WO2007075290A1 - Pressure sensor with deflectable diaphragm - Google Patents

Pressure sensor with deflectable diaphragm Download PDF

Info

Publication number
WO2007075290A1
WO2007075290A1 PCT/US2006/046742 US2006046742W WO2007075290A1 WO 2007075290 A1 WO2007075290 A1 WO 2007075290A1 US 2006046742 W US2006046742 W US 2006046742W WO 2007075290 A1 WO2007075290 A1 WO 2007075290A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
pressure
sensor body
cavity
deflectable
Prior art date
Application number
PCT/US2006/046742
Other languages
French (fr)
Inventor
Mark Schumacher
Andrew Klosinski
Original Assignee
Rosemount Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosemount Inc. filed Critical Rosemount Inc.
Priority to CN2006800483176A priority Critical patent/CN101341385B/en
Priority to JP2008547276A priority patent/JP5547894B2/en
Priority to EP06844974.3A priority patent/EP1974195B1/en
Publication of WO2007075290A1 publication Critical patent/WO2007075290A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0075Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a ceramic diaphragm, e.g. alumina, fused quartz, glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • G01L13/025Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms

Definitions

  • the present invention relates to pressure sensors. More specifically, the present invention relates to pressure sensors of the type which use a deflectable diaphragm to measure a pressure.
  • Transmitters are used in process monitoring and control systems to measure various process variables of industrial processes .
  • One type of transmitter measures pressure of process fluid in the process .
  • Various techniques have been used in the pressure sensors used in such transmitters.
  • One well known technique is to use a deflectable metal diaphragm. A capacitance -is measured with respect to the diaphragm, with the metal diaphragm forming one of the capacitive plates of the capacitor. As the diaphragm is deflected due to applied pressure, the measured capacitance changes. In such a configuration, there are a number of sources of inaccuracies in pressure measurements.
  • a pressure sensor for sensing a pressure of a process fluid includes a .sensor body having a cavity with a pressure connection through the cavity into the sensor body.
  • a deflectable diaphragm in the cavity deflects in response to a pressure applied to the cavity through the pressure connection.
  • An electrode on the diaphragm forms a variable capacitor with the pressure sensor body and provides a capacitance, which varies in response to the applied pressure .
  • Figure 1 shows a process measurement system with a process transmitter constructed in accordance with the present invention.
  • Figure 2 is schematic view of a transmitter of Figure 1.
  • Figure 3A is a side cross-sectional view of a pressure sensor in accordance with the present invention.
  • Figure 3B is a front plan view of a diaphragm of the pressure sensor shown in FIG. 3A.
  • Figure 3C is a perspective view showing half of the diaphragm of figure 3A and half of a sensor body of figure 3A.
  • Figure 4 is a simplified cross-sectional view of the pressure sensor positioned in a process transmitter. D ⁇ TAILED DESCRIPTION
  • the present invention provides a pressure sensor in which a deflectable diaphragm carries a capacitive plate to provide a capacitance . which varies in response to an applied pressure. As discussed below, this configuration provides a number of advantages related to manufacturing, reduced errors and improved, performance .
  • Figure 1 shows generally the environment of a process measurement system 32.
  • Figure 1 shows process piping 30 containing a fluid under pressure coupled to the process measurement system 32 for measuring a process pressure.
  • the process measurement system 32 includes impulse piping 34 connected to the piping 30.
  • the impulse piping 34 is connected to a ' process pressure transmitter 36.
  • a primary element 33 such as an orifice plate, venturi tube, flow nozzle, and so on, contacts the process fluid at a location in the process piping 30 between the pipes of • the impulse piping 34.
  • the primary element 33 causes a pressure change in the fluid as it passes past the primary element 33.
  • Transmitter 36 is a process measurement device that receives process pressures through the impulse piping 34.
  • the transmitter 36 senses a differential process pressure and outputs a standardized transmission signal that is a function of the process pressure .
  • a process loop 38 provides both a power signal to the transmitter 36 from control room 40 and bidirectional communication, and can be constructed in accordance with a number of process communication protocols.
  • the process loop 38 is a two-wire loop. The two-wire loop is used to transmit all power to and all communications to and from the transmitter 36 during normal operations with a 4-20 itiA signal.
  • a computer 42 or other information handling system through modem 44, or other network interface, is used for communication with the transmitter 36.
  • a remote voltage power supply 46 powers the transmitter 36.
  • FIG. 2 is a simplified block diagram of pressure transmitter 36.
  • Pressure transmitter 36 includes a sensor module 52 and an electronics board 72 coupled together ' through a databus 66.
  • Sensor module electronics 60 couples to pressure sensor 56 which received an applied differential pressure 54.
  • the data connection 58 couples sensor 56 to an analog to digital converter 62.
  • An optional temperature sensor 63 is ⁇ also illustrated along with sensor module memory 64. As discussed below, the temperature sensor 63 can be formed integral with pressure sensor 56.
  • the electronics board 72 includes a microcomputer system 74, electronics memory module 76, digital to analog signal converter 78 and digital communication block 80.
  • FIG. 3A is a' side cross-sectional view showing pressure sensor 56 in accordance with the present invention.
  • Pressure sensor 56 includes a pressure sensor body 140 which is formed by half bodies 142 and 144 which have recessed regions 146 and 148 formed therein, respectively, which form a cavity 149 therebetween.
  • a deflectable diaphragm 150 is mounted in the cavity 149 and the cavity 149 couples to impulse piping 94.
  • Diaphragm 150 is formed of two half diaphragms 152 and 154.
  • Center capacitor plates or electrodes 162 and 164 are carried on diaphragm halves 152 and 154, respectively.
  • diaphragm half 152 carries outer capacitor plate or electrode 166 while diaphragm half 154 carries outer capacitor plate or electrode 172.
  • a contact protrusion 180 extends from center diaphragm 150 and carries electrical contacts 182 thereon. Electrical contacts 182 connects to each of the six capacitor plates or electrodes 162 through 172.
  • Figure 3B is a front plan view showing deflectable diaphragm 150 including the arrangement of capacitor plates 162 and 166 in greater detail.
  • Figure 3C is a side perspective view showing half diaphragm 154 and half sensor body 144.
  • Figure 3C also illustrates electrical connections 192 and 196 which electrically • connect capacitor plates or electrodes 170 and 164, respectively, to contacts 182 on protrusion 180.
  • Figures 3A and 3B also show annular notches 200 which can be formed in the diaphragm 150 to increase the amount of deflection of diaphragm 150 for a given pressure.
  • a differential pressure is applied to either side of diaphragm 154 through impulse piping 94.
  • diaphragm 150 is formed of an insulating crystal material such as silicon, quartz, sapphire, or spinel.
  • the electrodes can comprise a metal and be deposited or implanted on diaphragm 150.
  • the sensor body 140 is formed of a conductive material such as metal. This configuration allows the diaphragm 150 to be assembled and subsequently mounted into body halves 142 and 144.
  • body 140 is of a non- conductive material and include a conductive material for the electrical capacitors with respect to capacitor plates 162, 164, 166, 168, 170, 172.
  • some prior art configurations in which the capacitor plates are carried on the walls of the cavity formed in the sensor body. This requires the sensor body to be filled with an insulating material such as glass. In such a configuration, a conductive diaphragm used.
  • features 177 are provided on an internal wall of cavity 146 or on diaphragm 150.
  • Features 177 are configured to distribute forces if an over pressure occurs in which diaphragm 150 is pressed against one of the internal walls of cavity 146.
  • the pressure sensor 56 of the present invention can be assembled using any appropriate technique.
  • the two diaphragm halves 152 and 154 can be fused together to form the complete diaphragm 150. Additional features such as the diaphragm shape and hinge point can be fabricated as desired.
  • a temperature sensor 210 is fabricated in diaphragm 150 for use in measuring temperature of the pressure sensor 56. The temperature can be used to compensate for temperature related errors in pressure measurements . The temperature signal can also be used to determine other information about the process fluid, such as for use in a flow rate calculation.
  • the completed diaphragm 150 is welded between the two metal sensor body halves 142 and 144 with protrusion 180 extending from the cavity 149 through the sensor body 140 to the outside of body 140.
  • the region where protrusion 180 meets the two sensor half bodies 142 and 144 can be sealed using, for example, a brazing technique.
  • This configuration provides a solid state sensor with electrodes that can be mounted on a solid state material rather than a glass such as used in some prior art configurations. This reduces hysteresis and provides improved stability. Further, the capacitor electrodes on the high and low pressure sides of the diaphragm 150 remain in close proximity which can also provide improved performance over temperature extremes.
  • the center diaphragm 150 can be fabricated using standard solid state fabrication techniques which allow simplified manufacturing, reduced costs and greater tolerance control .
  • Sensor features such as the hinge point, cavity shape, electrodes, electrode lead wires and temperature sensor are etched, deposited or otherwise formed in a solid state center diaphragm structure rather than on a glass/metal pressure sensor half cell as used ⁇ in prior art designs. This simplifies manufacturing, lowers manufacturing cost and provides greater tolerance control which leads to improved performance .
  • an optional internal cavity 220 is illustrated which is located within diaphragm 154 between diaphragm halves 150 and 152.
  • Capacitive plates or electrodes 222 and 224 are positioned on the sides walls of internal cavity 220.
  • Internal cavity 220 is configured such that the spacing between capacitive plates 222 and 224 changes as a function of the applied line pressure.
  • This optional configuration allows both the differential pressure applied to diaphragm 150 through impulse piping 94 to be measured along with the line pressure.
  • electrical contacts are provided on and protrusion 180 which connect to capacitor plates or electrodes 222 and 224.
  • Figure 4 is a simplified cross-sectional view of one embodiment of a sensor module 52 showing pressure sensor 56.
  • Pressure sensor 56 couples to a process fluid through isolation diaphragms 90 which isolate the process fluid from cavities 92. Cavities 92 couple to the pressure sensor module 56 through impulse piping 94.
  • a substantially incompressible fill fluid fills cavities 92 and impulse piping 94. When a pressure from the process fluid is applied to diaphragms 90, the pressure is transferred to the pressure sensor 56 through the fill fluid in the impulse piping 94. .
  • features such as the hinge point , cavity shape, electrodes, electrode lead wires and the temperature sensor can be etched, deposited or otherwise formed in a solid state structure rather than in the glass/metal half cell used in some designs. This reduces manufacturing costs and provides greater tolerance control which allows improved . performance .
  • the outside of the pressure sensor is formed of a metal body which can easily contain excessive over pressures.
  • the structure can be formed and mounted using any appropriate technique such as laser welding or brazing.
  • the measurement circuitry used to determine the applied pressure based upon the changing capacitance can be mounted in close proximity to the protrusion 180. This to reduces errors due to stray capacitance from the electrical connections to the capacitor plates. In some configurations, the circuitry is carried directly on protrusion 180. In such a configuration, measurement circuitry can be mounted to protrusion 180, or fabricated directly on protrusion 180.
  • Pressure measurements may be made using the pressure sensor discussed above using any appropriate technique .
  • One example technique is described in U.S. Patent application Serial No. 11/140,681, Line Pressure Measurement Using Differential Pressure Sensor, filed May 27, 2005 which is incorporated herein by reference.
  • the particular configuration illustrated in the Figures in which four different capacitors are formed can be used to compensate for errors as discussed in application Serial No. 11/140,681.
  • any number of capacitors are used including a single capacitor, two capacitors, etc.
  • the present invention is not limited to any particular number of capacitors or configuration of capacitor plates.
  • the diaphragm can be configured to deflect as desired. In one configuration, the diaphragm deflection may be less than one angstrom.
  • the center diaphragm structure can have any shape and/or feature as desired for particular implementation.
  • the diaphragm can have hinge features to promote bending at certain points, ceiling features, etc. This allows the diaphragm to be optimized for performance of the sensor in a particular environment, such as a differential pressure sensor.
  • These features and shapes can be formed using any appropriate method including both additive techniques in which additional structures are added to a sub straight, or subtractive techniques in which material is removed from a sub straight to form a desired shape or feature .

Abstract

A pressure sensor (5G) for sensing a pressure of a process fluid includes a sensor body (140) having a cavity (149) formed therein. A deflectable diaphragm (150) is positioned in the cavity (149) and deflects in response to a pressure applied to the cavity. An electrode (162) on the diaphragm forms a variable capacitor with the pressure sensor body (140). The capacitance varies in response to the applied pressure.

Description

PRESSURE SENSOR WITH DEFLECTABLE DIAPHRAGM
BACKGROUND OP THE INVENTION
The present invention relates to pressure sensors. More specifically, the present invention relates to pressure sensors of the type which use a deflectable diaphragm to measure a pressure.
Transmitters are used in process monitoring and control systems to measure various process variables of industrial processes . One type of transmitter measures pressure of process fluid in the process . Various techniques have been used in the pressure sensors used in such transmitters. One well known technique is to use a deflectable metal diaphragm. A capacitance -is measured with respect to the diaphragm, with the metal diaphragm forming one of the capacitive plates of the capacitor. As the diaphragm is deflected due to applied pressure, the measured capacitance changes. In such a configuration, there are a number of sources of inaccuracies in pressure measurements.
One technique which addresses these inaccuracies is set forth in U.S. Patent No. 6,295,875 entitled, "PROCESS PRESSURE MEASUREMENT DEVICES WITH IMPROVED ERROR COMPENSATION" issued October 2, 2001 to Frick et al . which is incorporated herein by reference in its entirety. This patent describes a differential pressure sensor that includes an additional electrode for use in reducing measurement inaccuracies . _ O _
SUMMARY
A pressure sensor for sensing a pressure of a process fluid includes a .sensor body having a cavity with a pressure connection through the cavity into the sensor body. A deflectable diaphragm in the cavity deflects in response to a pressure applied to the cavity through the pressure connection. An electrode on the diaphragm forms a variable capacitor with the pressure sensor body and provides a capacitance, which varies in response to the applied pressure .
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a process measurement system with a process transmitter constructed in accordance with the present invention.
Figure 2 is schematic view of a transmitter of Figure 1.
Figure 3A is a side cross-sectional view of a pressure sensor in accordance with the present invention.
Figure 3B is a front plan view of a diaphragm of the pressure sensor shown in FIG. 3A.
Figure 3C is a perspective view showing half of the diaphragm of figure 3A and half of a sensor body of figure 3A.
Figure 4 is a simplified cross-sectional view of the pressure sensor positioned in a process transmitter. DΞTAILED DESCRIPTION
The present invention provides a pressure sensor in which a deflectable diaphragm carries a capacitive plate to provide a capacitance . which varies in response to an applied pressure. As discussed below, this configuration provides a number of advantages related to manufacturing, reduced errors and improved, performance .
Figure 1 shows generally the environment of a process measurement system 32. Figure 1 shows process piping 30 containing a fluid under pressure coupled to the process measurement system 32 for measuring a process pressure. The process measurement system 32 includes impulse piping 34 connected to the piping 30. The impulse piping 34 is connected to a' process pressure transmitter 36. A primary element 33, such as an orifice plate, venturi tube, flow nozzle, and so on, contacts the process fluid at a location in the process piping 30 between the pipes of • the impulse piping 34. The primary element 33 causes a pressure change in the fluid as it passes past the primary element 33.
Transmitter 36 is a process measurement device that receives process pressures through the impulse piping 34. The transmitter 36 senses a differential process pressure and outputs a standardized transmission signal that is a function of the process pressure . A process loop 38 provides both a power signal to the transmitter 36 from control room 40 and bidirectional communication, and can be constructed in accordance with a number of process communication protocols. In the illustrated example, the process loop 38 is a two-wire loop. The two-wire loop is used to transmit all power to and all communications to and from the transmitter 36 during normal operations with a 4-20 itiA signal. A computer 42 or other information handling system through modem 44, or other network interface, is used for communication with the transmitter 36. A remote voltage power supply 46 powers the transmitter 36. The invention is not limited to environments which implement a loop 38. Other communication techniques can be used including other communication media such as wireless, and different wireless techniques, as well as different communication protocols and in standalone devices . Figure 2 is a simplified block diagram of pressure transmitter 36. Pressure transmitter 36 includes a sensor module 52 and an electronics board 72 coupled together' through a databus 66. Sensor module electronics 60 couples to pressure sensor 56 which received an applied differential pressure 54. The data connection 58 couples sensor 56 to an analog to digital converter 62. An optional temperature sensor 63 is ■ also illustrated along with sensor module memory 64. As discussed below, the temperature sensor 63 can be formed integral with pressure sensor 56. The electronics board 72 includes a microcomputer system 74, electronics memory module 76, digital to analog signal converter 78 and digital communication block 80.
One technique for measuring different pressure is set forth in U.S. Patent No. 6,295,875 to Prick et al . However, the present invention is not limited to such a configuration. . Figure 3A is a' side cross-sectional view showing pressure sensor 56 in accordance with the present invention. Pressure sensor 56 includes a pressure sensor body 140 which is formed by half bodies 142 and 144 which have recessed regions 146 and 148 formed therein, respectively, which form a cavity 149 therebetween. A deflectable diaphragm 150 is mounted in the cavity 149 and the cavity 149 couples to impulse piping 94. Diaphragm 150 is formed of two half diaphragms 152 and 154. Center capacitor plates or electrodes 162 and 164 are carried on diaphragm halves 152 and 154, respectively. Similarly, diaphragm half 152 carries outer capacitor plate or electrode 166 while diaphragm half 154 carries outer capacitor plate or electrode 172. Capacitor plates 162, 164, 166, 168, 170 and 172 for 6 respective electrical capacitors with sensor body 140. A contact protrusion 180 extends from center diaphragm 150 and carries electrical contacts 182 thereon. Electrical contacts 182 connects to each of the six capacitor plates or electrodes 162 through 172.
Figure 3B is a front plan view showing deflectable diaphragm 150 including the arrangement of capacitor plates 162 and 166 in greater detail. Figure 3C is a side perspective view showing half diaphragm 154 and half sensor body 144. Figure 3C also illustrates electrical connections 192 and 196 which electrically • connect capacitor plates or electrodes 170 and 164, respectively, to contacts 182 on protrusion 180. Figures 3A and 3B also show annular notches 200 which can be formed in the diaphragm 150 to increase the amount of deflection of diaphragm 150 for a given pressure. , During operation, a differential pressure is applied to either side of diaphragm 154 through impulse piping 94. This causes deflection of diaphragm 150 within cavity 149. As diaphragm 150 deflects, the distance between capacitor plates 162, 164, 166, 168, 170, 172 changes with respect to the sides of cavity 149 formed by sensor body halves 142 and 144. The electrical capacitance between each capacitor plate 162, 164, 166, 168, 170, 172 can be measured with respect to the sensor body 140 and correlated with the applied differential pressure. The amount of deflection of diaphragm 154 is a function of the applied, pressure as well as the material used in diaphragm 154 and the dimensions of diaphragm 154. Figures 3A through 3B also show annular notches 200 which can be formed in the diaphragm 150 to increase the amount of deflection of diaphragm 150 for a given pressure.
In one preferred configuration, diaphragm 150 is formed of an insulating crystal material such as silicon, quartz, sapphire, or spinel. The electrodes can comprise a metal and be deposited or implanted on diaphragm 150. The sensor body 140 is formed of a conductive material such as metal. This configuration allows the diaphragm 150 to be assembled and subsequently mounted into body halves 142 and 144. In another configuration, body 140 is of a non- conductive material and include a conductive material for the electrical capacitors with respect to capacitor plates 162, 164, 166, 168, 170, 172. In contrast, some prior art configurations in which the capacitor plates are carried on the walls of the cavity formed in the sensor body. This requires the sensor body to be filled with an insulating material such as glass. In such a configuration, a conductive diaphragm used.
In one optional configuration, features 177 are provided on an internal wall of cavity 146 or on diaphragm 150. Features 177 are configured to distribute forces if an over pressure occurs in which diaphragm 150 is pressed against one of the internal walls of cavity 146.
The pressure sensor 56 of the present invention can be assembled using any appropriate technique. For example, the two diaphragm halves 152 and 154 can be fused together to form the complete diaphragm 150. Additional features such as the diaphragm shape and hinge point can be fabricated as desired. In some embodiments, a temperature sensor 210 is fabricated in diaphragm 150 for use in measuring temperature of the pressure sensor 56. The temperature can be used to compensate for temperature related errors in pressure measurements . The temperature signal can also be used to determine other information about the process fluid, such as for use in a flow rate calculation.
In one embodiment, the completed diaphragm 150 is welded between the two metal sensor body halves 142 and 144 with protrusion 180 extending from the cavity 149 through the sensor body 140 to the outside of body 140. The region where protrusion 180 meets the two sensor half bodies 142 and 144 can be sealed using, for example, a brazing technique. This configuration provides a solid state sensor with electrodes that can be mounted on a solid state material rather than a glass such as used in some prior art configurations. This reduces hysteresis and provides improved stability. Further, the capacitor electrodes on the high and low pressure sides of the diaphragm 150 remain in close proximity which can also provide improved performance over temperature extremes. The center diaphragm 150 can be fabricated using standard solid state fabrication techniques which allow simplified manufacturing, reduced costs and greater tolerance control . Sensor features such as the hinge point, cavity shape, electrodes, electrode lead wires and temperature sensor are etched, deposited or otherwise formed in a solid state center diaphragm structure rather than on a glass/metal pressure sensor half cell as used ■ in prior art designs. This simplifies manufacturing, lowers manufacturing cost and provides greater tolerance control which leads to improved performance .
Referring back to figure 3A, an optional internal cavity 220 is illustrated which is located within diaphragm 154 between diaphragm halves 150 and 152. Capacitive plates or electrodes 222 and 224 are positioned on the sides walls of internal cavity 220. Internal cavity 220 is configured such that the spacing between capacitive plates 222 and 224 changes as a function of the applied line pressure. This optional configuration allows both the differential pressure applied to diaphragm 150 through impulse piping 94 to be measured along with the line pressure. In such a configuration, electrical contacts are provided on and protrusion 180 which connect to capacitor plates or electrodes 222 and 224.
Figure 4 is a simplified cross-sectional view of one embodiment of a sensor module 52 showing pressure sensor 56. Pressure sensor 56 couples to a process fluid through isolation diaphragms 90 which isolate the process fluid from cavities 92. Cavities 92 couple to the pressure sensor module 56 through impulse piping 94. A substantially incompressible fill fluid fills cavities 92 and impulse piping 94. When a pressure from the process fluid is applied to diaphragms 90, the pressure is transferred to the pressure sensor 56 through the fill fluid in the impulse piping 94. . With the sensor of the present invention, features such as the hinge point , cavity shape, electrodes, electrode lead wires and the temperature sensor can be etched, deposited or otherwise formed in a solid state structure rather than in the glass/metal half cell used in some designs. This reduces manufacturing costs and provides greater tolerance control which allows improved . performance . Further, the outside of the pressure sensor is formed of a metal body which can easily contain excessive over pressures. The structure can be formed and mounted using any appropriate technique such as laser welding or brazing. The measurement circuitry used to determine the applied pressure based upon the changing capacitance can be mounted in close proximity to the protrusion 180. This to reduces errors due to stray capacitance from the electrical connections to the capacitor plates. In some configurations, the circuitry is carried directly on protrusion 180. In such a configuration, measurement circuitry can be mounted to protrusion 180, or fabricated directly on protrusion 180.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. Pressure measurements may be made using the pressure sensor discussed above using any appropriate technique . One example technique is described in U.S. Patent application Serial No. 11/140,681, Line Pressure Measurement Using Differential Pressure Sensor, filed May 27, 2005 which is incorporated herein by reference. The particular configuration illustrated in the Figures in which four different capacitors are formed can be used to compensate for errors as discussed in application Serial No. 11/140,681. In one embodiment, any number of capacitors are used including a single capacitor, two capacitors, etc. The present invention is not limited to any particular number of capacitors or configuration of capacitor plates. Although the above description discusses an oil fill fluid, other fill fluids may be used, including an air or gas fill . The diaphragm can be configured to deflect as desired. In one configuration, the diaphragm deflection may be less than one angstrom. The center diaphragm structure can have any shape and/or feature as desired for particular implementation. For example, the diaphragm can have hinge features to promote bending at certain points, ceiling features, etc. This allows the diaphragm to be optimized for performance of the sensor in a particular environment, such as a differential pressure sensor. These features and shapes can be formed using any appropriate method including both additive techniques in which additional structures are added to a sub straight, or subtractive techniques in which material is removed from a sub straight to form a desired shape or feature .

Claims

WHAT IS CIAIMED IS:
1. A pressure sensor for sensing a pressure of a process fluid: a sensor body having a cavity formed therein; a pressure connection extending through the cavity into the body; a deflectable diaphragm in the cavity configured to deflect in response to a pressure applied to the cavity through the pressure connection; an electrode on the diaphragm configured to form a variable capacitor with the pressure sensor body having a capacitance which varies in response to the applied pressure; and an electrical connection to the electrode which extends to outside of the pressure sensor body.
2. The apparatus of claim 1 wherein the deflectable diaphragm comprises a rigid material.
3. The apparatus of claim 1 wherein the deflectable diaphragm comprises a crystal material.
4. The apparatus of claim 1 wherein the deflectable diaphragm comprises a material selected from the group of materials consisting of silicon, quartz, sapphire and spinel.
5. The apparatus of claim 1 wherein the sensor- body comprises a conductive material.
6. The apparatus of claim 1 wherein, the sensor body comprises a metal .
7. The apparatus of claim 1 wherein the sensor body is formed from two sensor body halves .
8. The apparatus of claim 1 wherein the diaphragm is formed from two diaphragms halves .
9. The apparatus of claim 1 including a second electrode on the diaphragm configured to form a second variable capacitor with the pressure sensor body.
10. The apparatus of claim 9 wherein the electrode and the second electrode are on opposite sides of the diaphragm.
11. The apparatus of claim 1 wherein two electrodes are positioned on one side of the diaphragm and two electrodes are positioned on an opposite side of the diaphragm.
12. The apparatus of claim 1 wherein the diaphragm includes an internal diaphragm cavity configured to deform in response to a line pressure applied to the cavity of the sensor body.
13. The apparatus of claim 12 wherein the internal diaphragm cavity includes electrodes configured to form a variable capacitance which changes based upon the applied line pressure.
14. The apparatus of claim l wherein the cavity of the sensor body receives a differential pressure and deflection of the diaphragm is based upon the differential pressure.
15. The apparatus of claim l including a temperature sensor configured to measure a temperature of the sensor body or diaphragm.
16. The apparatus of claim 1 including a protrusion from the diaphragm which carries the electrical connections from the diaphragm to outside of the pressure sensor body.
17. A method of sensing pressure of a process fluid, comprising: providing an electrode on a deflectable diaphragm; placing the deflectable diaphragm in a sensor body; applying a pressure to the deflectable diaphragm through the sensor body to thereby cause deflection; measuring changes in a capacitance between the electrode on the deflectable diaphragm and the sensor body; and determining pressure based upon changes in the measured capacitance.
18. The method of claim 17 wherein the deflectable diaphragm comprises a rigid material.
19. The method of claim 17 wherein the deflectable diaphragm comprises a crystal material .
20. The method of claim 17 wherein the deflectable diaphragm comprises a material selected from the group of materials consisting of silicon, quartz, sapphire and spinel.
21. The method of claim 17 wherein the sensor body comprises a conductive material .
22. The method of claim 17 wherein the sensor body is formed from two sensor body halves .
23. The method of claim 17 wherein the diaphragm is formed from two diaphragms halves.
24. The method of claim 17 including providing a second electrode on the diaphragm configured to form a second variable capacitor with the pressure sensor body.
25. The method of claim 17 including forming a diaphragm internal cavity in the diaphragm configured to deform in response to a line pressure applied to the cavity of the sensor body.
26. The method of claim 25 including providing electrodes in the diaphragm internal cavity configured to form a variable capacitance which changes based upon the applied line pressure.
27. The method of claim 17 including providing a temperature sensor configured to measure a temperature of the sensor body or diaphragm.
PCT/US2006/046742 2005-12-20 2006-12-07 Pressure sensor with deflectable diaphragm WO2007075290A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800483176A CN101341385B (en) 2005-12-20 2006-12-07 Pressure sensor with deflectable diaphragm
JP2008547276A JP5547894B2 (en) 2005-12-20 2006-12-07 Pressure sensor with flexible diaphragm
EP06844974.3A EP1974195B1 (en) 2005-12-20 2006-12-07 Pressure sensor with deflectable diaphragm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/312,062 US7415886B2 (en) 2005-12-20 2005-12-20 Pressure sensor with deflectable diaphragm
US11/312,062 2005-12-20

Publications (1)

Publication Number Publication Date
WO2007075290A1 true WO2007075290A1 (en) 2007-07-05

Family

ID=37847241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/046742 WO2007075290A1 (en) 2005-12-20 2006-12-07 Pressure sensor with deflectable diaphragm

Country Status (5)

Country Link
US (1) US7415886B2 (en)
EP (1) EP1974195B1 (en)
JP (1) JP5547894B2 (en)
CN (1) CN101341385B (en)
WO (1) WO2007075290A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005017853A1 (en) * 2005-04-18 2006-10-19 Siemens Ag Pressure sensor device
US8429978B2 (en) * 2010-03-30 2013-04-30 Rosemount Inc. Resonant frequency based pressure sensor
US9316553B2 (en) * 2014-03-26 2016-04-19 Rosemount Inc. Span line pressure effect compensation for diaphragm pressure sensor
US9562819B2 (en) 2015-06-30 2017-02-07 Rosemount Inc Polymeric remote seal system for single-use containers
US10836990B2 (en) * 2016-12-23 2020-11-17 Cyberoptics Corporation Sensor interface for single-use containers
US10584309B2 (en) 2017-02-06 2020-03-10 Rosemount Inc. Pressure transducer for single-use containers
CN107101751A (en) * 2017-02-28 2017-08-29 宝力马(苏州)传感技术有限公司 A kind of novel capacitance-type pressure sensor and preparation method thereof
US11046575B2 (en) * 2017-10-31 2021-06-29 Encite Llc Broad range micro pressure sensor
JP2021517969A (en) 2018-05-17 2021-07-29 ローズマウント インコーポレイテッド Measuring element and measuring device equipped with it
CN108593187A (en) * 2018-05-23 2018-09-28 金陵科技学院 Ceramic capacitive pressure sensor and the method for improving pressure detecting precision
US11371902B2 (en) 2019-12-27 2022-06-28 Rosemount Inc. Process venting feature for use in sensor applications with a process fluid barrier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578735A (en) * 1984-10-12 1986-03-25 Knecht Thomas A Pressure sensing cell using brittle diaphragm
US4670733A (en) * 1985-07-01 1987-06-02 Bell Microsensors, Inc. Differential pressure transducer
EP0291393A1 (en) * 1987-05-07 1988-11-17 OTIC FISCHER & PORTER S.A. Structure of a capacitive cell for measuring differential pressures
DE4333753A1 (en) * 1993-10-04 1994-05-11 Bosch Gmbh Robert Capacitive difference pressure sensor - has carrier supporting counter-electrodes between facing membranes carrying capacitor electrodes
US5969258A (en) * 1996-08-21 1999-10-19 Endress & Hauser Gmbh & Co. Evaluation unit of a differential-pressure sensor

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2533339A (en) 1946-06-22 1950-12-12 Jabez Burns & Sons Inc Flammable vapor protection
US3012432A (en) 1957-09-23 1961-12-12 Richard H Moore Leak tester
GB1023042A (en) 1962-05-07 1966-03-16 Wayne Kerr Lab Ltd Improvements in or relating to pressure responsive apparatus
US3232712A (en) 1962-08-16 1966-02-01 Continental Lab Inc Gas detector and analyzer
US3374112A (en) 1964-03-05 1968-03-19 Yeda Res & Dev Method and apparatus for controlled deposition of a thin conductive layer
US3249833A (en) 1964-11-16 1966-05-03 Robert E Vosteen Capacitor transducer
US3557621A (en) 1969-07-07 1971-01-26 C G S Scient Corp Inc Variable capacitance detecting devices
GB1354025A (en) 1970-05-25 1974-06-05 Medicor Muevek Capacitive pressure transducer
US3924219A (en) 1971-12-22 1975-12-02 Minnesota Mining & Mfg Gas detection device
US3808480A (en) 1973-04-16 1974-04-30 Bunker Ramo Capacitive pressure transducer
US4008619A (en) 1975-11-17 1977-02-22 Mks Instruments, Inc. Vacuum monitoring
US4177496A (en) 1976-03-12 1979-12-04 Kavlico Corporation Capacitive pressure transducer
US4158217A (en) 1976-12-02 1979-06-12 Kaylico Corporation Capacitive pressure transducer with improved electrode
US4120206A (en) 1977-01-17 1978-10-17 Rosemount Inc. Differential pressure sensor capsule with low acceleration sensitivity
US4168518A (en) 1977-05-10 1979-09-18 Lee Shih Y Capacitor transducer
US4172387A (en) * 1978-06-05 1979-10-30 The Foxboro Company Pressure responsive apparatus
US4227419A (en) 1979-09-04 1980-10-14 Kavlico Corporation Capacitive pressure transducer
US4244226A (en) 1979-10-04 1981-01-13 Honeywell Inc. Distance measuring apparatus and a differential pressure transmitter utilizing the same
US4434451A (en) 1979-10-29 1984-02-28 Delatorre Leroy C Pressure sensors
US4322775A (en) 1979-10-29 1982-03-30 Delatorre Leroy C Capacitive pressure sensor
US4287553A (en) 1980-06-06 1981-09-01 The Bendix Corporation Capacitive pressure transducer
US4336567A (en) 1980-06-30 1982-06-22 The Bendix Corporation Differential pressure transducer
US4370890A (en) 1980-10-06 1983-02-01 Rosemount Inc. Capacitive pressure transducer with isolated sensing diaphragm
US4358814A (en) 1980-10-27 1982-11-09 Setra Systems, Inc. Capacitive pressure sensor
US4422335A (en) 1981-03-25 1983-12-27 The Bendix Corporation Pressure transducer
US4458537A (en) * 1981-05-11 1984-07-10 Combustion Engineering, Inc. High accuracy differential pressure capacitive transducer
US4389895A (en) 1981-07-27 1983-06-28 Rosemount Inc. Capacitance pressure sensor
US4466290A (en) 1981-11-27 1984-08-21 Rosemount Inc. Apparatus for conveying fluid pressures to a differential pressure transducer
US4455874A (en) 1981-12-28 1984-06-26 Paroscientific, Inc. Digital pressure transducer
US4422125A (en) 1982-05-21 1983-12-20 The Bendix Corporation Pressure transducer with an invariable reference capacitor
DE3238430A1 (en) * 1982-10-16 1984-04-19 Philips Patentverwaltung Gmbh, 2000 Hamburg DIFFERENTIAL PRESSURE SENSOR
JPS59127148U (en) * 1983-02-14 1984-08-27 株式会社島津製作所 Capacitive pressure/differential pressure transmitter
US4558184A (en) * 1983-02-24 1985-12-10 At&T Bell Laboratories Integrated capacitive transducer
DE3340834A1 (en) 1983-11-11 1985-05-23 Philips Patentverwaltung Gmbh, 2000 Hamburg Circuit arrangement for keeping the temperature-dependent sensitivity of a differential-pressure measurement apparatus constant
US4490773A (en) 1983-12-19 1984-12-25 United Technologies Corporation Capacitive pressure transducer
US4542436A (en) 1984-04-10 1985-09-17 Johnson Service Company Linearized capacitive pressure transducer
US4562742A (en) 1984-08-07 1986-01-07 Bell Microcomponents, Inc. Capacitive pressure transducer
US4586108A (en) 1984-10-12 1986-04-29 Rosemount Inc. Circuit for capacitive sensor made of brittle material
IL82960A0 (en) * 1986-06-30 1987-12-20 Rosemount Inc Differential pressure sensor
US4860232A (en) 1987-04-22 1989-08-22 Massachusetts Institute Of Technology Digital technique for precise measurement of variable capacitance
US4785669A (en) 1987-05-18 1988-11-22 Mks Instruments, Inc. Absolute capacitance manometers
JP2514067Y2 (en) * 1987-06-29 1996-10-16 京セラ株式会社 Ceramic transformer
US4875369A (en) 1987-09-08 1989-10-24 Panex Corporation Pressure sensor system
US4878012A (en) 1988-06-10 1989-10-31 Rosemount Inc. Charge balanced feedback transmitter
US4977480A (en) 1988-09-14 1990-12-11 Fuji Koki Mfg. Co., Ltd. Variable-capacitance type sensor and variable-capacitance type sensor system using the same
US4926674A (en) 1988-11-03 1990-05-22 Innovex Inc. Self-zeroing pressure signal generator
US4951174A (en) 1988-12-30 1990-08-21 United Technologies Corporation Capacitive pressure sensor with third encircling plate
US5194819A (en) 1990-08-10 1993-03-16 Setra Systems, Inc. Linearized capacitance sensor system
US5094109A (en) 1990-12-06 1992-03-10 Rosemount Inc. Pressure transmitter with stress isolation depression
US5168419A (en) 1991-07-16 1992-12-01 Panex Corporation Capacitor and pressure transducer
DE4124662A1 (en) 1991-07-25 1993-01-28 Fibronix Sensoren Gmbh RELATIVE PRESSURE SENSOR
US5230250A (en) 1991-09-03 1993-07-27 Delatorre Leroy C Capacitor and pressure transducer
JP3182807B2 (en) 1991-09-20 2001-07-03 株式会社日立製作所 Multifunctional fluid measurement transmission device and fluid volume measurement control system using the same
US5233875A (en) 1992-05-04 1993-08-10 Kavlico Corporation Stable capacitive pressure transducer system
US5329818A (en) 1992-05-28 1994-07-19 Rosemount Inc. Correction of a pressure indication in a pressure transducer due to variations of an environmental condition
US5492016A (en) 1992-06-15 1996-02-20 Industrial Sensors, Inc. Capacitive melt pressure measurement with center-mounted electrode post
WO1995008759A1 (en) 1993-09-24 1995-03-30 Rosemount Inc. Pressure transmitter isolation diaphragm
US5542300A (en) 1994-01-24 1996-08-06 Setra Systems, Inc. Low cost, center-mounted capacitive pressure sensor
US5642301A (en) 1994-01-25 1997-06-24 Rosemount Inc. Transmitter with improved compensation
AU4110596A (en) 1994-11-30 1996-06-19 Rosemount Inc. Pressure transmitter with fill fluid loss detection
US6484585B1 (en) 1995-02-28 2002-11-26 Rosemount Inc. Pressure sensor for a pressure transmitter
US5637802A (en) 1995-02-28 1997-06-10 Rosemount Inc. Capacitive pressure sensor for a pressure transmitted where electric field emanates substantially from back sides of plates
US5705978A (en) 1995-09-29 1998-01-06 Rosemount Inc. Process control transmitter
DE19648048C2 (en) 1995-11-21 2001-11-29 Fuji Electric Co Ltd Detector device for pressure measurement based on measured capacitance values
US5757608A (en) 1996-01-25 1998-05-26 Alliedsignal Inc. Compensated pressure transducer
US6654697B1 (en) 1996-03-28 2003-11-25 Rosemount Inc. Flow measurement with diagnostics
US5668322A (en) 1996-06-13 1997-09-16 Rosemount Inc. Apparatus for coupling a transmitter to process fluid having a sensor extension selectively positionable at a plurality of angles
US5753820A (en) * 1996-10-25 1998-05-19 Arthur D. Little, Inc. Fluid pressure sensing unit incorporating diaphragm deflection sensing array
US20040015069A1 (en) 1996-12-27 2004-01-22 Brown David Lloyd System for locating inflamed plaque in a vessel
FR2762389B1 (en) * 1997-04-17 1999-05-21 Commissariat Energie Atomique FLEXIBLE MEMBRANE MICROSYSTEM FOR PRESSURE SENSOR AND METHOD FOR PRODUCING THE SAME
US5911162A (en) 1997-06-20 1999-06-08 Mks Instruments, Inc. Capacitive pressure transducer with improved electrode support
US5974893A (en) * 1997-07-24 1999-11-02 Texas Instruments Incorporated Combined pressure responsive transducer and temperature sensor apparatus
EP1071934B1 (en) 1998-04-09 2002-02-13 Plöchinger, Heinz Capacitive pressure or force sensor structure and method for producing the same
JP3567089B2 (en) * 1998-10-12 2004-09-15 株式会社日立製作所 Capacitive pressure sensor
US6295875B1 (en) * 1999-05-14 2001-10-02 Rosemount Inc. Process pressure measurement devices with improved error compensation
EP1207378B1 (en) * 1999-08-20 2007-08-08 Hitachi, Ltd. Semiconductor pressure sensor and pressure sensing device
US6701274B1 (en) 1999-08-27 2004-03-02 Rosemount Inc. Prediction of error magnitude in a pressure transmitter
US6520020B1 (en) 2000-01-06 2003-02-18 Rosemount Inc. Method and apparatus for a direct bonded isolated pressure sensor
DE60125018T2 (en) 2000-02-11 2007-06-28 Rosemount Inc., Eden Prairie OPTICAL PRINTER
US6662662B1 (en) 2000-05-04 2003-12-16 Rosemount, Inc. Pressure transmitter with improved isolator system
DE10052053A1 (en) * 2000-10-19 2002-04-25 Endress Hauser Gmbh Co Pressure measurement cell has contact pin fed through base body to electrode for capacitance measurement; contact pin, jointing solder and membrane bed form smooth surface
DE10117142A1 (en) * 2001-04-05 2002-10-10 Endress & Hauser Gmbh & Co Kg Capacitive differential pressure sensor incorporates correction of calculated differential pressure for eliminating dependency on network pressure
US6516672B2 (en) * 2001-05-21 2003-02-11 Rosemount Inc. Sigma-delta analog to digital converter for capacitive pressure sensor and process transmitter
US6828801B1 (en) * 2001-10-26 2004-12-07 Welch Allyn, Inc. Capacitive sensor
US6675655B2 (en) 2002-03-21 2004-01-13 Rosemount Inc. Pressure transmitter with process coupling
US6647794B1 (en) * 2002-05-06 2003-11-18 Rosemount Inc. Absolute pressure sensor
AU2003287644A1 (en) 2002-11-12 2004-06-03 Cidra Corporation An apparatus having an array of clamp on piezoelectric film sensors for measuring parameters of a process flow within a pipe
EP1631797A2 (en) 2003-06-05 2006-03-08 CiDra Corporation Apparatus for measuring velocity and flow rate of a fluid having a non-negligible axial mach number using an array of sensors
EP1646864B1 (en) 2003-07-18 2018-11-07 Rosemount Inc. Process diagnostics
US7523667B2 (en) 2003-12-23 2009-04-28 Rosemount Inc. Diagnostics of impulse piping in an industrial process
US6945115B1 (en) * 2004-03-04 2005-09-20 General Mems Corporation Micromachined capacitive RF pressure sensor
US7577543B2 (en) 2005-03-11 2009-08-18 Honeywell International Inc. Plugged impulse line detection
US7401522B2 (en) 2005-05-26 2008-07-22 Rosemount Inc. Pressure sensor using compressible sensor body
US7334484B2 (en) 2005-05-27 2008-02-26 Rosemount Inc. Line pressure measurement using differential pressure sensor
JP5222457B2 (en) * 2005-09-26 2013-06-26 株式会社日立製作所 Sensors and sensor modules

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578735A (en) * 1984-10-12 1986-03-25 Knecht Thomas A Pressure sensing cell using brittle diaphragm
US4670733A (en) * 1985-07-01 1987-06-02 Bell Microsensors, Inc. Differential pressure transducer
EP0291393A1 (en) * 1987-05-07 1988-11-17 OTIC FISCHER & PORTER S.A. Structure of a capacitive cell for measuring differential pressures
DE4333753A1 (en) * 1993-10-04 1994-05-11 Bosch Gmbh Robert Capacitive difference pressure sensor - has carrier supporting counter-electrodes between facing membranes carrying capacitor electrodes
US5969258A (en) * 1996-08-21 1999-10-19 Endress & Hauser Gmbh & Co. Evaluation unit of a differential-pressure sensor

Also Published As

Publication number Publication date
JP2009520206A (en) 2009-05-21
US7415886B2 (en) 2008-08-26
US20070151349A1 (en) 2007-07-05
EP1974195B1 (en) 2018-11-07
JP5547894B2 (en) 2014-07-16
CN101341385A (en) 2009-01-07
CN101341385B (en) 2011-11-23
EP1974195A1 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
US7415886B2 (en) Pressure sensor with deflectable diaphragm
EP1883797B1 (en) Line pressure measurement using differential pressure sensor
EP2580565B1 (en) Differential pressure sensor with line pressure measurement
US6295875B1 (en) Process pressure measurement devices with improved error compensation
EP2593766B1 (en) Differential pressure transmitter with complimentary dual absolute pressure sensors
EP3123134B1 (en) Span line pressure effect compensation for diaphragm pressure sensor
CN219977636U (en) Differential pressure sensor for sensing differential pressure of process fluid

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680048317.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008547276

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006844974

Country of ref document: EP