WO2008008261A2 - Adjustment indicator integrated in footbed for gliding board binding - Google Patents

Adjustment indicator integrated in footbed for gliding board binding Download PDF

Info

Publication number
WO2008008261A2
WO2008008261A2 PCT/US2007/015512 US2007015512W WO2008008261A2 WO 2008008261 A2 WO2008008261 A2 WO 2008008261A2 US 2007015512 W US2007015512 W US 2007015512W WO 2008008261 A2 WO2008008261 A2 WO 2008008261A2
Authority
WO
WIPO (PCT)
Prior art keywords
binding
footbed
gliding board
base
heel
Prior art date
Application number
PCT/US2007/015512
Other languages
French (fr)
Other versions
WO2008008261A8 (en
WO2008008261A3 (en
Inventor
Kahlil Zaloom
Christopher Cunningham
Florian Lang
Matt Windt
Christopher Doyle
Richard William Wagner
Ryan Larson
Gregory Aaron Dean
Greg Reagan
Original Assignee
The Burton Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Burton Corporation filed Critical The Burton Corporation
Priority to DE602007003983T priority Critical patent/DE602007003983D1/en
Priority to EP07810218A priority patent/EP2038022B1/en
Priority to AT07810218T priority patent/ATE452690T1/en
Priority to JP2009518373A priority patent/JP5243418B2/en
Publication of WO2008008261A2 publication Critical patent/WO2008008261A2/en
Publication of WO2008008261A8 publication Critical patent/WO2008008261A8/en
Publication of WO2008008261A3 publication Critical patent/WO2008008261A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C10/00Snowboard bindings
    • A63C10/28Snowboard bindings characterised by auxiliary devices or arrangements on the bindings
    • A63C10/285Pads as foot or binding supports, e.g. pads made of foam
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C10/00Snowboard bindings
    • A63C10/02Snowboard bindings characterised by details of the shoe holders
    • A63C10/04Shoe holders for passing over the shoe
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C10/00Snowboard bindings
    • A63C10/16Systems for adjusting the direction or position of the bindings
    • A63C10/18Systems for adjusting the direction or position of the bindings about a vertical rotation axis relative to the board
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C10/00Snowboard bindings
    • A63C10/16Systems for adjusting the direction or position of the bindings
    • A63C10/20Systems for adjusting the direction or position of the bindings in longitudinal or lateral direction relative to the board
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C10/00Snowboard bindings
    • A63C10/16Systems for adjusting the direction or position of the bindings
    • A63C10/22Systems for adjusting the direction or position of the bindings to fit the size of the shoe
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C10/00Snowboard bindings
    • A63C10/24Calf or heel supports, e.g. adjustable high back or heel loops
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C10/00Snowboard bindings
    • A63C10/26Shock or vibration dampers
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C5/00Skis or snowboards
    • A63C5/03Mono skis; Snowboards
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C5/00Skis or snowboards
    • A63C5/12Making thereof; Selection of particular materials
    • A63C5/128A part for the binding being integrated within the board structure, e.g. plate, rail, insert

Definitions

  • Bindings are widely used to secure a rider's foot to a gliding board, whether a snowboard, wakeboard, water ski, snow ski, and so on.
  • One such type of binding includes a so-called “baseless” binding in which a rider's foot may be placed directly on the gliding board surface and be secured in place by a binding that partially surrounds the foot.
  • U. S . Patent 6,641 , 163 discloses a baseless binding arrangement in which an interface element is positioned between the sole of the rider's boot and the top side of the gliding board.
  • the interface element includes at least one zone that is made of a thermoformable material that is capable of matching the imprint of the sole of the rider's boot, allowing the boot to be immobilized precisely in position with respect to the binding.
  • a binding for use with a gliding board includes a footbed constructed and arranged to support a rider's foot, and a base constructed and arranged to be secured to a gliding board and to engage with the footbed portion.
  • a "foot” means a bare foot as well as a foot covered by footwear, such as a sock, shoe, sneaker, boot, etc.
  • the base may be constructed and arranged to allow a rider's foot to directly contact the gliding board when secured to the gliding board without the footbed, i.e., may be used as a conventional "baseless" binding.
  • At least one foot engagement member may be secured to the base and constructed and arranged to secure the rider's foot relative to the base.
  • one or more binding straps, step-in binding engagement devices or other suitable arrangements may be used to secure a rider's boot to the base.
  • a highback may be secured to the base and constructed and arranged to support a rider's leg.
  • the footbed may include an adjustment indicator that allows for determination of a longitudinal position, heel-to-toe position and/or an angular position when the base is secured to a gliding board.
  • a footbed that is removable from a binding base may provide indicator features that may help a rider accurately position the binding on a board during mounting.
  • a binding for use with a gliding board includes a footbed constructed and arranged to support a rider's foot and that has a heel portion and a toe portion that are attached to each other (either directly or indirectly via an intermediate member or members).
  • the binding base may be constructed and arranged to be secured to a gliding board and to operate with the footbed. However, the base may be constructed and arranged to allow a rider's foot to directly contact the gliding board when secured to the gliding board without the footbed.
  • At least one foot engagement member may be secured to the base and constructed and arranged to secure the rider's foot relative to the base.
  • a highback may be secured to the base and constructed and arranged to support a rider's leg.
  • the toe portion of the footbed may be adjustable in position relative to the heel portion, e.g., in the heel-to-toe direction, and the footbed may be removed from the base.
  • a binding may include a removable footbed (thereby providing a conventional "baseless" binding), and if used, the footbed may provide a rider with an adjustable toe ramp feature, e.g., to accommodate different boot types and/or differently sized feet.
  • This aspect of the invention may be used with the adjustment indicator feature described above, if desired.
  • a binding for use with a gliding board may include a footbed constructed and arranged to support a rider's foot, and a base constructed and arranged to be secured to a gliding board and to engage with the footbed.
  • the footbed in this aspect of the invention may be permanently affixed to the base (e.g., integrally molded with the base) or may be removable from the base so that the base may be used as a baseless binding.
  • At least one foot engagement member may be secured to the base and constructed and arranged to secure the rider's foot relative to the base, and a highback may be secured to the base and constructed and arranged to support a rider's legi
  • the binding may include an indicator element that is engageable with the gliding board to remain stationary relative to the gliding board in at least heel-to-toe, and angular directions, yet the indicator element may be movable independent of the footbed and the base, thereby providing an indication of a heel- to-toe position and/or an angular position of the footbed and base relative to the gliding board.
  • the indicator element may be separate and apart from any hold down disk that might be used to mount the binding to a board.
  • the indicator element may be a member that is attached to the footbed, but is allowed to move independently of the footbed so as to provide an indication of the footbed's position relative to the board.
  • a method for mounting a snowboard binding to a gliding board includes providing a snowboard binding having footbed removably mounted to a base, with the footbed including an adjustment indicator for determination of a longitudinal position, heel-to-toe position and/or an angular position of the binding when secured to a gliding board.
  • a gliding board is provided, and the base is secured to the gliding board.
  • a position of the snowboard binding may be determined using the adjustment indicator.
  • a snowboard in another aspect of the invention, includes a top reinforcement layer, a bottom reinforcement layer, and a core (e.g., made of wood strips secured together) positioned between the top and bottom reinforcement layers.
  • a channel for mounting a binding to the board may be secured within an opening in the core such that no portion of the core is located above or below the channel, and so that the top reinforcement layer is positioned above the channel, and the bottom reinforcement layer is positioned below the channel.
  • the channel may be a metal member having a "C" shaped cross section and may be constructed and arranged to receive a fastener (e.g., a T-nut) for mounting a binding to the snowboard.
  • FIG. 1 shows a perspective view of a binding in accordance with the invention
  • FIG. 2 shows an exploded view of the binding of FIG. 1;
  • FIG. 3 shows a top exploded view of the footbed for the binding;
  • FIG. 4 shows a bottom exploded view of the footbed for the binding:
  • FIG. 5 shows an exploded view of the heel portion of the footbed
  • FIG. 6 shows an indicator element for the footbed
  • FIG. 7 shows the binding being mounted to a board
  • FIG. 8 shows a cross sectional view along the line 8-8 in FIG. 7;
  • FIG. 9 shows a top view of the binding with possible adjustment directions indicated.
  • FIGS. 10 and 11 show alternate embodiments of a footbed incorporating a cushioning or other support element.
  • FIG. 12 shows a rear view of a highback for the binding.
  • an adjustment indicator with a binding so as to provide an indication of position of the binding (the base and/or footbed) relative to the board on which the binding is mounted.
  • the adjustment indicator may include one or more parts, e.g., a viewing window formed in the footbed, and an indicator element, e.g., a planar member, that is attached to the footbed and viewable in the window.
  • an indicator element may be moveable relative to the footbed or base, e.g., the element may be mounted in a pocket in the footbed and be movable within a plane that is substantially parallel to the top surface of a board to which the binding is mounted.
  • the indicator element may be separate and apart from a hold down disk (if any) used to mount the binding to the gliding board, and may engage with the gliding board to remain stationary relative to the gliding board in at least heel-to-toe and angular directions despite movement of the binding relative to the board.
  • the indicator element may engage with the board in any suitable way, such as by one or more fasteners, adhesive (whether permanent or not), a rib or tab that engages with a corresponding slot or hole in the board, a hole in the indicator element that engages with a pin or other element on the board, and so on.
  • the footbed and the base may be moved independent of the indicator element in heel-to-toe and/or angular directions so that the indicator element may provide an indication of a heel-to-toe position and/or an angular position of the footbed and base relative to the gliding board.
  • the indicator element may also provide an indication of a longitudinal position of the binding relative to the board, e.g., by way of a pointer, marking or other feature that may be aligned with a marking or other feature on the board and viewed by the rider.
  • FIG. 1 shows a perspective view of a snowboard binding 1 that incorporates various aspects of the invention.
  • This illustrative embodiment includes a base 2 with opposite sidewalls 21 and a heel hoop 22 that extends around a rider's heel and connects the heel-side ends of the sidewalls 21.
  • the sidewalls 21 and heel hoop 22 are molded as a single unitary piece (e.g., using a fiber-reinforced plastic), but the sidewalls 21 and heel hoop 22 may be made separately and then attached together.
  • the sidewalls 21 each include a toe strap slot 23 and an ankle strap slot 24 used to mount a strap portion for toe and ankle straps 3, respectively.
  • binding straps may be attached to the sidewalls 21 without the use of slots 23 and 24, e.g., using holes formed in the sidewalls 21 that receive a screw or other fastener to engage with an end of the binding straps 3.
  • any suitable type of engagement member(s) 3 may be used to secure a rider's foot relative to the base 2, such as any suitable number or type of foot straps that use typical ratchet buckles to engage two strap members together, boot engagement members used to secure a boot in step-in type bindings, or any other arrangement.
  • the sidewalls 21 each include a slot 25 to receive a screw or other fastener for securing the base 2 relative to a gliding board, such as a snowboard.
  • the slots 25 may be molded integrally with the sidewalls 21, and may have a metal insert or other reinforcement to support the fastener.
  • the slot 25 may include a steel washer that surrounds each slot 25.
  • the base 2 is secured to a snowboard using a threaded fastener and T-nut arrangement 102, although other arrangements may be used.
  • the base 2 may be secured to a board using a hold down disk, standard screws, or any other suitable arrangement.
  • the base 2 may be arranged to cooperate with any suitable fastening arrangement, e.g., a 4X4, 3D(R) or other threaded insert pattern used in snowboards.
  • This illustrative embodiment is arranged to operate with a channel-type slot in a board, as discussed in more detail below.
  • the binding 1 in this illustrative embodiment also includes a highback 4 that is secured to the sidewalls 21 at slots 26 formed in the sidewalls 21.
  • the highback 4 may be mounted to the sidewalls 21 using simple holes, the slots 26 may allow the highback 4 to be rotated and fixed in place relative to the base 2 within a range of angles about an axis that extends generally along the length of a rider's lower leg.
  • the highback 4 may be constructed in any suitable way, but in this embodiment is formed to have a slot 44 formed across the highback 4 so that the upper portion 41 of the highback is attached to the lower portion 42 by living hinge members 43.
  • the living hinges 43 may allow the upper portion
  • the highback 4 may be formed as a solid member with no slot 44, or the upper portion 41 may be connected to the lower portion
  • the binding 1 includes a footbed 5 that is removably attached to the base 2.
  • removably attached it is meant that the footbed 5 may be removed from the base 2 by removal of one or more screw or other fasteners, or may be removed in a tool-free manner.
  • the footbed 5 may be removed from the base 2, e.g., for replacement if worn and/or to change performance features of the binding.
  • some footbeds 5 may be arranged to provide more cushion or shock absorbance, whereas other footbeds 5 may be made more stiff and provide the rider with improved feel of the board on the gliding surface.
  • a plurality of different footbeds 5 may be made to operate with a single base 2.
  • the base 2 may be used without a footbed 5, i.e., with at least portions of the sole of a rider's foot in direct contact with the board to which the base 2 is mounted.
  • FIG. 2 shows an exploded view of the binding 1 with the footbed 5 removed from the base 2 in this illustrative embodiment.
  • the footbed 5 includes a toe portion 51 that is attached and moveable in a heel-to-toe direction relative to a heel portion 52, e.g., to accommodate different sized feet and/or boot shapes.
  • a heel portion e.g., to accommodate different sized feet and/or boot shapes.
  • each of the portions of the footbed 5 may support additional portions of the rider's foot, such as portions near the middle of the foot.
  • the footbed 5 may include more than two portions, such as a central portion, a heel portion and a toe portion, with the heel and toe portions being movable relative to the central portion.
  • the heel portion 52 remains stationary relative to the base 2 and engages with the base 2 by way of right angle tabs or lugs 53 which slide into slots formed in the bottom of the sidewalls 21.
  • the tabs 53 are captured in the slots of the sidewalls 21 and maintain the heel portion 52 in place relative to the base 2.
  • the footbed 5 may have wings or a flange that is trapped between the base 2 and the board when the binding 1 is mounted, the footbed 5 may include laterally extending portions that slide into grooves in the sidewalls 21 that extend in the heel-to-toe direction, and others. It is also possible for the footbed 5 to be secured directly to the board, and not necessarily be secured to the base 2.
  • the toe end of the footbed 5 is connected by screws (not shown) or other fasteners that pass through holes 27 in a crossbar 28 of the base 2 and engage with the toe portion 51.
  • the footbed 5 may be secured to the base 2 in part by fasteners that engage the footbed 5 at the crossbar 28.
  • the connection between the footbed 5 and the crossbar 28 may permit the toe portion 51 to be moved in a heel-to-toe direction without requiring the footbed 5 to be disconnected from the base 2.
  • the footbed 5 includes three adjustment indicators, although fewer or more indicators may be used, or a single indicator may provide multiple binding position indications.
  • the adjustment indicators allow a rider to determine the position of the binding 1 relative to the board, specifically a longitudinal position of the binding 1 in a tip-to-tail direction on the board, a heel-to-toe position, and/or an angular position (e.g., a rotational position of the binding about a vertical axis that is generally perpendicular to the top surface of the board).
  • a first indicator 54 provides a window through the footbed 5 so that the rider can see a portion of the board underlying the first indicator 54.
  • the indicator 54 may include a pointer, arrow or other feature that, for example, is located at a lateral centerpoint or other suitable location on the binding.
  • the pointer or arrow may be aligned with a suitable mark on the board, such as a hash mark, a rider applied marking, or other feature on the board that indicates the desired location on the board for the binding.
  • a second indicator 55 may provide an indicator for heel-to-toe position of the binding on the board. As will be discussed in more detail below, a portion of the footbed 5 may engage with the board and remain stationary in a heel-to-toe direction as the binding is adjusted.
  • the stationary portion may include hash marks or other features that indicate, for example, a heel-to-toe centerpoint of the binding, and a plurality of other marks on either side of the centerpoint.
  • a third indicator 56 may provide an indication of an angle of the binding 1 relative to the board.
  • a portion of the footbed 5 may engage with the board and remain stationary as the binding is adjusted angularly. Angle markings or other suitable features may be viewed by the rider during adjustment to determine a desired angular position of the binding on the board.
  • a rider may be able to view and set longitudinal position, heel-to-toe position and angular position while viewing indicators on the binding that are located together. This arrangement may allow a rider to more easily make binding adjustments.
  • FIG. 3 shows an exploded top view of the footbed 5 in this illustrative embodiment.
  • the indicators 54, 55 and 56 may include a magnifying lens or other element that enlarges the markings, arrows or other features used to align the binding 1.
  • the view windows for the indicators 54, 55 and 56 may include a reference line or other feature to help identify the center or other portion of the viewing window.
  • the reference line is molded into the window, e.g., is formed by a mold parting line or similar feature in the transparent window material. This arrangement may provide a ready reference without requiring an opaque marking.
  • the toe end of the heel portion 52 includes a pair of grooves 521 that receive complementary raised portions (see reference number 511 in FIG. 4) and help keep the toe portion 51 in proper alignment with the heel portion 52.
  • the screws (not shown) that extend through the holes 27 in the crossbar 28 of the base 2 to engage the footbed 5 extend through the holes 522 in the heel portion 52 and into T-nuts 512 that ride in slots 513 in the top of the toe portion 51. Accordingly, with the screws engaged with the T- nuts 512, the toe portion 51 is adjustable in the heel-to-toe direction so long as the screws are not tightened.
  • the toe portion 51 may be locked in place by engaging tabs 514 on the underside of the toe portion 51 with holes 523 in the heel portion 52.
  • the screws that engage the T-nuts 512 are not used to lock the toe portion 51 in place, although the screws and T-nuts 512 could be used to fix the toe portion 51 in other embodiments.
  • a cover member 515 may be secured over the toe portion 51 to capture the T-nuts 512 in the slots 513.
  • the cover member 515 may be made of, or otherwise include, a foam or other material to help enhance grip for the rider's foot.
  • a cover member or similar arrangement may also be provided on the heel portion 52, e.g., to improve a rider's grip, alter the appearance of the footbed 5, etc.
  • FIG. 4 shows a bottom exploded view of the footbed 5.
  • the tabs 514 and corresponding holes 523 that permit the toe portion 51 to be fixed relative to the heel portion 52 between four discrete positions in the heel-to-toe direction can be more clearly seen.
  • the toe portion 51 may have fewer or more discrete adjustment positions, or no discrete positioning in the heel-to-toe direction may be provided at all.
  • raised portions near the holes 522 in the heel portion 52 are also shown. These raised portions engage with complementary recessed portions near the holes 27 in the crossbar 28 of the base 2 and may help properly locate the footbed 5 relative to the base 2.
  • a rib 61 of an indicator element 6 can be seen extending through an opening 525 in a bottom plate 524 of the footbed 5.
  • the rib 61 may engage with the sides of a corresponding slot in a board when the binding 1 is mounted, and therefore may remain stationary relative to the board in heel-to-toe and angular directions when the base 2 is adjusted in position.
  • the rib 61 is arranged to allow for longitudinal (tip-to-tail) movement of the indicator element 6 (and binding 1) along the board to allow for longitudinal adjustment of the binding.
  • FIG. 5 shows a bottom view of the footbed 5 with the bottom plate 524 removed.
  • the bottom plate 524 fits within a recess in the heel portion 52 to capture the indicator element 6 in the recess. Although captured in the recess by the bottom plate 524, the indicator element 6 is free to move in the recess in a plane that is approximately parallel to the top surface of the board to which the binding is mounted. It is this movement of the indicator element 6 relative to the footbed 5 that allows the indicator element 6 to indicate the position of the binding 1 relative to the board. Movement of the indicator element 6 is limited, as desired, by the size and shape of the opening 525 and the size and shape of the recess in the heel portion 52.
  • FIG. 6 shows a top view of the indicator element 6 in this illustrative embodiment.
  • the window and arrow pointer 62 for the first indicator 54 is formed by a hole in the flat plate of the indicator element 6.
  • Hash marks 63 are formed on the indicator element 6 and are arranged to cooperate with the second indicator 55.
  • a widest hash mark may indicate a center location for the binding 1 in the heel-to-toe direction, and fore and aft marks indicate alternate heel side and toe side locations from the centerpoint.
  • Angle indication marks 64 are arranged to operate with the third indicator 56.
  • the angle indication marks 64 (and other markings) may take any suitable form, such as the numbered marks shown, and may be provided with hash marks or any other marking arrangement.
  • the footbed 5 described in the embodiments above may be permanently fixed to the base (e.g., glued, screwed, molded integrally at least in part, etc.), if desired.
  • an indicator element similar to that described above may be incorporated into a standard tray-type or other binding with a fixed baseplate.
  • the indicator element may include a plate that is movable within a horizontally oriented slot in the baseplate, i.e., the portion that supports the sole of a rider's foot, in much the same way that the indicator element is movable in the recess in the footbed above.
  • the indicator element may include one or more holes to receive fasteners for securing the binding to the board, e.g., the holes may match an insert pattern such as the 4X4 or 3D pattern in a snowboard.
  • the indicator element may be initially engaged with the board with the fasteners in a relatively loose condition so that the binding base is permitted to move on the board relative to the indicator element.
  • the fasteners may be tightened such that the indicator element clamps the base onto the board, e.g., in a way similar to some hold down disks.
  • an indicator element e.g., a sticker shaped like the indicator element 6, may be fixed to the board, and located so that the binding is placed over the indicator element.
  • the binding which may have a removable or fixed footbed, may include windows or other indicator features that allow viewing of portions of the indicator element so as to determine a binding location relative to the board.
  • FIG. 7 shows a view of the binding 1 in this illustrative embodiment being mounted on a board 10 having a slot-type mounting arrangement.
  • the binding 1 is positioned on the board 10 so that the rib 61 on the indicator element 6 fits within the slot 101 in the board 10.
  • Fasteners extend through the slots 25 on opposite sides of the sidewalls 21 and engage with T-nuts positioned in the slot 101.
  • FIG. 8 shows a cross sectional view along the line 8-8 in FIG. 7 and shows the T-nuts 102 located in the slot 101 in the board 10.
  • the slot 101 is formed by an aluminum channel 103 having an approximately rectangular cross section.
  • the aluminum channel 103 is located in the board 10 between the top and bottom reinforcement layers 105 and 106.
  • the core 104 does not extend below or above the channel 103, and the top reinforcement layer 105 with the top sheet (e.g., a decorative layer) and the bottom reinforcement layer 106 with the base layer extend over the channel 103. Accordingly, no screw or other fastener is needed to secure the channel 103 in the board - instead, the channel 103 may be held in place by the top and bottom reinforcement layers 105 and 106 together with associated resin.
  • the T-nuts 102 have a threaded stud that extends up through the slot 101 and into the slot 25 of the binding 1. A suitable threaded sleeve or nut may engage with the stud to secure the binding 1 in place.
  • the T-nuts 102 also have a top rib that extends into the slot 101 to help better secure the T- nut 102 in place.
  • a threaded bolt may extend downwardly through the slot 25 and into a threaded hole in the T-nut 102.
  • the channel 103 is formed of aluminum, but may be made of any other suitable metal, plastic or other material or combination of materials.
  • the core 104 in this embodiment is formed of laminated strips of wood, but may be formed in any other suitable way, e.g., by a foam or any other material or combination of materials.
  • the reinforcement layers 105 and 106 are formed of resin impregnated fabric, such as a fiberglass fabric, but other suitable reinforcing layers may be used.
  • the binding 1 can be adjusted in longitudinal position on the board through a potentially wide range of positions, limited only by the length of the slot 101. Markings may be provided on the board near the slot 101 and may be viewed using the first indicator window 54 to confirm the longitudinal position of the binding 1.
  • the binding 1 can be adjusted longitudinally, in a heel-to-toe direction and/or angularly because of the degrees of freedom provided by the slot 101 and the slots 25. That is, as the binding 1 is moved in a heel-to-toe direction and/or angularly relative to the slot 101, the indicator element 6 will remain stationary relative to the slot 101.
  • the rider may view the relative heel-to-toe position and/or angular position of the binding using the indicators 55 and 56. Since a rider may view all three of the indicators 54, 55 and 56 in one place, accurate mounting of the binding may be made easier.
  • the engagement of the indicator element 6 with the board 10 may be achieved in ways other than by having a rib 61 contact sides of the slot 101.
  • a T-nut or similar element may be positioned in the channel 103 and have a member extend upwardly through the slot 101 and above the board top surface.
  • the member may have a size, shape or other configuration to engage with a mating feature on the indicator element 6.
  • the member may have a special shape, such as a star shape, that engages with a corresponding star-shaped hole in the indicator element 6.
  • This arrangement may allow the footbed 5 to be made with no parts depending below the bottom surface of the footbed 5, e.g., to allow the footbed to be used on boards that do not have a corresponding mating feature for the indicator element.
  • this arrangement may help ensure that only proper bindings that have an appropriate mating feature in the indicator element 6 are used with a particular board.
  • boards requiring the use of a particular binding may include indicator element mating parts that have a six-sided star shape. Thus, only bindings with a six-sided star hole may be properly mated with the board. Boards requiring a different binding type may have differently shaped indicator element mating parts.
  • a variety of different types of footbeds 5 may be arranged for operation with a single type of base 2.
  • the footbeds 5 may have a variety of different properties, such as different sizes, shapes, heights, indicator features, and so on.
  • FIGS. 10 and 11 show two alternate embodiments for a footbed 5.
  • the footbed 5 may include any suitable cushioning or other foot support elements.
  • the footbed 5 includes "pillar" type and other support elements similar to those found in some running shoes.
  • the heel portion 52 of the footbeds 5 may be made with upper and lower plates 57 and 58 that are made of a substantially inflexible material, such as nylon.
  • cushioning or other support elements 59 that may take any form.
  • the cushioning element 59 include through holes 591 that pass laterally through the cushioning element 59.
  • the shape, material and/or other configuration of other portions of the cushioning elements 59 may be arranged to provide desired stiffness, resiliency or other features for the rider's foot.
  • the support features of the cushioning elements 59 may be varied within the footbed 5, e.g., to give more stiff support near the heel, and more resilient support near the midsole.
  • the cushioning elements 59 may be made so that the rider can vary the stiffness or other support property, e.g., by providing removable elements that may be inserted into or removed from through holes 591.
  • the footbed 5 may also be made to allow a rider to adjust the height of the footbed at one or more locations, e.g., allow a rider to insert cushioning elements 59 or other elements to raise the heel of the footbed 5.
  • the footbed 5 may also be made to interlock with a rider's boot, e.g., a neoprene sheet may be provided on the upper plate 57 to improve grip, and/or a suitable material provided on the upper plate 57 may be molded to conform to the boot's tread pattern.
  • a footbed 5 may be specially designed to operate with a particular boot or set of boots, and because of the way in which different footbeds may be combined with the same base 2, a wide range of different footbeds may be offered for each base style or design.
  • the highback 4 includes an upper portion 41 and a lower portion 42 that are connected together at a living hinge portion 43.
  • the highback 4 may be molded as a single unitary part with a slot 44 that extends around the highback 4, leaving the upper and lower portions 41 and 42 connected only at the living hinge portions 43.
  • the upper portion 41 may be adjusted in position relative to the lower portion 42, e.g., to adjust a forward lean of the highback 4.
  • a forward lean adjuster member 45 may be provided that spans between the upper and lower portions 41 and 42 and allows a rider to selectively adjust the forward lean of the upper portion 41.
  • the forward lean adjuster 45 may take any suitable form, and in this embodiment includes a threaded rod 451 that is mounted for rotation to the lower portion 42.
  • a handle 452 is fixed to the threaded rod 451 to allow a user to rotate the rod without tools.
  • a nut 453 may be fixed relative to the upper portion 41 and engage with the threaded rod so that as the threaded rod 451 is rotated, the upper portion 41 may be tilted forward or back relative to the lower portion 42.
  • the lower portion 42 may also include a shelf 421 that contacts the heel hoop 22 to resist rearward movement of the highback 4 beyond a certain point.
  • the lower portion 42 may also include a tab 422 or other feature to engage with the heel hoop 2 (e.g., at a groove 221 in the inner surface of the heel hoop - see Fig. 2) to releasably lock the highback 4 in an upward position.

Abstract

A method and apparatus for providing a gliding board binding, such as a snowboard binding (1). The binding may include an adjustment indicator (6) that allows for determination of a longitudinal position (54) of the base (2) relative to a gliding board, heel-to-toe position (55) of the base relative to a gliding board and/or an angular position (56) of the base relative to a gliding board (10) when the base is secured to the gliding board. The adjustment indicator may be included with a footbed (5) that is removable from a binding base, e.g., that includes a foot engagement member (3) to secure a rider's foot to the binding and board. A removable footbed may include a toe portion (51) that is adjustable in position relative to a heel portion (52) of the footbed. A gliding board may include a channel (103) for mounting a binding that is arranged in the board core (104) so that no portion of the board core is located on top or bottom sides of the channel, and instead so the top (105) and bottom (106) reinforcement layers are located above and below the channel.

Description

FOOTBED FOR GLIDING BOARD BINDING
This application claims the benefit of U.S. provisional application 60/819,131, filed July 7, 2006, which is hereby incorporated by reference in its entirety. BACKGROUND OF INVENTION
Bindings are widely used to secure a rider's foot to a gliding board, whether a snowboard, wakeboard, water ski, snow ski, and so on. One such type of binding includes a so-called "baseless" binding in which a rider's foot may be placed directly on the gliding board surface and be secured in place by a binding that partially surrounds the foot. For example, U. S . Patent 6,641 , 163 discloses a baseless binding arrangement in which an interface element is positioned between the sole of the rider's boot and the top side of the gliding board. The interface element includes at least one zone that is made of a thermoformable material that is capable of matching the imprint of the sole of the rider's boot, allowing the boot to be immobilized precisely in position with respect to the binding. SUMMARY OF INVENTION
In one aspect of the invention, a binding for use with a gliding board includes a footbed constructed and arranged to support a rider's foot, and a base constructed and arranged to be secured to a gliding board and to engage with the footbed portion. As used herein, a "foot" means a bare foot as well as a foot covered by footwear, such as a sock, shoe, sneaker, boot, etc. The base may be constructed and arranged to allow a rider's foot to directly contact the gliding board when secured to the gliding board without the footbed, i.e., may be used as a conventional "baseless" binding. At least one foot engagement member may be secured to the base and constructed and arranged to secure the rider's foot relative to the base. For example, one or more binding straps, step-in binding engagement devices or other suitable arrangements may be used to secure a rider's boot to the base. A highback may be secured to the base and constructed and arranged to support a rider's leg. The footbed may include an adjustment indicator that allows for determination of a longitudinal position, heel-to-toe position and/or an angular position when the base is secured to a gliding board. According to this aspect of the invention, a footbed that is removable from a binding base may provide indicator features that may help a rider accurately position the binding on a board during mounting.
In another aspect of the invention, a binding for use with a gliding board includes a footbed constructed and arranged to support a rider's foot and that has a heel portion and a toe portion that are attached to each other (either directly or indirectly via an intermediate member or members). The binding base may be constructed and arranged to be secured to a gliding board and to operate with the footbed. However, the base may be constructed and arranged to allow a rider's foot to directly contact the gliding board when secured to the gliding board without the footbed. At least one foot engagement member may be secured to the base and constructed and arranged to secure the rider's foot relative to the base. A highback may be secured to the base and constructed and arranged to support a rider's leg. The toe portion of the footbed may be adjustable in position relative to the heel portion, e.g., in the heel-to-toe direction, and the footbed may be removed from the base. In accordance with this aspect of the invention, a binding may include a removable footbed (thereby providing a conventional "baseless" binding), and if used, the footbed may provide a rider with an adjustable toe ramp feature, e.g., to accommodate different boot types and/or differently sized feet. This aspect of the invention may be used with the adjustment indicator feature described above, if desired. In another aspect of the invention, a binding for use with a gliding board may include a footbed constructed and arranged to support a rider's foot, and a base constructed and arranged to be secured to a gliding board and to engage with the footbed. The footbed in this aspect of the invention may be permanently affixed to the base (e.g., integrally molded with the base) or may be removable from the base so that the base may be used as a baseless binding. At least one foot engagement member may be secured to the base and constructed and arranged to secure the rider's foot relative to the base, and a highback may be secured to the base and constructed and arranged to support a rider's legi The binding may include an indicator element that is engageable with the gliding board to remain stationary relative to the gliding board in at least heel-to-toe, and angular directions, yet the indicator element may be movable independent of the footbed and the base, thereby providing an indication of a heel- to-toe position and/or an angular position of the footbed and base relative to the gliding board. The indicator element may be separate and apart from any hold down disk that might be used to mount the binding to a board. For example, the indicator element may be a member that is attached to the footbed, but is allowed to move independently of the footbed so as to provide an indication of the footbed's position relative to the board.
In another aspect of the invention, a method for mounting a snowboard binding to a gliding board includes providing a snowboard binding having footbed removably mounted to a base, with the footbed including an adjustment indicator for determination of a longitudinal position, heel-to-toe position and/or an angular position of the binding when secured to a gliding board. A gliding board is provided, and the base is secured to the gliding board. A position of the snowboard binding may be determined using the adjustment indicator.
In another aspect of the invention, a snowboard includes a top reinforcement layer, a bottom reinforcement layer, and a core (e.g., made of wood strips secured together) positioned between the top and bottom reinforcement layers. A channel for mounting a binding to the board may be secured within an opening in the core such that no portion of the core is located above or below the channel, and so that the top reinforcement layer is positioned above the channel, and the bottom reinforcement layer is positioned below the channel. In one embodiment, the channel may be a metal member having a "C" shaped cross section and may be constructed and arranged to receive a fastener (e.g., a T-nut) for mounting a binding to the snowboard.
These and other aspects of the invention will be appreciated from the following description and claims. BRIEF DESCRIPTION OF THE DRAWINGS
Aspects of the invention are described below with reference to the following drawings in which like numerals reference like elements, and wherein:
FIG. 1 shows a perspective view of a binding in accordance with the invention;
FIG. 2 shows an exploded view of the binding of FIG. 1; FIG. 3 shows a top exploded view of the footbed for the binding;
FIG. 4 shows a bottom exploded view of the footbed for the binding:
FIG. 5 shows an exploded view of the heel portion of the footbed;
FIG. 6 shows an indicator element for the footbed;
FIG. 7 shows the binding being mounted to a board; FIG. 8 shows a cross sectional view along the line 8-8 in FIG. 7;
FIG. 9 shows a top view of the binding with possible adjustment directions indicated; and
FIGS. 10 and 11 show alternate embodiments of a footbed incorporating a cushioning or other support element. FIG. 12 shows a rear view of a highback for the binding. DETAILED DESCRIPTION
It should be understood that aspects of the invention are described herein with reference to the figures, which show illustrative embodiments in accordance with aspects of the invention. The illustrative embodiments described herein are not necessarily intended to show all aspects of the invention, but rather are used to describe a few illustrative embodiments. For example, although aspects of the invention are described below with reference to a snowboard binding used in conjunction with a snowboard, aspects of the invention may be used with any suitable gliding board and corresponding binding. Thus, aspects of the invention are not intended to be construed narrowly in view of the illustrative embodiments. In addition, it should be understood that aspects of the invention may be used alone or in any suitable combination with other aspects of the invention.
As discussed above, one aspect of the invention relates to providing an adjustment indicator with a binding so as to provide an indication of position of the binding (the base and/or footbed) relative to the board on which the binding is mounted. The adjustment indicator may include one or more parts, e.g., a viewing window formed in the footbed, and an indicator element, e.g., a planar member, that is attached to the footbed and viewable in the window. Although attached to the footbed, an indicator element may be moveable relative to the footbed or base, e.g., the element may be mounted in a pocket in the footbed and be movable within a plane that is substantially parallel to the top surface of a board to which the binding is mounted. The indicator element may be separate and apart from a hold down disk (if any) used to mount the binding to the gliding board, and may engage with the gliding board to remain stationary relative to the gliding board in at least heel-to-toe and angular directions despite movement of the binding relative to the board. The indicator element may engage with the board in any suitable way, such as by one or more fasteners, adhesive (whether permanent or not), a rib or tab that engages with a corresponding slot or hole in the board, a hole in the indicator element that engages with a pin or other element on the board, and so on. Thus, the footbed and the base may be moved independent of the indicator element in heel-to-toe and/or angular directions so that the indicator element may provide an indication of a heel-to-toe position and/or an angular position of the footbed and base relative to the gliding board. The indicator element may also provide an indication of a longitudinal position of the binding relative to the board, e.g., by way of a pointer, marking or other feature that may be aligned with a marking or other feature on the board and viewed by the rider. FIG. 1 shows a perspective view of a snowboard binding 1 that incorporates various aspects of the invention. This illustrative embodiment includes a base 2 with opposite sidewalls 21 and a heel hoop 22 that extends around a rider's heel and connects the heel-side ends of the sidewalls 21. In this embodiment, the sidewalls 21 and heel hoop 22 are molded as a single unitary piece (e.g., using a fiber-reinforced plastic), but the sidewalls 21 and heel hoop 22 may be made separately and then attached together. The sidewalls 21 each include a toe strap slot 23 and an ankle strap slot 24 used to mount a strap portion for toe and ankle straps 3, respectively. Of course, those of skill in the art will appreciate that binding straps may be attached to the sidewalls 21 without the use of slots 23 and 24, e.g., using holes formed in the sidewalls 21 that receive a screw or other fastener to engage with an end of the binding straps 3. Moreover, it should be understood that any suitable type of engagement member(s) 3 may be used to secure a rider's foot relative to the base 2, such as any suitable number or type of foot straps that use typical ratchet buckles to engage two strap members together, boot engagement members used to secure a boot in step-in type bindings, or any other arrangement.
The sidewalls 21 each include a slot 25 to receive a screw or other fastener for securing the base 2 relative to a gliding board, such as a snowboard. The slots 25 may be molded integrally with the sidewalls 21, and may have a metal insert or other reinforcement to support the fastener. For example, in one embodiment, the slot 25 may include a steel washer that surrounds each slot 25. In this illustrative embodiment, the base 2 is secured to a snowboard using a threaded fastener and T-nut arrangement 102, although other arrangements may be used. For example, in some aspects of the invention, the base 2 may be secured to a board using a hold down disk, standard screws, or any other suitable arrangement. Likewise, the base 2 may be arranged to cooperate with any suitable fastening arrangement, e.g., a 4X4, 3D(R) or other threaded insert pattern used in snowboards. This illustrative embodiment is arranged to operate with a channel-type slot in a board, as discussed in more detail below.
The binding 1 in this illustrative embodiment also includes a highback 4 that is secured to the sidewalls 21 at slots 26 formed in the sidewalls 21. Although the highback 4 may be mounted to the sidewalls 21 using simple holes, the slots 26 may allow the highback 4 to be rotated and fixed in place relative to the base 2 within a range of angles about an axis that extends generally along the length of a rider's lower leg. The highback 4 may be constructed in any suitable way, but in this embodiment is formed to have a slot 44 formed across the highback 4 so that the upper portion 41 of the highback is attached to the lower portion 42 by living hinge members 43. The living hinges 43 may allow the upper portion
41 to be moved relative to the lower portion 42, e.g., by operating a forward lean adjuster mechanism (not shown) as known in the art. Of course, the highback 4 may be formed as a solid member with no slot 44, or the upper portion 41 may be connected to the lower portion
42 by a hinge pin or other suitable arrangement.
In accordance with one aspect of the invention, the binding 1 includes a footbed 5 that is removably attached to the base 2. By "removably attached," it is meant that the footbed 5 may be removed from the base 2 by removal of one or more screw or other fasteners, or may be removed in a tool-free manner. This is in contrast to most snowboard bindings in which the portion that supports the bottom of the rider's foot is molded integrally with or otherwise permanently attached to the sidewalls, heel hoop and other portions of the binding. Thus, in one illustrative embodiment, the footbed 5 may be removed from the base 2, e.g., for replacement if worn and/or to change performance features of the binding. For example, some footbeds 5 may be arranged to provide more cushion or shock absorbance, whereas other footbeds 5 may be made more stiff and provide the rider with improved feel of the board on the gliding surface. Thus, a plurality of different footbeds 5 may be made to operate with a single base 2. (In some embodiments, the base 2 may be used without a footbed 5, i.e., with at least portions of the sole of a rider's foot in direct contact with the board to which the base 2 is mounted.)
FIG. 2 shows an exploded view of the binding 1 with the footbed 5 removed from the base 2 in this illustrative embodiment. In accordance with another aspect of the invention, the footbed 5 includes a toe portion 51 that is attached and moveable in a heel-to-toe direction relative to a heel portion 52, e.g., to accommodate different sized feet and/or boot shapes. Although referred to as the "toe portion" and the "heel portion," each of the portions of the footbed 5 may support additional portions of the rider's foot, such as portions near the middle of the foot. Moreover, the footbed 5 may include more than two portions, such as a central portion, a heel portion and a toe portion, with the heel and toe portions being movable relative to the central portion. In this illustrative embodiment, the heel portion 52 remains stationary relative to the base 2 and engages with the base 2 by way of right angle tabs or lugs 53 which slide into slots formed in the bottom of the sidewalls 21. When the base 2 is attached to a board, the tabs 53 are captured in the slots of the sidewalls 21 and maintain the heel portion 52 in place relative to the base 2. Other arrangements are possible for engaging the heel portion 52 (or other part of the footbed 5, such as a central portion) including tabs that extend laterally from the sides of the footbed 5 and that engage with lateral slots formed in the sidewalls 21. Such an arrangement may allow the footbed 5 to be removed from the binding 1 without removing the base 2 from a board. Other arrangements will occur to those of skill in the art, such as screw, adhesive or other fastener engagements between the footbed 5 and the base 2, the footbed 5 may have wings or a flange that is trapped between the base 2 and the board when the binding 1 is mounted, the footbed 5 may include laterally extending portions that slide into grooves in the sidewalls 21 that extend in the heel-to-toe direction, and others. It is also possible for the footbed 5 to be secured directly to the board, and not necessarily be secured to the base 2.
In this embodiment, the toe end of the footbed 5 is connected by screws (not shown) or other fasteners that pass through holes 27 in a crossbar 28 of the base 2 and engage with the toe portion 51. Thus, in addition to the lugs 53, the footbed 5 may be secured to the base 2 in part by fasteners that engage the footbed 5 at the crossbar 28. As is discussed in more detail below, the connection between the footbed 5 and the crossbar 28 may permit the toe portion 51 to be moved in a heel-to-toe direction without requiring the footbed 5 to be disconnected from the base 2.
In another aspect of the invention, the footbed 5 includes three adjustment indicators, although fewer or more indicators may be used, or a single indicator may provide multiple binding position indications. The adjustment indicators allow a rider to determine the position of the binding 1 relative to the board, specifically a longitudinal position of the binding 1 in a tip-to-tail direction on the board, a heel-to-toe position, and/or an angular position (e.g., a rotational position of the binding about a vertical axis that is generally perpendicular to the top surface of the board). A first indicator 54 provides a window through the footbed 5 so that the rider can see a portion of the board underlying the first indicator 54. The indicator 54 may include a pointer, arrow or other feature that, for example, is located at a lateral centerpoint or other suitable location on the binding. The pointer or arrow may be aligned with a suitable mark on the board, such as a hash mark, a rider applied marking, or other feature on the board that indicates the desired location on the board for the binding. A second indicator 55 may provide an indicator for heel-to-toe position of the binding on the board. As will be discussed in more detail below, a portion of the footbed 5 may engage with the board and remain stationary in a heel-to-toe direction as the binding is adjusted. The stationary portion may include hash marks or other features that indicate, for example, a heel-to-toe centerpoint of the binding, and a plurality of other marks on either side of the centerpoint. A third indicator 56 may provide an indication of an angle of the binding 1 relative to the board. Again, a portion of the footbed 5 may engage with the board and remain stationary as the binding is adjusted angularly. Angle markings or other suitable features may be viewed by the rider during adjustment to determine a desired angular position of the binding on the board. In accordance with this aspect of the invention, a rider may be able to view and set longitudinal position, heel-to-toe position and angular position while viewing indicators on the binding that are located together. This arrangement may allow a rider to more easily make binding adjustments. FIG. 3 shows an exploded top view of the footbed 5 in this illustrative embodiment.
This view shows more clearly the arrow or other indicator feature provided for the first indicator 54. Also, the indicators 54, 55 and 56 may include a magnifying lens or other element that enlarges the markings, arrows or other features used to align the binding 1. The view windows for the indicators 54, 55 and 56 may include a reference line or other feature to help identify the center or other portion of the viewing window. In one embodiment, the reference line is molded into the window, e.g., is formed by a mold parting line or similar feature in the transparent window material. This arrangement may provide a ready reference without requiring an opaque marking.
As can also be seen in FIG. 3, the toe end of the heel portion 52 includes a pair of grooves 521 that receive complementary raised portions (see reference number 511 in FIG. 4) and help keep the toe portion 51 in proper alignment with the heel portion 52. The screws (not shown) that extend through the holes 27 in the crossbar 28 of the base 2 to engage the footbed 5 extend through the holes 522 in the heel portion 52 and into T-nuts 512 that ride in slots 513 in the top of the toe portion 51. Accordingly, with the screws engaged with the T- nuts 512, the toe portion 51 is adjustable in the heel-to-toe direction so long as the screws are not tightened. Once the toe portion 51 is positioned as desired, the toe portion 51 may be locked in place by engaging tabs 514 on the underside of the toe portion 51 with holes 523 in the heel portion 52. Thus, in this embodiment, the screws that engage the T-nuts 512 are not used to lock the toe portion 51 in place, although the screws and T-nuts 512 could be used to fix the toe portion 51 in other embodiments. As shown in FIG. 3, a cover member 515 may be secured over the toe portion 51 to capture the T-nuts 512 in the slots 513. The cover member 515 may be made of, or otherwise include, a foam or other material to help enhance grip for the rider's foot. A cover member or similar arrangement may also be provided on the heel portion 52, e.g., to improve a rider's grip, alter the appearance of the footbed 5, etc.
FIG. 4 shows a bottom exploded view of the footbed 5. In this view, the tabs 514 and corresponding holes 523 that permit the toe portion 51 to be fixed relative to the heel portion 52 between four discrete positions in the heel-to-toe direction can be more clearly seen. Of course, it will be understood that the toe portion 51 may have fewer or more discrete adjustment positions, or no discrete positioning in the heel-to-toe direction may be provided at all. Also shown are raised portions near the holes 522 in the heel portion 52. These raised portions engage with complementary recessed portions near the holes 27 in the crossbar 28 of the base 2 and may help properly locate the footbed 5 relative to the base 2.
In the bottom view of FIG. 4, a rib 61 of an indicator element 6 can be seen extending through an opening 525 in a bottom plate 524 of the footbed 5. The rib 61 may engage with the sides of a corresponding slot in a board when the binding 1 is mounted, and therefore may remain stationary relative to the board in heel-to-toe and angular directions when the base 2 is adjusted in position. However, in this embodiment, the rib 61 is arranged to allow for longitudinal (tip-to-tail) movement of the indicator element 6 (and binding 1) along the board to allow for longitudinal adjustment of the binding. FIG. 5 shows a bottom view of the footbed 5 with the bottom plate 524 removed. The bottom plate 524 fits within a recess in the heel portion 52 to capture the indicator element 6 in the recess. Although captured in the recess by the bottom plate 524, the indicator element 6 is free to move in the recess in a plane that is approximately parallel to the top surface of the board to which the binding is mounted. It is this movement of the indicator element 6 relative to the footbed 5 that allows the indicator element 6 to indicate the position of the binding 1 relative to the board. Movement of the indicator element 6 is limited, as desired, by the size and shape of the opening 525 and the size and shape of the recess in the heel portion 52.
FIG. 6 shows a top view of the indicator element 6 in this illustrative embodiment. The window and arrow pointer 62 for the first indicator 54 is formed by a hole in the flat plate of the indicator element 6. Hash marks 63 are formed on the indicator element 6 and are arranged to cooperate with the second indicator 55. A widest hash mark may indicate a center location for the binding 1 in the heel-to-toe direction, and fore and aft marks indicate alternate heel side and toe side locations from the centerpoint. Angle indication marks 64 are arranged to operate with the third indicator 56. The angle indication marks 64 (and other markings) may take any suitable form, such as the numbered marks shown, and may be provided with hash marks or any other marking arrangement.
Aspects of the invention relating to the adjustment indicator are not limited to bindings which have a removable footbed. For example, the footbed 5 described in the embodiments above may be permanently fixed to the base (e.g., glued, screwed, molded integrally at least in part, etc.), if desired. Alternately, in another embodiment, an indicator element similar to that described above may be incorporated into a standard tray-type or other binding with a fixed baseplate. In such embodiments, the indicator element may include a plate that is movable within a horizontally oriented slot in the baseplate, i.e., the portion that supports the sole of a rider's foot, in much the same way that the indicator element is movable in the recess in the footbed above. However, in this embodiment, the indicator element may include one or more holes to receive fasteners for securing the binding to the board, e.g., the holes may match an insert pattern such as the 4X4 or 3D pattern in a snowboard. Thus, the indicator element may be initially engaged with the board with the fasteners in a relatively loose condition so that the binding base is permitted to move on the board relative to the indicator element. Once the base is positioned as desired (the binding position may be determined in the same way as in the footbed embodiment above, except that indicator windows may be formed in the baseplate as opposed to a footbed), the fasteners may be tightened such that the indicator element clamps the base onto the board, e.g., in a way similar to some hold down disks.
In another illustrative embodiment, an indicator element, e.g., a sticker shaped like the indicator element 6, may be fixed to the board, and located so that the binding is placed over the indicator element. The binding, which may have a removable or fixed footbed, may include windows or other indicator features that allow viewing of portions of the indicator element so as to determine a binding location relative to the board.
FIG. 7 shows a view of the binding 1 in this illustrative embodiment being mounted on a board 10 having a slot-type mounting arrangement. The binding 1 is positioned on the board 10 so that the rib 61 on the indicator element 6 fits within the slot 101 in the board 10. Fasteners extend through the slots 25 on opposite sides of the sidewalls 21 and engage with T-nuts positioned in the slot 101. FIG. 8 shows a cross sectional view along the line 8-8 in FIG. 7 and shows the T-nuts 102 located in the slot 101 in the board 10. The slot 101 is formed by an aluminum channel 103 having an approximately rectangular cross section. The aluminum channel 103 is located in the board 10 between the top and bottom reinforcement layers 105 and 106. In this embodiment, the core 104 does not extend below or above the channel 103, and the top reinforcement layer 105 with the top sheet (e.g., a decorative layer) and the bottom reinforcement layer 106 with the base layer extend over the channel 103. Accordingly, no screw or other fastener is needed to secure the channel 103 in the board - instead, the channel 103 may be held in place by the top and bottom reinforcement layers 105 and 106 together with associated resin. In this illustrative embodiment, the T-nuts 102 have a threaded stud that extends up through the slot 101 and into the slot 25 of the binding 1. A suitable threaded sleeve or nut may engage with the stud to secure the binding 1 in place. The T-nuts 102 also have a top rib that extends into the slot 101 to help better secure the T- nut 102 in place. Of course, other arrangements are possible, e.g., a threaded bolt may extend downwardly through the slot 25 and into a threaded hole in the T-nut 102. In this embodiment, the channel 103 is formed of aluminum, but may be made of any other suitable metal, plastic or other material or combination of materials. The core 104 in this embodiment is formed of laminated strips of wood, but may be formed in any other suitable way, e.g., by a foam or any other material or combination of materials. The reinforcement layers 105 and 106 are formed of resin impregnated fabric, such as a fiberglass fabric, but other suitable reinforcing layers may be used.
Given the slot 101 mounting arrangement, the binding 1 can be adjusted in longitudinal position on the board through a potentially wide range of positions, limited only by the length of the slot 101. Markings may be provided on the board near the slot 101 and may be viewed using the first indicator window 54 to confirm the longitudinal position of the binding 1. For example, as shown in FIG. 9, the binding 1 can be adjusted longitudinally, in a heel-to-toe direction and/or angularly because of the degrees of freedom provided by the slot 101 and the slots 25. That is, as the binding 1 is moved in a heel-to-toe direction and/or angularly relative to the slot 101, the indicator element 6 will remain stationary relative to the slot 101. Thus, the rider may view the relative heel-to-toe position and/or angular position of the binding using the indicators 55 and 56. Since a rider may view all three of the indicators 54, 55 and 56 in one place, accurate mounting of the binding may be made easier.
The engagement of the indicator element 6 with the board 10 may be achieved in ways other than by having a rib 61 contact sides of the slot 101. For example, a T-nut or similar element may be positioned in the channel 103 and have a member extend upwardly through the slot 101 and above the board top surface. The member may have a size, shape or other configuration to engage with a mating feature on the indicator element 6. In one illustrative embodiment, the member may have a special shape, such as a star shape, that engages with a corresponding star-shaped hole in the indicator element 6. This arrangement may allow the footbed 5 to be made with no parts depending below the bottom surface of the footbed 5, e.g., to allow the footbed to be used on boards that do not have a corresponding mating feature for the indicator element. In addition, this arrangement may help ensure that only proper bindings that have an appropriate mating feature in the indicator element 6 are used with a particular board. For example, boards requiring the use of a particular binding may include indicator element mating parts that have a six-sided star shape. Thus, only bindings with a six-sided star hole may be properly mated with the board. Boards requiring a different binding type may have differently shaped indicator element mating parts.
In one aspect of the invention, a variety of different types of footbeds 5 may be arranged for operation with a single type of base 2. The footbeds 5 may have a variety of different properties, such as different sizes, shapes, heights, indicator features, and so on. FIGS. 10 and 11 show two alternate embodiments for a footbed 5. As discussed above, the footbed 5 may include any suitable cushioning or other foot support elements. In the illustrative embodiments shown, the footbed 5 includes "pillar" type and other support elements similar to those found in some running shoes. The heel portion 52 of the footbeds 5 may be made with upper and lower plates 57 and 58 that are made of a substantially inflexible material, such as nylon. Between the upper and lower plates 57 and 58 may be positioned cushioning or other support elements 59 that may take any form. In these illustrative embodiments, the cushioning element 59 include through holes 591 that pass laterally through the cushioning element 59. The shape, material and/or other configuration of other portions of the cushioning elements 59 may be arranged to provide desired stiffness, resiliency or other features for the rider's foot. Moreover, the support features of the cushioning elements 59 may be varied within the footbed 5, e.g., to give more stiff support near the heel, and more resilient support near the midsole. As will be understood by those of skill in the art, the cushioning elements 59 may be made so that the rider can vary the stiffness or other support property, e.g., by providing removable elements that may be inserted into or removed from through holes 591. The footbed 5 may also be made to allow a rider to adjust the height of the footbed at one or more locations, e.g., allow a rider to insert cushioning elements 59 or other elements to raise the heel of the footbed 5. The footbed 5 may also be made to interlock with a rider's boot, e.g., a neoprene sheet may be provided on the upper plate 57 to improve grip, and/or a suitable material provided on the upper plate 57 may be molded to conform to the boot's tread pattern. Thus, a footbed 5 may be specially designed to operate with a particular boot or set of boots, and because of the way in which different footbeds may be combined with the same base 2, a wide range of different footbeds may be offered for each base style or design. In accordance with one aspect of the invention and as discussed above, the highback 4 includes an upper portion 41 and a lower portion 42 that are connected together at a living hinge portion 43. For example, the highback 4 may be molded as a single unitary part with a slot 44 that extends around the highback 4, leaving the upper and lower portions 41 and 42 connected only at the living hinge portions 43. The upper portion 41 may be adjusted in position relative to the lower portion 42, e.g., to adjust a forward lean of the highback 4. In this embodiment and as shown in a rear view of the highback 4 in FIG. 12, a forward lean adjuster member 45 may be provided that spans between the upper and lower portions 41 and 42 and allows a rider to selectively adjust the forward lean of the upper portion 41. The forward lean adjuster 45 may take any suitable form, and in this embodiment includes a threaded rod 451 that is mounted for rotation to the lower portion 42. A handle 452 is fixed to the threaded rod 451 to allow a user to rotate the rod without tools. A nut 453 may be fixed relative to the upper portion 41 and engage with the threaded rod so that as the threaded rod 451 is rotated, the upper portion 41 may be tilted forward or back relative to the lower portion 42. The lower portion 42 may also include a shelf 421 that contacts the heel hoop 22 to resist rearward movement of the highback 4 beyond a certain point. The lower portion 42 may also include a tab 422 or other feature to engage with the heel hoop 2 (e.g., at a groove 221 in the inner surface of the heel hoop - see Fig. 2) to releasably lock the highback 4 in an upward position. However, a user can release the highback 4 from the heel hoop 22 by rotating the highback 4 to a folded position about the slot mount 26. Having thus described several aspects of at least one embodiment of this invention, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description and drawings are by way of example only. What is claimed is:

Claims

1. A binding for use with a gliding board, comprising: a footbed constructed and arranged to support a rider's foot; a base constructed and arranged to be secured to a gliding board and to releasably engage with the footbed portion, the base being constructed and arranged to allow a rider's foot to directly contact the gliding board when secured to the gliding board without the footbed; at least one foot engagement member secured to the base and constructed and arranged to secure the rider's foot relative to the base; and a highback secured to the base and constructed and arranged to support a rider's leg; wherein the footbed includes an adjustment indicator that allows for determination of a longitudinal position of the base relative to a gliding board, heel-to-toe position of the base relative to a gliding board and/or an angular position of the base relative to a gliding board when the base is secured to the gliding board.
2. The binding of claim 1, wherein the base includes a pair of opposed sidewalls extending in a heel-to-toe direction, and a heel hoop that connects a heel end of the sidewalls.
3. The binding of claim 2, wherein the base further includes a crossbar that extends between the sidewalls, and wherein the footbed is arranged to be fastened to the crossbar.
4. The binding of claim 2, wherein the at least one foot engagement member includes a binding strap having an engagement portion engageable with, and selectively separable from, a buckle portion, and the sidewalls are each adapted to engage with an end of the engagement portion or the buckle portion.
5. The binding of claim 1, wherein the footbed includes a heel portion and a toe portion, and wherein the toe portion is movable in a heel-to-toe direction relative to the heel portion.
6. The binding of claim 5, wherein the heel portion of the footbed is engageable with the base such that the heel portion is maintained stationary with respect to the base, and wherein the toe portion is moveable in the heel-to-toe direction relative to the heel portion with the heel portion maintained stationary relative to the base.
7. The binding of claim 5, wherein the heel portion includes a pair of lugs that are engageable with the base.
8. The binding of claim 7, wherein the base includes a pair of opposed sidewalls extending in a heel-to-toe direction, and a heel hoop that connects a heel end of the sidewalls, and wherein the lugs are insertable into slots formed in a bottom of the sidewalls.
9. The binding of claim 7, wherein the lugs are trapped in engagement with the sidewalls when the base is secured to a gliding board.
10. The binding of claim 1, wherein the footbed includes a ramped portion at a toe end of the footbed.
11. The binding of claim I5 comprising a first adjustment indicator including a first window attached to the footbed that permits viewing of a portion of the gliding board when the binding is mounted to the gliding board.
12. The binding of claim 1, wherein the first adjustment indicator includes a pointer element that is alignable with a marking on the gliding board viewed in the first window.
13. The binding of claim 1 , comprising an indicator element attached to the binding that is adapted to remain stationary relative to the gliding board as the base and footbed are moved relative to the gliding board.
14. The binding of claim 13, wherein the indicator element includes a portion that depends from a bottom of the footbed and is adapted to engage with the gliding board.
15. The binding of claim 14, wherein the depending portion is adapted to engage with a longitudinal slot in the gliding board.
16. The binding of claim 13, wherein the indicator element is arranged to move within a cavity in the footbed.
17. The binding of claim 13, wherein the indicator element includes at least one marking indicating a position of the footbed and base relative to the gliding board in a heel- to-toe direction.
18. The binding of claim 17, wherein the footbed includes a second window arranged to allow viewing of the at least one heel-to-toe marking on the indicator element.
19. The binding of claim 13, wherein the indicator element includes at least one marking indicating an angular position of the footbed and base relative to the gliding board.
20. The binding of claim 19, wherein the footbed includes a third window arranged to allow viewing of the at least one angular position marking on the indicator element.
21. The binding of claim I9 wherein the adjustment indicator allows for determination of any two of a longitudinal position of the base relative to a gliding board, heel-to-toe position of the base relative to a gliding board or an angular position of the base relative to a gliding board when the base is secured to the gliding board.
22. The binding of claim I9 wherein the adjustment indicator that allows for determination of a longitudinal position of the base relative to a gliding board, heel-to-toe position of the base relative to a gliding board and an angular position of the base relative to a gliding board when the base is secured to the gliding board
23. A binding for use with a gliding board, comprising: a footbed constructed and arranged to support a rider's foot; a base constructed and arranged to be secured to a gliding board and to engage with the footbed; at least one foot engagement member secured to the base and constructed and arranged to secure the rider's foot relative to the base; and a highback secured to the base and constructed and arranged to support a rider's leg; wherein the binding includes an indicator element that is separate and apart from any hold down disk used to mount the binding to the gliding board and that is engageable with the gliding board to remain stationary relative to the gliding board in at least heel-to-toe and angular directions, the footbed and the base being movable independent of the indicator element in heel-to-toe and angular directions and the indicator element providing an indication of a heel-to-toe position and/or an angular position of the footbed and base relative to the gliding board based on movement of the base and footbed relative to the gliding board.
24. The binding of claim 23, wherein the base includes a pair of opposed sidewalls extending in a heel-to-toe direction, and a heel hoop that connects a heel end of the sidewalls.
25. The binding of claim 24, wherein the base further includes a crossbar that extends between the sidewalls, and wherein the footbed is arranged to be fastened to the crossbar.
26. The binding of claim 24, wherein the at least one foot engagement member includes a binding strap having an engagement portion engageable with, and selectively separable from, a buckle portion, and the sidewalls are each adapted to engage with an end of the engagement portion or the buckle portion.
27. The binding of claim 23, wherein the footbed includes a heel portion and a toe portion, and wherein the toe portion is movable in a heel-to-toe direction relative to the heel portion.
28. The binding of claim 23, wherein the indicator element is attached to the footbed and includes a portion that depends from a bottom of the footbed and is adapted to engage with the gliding board.
29. The binding of claim 28, wherein the depending portion is adapted to engage with a longitudinal slot in the gliding board.
30. The binding of claim 23, wherein the indicator element is arranged to move within a cavity in the footbed.
31. The binding of claim 23, wherein the indicator element includes at least one marking indicating a position of the footbed and base relative to the gliding board in a heel- to-toe direction.
32. The binding of claim 31 , wherein the footbed includes a second window arranged to allow viewing of the at least one heel-to-toe marking on the indicator element.
33. The binding of claim 23, wherein the indicator element includes at least one marking indicating an angular position of the footbed and base relative to the gliding board.
34. The binding of claim 33, wherein the footbed includes a third window arranged to allow viewing of the at least one angular position marking on the indicator element.
35. A method for mounting a snowboard binding to a gliding board, comprising: providing a snowboard binding having a footbed removably mountable to a base, the footbed including an adjustment indicator for determination of a longitudinal position, heel- to-toe position and/or an angular position of the binding when secured to a gliding board; providing a gliding board; securing the base to the gliding board; and determining a position of the snowboard binding using the adjustment indicator.
36. The method of claim 35, wherein the step of determining a position comprises: determining a longitudinal position of the binding relative to the gliding board.
37. The method of claim 35, wherein the step of determining a position comprises: determining a heel-to-toe position of the binding relative to the gliding board.
38. The method of claim 35, wherein the step of determining a position comprises: determining an angular position of the binding relative to the gliding board.
39. The method of claim 35, wherein the step of determining a position comprises any two of: determining a longitudinal position of the binding relative to the gliding board, determining a heel-to-toe position of the binding relative to the gliding board, and determining an angular position of the binding relative to the gliding board.
40. The method of claim 35, wherein the step of determining a position comprises: determining a longitudinal position of the binding relative to the gliding board, determining a heel-to-toe position of the binding relative to the gliding board, and determining an angular position of the binding relative to the gliding board.
41. A footbed for use with a gliding board binding, comprising: a heel portion constructed and arranged to support a heel portion of a rider's foot when secured in a binding to a gliding board; a toe portion constructed and arranged to support the toe portion of a rider's foot when secured in a binding to the gliding board; and an adjustment indicator that allows for determination of a longitudinal position, heel- to-toe position and/or an angular position of the footbed and the binding when secured to a gliding board, wherein the footbed is constructed and arranged to releasably engage with the gliding board binding.
42. The footbed of claim 41, wherein the adjustment indicator allows for determination of a longitudinal position of the binding relative to the gliding board.
43. The footbed of claim 41, wherein the adjustment indicator allows for determination of a heel-to-toe position of the binding relative to the gliding board.
44. The footbed of claim 41, wherein the adjustment indicator allows for determination of an angular position of the binding relative to the gliding board.
45. The footbed of claim 41 , wherein the adjustment indicator allows for any two of: determination of a longitudinal position of the binding relative to the gliding board, determination of a heel-to-toe position of the binding relative to the gliding board, and determination of an angular position of the binding relative to the gliding board.
46. The footbed of claim 41, wherein the adjustment indicator allows for determination of a longitudinal position of the binding relative to the gliding board, determination of a heel-to-toe position of the binding relative to the gliding board, and determination of an angular position of the binding relative to the gliding board.
47. The footbed of claim 41, wherein the gliding board binding is a snowboard binding including sidewalls, a heel hoop, a highback and at least one foot engagement member constructed and arranged to secure the rider's foot relative to the binding.
48. The footbed of claim 41, wherein the adjustment indicator includes an indicator element that is separate and apart from any hold down disk used to mount the binding to the gliding board and that is engageable with the gliding board to remain stationary relative to the gliding board in at least heel-to-toe and angular directions.
49. The footbed of claim 48, wherein the indicator element is arranged to move within a cavity in the footbed.
50. The footbed of claim 49, further comprising at least one window to allow viewing of a position of the indicator element relative to the footbed.
51. A binding for use with a gliding board, comprising: a footbed constructed and arranged to support a rider's foot, the footbed portion including a heel portion and a toe portion that are attached together; a base constructed and arranged to be secured to a gliding board and to operate with the footbed, the base being constructed and arranged to allow a rider's foot to directly contact the gliding board when secured to the gliding board without the footbed; at least one foot engagement member secured to the base and constructed and arranged to secure the rider's foot relative to the base; and a highback secured to the base and constructed and arranged to support a rider's leg; wherein the toe portion is adjustable in position relative to the heel portion, and the footbed is removable from the base.
52. The binding of claim 51, wherein the base includes a pair of opposed sidewalls extending in a heel-to-toe direction, and a heel hoop that connects a heel end of the sidewalls.
53. The binding of claim 52, wherein the base further includes a crossbar that extends between the sidewalls, and wherein the footbed is arranged to be fastened to the crossbar.
54. The binding of claim 52, wherein the at least one foot engagement member includes a binding strap having an engagement portion engageable with, and selectively separable from, a buckle portion, and wherein the sidewalls are adapted to engage with an end of the engagement portion and/or the buckle portion.
55. The binding of claim 51, wherein the toe portion is movable in a heel-to-toe direction relative to the heel portion.
56. The binding of claim 55, wherein the heel portion of the footbed is engageable with the base such that the heel portion is maintained stationary with respect to the base, and wherein the toe portion is moveable in the heel-to-toe direction relative to the heel portion with the heel portion maintained stationary relative to the base.
57. The binding of claim 56, wherein the heel portion includes a pair of lugs that are engageable with the base.
58. The binding of claim 57, wherein the base includes a pair of opposed sidewalls extending in a heel-to-toe direction, and a heel hoop that connects a heel end of the sidewalls, and wherein the lugs are insertable into slots formed in a bottom of the sidewalls.
59. The binding of claim 57, wherein the lugs are trapped in engagement with the sidewalls when the base is secured to a gliding board.
60. The binding of claim 51 , wherein the footbed includes an adjustment indicator that allows for determination of a longitudinal position of the base relative to a gliding board, heel-to-toe position of the base relative to a gliding board and/or an angular position of the base relative to a gliding board when the base is secured to the gliding board..
61. The binding of claim 51, comprising an indicator element attached to the footbed that is adapted to remain stationary relative to the gliding board as the base and footbed are
• moved relative to the gliding board.
62. The binding of claim 61 , wherein the indicator element includes a portion that depends from a bottom of the footbed and is adapted to engage with the gliding board.
63. The binding of claim 51, comprising a first adjustment indicator including a first window attached to the footbed that permits viewing of a portion of the gliding board when the binding is mounted to the gliding board.
64. The binding of claim 63, wherein the first adjustment indicator includes a pointer element that is alignable with a marking on the gliding board viewed in the first window.
65. The binding of claim 61 , wherein the indicator element is arranged to move within a cavity in the footbed.
66. The binding of claim 65, wherein the indicator element includes at least one marking indicating a position of the footbed and base relative to the gliding board in a heel- to-toe direction.
67. The binding of claim 66, wherein the footbed includes a second window arranged to allow viewing of the at least one heel-to-toe marking on the indicator element.
68. The binding of claim 61, wherein the indicator element includes at least one marking indicating an angular position of the footbed and base relative to the gliding board.
69. The binding of claim 68, wherein the footbed includes a third window arranged to allow viewing of the at least one angular position marking on the indicator element.
70. A snowboard comprising: a top reinforcement layer; a bottom reinforcement layer; a core positioned between the top and bottom reinforcement layers; a channel constructed and arranged to receive a fastener for mounting a binding to the snowboard, the channel being secured within an opening in the core such that no portion of the core is located above or below the channel, the top reinforcement layer is positioned above the channel, and the bottom reinforcement layer is positioned below the channel.
71. The snowboard of claim 70, wherein the channel is secured without the use of mechanical fasteners that engage the channel to the core.
72. The snowboard of claim 70, wherein the channel is made of metal.
73. The snowboard of claim 70, wherein the core includes wood.
74. The snowboard of claim 70, wherein the top and bottom reinforcement layers include resin and fiber strands.
PCT/US2007/015512 2006-07-07 2007-07-06 Adjustment indicator integrated in footbed for gliding board binding WO2008008261A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE602007003983T DE602007003983D1 (en) 2006-07-07 2007-07-06 GLIDEBOARD BINDING
EP07810218A EP2038022B1 (en) 2006-07-07 2007-07-06 Adjustment indicator integrated in footbed for gliding board binding
AT07810218T ATE452690T1 (en) 2006-07-07 2007-07-06 ADJUSTMENT INDICATOR FOR SLIDING BOARD BINDINGS INTEGRATED INTO THE FOOTBED
JP2009518373A JP5243418B2 (en) 2006-07-07 2007-07-06 Footbed for sliding board binding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81913106P 2006-07-07 2006-07-07
US60/819,131 2006-07-07

Publications (3)

Publication Number Publication Date
WO2008008261A2 true WO2008008261A2 (en) 2008-01-17
WO2008008261A8 WO2008008261A8 (en) 2008-03-27
WO2008008261A3 WO2008008261A3 (en) 2008-06-26

Family

ID=38819400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/015512 WO2008008261A2 (en) 2006-07-07 2007-07-06 Adjustment indicator integrated in footbed for gliding board binding

Country Status (6)

Country Link
US (4) US7887083B2 (en)
EP (4) EP2038022B1 (en)
JP (2) JP5243418B2 (en)
AT (1) ATE452690T1 (en)
DE (1) DE602007003983D1 (en)
WO (1) WO2008008261A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2052764A2 (en) * 2007-10-25 2009-04-29 Salomon S.A.S. Assembly for practicing snowboarding or skateboarding
EP2052765A2 (en) 2007-10-25 2009-04-29 Salomon S.A.S. Assembly for practicing snowboarding or skateboarding
DE202010010117U1 (en) 2010-07-12 2010-10-14 Boards & More Gmbh binding
DE202010008682U1 (en) 2010-09-30 2011-02-24 Boards & More Gmbh board
DE202010008686U1 (en) 2009-12-07 2011-04-07 Boards & More Gmbh binding
WO2017069838A1 (en) * 2015-10-19 2017-04-27 Mervin Manufacturing, Inc. Interchangeable drive plates for snowboard bindings

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8520850B2 (en) 2006-10-20 2013-08-27 Time Warner Cable Enterprises Llc Downloadable security and protection methods and apparatus
US8621540B2 (en) 2007-01-24 2013-12-31 Time Warner Cable Enterprises Llc Apparatus and methods for provisioning in a download-enabled system
US7868628B2 (en) * 2007-08-16 2011-01-11 Tdk Corporation Tactile sensor utilizing microcoils with spiral shape
US9357247B2 (en) 2008-11-24 2016-05-31 Time Warner Cable Enterprises Llc Apparatus and methods for content delivery and message exchange across multiple content delivery networks
WO2010065122A2 (en) 2008-12-03 2010-06-10 The Burton Corporation Binding components for a gliding board
US11076189B2 (en) 2009-03-30 2021-07-27 Time Warner Cable Enterprises Llc Personal media channel apparatus and methods
US9215423B2 (en) 2009-03-30 2015-12-15 Time Warner Cable Enterprises Llc Recommendation engine apparatus and methods
US9602864B2 (en) 2009-06-08 2017-03-21 Time Warner Cable Enterprises Llc Media bridge apparatus and methods
US8396055B2 (en) 2009-10-20 2013-03-12 Time Warner Cable Inc. Methods and apparatus for enabling media functionality in a content-based network
US10264029B2 (en) 2009-10-30 2019-04-16 Time Warner Cable Enterprises Llc Methods and apparatus for packetized content delivery over a content delivery network
US9519728B2 (en) 2009-12-04 2016-12-13 Time Warner Cable Enterprises Llc Apparatus and methods for monitoring and optimizing delivery of content in a network
US9342661B2 (en) 2010-03-02 2016-05-17 Time Warner Cable Enterprises Llc Apparatus and methods for rights-managed content and data delivery
US9906838B2 (en) 2010-07-12 2018-02-27 Time Warner Cable Enterprises Llc Apparatus and methods for content delivery and message exchange across multiple content delivery networks
US8342561B2 (en) * 2010-11-17 2013-01-01 The Burton Corporation Gliding board binding with movable medial or lateral side portion
WO2013028918A1 (en) * 2011-08-23 2013-02-28 Shuperstar Llc Wakeboard bindings, wakeboards including such bindings, and related methods
FR2988616B1 (en) * 2012-03-29 2016-03-18 Rossignol Sa FIXING DEVICE FOR SLIDING BOARD AND BOARD EQUIPPED WITH SUCH A DEVICE
US9467723B2 (en) 2012-04-04 2016-10-11 Time Warner Cable Enterprises Llc Apparatus and methods for automated highlight reel creation in a content delivery network
US20140082645A1 (en) 2012-09-14 2014-03-20 Peter Stern Apparatus and methods for providing enhanced or interactive features
US9565472B2 (en) 2012-12-10 2017-02-07 Time Warner Cable Enterprises Llc Apparatus and methods for content transfer protection
US9621940B2 (en) 2014-05-29 2017-04-11 Time Warner Cable Enterprises Llc Apparatus and methods for recording, accessing, and delivering packetized content
US9254434B2 (en) 2014-06-23 2016-02-09 Tzy Shenq Enterprise Co., Ltd. Fixation seat for ski shoe
US9114309B1 (en) * 2014-06-23 2015-08-25 Tzy Shenq Enterprise Co., Ltd. Fixation seat for ski shoe
US10116676B2 (en) 2015-02-13 2018-10-30 Time Warner Cable Enterprises Llc Apparatus and methods for data collection, analysis and service modification based on online activity
CN105138077B (en) * 2015-08-19 2018-09-07 英业达科技有限公司 Computer
US10404758B2 (en) 2016-02-26 2019-09-03 Time Warner Cable Enterprises Llc Apparatus and methods for centralized message exchange in a user premises device
US9687725B1 (en) 2016-03-22 2017-06-27 Motion Water Sports, Inc. Binding assembly for sport board having angled connector receptacles
CN109415163B (en) 2016-06-27 2020-12-29 村田机械株式会社 Conveying system
US10729968B2 (en) * 2018-05-25 2020-08-04 Rossland Binding Company Remote release snowboard binding
JP2020162632A (en) * 2019-03-28 2020-10-08 株式会社カーメイト Binding for snowboard

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417443A (en) * 1993-09-01 1995-05-23 Blattner; Jacob A. Snowboard binding
US5503900A (en) * 1994-08-30 1996-04-02 Herbert E. Fletcher Snowboard padding
US5660410A (en) * 1994-12-09 1997-08-26 Device Manufacturing Corporation Strapless boot binding for snowboards
US20010015543A1 (en) * 2000-02-22 2001-08-23 Pascal Joubert Des Ouches Interface element used on a snowboard
EP1149610A1 (en) * 2000-04-28 2001-10-31 The Burton Corporation Adjustable pad for foot binding
US6315305B1 (en) * 2000-02-23 2001-11-13 Yu Tze Gien Snowboard binding having adjustable toe
FR2858940A1 (en) * 2003-08-21 2005-02-25 Rossignol Sa SNOW SURF MOUNTING

Family Cites Families (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US534639A (en) * 1895-02-26 Printing-telegraph
US475021A (en) * 1892-05-17 Wagon-jack
AT323619B (en) * 1973-06-19 1975-07-25 Smolka & Co Wiener Metall DEVICE FOR ADJUSTING AND DISPLAYING THE MUTUAL POSITION OF SPRING BINDING PARTS
US4753021A (en) 1987-07-08 1988-06-28 Cohen Elie Shoe with mid-sole including compressible bridging elements
US4964649A (en) * 1989-03-15 1990-10-23 Chamberlin Justin M Snowboard boot binder attachments
US4973073A (en) * 1989-03-17 1990-11-27 Raines Mark A Snowboard binding
FR2645036B1 (en) 1989-03-31 1992-07-17 Salomon Sa DEVICE FOR FIXING A FOOTWEAR ON A SNOWBOARD
US5499838A (en) * 1991-01-17 1996-03-19 Rottefella As Cross-country ski binding
US5172924A (en) * 1991-03-27 1992-12-22 Barci Robert S Hard shell boot snowboard bindings and system
WO1992022361A1 (en) * 1991-06-17 1992-12-23 Trimble & Co., Inc. Ski binding block
US5353523A (en) * 1991-08-02 1994-10-11 Nike, Inc. Shoe with an improved midsole
US5277635A (en) * 1991-12-19 1994-01-11 Connelly Skis, Inc. Water skiboard with rotatable binding
JP2593944Y2 (en) 1992-11-11 1999-04-19 マツダ株式会社 Car upper body structure
CA2089313A1 (en) * 1993-02-11 1994-08-12 Randy Jespersen Boot binding system for a snowboard
US5409244A (en) * 1993-07-12 1995-04-25 Young; Jeffrey A. Plateless snowboard binding device
US5480176A (en) * 1994-01-18 1996-01-02 Sims; Thomas P. External mounted binding
US5971420A (en) * 1994-06-06 1999-10-26 Shimano, Inc. Snowboard binding
US5577755A (en) * 1994-07-11 1996-11-26 Kuusport Manufacturing Limited Rotatable binding for snowboard
US5461800A (en) * 1994-07-25 1995-10-31 Adidas Ag Midsole for shoe
US5505478A (en) * 1994-08-17 1996-04-09 Napoliello; Michael Releasable mounting for a snowboard binding
US5673927A (en) * 1994-08-25 1997-10-07 Vermillion; James H. Composite snowboard insert and method of installation
US5853188A (en) 1994-12-09 1998-12-29 Ride, Inc. Strapless boot binding for snowboards
USD364667S (en) * 1995-03-20 1995-11-28 Pacha Duane E Snow board binding
JPH08257201A (en) 1995-03-28 1996-10-08 Hisayo Kobayashi Snowboard
US5553883A (en) * 1995-04-06 1996-09-10 Erb; George A. Snowboard binding which permits angular reorientation of a user's foot while maintaining that foot attached to the snowboard
US5690351A (en) * 1995-07-21 1997-11-25 Karol; Chris Snowboard binding system
FR2736842B1 (en) 1995-07-21 1997-09-26 Salomon Sa SNOWBOARD SUITABLE FOR SNOW SURFING PRACTICE.
IT1279438B1 (en) 1995-08-08 1997-12-10 Nordica Spa ANGLE ADJUSTMENT DEVICE, ESPECIALLY FOR A SNOWBOARD BINDING
JP3667829B2 (en) * 1995-08-10 2005-07-06 島 昇 副 Binding equipment for snowboard
JPH0984921A (en) * 1995-09-27 1997-03-31 Yonetsukusu Kk Binding for boots for snowborad
US20010001520A1 (en) * 1995-10-02 2001-05-24 Kaj Gyr Snowboard suspension system
US5984325A (en) * 1995-12-04 1999-11-16 Acuna; Peter R. Angularly adjustable snowboard boot binding
US5915718A (en) * 1996-01-08 1999-06-29 The Burton Corporation Method and apparatus for canting and lifting a snowboard binding
US5868416A (en) * 1996-03-13 1999-02-09 Fardie; Kenneth W. Adjustable release mechanism for rotating bindings
US5584492A (en) 1996-03-13 1996-12-17 Fardie; Kenneth W. Snowboard binding mechanism
US5927744A (en) * 1996-03-22 1999-07-27 Knapschafer; Myron L. Snowboot binding for a snowboard and the like
US6123354A (en) * 1996-05-29 2000-09-26 Laughlin; James Step-in snowboard binding
US5762358A (en) * 1996-06-24 1998-06-09 Hale; Joseph P. Swivelable bindings mount for a snowboard
IT1288636B1 (en) * 1996-07-05 1998-09-23 Nordica Spa ANGULAR ADJUSTMENT DEVICE PARTICULARLY FOR A SNOWBOARD BINDING
DE19627808A1 (en) * 1996-07-11 1998-01-15 Marker Deutschland Gmbh Binding for snowboard or the like
US5695210A (en) 1996-07-26 1997-12-09 Goss; Bruce R. Releasable snowboard binding
FR2752169B1 (en) * 1996-08-09 1998-09-18 Salomon Sa DEVICE FOR RETAINING A SHOE ON A SNOWBOARD
US5826910A (en) * 1996-12-09 1998-10-27 Ricks; Richard A. Swivelable snowboard bindings
US5941552A (en) * 1996-12-20 1999-08-24 Bc Creations, Inc. Adjustable snowboard binding apparatus and method
US5909894A (en) * 1997-01-02 1999-06-08 K-2 Corporation Snowboard binding
US6648365B1 (en) * 1997-01-08 2003-11-18 The Burton Corporation Snowboard binding
US6189911B1 (en) * 1997-01-11 2001-02-20 Caron Alpine Technologies, Inc. Snow board binding system
US5822866A (en) * 1997-01-17 1998-10-20 Mentor Group, L.L.C. Safety lock for automatic knife
US6283491B1 (en) * 1997-03-06 2001-09-04 Maclean-Esna, L.P. Sportboard fastener
US5971407A (en) * 1997-03-26 1999-10-26 Sims Sports, Inc. Snowboard binding
DE69806763T2 (en) * 1997-04-18 2003-03-13 Burton Corp CONNECTING ELEMENT FOR COUPLING A SNOWBOARD BOOT WITH A BINDING
AU7136498A (en) * 1997-04-18 1998-11-13 Burton Corporation, The Active highback system for a snowboard boot
US6189899B1 (en) * 1997-07-28 2001-02-20 Stephen R. Carlson Longitudinally adjustable mount for a snowboard binding
US6015161A (en) * 1997-07-28 2000-01-18 Carlson; Stephen R. Longitudinally adjustable mount for a snowboard binding
US6786502B2 (en) * 1997-07-28 2004-09-07 Stephen R. Carlson Longitudinally adjustable mount for a snowboard binding
US5855390A (en) * 1997-09-17 1999-01-05 Hassell; Christopher S. Laterally flexible snowboard binding system
FR2769236B1 (en) * 1997-10-03 2000-02-04 Salomon Sa SHOCK ABSORBER FOR A DEVICE FOR RETAINING A SHOE ON A SNOWBOARD FOR SNOW SURFING AND A DEVICE PROVIDED WITH SUCH A SHOE
JPH11197287A (en) * 1998-01-08 1999-07-27 Car Mate Mfg Co Ltd Snowboard binding mounting device
US6056312A (en) * 1998-01-20 2000-05-02 Hogstedt; Roy L. Snowboard boot and binding assembly
FR2774303B1 (en) * 1998-01-30 2000-04-28 Salomon Sa DEVICE FOR RETAINING A SHOE ON A SNOWBOARD
FR2788004B1 (en) 1999-01-05 2001-03-30 Salomon Sa SHIM PROVIDED FOR INCREASING A FIXING IN RELATION TO A BOARD FOR THE PRACTICE OF SNOW SURFING
US6095881A (en) * 1999-08-17 2000-08-01 Earth & Ocean Sports, Inc. Wakeboard binding and system with baseless beam support
US6174212B1 (en) * 1999-09-21 2001-01-16 San-Tsai Chang Water ski boot with two-piece upper to facilitate insertion of a skier's foot thereinto
FR2801513B1 (en) * 1999-11-30 2001-12-21 Emery Sa INTERFACE ELEMENT USED IN SURFING PRACTICE
FR2801512B1 (en) 1999-11-30 2001-12-21 Rossignol Sa INTERFACE PLATE MOUNTED ON A SURFBOARD
FR2802109B1 (en) * 1999-12-13 2002-01-25 Emery Sa CONNECTION DEVICE BETWEEN A SHOE FIXATION AND A SLIDING BOARD
EP1212124B1 (en) * 2000-01-06 2003-08-27 The Burton Corporation Highback formed of multiple materials
US6631919B1 (en) * 2000-01-06 2003-10-14 The Burton Corporation Wing-shaped leg support for a highback
FR2804877B1 (en) 2000-02-15 2002-05-24 Rossignol Sa SURF FIXING
US6461210B2 (en) * 2000-03-03 2002-10-08 Timoty A. Lorenzo Wakeboard with tubular frame and binding footplate having multidirectional adjustability
CA2403298C (en) * 2000-03-13 2008-05-06 597990 B.C. Ltd. Swivel connector for snowboard bindings
EP1142615A3 (en) * 2000-04-03 2002-08-07 K2 Corporation Strapless toelock binding for snowboards
US6416075B1 (en) * 2000-04-28 2002-07-09 The Burton Corporation Tool-free adjustable binding strap
US6554296B1 (en) * 2000-04-28 2003-04-29 The Burton Corporation Highback with independent forward lean adjustment
FR2817164B1 (en) * 2000-11-24 2003-02-21 Salomon Sa SUPPORT BASE FOR A SHOE ON A BOARD, THE BASE INCLUDING A DEVICE FOR ANGULAR ORIENTATION IN RELATION TO THE BOARD
FR2817159B1 (en) * 2000-11-24 2003-02-21 Salomon Sa REAR SUPPORT DEVICE FOR A SHOE RETAINING ASSEMBLY ON A SPORTS MACHINE
IT1316560B1 (en) * 2000-12-28 2003-04-22 Benetton Spa ANGULAR ADJUSTMENT DEVICE, PARTICULARLY FOR A DASNOWBOARD ATTACK.
US6487796B1 (en) * 2001-01-02 2002-12-03 Nike, Inc. Footwear with lateral stabilizing sole
US7124928B2 (en) * 2001-01-16 2006-10-24 Axsun Technologies, Inc. Optical component installation and train alignment process utilizing metrology and plastic deformation
US6457261B1 (en) * 2001-01-22 2002-10-01 Ll International Shoe Company, Inc. Shock absorbing midsole for an athletic shoe
US7267357B2 (en) * 2001-02-15 2007-09-11 Miller Sports International, Inc. Multi-function binding system
US8336903B2 (en) * 2001-02-15 2012-12-25 Miller Sport International, Llc Multi-function binding system
US6557866B2 (en) * 2001-03-09 2003-05-06 Dennis Jones Snowboard binding
US6742800B2 (en) * 2001-04-18 2004-06-01 Shimano, Inc. Snowboard binding system
US6733030B2 (en) * 2001-04-18 2004-05-11 Shimano, Inc. Snowboard binding system
US6729641B2 (en) * 2001-04-18 2004-05-04 Shimano Inc. Snowboard binding system
US6733031B2 (en) * 2001-04-18 2004-05-11 Shimano, Inc. Snowboard binding system
FR2824275B1 (en) * 2001-05-04 2003-08-15 Rossignol Sa IMPROVEMENT FOR A DEVICE FOR RETAINING A SHOE ON A SNOWBOARD OF THE SURF TYPE
US20020185840A1 (en) * 2001-06-06 2002-12-12 Schaller Hubert M. Binding mounting method and apparatus
US6546648B2 (en) * 2001-06-18 2003-04-15 Roy Dixon Athletic shoe with stabilized discrete resilient elements in heel
AT411016B (en) * 2001-08-29 2003-09-25 Atomic Austria Gmbh BINDING DEVICE FOR SPORTS EQUIPMENT, ESPECIALLY FOR A SNOWBOARD
US6964120B2 (en) * 2001-11-02 2005-11-15 Nike, Inc. Footwear midsole with compressible element in lateral heel area
US6851204B2 (en) * 2001-11-15 2005-02-08 Nike, Inc. Footwear sole with a stiffness adjustment mechanism
DE60203240T2 (en) * 2001-11-21 2006-02-09 The Burton Corp. Binding board for a snowboard
US6722688B2 (en) * 2001-11-21 2004-04-20 The Burton Corporation Snowboard binding system
US20030116931A1 (en) 2001-12-17 2003-06-26 Quattro Johnny S. Forum positioning system
US6898870B1 (en) * 2002-03-20 2005-05-31 Nike, Inc. Footwear sole having support elements with compressible apertures
DE10234913B4 (en) * 2002-07-31 2005-11-10 Adidas International Marketing B.V. sole
US6916036B1 (en) * 2003-01-07 2005-07-12 Kent Egli Adjustable two-position snowboard binding mount and methods
US7082698B2 (en) * 2003-01-08 2006-08-01 Nike, Inc. Article of footwear having a sole structure with adjustable characteristics
US20040145155A1 (en) * 2003-01-24 2004-07-29 Dakuga Holding Ltd. Spacer for snowboard
US6991240B2 (en) * 2003-01-24 2006-01-31 Vans, Inc. Toe ramp system
US6889997B2 (en) * 2003-01-31 2005-05-10 Shimano Inc. Snowboard binding
US6871869B2 (en) * 2003-01-31 2005-03-29 Shimano Inc. Snowboard binding
DE10305764B4 (en) * 2003-02-11 2007-04-12 Goodwell International Ltd., Tortola snowboard binding
DE10319056B4 (en) * 2003-04-25 2013-06-20 Japana Co., Ltd. snowboard binding
WO2004096386A1 (en) 2003-04-30 2004-11-11 Nitro Ag A snowboard binding
US6976684B2 (en) * 2003-05-14 2005-12-20 K-2 Corporation Snowboard binding system having multiple tool-less adjustments
US7097195B2 (en) * 2003-06-27 2006-08-29 Orr Keith M Recreational binding with adjustable suspension interface
AU2003904230A0 (en) * 2003-08-11 2003-08-21 Nicholas Fletcher Snowboard binding
US20050042954A1 (en) * 2003-08-18 2005-02-24 Pacha Duane E. Wakeboard base plate, foot bed, and mounting interfastener combination
US20050048853A1 (en) * 2003-08-28 2005-03-03 Pacha Duane E. Wakeboard outerbase support shell and bladder combination
FR2859109B1 (en) * 2003-09-02 2005-11-11 Salomon Sa DEVICE FOR MAINTAINING A FOOT OR SHOE ON A SPORT MACHINE
US7815214B2 (en) * 2003-09-09 2010-10-19 Sabol Jeffrey P Rotatable sports board binding adapter
DE10343887B3 (en) * 2003-09-19 2004-12-09 Goodwell International Ltd., Tortola Snowboarding binding for a snowboard comprises a base plate, a pin plate, a base plate, a retaining plate, and a clamping plate
FR2862545B1 (en) 2003-11-24 2007-11-23 Salomon Sa DEVICE FOR HOSTING A FOOT OR SHOE
FR2865659B1 (en) 2004-01-30 2006-07-07 Salomon Sa DEVICE FOR SUPPORTING A FOOT OR SHOE ON A SPORT MACHINE
FR2865658B1 (en) * 2004-01-30 2006-06-09 Salomon Sa DEVICE FOR HOSTING A FOOT OR SHOE ON A SPORT MACHINE
US7300070B2 (en) 2004-05-10 2007-11-27 Jean-Francois Pelchat Binding mounting system for recreational board
FR2871069B1 (en) * 2004-06-03 2006-09-01 Salomon Sa DEVICE FOR MAINTAINING A FOOT OR SHOE
FR2872435B1 (en) * 2004-06-30 2006-09-29 Salomon Sa DEVICE FOR MAINTAINING A FOOT OR SHOE
AT501564A1 (en) * 2004-12-30 2006-09-15 Atomic Austria Gmbh SNOWBOARD BINDING
FR2881356B1 (en) * 2005-01-31 2007-04-13 Salomon Sa DEVICE FOR HOSTING A FOOT OR SHOE ON A SPORT MACHINE
US20060237920A1 (en) * 2005-04-25 2006-10-26 K-2 Corporation Virtual forward lean snowboard binding
US7490859B2 (en) 2005-06-24 2009-02-17 Skis Rossignol Sa Device for retaining a boot on a snowboard
US20060292944A1 (en) 2005-06-27 2006-12-28 Scott Cumrine Wakeboard binding plate assembly and method of use
US7703794B2 (en) * 2005-08-03 2010-04-27 O'hara Steve Canting device for a snowboard binding and methods
US7134928B1 (en) * 2005-08-16 2006-11-14 Connelly Skis, Inc. Binding for water sports boards
US7306241B2 (en) * 2005-08-29 2007-12-11 The Burton Corporation Strap for snowboard boots or bindings
US7290785B2 (en) 2005-09-26 2007-11-06 Philip Allan Dixon Angular adjustment mechanism for snowboard bindings
FR2894837A1 (en) * 2005-12-20 2007-06-22 Salomon Sa DEVICE FOR HOSTING A FOOT OR SHOE ON A SPORT MACHINE
US20070187911A1 (en) * 2005-12-21 2007-08-16 Morley Jonathan D Revolution snowboard binding rotation and riser system
US7823905B2 (en) * 2006-03-17 2010-11-02 William J Ritter Splitboard bindings
FR2899820B1 (en) 2006-04-18 2008-05-30 Eurl Prodat Entpr Unipersonnel SLIDING BOARD FASTENING
US7571924B2 (en) * 2006-06-14 2009-08-11 Rick White Rotatable snowboard boot binding apparatus
FR2922779B1 (en) * 2007-10-25 2010-02-19 Salomon Sa ASSEMBLY FOR THE PRACTICE OF SLIDING OR RUNNING SPORT
US7992888B2 (en) * 2007-12-07 2011-08-09 K-2 Corporation Blockless highback binding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417443A (en) * 1993-09-01 1995-05-23 Blattner; Jacob A. Snowboard binding
US5503900A (en) * 1994-08-30 1996-04-02 Herbert E. Fletcher Snowboard padding
US5660410A (en) * 1994-12-09 1997-08-26 Device Manufacturing Corporation Strapless boot binding for snowboards
US20010015543A1 (en) * 2000-02-22 2001-08-23 Pascal Joubert Des Ouches Interface element used on a snowboard
US6315305B1 (en) * 2000-02-23 2001-11-13 Yu Tze Gien Snowboard binding having adjustable toe
EP1149610A1 (en) * 2000-04-28 2001-10-31 The Burton Corporation Adjustable pad for foot binding
FR2858940A1 (en) * 2003-08-21 2005-02-25 Rossignol Sa SNOW SURF MOUNTING

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2052765A2 (en) 2007-10-25 2009-04-29 Salomon S.A.S. Assembly for practicing snowboarding or skateboarding
FR2922778A1 (en) * 2007-10-25 2009-05-01 Salomon Sa ASSEMBLY FOR THE PRACTICE OF SLIDING OR RUNNING SPORT
FR2922779A1 (en) * 2007-10-25 2009-05-01 Salomon Sa ASSEMBLY FOR THE PRACTICE OF SLIDING OR RUNNING SPORT
EP2052765A3 (en) * 2007-10-25 2009-05-13 Salomon S.A.S. Assembly for practicing snowboarding or skateboarding
EP2052764A3 (en) * 2007-10-25 2009-05-13 Salomon S.A.S. Assembly for practicing snowboarding or skateboarding
EP2052764A2 (en) * 2007-10-25 2009-04-29 Salomon S.A.S. Assembly for practicing snowboarding or skateboarding
US8182269B2 (en) 2007-10-25 2012-05-22 Salomon S.A.S. Assembly for practicing a gliding or rolling sport
DE202010008686U1 (en) 2009-12-07 2011-04-07 Boards & More Gmbh binding
DE202010010117U1 (en) 2010-07-12 2010-10-14 Boards & More Gmbh binding
DE102011051977A1 (en) 2010-09-30 2012-04-05 Boards & More Gmbh board
DE202010008682U1 (en) 2010-09-30 2011-02-24 Boards & More Gmbh board
DE102011051977B4 (en) 2010-09-30 2024-02-08 Boards & More Gmbh board
WO2017069838A1 (en) * 2015-10-19 2017-04-27 Mervin Manufacturing, Inc. Interchangeable drive plates for snowboard bindings
US9844718B2 (en) 2015-10-19 2017-12-19 Mervin Manufacturing, Inc. Interchangeable drive plates for snowboard bindings

Also Published As

Publication number Publication date
JP2009542350A (en) 2009-12-03
US7980583B2 (en) 2011-07-19
JP5756141B2 (en) 2015-07-29
EP2108412A1 (en) 2009-10-14
WO2008008261A8 (en) 2008-03-27
US7850194B2 (en) 2010-12-14
US20080030001A1 (en) 2008-02-07
US20090194972A1 (en) 2009-08-06
US20080030000A1 (en) 2008-02-07
EP2161059A1 (en) 2010-03-10
EP2103332A1 (en) 2009-09-23
ATE452690T1 (en) 2010-01-15
US7762573B2 (en) 2010-07-27
US7887083B2 (en) 2011-02-15
JP5243418B2 (en) 2013-07-24
JP2013150859A (en) 2013-08-08
DE602007003983D1 (en) 2010-02-04
EP2038022B1 (en) 2009-12-23
US20100219613A1 (en) 2010-09-02
WO2008008261A3 (en) 2008-06-26
EP2038022A2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
US7762573B2 (en) Footbed for gliding board binding
US6742800B2 (en) Snowboard binding system
US8662505B2 (en) Binding components for a gliding board
US8132818B2 (en) Binding components for a gliding board
US6062586A (en) Boot binding system for a snowboard
US6467795B1 (en) Snowboard binding with highback
EP1015080A1 (en) Improved boot binding system for a snowboard
US20110254239A1 (en) Angle adjuster for snowboard binder
US20070138766A1 (en) Device for receiving a foot or boot on a sports apparatus
US7444769B2 (en) Boot binding interface system
US8226108B2 (en) Snowboard binding
JP3081398U (en) Snowboard bindings
JP2002191743A (en) Assembly for retaining boot on sports apparatus
JP2004230162A (en) Snowboard boots
EP1961322B1 (en) Ski boot
US20050042954A1 (en) Wakeboard base plate, foot bed, and mounting interfastener combination
EP3935985A1 (en) Ski boot system
WO2023130178A1 (en) Skate
EP2385865B1 (en) Snowboard binding with lower impact on board flex
US8342561B2 (en) Gliding board binding with movable medial or lateral side portion
CA2307942A1 (en) Boot binding system for a snowboard

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07810218

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009518373

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007810218

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU