WO2008019600A1 - Procédé pour effectuer une planification de domaine fréquentiel dans un système duplex à répartition dans le temps, et système correspondant - Google Patents

Procédé pour effectuer une planification de domaine fréquentiel dans un système duplex à répartition dans le temps, et système correspondant Download PDF

Info

Publication number
WO2008019600A1
WO2008019600A1 PCT/CN2007/002452 CN2007002452W WO2008019600A1 WO 2008019600 A1 WO2008019600 A1 WO 2008019600A1 CN 2007002452 W CN2007002452 W CN 2007002452W WO 2008019600 A1 WO2008019600 A1 WO 2008019600A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical resource
resource block
matrix
channel
impulse response
Prior art date
Application number
PCT/CN2007/002452
Other languages
English (en)
French (fr)
Inventor
Shiqiang Suo
Yingmin Wang
Qinling Xiong
Original Assignee
Datang Mobile Communications Equipment Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Datang Mobile Communications Equipment Co., Ltd filed Critical Datang Mobile Communications Equipment Co., Ltd
Priority to US12/281,574 priority Critical patent/US7733765B2/en
Priority to EP07785348.9A priority patent/EP2053770B1/en
Priority to JP2008540440A priority patent/JP4809899B2/ja
Publication of WO2008019600A1 publication Critical patent/WO2008019600A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • H04L5/1484Two-way operation using the same type of signal, i.e. duplex using time-sharing operating bytewise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to an Orthogonal Frequency Division Multiplexing (OFDM) technology in the field of communications, and in particular, to a method and system for implementing frequency domain scheduling in a time division duplex multiplexing system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Frequency domain scheduling In an OFDM-based time division duplex (TDD) communication system, frequency domain scheduling can be used to improve the communication performance of the system.
  • Frequency domain scheduling refers to a method of selecting the appropriate sub-band of transmission data for the user terminal, thereby fully utilizing the frequency selectivity in the broadband communication system.
  • the relative power of subcarriers received by different user terminals is shown.
  • the relative power of each subcarrier received by different user terminals is compared with the same reference value.
  • User 1 is in the 30th to 120th subcarriers.
  • the relative power is higher, and the relative power of user 2 on the 120-160 and 240-280 subcarriers is higher.
  • resource allocation is performed, subcarriers 30 - 120 are allocated to user 1 for use, and 4 subcarriers 120-160 and 240-280 are allocated to user 2, so that each user always selects the subband to which it is most suitable for transmission.
  • the transmission of data thereby obtaining multiuser diversity gain.
  • a user terminal can always be found, and the sub-band is allocated to the user terminal to maximize the efficiency of the sub-band, thereby maximally developing the communication capability of the wireless channel.
  • linear airspace precoding/beamforming techniques can be used to improve system performance.
  • the linear spatial precoding technique refers to a technique of mapping a data stream to a plurality of antennas for transmission by a linear precoding operation when there are multiple transmitting antennas at the transmitting end.
  • L data streams X form a corresponding transmitted signal Y on M antennas through a precoder.
  • the linear spatial precoding operation is equivalent to a precoding matrix V, that is, ⁇ , where the dimension of X is Lxl, the dimension of Y is Mxl, the dimension of V The number is MxL.
  • the linear spatial precoding operation is now beamforming.
  • the precoding matrix V is calculated using a channel impulse response matrix.
  • the base station When the base station obtains the precoding matrix by means of channel sounding, the base station calculates a channel impulse response matrix according to the uplink unprecoded reference symbols sent by the user equipment, and then calculates a linear precoding matrix according to the channel impulse response matrix.
  • the downlink reference symbols and data symbols transmitted by the base station to the user terminal simultaneously perform linear spatial precoding processing, and the user terminal does not need to know the precoding matrix, nor does it need to estimate the channel response between each transmitting and receiving antenna. It is necessary to estimate the equivalent channel response matrix of the precoding matrix and the channel matrix synthesis, so that the data can be demodulated, thereby effectively reducing the reference symbol overhead of the transmitting end, and supporting any type of precoding operation (including beamforming). .
  • this implementation method can track the channel response characteristics in real time and does not approximate the calculated precoding matrix, and there is no approximation loss caused by the approximation.
  • the user terminal cannot calculate the channel quality indication based on the reference symbols after precoding, resulting in loss of system frequency domain scheduling performance.
  • the base station may also obtain a precoding matrix by using a feedback-based manner, and feedback channel state information and a precoding matrix through the user terminal.
  • the user terminal needs to feed back a large amount of information, and the feedback information is Loss, and sometimes even mis-transmission, results in reduced system precoding/beamforming performance.
  • An embodiment of the present invention provides a method and system for implementing frequency domain scheduling in a time division duplex multiplexing system, which is used to solve the problem that frequency domain scheduling cannot be performed when a precoding matrix is obtained by using a channel sounding method in the prior art.
  • a method for implementing frequency domain scheduling in a time division duplex multiplexing system includes the steps of:
  • the first device sends the unprecoded reference symbol to the second device
  • Frequency domain scheduling is performed according to the channel quality indicator.
  • a communication system comprising:
  • a first device configured to send a non-precoded reference symbol
  • a second device configured to obtain, according to the reference symbol, an impulse response matrix of a channel used by the first device to send the reference symbol, and obtain a linear airspace pre-selection of the candidate physical resource block used to send data to the first device according to the impulse response matrix.
  • a communication system comprising:
  • a first device configured to send a non-precoded reference symbol and perform frequency domain scheduling according to a channel quality indication fed back by the second device;
  • a second device configured to obtain, according to the reference symbol, an impulse response matrix of a channel used by the first device to send the reference symbol, and obtain a linear airspace of a candidate physical resource block used to send data to the first device according to the impulse response matrix.
  • a precoding matrix and obtaining a channel quality indicator of the corresponding physical resource block according to the impulse response matrix and the linear spatial precoding matrix, and transmitting the channel quality indication to the first device.
  • the first device sends a non-precoded reference symbol to the second device, and the second device obtains an impulse response matrix of the channel used by the first device to send the reference symbol according to the reference symbol, and obtains according to the impulse response matrix. And transmitting, to the first device, a linear spatial precoding matrix of the physical resource block occupied by the data, and then obtaining a channel quality indication of the corresponding physical resource block according to the impulse response matrix and the linear spatial precoding matrix.
  • 1 is a schematic diagram of relative power of subcarriers received by a receiving end user in the prior art
  • FIG. 2 is a schematic diagram of a prior art hollow domain linear precoding operation
  • FIG. 3 is a schematic diagram of a time slot structure of OFDMA in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a slot structure of SC-FDMA according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a range of available frequency bands of a user terminal according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of subband division in an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a system in an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a base station side processing apparatus according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of processing for performing linear spatial precoding and frequency domain scheduling in an embodiment of the present invention. detailed description
  • the user terminal is used to send the unprecoded uplink reference symbol to the base station, and the base station obtains the channel impact according to the reference symbol base station. And responding to the matrix and calculating a linear spatial precoding matrix corresponding to each downlink physical resource block, and then obtaining a channel quality indicator of the downlink physical resource block according to the channel impulse response matrix and the linear spatial precoding matrix for frequency domain scheduling.
  • the downlink transmission based on the OFDM modulation technology adopts the OFDMA multiple access method
  • the uplink transmission adopts the SC-FDMA multiple access method.
  • An OFDMA system refers to an OFDM system that can distinguish users in both the time domain and the frequency domain, that is, data of multiple users can be transmitted in different time slots or in one time slot.
  • Each user's signal is generated in the frequency domain, corresponding to data on several subcarriers, and then fast inverse Fourier transform (IFFT transform) to the time The transmission system in which the domain processes and transmits.
  • IFFT transform fast inverse Fourier transform
  • the SC-FDMA system refers to a single-carrier transmission system that can distinguish users in the time domain and the frequency domain, that is, data of multiple users can be transmitted in different time slots, or can be transmitted in one time slot.
  • Each user's signal is first generated in the time domain, and then subjected to operations such as discrete Fourier transform (DFT, Discrete Fourier Transform) operation to perform frequency domain subcarrier mapping operations, and then IFFT transform time domain processing and transmission.
  • DFT discrete Fourier transform
  • SC-FDMA For 3GPP EUTRA systems, OFDMA and SC-FDMA have different slot structures.
  • FIG. 3 a schematic structural diagram of a downlink transmission OFDMA slot is shown.
  • One slot consists of 9 OFDM symbols and a time interval TI.
  • TI can be 0 in length.
  • a time slot is composed of 8 long blocks LB1 ⁇ LB8, 2 short blocks SB1 and SB2, a slot interval TI and a cyclic prefix CP before each long block or short block, wherein the long blocks LB1 ⁇ LB8 are used for bearer services.
  • Data, short blocks SB1 and SB2 are used to carry the uplink reference symbols, and the length of time ⁇ can be zero.
  • the uplink reference symbols in the available frequency bands are discretely distributed in the frequency domain.
  • the available frequency band range refers to the frequency band range that can be used for scheduling, and refers to the overlapping portion of the working bandwidth of the terminal and the working bandwidth of the base station.
  • FIG. 5 a schematic diagram of the available frequency band range of the user terminal is shown.
  • the working bandwidth of the terminal is 10 MHz
  • the working bandwidth of the base station is 5 MHz
  • the center carrier of the system is located at the center of 5 MHz, located at 1/4 of 10 MHz
  • the overlapping 5 MHz band is The range of bands available to the system.
  • the system may also allocate an available frequency band range to each user terminal, and each user terminal can only transmit the uplink reference symbols within the available frequency band. For example: When the working bandwidth of the user terminal and the base station is 10 MHz, the entire working bandwidth is divided into two equal parts, each part having a size of 5 MHz, and the user terminal can only select one of the available frequency bands of 5 MHz to transmit. Upstream reference symbol.
  • the size of the available frequency band of the user terminal may be dynamically or semi-statically adjusted according to the uplink resource allocation situation, for example, when a large number of uplink resources are not used for uplink transmission, and when idle, the user may be allowed.
  • the terminal transmits an uplink reference symbol on the idle subcarriers, thereby expanding the available frequency band range.
  • the entire working bandwidth is divided into several sub-bands from the frequency domain, and the sub-band is composed of a plurality of consecutive sub-carriers, and the division of the time domain can further divide the physical resources of the system.
  • each transmission slot in one sub-band is divided into multiple physical resource blocks, and each physical resource block (PRB) is composed of M consecutive subcarriers on all OFDM symbols in one transmission slot.
  • M is generally 25;
  • one transmission time slot is divided into multiple resource units (RU, Resource Unit), and each resource unit is N of all the long blocks in one transmission time slot. Consecutive or discontinuous subcarriers are formed, and the value of N is also generally 25.
  • FIG. 6 is a schematic diagram of the sub-band allocation in the embodiment, showing the correspondence between the unprecoded uplink reference symbols and the downlink physical resource blocks on the sub-band, and 610 in the figure indicates the unpre-coded uplink reference symbols, 620.
  • the unprecoded uplink reference symbols 610 are discretely distributed (discrete in frequency domain) on two short blocks (SB1 and SB2) in one slot, or one short block (SB1 or SB2) in one slot or one Discrete distribution over the available frequency bands on long blocks.
  • Each subband may correspond to a plurality of physical resource blocks in a plurality of downlink transmission slots.
  • the base station can obtain the uplink channel state information on each subband in the available frequency band by using the uplink channel sounding. Due to the channel symmetry of the TDD system, that is, when the channel state changes slowly with time (such as low-speed movement), the uplink channel state information is the same as the downlink channel state information in the same sub-band, in this embodiment. Calculating a precoding matrix used on the downlink physical resource block according to the uplink channel state information.
  • the uplink reference symbols sent in one uplink time slot may correspond to physical resource blocks in multiple downlink time slots.
  • FIG. 7 is a schematic structural diagram of a system according to the embodiment, including a user terminal 710 and a base station 720.
  • the user terminal 710 includes a sending unit 7101 for transmitting the unprecoded uplink reference symbol to the base station 720, and a receiving unit 7102 for receiving the precoding matrix transmitted by the base station 720 for linear precoding. Data symbols and downstream reference symbols.
  • Base station The 720 is configured to perform channel sounding according to the uncoded uplink reference symbols sent by the user terminal 710, obtain uplink channel state information, and perform spatial domain linear precoding and frequency domain scheduling in the downlink direction.
  • FIG. 8 is a schematic structural diagram of a base station side processing apparatus according to the embodiment, including an uplink channel detector 801, a precoding matrix calculator 802, a channel quality indicator calculator 803, a physical resource allocator 804, and a data modulation and encoder 805. And a linear precoder 806.
  • the number obtains an uplink channel impulse response matrix on each subcarrier of the user terminal 710 in the available frequency band, and transmits the matrix to the precoding matrix calculator 802 and the channel quality indicator calculator 803.
  • the precoding matrix calculator 802 is configured to obtain a precoding matrix on each downlink physical resource block according to the obtained uplink channel state information on each subcarrier, and transmit the precoding matrix to the channel quality indicator calculator 803, physical Resource allocator 804 and linear precoder 806.
  • the channel quality indicator calculator 803 is configured to obtain, according to the obtained precoding matrix on each downlink physical resource block, an uplink channel impulse response matrix on each subcarrier, a channel quality indicator on each downlink physical resource block, and The channel quality indication is communicated to physical resource allocator 804.
  • the physical resource allocator 804 is configured to allocate a downlink physical resource block to the user terminal 710 according to the data block size that the user terminal 710 desires to transmit in the downlink direction, and the obtained channel quality indication on each physical resource block, and allocate the physical resource to the physical resource.
  • the block information and corresponding channel quality indication are communicated to data modulation and encoder 805.
  • the data modulation and encoder 805 is configured to modulate and encode the data bits according to the channel quality indication on each downlink physical resource block allocated for the user terminal 710, form a data symbol, and transmit the data symbol to the linear precoder. 806.
  • the linear precoder 806 is used to map the data symbols on each downlink physical resource block and the corresponding processing flow for linear spatial precoding and frequency domain scheduling according to the embodiment shown in FIG. 9.
  • the processing procedure is as follows:
  • Step 901 The user terminal sends an uplink reference symbol covering the entire available frequency band range.
  • Step 902 The base station calculates, by using an uplink channel sounding method, an uplink channel impulse response matrix on each subcarrier of the user terminal in the available frequency band.
  • Step 903 The base station calculates a precoding matrix on each downlink physical resource block according to the obtained uplink channel impulse response matrix on each subcarrier.
  • Step 904 The base station calculates a channel quality indicator on each downlink physical resource block according to the calculated precoding matrix on each downlink physical resource block and the uplink channel impulse response matrix on each subcarrier.
  • Step 905 The base station allocates a downlink physical resource block to the user terminal according to the data block size that the user terminal desires to transmit in the downlink direction, and the calculated channel quality indicator on each downlink physical resource block.
  • Step 906 The base station modulates and codes the data bits sent in the downlink according to the channel quality indication on each downlink physical resource block allocated for the user terminal, to form a data symbol.
  • the base station When modulating and encoding the downlink data bits, when the number of physical resource blocks allocated to the user terminal is multiple, the base station first divides the data bits according to the channel quality indication corresponding to the physical resource block allocated to the user terminal, After the data bits are divided, the modulation mode and the coding rate corresponding to the corresponding channel quality indicator on the physical resource block are independently modulated and coded; if only one physical resource block is allocated to the user terminal, the data bits are not required to be performed. Division.
  • the data bits can be uniformly modulated and encoded, and then uniformly distributed to the respective physical resource blocks.
  • a moderate channel quality indicator may be selected in multiple channel quality indicators corresponding to each physical resource block, and used to determine a modulation and coding mode used in unified modulation and coding; Linear spatial precoding matrix corresponding to resource blocks and individual physical resources A channel quality response matrix is calculated from the channel impulse response matrix on each subcarrier in the block, and the channel quality indicator is used to determine the modulation and coding mode.
  • Step 907 The base station performs linear spatial precoding on the data symbols and the corresponding reference symbols on each downlink physical resource block according to the linear spatial precoding matrix corresponding to each downlink physical resource block.
  • the data symbols on each physical resource block are serially and transformed to form a plurality of data streams, and then each of the data streams is inserted into a corresponding reference symbol and then passed through a corresponding linear spatial precoding matrix.
  • Transform generates signals transmitted on multiple antennas. If multiple physical resource blocks allocated to the same user terminal are consecutive in the frequency domain and/or the time domain, for each of the parallel transmitted data symbols and corresponding reference symbols within each physical resource block, each of the data symbols and corresponding reference symbols may be used.
  • the linear spatial precoding matrix corresponding to the physical resource block is precoded separately; or the average value of the linear spatial precoding matrix corresponding to each physical resource block may be precoded; or the channel impulse response matrix on the physical resource blocks , Recalculate a linear spatial precoding matrix.
  • step 901 when the user terminal sends an uplink reference symbol covering the entire available frequency band range, it may be sent together with the data symbol, for example, using the short block in the uplink SC-FDMA slot to send the uplink reference symbol, where a part of the uplink reference symbol is used.
  • the uplink data symbol is demodulated; or, the uplink reference symbol is not used to demodulate the uplink data symbol.
  • the uplink reference symbols carried by the different short blocks may also cover different frequency bands, for example, the available frequency band range is divided into two parts, where SB1 carries The uplink reference symbol covers the first portion of the available frequency band range; the uplink reference symbol carried by SB2 covers the second portion of the available frequency band range.
  • step 902 when the uplink user terminal uses a short block (SB1 or SB2) or uses a long block to transmit discrete uplink reference symbols in the frequency domain within the available frequency band, the base station first obtains the subcarriers on which the discrete points are located. The channel impulse response is then obtained by frequency domain interpolation to obtain an uplink channel impulse response on each subcarrier in the available frequency band, thereby completing the uplink channel sounding.
  • SB1 or SB2 short block
  • SB2 short block
  • a long block to transmit discrete uplink reference symbols in the frequency domain within the available frequency band
  • the base station may select an uplink reference symbol carried on one of the short blocks. Perform uplink channel sounding; or use the uplink reference symbols carried on the two short blocks for uplink channel sounding, and then average the uplink channel impulse responses corresponding to the two short blocks. If the uplink reference symbols carried by the two short blocks cover different frequency bands (ie, respectively cover a part of the available frequency band range), the uplink reference symbols carried on one of the short blocks are respectively used to perform uplink in the corresponding frequency range. Channel detection.
  • step 903 when calculating the linear precoding matrix, there are two cases of the uplink channel state information obtained by the channel impulse response matrix: A. The obtained uplink channel state information is sufficient; B. The obtained uplink channel state information is insufficient. The following two cases are described separately.
  • the channel state information is obtained by mutually orthogonal unprecoded reference symbols transmitted on a plurality of antennas in the uplink direction of the user terminal, the channel state information is sufficient.
  • the number of transmitting antennas of the base station is M
  • the number of receiving antennas of the terminal is K.
  • the reference symbols are transmitted on the K antennas in the uplink direction, and are orthogonal to each other, and are received using M receiving antennas, then according to each
  • the dimension of the uplink channel impulse response matrix Gj obtained by the uplink reference symbols on the subcarriers is MxK, where j represents the subcarrier sequence number, that is, sufficient channel state information. Transmitting the orthogonal reference symbols on different antennas can be achieved by transmitting on different subcarriers.
  • the uplink reference symbols on antenna 1 are transmitted on the 1st, 6th, 11th...subcarriers
  • the uplink reference symbols on antenna 2 are transmitted on the 2nd, 8th, 12th... subcarriers.
  • the uplink channel impulse response matrix Gj of different subcarriers in one physical resource block needs to be averaged to obtain a channel impulse response matrix H DL corresponding to the physical resource block, and then according to the The channel impulse response matrix H DIj performs the calculation of the precoding matrix.
  • the channel channel impulse response Hu has a dimension of MXK, which corresponds to the downlink channel impact. , its dimension is KxM, and H DL is singular value decomposition (SVD, singular value decomposition),
  • U is the unitary matrix with dimension KxK
  • ie U H U I
  • is the unitary matrix with dimension ⁇
  • ⁇ V n V l
  • I represents the unit matrix
  • the superscript H represents the conjugate rotation of the matrix
  • the operation is performed by singular values of the channel matrix H D1 , and the dimension is KxM.
  • the channel state information is obtained by a reference symbol transmitted by the user terminal on one antenna in the uplink direction or the same reference symbol transmitted from the plurality of antennas, the channel state information is insufficient.
  • the number of transmitting antennas of the base station is M
  • the number of receiving antennas of the user terminal is K
  • the dimension of the uplink channel impulse response matrix Gj obtained according to the uplink reference symbols on each subcarrier is Mxl, where j represents the subcarrier number
  • the base station obtains The channel status information is insufficient.
  • the uplink channel impulse response matrix Gj of different subcarriers in one physical resource block is first averaged to obtain an uplink channel impulse response HUL , and then the downlink corresponding to the physical resource block is obtained.
  • the channel impulse response matrix H D H ⁇
  • the precoding matrix is obtained by the method of transmit beamforming. For example, when the number of data streams sent downstream is L, the precoding matrix is expressed as:
  • V' [ , v 2 ⁇ ⁇ ⁇ v L ]
  • v ' represents the precoding column vector corresponding to the i th data stream, and the precoding column vector corresponding to each data stream is the same, ie
  • V [v V ⁇ v]
  • the uplink transmission mode of the user terminal is specified by the base station. After receiving the uplink reference symbol sent by the user equipment, the base station determines the transmission mode of the received uplink reference symbol, and determines whether the uplink channel state information is sufficient or insufficient. Therefore, the calculation method of the precoding matrix is determined.
  • the base station obtains the channel quality indication CQI method on each downlink physical resource block according to the precoding matrix V on each downlink physical resource block and the uplink channel impulse response matrix Gj on each subcarrier as follows:
  • an equivalent channel matrix ( GE )j on each subcarrier is calculated according to its precoding matrix V and the uplink channel impulse response matrix Gj on each subcarrier, ( GE )j is a Kx
  • L is the number of data streams before linear spatial precoding
  • K is the number of antennas at the receiving end
  • j is the number of subcarriers in a physical resource block
  • j l ... J, where J represents a Physical resource block neutron Total number of carriers:
  • an equivalent channel matrix is used to predict the received signal-to-noise ratio on each subcarrier in the downlink direction.
  • the received signal-to-noise ratio ⁇ is expressed as a function of the equivalent channel matrix ( GE )j and the signal-to-noise ratio (SNR), ie
  • the downlink transmit power is the known base station transmit power, and the noise power is obtained by the base station; the interference power is measured by the user terminal and then fed back to the base station, or the downlink interference power is approximated to the uplink interference power.
  • the uplink interference power is obtained by the base station side measurement, and the uplink interference power is used as the interference power used in the calculation, or the inter-cell interference is approximated as no interference, that is, the interference power is zero.
  • the SNR can also be predicted by the downlink transmission signal-to-noise ratio SNR' of the uplink feedback of the user terminal.
  • the base station predicts the SNR according to the ratio between the transmission power when transmitting the SNR' measurement to the user terminal and the transmission power used by the base station to transmit, that is,
  • a set representing a signal to noise ratio ⁇ on all subcarriers within the physical resource block.
  • One way to calculate the equivalent signal-to-noise ratio 1 is to use the EESM (OFDM Exponential Effective SIR Mapping) method. The functional relationship is as follows:
  • J is the number of subcarriers in the physical resource block
  • is a parameter related to the modulation and coding mode, and the parameter is determined by simulation.
  • the slot length is 0.675 ms
  • the beta parameters of the OFDMA system with subcarrier spacing of 15 kHz are shown in Table 1:
  • the CQI value corresponding to the physical resource block is obtained from the calculated equivalent signal to noise ratio and a predetermined threshold.
  • the frequency domain scheduling process for the user terminal according to the CQI value is as follows: For example, a service time slot is divided into five physical resource blocks, and each physical resource block can be Supports 16 kinds of modulation and coding levels, corresponding to 16 CQI values respectively.
  • the number of Quadrature Amplitude Modulation (QAM) symbols that can be transmitted by one physical resource block is the coding rate and the transmission block size (TBS, Transmit Block). Size ) as shown in Table 2:
  • Table 3 When the amount of data that the user terminal is expected to transmit in the downlink direction is llOObits, the physics of the user is allocated according to the data block size that the user terminal desires to transmit in the downlink direction, and the calculated channel quality indicator on each physical resource block.
  • the resource blocks 1 and 2 select the linear spatial precoding matrix corresponding to the downlink physical resource blocks 1 and 2 to perform linear spatial precoding on the data symbols and reference symbols transmitted by the user terminal in the downlink.
  • the user terminal sends the unprecoded uplink reference symbol to the base station, obtains the impulse response matrix of the channel according to the reference symbol base station, and calculates a precoding matrix corresponding to each downlink physical resource block, and then according to the impulse response matrix and
  • the precoding matrix obtains the channel quality indication of the downlink physical resource block for frequency domain scheduling, and performs linear airspace precoding according to the calculated precoding matrix, thereby solving the problem that the frequency domain scheduling technology cannot be used when using the channel detection technology, and avoiding the simultaneous Use frequency domain scheduling and linear null: I or the contradiction generated when precoding.
  • the embodiment of the present invention is not limited to this.
  • Another implementation manner of the present invention is that the base station sends the unprecoded downlink reference symbol to the user terminal, and the user terminal obtains the impulse response matrix of the channel according to the reference symbol and calculates corresponding to each uplink physical. a precoding matrix of the resource block, and then obtaining a channel quality indicator on the uplink physical resource block according to the precoding matrix, and feeding back the channel quality indicator to the base station, where the base station performs frequency domain scheduling according to the channel quality indicator.
  • the base station performs frequency domain scheduling according to the channel quality indicator.
  • the matrix obtains an equivalent channel matrix corresponding to each subcarrier, predicts the received signal to noise ratio on each subcarrier in the uplink direction according to the equivalent channel matrix and the transmission signal to noise ratio of the user terminal side, and then determines The equivalent signal to noise ratio, and the corresponding channel quality indicator is determined according to the equivalent signal to noise ratio.
  • the method for calculating the channel quality indicator on the user terminal side is similar to the embodiment, and will not be described again.
  • the linear spatial precoding operation is degraded into a transmit beamforming operation, and the operation can only be performed in the downlink direction.
  • the linear precoding operation degenerates into a transmit beamforming operation, and the operation can only be performed in the uplink direction.

Description

一种时分双工复用系统中实现频域调度的方法及系统 技术领域
本发明涉及通信领域的正交频分复用 (OFDM, Orthogonal Frequency Division Multiplexing )技术, 尤其涉及一种时分双工复用系统中实现频域调度 的方法及系统。 背景技术
在基于 OFDM的时分双工复用(TDD, Time division duplex )通信系统中, 可以采用频域调度提高系统的通信性能。频域调度指为用户终端选择合适的传 输数据的子频段, 从而充分利用宽带通信系统中频率选择性的一种方法。
参阅图 1所示为不同用户终端接收到的子载波相对功率示意图, 不同用户 终端接收到的每一个子载波与同一个参考值进行比较所得的相对功率不同, 用 户 1在第 30-120个子载波上的相对功率较高, 而用户 2在第 120-160以及第 240-280个子载波上的相对功率较高。 在进行资源分配时, 把子载波 30 - 120 分配给用户 1使用, 4巴子载波 120-160以及 240-280分给用户 2使用, 这样, 每一个用户总是选择其最适合传输的子频段进行数据的传输,从而获得多用户 分集(multiuser diversity )增益。 当用户终端足够多时, 对于任何一个子频带, 总能找到一个用户终端, 并将该子频带分配给该用户终端使得该子频带的效率 达到最大, 从而最大限度的开发无线信道的通信能力。
在 TDD系统中, 可以使用线性空域预编码 /波束赋形技术来提高系统的性 能。 线性空域预编码技术是指, 当发射端存在多根发射天线时, 通过一个线性 的预编码操作将数据流映射到多根天线上进行发送的技术。
参阅图 2所示为空域线性预编码操作示意图, L个数据流 X通过一个预编 码器形成 M根天线上对应的发送的信号 Y。 线性空域预编码操作用一个预编 码矩阵 V等效, 即丫^^ , 其中 X的维数为 Lxl , Y的维数为 Mxl , V的维 数为 MxL。 当数据流数目 L=l 时, 此时线性空域预编码操作为波束赋形。 预 编码矩阵 V使用信道冲击响应矩阵进行计算。
当基站采用基于信道探测的方式获得预编码矩阵时, 基站根据用户终端发 送的上行未预编码的参考符号计算出信道冲击响应矩阵, 然后根据信道冲击响 应矩阵计算出线性预编码矩阵。 采用这种方式时, 基站向用户终端发送的下行 参考符号和数据符号同时进行线性空域预编码处理, 用户终端不需要知道预编 码矩阵, 也不需要估计每个发送接收天线间的信道响应, 仅需要估计预编码矩 阵与信道矩阵合成的等价信道响应矩阵, 即可实现数据的解调, 从而可以有效 的减小发射端的参考符号开销, 同时支持任何类型的预编码操作(包括波束赋 形)。 同时这种实现方法可以快速实时的跟踪信道响应特性, 并且没有对计算 出的预编码矩阵进行近似, 不存在近似导致的预编码性能损失。 但这种方法用 户终端不能根据预编码之后的参考符号计算出信道质量指示,导致系统频域调 度性能的丧失。
现有技术中, 基站也可采用基于反馈的方式获得预编码矩阵, 通过用户终 端反馈信道状态信息和预编码矩阵, 釆用这种方式用户终端需要反馈大量的信 息, 且经过反馈的信息是有损的, 并且有时候甚至是误传的, 导致系统预编码 /波束赋形性能的降低。 发明内容
本发明实施例提供一种时分双工复用系统中实现频域调度的方法及系统, 用以解决现有技术中采用信道探测方式获得预编码矩阵时不能进行频域调度 的问题。
本发明实施例提供以下技术方案:
一种时分双工复用系统中实现频域调度的方法, 包括步骤:
第一设备向第二设备发送未预编码的参考符号;
第二设备根据所述参考符号获得第一设备发送参考符号所用信道的冲击 响应矩阵, 并根据所述冲击响应矩阵获得向第一设备发送数据所使用的候选物 理资源块的线性空域预编码矩阵;
第二设备根据所述冲击响应矩阵和线性空域预编码矩阵获得候选物理资 源块的信道质量指示;
根据所述信道质量指示进行频域调度。
一种通信系统, 包括:
第一设备, 用于发送未预编码的参考符号;
第二设备, 用于根据所述参考符号获得第一设备发送参考符号所用信道的 冲击响应矩阵, 并根据所述冲击响应矩阵获得向第一设备发送数据所使用的候 选物理资源块的线性空域预编码矩阵, 以及根据所述冲击响应矩阵和线性空域 预编码矩阵获得对应的物理资源块的信道质量指示, 并根据所述信道质量指示 进行频域调度。
一种通信系统, 包括:
第一设备,用于发送未预编码的参考符号和根据第二设备反馈的信道质量 指示进行频域调度;
第二设备, 用于根据所述参考符号获得第一设备发送该参考符号所用信道 的冲击响应矩阵, 并根据所述冲击响应矩阵获得向第一设备发送数据所使用的 候选物理资源块的线性空域预编码矩阵, 以及根据所述冲击响应矩阵和线性空 域预编码矩阵获得对应的物理资源块的信道质量指示, 并将所述信道质量指示 发送给第一设备。
本发明有益效果如下:
本发明实施例中第一设备向第二设备发送未预编码的参考符号, 第二设备 根据所述参考符号获得第一设备发送参考符号所用信道的冲击响应矩阵, 并根 据所述冲击响应矩阵获得向第一设备发送数据所占用物理资源块的线性空域 预编码矩阵, 然后根据所述冲击响应矩阵和线性空域预编码矩阵获得对应的物 理资源块的信道质量指示。 根据所述信道质量指示进行频域调度, 同时可根据 获得信道质量指示过程中计算出的线性空域预编码矩阵进行线性空域预编码 操作, 不仅解决了采用信道探测技术时不能实现频域调度的问题, 而且解决了 频域调度和线性空域预编码 /波束赋形性之间的矛盾。 附图说明
图 1为现有技术中接收端用户接收到的子载波相对功率示意图;
图 2为现有技术中空域线性预编码操作示意图;
图 3为本发明实施例中 OFDMA的一个时隙结构示意图;
图 4为本发明实施例中 SC-FDMA的一个时隙结构示意图;
图 5为本发明实施例中用户终端可用频带范围示意图;
图 6为本发明实施例中子频带划分示意图;
图 7为本发明实施例中的系统结构示意图;
图 8为本发明实施例中基站侧处理装置的结构示意图;
图 9为本发明实施例中进行线性空域预编码和频域调度的处理流程图。 具体实施方式
为了解决现有技术中釆用信道探测方式获得预编码矩阵时不能进行频域 调度的问题, 本实施例中采用用户终端向基站发送未预编码的上行参考符号, 根据该参考符号基站获得信道冲击响应矩阵并计算出对应于每一个下行物理 资源块的线性空域预编码矩阵, 然后艮据信道冲击响应矩阵和线性空域预编码 矩阵获得下行物理资源块的信道质量指示进行频域调度。
在目前的 3GPP EUTRA 系统中, 基于 OFDM调制技术的下行传输采用 OFDMA多址方式, 上行传输采用 SC-FDMA多址方式。 OFDMA系统指可以 同时在时域和频域区分用户的 OFDM 系统, 即多个用户的数据可以在不同的 时隙中发送,也可以在一个时隙中进行发送。每一个用户的信号在频域中产生, 对应于若干个子载波上的数据, 然后通过快速逆傅立叶变换( IFFT变换)到时 域进行处理和发送的传输系统。 SC-FDMA系统指可以在时域和频域上进行用 户区分的单载波传输系统, 即多个用户的数据可以在不同的时隙中发送, 也可 以在一个时隙中进行发送。 每一个用户的信号先在时域产生, 然后通过离散傅 立叶变换 ( DFT, Discrete Fourier Transform )操作变换到频域进行子载波映射 等操作,再进行 IFFT变换时域进行处理和发送的传输系统。对于 3GPP EUTRA 系统来说, OFDMA和 SC-FDMA有不同的时隙结构。
参阅图 3所示为一种下行传输 OFDMA时隙的结构示意图。 一个时隙由 9 个 OFDM符号和一个时间间隔 TI构成。 其中 TI的时间长度可以为 0。
参阅图 4所示为一种上行 S FDMA时隙的结构示意图。 一个时隙由 8个 长块 LB1 ~ LB8, 2个短块 SB1和 SB2, 时隙间隔 TI以及每一个长块或者短块 之前的循环前缀 CP构成,其中,长块 LB1 ~ LB8用于承载业务数据,短块 SB1 和 SB2用于承载上行参考符号, Ή的时间长度可以为 0。 为了使更多的上行用 户终端可以在可用频带范围内发送上行参考符号, 可用频带范围内的上行参考 符号在频域上离散分布。
可用的频带范围是指可以被用于调度的频带范围, 指终端的工作带宽与基 站的工作带宽的重叠部分。 参阅图 5所示为用户终端可用频带范围示意图, 终 端的工作带宽为 10MHz,基站的工作带宽为 5MHz,系统的中心载波位于 5MHz 的中心, 位于 10MHz的 1/4处, 重叠的 5MHz频带范围是系统可用的频带范 围。
为了避免多个用户终端发送的上行参考符号彼此冲突, 系统也可以给每一 个用户终端分配可用的频带范围,每个用户终端只能在可用的频带范围内发送 上行参考符号。 例如: 当用户终端和基站的工作带宽均为 10MHz时, 将整个 工作带宽划分为两个相等的部分, 每一部分的大小为 5MHz, 用户终端只能选 择其中一个大小为 5MHz的可用频带范围来发送上行参考符号。在实际工作中, 还可根据上行资源分配情况动态或者半静态的调整用户终端可用频带范围的 大小, 如当有大量的上行资源没有用于上行传输, 处于空闲时, 可以允许用户 终端在空闲的子载波上发送上行参考符号, 从而扩大可用的频带范围。
在 TDD系统中, 从频域对整个工作带宽划分为若干个子频带, 子频带由 多个连续的子载波构成,结合时域上的划分,可以将系统物理资源进一步划分。
对于下行 OFDMA, 将一个子频带中每一个传输时隙划分为多个物理资源 块, 每一个物理资源块(PRB, Physical Resource Block ) 由一个传输时隙中所 有 OFDM符号上 M 个连续的子载波构成, M取值一般为 25; 对于上行 SC-FDMA, 将一个传输时隙划分为多个资源单位(RU, Resource Unit ), 每一 个资源单位由一个传输时隙中的所有长块上的 N个连续的或者不连续的子载 波构成, N的取值一般也为 25。
参阅图 6所示为本实施例中子频带划分示意图,表示未预编码的上行参考 符号与下行的物理资源块在子频带上的对应关系, 图中 610表示未预编码的上 行参考符号, 620表示在可用频带范围以外的下行物理资源块, 630表示在可 用频带范围内的下行物理资源块。 未预编码的上行参考符号 610在一个时隙中 的两个短块(SB1 和 SB2 )上离散分布 (频域上离散), 或者在一个时隙中的 一个短块(SB1或者 SB2 )或者一个长块上的可用频带范围内离散分布。 每一 个子频带可以对应多个下行传输时隙中的多个物理资源块。 用户终端在可用频 带范围内发送未预编码的上行参考符号后,基站可以通过上行信道探测获得可 用频带范围内每一个子频带上的上行信道状态信息。 由于 TDD系统的信道对 称性, 即在信道状态随时间变化比较緩' ¾的情况下 (如低速移动), 在相同的 子频带上, 上行信道状态信息与下行信道状态信息相同, 本实施例中根据上行 信道状态信息计算下行物理资源块上所使用的预编码矩阵。 其中, 在一个上行 时隙中发送的上行参考符号可以对应多个下行时隙中的物理资源块。
参阅图 7所示为本实施例的系统结构示意图, 包括用户终端 710和基站 720。用户终端 710包括发送单元 7101和接收单元 7102,其中的发送单元 7101 用于将未预编码的上行参考符号发送给基站 720;接收单元 7102用于接收基站 720发送的经过预编码矩阵进行线性预编码的数据符号和下行参考符号。 基站 720用于根据用户终端 710发送的未编码的上行参考符号进行信道探测, 获得 上行信道状态信息进行下行方向的空域线性预编码和频域调度。
参阅图 8所示为本实施例基站侧处理装置的结构示意图, 包括上行信道探 测器 801、预编码矩阵计算器 802、信道质量指示计算器 803、 物理资源分配器 804、 数据调制与编码器 805和线性预编码器 806。 号获得可用频带范围内该用户终端 710的每一个子载波上的上行信道冲击响应 矩阵, 并将该矩阵传送给预编码矩阵计算器 802和信道质量指示计算器 803。
预编码矩阵计算器 802用于根据获得的每一个子载波上的上行信道状态信 息获得每一个下行物理资源块上的预编码矩阵, 以及将该预编码矩阵传送给信 道质量指示计算器 803、 物理资源分配器 804和线性预编码器 806。
信道质量指示计算器 803用于根据获得的每一个下行物理资源块上的预编 码矩阵、 每一个子载波上的上行信道冲击响应矩阵, 获得每一个下行物理资源 块上的信道质量指示, 并将该信道质量指示传送给物理资源分配器 804。
物理资源分配器 804用于根据用户终端 710在下行方向上期望传输的数据 块大小, 以及获得的每一个物理资源块上的信道质量指示, 为用户终端 710分 配下行物理资源块, 并将该物理资源块信息和对应的信道质量指示传送给数据 调制与编码器 805。
数据调制与编码器 805用于才 据为用户终端 710分配的每一个下行物理资 源块上的信道质量指示对数据比特进行调制与编码, 形成数据符号, 并将该数 据符号传送给线性预编码器 806。
线性预编码器 806用于将每一个下行物理资源块上的数据符号以及相应的 参阅图 9所示为本实施例进行线性空域预编码和频域调度的处理流程示意 图, 处理过程如下:
步骤 901、 用户终端发送覆盖整个可用频带范围的上行参考符号。 步骤 902、 基站通过上行信道探测方法计算可用频带范围内用户终端的每 一个子载波上的上行信道冲击响应矩阵。
步骤 903、 基站根据获得的每一个子载波上的上行信道冲击响应矩阵计算 每一个下行物理资源块上的预编码矩阵。 步骤 904、 基站根据计算得到的每一个下行物理资源块上的预编码矩阵、 每一个子载波上的上行信道冲击响应矩阵, 计算每一个下行物理资源块上的信 道质量指示。
步驟 905、 基站根据用户终端在下行方向上期望传输的数据块大小, 以及 计算得到的每一个下行物理资源块上信道质量指示, 为用户终端分配下行物理 资源块。
步驟 906、 基站根据为用户终端分配的每一个下行物理资源块上的信道质 量指示对下行发送的数据比特进行调制与编码, 形成数据符号。
对下行发送的数据比特进行调制与编码时, 当分配给用户终端的物理资源 块为多个时,基站首先根据分配给该用户终端的物理资源块所对应的信道质量 指示对数据比特进行划分,在对数据比特划分完毕之后根据物理资源块上对应 的信道质量指示所对应的调制方式与编码速率进行独立的调制与编码; 如果对 用户终端只分配了一个物理资源块则不需要对数据比特进行划分。
对数据比特进行划分时可以按照每一个信道质量指示所对应的传输块大 小的比例进行划分, 如用户终端的传输数据量为 1100 bits时, 在物理资源块 1 和 2 上的划分比例为 600:540=10:9, 在物理资源块 1 上传输的数据比特为 1100* 10/19 « 589bits,在物理资源块 2上传输的数据比特为 1100*9/19 « 521bits。
如果分配给同一个用户终端的多个物理资源块在频域和 /或时域上是连续 的, 可以将数据比特进行统一的调制与编码, 然后再均匀的分配到各个物理资 源块上。 此时, 可以在各个物理资源块所对应的多个信道质量指示中选择一个 适中的信道质量指示, 用它来确定统一的调制与编码时所釆用的调制与编码方 式; 也可以使用各个物理资源块对应的线性空域预编码矩阵以及各个物理资源 块中各个子载波上的信道冲击响应矩阵计算出一个信道质量指示, 用该信道质 量指示决定调制与编码方式。
步骤 907、 基站将每一个下行物理资源块上的数据符号以及相应的参考符 号根据各下行物理资源块所对应的线性空域预编码矩阵进行线性空域预编码。
进行线性空域预编码时, 将每一个物理资源块上的数据符号进行串并变 换, 形成多个数据流, 然后在每一个数据流中分别插入各自的参考符号后通过 对应的线性空域预编码矩阵变换生成多根天线上发送的信号。如果分配给同一 个用户终端的多个物理资源块在频域和 /或时域上是连续的,对于每一个物理资 源块内部的多个并行传输的数据符号和相应的参考符号, 可以使用各个物理资 源块对应的线性空域预编码矩阵分别进行预编码; 也可以使用各个物理资源块 对应的线性空域预编码矩阵的平均值行预编码; 或者^ ^据这些物理资源块上的 信道冲击响应矩阵, 重新计算一个线性空域预编码矩阵。
在步骤 901中, 用户终端发送覆盖整个可用频带范围的上行参考符号时,, 可以与数据符号一起发送, 比如使用上行 SC-FDMA时隙中的短块发送上行参 考符号, 其中一部分上行参考符号用于解调上行数据符号; 或者, 利用上行传 该参考符号不用于解调上行数据符号。 当系统利用两个短块 SB1和 SB2发送 上行参考符号时,还可以让不同的短块所承载的上行参考符号覆盖不同的频带 范围, 比如将可用频带范围划分为两个部分, 其中 SB1所承载的上行参考符号 覆盖可用频带范围的第一部分; SB2所承载的上行参考符号覆盖可用频带范围 的第二部分。
在步骤 902中, 当上行用户终端使用一个短块(SB1或者 SB2 )或者使用 一个长块在可用频带范围内发送在频域上离散的上行参考符号时,基站首先获 得各个离散点所在子载波上的信道冲击响应, 然后通过频域插值获得可用频带 范围内各个子载波上的上行信道冲击响应, 从而完成上行信道探测。
当上行用户同时利用两个短块(SB1和 SB2 )在可用频带范围内发送在频 域上离散的上行参考符号时,如果这两个短块所承载的上行参考符号所覆盖的 频带范围相同 (即均覆盖整个可用频带范围), 基站可以选择其中一个短块上 承载的上行参考符号进行上行信道探测; 或者同时利用两个短块上承载的上行 参考符号进行上行信道探测 , 然后将两个短块所对应的上行信道冲击响应进行 平均。 如果这两个短块所承载的上行参考符号所覆盖的频带范围不同 (即分别 覆盖可用频带范围的一部分), 则分別使用其中一个短块上承载的上行参考符 号进行所对应的频带范围内上行信道探测。
在步骤 903中, 计算线性预编码矩阵时, 通过信道冲击响应矩阵获得的上 行信道状态信息存在两种情况: A、 获得的上行信道状态信息充分;. B、 获得 的上行信道状态信息不充分。 以下分别对两种情况进行说明。
A、 获得的上行信道状态信息充分的情况:
如果信道状态信息是通过用户终端上行方向的多根天线上发送出来的彼 此正交的未预编码参考符号获得的, 则该信道状态信息充分。 例如: 基站发送 天线数目为 M, 终端接收天线数 为 K, 如果参考符号是在上行方向上的 K 根天线上发送出来的, 并且彼此正交, 并使用 M根接收天线进行接收, 那么 根据各子载波上的上行参考符号获得的上行信道冲击响应矩阵 Gj 的维数为 MxK, 其中 j表示子载波序号, 即充分的信道状态信息。 在不同天线上发送彼 此正交的上行参考符号时可通过在不同的子载波上进行传输来达到。 如在 SB1 中, 天线 1上的上行参考符号在第 1、 6、 11...子载波上传输, 天线 2上上行参 考符号是在第 2、 8、 12...子载波上传输的。
在获得的上行信道状态信息充分的情况下, 首先需要将一个物理资源块内 不同子载波的上行信道冲击响应矩阵 Gj进行平均, 得到该物理资源块对应的 信道冲击响应矩阵 HDL, 然后根据该信道冲击响应矩阵 HDIj进行预编码矩阵的 计算。
例如: 当基站发射天线数目为 M, 用户终端端天线数目为 K, 传输的数据 流数目为 L, 对不同子载波的上行信道冲击响应矩阵 Gj进行平均可以得到上 行信道冲击响应 Hu 其维数为 MXK, 那对应下行信道冲击相应为
Figure imgf000013_0001
, 其维数为 KxM, 将 HDL进行奇异值分解( SVD, singular value decomposition ),
其中, U是维数为 KxK的酉矩阵,即 UHU = I, ν是维数为 ΜχΜ的酉矩阵, ^ VnV = l, I表示单位阵,上标 H表示矩阵的共轭转置操作, Λ由信道矩阵 HD1 的奇异值构成, 维数为 KxM。 假设 ^≥ 12≥〜≥ ^是信道矩阵 HDL的奇异值, 其中" min=min(M,N) , 那么 0 0 0
0 λ, 0 0
Λ = (Κ<Μ)
0 0 0
A, 0 0
0 λ, 0
Λ = 0 0 'Μ (Κ>Μ)
0 0
0 0 其中发送流数目 L<min(M, Κ), 那么可以在 ^≥A2≥—≥ n选择最大的 L 个奇异值,并根据 Λ矩阵中各个奇异值的位置,从 V矩阵中选择出 L个列向量, 从而构成一个 MxL维的预编码矩阵 V'。 用 X表示发送的数据流, 用 Y表示通 过预编码后基站发送天线上的信号, Z表示用户终端接收到的信号, N表示噪 声向量, 维数为 Kxl, 则有:
Z=HY+N=HV'X+N。
B、 获得的上行信道状态信息不充分的情况:
如果信道状态信息是通过用户终端在上行方向上的一根天线上发送出来 的参考符号或者多根天线上发送出来的彼此相同的参考符号获得的, 则该信道 状态信息不充分。 如基站发送天线数目为 M, 用户终端接收天线数目为 K, 参 :重复发送出来的, 并使用 M根接收天线进行接收, 根据各子载波上的上行参考符号获得的上行 信道冲击响应矩阵 Gj的维数为 Mxl的, 其中 j表示子载波序号, 此时基站获 得的信道状态信息不充分。
在获得的上行信道状态信息不充分的情况下, 首先将一个物理资源块内不 同子载波的上行信道冲击响应矩阵 Gj进行平均, 可以得到上行信道冲击响应 HUL, 那么该物理资源块对应的下行信道冲击响应矩阵 HD =H^ , 然后采用发射 波束赋形的方法获得预编码矩阵。 例如, 当下行发送的数据流数目为 L时, 预 编码矩阵表示为:
V'= [ , v2 · · · vL] 其中, v '表示第 i个数据流对应的预编码列向量, 并且每一个数据流对应 的预编码列向量相同, 即
V = [v V ■■■ v]
其中, V采用传统的波束赋形方法得到或者釆用最大比波束赋形方法, v = UDL H , 也可以采用基于方向的波束赋形方法获得
由于用户终端上行发送方式由基站指定, 当基站接收到用户终端发送的上 行参考符号后, 基站对接收到的上行参考符号的发送方式进行判断, 并确定上 行信道状态信息为充分的或是不充分的, 由此来决定进行预编码矩阵的计算方 法。
在步骤 904中, 基站根据每一个下行物理资源块上的预编码矩阵 V、各个 子载波上的上行信道冲击响应矩阵 Gj ,获得每一个下行物理资源块上的信道质 量指示 CQI方法如下所示:
对于各物理资源块,根据其预编码矩阵 V、 以及各子载波上的上行信道冲 击响应矩阵 Gj , 计算各子载波上的等效的信道矩阵 (GE)j , (GE)j是一个 K x L 的矩阵, L为线性空域预编码前数据流的个数, K是接收端天线的个数, j表 示一个物理资源块中子载波的序号, j=l ...J, 其中 J表示一个物理资源块中子 载波的总数:
Figure imgf000015_0001
对于任何一个物理资源块,使用等效的信道矩阵预测其下行方向上每一个 子载波上接收后的信噪比 。 接收信噪比 γ 表示为等效的信道矩阵 (GE )j与发 送信噪比( SNR, Signal-to-Noise Ratio ) 的函数 fl , 即
γ f'((GE)j,SNR) .=1 τ 函数 fl可以为:
Figure imgf000015_0002
G G
其中 ll E j ll表示矩阵 1 ^的二范数; 发送信噪比 SNR通过一个物理资源 上的发送功率 与该物理资源块上在用户终端接收到的噪声和 /或干扰功率
^的比值来计算, 即 S R=Ps/ 。 当使用 和^ V比值计算 SNR时, 下行发送功率 为已知的基站发射功率, 噪声功率通过基站进行测量获得; 干扰功率通过用户终端测量后反馈给基站, 或者将下行干扰功率近似为上行干扰功率, 通过基站侧测量获得上行干扰功 率, 将上行干扰功率作为计算时使用的干扰功率, 或者将小区间干扰近似为无 干扰, 即干扰功率为零。
SNR也可以通过用户终端上行反馈的下行发送信噪比 SNR'进行预测得 到。 当使用上行反馈干扰功率进行 SNR'预测时, 基站根据发送给用户终端进 行 SNR'测量时的发送功率 , 与基站当前进行发送所使用的发射功率 之间 的比值对 SNR进行预测, 即
SNR = ^rSNR '
Ps 。 根据计算出的接收信噪比 γ ,对各物理资源块,计算其等效的信噪比^ /: 一个物理资源块上等效的信噪比1 ^ #是该物理资源块内所有子载波上的 信噪比 的函数, 即
siReff =/(
其中, 表示该物理资源块内所有子载波上的信噪比 γ;的一个集合。 一种计算等效的信噪比1 的方法是采用 EESM ( OFDM Exponential Effective SIR Mapping ) 方法, 其函数关系如下:
SIReff
Figure imgf000016_0001
其中, J是该物理资源块内子载波的个数, β为与调制编码方式相关的参 数,该参数通过仿真进行确定。釆用图 3所示的时隙结构,时隙长度为 0.675ms, 子载波间隔为 15kHz的 OFDMA系统的 β参数如表 1所示:
Figure imgf000016_0002
表 1
对于每一个物理资源块, 由计算得到的等效信噪比 以及预先确定的判 断门限, 得到该物理资源块对应的 CQI值。
在实际应用过程中, 根据 CQI值对用户终端进行频域调度处理过程如下: 比如, 将一个业务时隙划分为 5个物理资源块, 每一个物理资源块都可以 支持 16种调制与编码等级, 分别与 16个 CQI值对应,一个物理资源块可以传 输的正交幅度调制 (QAM, Quadrature Amplitude Modulation )符号的个数为 编码速率和传输块大小 (TBS, Transmit Block Size )如表 2所示:
Figure imgf000017_0001
表 2 当计算所得等效信噪比1 = 5.4dB, 根据表 2得到该子频带对应的 CQI 数值为 6。 这样, 计算出用户终端在每一个物理资源块上的等效信噪比^^即 可根据表 2找出该用户终端在每一个下行物理资源块上的信道质量指示。
如果计算得到一个用户终端的每一个下行物理资源块上的 CQI值如表 3 所示:
Figure imgf000018_0001
表 3 当该用户终端在下行方向上期望传输的数据量为 llOObits,根据该用户终端 在下行方向上期望传输的数据块大小, 以及计算得到的每一个物理资源块上的 信道质量指示为该用户分配物理资源块 1和 2, 选用下行物理资源块 1和 2所 对应的线性空域预编码矩阵对该用户终端下行发送的数据符号和参考符号进 行线性空域预编码。
采用本实施例用户终端向基站发送未预编码的上行参考符号,根据该参考 符号基站获得信道的冲击响应矩阵并计算出对应于每一个下行物理资源块的 预编码矩阵, 然后根据冲击响应矩阵和预编码矩阵获得下行物理资源块的信道 质量指示进行频域调度, 同时根据计算出的预编码矩阵进行线性空域预编码, 解决了采用信道探测技术时不能使用频域调度技术的问题,避免了同时使用频 域调度和线性空: I或预编码时产生的矛盾。
本发明实施例不仅限于此, 本发明的另一实现方式为基站向用户终端发送 未预编码的下行参考符号, 用户终端根据该参考符号获得信道的冲击响应矩阵 并计算出对应于每一个上行物理资源块的预编码矩阵, 然后根据该预编码矩阵 获得上行物理资源块上的信道质量指示, 并将该信道质量指示反馈给基站, 基 站根据所述信道质量指示进行频域调度。 采用这种方式时, 用户终端侧根据接 收到的未预编码参考符号获得下行信道冲击响应矩阵和预编码矩阵后,对于每 一个上行物理资源块,根据其预编码矩阵和各子载波上的下行信道冲击响应矩 阵获得对应于各子载波上的等效的信道矩阵,根据该等效的信道矩阵和用户终 端侧的发送信噪比预测上行方向上每一个子载波上接收后的信噪比, 然后确定 出等效的信噪比, 并才艮据该等效的信噪比确定对应的信道质量指示。 在用户终 端侧计算出信道质量指示的方法与所举实施例类同, 不再赘述。
釆用本发明实施例的技术方案, 当基站端存在多根天线, 用户终端只存在 一根天线时, 线性空域预编码操作退化为发送波束赋形操作, 此时只能在下行 方向上进行该操作, 当基站端只存在一根天线、 而终端存在多根天线时, 线性 预编码操作退化为发送波束赋形操作, 此时只能在上行方向上进行该操作。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发 明的精神和范围。 这样, 倘若对本发明的这些修改和变型属于本发明权利要求 及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种时分双工复用系统中实现频域调度的方法, 其特征在于, 包括步 骤:
第一设备向第二设备发送未预编码的参考符号;
第二设备根据所述参考符号获得第一设备发送参考符号所用信道的冲击 响应矩阵, 并根据所述沖击响应矩阵获得向第一设备发送数据所使用的候选物 理资源块的线性空域预编码矩阵;
第二设备根据所述冲击响应矩阵和线性空域预编码矩阵获得候选物理资 源块的信道质量指示;
根据所述信道质量指示进行频域调度。
2、 如权利要求 1 所述的方法, 其特征在于, 由第二设备根据所述信道质 量指示进行频域调度。
3、 如权利要求 2所述的方法, 其特征在于, 第二设备进一步根据向第一 设备传输的数据量从候选物理资源块中分配第一设备使用的物理资源块, 并采 用被分配的物理资源块对应的线性空域预编码矩阵进行线性空域预编码。
4、 如权利要求 3所述的方法, 其特征在于, 第二设备根据为第一设备分 配的物理资源块上对应的信道质量指示, 对发送给第一设备的数据比特进行调 制与编码, 形成数据符号, 并采用被分配的物理资源块对应的线性空域预编码 矩阵对所述数据符号和对应的参考符号进行线性空域预编码。
5、 如权利要求 4所述的方法, 其特征在于, 分配给第一设备多个在频域 和 /或时域上连续的物理资源块时,分别采用被分配的各物理资源块对应的线性 空域编码矩阵对本资源块上发送的数据符号和参考符号进行预编码; 或者将所 述被分配的各物理资源块对应的线性空域预编码矩阵进行平均,根据平均后的 预编码矩阵对数据符号和参考符号进行预编码。
6、 如权利要求 1 所述的方法, 其特征在于, 第二设备将所述信道质量指 示发送给第一设备, 由第一设备根据所述信 量指示进行频域调度。
7、 如权利要求 1、 2或 6所述的方法, 其特征在于, 对根据所述参考符号 计算出的对应于一个物理资源块中各个子载波的信道冲击响应矩阵进行平均, 将平均后的信道冲击响应矩阵进行共轭转置作为对应的物理资源块的信道冲 击响应矩阵获得线性空域预编码矩阵。
8、 如权利要求 7所述的方法, 其特征在于, 所述信道的冲击响应矩阵根 据多根天线发送的彼此正交的参考符号获得时,对平均后的信道冲击响应矩阵 进行奇异值分解获得线性空域预编码矩阵。
9、 如权利要求 7所述的方法, 其特征在于, 所述信道冲击响应矩阵根据 一根天线发送的参考符号或多根天线发送的彼此相同的参考符号获得时,采用 波束赋形方法从平均后的信道冲击响应矩阵获得线性空域预编码矩阵。
10、 如权利要求 7所述的方法, 其特征在于, 获得物理资源块的信道质量 指示包括步骤:
根据对应于一个物理资源块中各个子载波的信道沖击响应矩阵和线性空 域预编码矩阵获得各个子载波的等效的信道矩阵;
根据所述等效的信道矩阵确定各个子载波上的接收信噪比; 以及
根据所述各个子载波的接收信噪比获得对应物理资源块上的等效信噪比, 并根据该等效信噪比确定该物理资源块上的信道质量指示。
11、 如权利要求 10所述的方法, 其特征在于, 各个子载波的接收信噪比 为所述等效的信道矩阵的二范数的二次方与发送信噪比的乘积。
12、 如权利要求 11 所述的方法, 其特征在于, 所述发送信噪比为第二设 备侧发射功率与第一设备侧接收到的噪声和 /或干扰功率的比值; 或者,所述发 送信噪比为第二设备两次发射功率比值与该两次发射功率中的第一次发射功 率的发送信噪比的乘积。
13、 如权利要求 7所述的方法, 其特征在于, 所述参考符号与数据符号一 起发送; 或者单独发送所述参考符号。
14、 '如权利要求 13所述的方法, 其特征在于, 所述参考符号在可用频带 上离散分布。
15、 如权利要求 13所述的方法, 其特征在于, 所述参考符号为两组时, 两组参考符号覆盖不同的频带范围。
16、 一种通信系统, 其特征在于, 包括:
第一设备, 用于发送未预编码的参考符号;
第二设备, 用于根据所述参考符号获得第一设备发送参考符号所用信道的 冲击响应矩阵, 并根据所述冲击响应矩阵获得向第一设备发送数据所使用的候 选物理资源块的线性空域预编码矩阵, 以及根据所述冲击响应矩阵和线性空域 预编码矩阵获得对应的物理资源块的信道质量指示, 并^^据所述信道质量指示 进行频域调度。
17、 如权利要求 16所述的系统, 其特征在于, 所述第二设备包括: 用于根据未预编码的参考符号获得信道沖击响应矩阵的单元;
用于根据信道冲击响应矩阵获得对应物理资源块上的预编码矩阵的单元; 用于根据预编码矩阵和信道沖击响应矩阵, 获得对应的物理资源块上的信 道质量指示的单元;
用于根据向第一设备传输的数据块的大小, 以及所述信道质量指示, 从候 选的物理资源块中分配给第一设备物理资源块的单元。
18、 如权利要求 17所述的系统, 其特征在于, 所述第二设备还包括: 用于根据分配给第一设备的物理资源块上对应的信道质量指示对传输给 第一设备的数据比特进行调制与编码, 形成数据符号的单元;
用于根据分配给第一设备的物理资源块对应的线性空域预编码矩阵对数 据符号和对应的参考符号进行线性空域预编码的单元。
19、 一种通信系统, 其特征在于, 包括:
第一设备, 用于发送未预编码的参考符号和根据第二设备反馈的信道质量 指示进行频域调度; 第二设备, 用于根据所述参考符号获得第一设备发送该参考符号所用信道 的冲击响应矩阵, 并根据所述冲击响应矩阵获得向第一设备发送数据所使用的 候选物理资源块的线性空域预编码矩阵, 以及根据所述冲击响应矩阵和线性空 域预编码矩阵获得对应的物理资源块的信道质量指示, 并将所述信道质量指示 发送给第一设备。
PCT/CN2007/002452 2006-08-14 2007-08-14 Procédé pour effectuer une planification de domaine fréquentiel dans un système duplex à répartition dans le temps, et système correspondant WO2008019600A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/281,574 US7733765B2 (en) 2006-08-14 2007-08-14 Method for realizing frequency domain scheduling in the time division duplex system and the system thereof
EP07785348.9A EP2053770B1 (en) 2006-08-14 2007-08-14 A method for realizing frequency domain scheduling in the time division duplex system and the system thereof
JP2008540440A JP4809899B2 (ja) 2006-08-14 2007-08-14 時分割複信システムにおける周波数領域のスケジューリングを行う方法および関連システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610089269.7 2006-08-14
CN2006100892697A CN101127747B (zh) 2006-08-14 2006-08-14 一种时分双工复用系统中实现频域调度的方法及系统

Publications (1)

Publication Number Publication Date
WO2008019600A1 true WO2008019600A1 (fr) 2008-02-21

Family

ID=39081943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/002452 WO2008019600A1 (fr) 2006-08-14 2007-08-14 Procédé pour effectuer une planification de domaine fréquentiel dans un système duplex à répartition dans le temps, et système correspondant

Country Status (6)

Country Link
US (1) US7733765B2 (zh)
EP (1) EP2053770B1 (zh)
JP (1) JP4809899B2 (zh)
KR (1) KR100945341B1 (zh)
CN (1) CN101127747B (zh)
WO (1) WO2008019600A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013451A1 (ja) * 2008-07-29 2010-02-04 パナソニック株式会社 Mimo送信装置及びmimo送信方法
JP2013513977A (ja) * 2009-12-10 2013-04-22 ゼットティーイー コーポレーション 周波数選択スケジューリング方法及び装置

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594704B2 (en) * 2004-12-16 2013-11-26 Atc Technologies, Llc Location-based broadcast messaging for radioterminal users
KR100853699B1 (ko) * 2006-12-01 2008-08-25 한국전자통신연구원 이동통신 시스템의 호 설정 제어 방법
US8503375B2 (en) 2007-08-13 2013-08-06 Qualcomm Incorporated Coding and multiplexing of control information in a wireless communication system
MX2010006989A (es) * 2007-12-20 2010-08-12 Research In Motion Ltd Equipos y metodos para sincronizacion cronometrada de enlace ascendente.
CN101515906B (zh) * 2008-02-22 2011-10-26 中兴通讯股份有限公司 一种用于数据流与波束之间映射的预编码方法
JP5233331B2 (ja) * 2008-03-12 2013-07-10 富士通株式会社 無線基地局、無線端末及び無線通信方法
CN101534265B (zh) * 2008-03-15 2013-05-01 中兴通讯股份有限公司 下行专用导频和物理资源块的映射方法
ATE548811T1 (de) * 2008-06-30 2012-03-15 Alcatel Lucent Verfahren zur zuweisung von vorkodierungsvektoren in einem mobilen zellularen netzwerk
CN101621320A (zh) * 2008-06-30 2010-01-06 上海华为技术有限公司 数据传输方法以及系统和终端
CN101626264B (zh) * 2008-07-09 2013-03-20 中兴通讯股份有限公司 一种无线通信系统中实现开环预编码的方法
CN101635595B (zh) * 2008-07-24 2013-12-04 中兴通讯股份有限公司 无线资源的子信道化和资源映射方法
US8848606B2 (en) 2008-08-06 2014-09-30 Sharp Kabushiki Kaisha Communication system, mobile station device, and communication method
CN101854186B (zh) * 2009-03-30 2015-04-01 三星电子株式会社 用于数据传输的预编/解码方法和系统
CN101877684B (zh) * 2009-04-28 2012-11-14 电信科学技术研究院 一种预编码矩阵的确定方法及装置
JP5278178B2 (ja) * 2009-06-08 2013-09-04 富士通モバイルコミュニケーションズ株式会社 無線通信装置および無線通信方法
KR20110019284A (ko) * 2009-08-19 2011-02-25 주식회사 팬택 무선통신시스템에서 상향링크 광대역 측정 신호 전송방법 및 장치, 그를 이용한 하향링크 채널 추정방법
KR101704812B1 (ko) * 2010-01-26 2017-02-10 삼성전자주식회사 통신 시스템에서 잡음 및 간섭 전력 추정 장치 및 방법
CN102263600B (zh) * 2010-05-28 2013-08-14 电信科学技术研究院 确定终端移动速度的方法和设备
US9172513B2 (en) 2010-10-11 2015-10-27 Qualcomm Incorporated Resource assignments for uplink control channel
CN102468947A (zh) * 2010-11-05 2012-05-23 大唐移动通信设备有限公司 信道质量信息的反馈方法和设备
JP5314712B2 (ja) * 2011-02-14 2013-10-16 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及びユーザ装置
JP5642884B2 (ja) * 2011-02-28 2014-12-17 エヌイーシー(チャイナ)カンパニー, リミテッドNEC(China)Co.,Ltd. チャネル品質指標修正方法および装置
US8837525B2 (en) * 2011-03-21 2014-09-16 Xiao-an Wang Carrier-phase difference detection and tracking in multipoint broadcast channels
CN102149130B (zh) * 2011-04-22 2014-01-01 电信科学技术研究院 一种信道质量指示的上报方法、装置及系统
JP5620888B2 (ja) * 2011-07-26 2014-11-05 京セラ株式会社 無線基地局及び通信制御方法
US9219533B2 (en) 2011-10-25 2015-12-22 Transpacific Ip Management Group Ltd. Systems and methods for downlink scheduling in multiple input multiple output wireless communications systems
JP5923786B2 (ja) * 2012-03-16 2016-05-25 シャープ株式会社 基地局装置及び通信方法
US9374184B2 (en) * 2012-03-23 2016-06-21 Nokia Solutions And Networks Oy Controlling of code block to physical layer mapping
CN103684668B (zh) 2012-09-19 2017-04-26 中兴通讯股份有限公司 确定信道质量指示值的方法、装置及lte终端
WO2014180794A1 (en) * 2013-05-05 2014-11-13 Lantiq Deutschland Gmbh Low power modes for data transmission from a distribution point
WO2014194474A1 (zh) * 2013-06-04 2014-12-11 华为技术有限公司 数据传输方法、装置和用户设备
US9673957B2 (en) * 2013-09-19 2017-06-06 Telefonaktiebolaget Lm Ericsson (Publ) System and method for providing interference characteristics for interference mitigation
EP3099128B1 (en) * 2014-01-24 2023-08-16 Huawei Technologies Co., Ltd. Pilot signal transmission method and device
CN107005291B (zh) * 2014-09-27 2020-07-17 梁平 使用迫零波束成形矩阵的近似的多用户mimo无线通信的方法
JP6594443B2 (ja) * 2015-04-08 2019-10-23 株式会社Nttドコモ 基地局及びプリコーディングマトリックス決定方法
CN106230545B (zh) * 2015-07-31 2020-08-11 北京智谷睿拓技术服务有限公司 确定信道质量的方法及其装置
CN107078839B (zh) * 2015-09-25 2019-12-17 华为技术有限公司 一种数据传输的方法及装置
CN112165439A (zh) * 2018-01-25 2021-01-01 华为技术有限公司 一种信道估计方法和装置
CN110474665B (zh) 2018-05-11 2021-02-12 华为技术有限公司 信道估计方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1703863A (zh) * 2001-05-25 2005-11-30 明尼苏达大学董事会 无线通信网中的空时编码传输
WO2006019260A2 (en) * 2004-08-17 2006-02-23 Lg Electronics Inc. Data communication in a wireless communication system using space-time coding

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009385A2 (en) * 1996-08-29 1998-03-05 Cisco Technology, Inc. Spatio-temporal processing for communication
US7099413B2 (en) * 2000-02-07 2006-08-29 At&T Corp. Method for near optimal joint channel estimation and data detection for COFDM systems
US6940827B2 (en) * 2001-03-09 2005-09-06 Adaptix, Inc. Communication system using OFDM for one direction and DSSS for another direction
US7027523B2 (en) * 2001-06-22 2006-04-11 Qualcomm Incorporated Method and apparatus for transmitting data in a time division duplexed (TDD) communication system
US6760388B2 (en) * 2001-12-07 2004-07-06 Qualcomm Incorporated Time-domain transmit and receive processing with channel eigen-mode decomposition for MIMO systems
US7020110B2 (en) * 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
US8208364B2 (en) * 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US20040192218A1 (en) * 2003-03-31 2004-09-30 Oprea Alexandru M. System and method for channel data transmission in wireless communication systems
KR20050000709A (ko) * 2003-06-24 2005-01-06 삼성전자주식회사 다중 접속 방식을 사용하는 통신 시스템의 데이터 송수신장치 및 방법
FI20031079A0 (fi) * 2003-07-16 2003-07-16 Nokia Corp Menetelmä tiedonsiirtoresurssien kontrolloimiseksi, sekä kontrolleri
KR101225172B1 (ko) * 2003-08-20 2013-01-22 파나소닉 주식회사 무선 통신 장치 및 서브 캐리어의 할당 방법
US7298805B2 (en) * 2003-11-21 2007-11-20 Qualcomm Incorporated Multi-antenna transmission for spatial division multiple access
US20050249127A1 (en) * 2004-05-10 2005-11-10 Lucent Technologies, Inc. Method for subcarrier allocation
JP2006115386A (ja) * 2004-10-18 2006-04-27 Matsushita Electric Ind Co Ltd マルチキャリア送信装置およびマルチキャリア送信方法
KR100909539B1 (ko) * 2004-11-09 2009-07-27 삼성전자주식회사 다중 안테나를 사용하는 광대역 무선 접속 시스템에서 다양한 다중안테나 기술을 지원하기 위한 장치 및 방법
JP4727678B2 (ja) * 2006-02-08 2011-07-20 富士通株式会社 マルチアンテナ送信技術を用いた無線通信システム及び,これに適用するマルチユーザスケジューラ
JP4836186B2 (ja) * 2006-05-31 2011-12-14 三洋電機株式会社 送信装置
FI20075083A0 (fi) * 2007-02-06 2007-02-06 Nokia Corp Ilmaisumenetelmä ja -laite monivuo-MIMOa varten
US20080304558A1 (en) * 2007-06-06 2008-12-11 Hong Kong University Of Science And Technology Hybrid time-frequency domain equalization over broadband multi-input multi-output channels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1703863A (zh) * 2001-05-25 2005-11-30 明尼苏达大学董事会 无线通信网中的空时编码传输
WO2006019260A2 (en) * 2004-08-17 2006-02-23 Lg Electronics Inc. Data communication in a wireless communication system using space-time coding

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3GPP DRAFT; RI-051407, 3RD GENERATION PARTNERSHIP PROJECT (3GPP", vol. RAN WG1, 31 October 2005, MOBILE COMPETENCE CENTRE, article "Downlink MIMO for E-UTRA"
"Channel Sounding Overhead Analysis", 3GPP DRAFT, 9 February 2006 (2006-02-09)
See also references of EP2053770A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013451A1 (ja) * 2008-07-29 2010-02-04 パナソニック株式会社 Mimo送信装置及びmimo送信方法
US8493916B2 (en) 2008-07-29 2013-07-23 Panasonic Corporation MIMO transmission device and MIMO transmission method
US8730876B2 (en) 2008-07-29 2014-05-20 Panasonic Corporation MIMO reception device and MIMO reception method
US8917672B2 (en) 2008-07-29 2014-12-23 Panasonic Intellectual Property Corporation Of America MIMO reception device and MIMO reception method
JP2013513977A (ja) * 2009-12-10 2013-04-22 ゼットティーイー コーポレーション 周波数選択スケジューリング方法及び装置

Also Published As

Publication number Publication date
KR20080090392A (ko) 2008-10-08
EP2053770A1 (en) 2009-04-29
JP2009516438A (ja) 2009-04-16
CN101127747B (zh) 2010-09-08
KR100945341B1 (ko) 2010-03-08
JP4809899B2 (ja) 2011-11-09
US20090052357A1 (en) 2009-02-26
US7733765B2 (en) 2010-06-08
CN101127747A (zh) 2008-02-20
EP2053770A4 (en) 2011-09-28
EP2053770B1 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2008019600A1 (fr) Procédé pour effectuer une planification de domaine fréquentiel dans un système duplex à répartition dans le temps, et système correspondant
KR101215297B1 (ko) 멀티캐리어 무선 네트워크에서 적응적 채널 품질 정보를송수신하기 위한 장치 및 방법
US7729432B2 (en) System and method for enhancing the performance of wireless communication systems
KR101079102B1 (ko) Ofdm/ofdma 무선 통신 시스템에서의 데이터 전송 및 채널정보 추정 방법
US7764931B2 (en) Method and apparatus for transmitting/receiving feedback information representing channel quality in a MIMO-OFDM system
US8130847B2 (en) Closed-loop transmission feedback in wireless communication systems
TWI309514B (en) Method and apparatus for subcarrier and antenna selection in mimo-ofdm system
US10348529B2 (en) Method and apparatus for signal detection in a wireless communication system
TWI311010B (en) Systems and methods for adaptive bit loading in a multiple antenna orthogonal frequency division multiplexed communication system
US8634432B2 (en) System and method for subcarrier allocation in a multicarrier wireless network
TWI326165B (en) Systems and methods for beamforming feedback in multi antenna communication systems
CN107733496A (zh) 数据发送方法、信令发送方法、装置及系统
US20060025079A1 (en) Channel estimation for a wireless communication system
US20090252250A1 (en) Apparatus and method for beamforming based on generalized eigen-analysis in multiple input multiple output wireless communication system
KR20160031443A (ko) 무선 통신시스템의 채널 정보 피드백을 위한 장치 및 방법
KR20040094487A (ko) 다중 안테나를 사용하는 직교주파수분할다중 시스템에서채널 추정 장치 및 방법
US20120002599A1 (en) Implicit Channel Sounding for Closed-Loop Transmission in MIMO-OFDM Wireless Networks
CN101754347B (zh) 多流波束赋形传输时cqi估计方法、系统及设备
CN101540746B (zh) 时频信道量化方法和装置及对应的移动通信终端和系统
US20070237069A1 (en) Multi-Step Channel Prediction Apparatus and Method for Adaptive Transmission in OFDM/FDD System
JP2009147897A (ja) チャネル情報測定装置と方法
KR20090064783A (ko) 순환 지연을 이용하여 협력 다이버시티를 수행하는 무선통신 시스템 및 방법
KR102484330B1 (ko) 무선 통신 시스템에서 서비스들 간 간섭을 제어하기 위한 장치 및 방법
Du et al. SAMU: design and implementation of frequency selectivity-aware multi-user MIMO for WLANs
CN112913180A (zh) 由设备实现的发送参考信号的方法、计算机程序产品和设备

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2007785348

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007785348

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008540440

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087013818

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1853/MUMNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12281574

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU