WO2007140424A3 - Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen - Google Patents

Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen Download PDF

Info

Publication number
WO2007140424A3
WO2007140424A3 PCT/US2007/069999 US2007069999W WO2007140424A3 WO 2007140424 A3 WO2007140424 A3 WO 2007140424A3 US 2007069999 W US2007069999 W US 2007069999W WO 2007140424 A3 WO2007140424 A3 WO 2007140424A3
Authority
WO
WIPO (PCT)
Prior art keywords
atomic oxygen
silicon
vapor deposition
chemical vapor
high quality
Prior art date
Application number
PCT/US2007/069999
Other languages
French (fr)
Other versions
WO2007140424A2 (en
Inventor
Nitin K Ingle
Zheng Yuan
Paul Gee
Kedar Sapre
Original Assignee
Applied Materials Inc
Nitin K Ingle
Zheng Yuan
Paul Gee
Kedar Sapre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/754,440 external-priority patent/US7825038B2/en
Application filed by Applied Materials Inc, Nitin K Ingle, Zheng Yuan, Paul Gee, Kedar Sapre filed Critical Applied Materials Inc
Priority to EP07797890.6A priority Critical patent/EP2024532A4/en
Priority to JP2009513437A priority patent/JP2009539268A/en
Priority to CN2007800001303A priority patent/CN101310039B/en
Publication of WO2007140424A2 publication Critical patent/WO2007140424A2/en
Publication of WO2007140424A3 publication Critical patent/WO2007140424A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour

Abstract

Methods of depositing a silicon oxide layer on a substrate are described. The methods may include the steps of providing a substrate to a deposition chamber, generating an atomic oxygen precursor outside the deposition chamber, and introducing the atomic oxygen precursor into the chamber. The methods may also include introducing a silicon precursor to the deposition chamber, where the silicon precursor and the atomic oxygen precursor are first mixed in the chamber. The silicon precursor and the atomic oxygen precursor react to form the silicon oxide layer on the substrate, and the deposited silicon oxide layer may be annealed. Systems to deposit a silicon oxide layer on a substrate are also described.
PCT/US2007/069999 2006-05-30 2007-05-30 Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen WO2007140424A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07797890.6A EP2024532A4 (en) 2006-05-30 2007-05-30 Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen
JP2009513437A JP2009539268A (en) 2006-05-30 2007-05-30 Chemical vapor deposition of high quality fluidized silicon dioxide using silicon-containing precursors and atomic oxygen
CN2007800001303A CN101310039B (en) 2006-05-30 2007-05-30 Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US80348306P 2006-05-30 2006-05-30
US60/803,483 2006-05-30
US11/754,440 US7825038B2 (en) 2006-05-30 2007-05-29 Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen
US11/754,440 2007-05-29

Publications (2)

Publication Number Publication Date
WO2007140424A2 WO2007140424A2 (en) 2007-12-06
WO2007140424A3 true WO2007140424A3 (en) 2008-02-21

Family

ID=38779452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/069999 WO2007140424A2 (en) 2006-05-30 2007-05-30 Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen

Country Status (3)

Country Link
EP (1) EP2024532A4 (en)
JP (1) JP2009539268A (en)
WO (1) WO2007140424A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8466073B2 (en) 2011-06-03 2013-06-18 Applied Materials, Inc. Capping layer for reduced outgassing
US8551891B2 (en) 2011-10-04 2013-10-08 Applied Materials, Inc. Remote plasma burn-in
US8617989B2 (en) 2011-09-26 2013-12-31 Applied Materials, Inc. Liner property improvement
US8846536B2 (en) 2012-03-05 2014-09-30 Novellus Systems, Inc. Flowable oxide film with tunable wet etch rate
US8889566B2 (en) 2012-09-11 2014-11-18 Applied Materials, Inc. Low cost flowable dielectric films
US8980382B2 (en) 2009-12-02 2015-03-17 Applied Materials, Inc. Oxygen-doping for non-carbon radical-component CVD films
US9144147B2 (en) 2011-01-18 2015-09-22 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9245739B2 (en) 2006-11-01 2016-01-26 Lam Research Corporation Low-K oxide deposition by hydrolysis and condensation
US9257302B1 (en) 2004-03-25 2016-02-09 Novellus Systems, Inc. CVD flowable gap fill
US9285168B2 (en) 2010-10-05 2016-03-15 Applied Materials, Inc. Module for ozone cure and post-cure moisture treatment
US9404178B2 (en) 2011-07-15 2016-08-02 Applied Materials, Inc. Surface treatment and deposition for reduced outgassing
US9412581B2 (en) 2014-07-16 2016-08-09 Applied Materials, Inc. Low-K dielectric gapfill by flowable deposition

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498273B2 (en) * 2006-05-30 2009-03-03 Applied Materials, Inc. Formation of high quality dielectric films of silicon dioxide for STI: usage of different siloxane-based precursors for harp II—remote plasma enhanced deposition processes
US7541297B2 (en) 2007-10-22 2009-06-02 Applied Materials, Inc. Method and system for improving dielectric film quality for void free gap fill
US7964040B2 (en) 2007-11-08 2011-06-21 Applied Materials, Inc. Multi-port pumping system for substrate processing chambers
KR101880838B1 (en) * 2008-08-04 2018-08-16 더 트러스티즈 오브 프린스턴 유니버시티 Hybrid dielectric material for thin film transistors
JP2010103495A (en) * 2008-09-29 2010-05-06 Adeka Corp Semiconductor device, and apparatus and method for manufacturing the same
US8557712B1 (en) * 2008-12-15 2013-10-15 Novellus Systems, Inc. PECVD flowable dielectric gap fill
US8278224B1 (en) 2009-09-24 2012-10-02 Novellus Systems, Inc. Flowable oxide deposition using rapid delivery of process gases
US20110151677A1 (en) * 2009-12-21 2011-06-23 Applied Materials, Inc. Wet oxidation process performed on a dielectric material formed from a flowable cvd process
US9719169B2 (en) 2010-12-20 2017-08-01 Novellus Systems, Inc. System and apparatus for flowable deposition in semiconductor fabrication
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
WO2012165166A1 (en) * 2011-06-03 2012-12-06 株式会社日立国際電気 Method for manufacturing semiconductor device, substrate processing method, and substrate processing apparatus
GB201209693D0 (en) * 2012-05-31 2012-07-18 Dow Corning Silicon wafer coated with a passivation layer
JP5943888B2 (en) * 2013-08-28 2016-07-05 株式会社東芝 Manufacturing method of semiconductor device
US9847222B2 (en) 2013-10-25 2017-12-19 Lam Research Corporation Treatment for flowable dielectric deposition on substrate surfaces
US10049921B2 (en) 2014-08-20 2018-08-14 Lam Research Corporation Method for selectively sealing ultra low-k porous dielectric layer using flowable dielectric film formed from vapor phase dielectric precursor
US9916977B2 (en) 2015-11-16 2018-03-13 Lam Research Corporation Low k dielectric deposition via UV driven photopolymerization
US10388546B2 (en) 2015-11-16 2019-08-20 Lam Research Corporation Apparatus for UV flowable dielectric
KR102613423B1 (en) * 2015-12-21 2023-12-12 버슘머트리얼즈 유에스, 엘엘씨 Compositions and methods using same for deposition of silicon-containing film
JP6573578B2 (en) * 2016-05-31 2019-09-11 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing apparatus, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054387A1 (en) * 1996-11-14 2001-12-27 Jonathan Frankel Heater/lift assembly for high temperature processing chamber
US20040079118A1 (en) * 2002-10-23 2004-04-29 Applied Materials Inc Method of forming a phosphorus doped optical core using a PECVD process

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141763A (en) * 1984-04-24 1986-02-28 Anelva Corp Thin film manufacturing apparatus
DE69130947T2 (en) * 1991-01-08 1999-07-08 Fujitsu Ltd METHOD FOR FORMING A SILICON OXIDE FILM
JPH0982696A (en) * 1995-09-18 1997-03-28 Toshiba Corp Manufacture of semiconductor device and semiconductor manufacturing equipment
JPH09251997A (en) * 1996-03-18 1997-09-22 Toshiba Corp Method for forming silicon oxide film
JPH09260369A (en) * 1996-03-25 1997-10-03 Toshiba Corp Forming method of insulating film
US6114216A (en) * 1996-11-13 2000-09-05 Applied Materials, Inc. Methods for shallow trench isolation
JP3164019B2 (en) * 1997-05-21 2001-05-08 日本電気株式会社 Silicon oxide film, method for forming the same, and film forming apparatus
US6413583B1 (en) * 1998-02-11 2002-07-02 Applied Materials, Inc. Formation of a liquid-like silica layer by reaction of an organosilicon compound and a hydroxyl forming compound
US20010052323A1 (en) * 1999-02-17 2001-12-20 Ellie Yieh Method and apparatus for forming material layers from atomic gasses
JP3245136B2 (en) * 1999-09-01 2002-01-07 キヤノン販売株式会社 Method of improving film quality of insulating film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054387A1 (en) * 1996-11-14 2001-12-27 Jonathan Frankel Heater/lift assembly for high temperature processing chamber
US20040079118A1 (en) * 2002-10-23 2004-04-29 Applied Materials Inc Method of forming a phosphorus doped optical core using a PECVD process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2024532A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9257302B1 (en) 2004-03-25 2016-02-09 Novellus Systems, Inc. CVD flowable gap fill
US9245739B2 (en) 2006-11-01 2016-01-26 Lam Research Corporation Low-K oxide deposition by hydrolysis and condensation
US8980382B2 (en) 2009-12-02 2015-03-17 Applied Materials, Inc. Oxygen-doping for non-carbon radical-component CVD films
US9285168B2 (en) 2010-10-05 2016-03-15 Applied Materials, Inc. Module for ozone cure and post-cure moisture treatment
US9144147B2 (en) 2011-01-18 2015-09-22 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8466073B2 (en) 2011-06-03 2013-06-18 Applied Materials, Inc. Capping layer for reduced outgassing
US9404178B2 (en) 2011-07-15 2016-08-02 Applied Materials, Inc. Surface treatment and deposition for reduced outgassing
US8617989B2 (en) 2011-09-26 2013-12-31 Applied Materials, Inc. Liner property improvement
US8551891B2 (en) 2011-10-04 2013-10-08 Applied Materials, Inc. Remote plasma burn-in
US8846536B2 (en) 2012-03-05 2014-09-30 Novellus Systems, Inc. Flowable oxide film with tunable wet etch rate
US9299559B2 (en) 2012-03-05 2016-03-29 Novellus Systems, Inc. Flowable oxide film with tunable wet etch rate
US8889566B2 (en) 2012-09-11 2014-11-18 Applied Materials, Inc. Low cost flowable dielectric films
US9412581B2 (en) 2014-07-16 2016-08-09 Applied Materials, Inc. Low-K dielectric gapfill by flowable deposition

Also Published As

Publication number Publication date
EP2024532A4 (en) 2014-08-06
JP2009539268A (en) 2009-11-12
EP2024532A2 (en) 2009-02-18
WO2007140424A2 (en) 2007-12-06

Similar Documents

Publication Publication Date Title
WO2007140424A3 (en) Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen
Ovanesyan et al. Low-temperature conformal atomic layer deposition of SiN x films using Si2Cl6 and NH3 plasma
WO2006057709A3 (en) Method for deposition of metal layers from metal carbonyl precursors
TW200610057A (en) Low-temperature plasma-enhanced chemical vapor deposition of silicon-nitrogen-containing films
TW200802605A (en) Integrated process modulation (IPM) a novel solution for gapfill with HDP-CVD
TW200717709A (en) A method for forming a ruthenium metal layer on a patterned substrate
WO2011090592A3 (en) Chemical vapor deposition improvements through radical-component modification
WO2010077728A3 (en) Densification process for titanium nitride layer for submicron applications
TW200622022A (en) A method and system for forming a passivated metal layer
WO2005076918A3 (en) Barrier layer process and arrangement
WO2008048862A3 (en) Formation of high quality dielectric films of silicon dioxide for sti: usage of different siloxane-based precursors for harp ii - remote plasma enhanced deposition processes
WO2007117989A3 (en) Method of forming mixed rare earth oxynitride and aluminum oxynitride films by atomic layer deposition
WO2005121397A3 (en) Controlled vapor deposition of multilayered coatings adhered by an oxide layer
TW200617200A (en) Multilayer coatings by plasma enhanced chemical vapor deposition
WO2010062582A3 (en) Vapor deposition method for ternary compounds
WO2011126748A3 (en) Depositing conformal boron nitride films
WO2006028573A3 (en) Deposition of ruthenium and/or ruthenium oxide films
WO2007147020A3 (en) Cobalt precursors useful for forming cobalt-containing films on substrates
TW200512313A (en) In-situ-etch-assisted HDP deposition using SiF4 and hydrogen
TW200633056A (en) Improved deposition rate plasma enhanced chemical vapor process
WO2007118006A3 (en) Method of forming mixed rare earth nitride and aluminum nitride films by atomic layer deposition
TW200626748A (en) Methods for depositing tungsten layers employing atomic layer deposition techniques
WO2009103925A3 (en) Growth of carbon nanotubes on carbon or metal substrates
WO2004010469A3 (en) Atomic layer deposition of multi-metallic precursors
EP2058416A3 (en) Preparation of a metal-containing film via ALD or CVD processes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000130.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009513437

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077020861

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007797890

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07797890

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE