WO2007079661A1 - A Nd:LuVO4 LASER HAVING A WAVELENGTH OF 916nm - Google Patents

A Nd:LuVO4 LASER HAVING A WAVELENGTH OF 916nm Download PDF

Info

Publication number
WO2007079661A1
WO2007079661A1 PCT/CN2006/003798 CN2006003798W WO2007079661A1 WO 2007079661 A1 WO2007079661 A1 WO 2007079661A1 CN 2006003798 W CN2006003798 W CN 2006003798W WO 2007079661 A1 WO2007079661 A1 WO 2007079661A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
transmittance
gain medium
luv0
crystal
Prior art date
Application number
PCT/CN2006/003798
Other languages
French (fr)
Chinese (zh)
Inventor
Zhiguo Zhang
Zhiyi Wei
Ling Zhang
Chunyu Zhang
Huaijin Zhang
Jiyang Wang
Original Assignee
Institute Of Physics, Chinese Academy Of Sciences
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Physics, Chinese Academy Of Sciences, Shandong University filed Critical Institute Of Physics, Chinese Academy Of Sciences
Publication of WO2007079661A1 publication Critical patent/WO2007079661A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2302/00Amplification / lasing wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate

Abstract

A Nd:LuVO4 laser having a wavelength of 916nm includes a pump source (1), a optical coupling system (2) and a laser resonator. The laser resonator comprises at least two cavity mirrors (3, 6) and a laser gain medium (4) between the two cavity mirrors (3, 6). The laser gain medium (4) is Nd:LuVO4 crystal, and the pump source (1) pumps the laser gain medium (4) through the optical coupling system (2). The Nd:LuVO4 laser can obtain 458nm deep blue laser after frequency doubling.

Description

一种波长为 916nm的 Nd:LuV04激光器 技术领域 A Nd:LuV0 4 laser with a wavelength of 916 nm
本发明涉及一种激光装置, 尤其涉及一种波长为 916 nm的 Nd:LuV04 (掺钕钒酸 镥)激光器。 背景技术 The present invention relates to a laser device, and more particularly to a Nd:LuV0 4 (ytterbium-doped yttrium vanadate) laser having a wavelength of 916 nm. Background technique
蓝光激光器在高密度光存储、超短脉冲、数字视频技术、光谱技术、激光医学、 激光大屏幕显示、 海洋军事应用及水下资源探测中具有十分重要的应用前景。  Blue lasers have very important application prospects in high-density optical storage, ultrashort pulse, digital video technology, spectroscopy, laser medicine, laser large-screen display, marine military applications and underwater resource detection.
目前产生大功率蓝光激光的有效方法之一是采用 900 nm左右的激光直接倍频产 生蓝光激光输出。 如文献 1: "Chin. Phys. Lett. 20 (2003) 1064"中公开的, 现 有技术已经利用 Nd: YAG晶体成功地将 946nm的激光直接倍频产生高功率 473nm蓝 光激光输出。  One of the current effective methods for generating high-power blue lasers is to directly generate a blue laser output using a laser of about 900 nm. As disclosed in Document 1: "Chin. Phys. Lett. 20 (2003) 1064", the prior art has successfully utilized Nd:YAG crystals to directly multiply the 946 nm laser to produce a high power 473 nm blue laser output.
技术人员发现, 在激光大屛幕显示中, 为了使其色度更接近于自然光, 从而有 效地实现三元色的平衡, 人们期待获得短于 473 nm的深蓝激光的出现。近年来, 人 们在钒酸盐激光晶体的研究中获得重要进展。 其中由于 Nd :YV04和 Nd:GdV04晶体的 出现, 人们已经成功地利用 Nd :YV04和 Nd:GdV04晶体将基频分别为 914 nm和 912 nm 激光直接倍频获得了 457 nm和 456 nm深蓝激光的输出, 如美国 melles griot公 司的产品和文献 2: "Opt. Coranun. 205 (2002) 361 "中公开的。 The skilled person has found that in the laser large-screen display, in order to make the chromaticity closer to natural light, thereby effectively achieving the balance of the ternary color, it is expected to obtain a dark blue laser shorter than 473 nm. In recent years, important progress has been made in the study of vanadate laser crystals. Wherein due to the Nd: YV0 4 and Nd: GdV0 4 crystals appear, have been successfully used Nd: YV0 4 and Nd: GdV0 4 crystal fundamental frequency are 914 nm and 912 nm laser direct frequency doubling of 457 nm and 456 The output of the nm dark blue laser is disclosed in the product of Melles Griot, USA, and in Document 2: "Opt. Coranun. 205 (2002) 361".
最近,人们在钒酸盐家族中又成功地研制出一个新的成员, 这就是 :1^^04晶 体。 Nd: LuV04晶体除了具备现有钒酸盐晶体具有的良好的激光特性外, 研究表明 Nd:LuV04晶体相对于 Nd:YV0^B Nd:GdV04晶体具有更大的吸收和受激发射截面, 从 而是一个有着更为广泛应用前景的激光晶体,如文献 3: "Opt. Materials 26 (2004) 319"和文献 4: "Appl. Opt. 44 (2005) 7439"上公开的技术,人们已经利用 Nd: LuV04 晶体获得 1. 06um和 1. 34um的基频激光输出。 Recently, people have successfully developed a new member in the vanadate family, which is: 1 ^ ^ 0 4 crystal. Nd: LuV0 4 In addition to the conventional crystal vanadate crystal having good laser characteristics, studies have shown that Nd: LuV0 4 crystal with respect to the Nd: YV0 ^ B Nd: GdV0 4 crystal has greater absorption and stimulated emission cross section Thus, it is a laser crystal with a wider application prospect, as disclosed in Document 3: "Opt. Materials 26 (2004) 319" and Document 4: "Appl. Opt. 44 (2005) 7439". The fundamental frequency laser output of 1. 06 um and 1. 34 um was obtained using a Nd: LuV0 4 crystal.
人们期望利用 Nd: LuV04晶体能够建成又一个新波长 (916 nm) 的激光器, 从而 使用这种新型激光器, 通过倍频可以获得又一个深蓝激光光源。 发明内容 It is expected that a new wavelength (916 nm) laser can be built using the Nd: LuV0 4 crystal, so that with this new laser, another deep blue laser source can be obtained by frequency doubling. Summary of the invention
本发明的目的是提供一种能够产生 916nm新激光波长的 1« 1^04激光器; 并通 过这种新型激光器, 经倍频后产生新的深蓝激光波长输出。 It is an object of the present invention to provide a 1«1^0 4 laser capable of generating a new laser wavelength of 916 nm; This new type of laser produces a new deep blue laser wavelength output after frequency doubling.
为了达到上述目的, 本发明采取如下技术方案。  In order to achieve the above object, the present invention adopts the following technical solutions.
一种波长为 916nm的 : ^^04激光器, 包括泵源、光学耦合系统、激光谐振腔; 所述激光谐振腔由至少两个激光器端镜和置于激光器端镜之间的激光增益介质组 成, 所述激光增益介质为 Nd: V04晶体, 所述栗源通过光学耦合系统来泵浦所述激 光增益介质。 A wavelength of 916 nm: ^^0 4 laser, comprising a pump source, an optical coupling system, a laser cavity; the laser cavity is composed of at least two laser endoscopes and a laser gain medium placed between the laser end mirrors The laser gain medium is a Nd: V0 4 crystal, and the pump source is pumped by the optical coupling system.
进一步地, 其中激光器第一端镜作为激光谐振腔输入端镜, 该输入端镜是通过 在所述激光增益介质的一个端面上镀膜而使该激光器端镜和所述激光增益介质合二 为一, 激光增益介质另一端面镀有增透膜; 或者, 该输入端镜采用一独立的腔镜镀 膜作为输入端镜, 激光增益介质两端面镀有增透膜。 输出耦合腔镜同样进行镀膜处 理, 以抑制激光增益介质的 /2- 4111/24F3/2- 4113/2激光运转, 获得了 4F3/2-4I9/2能级跃 迁下 916nm激光的高效激光运转。 Further, wherein the first end mirror of the laser serves as a laser cavity input end mirror, the input end mirror combines the laser end mirror and the laser gain medium by coating on one end surface of the laser gain medium The other end of the laser gain medium is coated with an anti-reflection film; or, the input end mirror adopts a separate cavity mirror coating as an input end mirror, and both ends of the laser gain medium are coated with an anti-reflection film. The output coupling mirror is also coated to suppress the laser excitation of the /2 - 4 1 11/2 and 4 F 3/2 - 4 1 13/2 lasers, resulting in 4 F 3/2 - 4 I 9/ 2 high-efficiency laser operation of the 916nm laser at the energy level transition.
进一步地, 所述泵源对所述激光增益介质采用端面或侧面泵浦方式。  Further, the pump source adopts an end face or a side pumping manner to the laser gain medium.
进一步地, 在所述激光增益介质的泵浦端面上直接镀膜作为输入腔镜或釆用独 立的输入腔镜制成所述激光谐振腔输入端镜时, 镀膜参数为:  Further, when the laser cavity is directly coated on the pump end face of the laser gain medium as an input cavity mirror or a separate input cavity mirror is used to form the laser cavity input end mirror, the coating parameters are:
(a) 采用端面泵浦方式时, 对于 808nm透过率 T 90%, 对于 916nm反射率 R^99. 9%, 对于 1. 06um透过率 T 90%, 对于 1. 34um透过率 T 90%;  (a) For the 808 nm transmittance T 90%, for the 916 nm transmittance R ^ 99. 9%, for the 1. 06 um transmittance T 90%, for the 1. 34 um transmittance T 90 %;
(b)采用侧面泵浦方式时: 对于 916nm反射率 R 99. 9%, 对于 1. 06um透过率 T ^90%, 对于 1. 34um透过率 T ^90%;  (b) When using the side pumping method: For the 916 nm reflectance R 99.9%, for 1. 06um transmittance T ^90%, for 1. 34um transmittance T ^90%;
作为所述激光增益介质的 :1^¥04晶体的输出端鍍有对于 916nm、 1. 06um、 1. 34 的增透膜; As the laser gain medium: the output end of the 1 ^ ¥ 0 4 crystal is plated with an antireflection film for 916 nm, 1. 06 um, 1. 34;
作为激光谐振腔输出端镜的激光器第二端镜的鍍膜参数为: (a)在输出 916nm 激光时:对于 916nm透过率 T为 0. 05%-10%,对于 1. 06um透过率 T 90%,对于 1. 34um 透过率 T 90%; (b)在输出 458nm激光时:对于 916進反射率 R 99. 9%,对于 1. 06um 透过率 T 90%, 对于 1. 34um透过率 Τ 90%, 对于 458 nm为高透过率。  The transmittance of the second end mirror of the laser as the output end mirror of the laser cavity is: (a) when the output of the laser is 916 nm: for the 916 nm transmittance T is 0. 05% - 10%, for 1. 06 um transmittance T 90%, for 1. 34um transmittance T 90%; (b) when outputting 458nm laser: for 916 into the reflectivity R 99. 9%, for 1. 06um transmittance T 90%, for 1. 34um through The 过 rate is 90%, and the high transmittance is 458 nm.
进一步地, 作为激光谐振腔输出端镜的激光器第二端镜的镀膜参数, 在输出 458ran激光时, 对于 458nm透过率 T 95%。  Further, the coating parameter of the second end mirror of the laser as the output end mirror of the laser cavity is 95% transmittance at 458 nm when outputting the 458 ran laser.
进一步地, 所述激光谐振腔为直线腔或折叠腔结构。  Further, the laser cavity is a linear cavity or a folded cavity structure.
进一步地, 所述激光谐振腔还包括腔内功能元件, 该腔内功能元件包括调 Q元 件、 锁模元件、 倍频元件。 进一步地, 所述调 Q元件为主动调 Q元件或被动被动调 Q元件,实现调 Q运行; 所述锁模元件为主动锁模元件或被动锁模元件,实现锁模运行;所述倍频晶体为三硼 酸锂 (LB0)、 偏硼酸钡(BB0)、 硼酸铋 (BiB0)、 或铌酸钾(KNb03)晶体, 实现倍频输 出。 Further, the laser cavity further includes an intracavity function component, and the intracavity function component includes a Q-switching component, a mode-locking component, and a frequency doubling component. Further, the Q-switching component is an active Q-switching component or a passive passive Q-switching component to implement a Q-switching operation; the Clamping component is an active clamping component or a passive clamping component to implement a mode-locking operation; The crystal is a lithium triborate (LB0), barium metaborate (BB0), barium borate (BiB0), or potassium citrate (KNb0 3 ) crystal, which achieves a frequency-doubled output.
进一步地, 所述泵源是端面泵浦的 LD Bar (Laser Diode Bar, 简称 LD Bar) 光纤耦合半导体激光器, 或是 LD Bar光束整形半导体激光器, 或是 LD单管激光器; 或者, 所述泵源是侧面泵浦的单条 LD Bar列阵激光器, 或是多条 LD Bar列阵激光 益 as.。  Further, the pump source is an end-pumped LD Bar (Laser Diode Bar, LD Bar for short) fiber-coupled semiconductor laser, or an LD Bar beam-shaping semiconductor laser, or an LD single-tube laser; or, the pump source It is a side-pumped single LD Bar array laser, or multiple LD Bar array lasers.
进一步地, 所述激光增益介质为薄片或单棒 Nd :LuV04晶体或复合棒 Nd:LuV04晶 体。 Further, the laser gain medium is a sheet or a single rod Nd:LuV0 4 crystal or a composite rod Nd:LuV0 4 crystal.
进一步地, 所述复合棒 Nd: LuV04晶体由 Nd: LuV04晶体制成, 激光晶体两端扩散 键合未掺杂的 YAG或 LuV04晶体。 Further, the composite rod Nd : LuV0 4 crystal is made of Nd: LuV0 4 crystal, and the laser crystal is diffusion bonded to the undoped YAG or LuV0 4 crystal at both ends.
进一步地, 还包括一冷却装置对所述激光增益介质冷却, 该冷却装置按不同运 行条件温度在 1- 20°C可以调节, 其控温精度优于 ± 1°C。  Further, a cooling device is further included for cooling the laser gain medium, and the cooling device can be adjusted at a temperature of 1 to 20 ° C according to different operating conditions, and the temperature control accuracy is better than ± 1 ° C.
进一步地, 所述冷却装置是水冷却装置, 或是 TEC (Thermoelectric cooling, 简称 TEC)冷却装置, 或是水冷和风冷混合冷却装置。  Further, the cooling device is a water cooling device, or a TEC (Thermoelectric cooling, TEC for short) cooling device, or a water-cooled and air-cooled mixed cooling device.
进一步地, 所述激光谐振腔内还包括用于控制光束质量的选模元件。  Further, a selection device for controlling the quality of the beam is further included in the laser cavity.
进一步地, 还包括用于对倍频晶体进行温度控制的控温装置, 按不同倍频晶体 要求控温运行, 其控温精度优于 ±0. 5eC。 Further, the temperature control device for controlling the temperature of the frequency doubling crystal is controlled by a different frequency doubling crystal, and the temperature control accuracy is better than ±0. 5 e C.
本发明的有益效果在于:  The beneficial effects of the invention are:
本发明利用激光晶体可在 4F3/2- 2能级跃迁实现激光运转的特性,采用 Nd:LuV04 激光晶体, 同时通过对谐振腔镜合理的膜系设计成功地抑制了 4F3/2- 41„/2和 n~% 激光运转, 获得了 4F3/2_4I9/2能级跃迁下 916nm激光的运转。 并通过选择腔内功能元 件, 获得 916nm连续激光运转和 916 脉冲激光运转以及通过倍频获得 458nm深蓝 激光运转。 附图说明 The invention utilizes the laser crystal to realize the characteristics of laser operation at the 4 F 3/2 - 2 energy level transition, adopts the Nd : LuV0 4 laser crystal, and successfully suppresses the 4 F 3/ by the reasonable membrane design of the resonant cavity mirror. 2 - 4 1 „ /2 and n~% laser operation, the operation of the 916nm laser under the 4 F 3/2 _ 4 I 9/2 energy level transition was obtained. By selecting the intracavity functional elements, the continuous laser operation of 916 nm was obtained. 916 pulsed laser operation and 458 nm deep blue laser operation by frequency doubling.
图 1是本发明实施例 1和 3的结构示意图;  Figure 1 is a schematic view showing the structure of Embodiments 1 and 3 of the present invention;
图 2是本发明实施例 2的结构示意图。  Fig. 2 is a schematic view showing the structure of a second embodiment of the present invention.
附图标记- 1.二极管泵源 2. 光学耦合系统 3. 激光谐振腔输入端镜 4. 激光增益介质 5. 腔内功能元件 6. 激光谐振腔输出端镜 具体实施方式 Reference mark - 1. Diode pump source 2. Optical coupling system 3. Laser cavity input end mirror 4. Laser gain medium 5. In-cavity functional element 6. Laser cavity output end mirror embodiment
下面结合附图和具体实施方式对本发明作进一步详细描述: 实施例 1:  The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
参照图 1 以光纤耦合半导体激光器作为端面泵浦源, 制作 Nd:LuV04基频(916 nm)和倍频(458 nm)激光器。 Referring to Figure 1, a Nd:LuV0 4 fundamental (916 nm) and doubled (458 nm) laser was fabricated using a fiber-coupled semiconductor laser as the end-pump source.
如图 1所示, 泵源 1为 25W光纤耦合半导体激光器, 其工作波长为 808 nm, 光 纤芯径为 200 , 数值孔径 0. 22, 泵源 1与光学耦合系统 2通过光纤连接, 经光学 耦合系统 2聚焦的光斑直径大约为 240Um, 入射到激光增益介质 4的端面进行泵浦; 激光增益介质 4为 0. 5 at. % Nd离子掺杂的 Nd: LuV04晶体, 其尺寸为 3 X 3 X 2 mm3; 激光增益介质 4通过一冷却装置进行冷却, 本实施例采用热沉水冷装置 (图中未示 出), 其温度控制在 6flC; 在激光增益介质 4的泵浦端面上直接镀膜, 使其作为激光 器谐振腔输入端镜的第一端镜 3与激光增益介质 4合二为一,镀膜参数为:对于 916 nm反射率 R 99. 9%,比如反射率为 R=99. 9%;对于 808 nm透过率 T=90%,对于 1. 06 um 和 1. 34um透过率 T=90%; 激光增益介质 4的非泵浦端的端面鍍有对 916 ηηκ 1. 06 um 和 1. 34 um的增透膜; 基频 916nm激光输出时, 作为激光输出镜的激光器第二端镜 6是曲率半径为 100 匪的平凹镜, 其镀膜要求为: 对于 916 nm的透过率 T-3. 6%, 对于 1. 06um透过率 T=90%, 对于 1. 34um透过率 T=90%; 对于倍频激光输出方式, 激光腔内放置腔内功能元件 5, 本实施例中腔内功能元件 5是 LB0倍频晶体, 该倍 频晶体的两个端面镀有对 916 nm和 458 nm的增透膜, 该倍频晶体的尺寸为 3 X 3 X 10 mm3, 按 I类相位匹配方式切割, 切割参数为 θ =90β, Φ =21. 8°, 该倍频晶体通过 一温度控制装置来实现恒温控制,.温度控制在 6±0. 1°C; 作为激光谐振腔输出端镜 的第二激光器端镜 6是曲率半径为 100 顏的平凹镜, 其镀膜情况为: 对 916 nm反 射率 R=99. 9%,对于 1. 06um透过率 T=90%, 对于 1. 34ura透过率 T=90%。 对 458 nm 为高透过率, 基频实验谐振腔长为 18 mm, 倍频实验谐振腔长为 40 mm。 As shown in FIG. 1 , the pump source 1 is a 25 W fiber-coupled semiconductor laser having an operating wavelength of 808 nm, a core diameter of 200, and a numerical aperture of 0.22. The pump source 1 and the optical coupling system 2 are optically coupled and optically coupled. The focused spot of the system 2 is approximately 240 Um in diameter and is incident on the end face of the laser gain medium 4 for pumping; the laser gain medium 4 is 0.5 at. % Nd ion doped Nd: LuV0 4 crystal, the size of which is 3 X 3 X 2 mm 3 ; The laser gain medium 4 is cooled by a cooling device. This embodiment uses a heat sink water cooling device (not shown) whose temperature is controlled at 6 fl C; the pump end face of the laser gain medium 4 Direct coating, so that the first end mirror 3 as the laser cavity input end mirror and the laser gain medium 4 are combined into one, the coating parameters are: for the 916 nm reflectivity R 99.9%, such as the reflectivity R = 99.9%; for 808 nm transmittance T=90%, for 1. 06 um and 1.34um transmittance T=90%; the non-pump end of laser gain medium 4 is plated with 916 ηηκ 1. 06 um and 1.34 um anti-reflection film; laser as a laser output mirror at a fundamental frequency of 916 nm laser output The second end mirror 6 is a flat concave mirror having a radius of curvature of 100 ,, and the coating requirements are: for a transmittance of 916 nm T-3. 6%, for a transmittance of 1. 06 um T = 90%, for 1 34um transmittance T=90%; For the frequency doubled laser output mode, the intracavity functional component 5 is placed in the laser cavity, and the intracavity functional component 5 in this embodiment is a LB0 frequency doubling crystal, and the two end faces of the frequency doubling crystal It is coated with an antireflection coating of 916 nm and 458 nm. The size of the frequency doubling crystal is 3 X 3 X 10 mm 3 , and it is cut according to the type I phase matching method. The cutting parameters are θ = 90 β , Φ = 21. 8 ° The frequency doubling crystal is controlled by a temperature control device, and the temperature is controlled at 6±0. 1 ° C ; the second laser end mirror 6 as a laser cavity output end mirror is a flat concave having a radius of curvature of 100 Mirror, the coating conditions are: 916 nm reflectivity R = 99.9%, for 1. 06um transmittance T = 90%, for 1. 34ura transmittance T = 90%. For high transmittance at 458 nm, the fundamental resonant cavity length is 18 mm, and the frequency doubling experimental cavity length is 40 mm.
利用本实施例的装置获得 900 mW的 916 ran激光输出和 50 m 的倍频 458 ran蓝 光输出。 实施例 2: A 900 mW 916 ran laser output and a 50 m double frequency 458 ran blue output were obtained using the apparatus of the present embodiment. Example 2:
按照图 2 以单条 LD Bar列阵激光器作为侧面泵浦源, 制作 Nd :LuV04基频(916 nm)激光器。 According to Figure 2, a single LD Bar array laser was used as the side pump source to fabricate a Nd:LuV0 4 fundamental frequency (916 nm) laser.
如图 2所示, 泵源 1为 40 W单条 LD Bar列阵激光器, 其工作波长为 808 nm, 经光学耦合系统 2聚焦的光斑尺寸大约为 100 X 500 urn2, 图中泵源 1和光学耦合系 统 2是一体的; 激光增益介质 4为 0. 2 at. % Nd离子掺杂的 Nd : LuV04晶体, 其尺寸 为 3 X 3 X 5 mm3; 激光增益介质 4通过一冷却装置进行冷却, 本实施例采用热沉水冷 装置(图中未示出),其温度控制在 6°C;在激光增益介质 4的泵浦端面上直接镀膜, 使作为激光谐振腔输入端镜的激光器第一端镜 3与激光增益介质 4合二为一, 镀膜 参数为: 对于 916 nm反射率 R 99. 9%,比如反射率为 R=99. 9%; 对于 808 nm透过率 T=90%,对于 1. 06 um和 1. 34um透过率 T=90%; 激光增益介质 4的非泵浦端的端面镀 有对 916 nm和 1. 06 um和 1. 34 um的增透膜; 作为激光输出镜的第二激光器端镜 6 是曲率半径为 100 ram的平凹镜, 其镀膜情况为: 对于 916 ran的透过率 T=3. 6%, 对 于 1. 06um透过率 T=90%, 对于 1. 34um透过率 T=90%; 谐振腔长为 18 As shown in Figure 2, the pump source 1 is a 40 W single LD Bar array laser with an operating wavelength of 808 nm. The spot size focused by the optical coupling system 2 is approximately 100 X 500 urn 2 , and the pump source 1 and optics are shown. The coupling system 2 is integrated; the laser gain medium 4 is 0.2 at. % Nd ion doped Nd : LuV0 4 crystal, the size is 3 X 3 X 5 mm 3 ; the laser gain medium 4 is cooled by a cooling device In this embodiment, a heat sink water cooling device (not shown) is used, and the temperature is controlled at 6 ° C; the film is directly coated on the pump end surface of the laser gain medium 4, so that the laser as the input end mirror of the laser cavity is first. The end mirror 3 and the laser gain medium 4 are combined into one, and the coating parameters are: for the 916 nm reflectance R 99.9%, such as the reflectivity R = 99.9%; for the 808 nm transmittance T = 90%, For the 1. 06 um and 1.34 um transmittance T = 90%; the non-pump end of the laser gain medium 4 is plated with an antireflection coating of 916 nm and 1.06 um and 1.34 um; as a laser output The second laser end mirror 6 of the mirror is a flat concave mirror having a radius of curvature of 100 ram, and the coating condition is as follows: for 916 ran, the transmittance T = 3.6%, for 1. 06um transmittance T=90%, for 1. 34um transmittance T=90%; resonant cavity length is 18
利用本实施例的装置获得大于 1 W的 916 nm激光输出。 实施例 3:  A 916 nm laser output greater than 1 W was obtained using the apparatus of this example. Example 3:
参照图 1 以二极管单管作为端面泵浦源,制作 Nd : LuV04基频(916 nm)激光器。 如图 1所示, 泵源 1为 8 W单管半导体激光器, 其工作波长为 808 nm, 发光截 面为 150 X 1 um2, 经光学耦合系统 2聚焦后的光斑尺寸大约为 50 X 50 um2, 激光增 益介质 4为 0. 2 at. % Nd离子掺杂的 Nd :LuV04晶体, 其尺寸为 3 X 3 X 4 mm3; 激光增 益介质 4通过一冷却装置进行冷却, 本实施例采用热沉水冷装置 (图中未示出) , 其温度控制在 6°C; 在激光增益介质 4的泵浦端面上直接镀膜, 使作为激光谐振腔输 入端镜的激光器第一端镜 3与激光增益介质 4合二为一, 镀膜参数为: 对于 916 nm 反射率 R 99. 9%,比如反射率为 R=99. 9%; 对于 808 nm透过率 T=90%,对于 1. 06 um 和 1. 34um透过率 T=90°/。;激光增益介质 4的非泵浦端的端面镀有对 916 nm和 1. 06 um 和 1. 34 um的增透膜; 作为激光输出镜的第二激光器端镜 6是曲率半径为 100 mm的 平凹镜,其镀膜情况为:对于 916 nm的透过率 T=3. 6°/。,对于 1· 06um透过率 Τ=90%, 对于 1. 34um透过率 Τ=90%; 谐振腔长为 18 mm Referring to Figure 1, a Nd : LuV0 4 fundamental frequency (916 nm) laser was fabricated using a single diode tube as the end pump source. As shown in Figure 1, pump source 1 is an 8 W single-tube semiconductor laser with an operating wavelength of 808 nm and an emission cross section of 150 X 1 um 2 . The spot size after focusing by optical coupling system 2 is approximately 50 X 50 um 2 . The laser gain medium 4 is 0.2 at at % Nd ion doped Nd :LuV0 4 crystal, the size of which is 3 X 3 X 4 mm 3 ; the laser gain medium 4 is cooled by a cooling device, and the embodiment uses heat a submersible cooling device (not shown) whose temperature is controlled at 6 ° C; directly coated on the pump end face of the laser gain medium 4, so that the first end mirror 3 and the laser gain of the laser as the laser cavity input end mirror The dielectric is 4 in two, and the coating parameters are: for 916 nm reflectance R 99. 9%, such as reflectance R = 99. 9%; for 808 nm transmittance T = 90%, for 1. 06 um and 1. 34um transmittance T=90°/. The non-pump end of the laser gain medium 4 is plated with an antireflection coating for 916 nm and 1.06 um and 1.34 um; the second laser end mirror 6 as a laser output mirror is flat with a radius of curvature of 100 mm The coating of the concave mirror is: T = 3. 6 ° / for the transmittance of 916 nm. , for 1 · 06um transmittance Τ = 90%, for 1. 34um transmittance Τ = 90%; resonant cavity length is 18 mm
利用本实施例的装置获得 200 mW的 916 nm激光输出。 最后所应说明的是, 以上实施例仅用以说明本发明的技术方案而非限制。 尽管 参照实施例对本发明进行了详细说明, 本领域的普通技术人员应当理解, 对本发明 的技术方案进行修改或者等同替换, 都不脱离本发明技术方案的精神和范围, 其均 应涵盖在本发明的权利要求范围当中。 A 200 mW 916 nm laser output was obtained using the apparatus of this example. Finally, it should be noted that the above embodiments are merely illustrative of the technical solutions of the present invention and not limiting. While the invention has been described in detail herein with reference to the embodiments of the embodiments of the present invention Within the scope of the claims.

Claims

权利要求 Rights request
1、一种波长为 916nm的 1^04激光器, 包括泵源、光学耦合系统、激光谐振 腔; 所述激光谐振腔由至少两个激光器端镜和置于激光器端镜之间的激光增益介质 组成, 其特征在于, 所述激光增益介质为 Nd: LuV04晶体, 所述泵源通过光学耦合系 统来泵浦所述激光增益介质。 1. A 1 0 4 laser having a wavelength of 916 nm, comprising a pump source, an optical coupling system, and a laser cavity; wherein the laser cavity is composed of at least two laser endoscopes and a laser gain medium disposed between the laser end mirrors The composition is characterized in that the laser gain medium is a Nd: LuV0 4 crystal, and the pump source pumps the laser gain medium through an optical coupling system.
2、根据权利要求 1所述波长为 916nm的 Nd:LuV04激光器,其特征在于, 所述激 光器第一端镜作为激光谐振腔输入端镜, 该输入端镜是通过在所述激光增益介质的 一个端面上镀膜而使该激光器端镜和所述激光增益介质合二为一, 激光增益介质另 一端面镀有增透膜; 或者, 该输入端镜采用一独立的腔镜镀膜作为输入端镜, 激光 增益介质两端面有增透膜。 2. The Nd:LuV0 4 laser having a wavelength of 916 nm according to claim 1, wherein said first end mirror of said laser serves as a laser cavity input end mirror, and said input end mirror is passed through said laser gain medium Coating an end face such that the laser end mirror and the laser gain medium are combined into one, and the other end of the laser gain medium is coated with an anti-reflection film; or, the input end mirror adopts a separate cavity mirror coating as an input end mirror The laser gain medium has an anti-reflection film on both ends.
3、根据权利要求 1或 2所述波长为 916nm的 Nd:LuV04激光器,其特征在于, 所 述泵源是端面泵浦的 LD Bar光纤耦合半导体激光器, 或是 LD Bar光束整形半导体 激光器, 或是 LD单管激光器; 或者, 所述泵源是侧面泵浦的单条 LD Bar列阵激光 器, 或是多条 LD Bar列阵激光器。 . 3. The Nd:LuV0 4 laser having a wavelength of 916 nm according to claim 1 or 2, wherein the pump source is an end-pumped LD Bar fiber coupled semiconductor laser or an LD Bar beam shaping semiconductor laser, or It is an LD single-tube laser; alternatively, the pump source is a side-pumped single LD Bar array laser or multiple LD Bar array lasers. .
4、根据权利要求 1所述波长为 916nm的 Nd:LuV04激光器,其特征在于, 在所述 激光增益介质的泵浦端面上直接镀膜作为输入腔镜或采用独立的输入腔镜制成所述 激光谐振腔输入端镜时, 镀膜参数为: 4. The Nd:LuV0 4 laser having a wavelength of 916 nm according to claim 1, wherein the pumping end face of the laser gain medium is directly coated as an input cavity mirror or a separate input cavity mirror is used to make the When the laser cavity is input to the end mirror, the coating parameters are:
(a)采用端面泵浦方式时, 对于 808nm透过率 T 90%, 对于 916nm反射率 R^99. 9%, 对于 1. 06um透过率 T 90%, 对于 1. 34um透过率 Τ 90%;  (a) When the end-pumping method is used, the transmittance of 808 nm is T 90%, the reflectance of 916 nm is R^99.9%, and the transmittance of 1.06um is T 90%, and the transmittance of 1.34um is Τ 90. %;
(b)采用侧面泵浦方式时: 对于 916nm反射率 R 99. 9%, 对于 1. 06um透过率 T^90%, 对于 1. 34um透过率 T 90%;  (b) When using the side pumping method: For the 916 nm reflectance R 99.9%, for 1. 06um transmittance T^90%, for 1. 34um transmittance T 90%;
所述激光增益介质的输出端鍍有对于 916nm、 1. 06um、 1. 34um的增透膜; 作为激光谐振腔输出端镜的激光器第二端镜的镀膜参数为: (a)在输出 916ηπι 激光时:对于 916nm透过率 T为 0. 05%- 10%,对于 1. 06um透过率 T 90%,对于 1, 34um 透过率 T 90%; (b)在输出 458nm激光时:对于 916nm反射率 R 99. 9%,对于 1. 06um 透过率 T 90%, 对于 1. 34um透过率 Τ 90%, 对于 458 ran为髙透过率。  The output end of the laser gain medium is plated with an antireflection film for 916 nm, 1. 06 um, 1. 34 um; the coating parameters of the second end mirror of the laser as the output end mirror of the laser cavity are: (a) at the output 916 η π laser Time: for 916 nm transmittance T is 0. 05% - 10%, for 1. 06um transmittance T 90%, for 1, 34um transmittance T 90%; (b) when outputting 458nm laser: for 916nm The reflectance R 99.9%, for 1. 06um transmittance T 90%, for 1. 34um transmittance Τ 90%, for 458 ran is 髙 transmittance.
5、根据权利要求 4所述波长为 916nm的 Nd:LuV( 激光器,其特征在于, 作为激 光谐振腔输出端镜的激光器第二端镜的镀膜参数,在输出 458nm激光时,对于 458mn . 透过率 T 95%。 5. Nd:LuV having a wavelength of 916 nm according to claim 4 (laser, characterized in that the coating parameter of the second end mirror of the laser as the output end mirror of the laser cavity is 458 mn when outputting a 458 nm laser. The rate is T 95%.
6、根据权利要求 1所述波长为 916ran的 Nd: V( 激光器,其特征在于, 所述激 光谐振腔还包括腔内功能元件, 该腔内功能元件包括调 Q元件、 锁模元件、 倍频元 件; 所述调 Q元件为主动调 Q元件或被动被动调 Q元件; 所述锁模元件为主动锁模 元件或被动锁模元件; 所述倍频晶体为三硼酸锂、 偏硼酸钡、 硼酸铋、 或铌酸钾晶 体。 6. The Nd:V (laser) having a wavelength of 916ran according to claim 1, wherein the laser cavity further comprises an intracavity functional element, the intracavity functional element comprising a Q-switching component, a mode-locking component, and a frequency multiplication. The Q-switching component is an active Q-switching component or a passive passive Q-switching component; the clamping component is an active mode-locking component or a passive mode-locking component; and the frequency doubling crystal is lithium triborate, barium metaborate, boric acid Bismuth, or potassium citrate crystals.
7、根据权利要求 1所述波长为 916nm的 Nd:LuV( 激光器, 其特征在于,所述激 光增益介质为薄片或单棒 Nd:LuV04晶体或复合棒 Nd:LuV04晶体, 所述复合棒 Nd:LuV04晶体由 Nd:LuV04晶体制成, 激光晶体两端扩散键合未掺杂的 YAG或 LuV04 晶体。 7. The Nd:LuV (laser) having a wavelength of 916 nm according to claim 1, wherein the laser gain medium is a thin sheet or a single rod Nd: LuV0 4 crystal or a composite rod Nd: LuV0 4 crystal, the composite rod The Nd:LuV0 4 crystal is made of Nd:LuV0 4 crystal, and the laser crystal is diffusion bonded to the undoped YAG or LuV0 4 crystal at both ends.
8、根据权利要求 1所述波长为 916nm的 Nd:LuV04激光器, 其特征在于, 还包括 —冷却装置对所述激光增益介质冷却, 该冷却装置的温度在 1- 20flC可调, 其控温精 度优于 ±1°C; 所述冷却装置是水冷却装置, 或是 TEC冷却装置, 或是水冷和风冷混 合冷却装置。 8. The Nd:LuV0 4 laser having a wavelength of 916 nm according to claim 1, further comprising: a cooling device for cooling said laser gain medium, said cooling device having a temperature adjustable from 1 to 20 fl C, The temperature control accuracy is better than ±1 °C; the cooling device is a water cooling device, or a TEC cooling device, or a water-cooled and air-cooled mixed cooling device.
9、根据权利要求 1所述波长为 916nm的 Nd:LuV( 激光器, 其特征在于,所述激 光谐振腔内还包括用于控制光束质量的选模元件。  9. The Nd:LuV (laser) having a wavelength of 916 nm according to claim 1, characterized in that said laser cavity further comprises a mode selection element for controlling the quality of the beam.
10、 根据权利要求 1所述波长为 916nm的 1^04激光器, 其特征在于, 还包 括用于对倍频晶体进行温度控制的控温装置。 10, according to the claim 1 wavelength of 916nm laser 04 ^ 1, characterized in that, further comprising a temperature control device for frequency doubling crystal temperature control.
δ δ
PCT/CN2006/003798 2006-01-09 2006-12-31 A Nd:LuVO4 LASER HAVING A WAVELENGTH OF 916nm WO2007079661A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2006100001902A CN101000997A (en) 2006-01-09 2006-01-09 Nd:LuVO4 laser with wave of 916 nm
CN200610000190.2 2006-01-09

Publications (1)

Publication Number Publication Date
WO2007079661A1 true WO2007079661A1 (en) 2007-07-19

Family

ID=38255978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003798 WO2007079661A1 (en) 2006-01-09 2006-12-31 A Nd:LuVO4 LASER HAVING A WAVELENGTH OF 916nm

Country Status (2)

Country Link
CN (1) CN101000997A (en)
WO (1) WO2007079661A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532418A (en) * 2016-12-13 2017-03-22 天水师范学院 Low-threshold Nd:YAG laser device driven by solar cell panel
CN108574194A (en) * 2018-07-02 2018-09-25 南京天正明日自动化有限公司 A kind of miniature ridge waveguide laser, miniature laser and preparation method thereof
CN113131335A (en) * 2021-04-13 2021-07-16 山东大学 Compensation system for plant photosynthesis in agriculture based on self-frequency-doubling laser

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976797B (en) * 2010-10-09 2011-09-07 山西大学 Locking method of single photon optical resonant cavity and device thereof
CN102354901B (en) * 2011-09-30 2014-07-23 武汉新特光电技术有限公司 Semiconductor side pumped solid-state laser
CN102810811A (en) * 2012-07-10 2012-12-05 苏州科医世凯半导体技术有限责任公司 Medical blue-light laser
CN106374329A (en) * 2016-12-01 2017-02-01 江苏师范大学 Cross-polarization dual-wavelength synchronous resonation mode-locked laser
CN112787208A (en) * 2021-03-24 2021-05-11 镭泽精密制造(苏州)有限公司 LD end pump S-MOPA laser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1402387A (en) * 1917-10-13 1922-01-03 Splitdorf Electrical Co Ignition device for internal-combustion engines
US5751751A (en) * 1993-08-26 1998-05-12 Laser Power Corporation Deep blue microlaser
US6807210B2 (en) * 2002-04-02 2004-10-19 Ngk Insulators, Ltd. Systems and a method for generating blue laser beam
CN1558476A (en) * 2004-02-05 2004-12-29 中国科学院物理研究所 LD end surface pumping total solid-state intracavity doubling watt level continuous blue laser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1402387A (en) * 1917-10-13 1922-01-03 Splitdorf Electrical Co Ignition device for internal-combustion engines
US5751751A (en) * 1993-08-26 1998-05-12 Laser Power Corporation Deep blue microlaser
US6807210B2 (en) * 2002-04-02 2004-10-19 Ngk Insulators, Ltd. Systems and a method for generating blue laser beam
CN1558476A (en) * 2004-02-05 2004-12-29 中国科学院物理研究所 LD end surface pumping total solid-state intracavity doubling watt level continuous blue laser

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG H. ET AL.: "Continuous-wave laser performance of Nd: LuVO4 crystal operating at 1.34mum", APPLIED OPTICS, vol. 44, no. 34, 1 December 2005 (2005-12-01), pages 7439 - 7441, XP001237590 *
ZHAO S. ET AL.: "Growth ad characterization of the new laser crystal Nd:LuVO4", OPTICAL MATERIALS, vol. 26, 11 March 2004 (2004-03-11), pages 319 - 325, XP004518684 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532418A (en) * 2016-12-13 2017-03-22 天水师范学院 Low-threshold Nd:YAG laser device driven by solar cell panel
CN108574194A (en) * 2018-07-02 2018-09-25 南京天正明日自动化有限公司 A kind of miniature ridge waveguide laser, miniature laser and preparation method thereof
CN113131335A (en) * 2021-04-13 2021-07-16 山东大学 Compensation system for plant photosynthesis in agriculture based on self-frequency-doubling laser

Also Published As

Publication number Publication date
CN101000997A (en) 2007-07-18

Similar Documents

Publication Publication Date Title
Hanson Improved laser performance at 946 and 473 nm from a composite Nd: Y3Al5O12 rod
US6504858B2 (en) Lasers with low doped gain medium
Gao et al. 456-nm deep-blue laser generation by intracavity frequency doubling of Nd: GdVO 4 under 879-nm diode pumping
WO2007079661A1 (en) A Nd:LuVO4 LASER HAVING A WAVELENGTH OF 916nm
Konno et al. 80 W cw TEM 00 1064 nm beam generation by use of a laser-diode-side-pumped Nd: YAG rod laser
US20070253453A1 (en) Solid-state laser arrays using
Lupei et al. 1064 nm laser emission of highly doped Nd: Yttrium aluminum garnet under 885 nm diode laser pumping
WO2008055390A1 (en) Third harmonic ultraviolet laser of semiconductor double end face pumping
CN210201151U (en) All-solid-state green laser
Chen et al. Efficient high-power diode-end-pumped TEM/sub 00/Nd: YVO 4 laser
CN110086070B (en) Novel thin-chip laser structure with high pumping absorption and high power output
JP2002141588A (en) Solid state laser device and solid state laser system
Lu et al. 6.2-W deep blue light generation by intracavity frequency-doubled Nd: GdVO4 using BiBO
Yu et al. Quasi-three-level Nd: GdVO4 laser under diode pumping directly into the emitting level
Chen et al. Efficient generation of 914 nm laser with high beam quality in Nd: YVO4 crystal pumped by π‐polarized 808 nm diode‐laser
Shen et al. Efficient and compact intracavity-frequency-doubled Nd: GdVO4/KTP laser end-pumped by a fiber-coupled laser diode
Prado et al. Record Optical Efficiency for a Diode-Side-Pumped Nd: YLiF 4 Laser Operating at 1053 nm
Duan et al. Diode-pumped high-efficiency Tm: YLF laser at room temperature
Liang et al. Diode-pumped continuous-wave eye-safe Nd: YAP laser at 1.43 μm
Klopp et al. Potassium ytterbium tungstate provides the smallest laser quantum defect
Quan et al. LD-pumped passively Q-switched Nd: YVO4 infrared and green lasers
De-Hua et al. Compact high-power blue light from a diode-pumped intracavity-doubled Nd: YAG laser
Jing-liang et al. Generation of cw Radiation of 273mW at 671nm from a Diode-Pumped Intracavity-Doubled Nd: YVO4 Laser
CN213636603U (en) Three-wavelength double-end comprehensive pumping Cr Er YSGG acousto-optic Q-switched laser
Du et al. Laser-diode-array end-pumped 8.2-W CW Nd: GdVO 4 laser at 1.34 μm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06840828

Country of ref document: EP

Kind code of ref document: A1