiges Schlauchsystem (11) für ein für invasive Beatmung geeignetes Beatmungsgerät (13). Ein solches Beatmungsgerät weist ein aktives Inspirationsventil und ein aktives Exspirationsventil (29) auf. Das Schlauchsystem (11) weist einen Inspirationsschlaucharm (17), einen Exspirationsschlaucharm (27) und einen Beatmungsschlaucharm (37) zum Anschluss an eine Maske (57), sowie einen Flusssensor (23) auf. Erfindungsgemäss ist im Beatmungsschlauch (37) eine definierte Leckage (39) ausgebildet und der Flusssensor (23) ist zwischen Leckage (39) und Maske (57) angeordnet. Die Erfindung betrifft weiter ein Beatmungsgerät mit einem solchen Schlauchsystem und ein Verfahren zum Betreiben eines Beatmungsgeräts.

Description

Schlauchsystem für Beatmungsgeräte
Beschreibung:
Gebiet der Erfindung
Die Erfindung betrifft ein Schlauchsystem für Beatmungsgeräte, ein Beatmungsgerät mit einem solchen Schlauchsystem, ein Verfahren zum Betreiben eines Beatmungsgeräts, sowie ein Verfahren zum mechanischen Beatmen von Patienten.
Stand der Technik
Für invasive mechanische Beatmung werden Zweischlauchsysteme verwendet.
Zweischlauchsysteme besitzen einen Inspirationsschlauch und einen Exspirationsschlauch, die über ein Y-Stück an die Patientenmaske angeschlossen sind. Der Inspirationsschlauch ist anschliessend an einen das Beatmungsgerät vor Kontamination schützenden Inspirationsfilter angeschlossen. Zwischen einem geräteseitigen und einem patientenseitigen Inspirationsschlauchstück ist gegebenenfalls ein Befeuchtungsgerät angeordnet. Patientenseitig des Y-Stücks ist gegebenenfalls ein Flusssensor und über einen Zwischenschlauch der Tubus angeordnet.
Der an das Y-Stück anschliessende Exspirationsschlauch fuhrt die Atemluft zurück zum Beatmungsgerät, und ist gegebenenfalls mit einer Wasserfalle ausgerüstet. Das
Beatmungsgerät besitzt ein Inspirationsventil und ein Exspirationsventil, welche beide aktiv angesteuert werden. Zum Einatmen wird das Exspirationsventil geschlossen und das Inspirationsventil geöffnet, um einen Überdruck in der Lunge und den Schläuchen zu erhalten. Beim Ausatmen wird das Exspirationsventil geöffnet und das Inspirationsventil geschlossen, um ein möglichst widerstandsarmes Ausatmen sicherzustellen. Dank der aktiven Steuerung von Inspirationsventil und Exspirationsventil kann auch ein endexspiratorischer Druck dosiert werden.
Um bei Zweischlauchsystemen das tatsächliche Beatmungsvolumen feststellen zu können und die Eigenaktivität des Patienten feststellen zu können schaltet die Anmelderin zwischen das Y-Stück und die Maske einen Flusssensor gemäss US-A-4,083,245. Für nicht-invasive mechanische Beatmung werden Einschlauch-Systeme (single limb breathing Systems) verwendet. Einschlauch-Systeme zeichnen sich aus durch einen einzigen Beatmungsschlauch, der an einen das Beatmungsgerät vor Kontamination schützenden Inspirationsfϊlter anschliesst, und der die Distanz zwischen Beatmungsgerät und Patient überbrückt, sowie eine Maske. Es gibt geschlossene und offene Einschlauchsysteme. Geschlossene Einschlauchsysteme besitzen ein aktives Exspirationsventil, das meist über einen Luftdruckschlauch durch das Beatmungsgerät gesteuert ist. Es sitzt patientenseitig im Beatmungsschlauch. Das System ist oft mit einem Druck-Messschlauch ausgerüstet, über den ein Druck der Beatmungsluft oder Ausatemluft beim Exspirationsventil gemessen werden kann, um die effektive Ventilation des Patienten berechnen zu können. Zwischen Exspirationsventil und Maske kann ein Zwischenschlauch vorhanden sein, damit das Exspirationsventil nicht direkt vor dem Gesicht des Patienten angeordnet ist. Der Patient wird vom Beatmungsgerät durch den Beatmungsschlauch hindurch beatmet. Beim Einatmen des Patienten ist das Exspirationsventil in einer Inspirationsstellung, in der ein im Schlauch vorhandener Überdruck in die Maske und die Patientenlunge gelangt. Eine Exspirationsöffhung ist geschlossen, damit in der Maske sich der gewünschte Überdruck der Beatmungsluft aufbauen kann. Beim Ausatmen ist das Exspirationsventil in einer Exspirationsstellung, in der eine Verbindung zwischen Schlauch und Maske verschlossen ist, aber die Ausatemluft mit möglichst geringem Widerstand durch die Exspirationsöffhung entweichen kann. Solche Einschlauchsysteme sind praktisch gleichwertig mit Zweischlauchsystemen. Sie unterscheiden sich von Zweischlauchsystemen praktisch lediglich darin, dass das Exspirationsventil patientennah angeordnet ist und daher aus dem Beatmungsgerät ausgelagert ist.
Solche Einschlauchsysteme haben den Nachteil, dass das an der Maske hängende Gewicht und die Gegenwart des patientenseitigen Exspirationsventils für den Patienten störend sind.
Um diesen Nachteil zu überwinden gibt es auch offene Einschlauchsysteme, die auf ein aktives Exspirationsventil verzichten. Der Beatmungsschlauch eines solchen offenen Systems hat eine vorgegebene Leckage. Diese Leckage ist durch ein Loch im
Beatmungsschlauch definiert, welches Loch einen gewählten Querschnitt aufweist. Diese Leckage ist beim patientenseitigen Ende des Schlauches ausgebildet. Durch diese Öffnung entweicht die Ausatemluft. Die frische Beatmungsluft entweicht teilweise auch durch diese Öffnung. Daher muss bei solchen Einschlauchsystemen mehr Beatmungsluft aufbereitet und durch den Schlauch gefördert werden, als der Patient benötigt. Um die notwendige Menge an Beatmungsluft berechnen zu können, wird bei dieser Leckage der Druck im Schlauch gemessen, oder es wird eine rechnerische Annäherung aufgrund von vom Hersteller ermittelten, das Schlauchsystem charakterisierenden Kenndaten gemacht. Diese offenen Einschlauchsysteme sind angenehm für den Patienten, denn der Patient hat lediglich einen einzigen Schlauch und die Maske auf sich. Er kann jederzeit ausatmen, selbst gegen den Druck des Beatmungsgeräts, und er kann jederzeit Einatmen, selbst wenn das Beatmungsgerät keine Beatmungsluft liefert.
Bei offenen Einschlauchsystemen wird beim Ausatmen der Druck im Beatmungsschlauch durch das Beatmungsgerät kurzfristig abgelassen. Damit wird ein widerstandsarmes Ausatmen des Patienten ermöglicht. Dabei strömt verbrauchte Ausatemluft in den Beatmungsschlauch. Kurz vor Abschluss der Exspirationszeit wird der Beatmungsdruck im Beatmungsschlauch wieder aufgebaut. Während der Atempause bis zur nächsten
Inspiration wird dadurch die im Schlauch vorhandene Ausatemluft durch die Leckage hinaus gepresst und so der Schlauch gespült.
Bei einem Wechsel von invasiver zu nicht-invasiver Beatmung wird in der Regel daher von einem Zweischlauchsystem auf ein offenes oder geschlossenes Einschlauchsystem umgestellt werden, um den Patienten vom schweren Zweischlauchsystem zu entlasten. Da Beatmungsgeräte für invasive Beatmung aber darauf angewiesen sind, dass der Exspirationsschlauch am Exspirationsventil angeschlossen ist, um den Beatmungsdruck im Schlauch und der Lunge kontrollieren zu können, ist es bisher erforderlich, mit dem Schlauchsystem auch das Beatmungsgerät zu wechseln.
Aufgabe der Erfindung
Es ist daher die Aufgabe der vorliegenden Erfindung, zu ermöglichen, ein Beatmungsgerät, das für die invasive Beatmung mit einem aktiven Inspirationsventil und einem aktiven Exspirationsventil ausgerüstet ist, zur nicht-invasiven Beatmung mit einem für den Patienten angenehm leichten Schlauchsystem, insbesondere einem handelsüblichen Schlauch eines Einschlauchsystems zu verwenden.
Lösung der Aufgabe
Diese Aufgabe wird erfindungsgemäss gelöst durch die Merkmale des Anspruchs 1.
Demgemäss ist ein dreiarmiges, d.h. Y-förmig ausgebildetes Schlauchsystem für ein für invasive Beatmung geeignetes Beatmungsgerät, das ein aktives Inspirationsventil und ein aktives Exspirationsventil aufweist, mit einem Inspirationsschlaucharm zum Anschliessen an das Inspirationsventil des Beatmungsgeräts, einem Exspirationsschlaucharm zum Anschliessen an das Exspirationsventil des Beatmungsgeräts, und einem Beatmungsschlaucharm zum Anschluss an eine Maske oder einen Tubus ausgebildet. Es weist zudem einen Flusssensor auf, der zum Messen des Inspirationsvolumens und des Exspirationsvolumens am Beätmungsschlaucharrn angeordnet oder anzuordnen ist. Erfmdungsgemäss ist nun bei diesem Schlauchsystem im Beatmungsschlaucharm eine definierte Leckage ausgebildet und der Flusssensor zwischen dieser Leckage und der Maske oder dem Tubus angeordnet oder anzuordnen.
Die Leckage ermöglicht den Beatmungsschlaucharm mit einem grossen Volumen, d.h. mit einer grossen Länge auszubilden. Daher kann ein einziger Schlauch an die Maske oder den Tubus angeschlossen werden, so dass sich der Patient fühlt, als wäre er an einem offenen Einschlauchsystem angeschlossen. Der Patient muss kein störendes patientennahes Exspirationsventil und keine zwei Schläuche in Kauf nehmen. Lediglich gerätenahe ist das Schlauchsystem in den Inspirationsschlaucharm und den Exspirationsschlaucharm aufgeteilt.
Die Leckage hat den Vorteil, dass der Patient auch atmen kann, falls das Gerät aus irgendeinem Grund keine Beatmungsluft liefert. Der Patient kann auch jederzeit sich gegen die mechanische Beatmung wehren. Die Beatmungsluft strömt dann einfach durch die Leckage. Der Patient kann auch jederzeit ausatmen, also auch bei geschlossenem Exspirationsventil. Diese Freiheiten des Patienten reduzieren das beengende Gefühl einer mechanischen Beatmung. Dank der Leckage wird der Beatmungsschlauch vor jeder Inspirationsphase gespült. Die im Beatmungsschlauch vorhandene Ausatemluft wird dabei durch die Leckage ausgepresst. Bis der Beatmungsdruck erreicht wird, mit welchem dem Patienten die Lunge gefüllt wird, ist praktisch der gesamte Inhalt des Beatmungsschlauchs aus diesem hinaus geströmt. Die Lunge wird daher mit frischer Beatmungsluft gefüllt.
Moderne Beatmungsgeräte besitzen Algorithmen, dank denen die zu liefernde Luftmenge, der zu liefernde Druck und die Atemfrequenz aufgrund der mit dem Flusssensor gemessenen. Parameter berechnet werden kann. Verluste durch eine unbestimmte und/oder die definierte Leckage werden durch das Beatmungsgerät kompensiert.
Der Anschluss des offenen Beatmungsschlauchs über einen Exspirationsschlaucharm an ein Exspirationsventil ermöglicht ein rasches, widerstandsarmes Ausatmen.
Zweckmässigerweise ist das Schlauchsystem zusammengesetzt. Die Bestandteile sind dann ein Inspirationsschlauch oder Inspirationsschlauchset, ein Exspirationsschlauch oder Exspirationsschlauchset, ein Y-Stück, ein Beatmungsschlauch oder Beatmungsschlauchset eines offenen Einschlauchsystems und der Flusssensor. Gegebenenfalls gehört ein Anschlussschlauch zwischen Flusssensor und Maske oder Tubus zum Schlauchsystem. Unter Umständen gehört auch die Maske oder der Tubus zum Schlauchsystem.
Der Flusssensor besteht vorteilhaft aus einem Gehäuse, das einen Gaseinlassstutzen und einen Gasauslassstutzen aufweist, bei dem der Innenraum des Gehäuses zwischen dem Einlassstutzen und dem Auslassstutzen durch eine Blendenmembran in zwei Zonen geteilt ist. In jeder dieser Zonen ist eine Druckmessvorrichtung oder ein Anschluss an eine Druckmessvorrichtung vorhanden. Die Blendenmembran besteht vorteilhaft aus einem elastischen Werkstoff. In ihr ist eine Öffnung und eine mit der Blendenmembran einstückig ausgebildete Klappe vorhanden, die in Form und Grosse der Öffnung entspricht und scharnierartig mit der Blendenmembrane verbunden ist. Der Rand der Öffnung verläuft vorteilhaft divergierend von der scharnierartigen Verbindung weg, weist in Abstand zur scharnierartigen Verbindung einen Richtungswechsel auf, um gegenüber der scharnierartigen Verbindung eine Stelle geringster Breite der Öffnung zu bilden. Die Klappe ist zweckmässigerweise um die scharnierartige Verbindung verschwenkbar ausgebildet und ist bei hohem Gasdurchsatz vor eine in die ausströmungsseitige Zone mündende Druckmessöffnung verschwenkbar.
Die einzige Klappe besitzt eine Elastizität und die einzige Öffnung besitzt eine Form, welche gewährleisten, dass der Widerstand der Öffnung über einen grossen Durchsatzbereich konstant ist.
Derartige Flusssensoren sind bekannt und werden durch die Anmelderin bei herkömmlichen Zweischlauchsystemen mit Erfolg eingesetzt.
Ein zur invasiven Beatmung geeignetes Beatmungsgerät besitzt ein aktives Inspirationsventil und üblicherweise ein aktives Exspirationsventil, und benötigt ein dreiarmiges Schlauchsystem zum Y-formigen Verbinden von Inspirationsventil, Patient und Exspirationsventil. Es ist bekannt, solche Schlauchsysteme mit einem patientennah anzuordnenden Flusssensor zu bestücken. Ein solches Beatmungsgerät mit Schlauchsystem zeichnet sich nun aber neu dadurch aus, dass in einem zum Patienten hin gerichteten Beatmungsschlaucharm eine definierte Leckage vorhanden ist, und der Flusssensor zwischen der Leckage und einer Maske, oder einem Tubus, angeordnet ist. Die Vorteile dieser Leckage sind oben beschrieben.
Das Beatmungsgerät wird entsprechend neuartig betrieben. Die Beatmungsluft wird in bekannte Weise über ein aktiv gesteuertes Inspirationsventil und einen Inspirationsschlauch einem Beatmungsschlauch und einer patientenseitigen Beatmungsmaske oder einem Tubus zugespiesen. Die Ausatemluft wird wenigstens teilweise in ebenfalls bekannter Weise über den Beatmungsschlauch, einen Exspirationsschlauch und ein aktiv gesteuertes Exspirationsventil abgelassen. Die Atemfrequenz und das Atemvolumen werden mittels eines patientenseitigen Flusssensors überwacht. Es werden Beatmungsdruclc, endexspiratorischer Druck, Beatmungsfrequenz und Volumen der Beatmungsluft unter anderem aufgrund der durch den Flusssensor gelieferten Parameter geregelt. Bei dieser Regelung werden im Schlauchsystem gegebenenfalls vorhandene Leckagen mit Hilfe einer Flussmessung im Beatmungsgerät und der Flussmessung mittels des patientenseitigen Flusssensors quantitativ bestimmt und durch das Beatmungsgerät kompensiert. Es ist indes neu, dass im Beatmungsschlauch eine definierte Leckage auf der vom Patienten abgewandten Seite des Flusssensors vorgesehen ist. Das mit einem Exspirationsventil ausgerüstete Beatmungsgerät presst bei dem erfϊndungsgemässen Verfahren in der Atempause zwischen dem Ende der Ausatemphase und dem Beginn der Einatemphase im Beatmungsschlauch vorhandenes Gas durch die Leckage aus dem Schlauchsystem hinaus.
Zum mechanischen Beatmen eines Patienten mit einem für invasive Beatmung geeigneten Beatmungsgerät wird in bekannter Weise mit Hilfe eines patientenseitigen Flusssensors die Atemfrequenz, der Beatmungsdruck, der endexspiratorische Druck und das Beatmungsvolumen überwacht. Aufgrund der vom Flusssensor ermittelten Parameter und mit Hilfe des Gasmischers, des Inspirationsventils und des Exspirationsventils werden der Beatmungsdruck, das Beatmungsvolumen und der endexspiratorischen Druck patientengerecht geregelt. Gegebenenfalls vorhandene Leckagen werden kompensiert, indem der Gasmischer, das Inspirationsventil und das Exspirationsventil aktiv gesteuert werden. Ist jedoch erfmdungsgemäss im Beatmungsschlaucharm auf der patientenabgewandten Seite des patientennahen Flusssensors eine definierte Leckage vorgesehen, wird die Ausatemluft teilweise durch diese Leckage ausgeblasen, bevor die Patientenlunge mit frischer Beatmungsluft gefüllt wird. Dies hat den Vorteil, dass ein bekanntes Einschlauchsystem mit einem für Zweischlauchsysteme konzipierten Beatmungsgerät verwendet werden kann, und der Patient daher ohne Gerätewechsel zwischen einer invasiven und einer nicht-invasiven Beatmung gewechselt werden kann.
Kurzbeschreibung der Figuren
Fig. 1 zeigt schematisch den bekannten Stand der Technik bezüglich
Zweischlauchsystemen für invasive Beatmungsgeräte. Fig. 2 zeigt schematisch den bekannten Stand der Technik bezüglich offenen
Einschlauchsystemen. Fig. 3 zeigt schematisch den Stand der Technik bezüglich Flusssensor. Fig. 4 zeigt schematisch das erfindungsgemässe Schlauchsystem.
Detailliert Beschreibung der in den Figuren dargestellten Ausfuhrungsbeispiele
Stand der Technik
Wie eingangs beschrieben gibt es in Stand der Technik Einschlauchsysteme und Zweischlauchsysteme. Das in Figur 1 dargestellte bekannte Zweischlauchsystem ist für invasive Beatmung geeignet und konzipiert. Dieses Zweischlauchsystem ist daher an einem Beatmungsgerät 13 anzuschliessen, das für die invasive Beatmung geeignet ist. Ein solches invasives Beatmungsgerät 13 hat zwei aktiv gesteuerte Ventile, nämlich das Inspirationsventil (nicht dargestellt, da es im Innern des Geräts angeordnet ist) und das Exspirationsventil 29. Ein an einem Geräteausgang über einen Filter 15 angeschlossenes Inspirationsschlauch-Set 17 und ein am Exspirationsventil 29 angeschlossenes Exspirationsschlauch-Set 27 sind an ihren vom Beatmungsgerät 13 abgewandten Enden an einem Y-Stück 21 angeschlossen. Das Y-Stück 21 fasst die beiden Schläuche 17 und 27 zusammen und verbindet sie mit einem zum Patienten führenden Schlauch 25. Patientenseitig am Y-Stück ist ein Flusssensor 23 angeordnet. Der Flusssensor 23 ist über zwei Luftleitungen 31,33 mit dem Beatmungsgerät 13 verbunden. In den Schlauch-Sets 17 und 27 können Zubehörgeräte zwischengesteckt sein. Am Inspirationsschlauch 17 ist zweckmässigerweise ein Befeuchtungsgerät 19 angeschlossen. Im Exspirationsschlauch 27 ist zweckmässigerweise eine Wasserfalle 35 vorgesehen. Die Atemluft des Patienten strömt lediglich innerhalb des Verbindungsschlauchs 25 und des Flusssensors 23 in beide Richtungen. Der Inhalt des Verbindungsschlauchs 25 und des Flusssensors 23 müssen daher als serieller Totraum in eine Berechnung des notwendigen Atemvolumens einfliessen.
Für offene Einschlauchsysteme werden Beatmungsschläuche 37 verwendet. Ein solcher bekannter Beatmungsschlauch 37 (Fig. 2) wird über seine gesamte Länge in beide Richtungen von der Atemluft durchströmt. Damit dieser Beatmungsschlauch 37 nicht einen sehr grossen seriellen Totraum bildet, besitzt er eine Leckage 39. Durch die Leckage strömt beim Ausatmen und während der Atempause nach dem Ausatmen, nämlich bis der notwendige Beatmungsdruck wieder aufgebaut ist, praktisch die gesamte verbrauchte Atemluft aus. Aus der Leckage 39 strömt indes auch ein Teil der frischen Beatmungsluft aus. Es ist bei der Einrichtung des Beatmungsschlauchs 37 zwischen dem Patienten und dem Beatmungsgerät wichtig darauf zu achten, dass die Leckage patientennah ist um den seriellen Totraum möglichst klein zu halten. Das leckageferne Ende 41 des Beatmungsschlauchs 37 ist daher an das Beatmungsgerät anzuschliessen, das leckagenahe Ende 43 ist direkt oder über einen Verbindungsschlaueh 25 an eine Maske anzuschliessen. Solche offenen Beatmungssysteme werden bisher lediglich für die nicht-invasive Maskenbeatmung eingesetzt. Es erschien bisher als unmöglich, einen Schlauch eines Einschlauchsystems an einem Gerät für ein Zweischlauchsystem anzuschliessen.
In Figur 3 ist ein schematischer Schnitt durch den bekannten Flusssensor 23 dargestellt. Der Flusssensor 23 besitzt einen Einlassstutzen 45, eine erste Kammer 46, eine zweite Kammer 47 und einen Auslassstutzen in einem Gehäuse. Die erste und die zweite Kammer 46,47 sind getrennt mittels einer Membrane 49. Diese Membrane 49 besitzt eine Öffnung und eine die Öffnung ausfüllende Klappe 50. Die Klappe 50 ist wie eine Pendeltüre verschwenkbar ausgebildet, so dass sie in die eine oder die andere Kammer hineinstehen kann, je nachdem, in welche Richtung der Atemluftfluss gerichtet ist. Der Flusssensor 23 ist symmetrisch ausgebildet, so dass er in beide Richtungen den Druckabfall messen kann, der in Folge des Durchströmens der Atemluft durch die Öffnung entsteht. Die Drücke in den Kammern werden über die Luftschläuche 31, 33 dem Beatmungsgerät zugeführt und im Beatmungsgerät gemessen. Aufgrund dieses Druckabfalls kann das Beatmungsgerät die Druckverhältnisse in der Atemluft und das Beatmungsvolumen berechnen. Diese Berechnungen sind praktisch unabhängig davon, wie gross eine Leckage zwischen dem Flusssensor und dem Beatmungsgerät 13 ist, sehr aussagekräftig.
Erfindungsgemässes Ausführungsbeispiel
In Figur 4 ist nun das erfindungsgemässe Schlauchsystem 11 dargestellt. Die Bestandteile sind jeweils bereits bekannt. Die Zusammensetzung ist jedoch neu und weist entscheidende Vorteile auf. Der Inspirationsschlauch 17 und der Exspirationsschlauch 27 sind kurze Schlauchstücke, wie sie beispielsweise im Schlauchsystem 10 gemäss Figur 1 zwischen dem Filter 15 und dem Befeuchtungsgerät 19 verwendet sind. Ihre Länge muss lediglich erlauben, dass beide Schläuche mit den einen Enden an das Beatmungsgerät anschlössen werden können. In diesem Bereich zwischen Beatmungsgerät 13 und Y-Stück 21 kann auch ein Befeuchtungsgerät 19 vorgesehen sein. Das Y-Stück, das diese beiden geräteseitigen Schläuche 17, 27 zusammenführt und mit dem Beatmungsschlauch 37 verbindet, kann identisch mit dem bisher bekannten Y-Stück sein. Der daran anschliessende Beatmungsschlauch 37 ist ein Schlauch gemäss Figur 2 und ebenfalls bekannt. Ebenso bekannt sind der Flusssensor 23, der patientenseitig am
Beatmungsschlauch 37 angeordnet ist. Die erfindungsgemässe Zusammenstellung bekannter Beatmungsschlauch-Komponenten zeichnet sich daher dadurch aus, dass ein Y- förmiges Schlauchsystem gebildet ist, das zwei vorzugsweise kurze Arme 17,27 aufweist, die an einem invasiven Beatmungsgerät 13 angeschlossen werden können. Der dritte Arm ist ein langer Beatmungsschlauch 37 mit einer patientenseitig vorgesehenen, definierten Leckage 39. Weiter ist ein Flusssensor 23 und zweckmässigerweise ein Verbindungsschlauch 25 an den Beatmungsschlauch angeschlossen. Am Verbindungsschlauch 25 kann eine Maske 57, in gewissen Fällen aber auch ein Tubus angeordnet sein.
Zum Schutz des Beatmungsgeräts kann ein Filter 15 vorgesehen sein. Dieser Filter kann zwischen dem Gerät 13 und dem Inspirationsschlauch 17 vorgesehen sein.
Dieses Schlauchsystem 11 hat gegenüber den bekannten Schlauchsystemen entscheidende Vorteile:
• Es kann ein für invasive Beatmung konzipiertes Gerät mit diesem erflndungsgemässen Schlauchsystem auch für nicht-invasive Beatmung verwendet werden.
• Beim Wechsel von invasiver zu nicht-invasiver Beatmung muss lediglich das Zweischlauchsystem mit dem Tubus gegen ein erfmdungsgemässes Y- Schlauchsystem mit einer Maske ausgetauscht werden.
• Beim Wechsel von nicht-invasiver zu invasiver Beatmung kann rasch gehandelt werden, da das Beatmungsgerät bereits für eine invasive Beatmung geeignet ist.
• Es können Standard-Komponenten verwendet werden.
• Bei nicht-invasiver Beatmung ist das Schlauchsystem minimal bezüglich Gewicht und Behinderung des Patienten.
• Bei nicht-invasiver Beatmung erlaubt das Schlauchsystem maximale Bewegungsfreiheit, Atemfreiheit, Sicherheit bei Fehlern, minimaler
Ausatemwiderstand, maximale Kontrolle durch patientennahe Überwachung.
• Das definierte Leck (39) muss nicht mit Hilfe eines Manövers gemessen werden, da der proximale Flusssensor (23) das tatsächlich abgegebene Beatmungsvolumen misst und die Leckage im Schlauchsystem automatisch kompensiert.
Eine Kalibrierung des Flusssensors kann in herkömmlicher Weise geschehen, wobei während dem Kalibrierungsmanöver die Leckage, z.B. mit einem auf die Öffnung gepressten Finger, verschlossen sein muss.

Claims

Patentansprüche:
1. Dreiarmiges Schlauchsystem (11) für ein für invasive Beatmung geeignetes Beatmungsgerät (13), welches Beatmungsgerät ein aktives Inspirationsventil und ein aktives Exspirationsventil (29) aufweist, welches Schlauchsystem (11) mit
- einem Inspirationsschlaucharm (17) zum Anschliessen an das Inspirationsventil des Beatmungsgeräts (13), und
- einem Exspirationsschlaucharm (27) zum Anschliessen an das Exspirationsventil (29) des Beatmungsgeräts (13), und
- einem Beatmungsschlaucharm (37) zum Anschluss an eine Maske (57) oder einen Tubus ausgebildet ist,
- sowie einen Flusssensor (23) aufweist, der zum Messen des Inspirationsvolumens und des Exspirationsvolumens am Beatmungsschlaucharm (37) anzuordnen ist,
dadurch gekennzeichnet,
- dass im Beatmungsschlaucharm (37) eine definierte Leckage (39) ausgebildet ist und
- dass der Flusssensor (23) zwischen Leckage (39) und Maske (57) oder Tubus angeordnet oder anzuordnen ist.
2. Schlauchsystem nach Anspruch 1, dadurch gekennzeichnet, dass das
Schlauchsystem (11) einen Inspirationsschlauch (17) oder ein Inspirationsschlauchset, einen Exspirationsschlauch (27) oder ein Exspirationsschlauchset, ein Y-Stück (21), einen Beatmungsschlauch (37) oder ein Beatmungsschlauchset eines offenen Einschlauchsystems, den Flusssensor (23), gegebenenfalls einen Verbindungsschlauch (25), und eine Maske (57) und/oder unter Umständen den Tubus umfasst.
3. Schlauchsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der
Flusssensor (23) aus einem Gehäuse besteht, das einen Gaseinlassstutzen (45) und einen Gasauslassstutzen (48) aufweist, der Innenraum des Gehäuses zwischen dem Einlassstutzen (45) und dem Auslassstutzen (48) durch eine Blendenmembran (49) in zwei Zonen (46,47) geteilt ist, und in jeder dieser Zonen eine Druckmessvorrichtung oder ein Anschluss (51,53) an eine Druckmessvorrichtung vorhanden ist.
4. Schlauchsystem nach Anspruch 3, dadurch gekennzeichnet, dass die
Blendenmembran (49) aus einem elastischen Werkstoff besteht, darin eine Öffnung ausgebildet ist und dass eine mit der Blendenmembran einstückig ausgebildete Klappe (50), die in Form und Grosse der Öffnung entspricht und scharnierartig mit der Blendenmembrane (49) verbunden ist.
5. Schlauchsystem nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Rand der Öffnung von der scharnierartigen Verbindung weg divergierend verläuft, in Abstand zur scharnierartigen Verbindung einen Richtungswechsel aufweist, um gegenüber der scharnierartigen Verbindung eine Stelle geringster Breite der Öffnung zu bilden.
6. Schlauchsystem nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die Klappe (50) um die scharnierartige Verbindung verschwenkbar ausgebildet ist und bei hohem Gasdurchsatz vor eine in die ausströmungsseitige Zone (47) mündende Druckmessöffnung (53) verschwenkbar ist.
7. Schlauchsystem nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass in der Blendenmembran (49) eine einzige Klappe (50) und eine einzige Öffnung ausgebildet ist.
8. Schlauchsystem nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die Formgebung und die Elastizität der Klappe (50) derart ausgelegt ist, dass der Widerstand der Öffnung über einen grossen Durchsatzbereich konstant ist.
9. Zur invasiven Beatmung geeignetes Beatmungsgerät (13) mit einem aktiven Exspirationsventil (29) und einem aktiven Inspirationsventil, und einem dreiarmigen Schlauchsystem (11) zum Verbinden von Inspirationsventil und Exspirationsventil (29) mit der Patientenmaske (57) oder dem Tubus , und mit einem patientennah anzuordnenden Flusssensor (23), dadurch gekennzeichnet, dass in einem zum Patienten hin gerichteten Beatmungsschlaucharm (37) eine definierte Leckage (39) vorhanden ist, und dass der Flusssensor (23) zwischen der Leckage (39) und der Maske (57) oder dem Tubus angeordnet ist.
10. Verfahren zum Betreiben eines Beatmungsgeräts (13), bei welchem mit dem Beatmungsgerät (13) Beatmungsluft über ein aktiv gesteuertes Inspirationsventil und einen Inspirationsschlauch (17) einem Beatmungsschlauch (37) und einer patientenseitigen Beatmungsmaske (57) oder einem Tubus zugespiesen wird, Ausatemluft über den Beatmungsschlauch (37), einen Exspirationsschlauch (27) und ein aktiv gesteuertes Exspirationsventil (29) abgelassen wird, die Atemfrequenz und das Atemvolumen mittels eines patientenseitigen Flusssensors (23) überwacht werden, und dabei Beatmungsdruck, endexspiratorischer Druck, Beatmungsfrequenz und Volumen der Beatmungsluft unter anderem aufgrund der durch den Flusssensor (23) gelieferten Parameter geregelt werden, wobei im Schlauchsystem (11) gegebenenfalls vorhandene Leckagen mit Hilfe einer Flussmengenmessung im Beatmungsgerät (13) und einer Flussmengenmessung mittels des patientenseitigen Flusssensors (23) quantitativ bestimmt und durch das Beatmungsgerät (13) kompensiert werden, dadurch gekennzeichnet, dass im Beatmungsschlauch (37) eine definierte Leckage (39) auf der vom Patienten abgewandten Seite des Flusssensors (23) vorgesehen ist, und dass das Beatmungsgerät (13) in der Atempause zwischen dem Ende der Ausatemphase und dem Beginn der Einatemphase im Beatmungsschlauchs (37) vorhandenes Gas durch die Leckage (39) hinauspresst.
11. Verfahren zum mechanischen Beatmen eines Patienten mit einem für invasive Beatmung geeigneten Beatmungsgerät (13), bei welchem Verfahren mit Hilfe eines patientenseitigen Flusssensors (23) die Atemfrequenz, der Beatmungsdruck, der endexspiratorischen Druck und das Beatmungsvolumen überwacht werden und aufgrund der vom Flusssensor (23) ermittelten Parameter und mit Hilfe des Gasmischers des Beatmungsgeräts (13), des Inspirationsventils und des Exspirationsventils (29) der Beatmungsdruck, das Beatmungsvolumen und der endexspiratorischen Druck patientengerecht geregelt werden, und gegebenenfalls vorhandene Leckagen kompensiert werden, indem der Gasmischer, das Inspirationsventil und das Exspirationsventil (29) aktiv gesteuert werden, dadurch gekennzeichnet, dass auf der patientenabgewandten Seite des patientennahen Flusssensors (23) im Beatmungsschlauch (37) eine definierte Leckage (39) vorhanden ist und die Ausatemluft teilweise durch diese Leckage (39) ausgeblasen wird.
12. Verwendung eines offenen Einzelschlauchsystems (37) zusammen mit einem Y- Stück (21), einem Inspirationsschlauch (17) und einem Exspirationsschlauch (27) an einem Beatmungsgerät (13) mit einem aktiv gesteuerten Inspirationsventil und einem aktiv gesteuerten Exspirationsventil (29).
13. Verwendung eines offenen Einzelschlauchsystems (37) gemäss Anspruch 12 zusammen mit einem Flusssensor (23), der patientennah am Einzelschlauchsystem (37) angeordnet ist.
PCT/CH2006/000631 2005-12-16 2006-11-09 Schlauchsystem für beatmungsgeräte WO2007068132A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/097,734 US8181649B2 (en) 2005-12-16 2006-11-09 Tube system for ventilation appliances
EP06817710.4A EP1960025B1 (de) 2005-12-16 2006-11-09 Schlauchsystem für beatmungsgeräte
JP2008544725A JP2009519058A (ja) 2005-12-16 2006-11-09 人工呼吸器用チューブシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH19932005 2005-12-16
CH1993/05 2005-12-16

Publications (1)

Publication Number Publication Date
WO2007068132A1 true WO2007068132A1 (de) 2007-06-21

Family

ID=37651090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2006/000631 WO2007068132A1 (de) 2005-12-16 2006-11-09 Schlauchsystem für beatmungsgeräte

Country Status (4)

Country Link
US (1) US8181649B2 (de)
EP (1) EP1960025B1 (de)
JP (1) JP2009519058A (de)
WO (1) WO2007068132A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2039387A1 (de) * 2007-09-24 2009-03-25 Covidien AG System und Verfahren zur Aufbereitung von Atemgas
EP3384948A1 (de) * 2017-04-04 2018-10-10 Medec Benelux NV Automatisches durchflusssensor-kalibrierungssystem und verfahren
US10898664B2 (en) 2011-09-26 2021-01-26 Resmed Paris Sas Ventilator apparatus and method

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
ES2364666T3 (es) 2001-04-06 2011-09-12 Covidien Ag Obturador y divisor de vasos con miembros de tope no conductivos.
FR2858236B1 (fr) * 2003-07-29 2006-04-28 Airox Dispositif et procede de fourniture de gaz respiratoire en pression ou en volume
US7367976B2 (en) 2003-11-17 2008-05-06 Sherwood Services Ag Bipolar forceps having monopolar extension
US8746248B2 (en) 2008-03-31 2014-06-10 Covidien Lp Determination of patient circuit disconnect in leak-compensated ventilatory support
US10207069B2 (en) 2008-03-31 2019-02-19 Covidien Lp System and method for determining ventilator leakage during stable periods within a breath
US8267085B2 (en) * 2009-03-20 2012-09-18 Nellcor Puritan Bennett Llc Leak-compensated proportional assist ventilation
US8272379B2 (en) * 2008-03-31 2012-09-25 Nellcor Puritan Bennett, Llc Leak-compensated flow triggering and cycling in medical ventilators
US20100071696A1 (en) * 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Model-predictive online identification of patient respiratory effort dynamics in medical ventilators
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8424521B2 (en) 2009-02-27 2013-04-23 Covidien Lp Leak-compensated respiratory mechanics estimation in medical ventilators
US8434479B2 (en) * 2009-02-27 2013-05-07 Covidien Lp Flow rate compensation for transient thermal response of hot-wire anemometers
US8418691B2 (en) 2009-03-20 2013-04-16 Covidien Lp Leak-compensated pressure regulated volume control ventilation
DE102009017274A1 (de) * 2009-04-11 2010-10-21 Dräger Medical AG & Co. KG Wasserfalle für einen Beatmungsschlauch
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
US8556889B2 (en) 2009-09-29 2013-10-15 Covidien Lp Flow rate monitor for fluid cooled microwave ablation probe
US8439037B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integrated filter and flow sensor
US8439036B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integral flow sensor
US8469031B2 (en) * 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with integrated filter
US8469030B2 (en) * 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with selectable contagious/non-contagious latch
US20110126832A1 (en) * 2009-12-01 2011-06-02 Nellcor Puritan Bennett Llc Exhalation Valve Assembly
EP2550052B1 (de) * 2010-03-25 2021-03-03 ResMed Paris SAS Vorrichtung zur steuerung des atemgaseinlasses einer vorrichtung zur behandlung von atemwegserkrankungen
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US9629971B2 (en) 2011-04-29 2017-04-25 Covidien Lp Methods and systems for exhalation control and trajectory optimization
US8844533B2 (en) 2011-06-22 2014-09-30 Breathe Technologies, Inc. Ventilation mask with integrated piloted exhalation valve
US9038634B2 (en) 2011-06-22 2015-05-26 Breathe Technologies, Inc. Ventilation mask with integrated piloted exhalation valve
US9486602B2 (en) 2011-06-22 2016-11-08 Breathe Technologies, Inc. Ventilation mask with integrated piloted exhalation valve and method of ventilating a patient using the same
US9364624B2 (en) 2011-12-07 2016-06-14 Covidien Lp Methods and systems for adaptive base flow
US9498589B2 (en) 2011-12-31 2016-11-22 Covidien Lp Methods and systems for adaptive base flow and leak compensation
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US9144658B2 (en) 2012-04-30 2015-09-29 Covidien Lp Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control
USD731049S1 (en) 2013-03-05 2015-06-02 Covidien Lp EVQ housing of an exhalation module
USD736905S1 (en) 2013-03-08 2015-08-18 Covidien Lp Exhalation module EVQ housing
USD692556S1 (en) 2013-03-08 2013-10-29 Covidien Lp Expiratory filter body of an exhalation module
USD701601S1 (en) 2013-03-08 2014-03-25 Covidien Lp Condensate vial of an exhalation module
USD731065S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ pressure sensor filter of an exhalation module
USD693001S1 (en) 2013-03-08 2013-11-05 Covidien Lp Neonate expiratory filter assembly of an exhalation module
USD744095S1 (en) 2013-03-08 2015-11-24 Covidien Lp Exhalation module EVQ internal flow sensor
USD731048S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ diaphragm of an exhalation module
US9950135B2 (en) 2013-03-15 2018-04-24 Covidien Lp Maintaining an exhalation valve sensor assembly
US9675771B2 (en) 2013-10-18 2017-06-13 Covidien Lp Methods and systems for leak estimation
EP4186548A1 (de) 2015-04-02 2023-05-31 Hill-Rom Services PTE. LTD. Maskenleckdetektion für eine atemvorrichtung
USD775345S1 (en) 2015-04-10 2016-12-27 Covidien Lp Ventilator console
KR101770888B1 (ko) * 2015-07-24 2017-08-23 이성민 웨어러블 선풍기
US10864338B2 (en) * 2017-05-19 2020-12-15 Austere Medical Group, Llc Rescue breathing apparatus
US11906097B2 (en) 2019-09-04 2024-02-20 Vyaire Medical, Inc. Ventilation leak component
US11896767B2 (en) 2020-03-20 2024-02-13 Covidien Lp Model-driven system integration in medical ventilators
WO2024069315A1 (en) * 2022-09-26 2024-04-04 Covidien Lp Hybrid single-limb medical ventilation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2249650A1 (de) * 1973-11-05 1975-05-30 Palleni Roberto
US4083245A (en) * 1977-03-21 1978-04-11 Research Development Corporation Variable orifice gas flow sensing head
WO1998006449A1 (en) * 1996-08-14 1998-02-19 Resmed Limited Determination of leak and respiratory airflow
WO2003033175A2 (en) * 2001-10-18 2003-04-24 University Of Miami Continuous gas leakage for elimination of ventilator dead space
WO2003055552A1 (de) * 2001-12-28 2003-07-10 Müfa Ag Beatmungsvorrichtung
WO2004084980A1 (de) * 2003-03-24 2004-10-07 Weinmann Geräte für Medizin GmbH & Co. KG Verfahren und vorrichtung zur erkennung von leckagen bei einrichtungen zum zuführen von atemgasen
US20050087190A1 (en) * 2000-10-06 2005-04-28 Respironics, Inc. Medical ventilator triggering and cycling method and mechanism

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632269A (en) * 1989-09-22 1997-05-27 Respironics Inc. Breathing gas delivery method and apparatus
US5161525A (en) * 1990-05-11 1992-11-10 Puritan-Bennett Corporation System and method for flow triggering of pressure supported ventilation
US5492115A (en) * 1993-12-08 1996-02-20 Abramov; Vladimir V. Resuscitation breathing apparatus
DE4432219C1 (de) * 1994-09-10 1996-04-11 Draegerwerk Ag Beatmungssystem zur Versorgung eines Patienten mit Atemgas
US6119686A (en) * 1996-03-29 2000-09-19 Datex-Ohmeda, Inc. Apnea detection for medical ventilator
US6203502B1 (en) * 1997-03-31 2001-03-20 Pryon Corporation Respiratory function monitor
US6230708B1 (en) * 1998-10-30 2001-05-15 Sechrist Industries, Inc. Ventilator triggering device
US6269811B1 (en) * 1998-11-13 2001-08-07 Respironics, Inc. Pressure support system with a primary and a secondary gas flow and a method of using same
US7938114B2 (en) * 2001-10-12 2011-05-10 Ric Investments Llc Auto-titration bi-level pressure support system and method of using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2249650A1 (de) * 1973-11-05 1975-05-30 Palleni Roberto
US4083245A (en) * 1977-03-21 1978-04-11 Research Development Corporation Variable orifice gas flow sensing head
WO1998006449A1 (en) * 1996-08-14 1998-02-19 Resmed Limited Determination of leak and respiratory airflow
US20050087190A1 (en) * 2000-10-06 2005-04-28 Respironics, Inc. Medical ventilator triggering and cycling method and mechanism
WO2003033175A2 (en) * 2001-10-18 2003-04-24 University Of Miami Continuous gas leakage for elimination of ventilator dead space
WO2003055552A1 (de) * 2001-12-28 2003-07-10 Müfa Ag Beatmungsvorrichtung
WO2004084980A1 (de) * 2003-03-24 2004-10-07 Weinmann Geräte für Medizin GmbH & Co. KG Verfahren und vorrichtung zur erkennung von leckagen bei einrichtungen zum zuführen von atemgasen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2039387A1 (de) * 2007-09-24 2009-03-25 Covidien AG System und Verfahren zur Aufbereitung von Atemgas
US10898664B2 (en) 2011-09-26 2021-01-26 Resmed Paris Sas Ventilator apparatus and method
US11724049B2 (en) 2011-09-26 2023-08-15 Resmed Paris Sas Ventilator apparatus and method
EP3384948A1 (de) * 2017-04-04 2018-10-10 Medec Benelux NV Automatisches durchflusssensor-kalibrierungssystem und verfahren

Also Published As

Publication number Publication date
US8181649B2 (en) 2012-05-22
EP1960025A1 (de) 2008-08-27
JP2009519058A (ja) 2009-05-14
EP1960025B1 (de) 2018-12-19
US20090050153A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
EP1960025B1 (de) Schlauchsystem für beatmungsgeräte
DE69737089T2 (de) Sauerstoffmischung in einem Beatmungsgerät auf der Basis eines Gebläses
DE69930183T2 (de) Anästhesiegerät
EP1654023B1 (de) Anordnung zur atmungsunterstützung eines patienten
DE69936170T2 (de) Beatmungsgerät
EP3247437B1 (de) Beatmungsgerät mit verbesserter synchronität beim übergang von exspiratorischem zu inspiratorischem betrieb
EP0491969B1 (de) Beatmungsgerät mit vom Patientengasfluss abhängiger Triggerempfindlichkeit
EP2298399B1 (de) Anästhesievorrichtung und Verfahren zum Betreiben einer Anästhesievorrichtung
CH635246A5 (de) Beatmungsgeraet.
WO2002089885A2 (de) Vorrichtung zur beatmung mit einem endotrachealtubus
DE2453490A1 (de) Leitungssystem eines atemgeraetes
DE10041007C1 (de) Verfahren zur Steuerung eines Beatmungsgeräts
WO1998001176A1 (de) Gerät zur bereitstellung eines atemgases
DE10164313A1 (de) Beatmungsvorrichtung
EP3344317A1 (de) Beatmungsvorrichtung mit fehlererfassung für durchflusssensoren
EP3536369A1 (de) Beatmungsgerät mit schaltventil
DE10046872B4 (de) Atmungsunterstützungsvorrichtung
DE202015105799U1 (de) Atemmaske
DE2910094A1 (de) Automatisches beatmungsgeraet mit leistungskontrolle, insbesondere fuer wiederbelebungs- und anaesthesie-zwecke
DE10360229B3 (de) Vorrichtung und Verfahren zur Dosierung von Atemgas
EP3260154B1 (de) Beatmungsgerät
EP0467362A1 (de) Beatmungsbesteck
DE102007054390A1 (de) Verfahren zur Erfassung eines rückgeatmeten Ausatemgasvolumens in einem Beatmungssystem
DE102018008495A1 (de) Ventilmodul für ein Beatmungssystem, Beatmungsschlauchvorrichtung, Beatmungsvorrichtung, Beatmungssystem sowie Verfahren zum Trennen und Herstellen einer fluidkommunizierenden Verbindung
WO2019229227A1 (de) Endotrachealtubusadapter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008544725

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006817710

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006817710

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12097734

Country of ref document: US