WO2008041641A1 - Élément de conversion de longueurs d'onde et dispositif de conversion de longueurs d'onde - Google Patents

Élément de conversion de longueurs d'onde et dispositif de conversion de longueurs d'onde Download PDF

Info

Publication number
WO2008041641A1
WO2008041641A1 PCT/JP2007/069025 JP2007069025W WO2008041641A1 WO 2008041641 A1 WO2008041641 A1 WO 2008041641A1 JP 2007069025 W JP2007069025 W JP 2007069025W WO 2008041641 A1 WO2008041641 A1 WO 2008041641A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
wavelength
light
period
phase
Prior art date
Application number
PCT/JP2007/069025
Other languages
English (en)
French (fr)
Inventor
Masaki Asobe
Takeshi Umeki
Osamu Tadanaga
Yoshiki Nishida
Tsutomu Yanagawa
Katsuaki Magari
Hiroyuki Suzuki
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to EP07828766A priority Critical patent/EP2071396A4/en
Priority to US12/440,006 priority patent/US7940451B2/en
Publication of WO2008041641A1 publication Critical patent/WO2008041641A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/395Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves in optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/128Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode field shaping

Definitions

  • the present invention relates to a wavelength conversion element and a wavelength conversion device, and more specifically, collectively converts the wavelengths of a plurality of input light in which the intervals of the wavelength of each input light are arranged at irregular intervals.
  • the present invention relates to a wavelength converter that can
  • semiconductor lasers capable of outputting light in various wavelength ranges from the visible light range to the mid-infrared light range have been researched and developed.
  • light sources that can be easily used at room temperature have not been realized, for example, in the visible light region of wavelength 500 to 6 OO nm, or in the near infrared to mid infrared wavelength region of wavelength 2 to 5 ⁇ m. It is. Therefore, in a wavelength range where it is difficult to generate light directly like this light source power, a light source using wavelength conversion using a nonlinear optical effect is used.
  • the converted light of wavelength ⁇ is output from the optical waveguide 12 due to the generation of the difference frequency due to the nonlinear optical effect.
  • the sum frequency generation using difference frequency generation is
  • second harmonic generation can be used to construct a light source for obtaining converted light of short wavelength.
  • the wavelength ⁇ of the signal light (first incident light) and the converted light (idler light) is as follows:
  • Equation (1) is applied as the wavelength shift of the converted light (idle light).
  • the refractive index of signal light wavelength of nonlinear optical material is ⁇
  • converted light wavelength is
  • be the refractive index
  • be the refractive index at the excitation light wavelength
  • be the modulation period of the nonlinear constant
  • phase mismatch ⁇ / 3 2 ⁇ / ⁇
  • the signal light wavelength that satisfies the phase matching condition depends on the wavelength dispersion of the refractive index of the non-linear optical material, and is substantially uniquely determined when the modulation period ⁇ is determined.
  • the excitation wavelength is
  • FIG. 2 shows the change in conversion efficiency with respect to the amount of phase mismatch.
  • the maximum value of conversion efficiency 7] is standardized as 1.
  • the phase mismatch band is 3. 35 111 When converted to the conversion wavelength of about 9.3 nm, it is narrow. Select the signal light wavelength ⁇ to any wavelength
  • the signal light wavelength can not be changed significantly because the tolerance for the signal light wavelength is narrow.
  • light sources using conventional wavelength conversion elements can not be used for such applications.
  • phase matching can be achieved over a wide wavelength range because the change in the amount of phase mismatch in (2) is gradual (see, for example, Non-Patent Document 1).
  • this method depends on the dispersion of the nonlinear optical material used, it can not be used at certain special wavelength combinations.
  • the wavelengths required as the output to be measured are not always arranged at equal intervals. Even if optimization is performed so as to have peaks at all wavelengths to be measured, unnecessary peaks are generated for measurement, and as a result, conversion efficiency at the phase matching peak necessary to generate the necessary wavelength is Make it smaller. Therefore, there is a problem that it is not possible to efficiently convert a plurality of wavelengths that are not at equal intervals only by adding conventional phase modulation or periodic modulation.
  • An object of the present invention is to be able to collectively convert the wavelengths of a plurality of input light in which the intervals of the wavelength of each input light are arranged at unequal intervals, and to reduce the decrease in conversion efficiency. It is an object of the present invention to provide a wavelength conversion device and an output wavelength variable wavelength conversion device.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-233534
  • Non Patent Literature 3 Y. Nishida, et al., Electronics Letters Vol. 39, p. 609, 2003
  • Non Patent Literature 4 H. Ishii, Optical Fiber Communication Conference 2005 Technical Digest., Vol. 2, p. 91, 2005
  • Non-Patent Document 5 MNotomi, IEEE Photonics Technology Letters, Vol. 2, p. 85, 1990 Disclosure of the Invention
  • a wavelength conversion element wherein the nonlinear medium is a nonlinear light of a period ⁇ in the traveling direction of light.
  • Modulation structure in which the phase changes continuously every period ⁇ , and different periods ⁇
  • Amount of phase mismatch represented by 2 ⁇ ( ⁇ / ⁇ - ⁇ / ⁇ - ⁇ / ⁇ ) ⁇ / 3 force 2 ⁇ / ⁇ + 2 (i m, m + 1, ⁇ ⁇ ⁇ , n: m, n is a positive or negative integer)
  • the modulation structure in which the modulation curve of the phase modulation of the first embodiment is changed changes the modulation curve of each period of the nonlinear optical medium, and the nonlinear optical at the position z of the light traveling direction.
  • Space change d (z) of constant is calculated, Fourier transform of the space change d (z) is performed, conversion efficiency at each peak is determined, ⁇ is desired, evaluation is given as follows using ⁇ Calculate the function ⁇ ,
  • the apparatus is characterized in that the value of the evaluation function ⁇ is minimized.
  • the nonlinear medium is a modulation structure of a nonlinear optical constant of a period ⁇ in the traveling direction of light, and the period changes continuously every period ⁇ , and continuous period modulation with a different period ⁇ ⁇ is added. Even the modulation structure may be! /.
  • non-linear optical medium may be made of LiNbO, KNbO, LiTaO, LiNb TaO (0
  • It is characterized in that it contains at least one selected from the group consisting of Mg, Zn, Sc, and In as an additive.
  • a signal light source capable of varying wavelength and outputting signal light of wavelength ⁇ 1, an excitation light source outputting excitation light of wavelength ⁇ or ⁇ , and the signal light
  • a wavelength conversion element for inputting the incident light into the nonlinear optical medium and outputting converted light of wavelength ⁇ or ⁇ , wherein the non-linear medium is a modulation structure of a non-linear optical constant of period ⁇ in the traveling direction of light.
  • a wavelength conversion element having a modulation structure in which the phase changes continuously with each period ⁇ ⁇ and continuous phase modulation with different periods ⁇ ⁇ is added, and the nonlinear medium is a light traveling
  • the modulation structure of the nonlinear optical constant of period ⁇ in the direction, and the phase is continuously Wavelength modulation ph having a modulation structure which is changed and continuous phase modulation of different periods ⁇ is added
  • the plurality of conversion efficiency peaks given it has a modulation structure in which the modulation curve of the phase modulation is changed such that the conversion efficiency of at least three peaks arranged at uneven intervals is maximized.
  • a wavelength converter for inputting 3 2 1 1 2 light into a nonlinear optical medium and outputting converted light of wavelength ⁇
  • the signal light source may include a plurality of DFB-LDs, a light power bra for coupling output light of each of the DFB-LDs, and a semiconductor optical amplifier connected to an output of the light power bra. it can.
  • a wavelength conversion element that outputs converted light of length or ⁇ , wherein the nonlinear medium is light
  • the nonlinear optical medium having a period
  • the non-linear medium is a modulation structure of non-linear optical constants of a period ⁇ in the traveling direction of light.
  • the period changes continuously every period ⁇ , and continuous period modulation of different period ⁇ It may be an added modulation structure! /.
  • FIG. 1 is a diagram showing the configuration of a light source using a conventional wavelength conversion element
  • Figure 2 is a diagram showing the change in conversion efficiency with respect to the amount of phase mismatch
  • FIG. 3 is a view showing a part of a periodic modulation structure of a conventional wavelength conversion element
  • FIG. 4A is a diagram showing the dependency of the phase modulation curve of the conventional wavelength conversion element and the conversion efficiency on the phase mismatch amount, and is a diagram showing a first example of the phase modulation curve.
  • FIG. 4B is a diagram showing the amount of phase mismatch with respect to the phase modulation curve of the first example
  • FIG. 4C is a diagram showing the dependence of the phase modulation curve of the conventional wavelength conversion element and the conversion efficiency on the amount of phase mismatch, and is a diagram showing a second example of the phase modulation curve.
  • FIG. 4D is a diagram showing the amount of phase mismatch for the phase modulation curve of the second example
  • FIG. 5A is a view showing a phase modulation curve of the wavelength conversion element and dependence of the conversion efficiency on the phase mismatch amount according to the present embodiment, showing the phase modulation curve.
  • FIG. 5B is a diagram showing the amount of phase mismatch with respect to the phase modulation curve of the present embodiment
  • FIG. 6A is a diagram showing the phase modulation curve of the wavelength conversion element according to Example 1.
  • FIG. 6B is a graph showing the wavelength dependency of conversion efficiency of difference frequency generation in Example 1.
  • FIG. 7A is a diagram showing a periodic modulation curve of the wavelength conversion element according to Example 2.
  • FIG. 7B is a graph showing the wavelength dependency of conversion efficiency of difference frequency generation in Example 2.
  • FIG. 8A is a diagram showing a phase modulation curve of the wavelength conversion element according to Example 3.
  • FIG. 8B is a graph showing the wavelength dependency of conversion efficiency of difference frequency generation in Example 3.
  • FIG. 9 is a diagram showing the configuration of a wavelength conversion device according to a fourth embodiment.
  • FIG. 10A is a diagram showing a phase modulation curve of the wavelength conversion element according to Example 4.
  • FIG. 10B is a diagram showing wavelength dependency of conversion efficiency of difference frequency generation in Example 4.
  • the modulation curve is It was found that by setting to be minimum, a plurality of unequally spaced phase matching peaks can be obtained, and a highly efficient wavelength conversion element can be realized.
  • phase modulation curve a method of setting a phase modulation curve will be described by taking the case of phase modulation as an example.
  • FIG. 3 shows a periodic modulation structure of a conventional wavelength conversion element.
  • FIG. 3 b shows the phase change of each period in FIG.
  • the periodic modulation structure added with such phase modulation is different from the modulation structure of period ⁇ as shown in FIG. 3c.
  • Figs. 4A to 4D show the dependence of the phase modulation curve and conversion efficiency of the conventional wavelength conversion element on the amount of phase mismatch.
  • the conversion efficiency is shown normalized to 1 as the efficiency when using a non-linear optical medium of the same length without phase modulation.
  • the phase matching curve shown in FIG. 4B is obtained in the case of the phase modulation curve of the first example of FIG. 4A.
  • the phase matching curve shown in FIG. 4D is obtained. That is, 2 ⁇ / / centered on 2 ⁇ / ⁇
  • Phase matching amount ⁇ ⁇ ( 2 ⁇ / ⁇ , 2 ⁇ / 2 ⁇ 2 ⁇ / ⁇ , 2 ⁇ / ⁇ ⁇ ⁇ 4 ⁇ separated by 0 ph
  • phase mismatch Due to such periodic modulation, as shown in FIGS. 4B and 4D, a phase mismatch amount ⁇ at which the conversion efficiency peaks periodically appears.
  • Phase mismatch for convenience of explanation
  • the peak of conversion efficiency obtained when is defined as the i-th peak.
  • phase modulation curve is changed for each periodic modulation structure of the nonlinear optical medium to calculate the spatial change d (z) of the nonlinear optical constant.
  • Space transformation d (z) is subjected to Fourier transform to determine the conversion efficiency at each peak, and using the conversion efficiency at each desired peak, the evaluation function T given below is calculated.
  • it is optimized by performing sequential calculations so that the value of the evaluation function T is minimized.
  • the target efficiency was set as follows.
  • V (-4) 0
  • V (one 2) 0
  • V (-1) 7] /
  • Figs. 5A-B show the dependence of the phase modulation curve of the wavelength conversion element according to the present embodiment and the conversion efficiency on the amount of phase mismatch.
  • the conversion efficiency is shown normalized to 1 as the efficiency for a non-linear optical medium of the same length without phase modulation.
  • the phase matching curve shown in FIG. 5B is obtained. Even though periodic and continuous phase modulation is used, by suppressing the efficiency of unnecessary phase matching peaks, it is possible to increase only the efficiency of peaks placed at unequal intervals.
  • phase modulation is applied in the example described above, in addition to the modulation period of the nonlinear optical constant, even in the case where continuous periodic modulation of different periods is performed, similar optimization is performed to obtain uneven intervals. Only the efficiency of the placed peak can be increased.
  • the non-linear optical medium is not limited to LiNbO, but may be KNbO 2, LiTaO 2, LiNb Ta
  • Force S can.
  • at least one selected from the group consisting of Mg, Zn, Sc and In may be added to these compounds as additives.
  • converted light of the 3.4 ⁇ band is obtained by difference frequency generation.
  • the wavelength conversion element is manufactured by, for example, the wafer bonding method disclosed in Non-Patent Document 3.
  • a resist is applied to the Z surface of the LiNbO substrate, and a photolithographic technique is used to
  • Pattern the tonal structure An electrode is deposited on the surface of the substrate coated with resist, and an electrolyte is brought into contact with both sides of the substrate. When an electric field is applied to both sides of the substrate through the electrolytic solution, in the portion without the resist, the electrode is in direct contact with the LiNbO substrate, and the polarization of this portion is reversed.
  • FIG. 6A shows a phase modulation curve of the wavelength conversion element according to the first embodiment.
  • the wavelength of the excitation light is fixed at 1 ⁇ 07 m, and the signal light is made incident from the 1 ⁇ 55 m band tunable light source.
  • Figure 6B shows the wavelength dependence of the conversion efficiency of difference frequency generation obtained by sweeping the signal light wavelength.
  • the horizontal axis shows the wavelength of the signal light.
  • three peaks can be obtained at unequally spaced wavelengths 1565. 5, 15720. 0, 1 59.5 nm.
  • the peak obtained at O nm corresponds to the zero-order peak obtained when phase modulation is not performed, and the peak obtained at 1565 nm is the peak obtained by phase modulation + 1st-order peak, 1590.
  • the peak obtained at 5 nm corresponds to the -3rd order peak obtained by phase modulation.
  • Example 1 3380 ⁇ 6 nm (2958 cm ⁇ , 3350. 7 nm (298. 4 cm ⁇ 1 ), 3269. 6 nm (3058. 5 cm ⁇ ) can be generated respectively by the difference frequency generation.
  • the wavelength band of the signal light of each peak is about 2 nm, which can be converted light by finely adjusting the signal light wavelength at each peak. This corresponds to the ability to sweep a wavelength of about 8.3 cm- 1 .
  • the conversion efficiency at the three peaks of the wavelength conversion element used in Example 1 is about 20% / W. If 10 mW for signal light and 40 mW for excitation light are input to the device, an output of 80 W is obtained. When applied to the light source of a gas measurement device, an output sufficient for gas detection can be obtained without using an optical amplifier.
  • phase modulation is added to the periodical polarization inversion structure to enable difference frequency generation by a plurality of signal light wavelengths at unequal intervals.
  • periodic modulation is added to the periodic polarization inversion structure. The point of obtaining converted light of the 3.4 m band by difference frequency generation using the 1.55 ⁇ 111 band as the signal light and the wavelength of 1. 07 ⁇ 111 as the excitation light is the same as in the first embodiment.
  • the method of manufacturing the wavelength conversion element is also the same as in the first embodiment.
  • the period of the polarization inversion structure arranged in the middle is 425 periods.
  • Evaluation function T shown in equation (5) Target efficiency of -3rd order, 0th order, + 1st order peak] / 3 and other norms
  • FIG. 7A shows a periodic modulation curve of the wavelength conversion element according to the second embodiment.
  • the wavelength of the excitation light is fixed at 1 ⁇ 07 m, and the signal light is made incident from the 1 ⁇ 55 m band tunable light source.
  • FIG. 7B shows a phase matching curve of the wavelength conversion element according to the second embodiment. Also in the second embodiment, three peaks can be obtained at unequally spaced wavelengths 1565. 5, 15720. 0, 1590. 5 nm.
  • the efficiency of the wavelength conversion element having the structure is shown normalized as 1. Therefore, the conversion efficiency of the wavelength conversion element of Example 2 is about 30% when compared with the wavelength conversion element to which the periodic modulation is not added.
  • the same output as that of the first embodiment can be obtained using periodic modulation, which is effective for detecting a plurality of gases.
  • the conversion efficiency at the three peaks of the wavelength conversion element used in Example 1 is about 20% / W. If 10 mW for signal light and 40 mW for excitation light are input to the element, an output of 80 ⁇ ⁇ is obtained. When applied to the light source of a gas measuring device, an output sufficient for gas detection can be obtained without using an optical amplifier.
  • phase modulation or periodic modulation is added to the periodic polarization inversion structure
  • phase modulation is added to the periodic polarization inversion structure to obtain a peak of an order different from that of the first and second embodiments.
  • the converted light of the 3.4 ⁇ 111 band is obtained by difference frequency generation using the 1.55 m band as the signal light and the wavelength of 1. 07 111 as the excitation light.
  • the method of manufacturing the wavelength conversion element is also the same as in Example 1.
  • the period of the polarization inversion structure arranged in one period of phase modulation is 425 periods.
  • the target efficiency at the second, zero, and third peaks is 7] / 3, and the other peaks are Target efficiency is set to 0.
  • FIG. 8A shows a phase modulation curve of the wavelength conversion element according to the third embodiment.
  • the wavelength of the excitation light is fixed at 1 ⁇ 07 m, and the signal light is made incident from the 1 ⁇ 55 m band tunable light source.
  • FIG. 8B shows a phase matching curve of the wavelength conversion element according to the third embodiment.
  • the conversion efficiency of the wavelength conversion element of the second embodiment is about 27% when compared with the wavelength conversion element without periodic modulation.
  • an output similar to that of the first embodiment can be obtained by using phase modulation, which is effective for detecting a plurality of gases.
  • the conversion efficiency at the three peaks of the wavelength conversion element used in Example 1 is about 18% / W. If 10 mW as signal light and 40 mW as excitation light are input to the element, an output of 72 ⁇ ⁇ is obtained.
  • an output sufficient for gas detection can be obtained without using an optical amplifier. In this way, by optimizing the function of phase modulation or periodic modulation so as to obtain a desired peak, it is possible to set the phase matching peaks at various wavelengths at irregular intervals.
  • FIG. 9 shows the configuration of the wavelength converter according to the fourth embodiment.
  • the wavelength conversion element 20 comprises an optical waveguide 22 formed on a periodically poled LiNbO substrate 21.
  • Multiplexer 23
  • the light from the pump light source 24 is multiplexed with the signal light from the signal light source 25 and is incident on the optical waveguide 22.
  • the excitation light source 24 outputs the excitation light of 1.07
  • the signal light source 25 outputs the signal light of the 1. 55 ⁇ 111 band
  • the wavelength conversion device 3.4 Converted light of ⁇ ⁇ band can be output.
  • the signal light source 25 is a tunable light source of 1.55 ⁇ m band, and uses TLA (Tunable Laser Arra y) (see, for example, Non-Patent Document 4).
  • the signal light source 25 is a light that combines the output light of each of a plurality of DFB-LDs (Distributed Feedback-Laser Diodes) 31 and the DFB-LDs 31.
  • a power bra 32 and a semiconductor optical amplifier (SOA) 33 connected to the output of the light bra 32 are provided.
  • the signal light source 25 is an optical semiconductor integrated circuit, and the output wavelength can be switched at high speed by selecting the DFB-LD 31.
  • Phase modulation was added.
  • the period of the polarization inversion structure arranged in one period of the added periodic modulation is 425 periods.
  • the target efficiencies at the -3rd order, 0th order and + 1st order peaks are respectively 7] / 4, n / 4 and n / 2,
  • FIG. 10A shows a phase modulation curve of the wavelength conversion element according to the fourth embodiment.
  • the wavelength of the excitation light is fixed at 1 ⁇ 07 m, and the signal light is made incident from the 1 ⁇ 55 m band tunable light source.
  • the phase matching curve of the wavelength conversion element according to the fourth embodiment is shown in FIG. In Example 4, three peaks can be obtained at unequal intervals of 156 5.5, 15720. 0, 1590. 5 nm.
  • the conversion efficiencies of the -3rd, 0th, and + 1st peaks are 25%, 25%, and 50%, respectively, when the total sum is 100%.
  • the conversion efficiency is 13% / W, 14% / W, and 28% / W for the -third order, zeroth order, and + first order peaks, respectively.
  • the converted light wavelength 3269. 6 nm (3058. 5 cm-3350. 7 nm (298 4. 5 cm-3380.
  • An output of 112 ⁇ W is obtained.
  • the fourth embodiment by switching the wavelength of signal light at high speed, it is possible to detect a plurality of gases having characteristic absorption at each wavelength almost simultaneously in time series. Specifically, absorption lines characteristic of hydrocarbon gases such as methane, ethane and ethylene can be measured simultaneously. Furthermore, the output of the light source at 3380. Therefore, even if the absorption at this wavelength is smaller than other wavelengths, the degradation of the S / N ratio can be suppressed.
  • a practical output can be obtained without using an optical amplifier as a light source, and furthermore, since a relatively inexpensive wavelength tunable light source of a communication wavelength band can be used, It is possible to provide an inexpensive wavelength converter with high performance.
  • the tunable laser as used in Example 4 is relatively inexpensive at an optical communication wavelength band such as the 1.55 1 1 1 1 band, and the wavelength can be switched at high speed.
  • a light source having a structure in which an external grating is coupled to a semiconductor laser is commercially available. In this type of light source, the speed at which the wavelength can be changed is limited in order to realize wavelength change by movement such as mechanical rotation of the grating, resulting in an expensive apparatus.
  • a plurality of wavelengths can be converted using a combination of any excitation light wavelength or signal light wavelength that is unrelated to the dispersion of the nonlinear optical material.
  • a relatively inexpensive high-performance wavelength tunable laser for optical communication can be used, and a wavelength conversion device or a light source applied to a gas measuring device or the like can be configured at low cost.
  • a light source in which a plurality of semiconductor lasers are integrated it is possible to rapidly switch light of a plurality of wavelengths that have been absorbed by a plurality of gas absorption lines in a gas measurement apparatus. It also makes it possible to observe multiple gases simultaneously. Since the phase matching peak that generates a specific wavelength can also be made larger than other peaks, it is possible to emphasize the output of the wavelength used to measure the weakly absorbing gas among multiple gases, and to increase the SN ratio. become.

Description

明 細 書
波長変換素子および波長変換装置
技術分野
[0001] 本発明は、波長変換素子および波長変換装置に関し、より詳細には、各々の入力 光の波長の間隔が不等間隔に配置された複数の入力光の波長を、一括して変換す ることができる波長変換素子および波長変換装置に関する。
背景技術
[0002] 従来、可視光領域から中赤外光領域まで様々な波長領域において、光を出力する ことができる半導体レーザが研究開発されている。し力もながら、例えば波長 500〜6 OOnmの可視光領域、または波長 2〜5 μ mの近赤外から中赤外の波長領域では、 室温で簡易に使用できる光源が実現されていないのが現状である。そこで、このよう な光源力 直接光を発生することが困難な波長領域においては、非線形光学効果を 用いた波長変換を利用した光源が用いられて!/、る。
[0003] 様々な形態の波長変換素子が知られているが、実用的な観点から、非線形光学定 数を周期的に変調した擬似位相整合を用いる導波路型の波長変換素子が最も有望 である。周期的な変調構造を形成するには、非線形定数の符号を交互に反転するか 、非線形光学定数が大きい部分と小さい部分をほぼ交互に配置する方法が考えられ る。 LiNbOなどの強誘電体結晶では、非線形定数 (d定数)の正負は自発分極の極
3
性に対応するので、自発分極を反転することにより非線形定数の符号を反転すること ができる。
[0004] 図 1に、従来の波長変換素子を用いた光源の構成を示す。波長変換素子は、周期 的に分極反転された LiNbO基板 11に形成された光導波路 12からなる。 2つの半導
3
体レーザから、波長え の信号光と波長え の励起光とを合波器 13で合波し、光導波
1 3
路 12に入射する。非線形光学効果による差周波発生により、光導波路 12から波長 λ の変換光が出力される。ここでは、差周波発生を利用している力 和周波発生ま
2
たは第二高調波発生を用いて、短波長の変換光を得る光源を構成することもできる。
[0005] 差周波発生の場合には、信号光(第 1の入射光)の波長 λ 、変換光(アイドラ光)の 波長え 、励起光(第 2の入射光)の波長え とすると、 3つの波長の間には以下の関
2 3
係がある。
[0006] 1/ λ =1/ λ +1/λ (1)
3 2 1
ί列えば'、 2つの人射光を 1. 55 111と1.06 111とすれば'、変換光として 3. 35 111を 発生させること力 Sできる。 2つの入射光を 1· 55 111と 0. 94 mとすれば、変換光とし て 2. 39 mを発生させることができる。なお、和周波発生の場合は、信号光(第 1の 入射光)の波長え 、励起光(第 2の入射光)の波長え 、変換光(アイドラ光)の波長
1 2
λ として式(1)を適用し、第二高調波発生の場合は、入射光の波長え (=λ )、変
3 1 2 換光(アイドラ光)の波長え として式(1)を適用する。
3
[0007] 非線形光学材料の信号光波長え における屈折率を η、変換光波長え における
1 1 2
屈折率を η、励起光波長え における屈折率を η、非線形定数の変調周期を Λ とす
2 3 3 0 ると、位相不整合量 Δ /3は、
Δ /3 =2π (η / λ -η / λ -η / λ ) (2)
3 3 2 2 1 1
となる。波長変換素子の導波路の長さ Lとすると、変換効率 7]は、
[0008] [数 1]
Figure imgf000004_0001
となる。式(3)より変換効率 ]は、位相不整合量 Δ 0が 2 π Z A の時最大となる。
0
[0009] 例えば、励起光波長え を固定すると、位相不整合量 Δ /3 =2π/Λ となる擬似
3 0
位相整合条件を満たす信号光波長は、非線形光学材料の屈折率の波長分散に依 存し、変調周期 Λ を決定すると実質的に一意に決定される。励起波長え を、擬似
0 3
位相整合条件を満たす波長 (擬似位相整合波長)から変化させると、式(2)および(3 )に従って変換効率が減少してしまう。
[0010] 図 2に、位相不整合量に対する変換効率の変化を示す。図 2は、変換効率 7]の最 大値を 1として規格化してある。波長変換素子として長さ 50mmの LiNbO基板を用
3
いた場合、変換効率 7]が最大値の半分となる位相不整合量の帯域は、 3. 35 111帯 の変換波長に換算すると、約 9. 3nm程度と狭い。信号光波長 λ を任意の波長え
1 2' へと変換するためには、式(1)から明らかなように、複数の異なる励起光波長を用い る必要がある。しかし、一定周期の非線形光学定数の変調構造では、信号光波長に 対する許容範囲が狭いために、信号光波長を大幅に変化させることができない。例 えば、種々のガスの吸収を測定してガスのセンシンダ行うガス測定装置に応用する 場合、複数のガスの吸収を測定するためには、いくつかの波長領域において波長掃 引を行えることが望ましい。し力もながら、従来の波長変換素子を用いた光源では、こ のような応用に用いることができなレ、。
[0011] 一方、変換光と信号光との間、変換光と励起光との間で群速度整合の条件がとれ ている場合には、波長の変化に伴う伝播定数の変化が相殺され、式(2)の位相不整 合量の変化が緩やかになるため、広い波長域に渡って位相整合がとれることが知ら れている(例えば、非特許文献 1参照)。し力、しながらこの方法は、使用する非線形光 学材料の分散に依存するため、ある特殊な波長の組み合わせにおいてし力、利用す ること力 Sできない。また、擬似位相整合型の波長変換素子において非線形光学定数 の変調周期をチヤープさせる方法が知られている(例えば、非特許文献 2参照)。この 方法は、任意の波長帯域で広帯域な波長変換素子を実現することができるが、変換 効率が帯域に反比例して低減する。このため、広範囲に高出力を得ようとする場合に は、励起光または信号光の強度を大きくする必要があり、光ファイバ増幅器などを補 助的に付加することが必要となる。
[0012] 連続的な波長波長掃引が必ずしも必要ではない場合には、広い波長域に渡って 位相整合をとる必要は無ぐ複数の励起光波長に対応する複数の位相整合ピークを 得ること力 Sできればよい。そこで、非線形光学定数の周期 Λ の変調構造に、異なる
0
周期 Λ の連続的な位相変調または周期変調を付加した構造とすることが知られて ph
いる(例えば、特許文献 1参照)。さらに、周期的な位相不整合量において変換効率 が極大となるように、位相変調または周期変調を最適化することが知られている(例え ば、特許文献 2参照)。この方法では、位相不整合量 Δ β = 2 π / λ である波長を
0
中心にして、位相不整合量にして 2 π / Α だけ離れた波長に周期的に複数のピー ph
クを有する。連続的に位相整合曲線を広帯域化する手法に較べて、それぞれのピー クにおける変換 ¾]率を大きくすること力 Sできる。
[0013] しかしながら、上述したガス測定装置に応用する場合、測定対象出力として必要な 波長が等間隔に並んでいるとは限らない。全ての測定対象の波長にピークを有する ように最適化を行っても、測定に不必要なピークを生じてしまい、結果として必要な波 長を発生するのに必要な位相整合ピークにおける変換効率を小さくしてしまう。従つ て、従来の位相変調または周期変調を付加するだけでは、等間隔ではない複数の 波長を効率的に波長変換することができないという問題があった。
[0014] 本発明の目的は、各々の入力光の波長の間隔が不等間隔に配置された複数の入 力光の波長を、一括して変換することができ、かつ変換効率の低下の小さな波長変 換素子および出力波長可変の波長変換装置を提供することにある。
[0015] 特許文献 1 :特開 2004— 20870号公報
特許文献 2:特開 2004— 233534号公報
非特許文献 l : T.Yanagawa, et al., Applied Physics Letters, Vol.86, p.161106, 2005 非特許文献 2 : T.Suhara, et al., IEEE J. of Quantum Electronics, Vol.26, p.1265, 19 90
非特許文献 3 : Y.Nishida, et al., Electronics Letters Vol.39, p.609, 2003
非特許文献 4 : H.Ishii, Optical Fiber Communication Conference 2005 Technical Dig est., Vol.2, p.91, 2005
非特許文献 5 : MNotomi, IEEE Photonics Technology Letters, Vol.2, p.85, 1990 発明の開示
[0016] 本発明は、このような目的を達成するために、第 1の実施態様は、 1/ λ = 1/ λ
3 2
+ 1/ λ の関係を有する波長のうち 1つ(λ = λ )または 2つ(λ 、 λ またはえ 、
1 1 2 1 2 1 λ )の入射光を非線形光学媒質に入力し、波長え またはえ の変換光を出力する
3 3 2
波長変換素子であって、前記非線形媒質は、光の進行方向に周期 Λ の非線形光
0
学定数の変調構造であって、周期 Λごとに連続的に位相が変化し、異なる周期 Λ
0 ph の連続的な位相変調が付加された変調構造を有する波長変換素子において、前記 非線形媒質は、波長え 、 え 、 λ に対する屈折率を各々 η、 η、 ηとすると、 Δ /3 =
1 2 3 1 2 3
2 π (η / λ -η / λ -η / λ )で表される位相不整合量 Δ /3力 2 π / Λ + 2 π ί/ Λ (i = m, m+ 1 , · · · , n : m, nは正または負の整数)で与えられる複数の変換 効率のピークのうち、不等間隔に並んだ少なくとも 3つのピークの変換効率が極大と なるように、前記位相変調の変調曲線を変化させた変調構造を有することを特徴とす
[0017] 第 1の実施態様の前記位相変調の変調曲線を変化させた変調構造は、前記非線 形光学媒質の周期 Λごとの変調曲線を変化させ、光の進行方向の位置 zにおける 非線形光学定数の空間変化 d (z)を計算し、前記空間変化 d (z)のフーリエ変換を行 つて、各々のピークにおける変換効率 ] ωを求め、所望の変換効率 ] ωを用いて 以下に与える評価関数 τを計算し、
[0018] [数 2] =∑: ) 1
前記評価関数 τの値が最小となるように構成されていることを特徴とする。
[0019] 前記非線形媒質は、光の進行方向に周期 Λ の非線形光学定数の変調構造であ つて、周期 Λ ごとに連続的に周期が変化し、異なる周期 Λの連続的な周期変調が 付加された変調構造であってもよ!/、。
[0020] また、前記非線形光学媒質は、 LiNbO、 KNbO 、 LiTaO 、 LiNb Ta O (0
≤x≤l) , Li K Ta Nb O 、 KTiOPOのいずれかであり、またはこれらに
Mg、 Zn、 Sc、 Inからなる群から選ばれた少なくとも一種を添加物として含有している ことを特徴とする。
[0021] 第 2の実施態様は、波長を可変することができ、波長 λ 1の信号光を出力する信号 光光源と、波長 λ または λ の励起光を出力する励起光光源と、前記信号光と前記 励起光とを合波する合波器と、前記合波器に接続され、 1/ λ = 1/ λ + 1/ λ の関係を有する波長のうち 2つ(λ 、 λ またはえ 、 λ )の入射光を非線形光学媒 質に入力し、波長え またはえ の変換光を出力する波長変換素子であって、前記非 線形媒質は、光の進行方向に周期 Λ の非線形光学定数の変調構造であって、周 期 Λ ごとに連続的に位相が変化し、異なる周期 Λ の連続的な位相変調が付加さ れた変調構造を有する波長変換素子であって、前記非線形媒質は、光の進行方向 に周期 Λ の非線形光学定数の変調構造であって、周期 Λごとに連続的に位相が 変化し、異なる周期 Λ の連続的な位相変調が付加された変調構造を有する波長変 ph
換素子とを備え、前記非線形媒質は、波長え 、 え 、 λ に対する屈折率を各々η、
1 2 3 1 η、ηとすると、 Δ /3 =2π (η /λ -η /λ η / λ )で表される位相不整合量
2 3 3 3 2 2 1 1
Δ βが、 2π/Λ +2πί/Λ (i = m, m+1, ···, n:m, nは正または負の整数)で
0 f
与えられる複数の変換効率のピークのうち、不等間隔に並んだ少なくとも 3つのピー クの変換効率が極大となるように、前記位相変調の変調曲線を変化させた変調構造 を有することを特徴とする。
[0022] なお、 1/λ =1/λ +1/λ の関係を有する波長のうち 1つ(λ =λ )の入射
3 2 1 1 2 光を非線形光学媒質に入力し、波長 λ の変換光を出力する波長変換装置とするこ
3
ともできる。また、前記信号光光源は、複数の DFB— LDと、前記 DFB— LDの各々 の出力光を結合する光力ブラと、前記光力ブラの出力に接続された半導体光増幅器 とを含むこともできる。
[0023] 第 3の実施態様は、 1/λ =1/λ +1/λ の関係を有する波長のうち 1つ(λ
3 2 1 1
=λ )または 2つ(λ 、 λ またはえ 、 λ )の入射光を非線形光学媒質に入力し、波
2 1 2 1 3
長え または λ の変換光を出力する波長変換素子であって、前記非線形媒質は、光
3 2
の進行方向に周期 Λ の非線形光学定数の変調構造であって、周期 Λごとに連続
0 0 的に位相が変化し、異なる周期 Λ の連続的な位相変調が付加された変調構造を ph
有する波長変換素子の作製方法において、前記非線形光学媒質の周期 Λごとの
0 位相変調曲線を変化させる工程と、光の進行方向の位置 zにおける非線形光学定数 の空間変化 d(z)を計算する工程と、前記空間変化 d(z)のフーリエ変換を行って、各 々のピークにおける変換効率 ] ωを求め、所望の変換効率 ]
t ωを用いて以下に 与える評価関数 τを計算する工程と、
[0024] 園 =∑: り—' )]2
前記評価関数 Tの値が最小となるように、前記位相変調曲線を変化させる工程とを 備えたことを特徴とする。
[0025] 前記非線形媒質は、光の進行方向に周期 Λ の非線形光学定数の変調構造であ
0
つて、周期 Λ ごとに連続的に周期が変化し、異なる周期 Λの連続的な周期変調が 付加された変調構造であってもよ!/、。
図面の簡単な説明
[0026] [図 1]図 1は、従来の波長変換素子を用いた光源の構成を示す図、
[図 2]図 2は、位相不整合量に対する変換効率の変化を示す図、
[図 3]図 3は、従来の波長変換素子の周期的な変調構造の一部を示す図、
[図 4A]図 4Aは、従来の波長変換素子の位相変調曲線と変換効率の位相不整合量 に対する依存性を示す図であり、位相変調曲線の第 1の例を示す図、
[図 4B]図 4Bは、第 1の例の位相変調曲線に対する位相不整合量を示す図、
[図 4C]図 4Cは、従来の波長変換素子の位相変調曲線と変換効率の位相不整合量 に対する依存性を示す図であり、位相変調曲線の第 2の例を示す図、
[図 4D]図 4Dは、第 2の例の位相変調曲線に対する位相不整合量を示す図、
[図 5A]図 5Aは、本実施形態に力、かる波長変換素子の位相変調曲線と変換効率の 位相不整合量に対する依存性を示す図であり、位相変調曲線を示す図、
[図 5B]図 5Bは、本実施形態の位相変調曲線に対する位相不整合量を示す図、 [図 6A]図 6Aは、実施例 1にかかる波長変換素子の位相変調曲線を示す図、
[図 6B]図 6Bは、実施例 1の差周波発生の変換効率の波長依存性を示す図、
[図 7A]図 7Aは、実施例 2にかかる波長変換素子の周期変調曲線を示す図、
[図 7B]図 7Bは、実施例 2の差周波発生の変換効率の波長依存性を示す図、
[図 8A]図 8Aは、実施例 3にかかる波長変換素子の位相変調曲線を示す図、
[図 8B]図 8Bは、実施例 3の差周波発生の変換効率の波長依存性を示す図、
[図 9]図 9は、実施例 4にかかる波長変換装置の構成を示す図、
[図 10A]図 10Aは、実施例 4にかかる波長変換素子の位相変調曲線を示す図、 [図 10B]図 10Bは、実施例 4の差周波発生の変換効率の波長依存性を示す図である 発明を実施するための最良の形態
[0027] 以下、図面を参照しながら本発明の実施形態について詳細に説明する。本実施形 態では、非線形光学定数の周期 Λ の変調構造に、異なる周期 Λ の連続的な位相
0 ph
変調または周期変調を付加した構造とすることに加えて、変調曲線を評価関数丁が 最小となるように設定することにより不等間隔な複数の位相整合ピークが得られ、か つ高効率な波長変換素子が実現可能であることを見出した。
[0028] 以下、位相変調の場合を例として、位相変調曲線の設定方法について説明する。
非線形光学媒質に形成された光導波路における光の伝播方向上の位置 zにおける 非線形定数を d (z)とする。非線形光学媒質力 ¾ = 0から z = Lまで存在しているとする 。励起光と信号光が、非線形光学媒質を伝播した後 (z = L)の変換効率は、位相不 整合量 Δ βに対して次式で与えられる。
[0029] [数 4]
Figure imgf000010_0001
この式力 非線形光学定数の空間的な変化 d (z)を与え、フーリエ変換を行うことで 位相不整合量 Δ βに対する変換効率の変化を計算することができる。
[0030] 図 3に、従来の波長変換素子の周期的な変調構造を示す。非線形光学媒質として 強誘電体結晶材料である LiNbOを用いて、分極を反転することにより非線形定数
3
の符号を反転する。図 3aは、変調構造の一部を示し、非線形光学定数の長さ方向の 変化を示す。一定の周期 Λ で非線形定数を反転する力 S、周期ごとに始まる位相を
0
変化させている。図 3bに、図 3aの各周期ごとの位相変化を示す。このような位相変 調を加えた周期変調構造は、図 3cに示すように、周期 Λ の変調構造に、異なる周
0
期 Λ の連続的な位相変調を付加した構造である。
[0031] 図 4A— Dに、従来の波長変換素子の位相変調曲線と変換効率の位相不整合量 に対する依存性を示す。変換効率は、位相変調がない同じ長さの非線形光学媒質 を用いた場合の効率を 1として規格化して示す。例えば、図 4Aの第 1の例の位相変 調曲線のとき、図 4Bに示す位相整合曲線となる。図 4Cの第 2の例の位相変調曲線 のとき、図 4Dに示す位相整合曲線となる。すなわち、 2 π / Λ を中心に 2 π / Λ ご
0 ph とに離れた位相整合量 Δ β ( = 2 π / Λ , 2 π / Λ ± 2 π / Λ , 2 π / Λ ±4 π
0 0 ph 0
/ Λ , · · · )において、変換効率のピークを持つようになる。従来技術においては、 ph
このような周期的な変調を施しているため、図 4Bおよび 4Dに見られるように周期的 に変換効率がピークとなる位相不整合量 Δ βが現れる。説明の便宜上、位相不整合 量 Δ /3が 2π/Λ +2πί/Λ (i = m, m+1, .. ·, n:m, ηは正または負の整数)
0 ph
のとき得られる変換効率のピークを、 i次のピークと定義する。
[0032] 次に、 1次、 0次、 3次の不等間隔でピークを最大にする場合を例にとって説明す る。最初に、非線形光学媒質の周期変調構造ごとに位相変調曲線を変化させて、非 線形光学定数の空間変化 d(z)を計算する。空間変化 d(z)のフーリエ変換を行って 、各々のピークにおける変換効率を求め、所望の各ピークにおける変換効率を用い て、以下に与える評価関数 Tを計算する。最後に、評価関数 Tの値が最小になるよう に逐次計算を行って最適化する。
[0033] [数 5コ =∑; ト? )1 )]2 (5)
ここで 7] (j)は j番目のピークにおける効率、 7] (j)は j番目のピークにおける目標効率
t
であり、ここでは、 目標効率を以下のように設定した。
V (-4)=0
(一 3)=0
V (一 2)=0
V (― 1) = 7] /
norm
norm
v (1)=0
v (2)=0
o) =
norm
v (4)=0
は、長さが同じで位相変調をもたない場合の波長変換素子の効率である。 norm
[0034] 図 5A— Bに、本実施形態にかかる波長変換素子の位相変調曲線と変換効率の位 相不整合量に対する依存性を示す。変換効率は、位相変調がない同じ長さの非線 形光学媒質を用いた場合の効率を 1として規格化して示す。例えば、図 5Aの位相変 調曲線のとき、図 5Bに示す位相整合曲線となる。周期的で連続的な位相変調を用 いているにも関わらず、不必要な位相整合ピークの効率を抑えることにより、不等間 隔に配置したピークの効率のみを大きくすることができる。ここでは、位相変調を施し た場合を例にとり説明したが、非線形光学定数の変調周期に加えて、異なる周期の 連続的な周期変調を施した場合であっても、同様の最適化を行うことにより、不等間 隔に配置したピークの効率のみを大きくすることができる。
[0035] なお、非線形光学媒質として、 LiNbOに限らず、 KNbO 、 LiTaO 、 LiNb Ta
3 3 3 (x) (1
O (0≤x≤l) , Li K Ta Nb O、 KTiOPOのいずれかを用いること 3 (1 (1 3 4
力 Sできる。また、これら化合物に Mg、 Zn、 Sc、 Inからなる群から選ばれた少なくとも 一種を添加物としてもよレ、。
実施例 1
[0036] 実施例 1では、信号光として 1. 55 m帯、励起光として 1. 07 mの波長を用いて 、差周波発生により 3. 4 πι帯の変換光を得る。波長変換素子の作製方法は、例え ば、非特許文献 3に開示されたウェハ接合法により作製する。
[0037] 最初に、 LiNbO基板の Z面にレジストを塗布し、フォトリソグラフィ技術を用いて変
3
調構造をパターン化する。基板のレジストを塗布した面に電極を蒸着し、基板の両面 に電界液を接触させる。電界液を介して基板の両面に電界を印加すると、レジストの ない部分は、電極が LiNbO基板に直接触れており、この部分の分極が反転する。
3
[0038] このとき分極反転するドメインの幅は電極の幅より若干広くなるので、その広がりを 考慮してフォトリソグラフィに用いるマスクを設計しておく必要がある。このようにして、 光導波路のコアとなる LiNbO基板に、周期的な分極反転構造を形成する。次に、ゥ
3
ェハ接合法により、 LiTaO基板と、分極反転構造が形成された LiNbO基板とを貼
3 3 り合わせ、 LiNbO基板を所定の厚さに研磨する。最後に、 LiNbO基板をダイシン
、光導波路を作製する。波長変換素子の長さ Lは 48mmである。
[0039] 周期的な分極反転構造と位相整合特性の詳細を説明する。実施例 1では、分極反 転構造は、基本周期 Λ = 28. 5 mの変調構造とし、周期 Λ = 12. 11mmで連
0 ph
続的な位相変調を付加した。付加された位相変調の 1周期あたりに配置される分極 反転構造の周期は 425周期となる。式(5)に示した評価関数 Tにおいて、—3次、 0 次、 + 1次のピークにおける目標効率を 7] /3とし、その他のピークにおける目標 norm
効率を 0に設定する。評価関数 Tの値が最小になるように逐次計算を行って、位相変 調を最適化することにより、 3次、 0次、 + 1次のピークにおいて最大の変換効率が 得られる。
[0040] 図 6Aに、実施例 1にかかる波長変換素子の位相変調曲線を示す。励起光の波長 を 1 · 07 mに固定し、 1 · 55 m帯の波長可変光源から信号光を入射する。図 6B に、信号光波長を掃引することによって得られる差周波発生の変換効率の波長依存 性を示す。横軸は信号光の波長を示す。実施例 1では、波長 1565. 5, 1572. 0, 1 590. 5nmの不等間隔において、それぞれ 3つのピークを得ることができる。波長 15 72. Onmに得られるピークは、位相変調を行わない場合に得られる 0次のピークに 相当し、 1565. 5nmに得られるピークは、位相変調によって得られる + 1次のピーク 、 1590. 5nmに得られるピークは、位相変調によって得られるー3次のピークに相当 する。
[0041] 実施例 1では、差周波発生によりそれぞれ 3380· 6nm (2958cm— , 3350. 7n m (2984. 5cm—1) , 3269. 6nm (3058. 5cm—丄)を発生することカできる。これらの 波長において吸収を有する複数ガスを検出するのに有効である。それぞれのピーク の信号光の波長帯域は 2nm程度である。これは、それぞれのピークにおいて信号光 波長を微調することにより、変換光を 8. 3cm— 1程度波長掃引できることに相当する。
[0042] 実施例 1に用いた波長変換素子の 3つのピークにおける変換効率は約 20%/W である。信号光として 10mW、励起光として 40mWを素子に入力すると、 80 Wの 出力が得られる。ガス測定装置の光源に応用する場合、光増幅器を用いなくともガス の検出に十分な出力を得ることができる。
実施例 2
[0043] 実施例 1では周期的な分極反転構造に位相変調を付加して、不等間隔な複数の 信号光波長により差周波発生を可能にした。実施例 2では、周期的な分極反転構造 に周期変調を付加する。信号光として 1. 55 ^ 111帯、励起光として 1. 07 ^ 111の波長 を用いて、差周波発生により 3. 4 m帯の変換光を得る点は、実施例 1と同じである 。波長変換素子の作製方法も、実施例 1と同じである。
[0044] 実施例 2では、分極反転構造は、基本周期 Λ = 28. 5 mの変調構造とし、周期
0
A = 12. 11mmで連続的な周期変調を付加した。付加された周期変調の 1周期あ f
たりに配置される分極反転構造の周期は 425周期となる。式(5)に示した評価関数 T において、ー3次、0次、 + 1次のピークにおける目標効率を ] /3とし、その他の norm
ピークにおける目標効率を 0に設定する。評価関数 Tの値が最小になるように逐次計 算を行って、周期変調を最適化することにより、 3次、 0次、 + 1次のピークにおいて 最大の変換効率が得られる。
[0045] 図 7Aに、実施例 2にかかる波長変換素子の周期変調曲線を示す。励起光の波長 を 1 · 07 mに固定し、 1 · 55 m帯の波長可変光源から信号光を入射する。図 7B に、実施例 2にかかる波長変換素子の位相整合曲線を示す。実施例 2においても、 波長 1565. 5, 1572. 0, 1590. 5nmの不等間隔において、それぞれ 3つのピーク を得ることができる。変換効率は、長さ L = 48mm、基本周期 Λ = 28. 5 111の変調
0
構造を有する波長変換素子の効率を 1として規格化して示してある。従って、周期変 調を付加しない波長変換素子と比較した場合、実施例 2の波長変換素子の変換効 率は約 30%である。
[0046] 実施例 2では、周期変調を用いて実施例 1と同様の出力を得ることができ、複数ガ スを検出するのに有効である。実施例 1に用いた波長変換素子の 3つのピークにお ける変換効率は約 20%/Wである。信号光として 10mW、励起光として 40mWを素 子に入力すると、 80 λ¥の出力が得られる。ガス測定装置の光源に応用する場合、 光増幅器を用いなくともガスの検出に十分な出力を得ることができる。
実施例 3
[0047] 実施例 1 , 2では、周期的な分極反転構造に位相変調または周期変調を付加して、
3次、 0次、 + 1次の位相整合ピークを得た。実施例 3では、周期的な分極反転構 造に位相変調を付加して、実施例 1 , 2とは異なる次数のピークを得る。実施例 3でも 、信号光として 1. 55 m帯、励起光として 1. 07 111の波長を用いて、差周波発生 により 3. 4 ^ 111帯の変換光を得る。波長変換素子の作製方法も、実施例 1と同じであ
[0048] 実施例 3では、分極反転構造は、基本周期 Λ = 28. 5 mの変調構造とし、周期
0
A = 12. 11mmで連続的な位相変調を付加した。位相変調の 1周期あたりに配置 される分極反転構造の周期は 425周期となる。式(5)に示した評価関数 Tにおいて、 2次、 0次、 + 3次のピークにおける目標効率を 7] /3とし、その他のピークにお ける目標効率を 0に設定する。評価関数 Tの値が最小になるように逐次計算を行って 、位相変調を最適化することにより、 2次、 0次、 + 3次のピークにおいて最大の変 換効率が得られる。
[0049] 図 8Aに、実施例 3にかかる波長変換素子の位相変調曲線を示す。励起光の波長 を 1 · 07 mに固定し、 1 · 55 m帯の波長可変光源から信号光を入射する。図 8B に、実施例 3にかかる波長変換素子の位相整合曲線を示す。実施例 3においては、 1552. 5, 1572. 0 , 1584. 3nmの不等 鬲 ίこおレヽて、それぞれ 3つのピークを得 ること力 Sできる。変換効率は、長さ L = 48mm、基本周期 Λ = 28. 5 mの変調構造
0
を有する波長変換素子の効率を 1として規格化して示す。従って、周期変調を付加し なレ、波長変換素子と比較した場合、実施例 2の波長変換素子の変換効率は約 27% である。
[0050] 実施例 3では、位相変調を用いて実施例 1と同様の出力を得ることができ、複数ガ スを検出するのに有効である。実施例 1に用いた波長変換素子の 3つのピークにお ける変換効率は約 18 %/Wである。信号光として 10mW、励起光として 40mWを素 子に入力すると、 72 λ¥の出力が得られる。ガス測定装置の光源に応用する場合、 光増幅器を用いなくともガスの検出に十分な出力を得ることができる。このようにして 、位相変調または周期変調の関数を所望のピークが得られるように最適化することに より、位相整合ピークを不等間隔で、様々な波長に設定することができる。
実施例 4
[0051] 図 9に、実施例 4にかかる波長変換装置の構成を示す。波長変換素子 20は、周期 的に分極反転された LiNbO基板 21に形成された光導波路 22からなる。合波器 23
3
は、励起光光源 24からの励起光と信号光光源 25からの信号光とを合波し、光導波 路 22に入射する。励起光光源 24は 1. 07 の励起光を出力し、信号光光源 25は 1. 55 ^ 111帯の信号光を出力し、非線形光学効果による差周波発生により、波長変 換装置は、複数の 3. 4 πι帯の変換光を出力することができる。
[0052] 信号光光源 25は、 1. 55 μ m帯の波長可変光源であり、 TLA (Tunable Laser Arra y)を用いる(例えば、非特許文献 4参照)。信号光光源 25は、複数の DFB— LD (Dis tributed Feedback-Laser Diode) 31と、 DFB— LD31の各々の出力光を結合する光 力ブラ 32と、光力ブラ 32の出力に接続された半導体光増幅器(SOA) 33を備えてい る。信号光光源 25は、光半導体集積回路であり、 DFB— LD31を選択することにより 出力波長を高速に切り替えることができる。
[0053] 波長変換素子 20の作製方法は、実施例 1と同じである。実施例 4では、分極反転 構造は、基本周期 Λ = 28. 5 mの変調構造とし、周期 Λ = 12. 11mmで連続
0 ph
的な位相変調を付加した。付加された周期変調の 1周期あたりに配置される分極反 転構造の周期は 425周期となる。式(5)に示した評価関数 Tにおいて、—3次、 0次、 + 1次のピークにおける目標効率をそれぞれ 7] /4、 n /4、 n /2とし、
norm norm norm
その他のピークにおける目標効率を 0に設定する。評価関数 Tの値が最小になるよう に逐次計算を行って、位相変調を最適化することにより、 + 1次のピーク力 3次、 0次のピークよりも大きな変換効率が得られる。
[0054] 図 10Aに、実施例 4にかかる波長変換素子の位相変調曲線を示す。励起光の波 長を 1 · 07 mに固定し、 1 · 55 m帯の波長可変光源から信号光を入射する。図 1 0Bに、実施例 4にかかる波長変換素子の位相整合曲線を示す。実施例 4では、 156 5. 5, 1572. 0, 1590. 5nmの不等間鬲において、それぞれ 3つのピークを得ること カできる。ー3次、 0次、 + 1次のピークの変換効率の比率は、全体の総和を 100%と したとき、それぞれ 25%、 25%、 50%となる。変換効率は、長さ L = 48mm、基本周 期 Λ = 28. 5 ΐηの変調構造を有する波長変換素子の効率を 1として規格化して示
0
す。
[0055] 変換効率は、ー3次、 0次、 + 1次のピークにおいてそれぞれ 13%/W、 14%/W 、 28%/Wである。信号光として TLAから得られる 10mW、励起光として 40mWを 素子に入力すると、変換光波長 3269. 6nm (3058. 5cm— 3350. 7nm (2984 . 5cm— 3380.
Figure imgf000016_0001
112 μ Wの出力が得られる。
[0056] また、実施例 4では、信号光の波長を高速に切り替えることにより、それぞれの波長 において特徴的な吸収を有する複数のガスを、時系列的にほぼ同時に検出すること 力できる。具体的には、メタン、ェタン、エチレンなどの炭化水素ガスに特徴的な吸収 線を同時に測定することができる。さらに、 3380. 6nmにおける光源の出力を強調し てあるため、この波長における吸収が他に波長に比べて小さい場合でも、 S/N比の 劣化を抑えることができる。
[0057] このように、本実施形態では、各々の入力光の波長の間隔が不等間隔に配置され た複数の入力光の波長を、一括して変換することカできる。また、特定のピークを強 調して変換効率を大きくすることもできる。
[0058] 本実施形態によれば、光源として、光増幅器を用いなくとも実用的な出力を得ること ができ、さらに、比較的安価な通信波長帯の波長可変光源を用いることができるので 、高性能で安価な波長変換装置を提供することができ。また、実施例 4で用いたよう な波長可変レーザは、 1. 55 ^ 111帯等の光通信波長帯では比較的安価であり、波長 を高速に切り替えることができる。その他の波長帯域では、例えば、非特許文献 5に 示すように、半導体レーザに外部グレーティングを結合させた構造の光源が市販され ている。この種の光源では、グレーティングを機械的に回転するなどの動きにより波 長可変を実現するために、波長可変のスピードに限界があり、高価な装置となる。 産業上の利用可能性
[0059] 本実施形態では、非線形光学材料の分散に関係なぐ任意の励起光波長または 信号光波長の組み合わせを用いて、複数の波長を変換することができる。上述したよ うに、比較的安価で高性能な光通信用波長可変レーザを用いることができ、ガス計 測装置などに適用する波長変換装置または光源を安価に構成することができる。
[0060] さらに、複数の半導体レーザが集積化された光源を用いることにより、ガス計測装 置にお!/、ては、複数のガスの吸収線にあった複数波長の光を高速に切り替えること により複数ガスを同時に観測することも可能になる。特定の波長を発生する位相整合 ピークを、他のピークより大きくすることもできるので、複数ガスの中で吸収の弱いガス の測定に用いる波長の出力を強調し、 SN比を大きくすることも可能になる。

Claims

請求の範囲
[1] 1/λ =1/λ +1/λ の関係を有する波長のうち 1つ(λ =λ )または 2つ(λ
3 2 1 1 2
、 λ またはえ 、 λ )の入射光を非線形光学媒質に入力し、波長え またはえ の変
1 2 1 3 3 2 換光を出力する波長変換素子であって、前記非線形媒質は、光の進行方向に周期 Α の非線形光学定数の変調構造であって、周期 Λごとに連続的に位相が変化し、
0 0
異なる周期 Λ の連続的な位相変調が付加された変調構造を有する波長変換素子 ph
において、
前記非線形媒質は、波長 λ 、 え 、 λ に対する屈折率を各々 η、η、ηとすると、
1 2 3 1 2 3
Δ β =2π (η /λ -η /λ -η /λ )で表される位相不整合量 Δ /3が、 2 π /
3 3 2 2 1 1
Α +2πί/Λ (i = m, m+1, ···, n:m, nは正または負の整数)で与えられる複数
0 f
の変換効率のピークのうち、不等間隔に並んだ少なくとも 3つのピークの変換効率が 極大となるように、前記位相変調の変調曲線を変化させた変調構造を有することを特 徴とする波長変換素子。
[2] 前記位相変調の変調曲線を変化させた変調構造は、前記非線形光学媒質の周期
A ごとの変調曲線を変化させ、光の進行方向の位置 zにおける非線形光学定数の
0
空間変化 d(z)を計算し、前記空間変化 d(z)のフーリエ変換を行って、各々のピーク における変換効率 7] ωを求め、所望の変換効率 7] ωを用いて以下に与える評価 t
関数 Tを計算し、
前記評価関数 Tの値が最小となるように構成されていることを特徴とする請求項 1に 記載の波長変換素子。
[3] 1/λ =1/λ +1/λ の関係を有する波長のうち 1つ(λ =λ )または 2つ(λ
3 2 1 1 2
、 λ またはえ 、 λ )の入射光を非線形光学媒質に入力し、波長え またはえ の変
1 2 1 3 3 2 換光を出力する波長変換素子であって、前記非線形媒質は、光の進行方向に周期 Α の非線形光学定数の変調構造であって、周期 Λごとに連続的に周期が変化し、
0 0
異なる周期 Λの連続的な周期変調が付加された変調構造を有する波長変換素子に おいて、
前記非線形媒質は、波長 λ 、 え 、 λ に対する屈折率を各々 η、η、ηとすると、
1 2 3 1 2 3
Δ β =2π (η /λ -η /λ -η /λ )で表される位相不整合量 Δ /3が、 2 π /
3 3 2 2 1 1
Α +2πί/Λ (i = m, m+1, ···, n:m, nは正または負の整数)で与えられる複数
0 f
の変換効率のピークのうち、不等間隔に並んだ少なくとも 3つのピークの変換効率が 極大となるように、前記周期変調の変調曲線を変化させた変調構造を有することを特 徴とする波長変換素子。
[4] 前記周期変調の変調曲線を変化させた変調構造は、前記非線形光学媒質の周期
A ごとの変調曲線を変化させ、光の進行方向の位置 zにおける非線形光学定数の
0
空間変化 d(z)を計算し、前記空間変化 d(z)のフーリエ変換を行って、各々のピーク における変換効率 7] ωを求め、所望の変換効率 7] ωを用いて以下に与える評価
t
関数 Tを計算し、
[数 2]
前記評価関数 Tの値が最小となるように構成されていることを特徴とする請求項 3に 記載の波長変換素子。
[5] 前記非線形光学媒質は、 LiNbO、 KNbO、 LiTaO、 LiNb Ta O (0≤x
3 3 3 (x) (1 x) 3
≤1), Li K Ta Nb O、 KTiOPOのいずれかであり、またはこれらに Mg
(x) (1-x) (y) (1 y) 3 4
、 Zn、 Sc、 Inからなる群から選ばれた少なくとも一種を添加物として含有していること を特徴とする請求 1ないし 4のいずれかに記載の波長変換素子。
[6] 波長を可変することができ、波長 λ iの信号光を出力する信号光光源と、
波長 λ または λ の励起光を出力する励起光光源と、
2 3
前記信号光と前記励起光とを合波する合波器と、
前記合波器に接続され、 1/λ =1/λ +1/λ の関係を有する波長のうち 2つ
3 2 1
(え 、 λ またはえ 、 λ )の入射光を非線形光学媒質に入力し、波長え またはえ
1 2 1 3 3 2 の変換光を出力する波長変換素子であって、前記非線形媒質は、光の進行方向に 周期 Λ の非線形光学定数の変調構造であって、周期 Λごとに連続的に位相が変
0 0
化し、異なる周期 Λ の連続的な位相変調が付加された変調構造を有する波長変換 素子とを備え、
前記非線形媒質は、波長 λ 、 え 、 λ に対する屈折率を各々 η、η、ηとすると、
1 2 3 1 2 3
Δ β =2π (η /λ -η /λ -η /λ )で表される位相不整合量 Δ /3が、 2 π /
3 3 2 2 1 1
Α +2πί/Λ (i = m, m+1, ···, n:m, nは正または負の整数)で与えられる複数
0 f
の変換効率のピークのうち、不等間隔に並んだ少なくとも 3つのピークの変換効率が 極大となるように、前記位相変調の変調曲線を変化させた変調構造を有することを特 徴とする波長変換装置。
[7] 波長を可変することができ、波長 λ の信号光を出力する信号光光源と、
前記信号光光源に接続され、 1/λ =1/λ +1/λ の関係を有する波長のう
3 2 1
ち 1つ(λ =λ )の入射光を非線形光学媒質に入力し、波長え の変換光を出力す
1 2 3 る波長変換素子であって、前記非線形媒質は、光の進行方向に周期 Λ の非線形光
0
学定数の変調構造であって、周期 Λごとに連続的に位相が変化し、異なる周期 Λ
0 ph の連続的な位相変調が付加された変調構造を有する波長変換素子とを備え、 前記非線形媒質は、波長 λ 、 え 、 λ に対する屈折率を各々 η、η、ηとすると、
1 2 3 1 2 3
Δ β =2π (η /λ -η /λ -η /λ )で表される位相不整合量 Δ /3が、 2 π /
3 3 2 2 1 1
Α +2πί/Λ (i = m, m+1, ···, n:m, nは正または負の整数)で与えられる複数
0 f
の変換効率のピークのうち、不等間隔に並んだ少なくとも 3つのピークの変換効率が 極大となるように、前記位相変調の変調曲線を変化させた変調構造を有することを特 徴とする波長変換装置。
[8] 前記信号光光源は、
複数の DFB— LDと、
前記 DFB— LDの各々の出力光を結合する光力ブラと、
前記光力ブラの出力に接続された半導体光増幅器と
を含むことを特徴とする請求項 6または 7に記載の波長変換装置。
[9] 1/λ =1/λ +1/λ の関係を有する波長のうち 1つ(λ =λ )または 2つ(λ
3 2 1 1 2
、 λ またはえ 、 λ )の入射光を非線形光学媒質に入力し、波長え またはえ の変
1 2 1 3 3 2 換光を出力する波長変換素子であって、前記非線形媒質は、光の進行方向に周期 Α の非線形光学定数の変調構造であって、周期 Λごとに連続的に位相が変化し、 異なる周期 Λ の連続的な位相変調が付加された変調構造を有する波長変換素子 ph
の作製方法において、
前記非線形光学媒質の周期 Λごとの位相変調曲線を変化させる工程と、
0
光の進行方向の位置 zにおける非線形光学定数の空間変化 d (z)を計算する工程 と、
前記空間変化 d (Z)のフーリエ変換を行って、各々のピークにおける変換効率 7] (i) を求め、所望の変換効率 7] ωを用いて以下に与える評価関数 τを計算する工程と t
[数 3]
= ( 1
前記評価関数 Tの値が最小となるように、前記位相変調曲線を変化させる工程と を備えたことを特徴とする波長変換素子の作製方法。
1/ λ = 1/ λ + 1/ λ の関係を有する波長のうち 1つ(λ = λ )または 2つ(λ
3 2 1 1 2
、 λ またはえ 、 λ )の入射光を非線形光学媒質に入力し、波長え またはえ の変
1 2 1 3 3 2 換光を出力する波長変換素子であって、前記非線形媒質は、光の進行方向に周期 Α の非線形光学定数の変調構造であって、周期 Λごとに連続的に周期が変化し、
0 0
異なる周期 Λの連続的な周期変調が付加された変調構造を有する波長変換素子の f
作製方法において、
前記非線形光学媒質の周期 Λごとの周期変調曲線を変化させる工程と、
0
光の進行方向の位置 zにおける非線形光学定数の空間変化 d (z)を計算する工程 と、
前記空間変化 d (Z)のフーリエ変換を行って、各々のピークにおける変換効率 7] (i) を求め、所望の変換効率 7] ωを用いて以下に与える評価関数 τを計算する工程と t
[数 4コ
前記評価関数 Tの値が最小となるように、前記周期変調曲線を変化させる工程と を備えたことを特徴とする波長変換素子の作製方法。
PCT/JP2007/069025 2006-09-29 2007-09-28 Élément de conversion de longueurs d'onde et dispositif de conversion de longueurs d'onde WO2008041641A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07828766A EP2071396A4 (en) 2006-09-29 2007-09-28 WAVE LENGTH CONVERSION ELEMENT AND WAVE LENGTH CONVERSION DEVICE
US12/440,006 US7940451B2 (en) 2006-09-29 2007-09-28 Wavelength converter and wavelength conversion apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006268360A JP2008089762A (ja) 2006-09-29 2006-09-29 波長変換素子および波長変換装置
JP2006-268360 2006-09-29

Publications (1)

Publication Number Publication Date
WO2008041641A1 true WO2008041641A1 (fr) 2008-04-10

Family

ID=39268500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069025 WO2008041641A1 (fr) 2006-09-29 2007-09-28 Élément de conversion de longueurs d'onde et dispositif de conversion de longueurs d'onde

Country Status (5)

Country Link
US (1) US7940451B2 (ja)
EP (1) EP2071396A4 (ja)
JP (1) JP2008089762A (ja)
CN (1) CN101512426A (ja)
WO (1) WO2008041641A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010128194A (ja) * 2008-11-27 2010-06-10 Nippon Telegr & Teleph Corp <Ntt> 非線形光素子

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101978316B (zh) * 2008-03-25 2014-07-02 耶达研究及发展有限公司 用于光变换的晶体
CN102075821B (zh) * 2010-12-27 2014-04-16 重庆邮电大学 一种共享波长转换器装置及解决光分组冲突方法
WO2018198117A1 (en) * 2017-04-24 2018-11-01 Ramot At Tel-Aviv University Ltd. Multi-frequency infrared imaging based on frequency conversion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020870A (ja) 2002-06-14 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> 波長変換素子および波長変換装置
JP2004233534A (ja) 2003-01-29 2004-08-19 Nippon Telegr & Teleph Corp <Ntt> 波長変換素子および波長変換装置
US20060132902A1 (en) * 2004-12-22 2006-06-22 Miller Gregory D Design of quasi-phasematched optical frequency converters

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5815307A (en) * 1997-03-26 1998-09-29 The Board Of Trustees Of The Leland Stanford Junior University Aperiodic quasi-phasematching gratings for chirp adjustments and frequency conversion of ultra-short pulses
US6806986B2 (en) * 2002-06-14 2004-10-19 Nippon Telegraph And Telephone Corporation Wavelength converter and wavelength converting apparatus
US7289261B2 (en) * 2004-12-22 2007-10-30 Collinear Corporation Design of quasi-phasematched optical frequency converters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020870A (ja) 2002-06-14 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> 波長変換素子および波長変換装置
JP2004233534A (ja) 2003-01-29 2004-08-19 Nippon Telegr & Teleph Corp <Ntt> 波長変換素子および波長変換装置
US20060132902A1 (en) * 2004-12-22 2006-06-22 Miller Gregory D Design of quasi-phasematched optical frequency converters

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ASOBE M. ET AL.: "Multiple Quasi-Phase-Matched Device Using Continuous Phase Modulations of khi(2) Grating and Its Application to Variable Wavelength Conversion", IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 41, no. 12, December 2005 (2005-12-01), pages 1540 - 1547, XP008103846 *
GU B.-Y. ET AL.: "Investigation of harmonic generations in aperiodic superlattices", JOURNAL OF APPLIED PHYSICS, vol. 87, no. 11, 1 June 2000 (2000-06-01), pages 7629 - 7637, XP012049134 *
H. ISHII, OPTICAL FIBER COMMUNICATION CONFERENCE 2005 TECHNICAL DIGEST, vol. 2, 2005, pages 91
M. NOTOMI, IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 2, 1990, pages 85
See also references of EP2071396A4
T. SUHARA, IEEE J. OF QUANTUM ELECTRONICS, vol. 26, 1990, pages 1265
T. YANAGAWA, APPLIED PHYSICS LETTERS, vol. 86, 2005, pages 161106
Y. NISHIDA, ELECTRONICS LETTERS, vol. 39, 2003, pages 609

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010128194A (ja) * 2008-11-27 2010-06-10 Nippon Telegr & Teleph Corp <Ntt> 非線形光素子

Also Published As

Publication number Publication date
US7940451B2 (en) 2011-05-10
EP2071396A4 (en) 2009-11-11
JP2008089762A (ja) 2008-04-17
US20100039699A1 (en) 2010-02-18
EP2071396A1 (en) 2009-06-17
CN101512426A (zh) 2009-08-19

Similar Documents

Publication Publication Date Title
US6806986B2 (en) Wavelength converter and wavelength converting apparatus
Balčytis et al. Synthetic dimension band structures on a Si CMOS photonic platform
JPH05273623A (ja) 光波長変換素子およびそれを用いたレーザ光源
WO2008041641A1 (fr) Élément de conversion de longueurs d&#39;onde et dispositif de conversion de longueurs d&#39;onde
Sun et al. Broadband and high-resolution integrated spectrometer based on a tunable FSR-free optical filter array
Guo et al. Ultra-wideband integrated photonic devices on silicon platform: from visible to mid-IR
Su et al. Scalability of large-scale photonic integrated circuits
JP2011203376A (ja) 波長変換素子および波長変換光源
Luo et al. Aluminum nitride thin film based reconfigurable integrated photonic devices
Sun et al. Integrated Bragg grating filters based on silicon-Sb 2 Se 3 with non-volatile bandgap engineering capability
Soref et al. Scanning spectrometer-on-a-chip using thermo-optical spike-filters or vernier-comb filters
Liu et al. A broadband tunable laser design based on the distributed Moiré-grating reflector
JP3971660B2 (ja) 波長変換素子および波長変換装置
Soref et al. Classical and quantum photonic sources based upon a nonlinear GaP/Si-superlattice micro-ring resonator
JP7415195B2 (ja) 波長変換素子
JP7160194B2 (ja) 波長変換素子
JP3971708B2 (ja) 波長変換素子および波長変換装置
Tu et al. Doubly resonant distributed feedback cavity with controllable wide wavelength separation
KR100823901B1 (ko) 파장 변환 소자 및 이를 사용하는 방법
JP4912387B2 (ja) 非線形光素子
US9078052B2 (en) Method and device for converting an input light signal into an output light signal
US20240011834A1 (en) Single-Photon Emitter using Frequency Comb
Asobe et al. Engineered quasi-phase matching device for unequally spaced multiple wavelength generation
Asobe et al. Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing
Liu Integrated Acousto-optic Devices based on Brillouin Optomechanics

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780033221.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828766

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12440006

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007828766

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE