WO2008019863A1 - Hydraulic valve and hydraulic circuit having a hydraulic valve of said type - Google Patents

Hydraulic valve and hydraulic circuit having a hydraulic valve of said type Download PDF

Info

Publication number
WO2008019863A1
WO2008019863A1 PCT/EP2007/007259 EP2007007259W WO2008019863A1 WO 2008019863 A1 WO2008019863 A1 WO 2008019863A1 EP 2007007259 W EP2007007259 W EP 2007007259W WO 2008019863 A1 WO2008019863 A1 WO 2008019863A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
hydraulic
spring
pressure
channel
Prior art date
Application number
PCT/EP2007/007259
Other languages
German (de)
French (fr)
Inventor
Dirk Nissing
Stephan Walentowski
Original Assignee
Trw Automative Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trw Automative Gmbh filed Critical Trw Automative Gmbh
Publication of WO2008019863A1 publication Critical patent/WO2008019863A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • F15B11/0423Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in" by controlling pump output or bypass, other than to maintain constant speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/0408Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics details, e.g. antifreeze for suspension fluid, pumps, retarding means per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/056Regulating distributors or valves for hydropneumatic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/20Excess-flow valves
    • F16K17/22Excess-flow valves actuated by the difference of pressure between two places in the flow line
    • F16K17/24Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member
    • F16K17/28Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member operating in one direction only
    • F16K17/30Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member operating in one direction only spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/41Flow control characterised by the positions of the valve element
    • F15B2211/411Flow control characterised by the positions of the valve element the positions being discrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/421Flow control characterised by the type of actuation mechanically
    • F15B2211/422Flow control characterised by the type of actuation mechanically actuated by biasing means, e.g. spring-actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/428Flow control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/45Control of bleed-off flow, e.g. control of bypass flow to the return line

Definitions

  • the invention relates to a hydraulic valve and a hydraulic circuit for an active chassis stabilization system with such a hydraulic valve.
  • Active chassis stabilization systems generally have a hydraulic circuit with a hydraulic control unit, wherein the hydraulic circuit is supplied by a pump with hydraulic fluid, which in turn can be delivered to a reservoir.
  • the hydraulic control unit and the pump used are coordinated so that, with active stabilization of the chassis, ie at a working pressure of about 100 to 200 bar fluid flow adjusts the connected cylinder-piston units moves at a required speed.
  • this flow supplies the chassis stabilization system with a minimum back pressure, which is usually in a range below 10 bar.
  • this minimum back pressure should be as low as possible in order to prevent unsteady vehicle behavior during roll stabilization, ie when compensating movements of the vehicle about its longitudinal axis.
  • the minimum back pressure must be large enough to switch pressure-controlled, passive valves in the hydraulic control unit.
  • the hydraulic control unit is currently designed for a specific pump or an associated pump capacity.
  • the hydraulic circuit of the active chassis stabilization system is characterized very inflexible and must be adapted to changed conditions with great effort. For example, when using larger cylinder-piston units, a larger, higher-capacity pump is required to continue to move the larger cylinder-piston units at the required speed. With otherwise unchanged chassis stabilization system, however, this would also result in an undesirable increase in the minimum back pressure. To avoid this, were So far adjustments to the complex hydraulic control unit necessary, which represents a considerable effort.
  • the object of the invention is to keep the minimum back pressure of a hydraulic circuit at variable flow with little effort to a desired, predetermined value.
  • the invention provides a hydraulic valve with a valve housing, a valve seat and a valve housing movable valve element, in which a channel is formed from a first end side of the valve element to an opposite second end side of the valve element, wherein the first end face with a system pressure in Direction to the valve seat and the second end face is acted upon by a spring in the opposite direction, away from the valve seat.
  • the hydraulic valve is thus acted upon by the spring in an open valve position, in which the hydraulic valve establishes a flow connection between a pressure line and a reservoir of a hydraulic circuit. Consequently, the spring ensures a pressure relief in the hydraulic circuit at low system pressure.
  • the system pressure falls, for example, from an existing minimum back pressure (which depends on the pump used in each case) to the predetermined, desired minimum back pressure.
  • the valve is closed by the valve element moves against the spring force in the direction of the valve seat.
  • a pressure relief of the hydraulic circuit is prevented under working pressure, since there is no flow connection to the reservoir via the hydraulic valve.
  • the entire capacity of the pump is available for the movement of the connected cylinder-piston unit (s). Overall, can be reduced by the hydraulic valve according to the invention at low system pressure, a flow and prevent high system pressure fürflußverring réelle.
  • the valve element in the valve housing defines a valve chamber into which hydraulic fluid can flow via the channel and from which hydraulic fluid can flow out via a valve housing opening.
  • a pressure relief flow Through the channel cross section and the cross section of the valve housing opening can be easily adjusted in this embodiment, a pressure relief flow.
  • a pressure relief flow can be through the Ratio of the channel and the valve housing opening produce a hydraulic valve chamber pressure that supports the spring.
  • valve seat is formed in the valve chamber.
  • the valve seat thus adjoins the first end face of the valve element and thus can close the channel well.
  • the valve seat is integrally formed on the valve housing.
  • the spring may also be arranged in the valve chamber. Thus, the spring is protected against external influences and damage inside the valve housing.
  • the spring is a helical spring, which is supported with a first spring end at a bottom of the valve housing and with a second spring end on the valve element.
  • Coil springs are simple and inexpensive springs whose spring force can be adjusted precisely. In addition, can be realized by the use of the coil spring a very simple and reliable valve design.
  • the valve seat is formed as a projection on the bottom of the valve housing and extends into the interior of the coil spring.
  • the valve seat thus fixes the helical spring in the region of its first spring end transversely to the helical spring longitudinal axis; on the other hand, the valve seat forms a guide in the direction of the helical spring longitudinal axis in the region of the first spring end.
  • valve element in a closed valve position on the valve seat tightly rests, so that the channel is closed, and in an open valve position - A -
  • valve seat is spaced from the valve seat, so that hydraulic fluid can flow through the channel in the direction from the first end side to the second end face.
  • the invention relates to a hydraulic circuit for an active chassis stabilization system with a hydraulic valve described above and a hydraulic control unit, wherein the hydraulic valve is connected in parallel to the hydraulic control unit between a pump and a non-pressurized reservoir.
  • the hydraulic valve adapted to the delivery rate of the pump ensures a desired minimum dynamic pressure with an identical hydraulic control unit.
  • a valve chamber of the hydraulic valve via a
  • FIG. 1 is a diagram of a hydraulic circuit according to the invention with a hydraulic valve according to the invention
  • FIG. 2 shows a section through the hydraulic valve according to the invention
  • FIG. 3 shows a section through the hydraulic valve according to the invention according to Figure 1 in a blocking position of the valve.
  • FIG. 1 The circuit diagram of a hydraulic circuit for an active chassis stabilization system illustrated in FIG. 1 shows a pump 8 which supplies via a supply line 10 a hydraulic control unit 12 with hydraulic fluid which is under system pressure.
  • the hydraulic control unit 12 is connected via a return line 14 with a non-pressurized reservoir 16.
  • the hydraulic circuit further comprises a hydraulic valve 18 which is connected in parallel to the hydraulic control unit 12 between the pump 8 and the non-pressurized reservoir 16.
  • Hydraulic valve 18 in this case has a pressure connection 20 ( Figures 2 and 3), the is coupled to the supply line 10, and a terminal 22 ( Figures 2 and 3) which is coupled to the return line 14.
  • FIG. 2 shows a section through the hydraulic valve 18, which is a
  • Valve housing 24, a valve seat 26 and a valve housing 24 movable in the valve element 28 has.
  • End face 34 of the valve element 28 is formed. Furthermore, the first end face 32 faces the pressure port 20 and is subjected to a system pressure in the direction of the valve seat 26. The second end face 34 is acted upon by a spring 36 in the opposite direction, away from the valve seat 26.
  • the valve element 28 defines in the valve housing 24 a valve chamber 38 into which hydraulic fluid can flow via the channel 30 and from which hydraulic fluid can flow out via the port 22 designed as a valve housing opening 40.
  • the valve seat 26 is integrally formed in the valve chamber 38 as a projection on a bottom 42 of the valve housing 24.
  • the spring 36 is a helical spring and is also located in the valve chamber 38. It is supported by a first spring end 44 on the bottom 42 of the valve housing 24 and with a second spring end 46 on the valve element 28.
  • the valve seat 26 extends into the interior of the coil spring and forms a guide in the longitudinal direction of the coil spring in the region of the first spring end 44.
  • the hydraulic valve 18 is analogous to Figure 1 in an open valve position to see.
  • the system pressure is too low to move the valve element 28 against the spring force in the direction of the valve seat 26.
  • the counteracting forces are shown in FIG. 2 as arrows, wherein F c symbolizes the spring force and F P a force resulting from the system pressure on the first end face 32 of the valve element 28.
  • F c symbolizes the spring force
  • F P a force resulting from the system pressure on the first end face 32 of the valve element 28.
  • the cross section of the channel 30 is preferably smaller than the cross section of the valve housing opening 40.
  • the pressure drop in the supply line 10 and the flow branched off from the supply line 10 solely determined by the cross section of the channel 30.
  • the switching of the hydraulic valve would be correspondingly more complicated and inaccurate.
  • embodiments of the hydraulic valve 18 are conceivable in which the cross section of the channel 30 is greater than the cross section of the valve housing opening 40 and the resulting valve chamber pressure affects the valve position of the hydraulic valve 18.
  • the system pressure applied to the pressure connection 20 is low, but is above the desired minimum back pressure. Due to the low pressure, the resultant force F P on the valve element is less than the oppositely acting spring force F c ( Figure 2). Accordingly, the hydraulic valve 18 branches off via the channel 30 hydraulic fluid from the supply line 10 into the reservoir 16, so that the fluid flow in the supply line 10 is reduced. Due to this reduced flow in the supply line 10, the pressure in the hydraulic control unit 12 is also reduced.
  • the cross section of the duct 30 is chosen exactly so that the reduced pressure in the supply line 10 corresponds to the desired minimum back pressure.
  • the pressure in the supply line and thus also the force F P drop to a value F P '.
  • the spring force F c is set via a spring stiffness so that it is greater than the pressure force F P ', so that the valve element 28 is removed again from the valve seat 26 after deactivation of the chassis stabilization system and the hydraulic valve 18 assumes its open valve position according to FIG , The pending in the supply line 10 pressure, or the resulting pressure force F P 'continues to decrease after release of the channel 30 until the desired minimum back pressure is reached.
  • the advantage of this invention is that the desired minimum back pressure of a given hydraulic control unit 12 is kept constant for different pumps 8 without having to make structural changes to the hydraulic control unit 12.
  • the hydraulic control unit 12 is preferably set to the pump with the lowest flow rate so that the desired minimum back pressure is achieved without the hydraulic valve 18.
  • the hydraulic valve 18 is to be connected in parallel to the hydraulic control unit 12 between the pump 8 and the non-pressurized reservoir 16 ( Figure 1). In this case, different hydraulic valves 18 are to be used for different delivery rates of the pumps 8.
  • the respective hydraulic valves 18 differ in the rule, however, only by the cross section of the channel 30, which is to be selected depending on the capacity of the pump 8 so that in the open valve position of the hydraulic valve 18, the desired flow or the desired minimum Dynamic pressure in the supply line 10 of the hydraulic control unit 12 sets.

Abstract

The invention relates to a hydraulic valve (18) having a valve housing, having a valve seat and having a valve element which is movable in the valve housing and in which a duct (30) is formed from a first end side of the valve element to an opposite, second end side of the valve element, wherein the first end side is acted on with a system pressure in the direction of the valve seat and the second end side is acted on by a spring (36) in the opposite direction, away from the valve seat. The invention also relates to a hydraulic circuit for an active chassis stabilization system, having a hydraulic valve (18) of said type and having a hydraulic control unit (12), wherein the hydraulic valve (18) is connected parallel to the hydraulic control unit (12) between a pump (8) and an unpressurized reservoir (16).

Description

Hydraulikventil sowie Hvdraulikkreislauf mit einem solchen Hvdraulikventil Hydraulic valve and Hvdraulikkreislauf with such Hvdraulikventil
Die Erfindung betrifft ein Hydraulikventil sowie einen Hydraulikkreislauf für ein aktives Fahrwerkstabilisierungssystems mit einem solchen Hydraulikventil.The invention relates to a hydraulic valve and a hydraulic circuit for an active chassis stabilization system with such a hydraulic valve.
Aktive Fahrwerkstabilisierungssysteme weisen in der Regel einen Hydraulikkreislauf mit einer hydraulischen Steuereinheit auf, wobei der Hydraulikkreislauf von einer Pumpe mit Hydraulikfluid versorgt wird, welches wiederum an ein Reservoir abgegeben werden kann.Active chassis stabilization systems generally have a hydraulic circuit with a hydraulic control unit, wherein the hydraulic circuit is supplied by a pump with hydraulic fluid, which in turn can be delivered to a reservoir.
Derzeit sind die hydraulische Steuereinheit und die eingesetzte Pumpe so aufeinander abgestimmt, daß sich bei aktiver Stabilisierung des Fahrwerks, d.h. bei einem Arbeitsdruck von etwa 100 bis 200 bar ein Fluiddurchfluß einstellt, der angeschlossene Zylinder-Kolben-Einheiten mit einer erforderlichen Geschwindigkeit bewegt. Bei inaktiver Fahrwerkstabilisierung beaufschlagt dieser Durchfluß das Fahrwerkstabilisierungssystem mit einem minimalen Staudruck, der gewöhnlich in einem Bereich unterhalb von 10 bar liegt. Einerseits sollte dieser minimale Staudruck möglichst gering sein, um bei der Wankstabilisierung, d.h. beim Ausgleich von Bewegungen des Fahrzeugs um seine Längsachse, ein unstetiges Fahrzeugverhalten zu verhindern. Andererseits muß der minimale Staudruck groß genug sein, um druckgesteuerte, passive Ventile in der hydraulischen Steuereinheit zu schalten. Um die genannten Randbedingungen zu erfüllen, ist die hydraulische Steuereinheit derzeit genau auf eine bestimmte Pumpe bzw. eine zugeordnete Förderleistung der Pumpe ausgelegt. Die hydraulische Schaltung des aktiven Fahrwerkstabilisierungssystems ist dadurch sehr unflexibel und muß bei geänderten Rahmenbedingungen mit hohem Aufwand angepaßt werden. Beispielsweise ist beim Einsatz größerer Zylinder- Kolben-Einheiten eine stärkere Pumpe mit höherer Förderleistung notwendig, um die größeren Zylinder-Kolben-Einheiten weiterhin mit der erforderlichen Geschwindigkeit zu bewegen. Bei sonst unverändertem Fahrwerkstabilisierungssystem hätte dies jedoch auch einen unerwünschten Anstieg des minimalen Staudrucks zur Folge. Um dies zu vermeiden, waren bisher Anpassungen an der komplexen hydraulischen Steuereinheit notwendig, was einen erheblichen Aufwand darstellt.Currently, the hydraulic control unit and the pump used are coordinated so that, with active stabilization of the chassis, ie at a working pressure of about 100 to 200 bar fluid flow adjusts the connected cylinder-piston units moves at a required speed. With inactive suspension stabilization, this flow supplies the chassis stabilization system with a minimum back pressure, which is usually in a range below 10 bar. On the one hand, this minimum back pressure should be as low as possible in order to prevent unsteady vehicle behavior during roll stabilization, ie when compensating movements of the vehicle about its longitudinal axis. On the other hand, the minimum back pressure must be large enough to switch pressure-controlled, passive valves in the hydraulic control unit. To meet the above conditions, the hydraulic control unit is currently designed for a specific pump or an associated pump capacity. The hydraulic circuit of the active chassis stabilization system is characterized very inflexible and must be adapted to changed conditions with great effort. For example, when using larger cylinder-piston units, a larger, higher-capacity pump is required to continue to move the larger cylinder-piston units at the required speed. With otherwise unchanged chassis stabilization system, however, this would also result in an undesirable increase in the minimum back pressure. To avoid this, were So far adjustments to the complex hydraulic control unit necessary, which represents a considerable effort.
Aufgabe der Erfindung ist es, den minimalen Staudruck eines Hydraulikkreislaufs bei variablem Durchfluß mit geringem Aufwand auf einem gewünschten, vorbestimmten Wert zu halten.The object of the invention is to keep the minimum back pressure of a hydraulic circuit at variable flow with little effort to a desired, predetermined value.
Zur Lösung dieser Aufgabe schafft die Erfindung ein Hydraulikventil mit einem Ventilgehäuse, einem Ventilsitz und einem im Ventilgehäuse beweglichen Ventilelement, in dem ein Kanal von einer ersten Stirnseite des Ventilelements zu einer entgegengesetzten zweiten Stirnseite des Ventilelements ausgebildet ist, wobei die erste Stirnseite mit einem Systemdruck in Richtung zum Ventilsitz und die zweite Stirnseite durch eine Feder in entgegengesetzter Richtung, vom Ventilsitz weg beaufschlagt ist. Das Hydraulikventil wird also von der Feder in eine offene Ventilstellung beaufschlagt, in der das Hydraulikventil eine Strömungsverbindung zwischen einer Druckleitung und einem Reservoir eines Hydraulikkreislaufs herstellt. Folglich sorgt die Feder bei geringem Systemdruck für eine Druckentlastung im Hydraulikkreislauf. Der Systemdruck fällt dadurch beispielsweise von einem vorhandenen minimalen Staudruck (der von der jeweils eingesetzten Pumpe abhängt) auf den vorgegebenen, gewünschten minimalen Staudruck ab. Bei höherem Systemdruck im Bereich des Arbeitsdrucks wird das Ventil geschlossen, indem sich das Ventilelement entgegen der Federkraft in Richtung zum Ventilsitz bewegt. Somit ist unter Arbeitsdruck eine Druckentlastung des Hydraulikkreislaufs verhindert, da über das Hydraulikventil keine Strömungsverbindung mehr zum Reservoir besteht. Die gesamte Förderleistung der Pumpe steht für die Bewegung der angeschlossenen Zylinder-Kolben- Einheit(en) zur Verfügung. Insgesamt läßt sich durch das erfindungsgemäße Hydraulikventil bei geringem Systemdruck ein Durchfluß verringern und bei hohem Systemdruck eine Durchflußverringerung verhindern.To achieve this object, the invention provides a hydraulic valve with a valve housing, a valve seat and a valve housing movable valve element, in which a channel is formed from a first end side of the valve element to an opposite second end side of the valve element, wherein the first end face with a system pressure in Direction to the valve seat and the second end face is acted upon by a spring in the opposite direction, away from the valve seat. The hydraulic valve is thus acted upon by the spring in an open valve position, in which the hydraulic valve establishes a flow connection between a pressure line and a reservoir of a hydraulic circuit. Consequently, the spring ensures a pressure relief in the hydraulic circuit at low system pressure. As a result, the system pressure falls, for example, from an existing minimum back pressure (which depends on the pump used in each case) to the predetermined, desired minimum back pressure. At higher system pressure in the range of the working pressure, the valve is closed by the valve element moves against the spring force in the direction of the valve seat. Thus, a pressure relief of the hydraulic circuit is prevented under working pressure, since there is no flow connection to the reservoir via the hydraulic valve. The entire capacity of the pump is available for the movement of the connected cylinder-piston unit (s). Overall, can be reduced by the hydraulic valve according to the invention at low system pressure, a flow and prevent high system pressure Durchflußverringerung.
In einer Ausführungsform des Hydraulikventils definiert das Ventilelement im Ventilgehäuse eine Ventilkammer, in die über den Kanal Hydraulikfluid einströmen und aus der über eine Ventilgehäuseöffnung Hydraulikfluid abströmen kann. Über den Kanalquerschnitt und den Querschnitt der Ventilgehäuseöffnung läßt sich in dieser Ausführungsform ein Druckentlastungsdurchfluß leicht einstellen. Außerdem läßt sich durch das Querschnittsverhältnis des Kanals und der Ventilgehäuseöffnung ein hydraulischer Ventilkammerdruck erzeugen, der die Feder unterstützt.In one embodiment of the hydraulic valve, the valve element in the valve housing defines a valve chamber into which hydraulic fluid can flow via the channel and from which hydraulic fluid can flow out via a valve housing opening. Through the channel cross section and the cross section of the valve housing opening can be easily adjusted in this embodiment, a pressure relief flow. In addition, can be through the Ratio of the channel and the valve housing opening produce a hydraulic valve chamber pressure that supports the spring.
Vorzugsweise ist der Ventilsitz in der Ventilkammer ausgebildet. Der Ventilsitz grenzt folglich an die erste Stirnseite des Ventilelements an und kann somit den Kanal gut verschließen. In einer besonders kostengünstigen Variante ist dabei der Ventilsitz einstückig am Ventilgehäuse angeformt.Preferably, the valve seat is formed in the valve chamber. The valve seat thus adjoins the first end face of the valve element and thus can close the channel well. In a particularly cost-effective variant, the valve seat is integrally formed on the valve housing.
Auch die Feder kann in der Ventilkammer angeordnet sein. Damit liegt die Feder geschützt vor äußeren Einwirkungen und Beschädigungen im Innern des Ventilgehäuses.The spring may also be arranged in the valve chamber. Thus, the spring is protected against external influences and damage inside the valve housing.
In einer weiteren Ausführungsform des Hydraulikventils ist derIn a further embodiment of the hydraulic valve is the
Kanalquerschnitt kleiner als der Querschnitt der Ventilgehäuseöffnung. Dies bietet den Vorteil, daß sich alleine über den Kanalquerschnitt die Größe der Druckentlastung bzw. die Durchflußmenge zur Druckentlastung steuern läßt. Außerdem wird ein Druckaufbau in der Ventilkammer verhindert, so daß die Kraft, mit der das Ventilelement vom Ventilsitz weg beaufschlagt ist, ausschließlich von der gut einstellbaren Federkraft abhängt.Channel cross section smaller than the cross section of the valve housing opening. This offers the advantage that the size of the pressure relief or the flow rate can be controlled for pressure relief alone on the channel cross-section. In addition, a pressure build-up in the valve chamber is prevented, so that the force with which the valve element is acted upon by the valve seat away, depends solely on the well-adjustable spring force.
Vorzugweise ist die Feder eine Schraubenfeder, die sich mit einem ersten Federende an einem Boden des Ventilgehäuses und mit einem zweiten Federende am Ventilelement abstützt. Schraubenfedern sind einfache und preiswerte Federn, deren Federkraft sich präzise einstellen läßt. Darüber hinaus läßt sich durch die Verwendung der Schraubenfeder eine sehr einfache und zuverlässige Ventilkonstruktion realisieren.Preferably, the spring is a helical spring, which is supported with a first spring end at a bottom of the valve housing and with a second spring end on the valve element. Coil springs are simple and inexpensive springs whose spring force can be adjusted precisely. In addition, can be realized by the use of the coil spring a very simple and reliable valve design.
Besonders bevorzugt ist der Ventilsitz als Vorsprung am Boden des Ventilgehäuses ausgebildet und erstreckt sich ins Innere der Schraubenfeder. Zum einen fixiert der Ventilsitz damit die Schraubenfeder im Bereich ihres ersten Federendes quer zur Schraubenfederlängsachse, zum andern bildet der Ventilsitz in Richtung der Schraubenfederlängsachse eine Führung im Bereich des ersten Federendes.Particularly preferably, the valve seat is formed as a projection on the bottom of the valve housing and extends into the interior of the coil spring. On the one hand, the valve seat thus fixes the helical spring in the region of its first spring end transversely to the helical spring longitudinal axis; on the other hand, the valve seat forms a guide in the direction of the helical spring longitudinal axis in the region of the first spring end.
Eine weitere Ausführungsform des Ventils zeichnet sich dadurch aus, daß das Ventilelement in einer geschlossenen Ventilstellung am Ventilsitz dicht anliegt, so daß der Kanal verschlossen ist, und in einer geöffneten Ventilstellung - A -Another embodiment of the valve is characterized in that the valve element in a closed valve position on the valve seat tightly rests, so that the channel is closed, and in an open valve position - A -
vom Ventilsitz beabstandet ist, so daß Hydraulikfluid durch den Kanal in Richtung von der ersten Stirnseite zur zweiten Stirnseite strömen kann.is spaced from the valve seat, so that hydraulic fluid can flow through the channel in the direction from the first end side to the second end face.
Darüber hinaus betrifft die Erfindung einen Hydraulikkreislauf für ein aktives Fahrwerkstabilisierungssystem mit einem oben beschriebenen Hydraulikventil und einer hydraulischen Steuereinheit, wobei das Hydraulikventil parallel zur hydraulischen Steuereinheit zwischen eine Pumpe und ein druckloses Reservoir geschaltet ist. In einem derart geschalteten Hydraulikkreislauf sorgt das an die Förderleistung der Pumpe angepaßte Hydraulikventil für einen gewünschten minimalen Staudruck bei baugleicher hydraulischer Steuereinheit.Moreover, the invention relates to a hydraulic circuit for an active chassis stabilization system with a hydraulic valve described above and a hydraulic control unit, wherein the hydraulic valve is connected in parallel to the hydraulic control unit between a pump and a non-pressurized reservoir. In a hydraulic circuit connected in this way, the hydraulic valve adapted to the delivery rate of the pump ensures a desired minimum dynamic pressure with an identical hydraulic control unit.
Vorzugsweise ist eine Ventilkammer des Hydraulikventils über einePreferably, a valve chamber of the hydraulic valve via a
Ventilgehäuseöffnung und eine drucklose Rücklaufleitung mit dem Reservoir verbunden. Durch die drucklose Rückführung des Hydraulikfluids aus der Ventilkammer wird ein Druckaufbau in der Ventilkammer und damit eine Beeinflussung der Ventilstellung des Hydraulikventils verhindert.Valve housing opening and a non-pressurized return line connected to the reservoir. The pressure-free return of the hydraulic fluid from the valve chamber, a pressure build-up in the valve chamber and thus influencing the valve position of the hydraulic valve is prevented.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen unter Bezugnahme auf die Zeichnungen. In diesen zeigen:Further features and advantages of the invention will become apparent from the following description of preferred embodiments with reference to the drawings. In these show:
- Figur 1 das Schaltbild eines erfindungsgemäßen Hydraulikkreislaufs mit einem erfindungsgemäßen Hydraulikventil;- Figure 1 is a diagram of a hydraulic circuit according to the invention with a hydraulic valve according to the invention;
- Figur 2 einen Schnitt durch das erfindungsgemäße Hydraulikventil nach- Figure 2 shows a section through the hydraulic valve according to the invention
Figur 1 in einer offenen Ventilstellung; undFigure 1 in an open valve position; and
- Figur 3 einen Schnitt durch das erfindungsgemäße Hydraulikventil nach Figur 1 in einer Sperrstellung des Ventils.- Figure 3 shows a section through the hydraulic valve according to the invention according to Figure 1 in a blocking position of the valve.
Das in Figur 1 dargestellte Schaltbild eines Hydraulikkreislaufs für ein aktives Fahrwerkstabilisierungssystem zeigt eine Pumpe 8, die über eine Zuleitung 10 eine hydraulische Steuereinheit 12 mit Hydraulikfluid, welches unter Systemdruck steht, versorgt. Die hydraulische Steuereinheit 12 ist über eine Rücklaufleitung 14 mit einem drucklosen Reservoir 16 verbunden. Der Hydraulikkreislauf umfaßt ferner ein Hydraulikventil 18, das parallel zur hydraulischen Steuereinheit 12 zwischen die Pumpe 8 und das drucklose Reservoir 16 geschaltet ist. DasThe circuit diagram of a hydraulic circuit for an active chassis stabilization system illustrated in FIG. 1 shows a pump 8 which supplies via a supply line 10 a hydraulic control unit 12 with hydraulic fluid which is under system pressure. The hydraulic control unit 12 is connected via a return line 14 with a non-pressurized reservoir 16. The hydraulic circuit further comprises a hydraulic valve 18 which is connected in parallel to the hydraulic control unit 12 between the pump 8 and the non-pressurized reservoir 16. The
Hydraulikventil 18 weist dabei einen Druckanschluß 20 (Figuren 2 und 3) auf, der mit der Zuleitung 10 gekoppelt ist, und einen Anschluß 22 (Figuren 2 und 3), der mit der Rücklaufleitung 14 gekoppelt ist.Hydraulic valve 18 in this case has a pressure connection 20 (Figures 2 and 3), the is coupled to the supply line 10, and a terminal 22 (Figures 2 and 3) which is coupled to the return line 14.
Die Figur 2 zeigt einen Schnitt durch das Hydraulikventil 18, welches einFIG. 2 shows a section through the hydraulic valve 18, which is a
Ventilgehäuse 24, einen Ventilsitz 26 und ein im Ventilgehäuse 24 bewegliches Ventilelement 28 aufweist. Im Ventilelement 28 ist ein Kanal 30 von einer erstenValve housing 24, a valve seat 26 and a valve housing 24 movable in the valve element 28 has. In the valve element 28 is a channel 30 of a first
Stirnseite 32 des Ventilelements 28 zu einer entgegengesetzten zweitenEnd face 32 of the valve element 28 to an opposite second
Stirnseite 34 des Ventilelements 28 ausgebildet. Ferner ist die erste Stirnseite 32 dem Druckanschluß 20 zugewandt und wird mit einem Systemdruck in Richtung zum Ventilsitz 26 beaufschlagt. Die zweite Stirnseite 34 ist durch eine Feder 36 in entgegengesetzter Richtung, vom Ventilsitz 26 weg beaufschlagt.End face 34 of the valve element 28 is formed. Furthermore, the first end face 32 faces the pressure port 20 and is subjected to a system pressure in the direction of the valve seat 26. The second end face 34 is acted upon by a spring 36 in the opposite direction, away from the valve seat 26.
Das Ventilelement 28 definiert im Ventilgehäuse 24 eine Ventilkammer 38, in die über den Kanal 30 Hydraulikfluid einströmen und aus der über den als Ventilgehäuseöffnung 40 ausgebildeten Anschluß 22 Hydraulikfluid abströmen kann. Der Ventilsitz 26 ist in der Ventilkammer 38 als Vorsprung an einem Boden 42 des Ventilgehäuses 24 angeformt. Die Feder 36 ist eine Schraubenfeder und befindet sich ebenfalls in der Ventilkammer 38. Sie stützt sich mit einem ersten Federende 44 am Boden 42 des Ventilgehäuses 24 und mit einem zweiten Federende 46 am Ventilelement 28 ab. Der Ventilsitz 26 erstreckt sich dabei ins Innere der Schraubenfeder und bildet im Bereich des ersten Federendes 44 eine Führung in Längsrichtung der Schaubenfeder.The valve element 28 defines in the valve housing 24 a valve chamber 38 into which hydraulic fluid can flow via the channel 30 and from which hydraulic fluid can flow out via the port 22 designed as a valve housing opening 40. The valve seat 26 is integrally formed in the valve chamber 38 as a projection on a bottom 42 of the valve housing 24. The spring 36 is a helical spring and is also located in the valve chamber 38. It is supported by a first spring end 44 on the bottom 42 of the valve housing 24 and with a second spring end 46 on the valve element 28. The valve seat 26 extends into the interior of the coil spring and forms a guide in the longitudinal direction of the coil spring in the region of the first spring end 44.
In der Figur 2 ist das Hydraulikventil 18 analog zur Figur 1 in einer offenen Ventilstellung zu sehen. In dieser offenen Ventilstellung ist der Systemdruck zu gering, um das Ventilelement 28 entgegen der Federkraft in Richtung zum Ventilsitz 26 zu bewegen. Die einander entgegenwirkenden Kräfte sind in Figur 2 als Pfeile eingezeichnet, wobei Fc die Federkraft und FP eine aus dem Systemdruck resultierende Kraft auf die erste Stirnseite 32 des Ventilelements 28 symbolisiert. In der gezeigten offenen Ventilstellung ist also ein Durchfluß vom Druckanschluß 20 über den Kanal 30 in die Ventilkammer 38 und von dort über die Ventilgehäuseöffnung 40 und die Rücklaufleitung 14 zum Reservoir 16 möglich.In the figure 2, the hydraulic valve 18 is analogous to Figure 1 in an open valve position to see. In this open valve position, the system pressure is too low to move the valve element 28 against the spring force in the direction of the valve seat 26. The counteracting forces are shown in FIG. 2 as arrows, wherein F c symbolizes the spring force and F P a force resulting from the system pressure on the first end face 32 of the valve element 28. In the open valve position shown so a flow from the pressure port 20 via the channel 30 into the valve chamber 38 and from there via the valve housing opening 40 and the return line 14 to the reservoir 16 is possible.
Wie in Figur 2 angedeutet, ist der Querschnitt des Kanals 30 vorzugsweise kleiner als der Querschnitt der Ventilgehäuseöffnung 40. Somit wird der Druckabfall in der Zuleitung 10 bzw. der aus der Zuleitung 10 abgezweigte Durchfluß alleine vom Querschnitt des Kanals 30 bestimmt. Außerdem baut sich bei im wesentlichen druckloser Rücklaufleitung 14 kein Druck in der Ventilkammer 38 auf, der das Ventilelement 28 vom Ventilsitz 26 weg beaufschlagen und somit die Feder 36 unterstützen würde. Aus einem solchen Ventilkammerdruck ergäbe sich zusätzlich zu den entgegenwirkenden Kräften Fc und FP noch eine resultierende Federunterstützungskraft, welche die Ventilstellung beeinflussen würde. Das Schalten des Hydraulikventils würde entsprechend komplizierter und ungenauer werden. Dennoch sind Ausführungsformen des Hydraulikventils 18 denkbar, bei denen der Querschnitt des Kanals 30 größer als der Querschnitt der Ventilgehäuseöffnung 40 ist und der entstehende Ventilkammerdruck die Ventilstellung des Hydraulikventils 18 beeinflußt.As indicated in Figure 2, the cross section of the channel 30 is preferably smaller than the cross section of the valve housing opening 40. Thus, the pressure drop in the supply line 10 and the flow branched off from the supply line 10 solely determined by the cross section of the channel 30. In addition, no pressure builds up in the valve chamber 38 at substantially unpressurized return line 14, which act on the valve member 28 away from the valve seat 26 and thus would support the spring 36. From such a valve chamber pressure would result in addition to the counteracting forces F c and F P nor a resulting spring support force, which would affect the valve position. The switching of the hydraulic valve would be correspondingly more complicated and inaccurate. Nevertheless, embodiments of the hydraulic valve 18 are conceivable in which the cross section of the channel 30 is greater than the cross section of the valve housing opening 40 and the resulting valve chamber pressure affects the valve position of the hydraulic valve 18.
Bei nicht aktiviertem Fahrwerkstabilisierungssystem ist der am Druckanschluß 20 anliegende Systemdruck gering, liegt aber über dem gewünschten minimalen Staudruck. Aufgrund des geringen Drucks ist die resultierende Kraft FP auf das Ventilelement geringer als die entgegengesetzt wirkende Federkraft Fc (Figur 2). Entsprechend zweigt das Hydraulikventil 18 über den Kanal 30 Hydraulikfluid aus der Zuleitung 10 in das Reservoir 16 ab, so daß sich der Fluiddurchfluß in der Zuleitung 10 verringert. Aufgrund dieses verringerten Durchflusses in der Zuleitung 10 verringert sich auch der Druck in der hydraulischen Steuereinheit 12. Dabei wird der Querschnitt des Kanals 30 genau so gewählt, daß der reduzierte Druck in der Zuleitung 10 dem gewünschten minimalen Staudruck entspricht.When the suspension stabilization system is not activated, the system pressure applied to the pressure connection 20 is low, but is above the desired minimum back pressure. Due to the low pressure, the resultant force F P on the valve element is less than the oppositely acting spring force F c (Figure 2). Accordingly, the hydraulic valve 18 branches off via the channel 30 hydraulic fluid from the supply line 10 into the reservoir 16, so that the fluid flow in the supply line 10 is reduced. Due to this reduced flow in the supply line 10, the pressure in the hydraulic control unit 12 is also reduced. The cross section of the duct 30 is chosen exactly so that the reduced pressure in the supply line 10 corresponds to the desired minimum back pressure.
Bei einer Aktivierung des Fahrwerkstabilisierungssystems steigt der Druck in der Zuleitung sehr schnell auf einen Arbeitsdruck an, der in der Regel über 100 bar liegt. Infolge dieses Druckanstiegs in der Zuleitung 10 wächst auch die resultierende Kraft FP auf das Ventilelement 28 an. Die Kraft FP übersteigt schließlich die Federkraft Fc und bewegt das Ventilelement 28 in Richtung zum Ventilsitz 26. Letztlich nimmt das Hydraulikventil 18 eine in Figur 3 gezeigte Sperrstellung ein, bei der das Ventilelement 28, genauer die zweite Stirnseite 34 des Ventilelements 28 dichtend am Ventilsitz 26 anliegt, so daß der Kanal 30 durch den Ventilsitz 26 verschlossen ist. Da auch die Gleitverbindung zwischen dem Ventilelement 28 und dem Ventilgehäuse 24 weitgehend dicht ist, wird über das Hydraulikventil 18 kein Hydraulikfluid aus der Zuleitung 10 abgezweigt. Entsprechend steht die maximale Förderleistung der Pumpe 8 in der Zuleitung 10 zur Verfügung. Dies ist bei aktiviertem Fahrwerkstabilisierungssystem auch gewünscht, um den maximalen Durchfluß und Arbeitsdruck für eine Bewegung wenigstens einer angeschlossenen Zylinder-Kolben-Einheit (nicht gezeigt) bereitzustellen.When activating the chassis stabilization system, the pressure in the supply line rises very rapidly to a working pressure, which is generally above 100 bar. As a result of this pressure increase in the supply line 10 and the resulting force F P increases to the valve element 28 at. The force F P finally exceeds the spring force F c and moves the valve element 28 in the direction of the valve seat 26. Ultimately, the hydraulic valve 18 assumes a blocking position shown in Figure 3, in which the valve element 28, more precisely, the second end face 34 of the valve element 28 sealingly Valve seat 26 is applied, so that the channel 30 is closed by the valve seat 26. Since the sliding connection between the valve element 28 and the valve housing 24 is largely tight, no hydraulic fluid is diverted from the supply line 10 via the hydraulic valve 18. Accordingly, the maximum capacity of the pump 8 is in the supply line 10th to disposal. This is also desirable with the chassis stabilization system activated to provide the maximum flow and working pressure for movement of at least one connected cylinder-piston unit (not shown).
Bei einer Deaktivierung des Fahrwerkstabilisierungssystems fällt der Druck in der Zuleitung und damit auch die Kraft FP auf einen Wert FP' ab. Die Federkraft Fc ist über eine Federhärte so eingestellt, daß sie größer als die Druckkraft FP' ist, so daß sich das Ventilelement 28 nach einer Deaktivierung des Fahrwerkstabilisierungssystems wieder vom Ventilsitz 26 entfernt und das Hydraulikventil 18 wieder seine offene Ventilstellung gemäß Figur 2 einnimmt. Der in der Zuleitung 10 anstehende Druck, bzw. die resultierende Druckkraft FP' sinkt nach Freigabe des Kanals 30 weiter ab, bis der gewünschte minimale Staudruck erreicht ist.When the suspension stabilization system is deactivated, the pressure in the supply line and thus also the force F P drop to a value F P '. The spring force F c is set via a spring stiffness so that it is greater than the pressure force F P ', so that the valve element 28 is removed again from the valve seat 26 after deactivation of the chassis stabilization system and the hydraulic valve 18 assumes its open valve position according to FIG , The pending in the supply line 10 pressure, or the resulting pressure force F P 'continues to decrease after release of the channel 30 until the desired minimum back pressure is reached.
Der Vorteil dieser Erfindung liegt darin, daß der gewünschte minimale Staudruck einer vorgegebenen hydraulischen Steuereinheit 12 für verschiedene Pumpen 8 konstant gehalten wird, ohne daß bauliche Änderungen an der hydraulischen Steuereinheit 12 vorgenommen werden müssen. Dabei wird die hydraulische Steuereinheit 12 bevorzugt auf die Pumpe mit der geringsten Förderleistung so eingestellt, daß der gewünschte minimale Staudruck ohne das Hydraulikventil 18 erreicht wird. Bei jeder Pumpe, die eine höhere Förderleistung aufweist, ist das Hydraulikventil 18 parallel zur hydraulischen Steuereinheit 12 zwischen die Pumpe 8 und das drucklose Reservoir 16 zu schalten (Figur 1). Dabei sind für unterschiedliche Förderleistungen der Pumpen 8 auch verschiedene Hydraulikventile 18 einzusetzen. Die jeweiligen Hydraulikventile 18 unterscheiden sich in der Regel allerdings nur durch den Querschnitt des Kanals 30, der jeweils in Abhängigkeit von der Förderleistung der Pumpe 8 so zu wählen ist, daß sich in der offenen Ventilstellung des Hydraulikventils 18 der gewünschte Durchfluß bzw. der gewünschte minimale Staudruck in der Zuleitung 10 der hydraulischen Steuereinheit 12 einstellt. The advantage of this invention is that the desired minimum back pressure of a given hydraulic control unit 12 is kept constant for different pumps 8 without having to make structural changes to the hydraulic control unit 12. In this case, the hydraulic control unit 12 is preferably set to the pump with the lowest flow rate so that the desired minimum back pressure is achieved without the hydraulic valve 18. For each pump having a higher capacity, the hydraulic valve 18 is to be connected in parallel to the hydraulic control unit 12 between the pump 8 and the non-pressurized reservoir 16 (Figure 1). In this case, different hydraulic valves 18 are to be used for different delivery rates of the pumps 8. The respective hydraulic valves 18 differ in the rule, however, only by the cross section of the channel 30, which is to be selected depending on the capacity of the pump 8 so that in the open valve position of the hydraulic valve 18, the desired flow or the desired minimum Dynamic pressure in the supply line 10 of the hydraulic control unit 12 sets.

Claims

Patentansprüche claims
1. Hydraulikventil mit einem Ventilgehäuse (24), einem Ventilsitz (26) und einem im Ventilgehäuse (24) beweglichen Ventilelement (28), in dem ein KanalHydraulic valve having a valve housing (24), a valve seat (26) and a valve housing (24) movable valve element (28) in which a channel
(30) von einer ersten Stirnseite (32) des Ventilelements (28) zu einer entgegengesetzten zweiten Stirnseite (34) des Ventilelements (28) ausgebildet ist, wobei die erste Stirnseite (32) mit einem Systemdruck in Richtung zum Ventilsitz (26) und die zweite Stirnseite (34) durch eine Feder (36) in entgegengesetzter Richtung, vom Ventilsitz (26) weg beaufschlagt ist.(30) from a first end face (32) of the valve element (28) to an opposite second end face (34) of the valve element (28) is formed, wherein the first end face (32) with a system pressure in the direction of the valve seat (26) and the second end face (34) by a spring (36) in the opposite direction, from the valve seat (26) is acted upon away.
2. Hydraulikventil nach Anspruch 1 , dadurch gekennzeichnet, daß das2. Hydraulic valve according to claim 1, characterized in that the
Ventilelement (28) im Ventilgehäuse (24) eine Ventilkammer (38) definiert, in die über den Kanal (30) Hydraulikfluid einströmen und aus der über eine Ventilgehäuseöffnung (40) Hydraulikfluid abströmen kann.Valve element (28) in the valve housing (24) defines a valve chamber (38) into which hydraulic fluid can flow via the channel (30) and from which hydraulic fluid can flow out via a valve housing opening (40).
3. Hydraulikventil nach Anspruch 2, dadurch gekennzeichnet, daß der Ventilsitz (26) in der Ventilkammer (38) ausgebildet ist.3. Hydraulic valve according to claim 2, characterized in that the valve seat (26) in the valve chamber (38) is formed.
4. Hydraulikventil nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Feder (36) in der Ventilkammer (38) angeordnet ist.4. Hydraulic valve according to claim 2 or 3, characterized in that the spring (36) in the valve chamber (38) is arranged.
5. Hydraulikventil nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß der Querschnitt des Kanals (30) kleiner als der Querschnitt der Ventilgehäuseöffnung (40) ist.5. Hydraulic valve according to one of claims 2 to 4, characterized in that the cross section of the channel (30) is smaller than the cross section of the valve housing opening (40).
6. Hydraulikventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Feder (36) eine Schraubenfeder ist, die sich mit einem ersten Federende (44) an einem Boden (42) des Ventilgehäuses (24) und mit einem zweiten Federende (46) am Ventilelement (28) abstützt.6. Hydraulic valve according to one of the preceding claims, characterized in that the spring (36) is a helical spring which extends with a first spring end (44) on a bottom (42) of the valve housing (24) and with a second spring end (46). on the valve element (28) is supported.
7. Hydraulikventil nach Anspruch 6, dadurch gekennzeichnet, daß der7. Hydraulic valve according to claim 6, characterized in that the
Ventilsitz (26) als Vorsprung am Boden (42) des Ventilgehäuses (24) ausgebildet ist und sich ins Innere der Schraubenfeder erstreckt.Valve seat (26) is formed as a projection on the bottom (42) of the valve housing (24) and extends into the interior of the coil spring.
8. Hydraulikventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Ventilelement (28) in einer geschlossenen Ventilstellung am Ventilsitz (26) dicht anliegt, so daß der Kanal (30) verschlossen ist, und in einer geöffneten Ventilstellung vom Ventilsitz (26) beabstandet ist, so daß Hydraulikfluid durch den Kanal (30) in Richtung von der ersten Stirnseite (32) zur zweiten Stirnseite (34) strömen kann.8. Hydraulic valve according to one of the preceding claims, characterized in that the valve element (28) in a closed valve position on the valve seat (26) tightly rests, so that the channel (30) closed is, and in an open valve position from the valve seat (26) is spaced so that hydraulic fluid through the channel (30) in the direction of the first end face (32) to the second end face (34) can flow.
9. Hydraulikkreislauf für ein aktives Fahrwerkstabilisierungssystem, mit einem Hydraulikventil (18) nach einem der vorhergehenden Ansprüche und einer hydraulischen Steuereinheit (12), dadurch gekennzeichnet, daß das Hydraulikventil (18) parallel zur hydraulischen Steuereinheit (12) zwischen eine Pumpe (8) und ein druckloses Reservoir (16) geschaltet ist.9. hydraulic circuit for an active chassis stabilization system, comprising a hydraulic valve (18) according to one of the preceding claims and a hydraulic control unit (12), characterized in that the hydraulic valve (18) parallel to the hydraulic control unit (12) between a pump (8) and an unpressurized reservoir (16) is connected.
10. Hydraulikkreislauf nach Anspruch 9, dadurch gekennzeichnet, daß eine Ventilkammer (38) des Hydraulikventils (18) über eine Ventilgehäuseöffnung (40) und eine drucklose Rücklaufleitung (14) mit dem Reservoir (16) verbunden ist. 10. A hydraulic circuit according to claim 9, characterized in that a valve chamber (38) of the hydraulic valve (18) via a valve housing opening (40) and a non-pressurized return line (14) to the reservoir (16) is connected.
PCT/EP2007/007259 2006-08-17 2007-08-16 Hydraulic valve and hydraulic circuit having a hydraulic valve of said type WO2008019863A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006038472.5 2006-08-17
DE200610038472 DE102006038472A1 (en) 2006-08-17 2006-08-17 Hydraulic valve and hydraulic circuit with such a hydraulic valve

Publications (1)

Publication Number Publication Date
WO2008019863A1 true WO2008019863A1 (en) 2008-02-21

Family

ID=38721433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/007259 WO2008019863A1 (en) 2006-08-17 2007-08-16 Hydraulic valve and hydraulic circuit having a hydraulic valve of said type

Country Status (2)

Country Link
DE (1) DE102006038472A1 (en)
WO (1) WO2008019863A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2944830A1 (en) * 2014-05-16 2015-11-18 Rausch & Pausch GmbH Hydraulic system
EP3220026A1 (en) * 2016-03-14 2017-09-20 Hamilton Sundstrand Corporation Flow limiter valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083403A1 (en) * 1981-12-15 1983-07-13 Klöckner-Humboldt-Deutz Aktiengesellschaft Pressure relief valve
EP0174492A2 (en) * 1984-09-12 1986-03-19 Robert Bosch Gmbh Flow control valve
US5323773A (en) * 1992-07-02 1994-06-28 Grand Bleu International, Inc. Throttle valve of diving respirator
DE10350701A1 (en) * 2003-10-30 2005-05-25 Bosch Rexroth Ag Variable displacement pump unit has flow regulator in bypass valve system and bypass pressure compensator upstream of flow regulator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2872939A (en) * 1954-12-10 1959-02-10 A W Cash Valve Mfg Corp Flow control valve
US2984261A (en) * 1958-04-16 1961-05-16 W A Kates Company Fluid flow regulator
US4597584A (en) * 1984-05-01 1986-07-01 Hwh Corporation Automatic levelling system
US4746133A (en) * 1987-02-19 1988-05-24 Hwh Corporation Automatic leveling system
DE8716061U1 (en) * 1987-12-04 1989-04-06 Robert Bosch Gmbh, 7000 Stuttgart, De
DE4030159A1 (en) * 1990-09-24 1992-03-26 Teves Gmbh Alfred Flow regulating valve with circular gap forming throttle - has piston responding to pressure difference to control orifice under spring pressure
DE4039658C2 (en) * 1990-12-12 2003-12-04 Zahnradfabrik Friedrichshafen Flow divider
DE4228945A1 (en) * 1992-08-31 1994-03-03 Ecker Gmbh Maschbau Hydraulic valve
US5421545A (en) * 1993-09-03 1995-06-06 Caterpillar Inc. Poppet valve with force feedback control
FR2740544B1 (en) * 1996-02-07 1997-12-12 Martin Jean Antoine SELF-BALANCED THERMAL TRANSMITTERS
DE102004040758A1 (en) * 2003-12-05 2005-07-14 Continental Teves Ag & Co. Ohg Vehicle stabilization system, actuator with direction valves hydraulically operated by pressure medium supplied from pump
DE102004040560A1 (en) * 2004-04-20 2005-11-10 Continental Teves Ag & Co. Ohg Slide valve for vehicle stabilizing systems has stepped piston which operates spring-loaded slide, pilot valve and inlet valve feeding hydraulic fluid on to opposite face of piston from slide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083403A1 (en) * 1981-12-15 1983-07-13 Klöckner-Humboldt-Deutz Aktiengesellschaft Pressure relief valve
EP0174492A2 (en) * 1984-09-12 1986-03-19 Robert Bosch Gmbh Flow control valve
US5323773A (en) * 1992-07-02 1994-06-28 Grand Bleu International, Inc. Throttle valve of diving respirator
DE10350701A1 (en) * 2003-10-30 2005-05-25 Bosch Rexroth Ag Variable displacement pump unit has flow regulator in bypass valve system and bypass pressure compensator upstream of flow regulator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2944830A1 (en) * 2014-05-16 2015-11-18 Rausch & Pausch GmbH Hydraulic system
US9803714B2 (en) 2014-05-16 2017-10-31 Rausch & Pausch Gmbh Hydraulic system
EP3220026A1 (en) * 2016-03-14 2017-09-20 Hamilton Sundstrand Corporation Flow limiter valve
US10731771B2 (en) 2016-03-14 2020-08-04 Hamilton Sunstrand Corporation Flow limiter valve

Also Published As

Publication number Publication date
DE102006038472A1 (en) 2008-03-27

Similar Documents

Publication Publication Date Title
EP0294776B1 (en) Control circuit for a hydraulic adjusting device
DE3049485A1 (en) WHEEL SUSPENSION SYSTEM FOR MOTOR VEHICLES
EP1373718A1 (en) Pressure limiting valve for fuel injection devices
EP0902223A1 (en) Relief valve
WO2010136186A1 (en) Active chassis stabilization system
EP0174482B1 (en) Two-position pilot valve with hydraulic lock
DE2638190A1 (en) PRESSURE CONTROL UNIT FOR HYDRAULIC VEHICLE BRAKING SYSTEMS
DE19649187C2 (en) Hydraulic stabilization device
EP1657470B1 (en) Hydropneumatic spring for vehicle, especially tracked vehicle
EP2944830A1 (en) Hydraulic system
WO2008019863A1 (en) Hydraulic valve and hydraulic circuit having a hydraulic valve of said type
DE10321997A1 (en) Vehicle suspension system with variable height of the vehicle body
DE1187145B (en) Brake pressure regulators in hydraulic brake actuation systems for vehicles, in particular motor vehicles
WO1995033136A1 (en) Hoisting-gear control system with control valve
EP3464908B1 (en) Valve device
WO2004085178A1 (en) Anti-roll system
DE3014868A1 (en) DIE CASTING MACHINE
WO2008110366A1 (en) Chassis stabilization system
DE2735184A1 (en) PRESSURE REGULATING VALVE
EP3374214B1 (en) Hydraulic roll stabilization system of a two-track vehicle
DE1962975C (en) Combined pressure control and cut-off valve for fuel oil pumps
DE102017000761A1 (en) supply device
WO2023186442A1 (en) Fluid system for a vehicle
WO2004101263A1 (en) Drive for a punch or forming machine
EP0135751A1 (en) Hydraulic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07801712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07801712

Country of ref document: EP

Kind code of ref document: A1