WO2008066633A1 - Systems and methods for controlling slip of vehicle drive members - Google Patents

Systems and methods for controlling slip of vehicle drive members Download PDF

Info

Publication number
WO2008066633A1
WO2008066633A1 PCT/US2007/022725 US2007022725W WO2008066633A1 WO 2008066633 A1 WO2008066633 A1 WO 2008066633A1 US 2007022725 W US2007022725 W US 2007022725W WO 2008066633 A1 WO2008066633 A1 WO 2008066633A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
controller
signal indicative
pressure
drive members
Prior art date
Application number
PCT/US2007/022725
Other languages
French (fr)
Inventor
Randall D. Pruitt
Igor Strashny
Original Assignee
Caterpillar Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Inc. filed Critical Caterpillar Inc.
Publication of WO2008066633A1 publication Critical patent/WO2008066633A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/06Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/001Steering non-deflectable wheels; Steering endless tracks or the like control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/04Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of separate power sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/421Motor capacity control by electro-hydraulic control means, e.g. using solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/431Pump capacity control by electro-hydraulic control means, e.g. using solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/46Automatic regulation in accordance with output requirements
    • F16H61/472Automatic regulation in accordance with output requirements for achieving a target output torque
    • B60W2300/175
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H2059/6838Sensing gearing status of hydrostatic transmissions
    • F16H2059/6861Sensing gearing status of hydrostatic transmissions the pressures, e.g. high, low or differential pressures

Definitions

  • the present disclosure is directed to systems and methods for controlling vehicle drive members and, more particularly, to systems and methods for controlling slip of vehicle drive members.
  • Some conventional vehicles include a power source and a power train for transferring power to drive members.
  • the power train often includes a transmission coupled to the drive members, which propel the vehicle.
  • Some of those vehicles may include a system that limits the amount of torque transferred from the power source to the drive members in order, for example, to prevent excessive wear or failure of power train components that might occur under certain operating conditions. Such systems, however, may unduly inhibit the vehicle's performance, for example, when those operating conditions do not exist.
  • U.S. Patent No. 6,138,782 (“the '782 patent") issued to Anderson et al. on 31 October 2000.
  • the '782 patent describes a steering control system for a tracked vehicle that includes an engine driven variable displacement steering pump, which drives a hydraulic motor.
  • a control system senses steering wheel position, vehicle speed, engine speed and forward/reverse vehicle direction. As a function of these sensed inputs, a control signal is generated and is used to control the swashplate angle of an engine-driven variable displacement pump, which drives a steering motor, which, in turn, drives a differential track drive mechanism.
  • the control system also determines a ratio of motor speed to vehicle speed and generates a powerboost signal when the ratio exceeds a threshold value.
  • the powerboost signal is communicated to an engine controller, which causes the engine to increase its power output. This modifies the engine fuel delivery curve based on the steering system power requirement and increases the power available for turning the vehicle.
  • the vehicle described in the '782 patent includes a steering control system that provides increased power for turning the vehicle, the vehicle described in the '782 does not include a system or method for controlling slip of driving members of the vehicle.
  • the present disclosure includes a system for controlling slip of vehicle drive members.
  • the system includes a power train including a plurality of drive members and a hydraulic transmission configured to supply torque to at least one of the drive members. A magnitude of the torque is related to fluid flow in the hydraulic transmission.
  • the vehicle further includes a controller configured to control the fluid flow in the hydraulic transmission.
  • the controller is configured to receive a signal indicative of a steering command and a signal indicative of a parameter related to pressure in the hydraulic transmission.
  • the controller is further configured to control slip of the at least one drive member based on the signal indicative of a steering command and the signal indicative of a parameter related to pressure.
  • the disclosure includes a vehicle including a power train having a plurality of drive members and a hydraulic transmission configured to supply torque to at least one of the drive members.
  • a magnitude of the torque is related to fluid flow in the hydraulic transmission.
  • the vehicle further includes a controller configured to control the fluid flow in the hydraulic transmission.
  • the controller is further configured to receive a signal indicative of a steering command and a signal indicative of a parameter related to pressure in the hydraulic transmission, and control slip of the at least one drive member based on the signal indicative of a steering command and the signal indicative of a parameter related to pressure.
  • the disclosure includes a method for limiting slip of drive members of a vehicle.
  • the method includes receiving a signal indicative of a parameter related to pressure in a transmission of the vehicle and a signal indicative of a steering command of the vehicle.
  • the method further includes controlling fluid flow in the transmission based on the signal indicative of a parameter related to pressure in the transmission and the signal indicative of a steering command, such that the slip of at least one of the drive members is limited.
  • Fig. 1 is a schematic block diagram of an exemplary embodiment of a vehicle
  • Fig. 2 is a schematic block diagram of another exemplary embodiment of a vehicle
  • Fig. 3 A is a schematic representation of an exemplary vehicle traveling along a curved travel path
  • Fig. 3B is a schematic representation of an exemplary vehicle traveling along another example of a curved travel path
  • Fig. 4A is a graphical representation of an exemplary relationship between steering command and pressure in an exemplary vehicle transmission
  • Fig. 4B is a graphical representation of another exemplary relationship between steering command and pressure in an exemplary vehicle transmission.
  • Fig. 1 schematically illustrates an exemplary embodiment of a vehicle 10.
  • Vehicle 10 may include a power source 12 and a power train 14 operably coupling power source 12 to one or more drive members 16 configured to propel vehicle 10.
  • Exemplary vehicle 10 further includes an operator interface 18, including one or more control devices configured to permit an operator to control the speed and direction of vehicle 10's path of travel.
  • operator interface 18 may include a steering device 20 configured to control the direction of travel of vehicle 10.
  • Fig. 1 schematically depicts an exemplary steering device 20 including a single lever, but steering device 20 may be any device for use by an operator, either directly or remotely, for controlling the travel path of vehicle 10, such as, for example, one or more joy-sticks, one or more hand-operated or foot-operated levers, and a steering wheel.
  • Operator interface 18 may further include a device for controlling vehicle speed (not shown).
  • Vehicle 10 may be any type of ground-borne vehicle, such as, for example, an automobile, a truck, an agricultural vehicle, and/or a construction vehicle, such as, for example, a wheel loader, a dozer, a track-type tractor, an excavator, a grader, an on-highway truck, an off-highway truck, and/or any other vehicle type known to a person skilled in the art.
  • a construction vehicle such as, for example, a wheel loader, a dozer, a track-type tractor, an excavator, a grader, an on-highway truck, an off-highway truck, and/or any other vehicle type known to a person skilled in the art.
  • power source 12 may be any device that generates power, such as, for example, an internal combustion engine, including but not limited to spark-ignition engines, compression ignition engines, rotary engines, gas turbine engines, and/or engines powered by gasoline, diesel fuel, bio-diesel, ethanol, methanol, and combinations thereof; hydrogen-powered engines; fuel cells; solar cells; and/or any other power source known to a person skilled in the art.
  • drive members 16 may include wheels, tracks, belts, tires, and/or any other device(s) for propelling a vehicle known to a person skilled in the art.
  • Power train 14 may include one or more transmissions 22 configured to operably couple power source 12 to drive members 16.
  • transmission 22 may be a hydraulic transmission, such as, for example, any transmission that uses fluid flow to transfer power between a power source and drive members.
  • transmission 22 may include a transmission that includes one or more hydraulically-operated clutches to transfer power, such as, for example, transmissions sometimes referred to as "manual" transmissions, which include a hydraulically-operated clutch to selectively connect and disconnect a power source to a gear train, and automatic transmissions that include hydraulically-operated clutches to selectively engage components of one or more planetary gear assemblies.
  • transmission 22 may be a continuously-variable transmission, such as, for example, a hydraulic transmission that includes a hydraulically-operated pump and a hydraulically- operated motor, sometimes referred to as a "hydrostatic" transmission.
  • Exemplary vehicle 10 shown in Fig. 1 includes two transmissions 22, each configured to supply power to one of drive members 16.
  • a track-driven vehicle such as a track-type tractor may include a separate hydrostatic transmission 24 for each drive member 16 (e.g., each track).
  • a wheeled vehicle such as a wheel loader, may include either a single hydrostatic transmission 24, which drives a pair of wheels, or it may include a separate hydrostatic transmission 24 for two or more of its four wheels.
  • exemplary vehicle 10 may include a dual- path transmission configuration, which includes two hydrostatic transmissions 24.
  • Each hydrostatic transmission 24 is operably coupled to power source 12, and includes a hydraulic pump 26 fluidly coupled to a hydraulic motor 28.
  • Pump 26 and/or motor 28 may be variable displacement, variable delivery, fixed displacement, or any other configuration known in the art.
  • Pump 26 is operably coupled to power source 12, for example, via an input shaft 30.
  • pump 26 may be operably coupled to power source 12 via a torque converter (not shown), a clutch (not shown), a gear box (not shown), or in any other manner known in the art.
  • Hydrostatic transmission 24 may also include an output shaft 32 operably coupling motor 28 to one of drive members 16 via, for example, a final drive 34.
  • Final drive 34 may include a reduction gear arrangement, such as, for example, a bevel gear assembly, spur gear assembly, planetary gear assembly, and/or any other assembly known to those having skill in the art that provides a speed reduction.
  • Hydrostatic transmission 24 may be fluidly coupled to a hydraulic circuit 36.
  • Hydraulic circuit 36 may include a reservoir 38 configured to supply hydraulic fluid to hydraulic circuit 36 via a charging pump 40 and a source line 42.
  • Pump 26 may be configured to draw hydraulic fluid from reservoir 38, via source line 42, with the assistance of charging pump 40 and a shuttle valve 44.
  • Pump 26 may be further configured to supply hydraulic fluid to hydraulic motor 28, along hydraulic lines 46.
  • Hydraulic lines 46 may form a closed circuit in which one of hydraulic lines 46 carries fluid from pump 26 to motor 28, and other of hydraulic lines 46 return hydraulic fluid from motor 28 to pump 26. Hydraulic fluid flowing through motor 28 causes motor 28 to rotate, which results in supplying torque to output shaft 32.
  • the direction of fluid flow in hydraulic circuit 36 may be reversible, such that output shaft 32 may be driven in two directions, thereby providing vehicle 10 with the ability to be driven in either a forward or reverse direction, perform pivot turns, and/or counter-rotate (i.e., operate such that drive members 16 on opposite sides of vehicle 10 rotate in opposite directions).
  • Hydrostatic transmission 24 may include cross-over relief (COR) valves 48 configured to relieve pressure within hydraulic lines 46 when pressure within hydraulic lines 46 exceeds a pressure limit.
  • the pressure limit may be variable and/or may be adjustable, as discussed in more detail below.
  • COR valves 48 may be configured to direct fluid from a side of hydraulic circuit 36 experiencing higher pressure to a side of hydraulic circuit 36 experiencing a lower pressure. For example, hydraulic fluid may be directed via a COR line 50 from one of hydraulic lines 46 (i.e., a hydraulic line experiencing higher pressure) to another of the hydraulic lines 46 that has a lower pressure.
  • Exemplary vehicle 10 may include one or more sensors configured to provide a signal indicative of a parameter related to pressure in the transmission 22.
  • vehicle 10 may include a sensor 52 configured to provide a signal indicative of pressure in hydraulic circuit 36 and/or a sensor 54 configured to provide a signal indicative of temperature of the hydraulic fluid in hydraulic circuit 36.
  • Vehicle 10 may also include one or more sensors related to the operation of power source 12, such as, for example, engine control sensors 56, which may include, for example, an engine speed sensor 58 and/or a throttle input sensor 60.
  • sensor 52 may be a fluid pressure sensor and may be provided in hydraulic circuit 36 at a location between pump 26 and motor 28.
  • a single pressure sensor 52 may be configured to determine a highest pressure of the hydraulic fluid at a location between multiple pumps and the hydraulic motors associated with each pump.
  • each hydrostatic transmission 24 and/or each hydraulic line 46 located between the pump and motor of each hydrostatic transmission may include a separate pressure sensor.
  • sensor 54 may be a temperature sensor and may be configured to provide a signal indicative of the temperature of the hydraulic fluid in hydraulic circuit 36.
  • sensor 54 may be located anywhere within hydraulic circuit 36, such as, for example, within reservoir 30.
  • vehicle 10 may include a controller 62.
  • controller 62 may be configured to control operation of power source 12 and/or power train 14.
  • controller 62 may be configured to control transmission 22 by supplying control signals for operation of pumps 26 and motors 28.
  • controller 62 may control fluid flow in transmission 22 by, for example, controlling displacement of pumps 26 and/or motors 28.
  • transmission 22 may include a pair of pump actuator devices 64 (e.g., including solenoid and spool valve assemblies) configured to vary the displacement of pumps 26.
  • Transmission 22 may further include a pair of motor actuator devices 66 (e.g., including solenoid and spool valve assemblies).
  • Controller 62 may control displacement of pumps 26 and motors 28 based on signals received from operator interface 18, sensor 52, sensor 54, and/or engine control sensors 56. Such signals may be in the form of digital, analog, mechanical, and/or hydraulic signals.
  • steering device 20 may provide a signal indicative of an operator's steering command that is received by controller 62.
  • sensor 52 may provide a signal indicative of a parameter related to pressure in hydraulic circuit 36
  • sensor 54 may provide a signal indicative of the temperature of the hydraulic fluid in hydraulic circuit 36.
  • Controller 62 may be configured to control fluid flow in transmission 22 based, at least in part, on the signals received from steering device 18 and one or more of sensors 52 and 54. By controlling the fluid flow, controller 62 may operate to control the magnitude of the power supplied to one or more of drive members 16.
  • controller 62 may be configured to reduce the output of transmission 22 in response to sensor 52 and/or sensor 54.
  • controller 62 may be configured to operate such that when the pressure and/or temperature measured in the hydraulic circuit 36 reaches a limit value or values, controller 62 reduces the stroke of pumps 26 and/or motors 28 (i.e., de-strokes pumps 26 and/or motors 28), so that pressure and/or temperature in the hydraulic circuit 36 does not exceed the limit value(s).
  • the power output of transmission 22 may be dependent on a ratio between the displacement of pumps 26 and the displacement of motors 28, and controller 62 may be configured to control the ratio between the displacement of pumps 26 and the displacement of motors 28.
  • the limit value(s) may be variable and/or operator adjustable.
  • Controller 62 may include any components that may be used to run an application, such as, for example, a memory, a secondary storage device, and/or a central processing unit. According to some embodiments, controller 62 may include additional or different components, such as, for example, mechanical and/or hydro-mechanical components (see, e.g., the exemplary embodiment schematically-depicted in Fig. 2). Various other known components may be associated with controller 62, such as, for example, power supply circuitry, signal-conditioning circuitry, solenoid driver circuitry, and/or other appropriate circuitry. Such circuits may be electrical and/or hydro-mechanical.
  • controller 62 includes hydro-mechanical control components.
  • steering device 20 includes one or more hydraulic valves and may be incorporated into a pilot hydraulic circuit (not shown).
  • Steering device 20 may be fluidly coupled to controller 62 via a hydraulic line 68, such that hydraulic signals from steering device 20 are transmitted to controller 62.
  • Controller 62 may be fluidly coupled to pump actuator devices 64 via hydraulic lines 70 and to motor actuator devices 66 via hydraulic lines 72, such that hydraulic signals are transmitted from controller 62 to pump and/or motor actuator devices 64 and 66, respectively.
  • vehicle 10 may be controlled via operator interface 18, so that vehicle 10 is propelled via power source 12 and power train 14 in a straight-line travel path (not shown) and in curved travel paths, which curve to the right or left, for example, as schematically-depicted in Figs 3 A and 3B.
  • power source 12 and/or transmissions 22 may be operated such that substantially equal amounts of power are supplied via transmissions 22 to drive members 16 on opposite sides of vehicle 10, thereby propelling vehicle 10 in a substantially straight-line travel path.
  • a transmission 22 located on one side of vehicle 10 may be operated to supply more power and/or force to its corresponding drive member 16 than a transmission 22 located on the opposite side of vehicle 10 supplies to its corresponding drive member 16.
  • vehicle 10 may be steered and propelled in a curved path, at a radius having a center on the same side of vehicle 10 as the drive member 16 that receives less power and/or force.
  • steering may be accomplished via pivoting of one or more drive members 16, for example, similar to a conventional automobile's front wheels.
  • vehicle 10 may alternatively, or additionally, include an articulated chassis (not shown), and steering may be executed via pivoting of the chassis at its point of articulation.
  • controller 62 is configured to control the amount of slip of one or more of drive members 16.
  • power source 12 may be capable of supplying sufficient power to overcome the traction of drive members 16. Once the traction of a drive member 16 is exceeded, the loss of traction may inhibit an operator's ability to sufficiently control vehicle 10, which may yield unsatisfactory operation in some situations.
  • the amount of traction capable of drive members 16 may depend on the operating environment of vehicle 10 and/or the type of operation being executed by vehicle 10. For example, vehicle 10 may be operated on a surface that inherently provides reduced traction, such as, for example, a wet surface and/or an unpaved surface. Further, the amount of traction of drive member 16 may be related to the amount of downward force applied to drive members 16. In particular, as more downward force is applied to a particular drive member 16, that drive member 16 may exhibit increased traction. Such an increase in downward force may occur, for example, when vehicle 10 is hauling a load or when vehicle 10 is a construction vehicle, such as a track-type tractor, which is pushing a pile of dirt with one side of its blade. In such instances, one or more of drive members 16 may exhibit greater traction due an increase in downward force.
  • Controller 62 may be configured to control the amount of slip of one or more of drive members 16, for example, by controlling the fluid flow in one or more of transmissions 22, such that the amount of torque supplied to the one or more drive members 16 is modulated to limit slip.
  • the torque supplied to drive member 16 may be controlled by controlling operation of pump 26 and/or motor 28.
  • the amount of torque supplied to drive member 16 may be controlled by, for example, by reducing the pressure and/or amount of fluid supplied to motor 28 (e.g., by de-stroking pump 26 (i.e., when pump 26 is a variable-displacement pump) and/or by, for example, de-stroking motor 28 (i.e., when motor 28 is a variable displacement motor).
  • controller 62 may operate to reduce the amount of torque transferred by transmissions 22 to drive members 16.
  • controller 62 may send signals (e.g., either electric or hydraulic) to one or more of pump actuator devices 64 and/or one or more of motor actuator devices 66 to reduce the amount and/or pressure of fluid pumped via pumps 26 and/or de-stroke motors 28.
  • signals e.g., either electric or hydraulic
  • pump actuator devices 64 and/or one or more of motor actuator devices 66 to reduce the amount and/or pressure of fluid pumped via pumps 26 and/or de-stroke motors 28.
  • de- stroking motors 28 the amount of torque transferred from power source 12 to drive members 16 may be reduced.
  • the amount of slip of one or more of drive members 16 may be reduced.
  • the amount of slip may be controlled by limiting or reducing the operational speed of power source 12. This may, in turn, limit the amount of power transferred to drive members 16 via transmission 22 (i.e., an automatic transmission).
  • controller 62 may control the fluid flow in one or more of transmissions 22 based on signals indicative a steering command received from steering device 20 and/or a signal indicative of a parameter related to pressure received from sensor 52 and/or sensor 54.
  • controller 62 may include one or more memory devices for storing data, for example, in the form of one or more maps or tables, which correlate to values associated with the steering commands, values associated with the parameter related to pressure, values associated with vehicle lO's speed, values associated with a speed command, and/or values associated with the fluid flow in transmissions 22.
  • Controller 62 may operate to determine appropriate fluid flow in transmissions 22 based these values and one or more of the maps or tables and provide a signal to one or more of pump and motor actuator devices 64 and 66, respectively, such that fluid flows in transmissions 22 according to the determined fluid flow. In this exemplary manner, controller 62 may operate to control the amount of power supplied to drive members 16.
  • controller 62 may include a processor configured to control fluid flow in one or more of transmissions 22 based on a mathematical relationship between, for example, a value corresponding to the signal indicative of a steering command and a value corresponding to the signal indicative of a parameter related to pressure in transmissions 22.
  • the fluid flow in one or more of transmissions 22 may be controlled via real time calculations rather than, or in addition to, relying on values stored in maps or tables.
  • the disclosed systems and method for controlling slip of vehicle drive members may be applicable to any type of vehicle.
  • the disclosed systems and methods may be applicable to vehicles having one or more transmissions that include hydraulic components, for example, vehicles having one or more hydrostatic transmissions operably coupled to the drive members.
  • Such vehicles may include two hydrostatic transmissions.
  • Each of the hydrostatic transmissions may be operably coupled to a drive member located on opposite sides of a vehicle.
  • the vehicle may include a hydraulic circuit, and each of the hydrostatic transmissions may include a hydraulic pump and a hydraulic motor fluidly coupled to the hydraulic circuit.
  • the hydrostatic transmissions transfer torque supplied by a power source, such as, for example, an internal combustion engine, to the drive members.
  • the amount of torque transferred by the hydrostatic transmissions may be controlled by a controller that controls the flow of fluid in the hydraulic circuit and/or in the pumps and motors of the hydrostatic transmissions.
  • the controller may be configured to, among other things, control a pressure override (POR) system, which substantially prevents over-pressurization in the hydrostatic transmission, for example, by limiting the pressure in the hydrostatic transmissions to either a static (i.e., constant) or dynamic (i.e., varying) pressure set point.
  • POR pressure override
  • the controller if electronic, may control an electronic pressure override (ePOR) system.
  • ePOR electronic pressure override
  • the controller is hydro-mechanical, it may control a hydro-mechanical pressure override (hPOR) system.
  • the controller may substantially prevent over-pressurization by controlling fluid flow in the hydrostatic transmissions. For example, if exemplary controller 62 receives signals indicating that a parameter related to pressure (e.g., the pressure) in the hydraulic circuit exceeds the pressure set point, controller 62 may send signals, either electric or hydraulic, to pump and/or motor actuator devices 64 and 66, respectively, so that the output of pumps 26 and/or motors 28 is reduced (e.g., via de-stroking the pumps and/or motors 26 and 28, respectively). In this manner, controller 62 may prevent over-pressurization in the hydrostatic transmissions 22 by limiting the parameter related to pressure to the pressure set point. This may reduce wear on the components of power train 14.
  • a parameter related to pressure e.g., the pressure
  • controller 62 may send signals, either electric or hydraulic, to pump and/or motor actuator devices 64 and 66, respectively, so that the output of pumps 26 and/or motors 28 is reduced (e.g., via de-stroking the pumps and/or motors 26 and
  • the controller may be configured to operate a system for controlling slip of the vehicle's drive members, for example, by controlling the fluid flow in the transmissions.
  • the controller may operate such that the pressure set point is dynamic. Limiting the parameter related to pressure in the transmissions to a static pressure set point may result in reducing the torque transferred to the drive members, such that the performance of the vehicle is undesirable for some operating conditions. For example, it may be desirable for the transmissions to supply increased torque based on the vehicle's speed, the drive members' speed, and/or whether the vehicle is traveling in a straight-line travel path or a curved travel path.
  • the drive members of the vehicle may include tracks, and steering the vehicle may be executed by supplying more torque to the track or tracks located on the outside of the curved travel path.
  • an operator of vehicle 10 may operate steering device 20 to provide a steering command (e.g., a steering command of about 25% to the left) and, as vehicle 10 executes a turn defining a curved travel path TP A to the left, the curved travel path TP A defines a center C and a radius R A - It may be desirable to provide the drive member(s) located on the side of vehicle 10 opposite the center C with more torque than the drive member(s) located on the same side of vehicle 10 as the center C.
  • Fig. 3B schematically-depicts a curved travel path TP B defining a radius R B that is less than the radius R A schematically-depicted in Fig.
  • 3A which may be executed when the operator uses steering device 20 to provide a steering command of, for example, about 75% to the left.
  • the pressure set point may be dynamic such that the vehicle exhibits improved operation.
  • the pressure set point rather than being the same regardless of the operation of the vehicle, may be increased as the steering command calls for a decreased radius.
  • increasing the steering command e.g., from 25% to 75%) results in the vehicle traveling in a curved path defining a smaller radius.
  • the amount of power and/or force provided to the drive member(s) may be controlled such that the slip of the drive member(s) is limited.
  • the amount of torque supplied to drive members 16 may be controlled by controlling the fluid flow in the hydraulic transmissions 22.
  • the torque supplied to drive members 16 may be controlled by controlling the amount and/or pressure of the fluid supplied by pumps 26 to motors 28, and/or by stroking or de-stoking motors 28.
  • Controller 62 may be configured to control the fluid flow in hydraulic transmissions 22 based on the signal indicative of a parameter related to pressure. For example, controller 62 may control fluid flow such that the pressure in hydraulic circuit 36 does not exceed the pressure set point.
  • controller 62 may control fluid flow through hydraulic circuit 36 such that pressure in hydraulic circuit 36 does not exceed a static pressure set point P ST , as shown in Figs. 4A and 4B.
  • the static pressure set point may be predetermined and/or may be operator adjustable via an adjustment device of operator interface 18, such that an operator may tailor the torque provided to drive members 16 to the operating conditions.
  • the static pressure set point P ST does not vary (except via manual operator adjustment) based on steering command.
  • the pressure set point may vary with steering command.
  • dynamic pressure set point P D varies with the steering command.
  • the pressure set point i.e., the maximum pressure in hydraulic circuit 36
  • motor 28 associated with a drive member 16 located on the outside of the turn increases, which permits motor 28 associated with a drive member 16 located on the outside of the turn to supply more torque to the drive member 16 located on the outside of the turn, for example, by increasing motor 28 's stroke.
  • controller 62 may control the fluid flow in one or more of transmissions 22 based on signals indicative of a steering command received from steering device 20 and/or a signal indicative of a parameter related to pressure received from sensor 52 and/or sensor 54.
  • controller 62 may include one or more memory devices for storing data, for example, in the form of one or more maps or tables, which correlate values associated with steering commands, values associated with the parameter related to pressure, values associated with vehicle lO's speed, values associated with a speed command, and/or values associated with fluid flow in transmissions 22.
  • Controller 62 may operate to determine appropriate fluid flow in transmissions 22 based these values and one or more of the maps or tables and provide a signal to one or more of pump and motor actuator devices 64 and 66, respectively, such that fluid flows in transmissions 22 according to the determined fluid flow.
  • controller 62 may operate such that the values of the maps or tables result in a dynamic pressure set point P D having the exemplary profile schematically-depicted in Fig. 4A.
  • controller 62 may operate to control the amount of torque supplied to drive members 16.
  • controller 62 may include a processor configured to control fluid flow in one or more of transmissions 22 based on a mathematical relationship between, for example, a value corresponding to the signal indicative of a steering command and a value corresponding to the signal indicative of a parameter related to pressure in transmissions 22.
  • the fluid flow in one or more of transmissions 22 may be controlled via real time calculations rather than, or in addition to, relying on values stored in maps or tables.
  • controller 62 may operate such that the dynamic pressure set point P D exhibits the exemplary profile schematically-depicted in Fig. 4A.
  • Fig. 4B shows an exemplary profile for a dynamic pressure set point P D set by an exemplary hydro-mechanical embodiment of controller 62.
  • Exemplary hydro-mechanical controller 62 may control pressure in hydraulic circuit 36 by sending a hydraulic signal to pump and/or motor actuator devices 64 and 66, respectively, which control the stroke of pumps 26 and/or motors 28. For example, during straight-line travel (i.e., corresponding to 0% steering command), controller 62 may operate to limit pressure in hydraulic circuit 36 to a static pressure set point P ST by de-stroking the pumps 26 and/or the motors 28.
  • the static pressure set point controlled by the exemplary hydro-mechanical controller 62 may be modified so that it operates like a dynamic pressure set point.
  • steering device 20 may include one or more valves configured to send a hydraulic signal to controller 62 in the form of pressurized hydraulic fluid.
  • the controller 62 may be configured, for example, to reduce the hydraulic signals sent from controller 62 to pump and/or motor actuator devices 64 and 66, which serve to de-stroke the pumps 26 and/or motors 28, respectively, and set the pressure in the hydraulic circuit 36 to the static pressure set point P ST - This reduction may occur via reduction of the pressure of the hydraulic signal based on the hydraulic signal sent from steering device 20 to controller 62.
  • the amount of de- stroking of pumps 26 and/or motors 28 serves to allow the pressure set point to increase and become dynamic, as schematically-depicted in Fig. 4B.
  • the valve(s) associated with the steering device 20 allow more fluid to flow under pressure to controller 62.
  • Controller 62 uses the fluid flow from steering device 20 to increase the amount of pressure permitted in hydraulic circuit 36 by, for example, counteracting the de-stroking hydraulic signal sent to pump and/or motor actuator devices 64 and 66.
  • the pressure set point becomes dynamic and based, at least in part, on the signal indicative of a steering command. This may result in a dynamic pressure set point P D having the exemplary profile shown in Fig. 4B.
  • the pressure set point may be modified by the operator via an adjustment provided by operator interface 18.
  • an operator may adjust the pressure set point based on experience and/or operating conditions.
  • the pressure set point profiles shown in Figs. 4A and 4B are schematic and exemplary.
  • the exemplary profiles shown in Figs. 4A and 4B may not necessarily be symmetric with respect to steering command.
  • the exemplary profile shown in Fig 4A may not necessarily be curvilinear, and the exemplary profile shown in Fig. 4B may not necessarily be a combination of linear portions.
  • the profiles may be a combination of linear portions and curvilinear portions.

Abstract

A system for controlling slip of vehicle drive members (16) is disclosed. The system includes a power train (14) including a plurality of drive members and a hydraulic transmission (22) configured to supply torque to at least one of the drive members. A magnitude of the torque is related to fluid flow in the hydraulic transmission. The system further includes a controller (62) configured to control the fluid flow in the hydraulic transmission. The controller is configured to receive a signal indicative of a steering command and a signal indicative of a parameter related to pressure in the hydraulic transmission. The controller is further configured to control slip of the at least one drive member based on the signal indicative of a steering command and the signal indicative of a parameter related to pressure.

Description

Description
SYSTEMS AND METHODS FOR CONTROLLING SLIP OF VEHICLE
DRIVE MEMBERS
Technical Field
The present disclosure is directed to systems and methods for controlling vehicle drive members and, more particularly, to systems and methods for controlling slip of vehicle drive members.
Background
Some conventional vehicles include a power source and a power train for transferring power to drive members. The power train often includes a transmission coupled to the drive members, which propel the vehicle. Some of those vehicles may include a system that limits the amount of torque transferred from the power source to the drive members in order, for example, to prevent excessive wear or failure of power train components that might occur under certain operating conditions. Such systems, however, may unduly inhibit the vehicle's performance, for example, when those operating conditions do not exist.
In particular, it may be desirable for some vehicles to be able to supply more torque to one or more of the drive members under certain operating conditions than might be permitted by systems that limit the amount of torque transferred from the power source to the drive members. For example, it may be desirable to supply more torque to one or more of the drive members as the vehicle is executing a turn. It may also be desirable to supply more torque to one or more of the drive members when the vehicle encounters a situation such as, for example, a steep incline. It may also be desirable to limit the slip of the one or more drive members, even under circumstances in which more torque is desirable.
One example of a vehicle including a steering control system that changes engine power output based on steering input is described in U.S. Patent No. 6,138,782 ("the '782 patent") issued to Anderson et al. on 31 October 2000. The '782 patent describes a steering control system for a tracked vehicle that includes an engine driven variable displacement steering pump, which drives a hydraulic motor. A control system senses steering wheel position, vehicle speed, engine speed and forward/reverse vehicle direction. As a function of these sensed inputs, a control signal is generated and is used to control the swashplate angle of an engine-driven variable displacement pump, which drives a steering motor, which, in turn, drives a differential track drive mechanism. The control system also determines a ratio of motor speed to vehicle speed and generates a powerboost signal when the ratio exceeds a threshold value. The powerboost signal is communicated to an engine controller, which causes the engine to increase its power output. This modifies the engine fuel delivery curve based on the steering system power requirement and increases the power available for turning the vehicle.
Although the vehicle described in the '782 patent includes a steering control system that provides increased power for turning the vehicle, the vehicle described in the '782 does not include a system or method for controlling slip of driving members of the vehicle.
The systems and methods disclosed herein may be directed to achieving one or more of the desires set forth above.
Summary of the Invention
In one aspect, the present disclosure includes a system for controlling slip of vehicle drive members. The system includes a power train including a plurality of drive members and a hydraulic transmission configured to supply torque to at least one of the drive members. A magnitude of the torque is related to fluid flow in the hydraulic transmission. The vehicle further includes a controller configured to control the fluid flow in the hydraulic transmission. The controller is configured to receive a signal indicative of a steering command and a signal indicative of a parameter related to pressure in the hydraulic transmission. The controller is further configured to control slip of the at least one drive member based on the signal indicative of a steering command and the signal indicative of a parameter related to pressure.
According to another aspect, the disclosure includes a vehicle including a power train having a plurality of drive members and a hydraulic transmission configured to supply torque to at least one of the drive members. A magnitude of the torque is related to fluid flow in the hydraulic transmission. The vehicle further includes a controller configured to control the fluid flow in the hydraulic transmission. The controller is further configured to receive a signal indicative of a steering command and a signal indicative of a parameter related to pressure in the hydraulic transmission, and control slip of the at least one drive member based on the signal indicative of a steering command and the signal indicative of a parameter related to pressure.
According to a further aspect, the disclosure includes a method for limiting slip of drive members of a vehicle. The method includes receiving a signal indicative of a parameter related to pressure in a transmission of the vehicle and a signal indicative of a steering command of the vehicle. The method further includes controlling fluid flow in the transmission based on the signal indicative of a parameter related to pressure in the transmission and the signal indicative of a steering command, such that the slip of at least one of the drive members is limited.
Brief Description of the Drawings
Fig. 1 is a schematic block diagram of an exemplary embodiment of a vehicle; -A-
Fig. 2 is a schematic block diagram of another exemplary embodiment of a vehicle;
Fig. 3 A is a schematic representation of an exemplary vehicle traveling along a curved travel path;
Fig. 3B is a schematic representation of an exemplary vehicle traveling along another example of a curved travel path;
Fig. 4A is a graphical representation of an exemplary relationship between steering command and pressure in an exemplary vehicle transmission; and
Fig. 4B is a graphical representation of another exemplary relationship between steering command and pressure in an exemplary vehicle transmission.
Detailed Description
Fig. 1 schematically illustrates an exemplary embodiment of a vehicle 10. Vehicle 10 may include a power source 12 and a power train 14 operably coupling power source 12 to one or more drive members 16 configured to propel vehicle 10. Exemplary vehicle 10 further includes an operator interface 18, including one or more control devices configured to permit an operator to control the speed and direction of vehicle 10's path of travel. For example, operator interface 18 may include a steering device 20 configured to control the direction of travel of vehicle 10. Fig. 1 schematically depicts an exemplary steering device 20 including a single lever, but steering device 20 may be any device for use by an operator, either directly or remotely, for controlling the travel path of vehicle 10, such as, for example, one or more joy-sticks, one or more hand-operated or foot-operated levers, and a steering wheel. Operator interface 18 may further include a device for controlling vehicle speed (not shown).
Vehicle 10 may be any type of ground-borne vehicle, such as, for example, an automobile, a truck, an agricultural vehicle, and/or a construction vehicle, such as, for example, a wheel loader, a dozer, a track-type tractor, an excavator, a grader, an on-highway truck, an off-highway truck, and/or any other vehicle type known to a person skilled in the art. Moreover, power source 12 may be any device that generates power, such as, for example, an internal combustion engine, including but not limited to spark-ignition engines, compression ignition engines, rotary engines, gas turbine engines, and/or engines powered by gasoline, diesel fuel, bio-diesel, ethanol, methanol, and combinations thereof; hydrogen-powered engines; fuel cells; solar cells; and/or any other power source known to a person skilled in the art. Further, drive members 16 may include wheels, tracks, belts, tires, and/or any other device(s) for propelling a vehicle known to a person skilled in the art.
Power train 14 may include one or more transmissions 22 configured to operably couple power source 12 to drive members 16. For example, transmission 22 may be a hydraulic transmission, such as, for example, any transmission that uses fluid flow to transfer power between a power source and drive members. For example, transmission 22 may include a transmission that includes one or more hydraulically-operated clutches to transfer power, such as, for example, transmissions sometimes referred to as "manual" transmissions, which include a hydraulically-operated clutch to selectively connect and disconnect a power source to a gear train, and automatic transmissions that include hydraulically-operated clutches to selectively engage components of one or more planetary gear assemblies. Moreover, transmission 22 may be a continuously-variable transmission, such as, for example, a hydraulic transmission that includes a hydraulically-operated pump and a hydraulically- operated motor, sometimes referred to as a "hydrostatic" transmission.
Exemplary vehicle 10 shown in Fig. 1 includes two transmissions 22, each configured to supply power to one of drive members 16. For example, a track-driven vehicle such as a track-type tractor may include a separate hydrostatic transmission 24 for each drive member 16 (e.g., each track). A wheeled vehicle, such as a wheel loader, may include either a single hydrostatic transmission 24, which drives a pair of wheels, or it may include a separate hydrostatic transmission 24 for two or more of its four wheels.
As illustrated in Fig. 1, exemplary vehicle 10 may include a dual- path transmission configuration, which includes two hydrostatic transmissions 24. Each hydrostatic transmission 24 is operably coupled to power source 12, and includes a hydraulic pump 26 fluidly coupled to a hydraulic motor 28. Pump 26 and/or motor 28 may be variable displacement, variable delivery, fixed displacement, or any other configuration known in the art. Pump 26 is operably coupled to power source 12, for example, via an input shaft 30. Alternatively, pump 26 may be operably coupled to power source 12 via a torque converter (not shown), a clutch (not shown), a gear box (not shown), or in any other manner known in the art. Hydrostatic transmission 24 may also include an output shaft 32 operably coupling motor 28 to one of drive members 16 via, for example, a final drive 34. Final drive 34 may include a reduction gear arrangement, such as, for example, a bevel gear assembly, spur gear assembly, planetary gear assembly, and/or any other assembly known to those having skill in the art that provides a speed reduction.
Hydrostatic transmission 24 may be fluidly coupled to a hydraulic circuit 36. Hydraulic circuit 36 may include a reservoir 38 configured to supply hydraulic fluid to hydraulic circuit 36 via a charging pump 40 and a source line 42. Pump 26 may be configured to draw hydraulic fluid from reservoir 38, via source line 42, with the assistance of charging pump 40 and a shuttle valve 44. Pump 26 may be further configured to supply hydraulic fluid to hydraulic motor 28, along hydraulic lines 46. Hydraulic lines 46 may form a closed circuit in which one of hydraulic lines 46 carries fluid from pump 26 to motor 28, and other of hydraulic lines 46 return hydraulic fluid from motor 28 to pump 26. Hydraulic fluid flowing through motor 28 causes motor 28 to rotate, which results in supplying torque to output shaft 32. The direction of fluid flow in hydraulic circuit 36 may be reversible, such that output shaft 32 may be driven in two directions, thereby providing vehicle 10 with the ability to be driven in either a forward or reverse direction, perform pivot turns, and/or counter-rotate (i.e., operate such that drive members 16 on opposite sides of vehicle 10 rotate in opposite directions).
Hydrostatic transmission 24 may include cross-over relief (COR) valves 48 configured to relieve pressure within hydraulic lines 46 when pressure within hydraulic lines 46 exceeds a pressure limit. The pressure limit may be variable and/or may be adjustable, as discussed in more detail below. COR valves 48 may be configured to direct fluid from a side of hydraulic circuit 36 experiencing higher pressure to a side of hydraulic circuit 36 experiencing a lower pressure. For example, hydraulic fluid may be directed via a COR line 50 from one of hydraulic lines 46 (i.e., a hydraulic line experiencing higher pressure) to another of the hydraulic lines 46 that has a lower pressure.
Exemplary vehicle 10 may include one or more sensors configured to provide a signal indicative of a parameter related to pressure in the transmission 22. For example vehicle 10 may include a sensor 52 configured to provide a signal indicative of pressure in hydraulic circuit 36 and/or a sensor 54 configured to provide a signal indicative of temperature of the hydraulic fluid in hydraulic circuit 36. Vehicle 10 may also include one or more sensors related to the operation of power source 12, such as, for example, engine control sensors 56, which may include, for example, an engine speed sensor 58 and/or a throttle input sensor 60.
According to some exemplary embodiments, sensor 52 may be a fluid pressure sensor and may be provided in hydraulic circuit 36 at a location between pump 26 and motor 28. For example, a single pressure sensor 52 may be configured to determine a highest pressure of the hydraulic fluid at a location between multiple pumps and the hydraulic motors associated with each pump. Alternatively, each hydrostatic transmission 24 and/or each hydraulic line 46 located between the pump and motor of each hydrostatic transmission may include a separate pressure sensor.
According to some embodiments, sensor 54 may be a temperature sensor and may be configured to provide a signal indicative of the temperature of the hydraulic fluid in hydraulic circuit 36. For example, sensor 54 may be located anywhere within hydraulic circuit 36, such as, for example, within reservoir 30.
According to some embodiments, vehicle 10 may include a controller 62. As shown in Fig. 1, controller 62 may be configured to control operation of power source 12 and/or power train 14. For example, controller 62 may be configured to control transmission 22 by supplying control signals for operation of pumps 26 and motors 28. In particular, controller 62 may control fluid flow in transmission 22 by, for example, controlling displacement of pumps 26 and/or motors 28. In particular, transmission 22 may include a pair of pump actuator devices 64 (e.g., including solenoid and spool valve assemblies) configured to vary the displacement of pumps 26. Transmission 22 may further include a pair of motor actuator devices 66 (e.g., including solenoid and spool valve assemblies).
Controller 62 may control displacement of pumps 26 and motors 28 based on signals received from operator interface 18, sensor 52, sensor 54, and/or engine control sensors 56. Such signals may be in the form of digital, analog, mechanical, and/or hydraulic signals. For example, steering device 20 may provide a signal indicative of an operator's steering command that is received by controller 62. Further, sensor 52 may provide a signal indicative of a parameter related to pressure in hydraulic circuit 36, and/or sensor 54 may provide a signal indicative of the temperature of the hydraulic fluid in hydraulic circuit 36. One of more of these signals from sensor 52 and sensor 54 may be received by controller 62. Controller 62 may be configured to control fluid flow in transmission 22 based, at least in part, on the signals received from steering device 18 and one or more of sensors 52 and 54. By controlling the fluid flow, controller 62 may operate to control the magnitude of the power supplied to one or more of drive members 16.
For example, according to some embodiments, controller 62 may be configured to reduce the output of transmission 22 in response to sensor 52 and/or sensor 54. In particular, controller 62 may be configured to operate such that when the pressure and/or temperature measured in the hydraulic circuit 36 reaches a limit value or values, controller 62 reduces the stroke of pumps 26 and/or motors 28 (i.e., de-strokes pumps 26 and/or motors 28), so that pressure and/or temperature in the hydraulic circuit 36 does not exceed the limit value(s). According to some embodiments, the power output of transmission 22 may be dependent on a ratio between the displacement of pumps 26 and the displacement of motors 28, and controller 62 may be configured to control the ratio between the displacement of pumps 26 and the displacement of motors 28. As will be described in more detailed below, according to some embodiments, the limit value(s) may be variable and/or operator adjustable.
Controller 62 may include any components that may be used to run an application, such as, for example, a memory, a secondary storage device, and/or a central processing unit. According to some embodiments, controller 62 may include additional or different components, such as, for example, mechanical and/or hydro-mechanical components (see, e.g., the exemplary embodiment schematically-depicted in Fig. 2). Various other known components may be associated with controller 62, such as, for example, power supply circuitry, signal-conditioning circuitry, solenoid driver circuitry, and/or other appropriate circuitry. Such circuits may be electrical and/or hydro-mechanical.
In the exemplary embodiment schematically depicted in Fig. 2, controller 62 includes hydro-mechanical control components. For example, steering device 20 includes one or more hydraulic valves and may be incorporated into a pilot hydraulic circuit (not shown). Steering device 20 may be fluidly coupled to controller 62 via a hydraulic line 68, such that hydraulic signals from steering device 20 are transmitted to controller 62. Controller 62 may be fluidly coupled to pump actuator devices 64 via hydraulic lines 70 and to motor actuator devices 66 via hydraulic lines 72, such that hydraulic signals are transmitted from controller 62 to pump and/or motor actuator devices 64 and 66, respectively.
According to some embodiments of vehicle 10, vehicle 10 may be controlled via operator interface 18, so that vehicle 10 is propelled via power source 12 and power train 14 in a straight-line travel path (not shown) and in curved travel paths, which curve to the right or left, for example, as schematically-depicted in Figs 3 A and 3B. For example, power source 12 and/or transmissions 22 may be operated such that substantially equal amounts of power are supplied via transmissions 22 to drive members 16 on opposite sides of vehicle 10, thereby propelling vehicle 10 in a substantially straight-line travel path. Moreover, a transmission 22 located on one side of vehicle 10 may be operated to supply more power and/or force to its corresponding drive member 16 than a transmission 22 located on the opposite side of vehicle 10 supplies to its corresponding drive member 16. In this manner, vehicle 10 may be steered and propelled in a curved path, at a radius having a center on the same side of vehicle 10 as the drive member 16 that receives less power and/or force. Alternatively, or in addition, steering may be accomplished via pivoting of one or more drive members 16, for example, similar to a conventional automobile's front wheels. Further, vehicle 10 may alternatively, or additionally, include an articulated chassis (not shown), and steering may be executed via pivoting of the chassis at its point of articulation.
According to some embodiments, controller 62 is configured to control the amount of slip of one or more of drive members 16. For example, power source 12 may be capable of supplying sufficient power to overcome the traction of drive members 16. Once the traction of a drive member 16 is exceeded, the loss of traction may inhibit an operator's ability to sufficiently control vehicle 10, which may yield unsatisfactory operation in some situations.
The amount of traction capable of drive members 16 may depend on the operating environment of vehicle 10 and/or the type of operation being executed by vehicle 10. For example, vehicle 10 may be operated on a surface that inherently provides reduced traction, such as, for example, a wet surface and/or an unpaved surface. Further, the amount of traction of drive member 16 may be related to the amount of downward force applied to drive members 16. In particular, as more downward force is applied to a particular drive member 16, that drive member 16 may exhibit increased traction. Such an increase in downward force may occur, for example, when vehicle 10 is hauling a load or when vehicle 10 is a construction vehicle, such as a track-type tractor, which is pushing a pile of dirt with one side of its blade. In such instances, one or more of drive members 16 may exhibit greater traction due an increase in downward force.
Controller 62 may be configured to control the amount of slip of one or more of drive members 16, for example, by controlling the fluid flow in one or more of transmissions 22, such that the amount of torque supplied to the one or more drive members 16 is modulated to limit slip. For example, the torque supplied to drive member 16 may be controlled by controlling operation of pump 26 and/or motor 28. For example, the amount of torque supplied to drive member 16 may be controlled by, for example, by reducing the pressure and/or amount of fluid supplied to motor 28 (e.g., by de-stroking pump 26 (i.e., when pump 26 is a variable-displacement pump) and/or by, for example, de-stroking motor 28 (i.e., when motor 28 is a variable displacement motor). If power source 12 is supplying excess power to transmissions 22, such that drive members 16 lose traction and slip, controller 62 may operate to reduce the amount of torque transferred by transmissions 22 to drive members 16. In the exemplary embodiments shown in Figs. 1 and 2, for example, controller 62 may send signals (e.g., either electric or hydraulic) to one or more of pump actuator devices 64 and/or one or more of motor actuator devices 66 to reduce the amount and/or pressure of fluid pumped via pumps 26 and/or de-stroke motors 28. By de- stroking motors 28, the amount of torque transferred from power source 12 to drive members 16 may be reduced. By reducing the amount of torque transferred, the amount of slip of one or more of drive members 16 may be reduced. According to some embodiments, for example, embodiments in which power source 12 is operably coupled to transmission 22 via a torque converter, the amount of slip may be controlled by limiting or reducing the operational speed of power source 12. This may, in turn, limit the amount of power transferred to drive members 16 via transmission 22 (i.e., an automatic transmission).
According to some embodiments, controller 62 may control the fluid flow in one or more of transmissions 22 based on signals indicative a steering command received from steering device 20 and/or a signal indicative of a parameter related to pressure received from sensor 52 and/or sensor 54. For example, controller 62 may include one or more memory devices for storing data, for example, in the form of one or more maps or tables, which correlate to values associated with the steering commands, values associated with the parameter related to pressure, values associated with vehicle lO's speed, values associated with a speed command, and/or values associated with the fluid flow in transmissions 22. Controller 62 may operate to determine appropriate fluid flow in transmissions 22 based these values and one or more of the maps or tables and provide a signal to one or more of pump and motor actuator devices 64 and 66, respectively, such that fluid flows in transmissions 22 according to the determined fluid flow. In this exemplary manner, controller 62 may operate to control the amount of power supplied to drive members 16.
According to some embodiments, controller 62 may include a processor configured to control fluid flow in one or more of transmissions 22 based on a mathematical relationship between, for example, a value corresponding to the signal indicative of a steering command and a value corresponding to the signal indicative of a parameter related to pressure in transmissions 22. According to such embodiments, the fluid flow in one or more of transmissions 22 may be controlled via real time calculations rather than, or in addition to, relying on values stored in maps or tables.
Industrial Applicability
The disclosed systems and method for controlling slip of vehicle drive members may be applicable to any type of vehicle. For example, the disclosed systems and methods may be applicable to vehicles having one or more transmissions that include hydraulic components, for example, vehicles having one or more hydrostatic transmissions operably coupled to the drive members.
Such vehicles may include two hydrostatic transmissions. Each of the hydrostatic transmissions may be operably coupled to a drive member located on opposite sides of a vehicle. The vehicle may include a hydraulic circuit, and each of the hydrostatic transmissions may include a hydraulic pump and a hydraulic motor fluidly coupled to the hydraulic circuit. The hydrostatic transmissions transfer torque supplied by a power source, such as, for example, an internal combustion engine, to the drive members. The amount of torque transferred by the hydrostatic transmissions may be controlled by a controller that controls the flow of fluid in the hydraulic circuit and/or in the pumps and motors of the hydrostatic transmissions.
The controller may be configured to, among other things, control a pressure override (POR) system, which substantially prevents over-pressurization in the hydrostatic transmission, for example, by limiting the pressure in the hydrostatic transmissions to either a static (i.e., constant) or dynamic (i.e., varying) pressure set point. For example, the controller, if electronic, may control an electronic pressure override (ePOR) system. If, on the other hand, the controller is hydro-mechanical, it may control a hydro-mechanical pressure override (hPOR) system.
The controller may substantially prevent over-pressurization by controlling fluid flow in the hydrostatic transmissions. For example, if exemplary controller 62 receives signals indicating that a parameter related to pressure (e.g., the pressure) in the hydraulic circuit exceeds the pressure set point, controller 62 may send signals, either electric or hydraulic, to pump and/or motor actuator devices 64 and 66, respectively, so that the output of pumps 26 and/or motors 28 is reduced (e.g., via de-stroking the pumps and/or motors 26 and 28, respectively). In this manner, controller 62 may prevent over-pressurization in the hydrostatic transmissions 22 by limiting the parameter related to pressure to the pressure set point. This may reduce wear on the components of power train 14.
According to some embodiments, the controller may be configured to operate a system for controlling slip of the vehicle's drive members, for example, by controlling the fluid flow in the transmissions. For example, the controller may operate such that the pressure set point is dynamic. Limiting the parameter related to pressure in the transmissions to a static pressure set point may result in reducing the torque transferred to the drive members, such that the performance of the vehicle is undesirable for some operating conditions. For example, it may be desirable for the transmissions to supply increased torque based on the vehicle's speed, the drive members' speed, and/or whether the vehicle is traveling in a straight-line travel path or a curved travel path.
For example, it may be desirable to transfer more torque to the drive members when the vehicle is traveling at a relatively high rate of speed. Moreover, when the vehicle is traveling in a curved travel path (see, e.g., Figs. 3A and 3B), it may be desirable to supply more torque to the drive member(s) located on the opposite side of the vehicle from the center of the radius of the travel path of the vehicle. For example, the drive members of the vehicle may include tracks, and steering the vehicle may be executed by supplying more torque to the track or tracks located on the outside of the curved travel path.
As schematically-depicted in Fig. 3 A, an operator of vehicle 10 may operate steering device 20 to provide a steering command (e.g., a steering command of about 25% to the left) and, as vehicle 10 executes a turn defining a curved travel path TPA to the left, the curved travel path TPA defines a center C and a radius RA- It may be desirable to provide the drive member(s) located on the side of vehicle 10 opposite the center C with more torque than the drive member(s) located on the same side of vehicle 10 as the center C. Moreover, Fig. 3B schematically-depicts a curved travel path TPB defining a radius RB that is less than the radius RA schematically-depicted in Fig. 3A, which may be executed when the operator uses steering device 20 to provide a steering command of, for example, about 75% to the left. As the radius decreases, it may be desirable to further increase the difference between the torque supplied to the drive member(s) located on the outside of the curved travel path and the drive member(s) located on the inside of the curved travel path.
According to some embodiments, the pressure set point may be dynamic such that the vehicle exhibits improved operation. For example, the pressure set point, rather than being the same regardless of the operation of the vehicle, may be increased as the steering command calls for a decreased radius. For example, increasing the steering command (e.g., from 25% to 75%) results in the vehicle traveling in a curved path defining a smaller radius. As the radius decreases, it may be desirable to provide more power and/or force to the drive member(s) located on the outside of the curved travel path and/or a greater difference between the power and/or force supplied to the drive member(s) located on the outside of the curved travel path and the drive member(s) located on the inside of the curved travel path. Moreover, the amount of power and/or force provided to the drive member(s) may be controlled such that the slip of the drive member(s) is limited. According to some embodiments, the amount of torque supplied to drive members 16 may be controlled by controlling the fluid flow in the hydraulic transmissions 22. For example, the torque supplied to drive members 16 may be controlled by controlling the amount and/or pressure of the fluid supplied by pumps 26 to motors 28, and/or by stroking or de-stoking motors 28. Controller 62 may be configured to control the fluid flow in hydraulic transmissions 22 based on the signal indicative of a parameter related to pressure. For example, controller 62 may control fluid flow such that the pressure in hydraulic circuit 36 does not exceed the pressure set point.
Referring to Figs. 4A and 4B, for example, controller 62 may control fluid flow through hydraulic circuit 36 such that pressure in hydraulic circuit 36 does not exceed a static pressure set point PST, as shown in Figs. 4A and 4B. The static pressure set point may be predetermined and/or may be operator adjustable via an adjustment device of operator interface 18, such that an operator may tailor the torque provided to drive members 16 to the operating conditions. The static pressure set point PST, however, does not vary (except via manual operator adjustment) based on steering command.
According to some embodiments, the pressure set point may vary with steering command. For example, as schematically-depicted in Figs. 4A and 4B, dynamic pressure set point PD varies with the steering command. As the steering command increases (to the left or right of straight ahead), thereby causing vehicle 10 to travel in a curved travel path having a smaller radius, the pressure set point (i.e., the maximum pressure in hydraulic circuit 36) increases, which permits motor 28 associated with a drive member 16 located on the outside of the turn to supply more torque to the drive member 16 located on the outside of the turn, for example, by increasing motor 28 's stroke. Thus, as the steering command increases, more torque is permitted to be supplied to drive members 16 based on the increase in the dynamic pressure set point. Fig. 4A shows an exemplary profile for the dynamic pressure set point PD controlled by an exemplary electronic embodiment of controller 62. According to some embodiments, controller 62 may control the fluid flow in one or more of transmissions 22 based on signals indicative of a steering command received from steering device 20 and/or a signal indicative of a parameter related to pressure received from sensor 52 and/or sensor 54. For example, controller 62 may include one or more memory devices for storing data, for example, in the form of one or more maps or tables, which correlate values associated with steering commands, values associated with the parameter related to pressure, values associated with vehicle lO's speed, values associated with a speed command, and/or values associated with fluid flow in transmissions 22. Controller 62 may operate to determine appropriate fluid flow in transmissions 22 based these values and one or more of the maps or tables and provide a signal to one or more of pump and motor actuator devices 64 and 66, respectively, such that fluid flows in transmissions 22 according to the determined fluid flow. For example, controller 62 may operate such that the values of the maps or tables result in a dynamic pressure set point PD having the exemplary profile schematically-depicted in Fig. 4A. In this exemplary manner, controller 62 may operate to control the amount of torque supplied to drive members 16.
According to some embodiments, controller 62 may include a processor configured to control fluid flow in one or more of transmissions 22 based on a mathematical relationship between, for example, a value corresponding to the signal indicative of a steering command and a value corresponding to the signal indicative of a parameter related to pressure in transmissions 22. According to such embodiments, the fluid flow in one or more of transmissions 22 may be controlled via real time calculations rather than, or in addition to, relying on values stored in maps or tables. Such exemplary embodiments of controller 62 may operate such that the dynamic pressure set point PD exhibits the exemplary profile schematically-depicted in Fig. 4A. Fig. 4B shows an exemplary profile for a dynamic pressure set point PD set by an exemplary hydro-mechanical embodiment of controller 62. Exemplary hydro-mechanical controller 62 may control pressure in hydraulic circuit 36 by sending a hydraulic signal to pump and/or motor actuator devices 64 and 66, respectively, which control the stroke of pumps 26 and/or motors 28. For example, during straight-line travel (i.e., corresponding to 0% steering command), controller 62 may operate to limit pressure in hydraulic circuit 36 to a static pressure set point PST by de-stroking the pumps 26 and/or the motors 28.
According to some embodiments, the static pressure set point controlled by the exemplary hydro-mechanical controller 62 may be modified so that it operates like a dynamic pressure set point. For example, steering device 20 may include one or more valves configured to send a hydraulic signal to controller 62 in the form of pressurized hydraulic fluid. The controller 62 may be configured, for example, to reduce the hydraulic signals sent from controller 62 to pump and/or motor actuator devices 64 and 66, which serve to de-stroke the pumps 26 and/or motors 28, respectively, and set the pressure in the hydraulic circuit 36 to the static pressure set point PST- This reduction may occur via reduction of the pressure of the hydraulic signal based on the hydraulic signal sent from steering device 20 to controller 62. In this manner, the amount of de- stroking of pumps 26 and/or motors 28 serves to allow the pressure set point to increase and become dynamic, as schematically-depicted in Fig. 4B. In particular, as the steering device 20 is moved to increase the steering command, the valve(s) associated with the steering device 20 allow more fluid to flow under pressure to controller 62. Controller 62 uses the fluid flow from steering device 20 to increase the amount of pressure permitted in hydraulic circuit 36 by, for example, counteracting the de-stroking hydraulic signal sent to pump and/or motor actuator devices 64 and 66. As a result, the pressure set point becomes dynamic and based, at least in part, on the signal indicative of a steering command. This may result in a dynamic pressure set point PD having the exemplary profile shown in Fig. 4B.
According to some embodiments, the pressure set point, regardless of whether the pressure set point is static or dynamic, may be modified by the operator via an adjustment provided by operator interface 18. For example, an operator may adjust the pressure set point based on experience and/or operating conditions. Thus, the pressure set point profiles shown in Figs. 4A and 4B are schematic and exemplary. For example, the exemplary profiles shown in Figs. 4A and 4B may not necessarily be symmetric with respect to steering command. Further, the exemplary profile shown in Fig 4A may not necessarily be curvilinear, and the exemplary profile shown in Fig. 4B may not necessarily be a combination of linear portions. For example, the profiles may be a combination of linear portions and curvilinear portions.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed systems and methods. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed systems and methods. It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.

Claims

Claims
1. A system for controlling slip of vehicle drive members (16), the system comprising: a power train (14) including a plurality of drive members, and a hydraulic transmission (22) configured to supply torque to at least one of the drive members, wherein a magnitude of the torque is related to fluid flow in the hydraulic transmission; and a controller (62) configured to control the fluid flow in the hydraulic transmission, wherein the controller is configured to receive a signal indicative of a steering command and a signal indicative of a parameter related to pressure in the hydraulic transmission, and wherein the controller is configured to control slip of the at least one drive member based on the signal indicative of a steering command and the signal indicative of a parameter related to pressure.
2. The system of claim 1, wherein the controller is configured to control the fluid flow in the hydraulic transmission such that a first magnitude of torque is supplied to the at least one drive member when the signal indicative of a steering command corresponds to a substantially straight-line travel path of the vehicle, and wherein the controller is configured to control the fluid flow in the hydraulic transmission such that a second magnitude of torque is supplied to the at least one drive member when the signal indicative of a steering command corresponds to a curved travel path of the vehicle.
3. The system of claim 2, wherein the curved travel path of the vehicle defines a turning radius, and wherein as the turning radius decreases, the second magnitude increases, such that more torque is supplied to the at least one drive member.
4. The system of claim 1, wherein the hydraulic transmission includes a hydraulic pump (26) fluidly coupled to a hydraulic motor (28).
5. The system of claim 1, wherein the drive members include ground engaging tracks.
6. The system of claim 1, wherein the controller is configured to store a plurality of values corresponding to the parameter related to pressure and a plurality of values for the steering commands that correspond to the plurality of values corresponding to the parameter related to pressure.
7. The system of claim 6, wherein the controller is configured to receive the signal indicative of a steering command and control slip of the at least one drive member based on a value corresponding to the parameter related to pressure that corresponds to the value for the steering commands.
8. A vehicle (10) including the power train of any of claims 1-7.
9. A method for limiting slip of drive members (16) of a vehicle (10), the method comprising: receiving a signal indicative of a parameter related to pressure in a transmission (22) of the vehicle; receiving a signal indicative of a steering command of the vehicle; controlling fluid flow in the transmission based on the signal indicative of a parameter related to pressure in the transmission and the signal indicative of a steering command, such that the slip of at least one of the drive members is limited.
10. The method of claim 9, wherein controlling fluid flow in the transmission includes controlling the fluid flow such that a first magnitude of torque is supplied to the at least one drive member when the signal indicative of a steering command corresponds to a substantially straight-line travel path of the vehicle, and controlling fluid flow such that a second magnitude of torque is supplied to the at least one drive member when the signal indicative of a steering command corresponds to a curved travel path of the vehicle, and wherein the second magnitude is greater than the first magnitude.
PCT/US2007/022725 2006-11-30 2007-10-26 Systems and methods for controlling slip of vehicle drive members WO2008066633A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/606,201 US7798272B2 (en) 2006-11-30 2006-11-30 Systems and methods for controlling slip of vehicle drive members
US11/606,201 2006-11-30

Publications (1)

Publication Number Publication Date
WO2008066633A1 true WO2008066633A1 (en) 2008-06-05

Family

ID=39253902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/022725 WO2008066633A1 (en) 2006-11-30 2007-10-26 Systems and methods for controlling slip of vehicle drive members

Country Status (2)

Country Link
US (1) US7798272B2 (en)
WO (1) WO2008066633A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3010006A1 (en) * 2013-09-03 2015-03-06 Poclain Hydraulics Ind HYDRAULIC ASSISTED VEHICLE COMPRISING AN IMPROVED DIFFERENTIAL STRUCTURE ON THE AXLE

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207944B2 (en) 2006-12-19 2012-06-26 3M Innovative Properties Company Capacitance measuring circuit and method
US8243049B2 (en) * 2006-12-20 2012-08-14 3M Innovative Properties Company Untethered stylus employing low current power converter
US8040330B2 (en) * 2006-12-28 2011-10-18 3M Innovative Properties Company Untethered stylus empolying multiple reference frequency communication
DE102007030168A1 (en) * 2007-06-27 2009-01-08 Claas Selbstfahrende Erntemaschinen Gmbh Electronic control for the drive unit of a vehicle
US8002073B2 (en) * 2008-04-22 2011-08-23 Kanzaki Kokyukoki Mfg. Co., Ltd. Hydraulic drive working vehicle
US7967099B2 (en) * 2008-06-19 2011-06-28 Caterpillar Paving Products Inc. Method and arrangement of a plurality of propel pumps in a hydrostatically driven compactor
CN102245940B (en) * 2008-12-17 2015-03-11 株式会社小松制作所 Control device for hydrostatic transmission vehicle
US8500587B2 (en) * 2010-12-20 2013-08-06 Caterpillar Inc. Multiple-variator control for split power CVT and hydrostatic transmissions
US8668042B2 (en) 2011-11-29 2014-03-11 Caterpillar Inc. System and method for controlling hydraulic system based on temperature
US8540048B2 (en) * 2011-12-28 2013-09-24 Caterpillar Inc. System and method for controlling transmission based on variable pressure limit
US9234576B2 (en) 2012-12-11 2016-01-12 Hamilton Sundstrand Corporation Integrated gearbox lube and control system
US20140165714A1 (en) * 2012-12-17 2014-06-19 GM Global Technology Operations LLC Transmission gasket with sensors
US9371898B2 (en) * 2012-12-21 2016-06-21 Cnh Industrial America Llc Control system for a machine with a dual path electronically controlled hydrostatic transmission
FR3006272B1 (en) * 2013-05-31 2015-06-05 Technoboost METHOD AND DEVICE FOR CONTROLLING / CONTROLLING A DIFFERENTIAL HYDRAULIC MODULE FOR A HYBRID VEHICLE
SE543611C2 (en) * 2018-10-24 2021-04-20 Komatsu Forest Ab Articulated vehicle comprising a hydrostatic power transmission arrangement with displacement control
US10696327B2 (en) * 2018-10-26 2020-06-30 Danfoss Power Solutions Inc. Electronic pressure limiting for dual path systems
US11731688B2 (en) 2019-06-04 2023-08-22 Cnh Industrial America Llc Differential steering control vehicle, system and method
US11708106B2 (en) 2019-07-02 2023-07-25 Cnh Industrial America Llc Steering systems and methods using active braking
DE102019135668A1 (en) * 2019-12-23 2021-06-24 Wirtgen Gmbh Self-propelled construction machine and method for controlling a self-propelled construction machine
JP6824377B2 (en) * 2019-12-27 2021-02-03 ヤンマーパワーテクノロジー株式会社 Work vehicle
WO2023067408A1 (en) * 2021-10-18 2023-04-27 Agco Corporation Control systems and methods for self-propelled windrowers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5564519A (en) * 1992-11-24 1996-10-15 Kabushiki Kaisha Komatsu Seisakusho Four-wheel traveling system for tipper
WO2001038119A1 (en) * 1999-11-24 2001-05-31 Mannesmann Rexroth Ag Hydrostatic drive and method for operating such a hydrostatic drive
EP1193152A2 (en) * 2000-10-02 2002-04-03 Teijin Seiki Co., Ltd. Hydraulic circuit for antiskid control system
EP1561672A1 (en) * 2004-02-06 2005-08-10 Caterpillar Inc. Work machine with steering control
EP1582389A2 (en) * 2004-04-02 2005-10-05 Deere & Company Drive for a working vehicle

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3295620A (en) 1964-03-02 1967-01-03 Charles B Messenger Vehicle steering systems
US3667225A (en) 1970-08-12 1972-06-06 Scott Equipment Co Hydrostatic drive and control system therefor
US3917014A (en) 1972-04-28 1975-11-04 Eaton Corp Hydrostatic driving and steering transmission
US3872669A (en) * 1972-09-01 1975-03-25 Eaton Corp Hydrostatic transmission control system
US3795107A (en) 1972-09-01 1974-03-05 Eaton Corp Hydrostatic transmission and control system
US3862668A (en) 1973-06-13 1975-01-28 Eaton Corp Hydrostatic transmission control system
DE2517692C3 (en) 1974-04-26 1979-04-12 Deere & Co., Moline, Ill. (V.St.A.), Niederlassung Deere & Co. European Office, 6800 Mannheim Vehicle steering device for caterpillar vehicles
US4074529A (en) 1977-01-04 1978-02-21 Tadeusz Budzich Load responsive system pump controls
US4399653A (en) 1980-03-14 1983-08-23 Pylat Jr John A Automatic adjusting deceleration control for a hydrostatically powered device
US4487109A (en) 1982-03-30 1984-12-11 Sundstrand Corporation Electro-hydraulic control system for a power drive unit
US4699021A (en) 1984-09-20 1987-10-13 Avco Corporation Integrated power system
US4655689A (en) 1985-09-20 1987-04-07 General Signal Corporation Electronic control system for a variable displacement pump
JPS635121A (en) 1986-06-24 1988-01-11 Komatsu Ltd Engine output control method for bulldozer
US5162707A (en) 1990-10-24 1992-11-10 Fmc Corporation Induction motor propulsion system for powering and steering vehicles
JP2900194B2 (en) 1991-01-22 1999-06-02 富士重工業株式会社 Pressure control device for continuously variable transmission for vehicles
DE4226453A1 (en) 1992-08-10 1994-02-17 Sauer Sundstrand Gmbh & Co Hydraulic transmission for fork lift truck - has variable pump and electronic control of transmission ratio
US5325933A (en) 1992-12-21 1994-07-05 Kabushiki Kaisha Komatsu Seisakusho Steering control of tracked vehicle
US5525043A (en) 1993-12-23 1996-06-11 Caterpillar Inc. Hydraulic power control system
JP2605217B2 (en) 1994-06-06 1997-04-30 株式会社小松製作所 Tracked vehicle steering control device
US5810106A (en) 1995-03-15 1998-09-22 Stamler Corporation Vehicle drive system
JP3641292B2 (en) 1995-04-07 2005-04-20 株式会社カワサキプレシジョンマシナリ Control device for variable displacement pump
US5948029A (en) 1997-02-05 1999-09-07 Deere & Company Steering control system for tracked vehicle
JPH10311421A (en) 1997-05-12 1998-11-24 Honda Motor Co Ltd Vehicular hydraulic continuously variable transmission
US6321866B1 (en) * 1998-10-21 2001-11-27 Ag-Chem Equipment Co., Inc. Hydrostatic power distribution/control logic system
DE19852039A1 (en) 1998-11-11 2000-05-25 Sauer Sundstrand Gmbh & Co Vehicle with hydrostatic drive has retarder valve for hydraulically acquiring braking energy with connected pressure-limiting valve for choking output vol. flow of variable delivery pump
US6164402A (en) * 1998-11-18 2000-12-26 Eaton Corporation Control of pump for hydraulic front wheel drive
IT1303971B1 (en) 1998-11-18 2001-03-01 New Holland Italia Spa HYDRAULIC CIRCUIT FOR AGRICULTURAL MACHINES OR EARTH MOVEMENT CONDITIONING OF SELF-CALIBRATION AND RELATED OPERATING METHOD.
US6138782A (en) 1999-02-25 2000-10-31 Deere & Company Steering responsive power boost
KR100461705B1 (en) * 1999-06-28 2004-12-16 코벨코 겐키 가부시키가이샤 Drive device of working machine
DE19930056C1 (en) 1999-06-30 2001-01-25 Sauer Sundstrand Gmbh & Co Vehicle hydraulic drive control device detects engine revs, vehicle velocity and/or temepreature of hydraulc fluid in setting pump for operation of electrically-controlled rinsing valve
JP3933843B2 (en) 2000-04-27 2007-06-20 ユニシア ジェーケーシー ステアリングシステム株式会社 Variable displacement pump
US6408975B1 (en) 2000-08-09 2002-06-25 Visteon Global Technologies, Inc. Variable displacement pump with electronic control
FR2829986B1 (en) 2001-09-26 2003-12-26 Roulements Soc Nouvelle ELECTRIC POWER ASSISTED STEERING SYSTEM
US6684636B2 (en) 2001-10-26 2004-02-03 Caterpillar Inc Electro-hydraulic pump control system
US6644429B2 (en) 2002-01-28 2003-11-11 Deere & Co Hydrostatic auxiliary drive system
DE10211799A1 (en) * 2002-03-16 2003-10-02 Deere & Co Drive system of a work vehicle
US6921109B2 (en) 2002-08-29 2005-07-26 Deere & Company Device providing variable steering responsiveness
CN100354513C (en) 2002-09-26 2007-12-12 日立建机株式会社 Prime mover controller for construction machine
US7044259B2 (en) * 2003-04-10 2006-05-16 Kerwyn Stoll Hydraulic transmission for driving and steering wheels
WO2004102043A1 (en) 2003-04-14 2004-11-25 Kanzaki Kokyukoki Mfg. Co., Ltd. Load controller for hydraulic transmission device for working vehicle
US6935454B1 (en) 2003-09-18 2005-08-30 Hydro-Gear Limited Partnership Valve for a hydraulic drive apparatus
US7100723B2 (en) 2004-02-01 2006-09-05 Ford Global Technologies, Llc Multiple pressure mode operation for hydraulic hybrid vehicle powertrain
US7004870B2 (en) * 2004-02-25 2006-02-28 Dana Corporation Integrated torque and roll control system
US7175013B2 (en) * 2004-12-21 2007-02-13 Magna Powertrain Usa, Inc. On-demand cooling control for power transfer system
US8403098B2 (en) * 2005-02-28 2013-03-26 Caterpillar Inc. Work machine hydraulics control system
US7597172B1 (en) * 2005-04-22 2009-10-06 Parker-Hannifin Corporation Gear box for hydraulic energy recovery
US7925405B2 (en) * 2006-08-21 2011-04-12 GM Global Technology Operations LLC Torque distribution system with electronic power take-off module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5564519A (en) * 1992-11-24 1996-10-15 Kabushiki Kaisha Komatsu Seisakusho Four-wheel traveling system for tipper
WO2001038119A1 (en) * 1999-11-24 2001-05-31 Mannesmann Rexroth Ag Hydrostatic drive and method for operating such a hydrostatic drive
EP1193152A2 (en) * 2000-10-02 2002-04-03 Teijin Seiki Co., Ltd. Hydraulic circuit for antiskid control system
EP1561672A1 (en) * 2004-02-06 2005-08-10 Caterpillar Inc. Work machine with steering control
EP1582389A2 (en) * 2004-04-02 2005-10-05 Deere & Company Drive for a working vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3010006A1 (en) * 2013-09-03 2015-03-06 Poclain Hydraulics Ind HYDRAULIC ASSISTED VEHICLE COMPRISING AN IMPROVED DIFFERENTIAL STRUCTURE ON THE AXLE

Also Published As

Publication number Publication date
US7798272B2 (en) 2010-09-21
US20080128189A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
US7798272B2 (en) Systems and methods for controlling slip of vehicle drive members
US8540048B2 (en) System and method for controlling transmission based on variable pressure limit
US8668042B2 (en) System and method for controlling hydraulic system based on temperature
EP1321697B1 (en) Speed controller of wheel type hydraulic traveling vehicle
US9453503B2 (en) Method for obtaining a full range of lift speeds using a single input
US8403098B2 (en) Work machine hydraulics control system
US8844665B2 (en) Skid steered all terrain vehicle
US8061466B2 (en) Wheel tractor scraper rear wheel drive assist and method of operation
US8051916B2 (en) Rear wheel drive assist for a wheel tractor scraper
US8459394B2 (en) Rear wheel drive assist with articulation based speed modulation
EP3774431B1 (en) Hydraulic drivetrain for a utility vehicle
US11685350B2 (en) Utilization of brakes and transmission system to affect steering of a vehicle and method thereof
US8463507B2 (en) Method and a system for controlling an input power
US20140069092A1 (en) Traction Control System for a Hydrostatic Drive
US20180258615A1 (en) System and method for reducing fuel consumption of a work vehicle
US20070227135A1 (en) Integrated load-sensing hydraulic system
EP1561672A1 (en) Work machine with steering control
US10011173B2 (en) Powertrain system for maintaining rimpull performance of machine
EP3933121A1 (en) System for controlling a propulsion system of a work or agricultural vehicle
US11413953B2 (en) Track assembly with electric motor
US6702055B1 (en) Hydrostatic travelling mechanism
JPH01156138A (en) Speed change gear of service car
US20220049470A1 (en) Working machine
US20230032780A1 (en) Hydrostatic Traction Drive for a Laterally-Steered Vehicle and Hydrostatic Drive for a Laterally-Steered Mobile Work Machine
US20220185106A1 (en) Track assembly with electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07852981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07852981

Country of ref document: EP

Kind code of ref document: A1