WO2008017013A2 - Multi-layer light modulator - Google Patents

Multi-layer light modulator Download PDF

Info

Publication number
WO2008017013A2
WO2008017013A2 PCT/US2007/075038 US2007075038W WO2008017013A2 WO 2008017013 A2 WO2008017013 A2 WO 2008017013A2 US 2007075038 W US2007075038 W US 2007075038W WO 2008017013 A2 WO2008017013 A2 WO 2008017013A2
Authority
WO
WIPO (PCT)
Prior art keywords
electro
light modulator
layers
optic
modulator according
Prior art date
Application number
PCT/US2007/075038
Other languages
French (fr)
Other versions
WO2008017013A3 (en
Inventor
Richard J. Paolini, Jr.
Shamus Ford Patry
Original Assignee
E Ink Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Ink Corporation filed Critical E Ink Corporation
Publication of WO2008017013A2 publication Critical patent/WO2008017013A2/en
Publication of WO2008017013A3 publication Critical patent/WO2008017013A3/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details

Definitions

  • This invention relates to multi-layer light modulators, that is to say light modulators having at least two light modulating layers arranged so that light will pass through successively through the two or more light modulating layers.
  • Light modulators include variable transmission windows, mirrors and similar devices designed to modulate the amount of light or other electro-magnetic radiation passing therethrough.
  • the term "light” will normally be used herein, but this term should be understood in a broad sense to include electro-magnetic radiation at non-visible wavelengths.
  • the present invention might be applied to provide windows which can modulate infra-red radiation for controlling temperatures within buildings.
  • This invention is primarily but not exclusively directed to light modulators which use particle-based electrophoretic media to control light modulation.
  • optical property is typically color perceptible to the human eye, it may be another optical property, such as optical transmission, reflectance, luminescence or, in the case of displays intended for machine reading, pseudo-color in the sense of a change in reflectance of electromagnetic wavelengths outside the visible range.
  • gray state is used herein in its conventional meaning in the imaging art to refer to a state intermediate two extreme optical states of a pixel, and does not necessarily imply a black-white transition between these two extreme states.
  • E Ink patents and published applications referred to below describe electrophoretic displays in which the extreme states are white and deep blue, so that an intermediate "gray state” would actually be pale blue. Indeed, as already mentioned, the change in optical state may not be a color change at all.
  • black and “white” may be used hereinafter to refer to the two extreme optical states of a display, and should be understood as normally including extreme optical states which are not strictly black and white, for example the aforementioned white and dark blue states.
  • the term “monochrome” may be used hereinafter to denote a drive scheme which only drives pixels to their two extreme optical states with no intervening gray states.
  • electro-optic displays are known.
  • One type of electro-optic display is a rotating bichromal member type as described, for example, in U.S. Patents Nos. 5,808,783; 5,777,782; 5,760,761; 6,054,071 6,055,091; 6,097,531; 6,128,124; 6,137,467; and 6,147,791 (although this type of display is often referred to as a "rotating bichromal ball” display, the term "rotating bichromal member" is preferred as more accurate since in some of the patents mentioned above the rotating members are not spherical).
  • Such a display uses a large number of small bodies (typically spherical or cylindrical) which have two or more sections with differing optical characteristics, and an internal dipole. These bodies are suspended within liquid-filled vacuoles within a matrix, the vacuoles being filled with liquid so that the bodies are free to rotate. The appearance of the display is changed by applying an electric field thereto, thus rotating the bodies to various positions and varying which of the sections of the bodies is seen through a viewing surface.
  • This type of electro-optic medium is typically bistable.
  • an electrochromic medium for example an electrochromic medium in the form of a nanochromic film comprising an electrode formed at least in part from a semi-conducting metal oxide and a plurality of dye molecules capable of reversible color change attached to the electrode; see, for example O'Regan, B., et al, Nature 1991, 353, 737; and Wood, D., Information Display, 18(3), 24 (March 2002). See also Bach, U., et al., Adv. Mater., 2002, 14(11), 845. Nanochromic films of this type are also described, for example, in U.S. Patents Nos. 6,301,038; 6,870.657; and 6,950,220. This type of medium is also typically bistable.
  • [Para 8] Another type of electro-optic display is an electro-wetting display developed by Philips and described in Hayes, R.A., et al., "Video-Speed Electronic Paper Based on Electrowetting", Nature, Vol. 425, pages 383-385 (25 September 2003). It is shown in copending Application Serial No. 10/711,802, filed October 6, 2004 (Publication No. 2005/0151709), that such electro-wetting displays can be made bistable.
  • Another type of electro-optic display which has been the subject of intense research and development for a number of years, is the particle-based electrophoretic display, in which a plurality of charged particles move through a fluid under the influence of an electric field.
  • Electrophoretic displays can have attributes of good brightness and contrast, wide viewing angles, state bistability, and low power consumption when compared with liquid crystal displays. Nevertheless, problems with the long-term image quality of these displays have prevented their widespread usage. For example, particles that make up electrophoretic displays tend to settle, resulting in inadequate service-life for these displays. [Para 10] As noted above, electrophoretic media require the presence of a fluid.
  • electrophoretic media In most prior art electrophoretic media, this fluid is a liquid, but electrophoretic media can be produced using gaseous fluids; see, for example, Kitamura, T., et al., "Electrical toner movement for electronic paper-like display", IDW Japan, 2001, Paper HCSl-I, and Yamaguchi, Y., et al., "Toner display using insulative particles charged triboelectrically", IDW Japan, 2001, Paper AMD4-4). See also U.S. Patent Publication No.
  • Encapsulated media of this type are described, for example, in U.S. Patents Nos. 5,930,026; 5,961,804; 6,017,584; 6,067,185; 6,118,426; 6,120,588; 6,120,839; 6,124,851; 6,130,773; 6,130,774; 6,172,798; 6,177,921; 6,232,950; 6,249,271; 6,252,564; 6,262,706; 6,262,833; 6,300,932; 6,312,304; 6,312,971; 6,323,989; 6,327,072; 6,376,828; 6,377,387; 6,392,785; 6,392,786; 6,413,790; 6,422,687; 6,445,374; 6,445,489; 6,459,418; 6,473,072; 6,480,182; 6,498,114; 6,504,524; 6,506,438; 6,512,354; 6,515,649; 6,
  • Patent No. 6,866,760 Accordingly, for purposes of the present application, such polymer-dispersed electrophoretic media are regarded as sub-species of encapsulated electrophoretic media.
  • a related type of electrophoretic display is a so-called "microcell electrophoretic display".
  • the charged particles and the fluid are not encapsulated within microcapsules but instead are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film. See, for example, U.S. Patents Nos. 6,672,921 and 6,788,449, both assigned to Sipix Imaging, Inc.
  • electrophoretic media are often opaque (since, for example, in many electrophoretic media, the particles substantially block transmission of visible light through the display) and operate in a reflective mode
  • many electrophoretic displays can be made to operate in a so-called "shutter mode" in which one display state is substantially opaque and one is light-transmissive. See, for example, the aforementioned U.S. Patents Nos. 6,130,774 and 6,172,798, and U.S. Patents Nos. 5,872,552; 6,144,361; 6,271,823; 6,225,971; and 6,184,856.
  • Dielectrophoretic displays which are similar to electrophoretic displays but rely upon variations in electric field strength, can operate in a similar mode; see U.S. Patent No. 4,418,346. Other types of electro-optic displays may also be capable of operating in shutter mode.
  • An encapsulated electrophoretic display typically does not suffer from the clustering and settling failure mode of traditional electrophoretic devices and provides further advantages, such as the ability to print or coat the display on a wide variety of flexible and rigid substrates.
  • the word “printing” is intended to include all forms of printing and coating, including, but without limitation: pre-metered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; ink jet printing processes; electrophoretic deposition (see U.S. Patent Publication No. 2004/0226820); and other similar techniques.)
  • pre-metered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating
  • roll coating such as knife over roll coating, forward and reverse roll coating
  • gravure coating dip coating
  • spray coating meniscus coating
  • spin coating spin coating
  • brush coating air knife coating
  • silk screen printing processes electrostatic printing processes
  • thermal printing processes ink jet printing processes
  • electrophoretic deposition see U.S. Patent Publication No. 2004/0226820
  • Shutter mode displays can be used as conventional reflective displays, for example, by using particles having one color and providing a surface of a different color positioned on the opposed side of the electro-optic medium from the viewing surface through which an observer views the display; see, for example, U.S. Patent No. 6,177,921.
  • shutter mode displays can be used as light modulators, that is to say devices which in one (open or transparent) optical state allow light to pass therethrough, while in another (closed or opaque) optical state the light is blocked.
  • Electro-optic media can be used as coatings on windows (including skylights and sunroofs) to enable the proportion of incident radiation transmitted through the windows to be electronically controlled by varying the optical state of the electro-optic media.
  • Effective implementation of such "variable-transmissivity" (“VT") technology in buildings is expected to provide (1) reduction of unwanted heating effects during hot weather, thus reducing the amount of energy needed for cooling, the size of air conditioning plants, and peak electricity demand; (2) increased use of natural daylight, thus reducing energy used for lighting and peak electricity demand; and (3) increased occupant comfort by increasing both thermal and visual comfort.
  • VT variable-transmissivity
  • VT technology in automobiles is expected to provide not only the aforementioned benefits but also (1) increased motoring safety, (2) reduced glare, (3) enhanced mirror performance (by using an electro-optic coating on the mirror), and (4) increased ability to use heads-up displays.
  • Other potential applications of VT technology include privacy glass and glare-guards in electronic devices.
  • a VT window designed to control light levels within a building may need to block a very high proportion of the light present when the exterior of the building is exposed to a blazing summer sun, but to transmit a high proportion of the light present on a dull winter day.
  • the ideal electro-optic medium for use in a light modulator would be one variable all the way from 100 per cent transmission to 0 per cent transmission, but in practice no such medium exists and the range of transmissions available from most electro-optic media is limited by physical constraints.
  • this invention provides a light modulator comprising a plurality of discrete variable transmission electro-optic layers arranged so that light will pass successively through the plurality of layers, the light modulator having a higher transmission range than any of the individual electro-optic layers separately.
  • the individual VT layers used in the light modulator should typically satisfy the relationship:
  • O is the open state transmission (i.e., the maximum optical transmission which the layer is capable of achieving, allowing of course for the method used to drive the light modulator to its "open", most light-transmissive state) of a single layer and R is the transmission range of the layer (i.e., the difference between the transmissions of the extreme open and closed states of the layer.
  • R is the transmission range of the layer (i.e., the difference between the transmissions of the extreme open and closed states of the layer.
  • the individual electro- optic layers desirably have an open state transmission of at least about 75 per cent.
  • the light modulator of the present invention may further comprise two substantially transparent sheets of material disposed on opposed sides of the plurality of discrete variable transmission electro-optic layers, each of the substantially transparent sheets of material having a thickness of at least about 1 mm, or in many cases considerably more.
  • the substantially transparent sheets may be made of glass (or possibly a transparent polymer such as poly(methyl methacrylate)) having a thickness in the range of (say) 5-10 mm so that the light modulator has the form of a variable transmission window. In some cases, it may be convenient to mount electrodes directly on the transparent sheets.
  • This invention also provides a light modulator comprising a plurality of discrete variable transmission electro-optic layers arranged so that light will pass successively through the plurality of layers, at least one electrode arranged to apply an electric field to the electro- optic layers, and voltage supply means for controlling the voltage of the at least one electrode, the voltage supply means being arranged to apply a first waveform to the at least one electrode to drive the electro-optic layers to a first optical state in which the layers are substantially non-light-transmissive and to apply a second waveform to the at least one electrode to drive the electro-optic layers to a second optical state in which the layers are substantially more light-transmissive than in the first optical state.
  • each of the electro- optic layers comprises an electrophoretic medium comprising a plurality of electrically charged particles disposed in a fluid and capable of moving through the fluid on application of an electric field to the medium.
  • the electrophoretic medium may comprise a plurality of dark (a term which is used herein to include black) colored charged particles in a liquid; the dark colored particles may comprise carbon black or copper chromite.
  • the charged particles and the fluid may be confined within a plurality of cavities in a solid medium, the cavities having sidewalls extending substantially perpendicular to the thickness of the electro-optic layer.
  • This type of cavity-containing medium may be an encapsulated electrophoretic medium, a polymer-dispersed electrophoretic medium or a microcell electrophoretic medium, as discussed above.
  • the first waveform may comprise a DC voltage, or a low frequency alternating voltage and the second waveform comprises an alternating voltage which causes the charged particles against the sidewalls of the cavities; see the aforementioned 2006/0038772 for further details regarding the driving of such light modulators.
  • the light modulator will have two electrodes disposed on opposed sides of the plurality of variable transmission electro-optic layers. These may be the only electrodes present (i.e., there may not be any electrodes present between adjacent pairs of electro-optic layers), in which case the single pair of electrodes will control the optical state of all the electro-optic layers.
  • the light modulator may have at least one electrode between each adjacent pair of electro-optic layers, so that the optical state of each electro-optic layer can be controlled independently. "Intermediate" arrangements are of course possible; for example, a light modulator could have six electro-optic layers grouped into three adjacent pairs, with no electrode between the two layers within each pair, but with an electrode between pairs.
  • O is the transmission of the second optical state of a single layer and R is the transmission range of the layer (i.e., the difference between the transmissions of the extreme open and closed states of the layer).
  • the individual electro-optic layers desirably have a transmission in their second optical state of at least about 75 per cent. It is not, of course, necessary that all the electro-optic layers be identical; the layers may have different open state transmissions and transmission ranges. As demonstrated below, the optimum number of electro-optic layers varies with the transmission of the second optical state and the transmission range; the light modulator may have at least three, and conveniently not more than six, electro-optic layers. The light modulator may be provided with two substantially transparent sheets of material, as previously described. [Para 27]
  • Figure 1 of the accompanying drawings is a graph showing the ranges of open state single electro-optic layer transmission and single layer transmission range useful in the present invention.
  • Figure 2 is a schematic cross-section through a light modulator of the present invention.
  • the present invention provides a light modulator comprising a plurality of discrete variable transmission electro-optic layers arranged so that light will pass successively through the plurality of layers.
  • the electro-optic or VT layers of the light modulator will be in the form of thin flat sheets having a width (in the plane of the sheet) much greater (say at least an order of magnitude greater) than the thickness of the sheet (perpendicular to the plane of the sheet).
  • a stack of such thin sheets, preferably held together by optically clear adhesive between the sheets, can be produced in a form resembling a pane of glass, and thus suitable for use in a conventional window frame or similar glass-mounting device.
  • such a stack of thin sheets can be mounted between two transparent, and typically rigid, sheets of glass, polymer or other material to produce a composite sheet which can readily be used in place of a pane of glass in a conventional window frame or similar glass-mounting device, in a building, vehicle or other location where control of light transmission is desired.
  • the light modulator of the present invention can overcome the limitations of single layers of electro-optic media used as light modulators, for example the limited transmission range between the open and closed states of the shutter mode electrophoretic media described in the aforementioned 2005/0213191 and U.S. Patent No. 7,116,466.
  • the individual layers of the light modulator should be chosen so as to have as high a transmission range as possible and to have as high an open state transmission as possible; in practice, it may not be possible to optimize both these parameters at the same time and the detailed analysis below indicates how best to compromise between the two objectives.
  • a form of this medium with an open state having 90 per cent transmission and a closed state having 50 per cent transmission is greatly preferred over a form having an open state having 60 per cent transmission and a closed state having 20 per cent transmission.
  • Stacking a plurality of layers of this medium together and bonding them to each other with an optically clear adhesive to reduce inter-layer light losses provides a light modulator of the present invention having a transmission range higher than that of the individual layers.
  • a stack of two 90/50 layers will (ignoring losses between the layers) have an open state of 0.9 x 0.9 or 81 per cent transmission, and a closed state of 0.5 x 0.5 or 25 per cent transmission, with a transmission range of 56 per cent compared to the 40 per cent of each layer separately.
  • a stack of three 90/50 layers will (again ignoring losses between the layers) have an open state of 0.9 or 72.9 per cent transmission, and a closed state of 0.5 3 or 12.
  • This Table shows that, for differing open transmission values, the optimum number of layers to provide maximum transmission ranges differs, even when one assumes a single transmission range for each layer.
  • the Table confirms that the transmission range of light modulators can be substantially increased by stacking multiple variable transmission electro-optic layers; all values above 40 in the above Table represent cases in which the transmission range is improved by stacking.
  • the Table confirms that, for any given single layer open state transmission and single layer transmission range, there is an optimum number of layers for maximum transmission range of the stack.
  • the Table shows that stacking is only advantageous when the single layer open state transmission exceeds a certain threshold; note that in the above Table there are no cases where stacking increases transmission range when the single layer open state transmission is 70 per cent or less. It can be shown that, for stacking of multiple layers to be advantageous, individual layers should satisfy the relationship:
  • Figure 2 of the accompanying drawings is a highly schematic cross-section through a three electro-optic layer light modulator (generally designated 100) of the present invention.
  • the thicknesses of the various layers in Figure 2 are of course greatly exaggerated in relation to their lateral widths.
  • the light modulator comprises a first transparent sheet 102, which may have the form of a glass plate, and which bears on its upper surface a transparent electrode 104, which may be in the form of a layer of indium tin oxide (ITO) sputtered directly on the sheet 102.
  • ITO indium tin oxide
  • the light modulator 100 must of course be provided with voltage control means to control the voltages applied to the electrode 104, and to the other electrodes described below, when the optical state of the light modulator is to be changed. However, since such voltage supply means are conventional, they are omitted from Figure 2 for ease of illustration.
  • the next layer of the light modulator 100 is an electro-optic layer, in the form of an encapsulated electrophoretic layer comprising a plurality of capsules, each capsule comprising a capsule wall 106 within which are encapsulated a large number of black, electrically charged particles 108 and a fluid 110.
  • the capsules 106 are surrounded by a polymeric binder 112 which serves to form the capsules into a mechanically coherent layer.
  • the light modulator 100 further comprises a second transparent electrode 114, which may be similar to the electrode 104, a polymeric support layer 116, which serves to support the thin electrode 114 and a layer of optically clear adhesive 118.
  • the light modulator 100 comprises a third electrophoretic layer 128, a fourth electrode 130 and a second transparent sheet 132.
  • the four electrode layers in the light modulator 100 allow independent control of each of the three electrophoretic layers therein. It should be noted that it is not necessary to provide two electrodes associated with each electrophoretic layer; since the electrophoretic layer is sensitive only to the difference in voltage between the electrodes on either side of the electrophoretic layer, by careful control of the voltages applied to the four electrophoretic layers in the light modulator 100 it is always possible to apply the desired waveform to each electrophoretic layer. For example, if it desired to vary the optical state of the central electrophoretic layer 120 while leaving the other two electrophoretic layers unchanged, an appropriate waveform can be applied between the electrodes 114 and 122, while keeping electrode 104 at the same voltage as electrode 114 and electrode 130 at the same voltage as electrode 122.
  • a further benefit of stacking electro-optic layers in accordance with the present invention is that, in some cases, driving of the electro-optic layers can be simplified.
  • a light modulator of the present invention should desirably have a large number of gray states; for example, when a variable infra-red transmission window is used to control passive solar heating of a building, a large number of gray levels are desirable to enable the passive solar heating to be controlled accurately at varying levels of sunlight.
  • Providing a large number of gray levels in a single electro-optic layer normally requires a rather elaborate controller, whereas much simpler controllers can be used when a single layer is driven in a "monochrome" manner (i.e., so that the layer is always either fully open or fully closed).
  • a large number of gray levels can be made available by operating the various electro-optic layers in a monochrome manner, or with only a small number of gray levels in each layer.
  • a ten-layer stack can achieve eleven different gray levels simply by switching the various electro-optic layers between their extreme open and closed states.
  • the light modulator of the present invention can also provide improved contrast ratio between the open and closed states of the modulator. Such an improved contrast ratio is important for practical reasons since the human eye tends to be more sensitive to contrast ratio that to absolute transmission values, and a high contrast ratio is important in creating the desired impression of a change from a "clear" window to a darkened one, even if the transmission of the clear window is in fact substantially less than 100 per cent.
  • the modulators of the present invention can improve the granularity of the display.
  • Granularity refers to a phenomenon whereby the optical properties of a single electro-optic layer are not absolutely constant over the entire area of the layer, particularly when the electro-optic layer is in a relatively light-transmissive state. Granularity is visible to the eye as a "mottling" of what is intended to be a uniformly transmissive or gray display or window, and is objectionable to users of light modulators. It has been found that multi-layer light modulators of the present invention tend to have less mottling that prior art single layer light modulators using similar electro-optic media.
  • transmission is a function of wavelength.
  • the light modulators of the present invention will typically be intended to control visible radiation, but we do not exclude the possibility that they might also be designed primarily to control certain non- visible wavelengths, for example ultra-violet or infra-red wavelengths.
  • the choice of the electro-optic medium used in each layer, and of the number of layers in the present light modulators should of course be made dependent upon the transmission and transmission range of the electro-optic medium employed at the wavelength or wavelength range which the modulator is designed to control.
  • the light modulator of the present invention may make use of any of the types of electro-optic medium previously described.
  • the light modulator may make use of a rotating bichromal or some types of electrochromic medium.
  • the present light modulator use an electrophoretic medium, preferably a microcavity electrophoretic medium, the term "microcavity" being used herein to cover encapsulated electrophoretic media, polymer-dispersed electrophoretic media and microcell electrophoretic media.

Abstract

A light modulator (100) comprises a plurality of discrete variable transmission electro-optic layers (106, 120, 128) arranged so that light will pass successively through the plurality of layers (106, 120, 128); the light modulator (100) has a higher transmission range than any of the individual electro-optic layers (106, 120, 128) separately.

Description

MULTI-LAYER LIGHT MODULATOR
[Para 1] This application is related to U.S. Patent Publications Nos. 2004/0136048, 2005/0213191 and 2006/0038772, and U.S. Patents Nos. 6,124,851; 7,106,296; and 7,116,466, to which the reader is referred for background information.
[Para 2] This invention relates to multi-layer light modulators, that is to say light modulators having at least two light modulating layers arranged so that light will pass through successively through the two or more light modulating layers. Light modulators include variable transmission windows, mirrors and similar devices designed to modulate the amount of light or other electro-magnetic radiation passing therethrough. For convenience, the term "light" will normally be used herein, but this term should be understood in a broad sense to include electro-magnetic radiation at non-visible wavelengths. For example, the present invention might be applied to provide windows which can modulate infra-red radiation for controlling temperatures within buildings. This invention is primarily but not exclusively directed to light modulators which use particle-based electrophoretic media to control light modulation.
[Para 3] The term "electro-optic", as applied to a material or a display, is used herein in its conventional meaning in the imaging art to refer to a material having first and second display states differing in at least one optical property, the material being changed from its first to its second display state by application of an electric field to the material. Although the optical property is typically color perceptible to the human eye, it may be another optical property, such as optical transmission, reflectance, luminescence or, in the case of displays intended for machine reading, pseudo-color in the sense of a change in reflectance of electromagnetic wavelengths outside the visible range.
[Para 4] The terms "bistable" and "bistability" are used herein in their conventional meaning in the art to refer to displays comprising display elements having first and second display states differing in at least one optical property, and such that after any given element has been driven, by means of an addressing pulse of finite duration, to assume either its first or second display state, after the addressing pulse has terminated, that state will persist for at least several times, for example at least four times, the minimum duration of the addressing pulse required to change the state of the display element. It is shown in U.S. Patent No. 7,170,670 that some particle-based electrophoretic displays capable of gray scale are stable not only in their extreme black and white states but also in their intermediate gray states, and the same is true of some other types of electro-optic displays. This type of display is properly called "multi-stable" rather than bistable, although for convenience the term "bistable" may be used herein to cover both bistable and multi-stable displays.
[Para 5] The term "gray state" is used herein in its conventional meaning in the imaging art to refer to a state intermediate two extreme optical states of a pixel, and does not necessarily imply a black-white transition between these two extreme states. For example, several of the E Ink patents and published applications referred to below describe electrophoretic displays in which the extreme states are white and deep blue, so that an intermediate "gray state" would actually be pale blue. Indeed, as already mentioned, the change in optical state may not be a color change at all. The terms "black" and "white" may be used hereinafter to refer to the two extreme optical states of a display, and should be understood as normally including extreme optical states which are not strictly black and white, for example the aforementioned white and dark blue states. The term "monochrome" may be used hereinafter to denote a drive scheme which only drives pixels to their two extreme optical states with no intervening gray states.
[Para 6] Several types of electro-optic displays are known. One type of electro-optic display is a rotating bichromal member type as described, for example, in U.S. Patents Nos. 5,808,783; 5,777,782; 5,760,761; 6,054,071 6,055,091; 6,097,531; 6,128,124; 6,137,467; and 6,147,791 (although this type of display is often referred to as a "rotating bichromal ball" display, the term "rotating bichromal member" is preferred as more accurate since in some of the patents mentioned above the rotating members are not spherical). Such a display uses a large number of small bodies (typically spherical or cylindrical) which have two or more sections with differing optical characteristics, and an internal dipole. These bodies are suspended within liquid-filled vacuoles within a matrix, the vacuoles being filled with liquid so that the bodies are free to rotate. The appearance of the display is changed by applying an electric field thereto, thus rotating the bodies to various positions and varying which of the sections of the bodies is seen through a viewing surface. This type of electro-optic medium is typically bistable.
[Para 7] Another type of electro-optic display uses an electrochromic medium, for example an electrochromic medium in the form of a nanochromic film comprising an electrode formed at least in part from a semi-conducting metal oxide and a plurality of dye molecules capable of reversible color change attached to the electrode; see, for example O'Regan, B., et al, Nature 1991, 353, 737; and Wood, D., Information Display, 18(3), 24 (March 2002). See also Bach, U., et al., Adv. Mater., 2002, 14(11), 845. Nanochromic films of this type are also described, for example, in U.S. Patents Nos. 6,301,038; 6,870.657; and 6,950,220. This type of medium is also typically bistable.
[Para 8] Another type of electro-optic display is an electro-wetting display developed by Philips and described in Hayes, R.A., et al., "Video-Speed Electronic Paper Based on Electrowetting", Nature, Vol. 425, pages 383-385 (25 September 2003). It is shown in copending Application Serial No. 10/711,802, filed October 6, 2004 (Publication No. 2005/0151709), that such electro-wetting displays can be made bistable. [Para 9] Another type of electro-optic display, which has been the subject of intense research and development for a number of years, is the particle-based electrophoretic display, in which a plurality of charged particles move through a fluid under the influence of an electric field. Electrophoretic displays can have attributes of good brightness and contrast, wide viewing angles, state bistability, and low power consumption when compared with liquid crystal displays. Nevertheless, problems with the long-term image quality of these displays have prevented their widespread usage. For example, particles that make up electrophoretic displays tend to settle, resulting in inadequate service-life for these displays. [Para 10] As noted above, electrophoretic media require the presence of a fluid. In most prior art electrophoretic media, this fluid is a liquid, but electrophoretic media can be produced using gaseous fluids; see, for example, Kitamura, T., et al., "Electrical toner movement for electronic paper-like display", IDW Japan, 2001, Paper HCSl-I, and Yamaguchi, Y., et al., "Toner display using insulative particles charged triboelectrically", IDW Japan, 2001, Paper AMD4-4). See also U.S. Patent Publication No. 2005/0001810; European Patent Applications 1,462,847; 1,482,354; 1,484,635; 1,500,971; 1,501,194; 1,536,271; 1,542,067; 1,577,702; 1,577,703; and 1,598,694; and International Applications WO 2004/090626; WO 2004/079442; and WO 2004/001498. Such gas-based electrophoretic media appear to be susceptible to the same types of problems due to particle settling as liquid-based electrophoretic media, when the media are used in an orientation which permits such settling, for example in a sign where the medium is disposed in a vertical plane. Indeed, particle settling appears to be a more serious problem in gas-based electrophoretic media than in liquid-based ones, since the lower viscosity of gaseous suspending fluids as compared with liquid ones allows more rapid settling of the electrophoretic particles. [Para 11] Numerous patents and applications assigned to or in the names of the Massachusetts Institute of Technology (MIT) and E Ink Corporation have recently been published describing encapsulated electrophoretic media. Such encapsulated media comprise numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles suspended in a liquid suspending medium, and a capsule wall surrounding the internal phase. Typically, the capsules are themselves held within a polymeric binder to form a coherent layer positioned between two electrodes. Encapsulated media of this type are described, for example, in U.S. Patents Nos. 5,930,026; 5,961,804; 6,017,584; 6,067,185; 6,118,426; 6,120,588; 6,120,839; 6,124,851; 6,130,773; 6,130,774; 6,172,798; 6,177,921; 6,232,950; 6,249,271; 6,252,564; 6,262,706; 6,262,833; 6,300,932; 6,312,304; 6,312,971; 6,323,989; 6,327,072; 6,376,828; 6,377,387; 6,392,785; 6,392,786; 6,413,790; 6,422,687; 6,445,374; 6,445,489; 6,459,418; 6,473,072; 6,480,182; 6,498,114; 6,504,524; 6,506,438; 6,512,354; 6,515,649; 6,518,949; 6,521,489; 6,531,997; 6,535,197; 6,538,801; 6,545,291; 6,580,545; 6,639,578; 6,652,075; 6,657,772; 6,664,944; 6,680,725; 6,683,333; 6,704,133; 6,710,540; 6,721,083; 6,724,519; 6,727,881; 6,738,050; 6,750,473; 6,753,999; 6,816,147; 6,819,471; 6,822,782; 6,825,068; 6,825,829; 6,825,970; 6,831,769; 6,839,158; 6,842,167; 6,842,279; 6,842,657; 6,864,875; 6,865,010; 6,866,760; 6,870,661; 6,900,851; 6,922,276; 6,950,200; 6,958,848; 6,967,640; 6,982,178; 6,987,603; 6,995,550; 7,002,728; 7,012,600; 7,012,735; 7,023,420; 7,030,412; 7,030,854; 7,034,783; 7,038,655; 7,061,663; 7,071,913; 7,075,502; 7,075,703; 7,079,305; 7,106,296; 7,109,968; 7,110,163; 7,110,164; 7,116,318; 7,116,466; 7,119,759; 7,119,772; 7,148,128; 7,167,155; 7,170,670; 7,173,752; 7,176,880; 7,180,649; 7,190,008; 7,193,625; 7,202,847; 7,202,991; 7,206,119; 7,223,672; 7,230,750; 7,230,751; 7,236,790; and 7,236,792; and U.S. Patent Applications Publication Nos. 2002/0060321; 2002/0090980; 2003/0011560; 2003/0102858; 2003/0151702; 2003/0222315; 2004/0094422; 2004/0105036; 2004/0112750; 2004/0119681; 2004/0136048; 2004/0155857; 2004/0180476; 2004/0190114; 2004/0196215; 2004/0226820; 2004/0257635; 2004/0263947; 2005/0000813; 2005/0007336; 2005/0012980; 2005/0017944; 2005/0018273; 2005/0024353; 2005/0062714; 2005/0067656; 2005/0099672; 2005/0122284; 2005/0122306; 2005/0122563; 2005/0134554; 2005/0151709; 2005/0152018; 2005/0156340; 2005/0179642; 2005/0190137; 2005/0212747; 2005/0213191; 2005/0219184; 2005/0253777; 2005/0280626; 2006/0007527; 2006/0024437; 2006/0038772; 2006/0139308; 2006/0139310; 2006/0139311; 2006/0176267; 2006/0181492; 2006/0181504; 2006/0194619; 2006/0197736; 2006/0197737; 2006/0197738; 2006/0202949; 2006/0223282; 2006/0232531; 2006/0245038; 2006/0256425; 2006/0262060; 2006/0279527; 2006/0291034; 2007/0035532; 2007/0035808; 2007/0052757; 2007/0057908; 2007/0069247; 2007/0085818; 2007/0091417; 2007/0091418; 2007/0097489; 2007/0109219; 2007/0128352; and 2007/0146310; and International Applications Publication Nos. WO 00/38000; WO 00/36560; WO 00/67110; and WO 01/07961; and European Patents Nos. 1,099,207 Bl; and 1,145,072 Bl. [Para 12] Many of the aforementioned patents and applications recognize that the walls surrounding the discrete microcapsules in an encapsulated electrophoretic medium could be replaced by a continuous phase, thus producing a so-called polymer-dispersed electrophoretic display, in which the electrophoretic medium comprises a plurality of discrete droplets of an electrophoretic fluid and a continuous phase of a polymeric material, and that the discrete droplets of electrophoretic fluid within such a polymer-dispersed electrophoretic display may be regarded as capsules or microcapsules even though no discrete capsule membrane is associated with each individual droplet; see for example, the aforementioned U.S. Patent No. 6,866,760. Accordingly, for purposes of the present application, such polymer-dispersed electrophoretic media are regarded as sub-species of encapsulated electrophoretic media. [Para 13] A related type of electrophoretic display is a so-called "microcell electrophoretic display". In a microcell electrophoretic display, the charged particles and the fluid are not encapsulated within microcapsules but instead are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film. See, for example, U.S. Patents Nos. 6,672,921 and 6,788,449, both assigned to Sipix Imaging, Inc.
[Para 14] Although electrophoretic media are often opaque (since, for example, in many electrophoretic media, the particles substantially block transmission of visible light through the display) and operate in a reflective mode, many electrophoretic displays can be made to operate in a so-called "shutter mode" in which one display state is substantially opaque and one is light-transmissive. See, for example, the aforementioned U.S. Patents Nos. 6,130,774 and 6,172,798, and U.S. Patents Nos. 5,872,552; 6,144,361; 6,271,823; 6,225,971; and 6,184,856. Dielectrophoretic displays, which are similar to electrophoretic displays but rely upon variations in electric field strength, can operate in a similar mode; see U.S. Patent No. 4,418,346. Other types of electro-optic displays may also be capable of operating in shutter mode. [Para 15] An encapsulated electrophoretic display typically does not suffer from the clustering and settling failure mode of traditional electrophoretic devices and provides further advantages, such as the ability to print or coat the display on a wide variety of flexible and rigid substrates. (Use of the word "printing" is intended to include all forms of printing and coating, including, but without limitation: pre-metered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; ink jet printing processes; electrophoretic deposition (see U.S. Patent Publication No. 2004/0226820); and other similar techniques.) Thus, the resulting display can be flexible. Further, because the display medium can be printed (using a variety of methods), the display itself can be made inexpensively.
[Para 16] Shutter mode displays can be used as conventional reflective displays, for example, by using particles having one color and providing a surface of a different color positioned on the opposed side of the electro-optic medium from the viewing surface through which an observer views the display; see, for example, U.S. Patent No. 6,177,921. Alternatively, shutter mode displays can be used as light modulators, that is to say devices which in one (open or transparent) optical state allow light to pass therethrough, while in another (closed or opaque) optical state the light is blocked.
[Para 17] Light modulators represent a potentially important market for electro-optic media. As the energy performance of buildings and vehicles becomes increasingly important, electro-optic media can be used as coatings on windows (including skylights and sunroofs) to enable the proportion of incident radiation transmitted through the windows to be electronically controlled by varying the optical state of the electro-optic media. Effective implementation of such "variable-transmissivity" ("VT") technology in buildings is expected to provide (1) reduction of unwanted heating effects during hot weather, thus reducing the amount of energy needed for cooling, the size of air conditioning plants, and peak electricity demand; (2) increased use of natural daylight, thus reducing energy used for lighting and peak electricity demand; and (3) increased occupant comfort by increasing both thermal and visual comfort. Even greater benefits would be expected to accrue in an automobile, where the ratio of glazed surface to enclosed volume is significantly larger than in a typical building. Specifically, effective implementation of VT technology in automobiles is expected to provide not only the aforementioned benefits but also (1) increased motoring safety, (2) reduced glare, (3) enhanced mirror performance (by using an electro-optic coating on the mirror), and (4) increased ability to use heads-up displays. Other potential applications of VT technology include privacy glass and glare-guards in electronic devices. [Para 18] One of the problems in designing light modulators is securing a sufficiently wide range of transmission states. For example, a VT window designed to control light levels within a building may need to block a very high proportion of the light present when the exterior of the building is exposed to a blazing summer sun, but to transmit a high proportion of the light present on a dull winter day. The ideal electro-optic medium for use in a light modulator would be one variable all the way from 100 per cent transmission to 0 per cent transmission, but in practice no such medium exists and the range of transmissions available from most electro-optic media is limited by physical constraints. For example, in the VT electrophoretic media described in the aforementioned 2005/0213191 and U.S. Patent No. 7,116,466, in which the closed or "opaque" state has electrophoretic particles dispersed over the entire area of the medium, while the open or "transparent" state has the particles pulled to the sidewalls of capsules or agglomerated in some way, geometric limitations set bounds to the difference in optical transmission between the open and closed optical states of the medium.
[Para 19] It has now been realized that, provided the characteristics of the individual VT layers are carefully chosen, the range of optical transmissions available from a light modulator can be increased by stacking multiple variable transmission layers adjacent each other so that light must pass through all the stacked layers.
[Para 20] Accordingly, this invention provides a light modulator comprising a plurality of discrete variable transmission electro-optic layers arranged so that light will pass successively through the plurality of layers, the light modulator having a higher transmission range than any of the individual electro-optic layers separately. For reasons explained in detail below, the individual VT layers used in the light modulator should typically satisfy the relationship:
O ≥ 0.5R + 0.5 where O is the open state transmission (i.e., the maximum optical transmission which the layer is capable of achieving, allowing of course for the method used to drive the light modulator to its "open", most light-transmissive state) of a single layer and R is the transmission range of the layer (i.e., the difference between the transmissions of the extreme open and closed states of the layer. Also for reasons explained below, the individual electro- optic layers desirably have an open state transmission of at least about 75 per cent. [Para 21] The light modulator of the present invention may further comprise two substantially transparent sheets of material disposed on opposed sides of the plurality of discrete variable transmission electro-optic layers, each of the substantially transparent sheets of material having a thickness of at least about 1 mm, or in many cases considerably more. The substantially transparent sheets may be made of glass (or possibly a transparent polymer such as poly(methyl methacrylate)) having a thickness in the range of (say) 5-10 mm so that the light modulator has the form of a variable transmission window. In some cases, it may be convenient to mount electrodes directly on the transparent sheets.
[Para 22] This invention also provides a light modulator comprising a plurality of discrete variable transmission electro-optic layers arranged so that light will pass successively through the plurality of layers, at least one electrode arranged to apply an electric field to the electro- optic layers, and voltage supply means for controlling the voltage of the at least one electrode, the voltage supply means being arranged to apply a first waveform to the at least one electrode to drive the electro-optic layers to a first optical state in which the layers are substantially non-light-transmissive and to apply a second waveform to the at least one electrode to drive the electro-optic layers to a second optical state in which the layers are substantially more light-transmissive than in the first optical state.
[Para 23] This light modulator of the present invention may make use of any of the types of electro-optic media discussed above. In one form of this light modulator, each of the electro- optic layers comprises an electrophoretic medium comprising a plurality of electrically charged particles disposed in a fluid and capable of moving through the fluid on application of an electric field to the medium. The electrophoretic medium may comprise a plurality of dark (a term which is used herein to include black) colored charged particles in a liquid; the dark colored particles may comprise carbon black or copper chromite. The charged particles and the fluid may be confined within a plurality of cavities in a solid medium, the cavities having sidewalls extending substantially perpendicular to the thickness of the electro-optic layer. This type of cavity-containing medium may be an encapsulated electrophoretic medium, a polymer-dispersed electrophoretic medium or a microcell electrophoretic medium, as discussed above. When this type of cavity-containing medium is used, the first waveform may comprise a DC voltage, or a low frequency alternating voltage and the second waveform comprises an alternating voltage which causes the charged particles against the sidewalls of the cavities; see the aforementioned 2006/0038772 for further details regarding the driving of such light modulators.
[Para 24] Several different electrode arrangements may be used in the light modulators of the present invention. Typically, the light modulator will have two electrodes disposed on opposed sides of the plurality of variable transmission electro-optic layers. These may be the only electrodes present (i.e., there may not be any electrodes present between adjacent pairs of electro-optic layers), in which case the single pair of electrodes will control the optical state of all the electro-optic layers. Alternatively the light modulator may have at least one electrode between each adjacent pair of electro-optic layers, so that the optical state of each electro-optic layer can be controlled independently. "Intermediate" arrangements are of course possible; for example, a light modulator could have six electro-optic layers grouped into three adjacent pairs, with no electrode between the two layers within each pair, but with an electrode between pairs.
[Para 25] To reduce light losses as the light passes through the multiple layers of the present light modulator, it is desirable that the layers be secured to each other by means of an optically clear adhesive.
[Para 26] As noted above, the individual electro-optic (VT) layers used in the light modulator of the present invention should satisfy the relationship:
O ≥ 0.5R + 0.5 where O is the transmission of the second optical state of a single layer and R is the transmission range of the layer (i.e., the difference between the transmissions of the extreme open and closed states of the layer). The individual electro-optic layers desirably have a transmission in their second optical state of at least about 75 per cent. It is not, of course, necessary that all the electro-optic layers be identical; the layers may have different open state transmissions and transmission ranges. As demonstrated below, the optimum number of electro-optic layers varies with the transmission of the second optical state and the transmission range; the light modulator may have at least three, and conveniently not more than six, electro-optic layers. The light modulator may be provided with two substantially transparent sheets of material, as previously described. [Para 27] Figure 1 of the accompanying drawings is a graph showing the ranges of open state single electro-optic layer transmission and single layer transmission range useful in the present invention.
[Para 28] Figure 2 is a schematic cross-section through a light modulator of the present invention.
[Para 29] As indicated above, the present invention provides a light modulator comprising a plurality of discrete variable transmission electro-optic layers arranged so that light will pass successively through the plurality of layers. Typically the electro-optic or VT layers of the light modulator will be in the form of thin flat sheets having a width (in the plane of the sheet) much greater (say at least an order of magnitude greater) than the thickness of the sheet (perpendicular to the plane of the sheet). A stack of such thin sheets, preferably held together by optically clear adhesive between the sheets, can be produced in a form resembling a pane of glass, and thus suitable for use in a conventional window frame or similar glass-mounting device. Alternatively, such a stack of thin sheets can be mounted between two transparent, and typically rigid, sheets of glass, polymer or other material to produce a composite sheet which can readily be used in place of a pane of glass in a conventional window frame or similar glass-mounting device, in a building, vehicle or other location where control of light transmission is desired.
[Para 30] The light modulator of the present invention can overcome the limitations of single layers of electro-optic media used as light modulators, for example the limited transmission range between the open and closed states of the shutter mode electrophoretic media described in the aforementioned 2005/0213191 and U.S. Patent No. 7,116,466. The individual layers of the light modulator should be chosen so as to have as high a transmission range as possible and to have as high an open state transmission as possible; in practice, it may not be possible to optimize both these parameters at the same time and the detailed analysis below indicates how best to compromise between the two objectives. For example, if a given medium has a maximum transmission range of 40 per cent (a range reasonably attainable in practice), for purposes of the present invention a form of this medium with an open state having 90 per cent transmission and a closed state having 50 per cent transmission is greatly preferred over a form having an open state having 60 per cent transmission and a closed state having 20 per cent transmission. (For convenience, these two types of layers may hereinafter be referred to as "90/50" and "60/20" layers respectively.) For such a medium having a maximum transmission range of 40 per cent, the theoretical ideal form would be one having a 100 per cent open state transmission and a 60 per cent closed state transmission; although such an ideal form cannot be attained in practice, every effort should be made to push the open state transmission as close to 100 per cent consistent with keeping the maximum transmission range.
[Para 31] Stacking a plurality of layers of this medium together and bonding them to each other with an optically clear adhesive to reduce inter-layer light losses, provides a light modulator of the present invention having a transmission range higher than that of the individual layers. For example a stack of two 90/50 layers will (ignoring losses between the layers) have an open state of 0.9 x 0.9 or 81 per cent transmission, and a closed state of 0.5 x 0.5 or 25 per cent transmission, with a transmission range of 56 per cent compared to the 40 per cent of each layer separately. Similarly, a stack of three 90/50 layers will (again ignoring losses between the layers) have an open state of 0.9 or 72.9 per cent transmission, and a closed state of 0.53 or 12. 5 per cent transmission, with a transmission range of 60.4 per cent. However, a similar calculation shows that a stack of four 90/50 layers has a transmission range of only 59.4 per cent, less than that of the three layer stack. Thus, for 90/50 layers, the optimum stack height is three layers.
[Para 32] The Table below shows the transmission range of multi-layer stacks as a function of the open state transmission ("OST" in the Table) of a single layer and the number of stacked layers, again assuming that the individual layers have a transmission range of 40 per cent.
Figure imgf000013_0001
[Para 34] This Table shows that, for differing open transmission values, the optimum number of layers to provide maximum transmission ranges differs, even when one assumes a single transmission range for each layer. In fact, there are three striking implications from this Table. Firstly, the Table confirms that the transmission range of light modulators can be substantially increased by stacking multiple variable transmission electro-optic layers; all values above 40 in the above Table represent cases in which the transmission range is improved by stacking. Secondly, the Table confirms that, for any given single layer open state transmission and single layer transmission range, there is an optimum number of layers for maximum transmission range of the stack. Thirdly, the Table shows that stacking is only advantageous when the single layer open state transmission exceeds a certain threshold; note that in the above Table there are no cases where stacking increases transmission range when the single layer open state transmission is 70 per cent or less. It can be shown that, for stacking of multiple layers to be advantageous, individual layers should satisfy the relationship:
O ≥ 0.5R + 0.5 where O is the open state transmission of a single layer and R is the transmission range of the layer. Figure 1 of the accompanying drawings illustrates this relationship and identifies the ranges of open state single layer transmission and single layer transmission range (the area above the sloping line) useful in the present invention.
[Para 35] Figure 2 of the accompanying drawings is a highly schematic cross-section through a three electro-optic layer light modulator (generally designated 100) of the present invention. The thicknesses of the various layers in Figure 2 are of course greatly exaggerated in relation to their lateral widths. The light modulator comprises a first transparent sheet 102, which may have the form of a glass plate, and which bears on its upper surface a transparent electrode 104, which may be in the form of a layer of indium tin oxide (ITO) sputtered directly on the sheet 102. (The light modulator 100 must of course be provided with voltage control means to control the voltages applied to the electrode 104, and to the other electrodes described below, when the optical state of the light modulator is to be changed. However, since such voltage supply means are conventional, they are omitted from Figure 2 for ease of illustration.)
[Para 36] The next layer of the light modulator 100 is an electro-optic layer, in the form of an encapsulated electrophoretic layer comprising a plurality of capsules, each capsule comprising a capsule wall 106 within which are encapsulated a large number of black, electrically charged particles 108 and a fluid 110. The capsules 106 are surrounded by a polymeric binder 112 which serves to form the capsules into a mechanically coherent layer. [Para 37] The light modulator 100 further comprises a second transparent electrode 114, which may be similar to the electrode 104, a polymeric support layer 116, which serves to support the thin electrode 114 and a layer of optically clear adhesive 118. There follow, in order, a second electrophoretic layer 120, a third electrode 122, a second support layer 124 and a second layer of optically clear adhesive 126, all of which can be identical to the similar layers mentioned above. Finally, the light modulator 100 comprises a third electrophoretic layer 128, a fourth electrode 130 and a second transparent sheet 132.
[Para 38] The four electrode layers in the light modulator 100 allow independent control of each of the three electrophoretic layers therein. It should be noted that it is not necessary to provide two electrodes associated with each electrophoretic layer; since the electrophoretic layer is sensitive only to the difference in voltage between the electrodes on either side of the electrophoretic layer, by careful control of the voltages applied to the four electrophoretic layers in the light modulator 100 it is always possible to apply the desired waveform to each electrophoretic layer. For example, if it desired to vary the optical state of the central electrophoretic layer 120 while leaving the other two electrophoretic layers unchanged, an appropriate waveform can be applied between the electrodes 114 and 122, while keeping electrode 104 at the same voltage as electrode 114 and electrode 130 at the same voltage as electrode 122.
[Para 39] A further benefit of stacking electro-optic layers in accordance with the present invention is that, in some cases, driving of the electro-optic layers can be simplified. In most applications, a light modulator of the present invention should desirably have a large number of gray states; for example, when a variable infra-red transmission window is used to control passive solar heating of a building, a large number of gray levels are desirable to enable the passive solar heating to be controlled accurately at varying levels of sunlight. Providing a large number of gray levels in a single electro-optic layer normally requires a rather elaborate controller, whereas much simpler controllers can be used when a single layer is driven in a "monochrome" manner (i.e., so that the layer is always either fully open or fully closed). In a stacked light modulator of the present invention, a large number of gray levels can be made available by operating the various electro-optic layers in a monochrome manner, or with only a small number of gray levels in each layer. For example, a ten-layer stack can achieve eleven different gray levels simply by switching the various electro-optic layers between their extreme open and closed states.
[Para 40] The light modulator of the present invention can also provide improved contrast ratio between the open and closed states of the modulator. Such an improved contrast ratio is important for practical reasons since the human eye tends to be more sensitive to contrast ratio that to absolute transmission values, and a high contrast ratio is important in creating the desired impression of a change from a "clear" window to a darkened one, even if the transmission of the clear window is in fact substantially less than 100 per cent. [Para 41] In addition to providing improved contrast ratio between the open and closed states of the modulator, the modulators of the present invention can improve the granularity of the display. Granularity refers to a phenomenon whereby the optical properties of a single electro-optic layer are not absolutely constant over the entire area of the layer, particularly when the electro-optic layer is in a relatively light-transmissive state. Granularity is visible to the eye as a "mottling" of what is intended to be a uniformly transmissive or gray display or window, and is objectionable to users of light modulators. It has been found that multi-layer light modulators of the present invention tend to have less mottling that prior art single layer light modulators using similar electro-optic media.
[Para 42] Those skilled in the technology of light modulators will appreciate that transmission, and hence transmission range, is a function of wavelength. The light modulators of the present invention will typically be intended to control visible radiation, but we do not exclude the possibility that they might also be designed primarily to control certain non- visible wavelengths, for example ultra-violet or infra-red wavelengths. The choice of the electro-optic medium used in each layer, and of the number of layers in the present light modulators should of course be made dependent upon the transmission and transmission range of the electro-optic medium employed at the wavelength or wavelength range which the modulator is designed to control.
[Para 43] The light modulator of the present invention may make use of any of the types of electro-optic medium previously described. Thus, for example, the light modulator may make use of a rotating bichromal or some types of electrochromic medium. However, in general it is preferred that the present light modulator use an electrophoretic medium, preferably a microcavity electrophoretic medium, the term "microcavity" being used herein to cover encapsulated electrophoretic media, polymer-dispersed electrophoretic media and microcell electrophoretic media.
[Para 44] Some of the benefits of the present invention can be achieved using a single electrophoretic layer which has multiple layer of capsules or, in the case of a polymer- dispersed electrophoretic medium, multiple layers of droplets. Such a single, multi-layer film is simple to produce and lessens optical transmission losses at the interfaces inherent in a light modulator comprising separate stacked layers. However, a single, multi-layer film requires a higher operating voltage than a plurality of stacked layers which can be driven individually. Also, the single, multi-layer film does not provide the simplified "gray scale" driving available from a stacked layer device, as discussed two paragraphs above. [Para 45] From the foregoing, it will be seen that the light modulator of the present invention can provide significant improvements in the transmission range and contrast ratio of an electro-optic medium, and can allow simplified driving, as compared with conventional single layer light modulators.

Claims

1. A light modulator (100) comprising a plurality of discrete variable transmission electro-optic layers (106, 120, 128) arranged so that light will pass successively through the plurality of layers the light modulator (100) having a higher transmission range than any of the individual electro-optic layers (106, 120, 128) separately.
2. A light modulator according to claim 1 wherein the individual electro- optic layers (106, 120, 128) satisfy the relationship:
O ≥ 0.5R + 0.5 where O is the open state transmission of a single electro-optic layer and R is the transmission range of the layer.
3. A light modulator according to claim 1 wherein the individual electro- optic layers (106, 120, 128) have an open state transmission of at least about 75 per cent.
4. A light modulator according to claim 1 further comprising two substantially transparent sheets of material (102, 132) disposed on opposed sides of the plurality of discrete variable transmission electro-optic layers (106, 120, 128) , each of the substantially transparent sheets of material (102, 132) having a thickness of at least about 1 mm.
5. A light modulator (100) comprising a plurality of discrete variable transmission electro-optic layers (106, 120, 128) arranged so that light will pass successively through the plurality of layers, at least one electrode (104, 114, 122, 130) arranged to apply an electric field to the electro-optic layers (106, 120, 128), and voltage supply means for controlling the voltage of the at least one electrode (104, 114, 122, 130), the voltage supply means being arranged to apply a first waveform to the at least one electrode (104, 114, 122, 130)to drive the electro-optic layers (106, 120, 128) to a first optical state in which the layers are substantially non-light-transmissive and to apply a second waveform to the at least one electrode (104, 114, 122, 130) to drive the electro-optic layers (106, 120, 128) to a second optical state in which the layers are substantially more light-transmissive than in the first optical state.
6. A light modulator according to claim 5 wherein each of the electro- optic layers comprises an electrophoretic medium comprising a plurality of electrically charged particles (108) disposed in a fluid (110) and capable of moving through the fluid (110) on application of an electric field to the medium.
7. A light modulator according to claim 6 wherein the electrophoretic medium comprises a plurality of dark colored charged particles (108) in a liquid (110).
8. A light modulator according to claim 7 wherein the dark colored particles comprise carbon black or copper chromite.
9. A light modulator according to claim 6 wherein the charged particles and the fluid are confined within a plurality of cavities in a solid medium, the cavities having sidewalls extending substantially perpendicular to the thickness of the electro-optic layer.
10. A light modulator according to claim 9 wherein the first waveform comprises a DC voltage and the second waveform comprises an alternating voltage which causes the charged particles against the sidewalls of the cavities.
11. A light modulator according to claim 5 having two electrodes disposed on opposed sides of the plurality of variable transmission electro-optic layers.
12. A light modulator according to claim 11 having only the two electrodes disposed on opposed sides of the plurality of discrete variable transmission electro-optic layers, and not having an electrode between any of the adjacent pairs of electro-optic layers.
13. A light modulator according to claim 11 further comprising at least one electrode (114, 122) between each adjacent pair of electro-optic layers (106, 120, 128).
14. A light modulator according to claim 5 having at least one layer of optically clear adhesive (118, 126) between an adjacent pair of electro-optic layers (106, 120, 128).
15. A light modulator according to claim 5 wherein the individual electro- optic layers satisfy the relationship:
O ≥ 0.5R + 0.5 where O is the transmission of the second optical state of a single electro-optic layer and R is the transmission range of the layer.
16. A light modulator according to claim 5 wherein the individual electro- optic layers have a transmission in their second optical state of at least about 75 per cent.
17. A light modulator according to claim 5 having at least three electro- optic layers (106, 120, 128).
18. A light modulator according to claim 17 comprising not more than six electro-optic layers.
19. A light modulator according to claim 5 further comprising two substantially transparent sheets of material (102, 132) disposed on opposed sides of the plurality of discrete variable transmission electro-optic layers (106, 120, 128), each of the substantially transparent sheets of material (102, 132) having a thickness of at least about 1 mm.
20. A light modulator according to claim 19 wherein the substantially transparent sheets (102, 132) are formed of glass, so that the light modulator forms a variable transmission window.
PCT/US2007/075038 2006-08-02 2007-08-02 Multi-layer light modulator WO2008017013A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82116106P 2006-08-02 2006-08-02
US60/821,161 2006-08-02

Publications (2)

Publication Number Publication Date
WO2008017013A2 true WO2008017013A2 (en) 2008-02-07
WO2008017013A3 WO2008017013A3 (en) 2008-07-10

Family

ID=38997857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/075038 WO2008017013A2 (en) 2006-08-02 2007-08-02 Multi-layer light modulator

Country Status (2)

Country Link
US (1) US7492497B2 (en)
WO (1) WO2008017013A2 (en)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7848006B2 (en) * 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7583251B2 (en) * 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
US20020113770A1 (en) * 1998-07-08 2002-08-22 Joseph M. Jacobson Methods for achieving improved color in microencapsulated electrophoretic devices
JP4198999B2 (en) * 2001-03-13 2008-12-17 イー インク コーポレイション Equipment for displaying drawings
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
US8390918B2 (en) * 2001-04-02 2013-03-05 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US20090009852A1 (en) * 2001-05-15 2009-01-08 E Ink Corporation Electrophoretic particles and processes for the production thereof
US8593396B2 (en) 2001-11-20 2013-11-26 E Ink Corporation Methods and apparatus for driving electro-optic displays
US7223672B2 (en) * 2002-04-24 2007-05-29 E Ink Corporation Processes for forming backplanes for electro-optic displays
US8049947B2 (en) * 2002-06-10 2011-11-01 E Ink Corporation Components and methods for use in electro-optic displays
US8363299B2 (en) * 2002-06-10 2013-01-29 E Ink Corporation Electro-optic displays, and processes for the production thereof
US7583427B2 (en) * 2002-06-10 2009-09-01 E Ink Corporation Components and methods for use in electro-optic displays
US20110199671A1 (en) * 2002-06-13 2011-08-18 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US7839564B2 (en) * 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
US20130063333A1 (en) 2002-10-16 2013-03-14 E Ink Corporation Electrophoretic displays
US7910175B2 (en) * 2003-03-25 2011-03-22 E Ink Corporation Processes for the production of electrophoretic displays
US8177942B2 (en) * 2003-11-05 2012-05-15 E Ink Corporation Electro-optic displays, and materials for use therein
US20110164301A1 (en) 2003-11-05 2011-07-07 E Ink Corporation Electro-optic displays, and materials for use therein
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
CN101859544B (en) * 2004-08-13 2012-07-04 伊英克公司 Methods and apparatus for driving electro-optic displays
US7843624B2 (en) * 2006-03-08 2010-11-30 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8390301B2 (en) * 2006-03-08 2013-03-05 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US7649666B2 (en) * 2006-12-07 2010-01-19 E Ink Corporation Components and methods for use in electro-optic displays
US7688497B2 (en) * 2007-01-22 2010-03-30 E Ink Corporation Multi-layer sheet for use in electro-optic displays
TWI386313B (en) * 2007-01-22 2013-02-21 E Ink Corp Multi-layer sheet for use in electro-optic displays
US7826129B2 (en) * 2007-03-06 2010-11-02 E Ink Corporation Materials for use in electrophoretic displays
US10319313B2 (en) * 2007-05-21 2019-06-11 E Ink Corporation Methods for driving video electro-optic displays
WO2009006248A1 (en) 2007-06-29 2009-01-08 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8902153B2 (en) 2007-08-03 2014-12-02 E Ink Corporation Electro-optic displays, and processes for their production
US20090122389A1 (en) 2007-11-14 2009-05-14 E Ink Corporation Electro-optic assemblies, and adhesives and binders for use therein
WO2009117730A1 (en) * 2008-03-21 2009-09-24 E Ink Corporation Electro-optic displays and color filters
ES2823736T3 (en) * 2008-04-11 2021-05-10 E Ink Corp Procedures for exciting electro-optical display devices
TWI484273B (en) * 2009-02-09 2015-05-11 E Ink Corp Electrophoretic particles
US8098418B2 (en) * 2009-03-03 2012-01-17 E. Ink Corporation Electro-optic displays, and color filters for use therein
US8559096B2 (en) 2009-06-18 2013-10-15 Hewlett-Packard Development Company, L.P. Reflective display pixel
US20110032180A1 (en) * 2009-08-04 2011-02-10 Seiko Epson Corporation Display device, method of manufacturing display device and electronic apparatus
CN104656977B (en) 2009-10-28 2018-01-26 伊英克公司 Electro-optic displays with touch sensor
US8654436B1 (en) 2009-10-30 2014-02-18 E Ink Corporation Particles for use in electrophoretic displays
US8446664B2 (en) 2010-04-02 2013-05-21 E Ink Corporation Electrophoretic media, and materials for use therein
TWI484275B (en) 2010-05-21 2015-05-11 E Ink Corp Electro-optic display, method for driving the same and microcavity electrophoretic display
WO2013159093A1 (en) 2012-04-20 2013-10-24 E Ink Corporation Illumination systems for reflective displays
US11467466B2 (en) 2012-04-20 2022-10-11 E Ink Corporation Illumination systems for reflective displays
WO2014110394A1 (en) 2013-01-10 2014-07-17 E Ink Corporation Electro-optic display with controlled electrochemical reactions
US9715155B1 (en) 2013-01-10 2017-07-25 E Ink Corporation Electrode structures for electro-optic displays
CN105917265B (en) 2014-01-17 2019-01-15 伊英克公司 Electro-optic displays with two-phase electrode layer
US10317767B2 (en) 2014-02-07 2019-06-11 E Ink Corporation Electro-optic display backplane structure with drive components and pixel electrodes on opposed surfaces
KR20160119195A (en) 2014-02-07 2016-10-12 이 잉크 코포레이션 Electro-optic display backplane structures
US10446585B2 (en) 2014-03-17 2019-10-15 E Ink Corporation Multi-layer expanding electrode structures for backplane assemblies
CN104102061B (en) * 2014-06-17 2017-02-15 京东方科技集团股份有限公司 Display panel as well as display method thereof and display device
ES2959493T3 (en) 2014-11-07 2024-02-26 E Ink Corp Electro-optic tile
US9835925B1 (en) 2015-01-08 2017-12-05 E Ink Corporation Electro-optic displays, and processes for the production thereof
US10997930B2 (en) 2015-05-27 2021-05-04 E Ink Corporation Methods and circuitry for driving display devices
EP3314328B1 (en) 2015-06-29 2021-03-03 E Ink Corporation Electro-optic display device and method of manufacturing thereof
CN107710065B (en) 2015-06-30 2021-01-08 伊英克公司 Multi-layer electrophoretic display
JP2018526685A (en) 2015-10-01 2018-09-13 イー インク コーポレイション Variable color and permeable coating
US9958259B2 (en) 2016-01-12 2018-05-01 Canon Kabushiki Kaisha Depth value measurement
US10527899B2 (en) 2016-05-31 2020-01-07 E Ink Corporation Backplanes for electro-optic displays
WO2018160546A1 (en) 2017-02-28 2018-09-07 E Ink Corporation Writeable electrophoretic displays including sensing circuits and styli configured to interact with sensing circuits
WO2018183240A1 (en) 2017-03-28 2018-10-04 E Ink Corporation Porous backplane for electro-optic display
TWI682261B (en) 2017-05-19 2020-01-11 美商電子墨水股份有限公司 Foldable electro-optic display including digitization and touch sensing
US11404013B2 (en) 2017-05-30 2022-08-02 E Ink Corporation Electro-optic displays with resistors for discharging remnant charges
EP3631575A4 (en) 2017-05-30 2021-01-13 E Ink Corporation Electro-optic displays
US10921676B2 (en) * 2017-08-30 2021-02-16 E Ink Corporation Electrophoretic medium
US10882042B2 (en) 2017-10-18 2021-01-05 E Ink Corporation Digital microfluidic devices including dual substrates with thin-film transistors and capacitive sensing
US10824042B1 (en) 2017-10-27 2020-11-03 E Ink Corporation Electro-optic display and composite materials having low thermal sensitivity for use therein
CN111226163B (en) 2017-11-03 2021-10-22 伊英克公司 Process for producing electro-optic displays
US11081066B2 (en) 2018-02-15 2021-08-03 E Ink Corporation Via placement for slim border electro-optic display backplanes with decreased capacitive coupling between t-wires and pixel electrodes
US11175561B1 (en) 2018-04-12 2021-11-16 E Ink Corporation Electrophoretic display media with network electrodes and methods of making and using the same
CN108873392A (en) * 2018-05-31 2018-11-23 成都理想境界科技有限公司 A kind of modulating system and imaging device reducing modulators modulate frequency
US11353759B2 (en) 2018-09-17 2022-06-07 Nuclera Nucleics Ltd. Backplanes with hexagonal and triangular electrodes
KR102577837B1 (en) 2018-10-15 2023-09-12 이 잉크 코포레이션 Digital microfluidic delivery device
US11145262B2 (en) 2018-11-09 2021-10-12 E Ink Corporation Electro-optic displays
EP3894934A4 (en) 2018-12-13 2022-07-20 E Ink Corporation Illumination systems for reflective displays
TWI728631B (en) 2018-12-28 2021-05-21 美商電子墨水股份有限公司 Electro-optic displays
EP3903303A4 (en) 2018-12-30 2022-09-07 E Ink California, LLC Electro-optic displays
JP7407293B2 (en) 2020-02-07 2023-12-28 イー インク コーポレイション Electrophoretic display layer with thin film top electrode
JP2023529136A (en) 2020-06-03 2023-07-07 イー インク コーポレイション A foldable electrophoretic display module including a non-conductive support plate
TW202314665A (en) 2021-08-18 2023-04-01 美商電子墨水股份有限公司 Methods for driving electro-optic displays
US11830449B2 (en) 2022-03-01 2023-11-28 E Ink Corporation Electro-optic displays

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727873B2 (en) * 2001-05-18 2004-04-27 International Business Machines Corporation Reflective electrophoretic display with stacked color cells
US20040169912A1 (en) * 2002-10-31 2004-09-02 Rong-Chang Liang Electrophoretic display and novel process for its manufacture

Family Cites Families (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US723420A (en) * 1902-06-25 1903-03-24 Merritt L Stoddard Washing-machine.
US2934530A (en) * 1955-03-28 1960-04-26 Dow Chemical Co Suspension polymerization
US2932629A (en) * 1955-03-28 1960-04-12 Dow Chemical Co Quiescent suspension polymerization
US3892568A (en) 1969-04-23 1975-07-01 Matsushita Electric Ind Co Ltd Electrophoretic image reproduction process
US3870517A (en) * 1969-10-18 1975-03-11 Matsushita Electric Ind Co Ltd Color image reproduction sheet employed in photoelectrophoretic imaging
US3668106A (en) 1970-04-09 1972-06-06 Matsushita Electric Ind Co Ltd Electrophoretic display device
US3767392A (en) 1970-04-15 1973-10-23 Matsushita Electric Ind Co Ltd Electrophoretic light image reproduction process
US3792308A (en) * 1970-06-08 1974-02-12 Matsushita Electric Ind Co Ltd Electrophoretic display device of the luminescent type
JPS4917079B1 (en) 1970-12-21 1974-04-26
US4418346A (en) 1981-05-20 1983-11-29 Batchelder J Samuel Method and apparatus for providing a dielectrophoretic display of visual information
US4605284A (en) 1981-09-16 1986-08-12 Manchester R & D Partnership Encapsulated liquid crystal and method
US4707080A (en) 1981-09-16 1987-11-17 Manchester R & D Partnership Encapsulated liquid crystal material, apparatus and method
US4435047A (en) 1981-09-16 1984-03-06 Manchester R & D Partnership Encapsulated liquid crystal and method
US4643528A (en) * 1985-03-18 1987-02-17 Manchester R & D Partnership Encapsulated liquid crystal and filler material
US5216530A (en) 1985-06-03 1993-06-01 Taliq Corporation Encapsulated liquid crystal having a smectic phase
US4919521A (en) * 1987-06-03 1990-04-24 Nippon Sheet Glass Co., Ltd. Electromagnetic device
US4833060A (en) 1988-03-21 1989-05-23 Eastman Kodak Company Polymeric powders having a predetermined and controlled size and size distribution
US4835084A (en) 1988-03-21 1989-05-30 Eastman Kodak Company Electrostatographic toner and method of producing the same
US4965131A (en) 1988-03-21 1990-10-23 Eastman Kodak Company Colloidally stabilized suspension process
US4994312A (en) * 1989-12-27 1991-02-19 Eastman Kodak Company Shaped articles from orientable polymers and polymer microbeads
US5055371A (en) 1990-05-02 1991-10-08 Eastman Kodak Company Receiver sheet for toner images
US5138472A (en) 1991-02-11 1992-08-11 Raychem Corporation Display having light scattering centers
US5463491A (en) 1991-11-01 1995-10-31 Research Frontiers Incorporated Light valve employing a film comprising an encapsulated liquid suspension, and method of making such film
US5463492A (en) 1991-11-01 1995-10-31 Research Frontiers Incorporated Light modulating film of improved clarity for a light valve
US5594562A (en) * 1992-02-07 1997-01-14 Kabushiki Kaisha Pilot Hand-writable polymer dispersed liquid crystal board set with high resistance layer adjacent conductive layer
US5351143A (en) 1992-02-07 1994-09-27 Kabushiki Kaisha Pilot Hand-writable polymer dispersed liquid crystal board set with high resistance layer of crosslinking polymer adjacent conductive layer
US5580692A (en) 1992-05-26 1996-12-03 Eastman Kodak Company Solvent extraction in limited coalescence processes
CA2070068C (en) 1992-05-29 2000-07-04 Masayuki Nakanishi Magnetic display system
US5270843A (en) 1992-08-31 1993-12-14 Jiansheng Wang Directly formed polymer dispersed liquid crystal light shutter displays
US5354799A (en) 1992-11-16 1994-10-11 Eastman Kodak Company Limited coalescence process
EP0703996A4 (en) 1993-05-21 1996-07-10 Copytele Inc Methods of preparing electrophoretic dispersions containing two types of particles with different colors and opposite charges
JPH0713138A (en) 1993-06-29 1995-01-17 Casio Comput Co Ltd Polymer dispersion type liquid crystal display element
US5646203A (en) 1994-03-31 1997-07-08 Toppan Moore Co., Ltd. Microcapsule-containing oil-based coating liquid, ink, coated sheet, and method of preparing the same
US5650872A (en) 1994-12-08 1997-07-22 Research Frontiers Incorporated Light valve containing ultrafine particles
US5745094A (en) * 1994-12-28 1998-04-28 International Business Machines Corporation Electrophoretic display
US6137467A (en) 1995-01-03 2000-10-24 Xerox Corporation Optically sensitive electric paper
US6262706B1 (en) 1995-07-20 2001-07-17 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US6120588A (en) 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US6459418B1 (en) 1995-07-20 2002-10-01 E Ink Corporation Displays combining active and non-active inks
US6017584A (en) * 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US6710540B1 (en) * 1995-07-20 2004-03-23 E Ink Corporation Electrostatically-addressable electrophoretic display
US6120839A (en) 1995-07-20 2000-09-19 E Ink Corporation Electro-osmotic displays and materials for making the same
US6124851A (en) 1995-07-20 2000-09-26 E Ink Corporation Electronic book with multiple page displays
US7411719B2 (en) * 1995-07-20 2008-08-12 E Ink Corporation Electrophoretic medium and process for the production thereof
US7999787B2 (en) * 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US7327511B2 (en) * 2004-03-23 2008-02-05 E Ink Corporation Light modulators
US6515649B1 (en) * 1995-07-20 2003-02-04 E Ink Corporation Suspended particle displays and materials for making the same
US7106296B1 (en) 1995-07-20 2006-09-12 E Ink Corporation Electronic book with multiple page displays
US7167155B1 (en) * 1995-07-20 2007-01-23 E Ink Corporation Color electrophoretic displays
US6866760B2 (en) * 1998-08-27 2005-03-15 E Ink Corporation Electrophoretic medium and process for the production thereof
US6118426A (en) 1995-07-20 2000-09-12 E Ink Corporation Transducers and indicators having printed displays
US6727881B1 (en) * 1995-07-20 2004-04-27 E Ink Corporation Encapsulated electrophoretic displays and methods and materials for making the same
US7193625B2 (en) * 1999-04-30 2007-03-20 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US5700608A (en) 1995-07-31 1997-12-23 Eastman Kodak Company Process for making photographic emulsions and photographic elements and emulsions containing latent image forming units internally containing sensitizing dye
US6156473A (en) 1995-08-31 2000-12-05 Eastman Kodak Company Monodisperse spherical toner particles containing aliphatic amides or aliphatic acids
US5760761A (en) 1995-12-15 1998-06-02 Xerox Corporation Highlight color twisting ball display
US6055091A (en) * 1996-06-27 2000-04-25 Xerox Corporation Twisting-cylinder display
US5808783A (en) 1996-06-27 1998-09-15 Xerox Corporation High reflectance gyricon display
US6323989B1 (en) 1996-07-19 2001-11-27 E Ink Corporation Electrophoretic displays using nanoparticles
US6721083B2 (en) * 1996-07-19 2004-04-13 E Ink Corporation Electrophoretic displays using nanoparticles
US6538801B2 (en) * 1996-07-19 2003-03-25 E Ink Corporation Electrophoretic displays using nanoparticles
ATE356369T1 (en) * 1996-07-19 2007-03-15 E Ink Corp ELECTRONICALLY ADDRESSABLE MICRO-ENCAPSULED INK
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US5777782A (en) 1996-12-24 1998-07-07 Xerox Corporation Auxiliary optics for a twisting ball display
JP3955641B2 (en) 1997-02-06 2007-08-08 ユニバーシティ カレッジ ダブリン Electrochromic device
US5961804A (en) 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US6980196B1 (en) 1997-03-18 2005-12-27 Massachusetts Institute Of Technology Printable electronic display
US6215920B1 (en) * 1997-06-10 2001-04-10 The University Of British Columbia Electrophoretic, high index and phase transition control of total internal reflection in high efficiency variable reflectivity image displays
US6825829B1 (en) * 1997-08-28 2004-11-30 E Ink Corporation Adhesive backed displays
US6177921B1 (en) * 1997-08-28 2001-01-23 E Ink Corporation Printable electrode structures for displays
US6232950B1 (en) 1997-08-28 2001-05-15 E Ink Corporation Rear electrode structures for displays
US6300932B1 (en) 1997-08-28 2001-10-09 E Ink Corporation Electrophoretic displays with luminescent particles and materials for making the same
US6130774A (en) 1998-04-27 2000-10-10 E Ink Corporation Shutter mode microencapsulated electrophoretic display
US7002728B2 (en) * 1997-08-28 2006-02-21 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US6839158B2 (en) * 1997-08-28 2005-01-04 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US6067185A (en) 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
US6252564B1 (en) 1997-08-28 2001-06-26 E Ink Corporation Tiled displays
US6377383B1 (en) * 1997-09-04 2002-04-23 The University Of British Columbia Optical switching by controllable frustration of total internal reflection
JP4085449B2 (en) * 1997-10-09 2008-05-14 ブラザー工業株式会社 Electrophoretic display device, microcapsule and medium
US6054071A (en) * 1998-01-28 2000-04-25 Xerox Corporation Poled electrets for gyricon-based electric-paper displays
EP1064584B1 (en) 1998-03-18 2004-05-19 E Ink Corporation Electrophoretic display
US6704133B2 (en) * 1998-03-18 2004-03-09 E-Ink Corporation Electro-optic display overlays and systems for addressing such displays
US7075502B1 (en) * 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
DE69918308T2 (en) * 1998-04-10 2004-10-21 E Ink Corp ELECTRONIC DISPLAY BASED ON ORGANIC FIELD EFFECT TRANSISTORS
CA2330950A1 (en) 1998-05-12 1999-11-18 E Ink Corporation Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US6241921B1 (en) 1998-05-15 2001-06-05 Massachusetts Institute Of Technology Heterogeneous display elements and methods for their fabrication
US20030102858A1 (en) * 1998-07-08 2003-06-05 E Ink Corporation Method and apparatus for determining properties of an electrophoretic display
CA2336101A1 (en) * 1998-07-08 2000-01-20 E Ink Corporation Method and apparatus for sensing the state of an electrophoretic display
USD485294S1 (en) * 1998-07-22 2004-01-13 E Ink Corporation Electrode structure for an electronic display
US7256766B2 (en) * 1998-08-27 2007-08-14 E Ink Corporation Electrophoretic display comprising optical biasing element
US6225971B1 (en) 1998-09-16 2001-05-01 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using an absorbing panel
US6184856B1 (en) * 1998-09-16 2001-02-06 International Business Machines Corporation Transmissive electrophoretic display with laterally adjacent color cells
US6144361A (en) 1998-09-16 2000-11-07 International Business Machines Corporation Transmissive electrophoretic display with vertical electrodes
US6271823B1 (en) 1998-09-16 2001-08-07 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using a reflective panel
WO2000020921A1 (en) 1998-10-07 2000-04-13 E Ink Corporation Capsules for electrophoretic displays and methods for making the same
EP1118039B1 (en) * 1998-10-07 2003-02-05 E Ink Corporation Illumination system for nonemissive electronic displays
US6128124A (en) 1998-10-16 2000-10-03 Xerox Corporation Additive color electric paper without registration or alignment of individual elements
US6147791A (en) 1998-11-25 2000-11-14 Xerox Corporation Gyricon displays utilizing rotating elements and magnetic latching
US6097531A (en) 1998-11-25 2000-08-01 Xerox Corporation Method of making uniformly magnetized elements for a gyricon display
US6506438B2 (en) * 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US6312304B1 (en) 1998-12-15 2001-11-06 E Ink Corporation Assembly of microencapsulated electronic displays
US6724519B1 (en) * 1998-12-21 2004-04-20 E-Ink Corporation Protective electrodes for electrophoretic displays
JP4582914B2 (en) * 1999-04-06 2010-11-17 イー インク コーポレイション Method for making droplets for use in capsule-based electromotive displays
AU4205400A (en) 1999-04-06 2000-10-23 E-Ink Corporation Microcell electrophoretic displays
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6842657B1 (en) * 1999-04-09 2005-01-11 E Ink Corporation Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication
US7012600B2 (en) * 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US6531997B1 (en) * 1999-04-30 2003-03-11 E Ink Corporation Methods for addressing electrophoretic displays
US6504524B1 (en) * 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
US6693620B1 (en) * 1999-05-03 2004-02-17 E Ink Corporation Threshold addressing of electrophoretic displays
WO2001002899A2 (en) 1999-07-01 2001-01-11 E Ink Corporation Electrophoretic medium provided with spacers
EP1196814A1 (en) * 1999-07-21 2002-04-17 E Ink Corporation Use of a storage capacitor to enhance the performance of an active matrix driven electronic display
EP1198852B1 (en) * 1999-07-21 2009-12-02 E Ink Corporation Preferred methods for producing electrical circuit elements used to control an electronic display
WO2001017040A1 (en) 1999-08-31 2001-03-08 E Ink Corporation A solvent annealing process for forming a thin semiconductor film with advantageous properties
US6545291B1 (en) * 1999-08-31 2003-04-08 E Ink Corporation Transistor design for use in the construction of an electronically driven display
EP1224505B1 (en) * 1999-10-11 2005-01-12 University College Dublin Electrochromic device
US6556262B1 (en) * 2000-01-06 2003-04-29 Eastman Kodak Company Display sheet having memory using limited coalescence domains
US6672921B1 (en) * 2000-03-03 2004-01-06 Sipix Imaging, Inc. Manufacturing process for electrophoretic display
US6498674B1 (en) 2000-04-14 2002-12-24 Xerox Corporation Rotating element sheet material with generalized containment structure
US6683333B2 (en) * 2000-07-14 2004-01-27 E Ink Corporation Fabrication of electronic circuit elements using unpatterned semiconductor layers
EP1666964B1 (en) * 2001-04-02 2018-12-19 E Ink Corporation Electrophoretic medium with improved image stability
US6580545B2 (en) * 2001-04-19 2003-06-17 E Ink Corporation Electrochromic-nanoparticle displays
US6870661B2 (en) * 2001-05-15 2005-03-22 E Ink Corporation Electrophoretic displays containing magnetic particles
WO2002093246A1 (en) * 2001-05-15 2002-11-21 E Ink Corporation Electrophoretic particles
US6982178B2 (en) * 2002-06-10 2006-01-03 E Ink Corporation Components and methods for use in electro-optic displays
US7535624B2 (en) * 2001-07-09 2009-05-19 E Ink Corporation Electro-optic display and materials for use therein
JP4155553B2 (en) * 2001-08-01 2008-09-24 キヤノン株式会社 Display element and manufacturing method thereof
US7525719B2 (en) * 2001-09-19 2009-04-28 Bridgestone Corporation Particles and device for displaying image
US7528822B2 (en) * 2001-11-20 2009-05-05 E Ink Corporation Methods for driving electro-optic displays
AU2002357842A1 (en) * 2001-12-13 2003-06-23 E Ink Corporation Electrophoretic electronic displays with films having a low index of refraction
EP1482354B1 (en) * 2002-03-06 2008-04-30 Bridgestone Corporation Image displaying apparatus and method
JP2005524110A (en) * 2002-04-24 2005-08-11 イー−インク コーポレイション Electronic display device
US7190008B2 (en) * 2002-04-24 2007-03-13 E Ink Corporation Electro-optic displays, and components for use therein
US7583427B2 (en) * 2002-06-10 2009-09-01 E Ink Corporation Components and methods for use in electro-optic displays
US20080024482A1 (en) * 2002-06-13 2008-01-31 E Ink Corporation Methods for driving electro-optic displays
EP1536271A4 (en) * 2002-06-21 2008-02-13 Bridgestone Corp Image display and method for manufacturing image display
US6842279B2 (en) * 2002-06-27 2005-01-11 E Ink Corporation Illumination system for nonemissive electronic displays
WO2004008239A1 (en) * 2002-07-17 2004-01-22 Bridgestone Corporation Image display
US6987603B2 (en) * 2003-01-31 2006-01-17 E Ink Corporation Construction of electrophoretic displays
ATE485535T1 (en) * 2003-03-27 2010-11-15 E Ink Corp ELECTRO-OPTICAL ASSEMBLY
EP1623405B1 (en) * 2003-05-02 2015-07-29 E Ink Corporation Electrophoretic displays
US8174490B2 (en) * 2003-06-30 2012-05-08 E Ink Corporation Methods for driving electrophoretic displays
EP1665214A4 (en) * 2003-09-19 2008-03-19 E Ink Corp Methods for reducing edge effects in electro-optic displays
JP2007507737A (en) * 2003-10-03 2007-03-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrophoretic display unit
EP1680774B9 (en) * 2003-11-05 2018-05-16 E Ink Corporation Electrophoretic medium for electro-optic displays
US20080043318A1 (en) * 2005-10-18 2008-02-21 E Ink Corporation Color electro-optic displays, and processes for the production thereof
US7903319B2 (en) * 2006-07-11 2011-03-08 E Ink Corporation Electrophoretic medium and display with improved image stability
US8018640B2 (en) * 2006-07-13 2011-09-13 E Ink Corporation Particles for use in electrophoretic displays
US20080024429A1 (en) * 2006-07-25 2008-01-31 E Ink Corporation Electrophoretic displays using gaseous fluids
US7477444B2 (en) * 2006-09-22 2009-01-13 E Ink Corporation & Air Products And Chemical, Inc. Electro-optic display and materials for use therein

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727873B2 (en) * 2001-05-18 2004-04-27 International Business Machines Corporation Reflective electrophoretic display with stacked color cells
US20040169912A1 (en) * 2002-10-31 2004-09-02 Rong-Chang Liang Electrophoretic display and novel process for its manufacture

Also Published As

Publication number Publication date
US20080030832A1 (en) 2008-02-07
US7492497B2 (en) 2009-02-17
WO2008017013A3 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
US7492497B2 (en) Multi-layer light modulator
EP3067744B1 (en) Method of driving an electrophoretic display
CN107748469B (en) Electro-optic display
EP2126885B1 (en) Methods for driving electrophoretic displays using dielectrophoretic forces
US20080130092A1 (en) Light modulators
US20170168370A1 (en) Methods for driving electrophoretic displays using dielectrophoretic forces
US20170351155A1 (en) Mixtures of encapsulated electro-optic medium and binder with low solvent content
US20230152659A1 (en) Driving methods for a variable light transmission device
US11143930B2 (en) Driving methods for variable transmission electro-phoretic media

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07799972

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07799972

Country of ref document: EP

Kind code of ref document: A2