WO2008067788A1 - Herstellung eines wirkleistungsgleichgewichts der phasenmodule eines umrichters - Google Patents

Herstellung eines wirkleistungsgleichgewichts der phasenmodule eines umrichters Download PDF

Info

Publication number
WO2008067788A1
WO2008067788A1 PCT/DE2006/002251 DE2006002251W WO2008067788A1 WO 2008067788 A1 WO2008067788 A1 WO 2008067788A1 DE 2006002251 W DE2006002251 W DE 2006002251W WO 2008067788 A1 WO2008067788 A1 WO 2008067788A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
energy
phase
branch
values
Prior art date
Application number
PCT/DE2006/002251
Other languages
English (en)
French (fr)
Other versions
WO2008067788A8 (de
Inventor
Mike Dommaschk
Jörg DORN
Ingo Euler
Jörg LANG
Quoc-Buu Tu
Klaus WÜRFLINGER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38556383&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008067788(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP06828682.2A priority Critical patent/EP2100366B1/de
Priority to CN2006800565636A priority patent/CN101548459B/zh
Priority to PCT/DE2006/002251 priority patent/WO2008067788A1/de
Priority to JP2009539599A priority patent/JP4999930B2/ja
Priority to DE112006004198T priority patent/DE112006004198A5/de
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PL06828682T priority patent/PL2100366T3/pl
Priority to DK06828682.2T priority patent/DK2100366T3/en
Priority to ES06828682.2T priority patent/ES2643896T3/es
Priority to CA2671821A priority patent/CA2671821C/en
Priority to US12/518,200 priority patent/US8144489B2/en
Publication of WO2008067788A1 publication Critical patent/WO2008067788A1/de
Publication of WO2008067788A8 publication Critical patent/WO2008067788A8/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/19Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only arranged for operation in series, e.g. for voltage multiplication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Definitions

  • the invention relates to a device for converting an electric current with at least one phase module which has an AC voltage connection and at least one DC voltage connection, wherein a phase module branch is formed between each DC voltage connection and each AC voltage connection, and wherein each phase module branch is connected across one Series circuit of submodules has, each having an energy storage and at least one power semiconductor, with submodule sensors for detecting a falling at the energy storage energy to obtain energy storage energy values and with control means for regulating the device as a function of energy storage energy values and predetermined setpoints.
  • the invention further relates to a method for converting a current by means of an inverter having at least one phase module with at least one DC voltage terminal and an AC terminal, wherein between each DC voltage terminal and the AC voltage terminal, a Phasenmodulzweig is formed, which has a series circuit of submodules, each having a E- have energy storage and at least one power semiconductor.
  • a power converter who for a connection to an AC voltage network is provided.
  • the power converter has a phase module for each phase of the alternating voltage network to be connected to it, each phase module having an AC voltage connection and two DC voltage connections.
  • the DC terminal and the AC terminal extend phase module branches, so that a so-called 6-pulse bridge circuit is provided.
  • the module branches consist of a series circuit of submodules, each of which consists of two turn-off power semiconductors, each of which has opposite freewheeling diodes connected in parallel.
  • the turn-off power semiconductors and the freewheeling diodes are connected in series, wherein a capacitor is provided parallel to said series circuit.
  • Said components of the submodules are interconnected such that either the capacitor voltage or the voltage zero drops at the bipolar output of each submodule.
  • the control of the turn-off power semiconductors by means of the so-called pulse width modulation.
  • the control means for controlling the power semiconductors have measuring sensors for detecting currents while obtaining current values.
  • the current values are fed to a central control unit, which has an input interface and an output interface.
  • a modulator ie a software routine, is provided.
  • the modulator has inter alia a selection unit and a pulse width generator.
  • the pulse width generator generates the control signals for the individual submodules.
  • the turn-off power semiconductors are transferred by the control signals generated by the pulse width generator of a passage position in which a current flow through the turn-off power semiconductors is possible in a blocking position in which a current flow over the can be switched off power semiconductor is interrupted.
  • each submodule has a submodule sensor for detecting a voltage drop across the capacitor.
  • the disclosed device also has a multi-level power converter topology with phase modules having an AC terminal symmetrically located in the center of each phase module and two DC terminals.
  • Each phase module is composed of two phase module branches which extend between the AC voltage connection and one of the DC voltage connections.
  • Each phase module branch in turn comprises a series circuit of submodules, wherein each submodule consists of turn-off power semiconductors and these freewheeling diodes connected in antiparallel fashion.
  • each submodule has a unipolar capacitor.
  • Power semiconductors serve as control means which are also adapted to adjust branch currents flowing between the phase modules.
  • branch currents for example, current vibrations can be actively damped and Operating points with lower output frequencies can be avoided.
  • a uniform load of all turn-off semiconductor switch as well as a symmetrization of highly unbalanced voltages can be brought about.
  • the device mentioned at the beginning has the disadvantage that the active power consumption of a phase module branch does not always correspond exactly to the losses. In this way, asymmetrical distribution of the energy stored in a phase module branch can occur.
  • Submodules are therefore burdened with different levels of unwanted side effects in the wake.
  • the object of the invention is therefore to provide a device and a method of the type mentioned, with an unbalanced load on the energy storage of submodules is avoided.
  • control means have a summation unit for summing the energy storage energy values while obtaining branch energy actual values and means for calculating circulating current nominal values Dvb, Dhgl, Dhge as a function of the branch energy actual values
  • control means compensating are set up by asymmetries in the branch energy actual values as a function of the circulating current nominal values Dvb, Dgl, Dhge.
  • the invention solves the problem by recording the energy stored in each energy store while obtaining an energy storage energy value, summing up all the energy storage energy values of a phase module branch, yielding branch energy actual values and depending on the branching energy. actual circulating current setpoint values are determined, with circulating currents being generated in the phase modules to compensate for asymmetries as a function of the circulating current setpoint values.
  • control means are arranged to compensate for asymmetries with regard to the electrical energy stored in the submodules.
  • the energy stored in all energy stores is first determined for each phase module branch. This is done by summing energy storage energy values, each corresponding to an energy stored in the energy storage of a submodule. The sum of the energy storage energy values results in branch energy actual values that correspond to a sum of the energies of all the energy stores of a phase module branch. By comparing the branch energy actual values, an asymmetry is determined within the scope of the invention. To compensate for the asymmetry, circular currents are finally generated by means of a control.
  • the circular current setpoints Dvb, Dhgl, Dhge which are determined as a function of the difference in the actual branch energy values, are used for this purpose.
  • the Kreisstr 'omsollska are finally supplied to the control means for producing on the basis of the circulating current command values Dvb, Dhgl, Dhge necessary for compensating the asymmetries of circulating currents. This ensures symmetrical loading of the submodules.
  • the energy storage energy value of a submodule is an energy storage voltage value that is obtained by measuring the voltage drop across the energy store. Notwithstanding this, the square of the energy storage voltage value serves as the energy storage energy value. In principle, any value which can serve as a measure of the energy stored in the respective energy store can be used in the context of the invention.
  • the energy storage of a submodule can also be composed of a plurality of super energy stores within the scope of the invention. The energy storage energy value is then the sum of the Subenergy Eatenergyhong.
  • control means comprise a controller, to the input of which the circuit current setpoint values Dvb, Dhgl, Dhge are present and at the output of which circuit voltage nominal values are tapped.
  • the controller is for example a proportional controller.
  • the control means further comprise a current control unit which combines different voltage setpoints, including the nominal circuit voltage setpoints, linearly, that is, by summing up and subtracting. The result of this linear combination of voltage setpoints are branch voltage setpoints that are each assigned to a phase module branch.
  • the one or more branch voltage setpoints are supplied to drive units, which are also assigned to a phase module branch.
  • the device according to the invention has a positive and a negative DC voltage connection, wherein summation means to Zweigsergieistives Phas senmodulzweige which are connected to the positive DC voltage terminal to a positive two-sum and Zweigemergieisteptept the Phasenmodulzweige which are connected to the negative DC voltage terminal to a sum negative branch and differentiating means, the difference between the positive and the negative branch sums to obtain a vertical current target value Dvb to compensate for a vertical imbalance.
  • a vertical unsymmetry can therefore be determined by comparison of the branch energy actual values, the branch sum of the phase module branches connected to the positive DC voltage connection being subtracted from the branch sum of the phase module branches connected to the negative DC voltage connection.
  • the resulting difference ' represents a measure of the vertical asymmetry, so that in this way a desired value for the control to compensate for the vertical asymmetry can be derived.
  • the device according to the invention has means for generating a mains-frequency secondary system voltage Uvbl, 2, 3 as a function of the vertical circuit current setpoint value Dvb to compensate for the vertical asymmetry.
  • the mains-frequency Mitsystempressive Uvbl, 2.3 refers to the phase of the polyphase AC voltage of the connected network.
  • the generated voltage in the pointer display rotates in the same direction of rotation as the pointers of the AC voltage of the connected network.
  • the Mitsystemsollledge is, as described above, switched by the control means other voltage setpoints.
  • means for generating an asymmetry voltage Uasym as a function of the circular current setpoint values Dvb to compensate for the vertical asymmetry may be provided.
  • Such means for generating an asymmetry voltage are, for example, simple regulators, at the input of which the circulating current nominal values are present, the asymmetry voltage Uasym being available at the output of the regulator.
  • the controller is, for example, a simple proportional controller.
  • means are provided for detecting a directional horizontal asymmetry, said means generating circuit current setpoints Dhgl depending on the detected in the same direction horizontal asymmetry.
  • the device according to the invention therefore advantageously has means for detecting an equidirectional horizontal asymmetry, said means generating circuit current setpoints Dhgl as a function of the detected in the same direction horizontal asymmetry.
  • means are provided for generating circuit voltage setpoints uhgl, which are each assigned to a phase module.
  • the nominal circuit voltage values uhgl are applied by the control means to other voltage setpoints.
  • means are provided for detecting an opposing horizontal asymmetry, wherein said means circulating current nominal values Dhge in Dependence of the proven opposing horizontal asymmetry generated.
  • means are provided for generating a mains-frequency reverse voltage system ughe as a function of the detected opposing horizontal asymmetry.
  • the mains frequency reverse voltage system is characterized by a voltage whose pointer rotates counter to the direction of the AC voltage network in the pointer model.
  • means are provided for the simultaneous compensation of vertical and horizontal opposing asymmetries.
  • the branch energy actual values of all phase modules which are connected to a positive DC voltage terminal are summed to yield a positive total and the branched energy actual values of all phase module branches which are connected to a negative DC voltage terminal are summed to yield a negative total sum is formed between the positive and the negative total to obtain a vertical Kreisromsollwerts Dvb.
  • a vertical unbalance can be determined and quantified using the circular current setpoint.
  • a mains-frequency positive system voltage is generated starting from the vertical circulating current nominal value.
  • the DC setpoint value is advantageously entered as the amplitude of a periodic function.
  • an A symmetry setpoint voltage is generated on the basis of the vertical circulating current nominal value Dvb by means of a proportional regulator.
  • Determining a co-ordinate horizontal unbalance is accomplished, for example, by taking the branch energy actual values of all phase module branches of a phase module to yield phase module energy summation values, taking the average of all phase module energy summation values, and taking differences from said average and each phase module energy sum value to obtain co-direction horizontal unbalance current setpoints.
  • circuit voltage setpoints are formed from the equidirectional horizontal unbalance current setpoint values Dhgl by means of a controller, which are applied as setpoint voltage by the control means to other voltage setpoints.
  • the branch energy actual values of all phase module branches of a phase module are subtracted from one another, yielding phase module energy difference values which are each assigned to one phase.
  • the mean value of the phase module energy difference values is calculated over all phases and the difference between the said mean value and the respective phase module energy difference value is determined for each phase, yielding opposing horizontal asymmetry current setpoints Dhgel, Dhge2, Dhge3.
  • the negative-sequence reverse-bias voltage system Dhgel, Dhge2, Dhge3 is determined from the opposing horizontal asymmetrical current desired values uh-gel, uhge2, uhge3.
  • the branch energy actual value of a phase module branch connected to a negative DC voltage connection is subtracted from the branched energy actual value of the phase module branch of the same phase module connected to the positive DC voltage connection, yielding a phase branch module difference, wherein the phase branch module difference is Amplitude of a periodic function is used, which oscillates with the mains frequency and is assigned to a phase module, wherein the periodic functions of the other phase modules are each phase-shifted, so that a Mitsystemsolllid is formed.
  • the co-system setpoint voltage is again switched to other setpoint values of the control.
  • FIG. 1 shows an exemplary embodiment of a device according to the invention in a schematic representation
  • FIG. 2 shows a replacement image representation of a submodule of a device according to FIG. 1,
  • Figure 3 shows a method for detecting a vertical
  • FIG. 4 illustrates the generation of a grid frequency system voltage
  • FIG. 5 illustrates the generation of an asymmetry voltage
  • FIG. 6 illustrates the proof of a horizontal asymmetry in the same direction
  • FIG. 7 illustrates the proof of an opposing vertical asymmetry
  • FIG. 8 illustrates a method for generating unbalance voltages
  • FIG. 9 shows a method for generating a line-frequency negative sequence voltage
  • FIG. 10 shows means for simultaneously compensating vertical and horizontal opposing asymmetries
  • FIG 11 shows the structure of the control means of the device according to Figure 1 and
  • FIG. 12 illustrates the connection of circuit voltage setpoint values to other setpoint values of the regulation means.
  • FIG. 1 shows an embodiment of the device 1 according to the invention, which is composed of three phase modules 2a, 2b and 2c.
  • Each phase module 2a, 2b and 2c is connected to a positive DC voltage line p and to a negative DC voltage line n, so that each phase module 2a, 2b, 2c has two DC voltage connections.
  • an AC voltage connection 3 ⁇ , 3 2 and 3 3 is provided for each phase module 2 a, 2 b and 2 c.
  • the change Selling voltage terminals 3i, 3 2 and 3 3 are connected via a transformer 4 with a three-phase alternating voltage network 5.
  • the phase voltages Ul, U2 and U3 fall from, ' wherein mains currents InI, In2 and In3 flow.
  • phase module branches 6pl, 6p2 and 6p3 extend between each of the AC voltage terminals 3i, 3 2 or 33 and the positive DC voltage line p. Between each AC voltage terminal 3i, 32, 33 and the negative DC voltage line n, the phase module branches 6nl, 6n2 and 6n3 are formed.
  • Each phase module branch 6pl, 6p2, 6p3, 6nl, 6n2 and 6n3 consists of a series connection of submodules not shown in detail in FIG. 1 and an inductance, which is denoted by L Kr in FIG.
  • FIG. 2 shows in more detail the series connection of the submodules 7 and in particular the structure of the submodules by means of an electrical replacement circuit diagram, with only the phase module branch 6pl having been selected in FIG.
  • the remaining phase module branches are, however, constructed identically.
  • each submodule 7 has two switchable power semiconductors T1 and T2 connected in series.
  • Switchable power semiconductors are, for example, so-called IGBTs, GTOs, IGCTs or the like. These are known to the skilled person as such, so that a detailed representation at this point can be omitted.
  • Each turn-off power semiconductor Tl, T2 is a flywheel diode Dl, D2 connected in anti-parallel.
  • each Submodule 7 now two voltage states can be generated. If, for example, a control signal is generated by a drive unit 9, with which the turn-off power semiconductor T2 is transferred to its open position, in which a current flow through the power semiconductor T2 is enabled, the voltage zero drops at the terminals X1, X2 of the submodule 7. In this case, the turn-off power semiconductor Tl is in its blocking position in which a current flow through the turn-off power semiconductor Tl is interrupted. On the other hand, if the turn-off power semiconductor T1 is transferred to its open position, but the turn-off power semiconductor T2 is switched to its blocking position, the full capacitor voltage Uc is applied to the terminals X1, X2 of the submodule 7.
  • the embodiment of the device according to the invention according to Figures 1 and 2 is also referred to as a so-called multi-level power converter.
  • a multi-level power converter is suitable, for example, for driving electrical machines, such as motors or the like.
  • a multilevel converter is also suitable for use in the field of power distribution and transmission.
  • the device according to the invention serves, for example, as a short coupling, which consists of two direct current connected to each other direct current converters, the converters are each connected to an alternating voltage network.
  • Such short couplings are used for energy exchange between two power distribution networks, wherein the power distribution networks, for example, have a different frequency, phase position, neutral point treatment or the like.
  • FACTS Flexible AC Transmission Systems
  • the High-voltage direct current transmission over long distances is conceivable with such Multilevelstromrichtern.
  • FIG. 3 schematically illustrates a method for detecting vertical asymmetry.
  • the branch energy actual values Uc] £ pl,..., Uc ⁇ T n3 are determined. This is done by measuring the voltage Uc across the capacitor 8 for each submodule 7. As shown in FIG. 2 by the arrow pointing to the right, the capacitor voltage value Uc detected by the voltage sensor is transmitted to the evaluation unit 9.
  • the evaluation unit 9 sums all capacitor voltage values Uc of a phase module branch 6pl,..., 6n3 to branch energy actual values UcJ] pl,..., UcJ] n3. It is irrelevant whether the submodule of the series circuit is switched on and provides a contribution or not. In order to obtain a measure of the stored energy, it is also possible to square the voltage Uc dropping across the capacitors to Uc 2 and then adding up Uc 2 to the branch energy actual values.
  • the branch energy actual values thus correspond here to branch voltage actual values UcVpI,..., UcY n3. These are in each case converted by a proportional controller 10 to intermediate values and the intermediate values of the phase module branches 6pl, ⁇ p2, ⁇ p3, which are connected to the positive DC voltage terminal p, are summed together. Accordingly, the intermediate values of the phase module branches 6nl, 6n2, 6n3, which are connected to the negative direct voltage terminal n, are traversed. On In this way, a positive branch sum and a negative branch sum, which are subtracted from each other by means of the subtractor 11, whereby the circular current setpoint Dvb is formed to compensate for a vertical imbalance.
  • FIG. 4 illustrates the generation of a mains-frequency secondary system voltage.
  • a sine function and a cosine function are formed with the argument of ⁇ t with the addition of a phase shift ⁇ , where ⁇ corresponds to the frequency of the voltage of the connected network.
  • the cosine or sinusoidal function are each multiplied by an amplitude which is formed from the desired circular current value Dvb using a proportional controller 10.
  • the subsequent conversion from the two-dimensional vector space into the three-dimensional space results in the network frequency desired system voltage uvbl, uvb2 and uvb3. This is switched to other desired voltages in a flow control unit.
  • the circular current setpoint value Dvb is applied to the input of a controller 10, which is, for example, a proportional controller.
  • the asymmetry voltage Uasym can be tapped.
  • FIG. 6 clarifies the proof of a horizontal equal unbalance.
  • Phase modules 2a, 2b, 2c are added up in each case to Phasenmodulenergiesummenwer-, the Zweergieergieisteria before by the controller 10 are amplified proportional to intermediate values. For adding an adder is used. 12. From the phase module energy sum values at the output of the adder 12, the mean value generator 13 is averaged and subtracted from each phase module energy sum value of a phase by subtractor 11. At the output of each difference former 11, vertical circulating current nominal values Dhgll, Dhgl2, Dhgl3 can be tapped for each phase.
  • FIG. 7 illustrates how an opposing horizontal asymmetry can be detected.
  • the two-energy actual values Uc] ⁇ pl,..., Uc ⁇ n3 are first amplified again by a controller 10.
  • the difference between branch energy actual values Uc1 pl, Uc1n of the phase module branches of the same phase module 2a, 2b, 2c is calculated.
  • the mean value is again formed over all three phases, with the mean being subtracted from said difference.
  • the opposing horizontal unbalance current setpoint Dhgel, Dhge2 and Dhge3 can be tapped for each phase at the output of the second subtractor 11.
  • FIG. 8 illustrates how the circuit current setpoint values Dghll, Dghl2, Dhgl3 are used to generate 10 setpoint circuit voltage values uhgl1, uhgl2 and uhgl3 by means of a proportional controller. These circuit voltage setpoints are, as described above, fed into the control, so that set the desired circular currents to balance the symmetries.
  • FIG. 9 illustrates the generation of a mains-frequency counter system voltage uhgel, uhge2 and uhge3.
  • the said asymmetry current desired values are first of all transformed in the two-dimensional vector space and then amplified proportionally by a controller 10.
  • the amplified unbalance setpoints serve as the amplitude of a cosine function and a negative sine function with the argument ⁇ t and the phase shift ⁇ .
  • the mains-frequency negative sequence system voltage uh-gel, ughe2, uhge3 for feeding into the current-regulating unit and for connecting to further setpoint values of the control.
  • FIG. 10 illustrates means for the simultaneous compensation of vertical asymmetries and horizontal opposing asymmetries.
  • cosine functions are formed, which depend on the mains frequency ⁇ and on the phase ⁇ .
  • the phase-wise cosine functions are phase-locked
  • phase-shifted cosine functions are multiplied by the amplitude of the phase difference which results at the output of the subtractor 11, so that a desired system system voltage uvbl, uvb2 and Uub3 results.
  • FIG. 11 illustrates the structure of the control means.
  • the control means comprise a current control unit 10 and drive units 9pl, 9p2, 9p3 and 9nl and 9n2 and 9n3.
  • Each of the drive units is assigned to a phase module branch ⁇ pl, 6p2, 6p3, 6nl, 6n2 and 6n3, respectively.
  • the drive unit 9pl is, for example, connected to each submodule 7 of the phase senmodulzweiges ⁇ pl connected and generates the ⁇ control signals for the turn-off power semiconductors Tl, T2.
  • a figuratively not shown submodule voltage sensor is provided in each submodule 7 .
  • the submodule is used for detecting the falling on the capacitor 8 as an energy storage capacitor voltage of the submodule 7 'to obtain a capacitor voltage value Uc.
  • the capacitor voltage value Uc is the respective drive unit, here 9pl, provided.
  • the drive unit 9pl thus receives the capacitor voltage values of all submodules 7 of the phase module branch 6pl assigned to them and sums them to obtain a branch energy actual value or in this case the actual branch voltage value which is also assigned to the phase module branch ⁇ pl.
  • This branch voltage actual value Uc] TpI is supplied to the current control unit 10.
  • the flow control unit 10 is connected to various measuring sensors, not shown figuratively.
  • current transformers arranged on the voltage side of the phase modules 2a, 2b, 2c serve to generate and supply phase current measured values II, 12, 13 and current transformers arranged on each phase module for generating and supplying phase module branch currents Izwg and a current transformer arranged in the DC circuit of the power converter For providing DC measured values Id.V.
  • the current control unit 10 are further supplied to setpoints.
  • an active current setpoint Ipref and a reactive current setpoint Iqref are supplied to the control unit 10.
  • a DC voltage setpoint Udref is applied to the input of the current control unit 10.
  • üdref it is also possible to use a DC setpoint value Idref within the scope of the invention.
  • the setpoint values Ipref, Iqref and Udref and the said measured values interact with one another using various regulators, a branch voltage setpoint Uplref, Up2ref, Up3ref, ünlref, Un2ref, Un3ref being generated for each drive unit 9pl, 9p2, 9p3, 9nl, 9n2 and 9n3 ,
  • Each control unit 9 generates control signals for the submodules 7 assigned to it, so that the voltage UpI, Up2, Up3, UnI, Un2, Un3 arising at the series connection of the submodules corresponds to the respective branch voltage setpoint Uplref, Up2ref, Up3ref, Unlref, Un2ref, As close as possible to Un3ref.
  • the current control unit 10 forms from its input values suitable branch voltage command values Uplref, Up2ref, Up3ref, Unlref, Un2ref, Un3ref.
  • FIG. 12 shows that, for example, the branch voltage setpoint Upref is calculated by linear combination of a mains phase voltage setpoint Unetzl, a branch voltage intermediate setpoint Uzwgpl, a DC setpoint Udc, a balancing voltage setpoint Uasym and a balancing voltage setpoint Ubalpl. This is done independently for each of the phase module branches 6pl, 6p2, 6p3, ⁇ nl, 6n2, 6n3. With the intermediate branch voltage setpoint values Uzwg, the circulating currents can be set in a targeted manner in conjunction with the set branch inductances. Also the Launch voltage setpoints Ubal are used to compensate for imbalances in terms of the 6pl, 6p2, 6p3, 6nl, 6n2, 6n3 energies stored in the phase module branches.

Abstract

Umrichter mit wenistens einem Phasenmodul (2a, 2b, 2c), das einen Wechselspannungsanschluss (3/1, 3/2, 3/3) und wenigstens einen Gleichspannungsanschluss (p, n) aufweist, wobei zwischen jedem Gleichspannungsanschluss und jedem Wechselspannungsanschluss ein Phasenmodulzweig (6p1, 6p2, 6p3, Sn1, 6n2, 6n3) ausgebildet ist, und wobei jeder Phasenmodulzweig über eine Reihenschaltung aus Submodulen (7) verfügt, die jeweils einen Kondensator (8) und wenigstens einen Leistungshalbleiter (T1, T2) aufweisen, mit Submodulsensoren zum Erfassen einer in dem Kondensator (8) gespeicherten Energie und mit Regelungsmitteln (9) zum Regeln der Vorrichtung (1) in Abhängigkeit der Energie- Speicherenergiewerte und vorgegebener Sollwerte. Dabei wird eine unsymmetrisehe Belastung der Energiespeicher (8) der Submodule (7) vermieden. Die Regelungsmittel (9) weisen eine Summationseinheit zum Aufsummieren der Energiespeicherenergiewerten Uc unter Gewinnung von Zweigenergieistwerten (Uc Summe p1,... Uc Summe n3) und Mittel zum Berechnen von Kreisstromsollwerten in Abhängigkeit der Zweigenergieistwerte auf, wobei die Regelungsmittel (9) zum Ausgleich von Unsymmetrien bei den Zweigenergieistwerten in Abhängigkeit der Kreisstromsollwerte eingerichtet sind.

Description

HERSTELLUNG EINES WIRKLEISTUNGSGLEICHGEWICHTS DER PHASENMODULE EINES UMRICHTERS
Die Erfindung betrifft eine Vorrichtung zum Umrichten eines elektrischen Stromes mit wenigstens einem Phasenmodul, das einen Wechselspannungsanschluss und wenigstens einen Gleich- spannungsanschluss aufweist, wobei zwischen jedem Gleichspan- nungsanschluss und jedem Wechselspannungsanschluss ein Pha- senmodulzweig ausgebildet ist, und wobei jeder Phasenmodul- zweig über eine Reihenschaltung aus Submodulen verfügt, die jeweils einen Energiespeicher und wenigstens einen Leistungshalbleiter aufweisen, mit Submodulsensoren zum Erfassen einer an dem Energiespeicher abfallenden Energie unter Gewinnung von Energiespeicherenergiewerten und mit Regelungsmitteln zum Regeln der Vorrichtung in Abhängigkeit der Energiespeicherenergiewerte und vorgegebener Sollwerte.
Die Erfindung betrifft weiterhin ein Verfahren zum Umrichten eines Stromes mittels eines Umrichters, der wenigstens ein Phasenmodul mit wenigstens einem Gleichspannungsanschluss und einem Wechselspannungsanschluss aufweist, wobei zwischen jedem Gleichspannungsanschluss und dem Wechselspannungsanschluss ein Phasenmodulzweig ausgebildet ist, der über eine Reihenschaltung aus Submodulen verfügt, die jeweils einen E- nergiespeicher und wenigstens einen Leistungshalbleiter aufweisen.
Eine solche Vorrichtung und ein solches Verfahren sind beispielsweise aus dem Beitrag von A. Lesnicar und R. Marquardt „An Innovative Modular Multilevel Converter Topology Suitable for a Wide Power Range", der auf der Powertech 2003 erschien, bereits bekannt. Dort ist ein Stromrichter offenbart, der für einen Anschluss an ein Wechselspannungsnetz vorgesehen ist. Der Stromrichter weist für jede Phase des mit ihm zu verbindenden Wechselspannungsnetzes ein Phasenmodul auf, wobei jedes Phasenmodul über einen Wechselspannungsanschluss sowie zwei Gleichspannungsanschlüsse verfügt. Zwischen jedem
Gleichspannungsanschluss und dem Wechselspannungsanschluss erstrecken sich Phasenmodulzweige, so dass eine so genannte 6-Puls-Brückenschaltung bereitgestellt ist. Die Modulzweige bestehen aus einer Reihenschaltung von Submodulen, die je- weils aus zwei abschaltbaren Leistungshalbleitern bestehen, denen jeweils gegensinnige Freilaufdioden parallel geschaltet sind. Die abschaltbaren Leistungshalbleiter und die Freilauf- dioden sind in Reihe geschaltet, wobei parallel zur besagten Reihenschaltung ein Kondensator vorgesehen ist. Die besagten Komponenten der Submodule sind so miteinander verschaltet, dass am zweipoligen Ausgang jedes Submoduls entweder die Kondensatorspannung oder die Spannung null abfällt.
Die Steuerung der abschaltbaren Leistungshalbleiter erfolgt mittels der so genannten Pulsweitenmodulation. Die Regelungsmittel zur Steuerung der Leistungshalbleiter weisen Messsensoren zum Erfassen von Strömen unter Gewinnung von Stromwerten auf. Die Stromwerte werden einer zentralen Steuerungseinheit zugeführt, die eine Eingangsschnittstelle und eine Aus- gangsschnittstelle aufweist. Zwischen der Eingangsschnittstelle und der Ausgangsschnittstelle ist ein Modulator, also eine Softwareroutine, vorgesehen. Der Modulator weist unter anderem eine Auswähleinheit sowie einen Pulsweitengenerator auf. Der Pulsweitengenerator erzeugt die Steuersignale für die einzelnen Submodule. Die abschaltbaren Leistungshalbleiter werden durch die vom Pulsweitengenerator erzeugten Steuersignale von einer Durchgangsstellung, in der ein Stromfluss über die abschaltbaren Leistungshalbleiter ermöglicht ist, in eine Sperrstellung überführt, in der ein Stromfluss über die abschaltbaren Leistungshalbleiter unterbrochen ist. Dabei weist jedes Submodul ein Submodulsensor zum Erfassen einer am Kondensator abfallenden Spannung auf.
Weitere Beiträge zum Steuerverfahren für eine so genannte Multi-Level-Stromrichtertopologie sind von R. Marquardt, A. Lesnicar, J. Hildinger, „Modulares Stromrichterkonzept für Netzkupplungsanwendung bei hohen Spannungen", erschienen auf der ETG-Fachtagung in Bad Nauenheim, Deutschland 2002, von A. Lesnicar, R. Marquardt, „A new modular voltage source inver- ter topology", EPE' 03 Toulouse, Frankreich 2003 und von R. Marquardt, A. Lesnicar „New Concept for High Voltage - Modular Multilevel Converter", PESC 2004 Conference in Aachen, Deutschland, bekannt.
Aus der derzeit noch unveröffentlichten deutschen Patentanmeldung 10 2005 045 090.3 ist ein Verfahren zur Steuerung eines mehrphasigen Stromrichters mit verteilten Energiespeichern offenbart. Die offenbarte Vorrichtung weist ebenfalls eine Multi-Level-Stromrichtertopologie mit Phasenmodulen auf, die über einen symmetrisch in der Mitte jedes Phasenmoduls angeordneten Wechselspannungsanschluss und zwei Gleichspannungsanschlüsse verfügen. Jedes Phasenmodul ist aus zwei Pha- senmodulzweigen zusammengesetzt, die sich zwischen dem Wech- selspannungsanschluss und einem der Gleichspannungsanschlüsse erstrecken. Jeder Phasenmodulzweig umfasst wiederum eine Reihenschaltung aus Submodulen, wobei jedes Submodul aus abschaltbaren Leistungshalbleitern und diesen antiparallel geschalteten Freilaufdioden besteht. Ferner verfügt jedes Sub- modul über einen unipolaren Kondensator. Zur Regelung der
Leistungshalbleiter dienen Regelungsmittel, die auch zum Einstellen von Zweigströmen eingerichtet sind, welche zwischen den Phasenmodulen fließen. Durch die Steuerung der Zweigströme können beispielsweise Stromschwingungen aktiv gedämpft und Betriebspunkte mit kleineren Ausgangsfrequenzen vermieden werden. Darüber hinaus kann eine gleichmäßige Belastung aller abschaltbaren Halbleiterschalter sowie eine Symmetrierung von stark unsymmetrischen Spannungen herbeigeführt werden.
Die eingangs genannte Vorrichtung weist den Nachteil auf, dass die Wirkleistungsaufnahme eines Phasenmodulzweiges nicht immer genau den Verlusten entspricht. Auf diese Weise kann es zu unsymmetrischen Verteilung der in einem Phasenmodulzweig jeweils gespeicherten Energie kommen. Die Kondensatoren der
Submodule werden daher unterschiedlich stark belastet mit unerwünschten Begleiterscheinungen im Gefolge.
Aufgabe der Erfindung ist es daher, eine Vorrichtung und ein Verfahren der eingangs genannten Art bereitzustellen, mit dem eine unsymmetrische Belastung der Energiespeicher der Submodule vermieden ist.
Die Erfindung löst diese Aufgabe ausgehend von der eingangs genannte Vorrichtung dadurch, dass die Regelungsmittel eine Summationseinheit zum Aufsummieren der Energiespeicherenergiewerte unter Gewinnung von Zweigenergieistwerten und Mittel zum Berechnen von Kreisstromsollwerten Dvb, Dhgl, Dhge in Abhängigkeit der Zweigenergieistwerte aufweisen, wobei die Re- gelungsmittel zum Ausgleich von Unsymmetrien bei den Zweigenergieistwerten in Abhängigkeit der Kreisstromsollwerte Dvb, Dhgl, Dhge eingerichtet sind.
Ausgehend von dem eingangs genannten Verfahren löst die Er- findung die Aufgabe dadurch dass, die in jedem Energiespeicher gespeicherte Energie unter Gewinnung eines Energiespeicherenergiewertes erfasst, alle Energiespeicherenergiewerte eines Phasenmodulzweiges unter Gewinnung von Zweigenergieistwerten aufsummiert werden und in Abhängigkeit der Zweigener- gieistwerte Kreisstromsollwerte bestimmt werden, wobei in Abhängigkeit der Kreisstromsollwerte Kreisströme in den Phasenmodulen zum Ausgleich von Unsymmetrien erzeugt werden.
Im Rahmen der Erfindung sind die Regelungsmittel zum Ausgleich von Asymmetrien hinsichtlich der in den Submodulen gespeicherten Elektroenergie eingerichtet. Dazu wird zunächst die in allen Energiespeichern gespeicherte Energie für jeden Phasenmodulzweig ermittelt. Dies geschieht durch Aufsummieren von Energiespeicherenergiewerten, die jeweils einer in dem' Energiespeicher eines Submoduls gespeicherten Energie entsprechen. Aus der Summe der Energiespeicherenergiewerte ergeben sich Zweigenergieistwerte, die einer Summe der Energien sämtlicher Energiespeicher eines Phasenmodulzweiges entspre- chen. Durch Vergleich der Zweigenergieistwerte wird im Rahmen der Erfindung eine Asymmetrie festgestellt. Zum Ausgleich der Asymmetrie werden schließlich mittels einer Regelung Kreisströme erzeugt. Hierzu dienen die Kreisstromsollwerte Dvb, Dhgl, Dhge, die in Abhängigkeit des Unterschiedes der Zweig- energieistwerte bestimmt werden. Die Kreisstr'omsollwerte werden schließlich den Regelungsmitteln zugeführt, die auf der Grundlage der Kreisstromsollwerte Dvb, Dhgl, Dhge die zum Ausgleich der Unsymmetrien notwendigen Kreisströme erzeugen. Auf diese Weise ist für eine symmetrische Belastung der Sub- module gesorgt.
Als Energiespeicherenergiewert eines Submoduls dient beispielsweise ein Energiespeicherspannungswert, der durch Messen der an dem Energiespeicher abfallenden Spannung gewonnen wird. Abweichend hiervon dient das Quadrat des Energiespei- cherspannungswertes als Energiespeicherenergiewert. Grundsätzlich kann jeder Wert, der als Maß für die in dem jeweiligen Energiespeicher gespeicherte Energie dienen kann im Rahme der Erfindung verwendet werden. Der Energiespeicher eines Submoduls kann im Rahmen der Erfindung auch aus mehreren Subenergiespeichern zusammengesetzt sein. Der Energiespeicherenergiewert ist dann die Summe der Subenergiespeicherenergiewerte .
Zweckmäßigerweise umfassen die Regelungsmittel einen Regler, an dessen Eingang die Kreisstromsollwerte Dvb, Dhgl, Dhge anliegen und an dessen Ausgang Kreisspannungssollwerte abgegriffen werden. Der Regler ist beispielsweise ein Proportio- nalregler. Die Regelungsmittel umfassen ferner eine Stromregeleinheit, die verschiedene Spannungssollwerte einschließlich der Kreisspannungssollwerte linear, also durch Aufsummieren und Differenzbilden, miteinander kombiniert. Das Ergebnis dieser Linearkombination von Spannungssollwerten sind Zweigspannungssollwerte, die jeweils einem Phasenmodulzweig zugeordnet sind. Der oder die Zweigspannungssollwerte werden Ansteuereinheiten zugeführt, die ebenfalls einem Phasenmodulzweig zugeordnet sind.
Vorteilhafterweise weist die erfindungsgemäße Vorrichtung einen positiven und einen negativen Gleichspannungsanschluss auf, wobei Summationsmittel die Zweigenergieistwerte der Pha- senmodulzweige, die mit dem positiven Gleichspannungsanschluss verbunden sind, zu einer positiven Zweigsumme und die Zweigenergieistwerte der Phasenmodulzweige, die mit dem negativen Gleichspannungsanschluss verbunden sind, zu einer negativen Zweigsumme aufsummieren und Differenziermittel, die Differenz aus der positiven und der negativen Zweigsummen unter Gewinnung eines Vertikalkreisstromsollwertes Dvb zum Aus- gleich einer vertikalen Unsymmetrie bilden. Eine vertikale
Unsymmetrie besteht dann, wenn die Phasenmodulzweige, die mit dem positiven Gleichspannungsanschluss verbunden sind, mehr oder weniger Energie aufgenommen haben, als die Phasenmodulzweige, die mit dem negativen Gleichspannungsanschluss ver- bunden sind. Eine vertikale Unsyxnmetrie kann daher durch Vergleich der Zweigenergieistwerte festgestellt werden, wobei die Zweigsumme der Phasenmodulzweige, die mit dem positiven Gleichspannungsanschluss verbunden sind, von der Zweigsumme der Phasenmodulzweige abgezogen wird, die mit dem negativen Gleichspannungsanschluss verbunden ist. Die sich ergebende Differenz' stellt ein Maß für die vertikale Unsymmetrie dar, so dass auf diese Weise ein Sollwert für die Regelung zum Ausgleich der vertikalen Unsymmetrie herleitbar ist.
Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung weist die erfindungsgemäße Vorrichtung Mittel zum Erzeugen, einer netzfrequenten MitSystemsollspannung Uvbl,2,3 in Abhängigkeit des Vertikalkreisstromsollwertes Dvb zum Ausgleich der vertikalen unsymmetrie auf. Die netzfrequente Mitsystem- sollspannung Uvbl,2,3 bezieht sich auf die Phasenlage der mehrphasigen Wechselspannung des angeschlossenen Netzes. Bei einem netzfrequenten Mitsystem dreht sich in der Zeigerdarstellung die erzeugte Spannung in der gleichen Drehrichtung wie die Zeiger der Wechselspannung des angeschlossenen Netzes. Die Mitsystemsollspannung wird, wie zuvor beschrieben, durch die Regelungsmittel anderen Spannungssollwerten aufgeschaltet.
Abweichend hiervon können Mittel zum Erzeugen einer Asymmetriespannung Uasym in Abhängigkeit der Kreisstromsollwerte Dvb zum Ausgleich der vertikalen Unsymmetrie vorgesehen sein. Solche Mittel zum Erzeugen einer Äsymmetriespannung sind beispielsweise einfache Regler, an deren Eingang die Kreisstrom- sollwerte anliegen, wobei am Ausgang des Reglers die Asymmetriespannung Uasym erhältlich ist. Bei dem Regler handelt es sich beispielsweise um einen einfachen Proportionalregler. Vorteilhafterweise sind Mittel zum Nachweis einer gleichsinnigen horizontalen Unsymmetrie vorgesehen, wobei die besagten Mittel Kreisstromsollwerte Dhgl in Abhängigkeit der nachgewiesenen gleichsinnigen horizontalen Unsymmetrie erzeugen. Neben einer vertikalen unsymmetrie sind auch horizontale Un- symmetrien möglich und zwar dann, wenn die Zweigenergieistwerte der Phasenmodulzweige, die mit dem positiven Gleich- spannungsanschluss verbunden sind, unterschiedlich groß sind. Dies gilt entsprechend für die Zweigenergieistwerte der Pha- senmodulzweige, die mit dem negativen Gleichspannungsan- schluss verbunden sind. Eine gleichsinnige horizontale Unsymmetrie liegt vor, wenn die Unsymmetrie zwischen den positiven Phasenmodulzweigen gleich der Unsymmetrie zwischen den negativen Phasenmodulzweigen ist. Eine gegensinnige horizontale Unsymmetrie entsteht hingegen, wenn die Unsymmetrie unter den positiven Phasenmodulzweigen invers zur Unsymmetrie unter den negativen Phasenmodulzweigen ist.
Die erfindungsgemäße Vorrichtung weist daher vorteilhafter- weise Mittel zum Nachweis einer gleichsinnigen horizontalen Unsymmetrie auf, wobei die besagten Mittel Kreisstromsollwerte Dhgl in Abhängigkeit der nachgewiesenen gleichsinnigen horizontalen Unsymmetrie erzeugen.
Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung sind Mittel zum Erzeugen von Kreisspannungssollwerten uhgl vorgesehen, die jeweils einem Phasenmodul zugeordnet sind. Die Kreisspannungssollwerte uhgl werden von den Regelungsmitteln anderen Spannungssollwerten aufgeschaltet .
Vorteilhafterweise sind im Rahmen der Erfindung Mittel zum Nachweis einer gegensinnigen horizontalen Unsymmetrie vorgesehen, wobei die besagten Mittel Kreisstromsollwerte Dhge in Abhängigkeit der nachgewiesenen gegensinnigen horizontalen Unsymmetrie erzeugt.
Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung sind Mittel zum Erzeugen eines netzfrequenten Gegenspannungssystems ughe in Abhängigkeit der nachgewiesenen gegensinnigen horizontalen Unsymmetrie vorgesehen. Das netzfrequente Gegenspannungssystem zeichnet sich durch eine Spannung aus, deren Zeiger im Zeigermodell entgegen der Richtung des Wechselspan- nungsnetzes rotiert.
Gemäß einem anderen Ausführungsbeispiel sind Mittel zur zeitgleichen Kompensation von vertikalen und horizontalen gegensinnigen Unsymmetrien vorgesehen.
Gemäß einer zweckmäßigen Weiterentwicklung des erfindungsgemäßen Verfahrens werden die Zweigenergieistwerte aller Phasenmodule, die mit einem positiven Gleichspannungsanschluss verbunden sind, unter Gewinnung einer positiven Gesamtsumme und die Zweigenergieistwerte aller Phasenmodulzweige, die mit einem negativen Gleichspannungsanschluss verbunden sind, unter Gewinnung einer negativen Gesamtsumme aufsummiert, wobei die Differenz zwischen der positiven und der negativen Gesamtsumme unter Gewinnung eines vertikalen Kreisromsollwertes Dvb gebildet wird. Auf diese Weise kann eine vertikale unsymmetrie festgestellt werden und mit Hilfe des Kreisstromsollwertes quantifiziert werden.
Vorteilhafterweise wird ausgehend von dem vertikalen Kreis- stromsollwert eine netzfrequente Mitsystemsollspannung erzeugt. Der Gleichstromsollwert geht dabei vorteilhafterweise als Amplitude einer periodischen Funktion ein. Abweichend davon wird ausgehend von dem vertikalen Kreisstromsollwert Dvb mittels eines Proportionalreglers eine A- symmetriesollspannung erzeugt.
Das Feststellen einer gleichsinnigen horizontalen Unsymmetrie erfolgt beispielsweise durch Bilden der Zweigenergieistwerte aller Phasenmodulzweige eines Phasenmoduls unter Gewinnung von Phasenmodulenergiesummenwerten, durch Bilden des Mittelwertes aller Phasenmodulenergiesummenwerte und durch Bilden von Differenzen aus dem besagten Mittelwert und jedem Phasen- modulenergiesummenwert unter Gewinnung von gleichsinnigen horizontalen Unsymmetriestromsollwerten .
Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung wer- den aus den gleichsinnigen horizontalen Unsymmetriestromsollwerten Dhgl mittels eines Reglers Kreisspannungssollwerte gebildet, die als Sollspannung von den Regelungsmitteln anderen Spannungssollwerten aufgeschaltet werden.
Gemäß einer weiteren Ausgestaltung der Erfindung werden die Zweigenergieistwerte aller Phasenmodulzweige eines Phasenmoduls unter Gewinnung von Phasenmodulenergiedifferenzwerten, die jeweils einer Phase zugeordnet sind, voneinander abgezogen. Anschließend wird der Mittelwert der Phasenmodulenergie- differenzwerte über alle Phasen berechnet und für jede Phase die Differenz aus dem besagten Mittelwert und dem jeweiligen Phasenmodulenergiedifferenzwert unter Gewinnung von gegensinnigen horizontalen Unsymmetriestromsollwerten Dhgel,Dhge2,Dhge3 ermittelt.
Gemäß einer diesbezüglichen Weiterentwicklung wird das aus den gegensinnigen horizontalen Unsymmetriestromsollwerten Dhgel, Dhge2, Dhge3 ein netzfrequentes Gegenspannungssystem uh- gel, uhge2, uhge3 ermittelt. Vorteilhafterweise wird der Zweigenergieistwert eines Phasenmodulzweiges, der mit einem negativen Gleichspannungsan- schluss verbunden ist, von dem Zweigenergieistwert des Pha- senmodulzweiges des gleichen Phasenmoduls, der mit dem posi- tiven Gleichspannungsanschluss verbunden ist, unter Gewinnung einer Phasenzweigmoduldifferenz abgezogen, wobei die Phasen- zweigmoduldifferenz als Amplitude einer periodischen Funktion dient, die mit der Netzfrequenz schwingt und einem Phasenmodul zugeordnet ist, wobei die periodischen Funktionen der an- deren Phasenraodule jeweils phasenverschoben sind, so dass eine Mitsystemsollspannung gebildet ist. Die Mitsystemsollspan- ■ nung wird wieder anderen Sollwerten der Regelung aufgeschaltet.
Weitere zweckmäßige Ausgestaltungen und Vorteile sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figuren der Zeichnung, wobei gleiche Bezugszeichen auf gleich wirkende Bauteile verweisen und wobei
Figur 1 ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung in einer schematischen Darstellung zeigt,
Figur 2 eine Ersatzbilddarstellung eines Submoduls einer Vorrichtung gemäß Figur 1 zeigt,
Figur 3 ein Verfahren zum Feststellen einer vertikalen
Unsymmetrie verdeutlicht,
Figur 4 das Erzeugen einer netzfrequenten Mitsystem- spannung verdeutlicht, Figur 5 das Erzeugen einer Asymmetriespannung verdeutlicht,
Figur 6 den Nachweis einer gleichsinnigen horizontalen Unsymmetrie verdeutlicht,
Figur 7 den Nachweis einer gegensinnigen vertikalen Unsymmetrie verdeutlicht,
Figur 8 eine Methode zum Erzeugen von Unsymmetriespan- nungen verdeutlicht,
Figur 9 ein Verfahren zum Erzeugen einer netzfrequen- ten Gegensystemspannung darstellt,
Figur 10 Mittel zum zeitgleichen Kompensieren von vertikalen und horizontalen gegensinnigen Unsym- metrien darstellt,
Figur 11 die Struktur der Regelungsmittel der Vorrichtung gemäß Figur 1 zeigt und
Figur 12 das Aufschalten von Kreisspannungssollwerten zu anderen Sollwerten der Regelungsmittel verdeutlicht.
Figur 1 zeigt ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung 1, die aus drei Phasenmodulen 2a, 2b und 2c zusammengesetzt ist. Jedes Phasenmodul 2a, 2b und 2c ist mit einer positiven Gleichspannungsleitung p sowie mit einer negativen Gleichspannungsleitung n verbunden, so dass jedes Phasenmodul 2a, 2b, 2c zwei Gleichspannungsanschlüsse aufweist. Ferner ist für jedes Phasenmodul 2a, 2b und 2c jeweils ein Wechselspannungsanschluss 3χ, 32 und 33 vorgesehen. Die Wech- selspannungsanschlüsse 3i, 32 und 33 sind über einen Transformator 4 mit einem dreiphasigen Wechselspannungsnetz 5 verbunden. An den Phasen des Wechselspannungsnetzes 5 fallen die Phasenspannungen Ul, U2 und U3 ab, ' wobei Netzströme InI, In2 und In3 fließen. Der wechselspannungsseitige Phasenstrom eines jeden Phasenmoduls wird mit II, 12 und 13 bezeichnet. Der Gleichspannungsstrom ist Id. Zwischen jedem der Wechselspannungsanschlüsse 3i, 32 oder 33 und der positiven Gleichspannungsleitung p erstrecken sich Phasenmodulzweige 6pl, 6p2 und 6p3. Zwischen jedem Wechselspannungsanschluss 3i, 32, 33 und der negativen Gleichspannungsleitung n sind die Phasenmodulzweige 6nl, 6n2 und 6n3 ausgebildet. Jeder Phasenmodulzweig 6pl, 6p2, 6p3, 6nl, 6n2 und 6n3 besteht aus einer Reihenschaltung aus in Figur 1 nicht ausführlich dargestellten Sub- modulen und einer Induktivität, die in Figur 1 mit LKr bezeichnet ist.
In Figur 2 ist die Reihenschaltung der Submodule 7 und insbesondere der Aufbau der Submodule durch ein elektrisches Er- satzschaltbild genauer dargestellt, wobei in Figur 2 lediglich der Phasenmodulzweig 6pl herausgegriffen wurde. Die restlichen Phasenmodulzweige sind jedoch identisch aufgebaut. Es ist erkennbar, dass jedes Submodul 7 zwei in Reihe geschaltete abschaltbare Leistungshalbleiter Tl und T2 auf- weist. Abschaltbare Leistungshalbleiter sind beispielsweise so genannte IGBTs, GTOs, IGCTs oder dergleichen. Diese sind dem Fachmann als solche bekannt, so dass eine ausführliche Darstellung an dieser Stelle entfallen kann. Jedem abschaltbaren Leistungshalbleiter Tl, T2 ist eine Freilaufdiode Dl, D2 antiparallel geschaltet. Parallel zur Reihenschaltung der abschaltbaren Leistungshalbleiter Tl, T2 beziehungsweise der Freilaufdioden Dl und D2 ist ein Kondensator 8 als Energiespeicher geschaltet. Jeder Kondensator 8 ist unipolar aufgeladen. An den zweipoligen Anschlussklemmen Xl und X2 jedes Submoduls 7 können nunmehr zwei Spannungszustände erzeugt werden. Wird von einer Ansteuereinheit- 9 beispielsweise ein Ansteuersignal erzeugt, mit dem der abschaltbare Leistungshalbleiter T2 in seine Durchgangsstellung überführt wird, in der ein Stromfluss über den Leistungshalbleiter T2 ermöglicht ist, fällt an den Klemmen Xl, X2 des Submoduls 7 die Spannung null ab. Dabei befindet sich der abschaltbare Leistungshalbleiter Tl in seiner Sperrstellung, in der ein Stromfluss über den abschaltbaren Leistungshalbleiter Tl unterbrochen ist. Dies verhindert die Entladung des Kondensators 8. Wird hingegen der abschaltbare Leistungshalbleiter Tl in seine Durchgangsstellung, der abschaltbare Leistungshalbleiter T2 jedoch in seine Sperrstellung überführt, liegt an den Klemmen Xl, X2 des Submoduls 7 die volle KondensatorSpannung Uc an.
Das Ausführungsbeispiel der erfindungsgemäßen Vorrichtung gemäß Figur 1 und 2 wird auch als so genannter Multi-Level- Stromrichter bezeichnet. Ein solcher Multi-Level-Stromrichter ist beispielsweise zum Antrieb elektrischer Maschinen, wie beispielsweise Motoren oder dergleichen, geeignet. Darüber hinaus eignet sich ein solcher Multilevelstromrichter auch für einen Einsatz im Bereich der Energieverteilung und - Übertragung. So dient die erfindungsgemäße Vorrichtung beispielsweise als Kurzkupplung, die aus zwei gleichspannungs- seitig miteinander verbundenen Stromrichtern besteht, wobei die Stromrichter jeweils mit einem Wechselspannungsnetz verbunden sind. Solche Kurzkupplungen werden zum Energieaustausch zwischen zwei Energieverteilungsnetzen eingesetzt, wobei die Energieverteilungsnetze beispielsweise eine unter- schiedliche Frequenz, Phasenlage, Sternpunktbehandlung oder dergleichen aufweisen. Darüber hinaus kommen Anwendungen im Bereich der Blindleistungskompensation, als so genannte FACTS (Flexible AC Transmission Systems) in Betracht. Auch die Hochspannungsgleichstromübertragung über lange Strecken hinweg ist mit solchen Multilevelstromrichtern denkbar.
Um eine unsymmetrische Verteilung der Energie auf die Submo- dule 7, also auf die Kondensatoren 8 der Submodule 7, zu vermeiden, wird im Rahmen der Erfindung zunächst festgestellt, ob ünsymmetrien vorliegen.
Figur 3 verdeutlicht schematisch ein Verfahren zum Detektie- ren einer vertikalen Unsymmetrie. Hierzu werden zunächst von jedem Phasenmodulzweig 6pl,...,6n3 die Zweigenergieistwerte Uc]£ pl, ... , Uc^T n3 ermittelt. Dies erfolgt durch Messen der am Kondensator 8 abfallenden Spannung Uc für jedes Submodul 7. Wie in Figur 2 durch den nach rechts weisenden Pfeil ge- zeigt ist, wird der von dem Spannungssensor erfasste Kondensatorspannungswert Uc an die Auswerteeinheit 9 übertragen. Die Auswerteeinheit 9 summiert alle Kondensatorspannungswerte Uc eines Phasenmodulzweiges 6pl,...,6n3 zu Zweigenergieistwerten UcJ] pl, ... ,UcJ] n3 auf. Hierbei ist es unerheblich, ob das Submodul der Reihenschaltung zugeschaltet ist und einen Beitrag liefert oder nicht. Um ein Maß für die gespeicherte Energie zu bekommen ist es auch möglich, die an den Kondensatoren abfallende Spannung Uc zu Uc2 zu quadrieren und Uc2 anschließend zu den Zweigenergieistwerten aufzusummieren.
Die Zweigenergieistwerte entsprechen hier also Zweigspannungsistwerten UcVpI, ...,UcY n3. Diese werden jeweils durch einen Proportionalregler 10 zu Zwischenwerten umgewandelt und die Zwischenwerte der Phasenmodulzweige 6pl,βp2,βp3, die mit dem positiven Gleichspannungsanschluss p verbunden sind, miteinander aufsummiert. Entsprechend wird mit den Zwischenwerten der Phasenmodulzweige 6nl,6n2,6n3, die mit dem negativen Gleichspannungsanschluss n verbunden sind, verfahren. Auf diese Weise entsteht eine positive Zweigsumme sowie eine negative Zweigsumme, die mittels des Differenzbildners 11 voneinander abgezogen werden, wodurch der Kreisstromsollwert Dvb zum Ausgleich einer vertikalen Unsymmetrie gebildet wird.
Figur 4 verdeutlicht die Erzeugung einer netzfrequenten Mit- systemsollspannung. Zunächst wird sowohl eine Sinusfunktion als auch eine Kosinusfunktion mit dem Argument von ωt unter Zusatz einer Phasenverschiebung δ gebildet, ω entspricht hierbei der Frequenz der Spannung des angeschlossenen Netzes. Die Kosinus- beziehungsweise die Sinusfunktion werden jeweils mit einer Amplitude multipliziert, die aus dem Kreisstromsollwert Dvb unter Einsatz eines Proportionalreglers 10 gebildet wird. Durch die anschließende Umwandlung vom zweidi- mensionalen Vektorraum in den dreidimensionalen Raum ergibt sich die netzfrequente Mitsystemsollspannung uvbl, uvb2 und uvb3. Diese wird anderen Sollspannungen in einer Stromregeleinheit aufgeschaltet .
Ausgehend von dem gemäß Figur 3 gebildeten Kreisstromsollwert Dvb ist anstelle der Erzeugung einer netzfrequenten Mitsys- temsollspannung auch die Erzeugung einer Asymmetriespannung Uasym möglich. Hierzu wird wie in Figur 5 gezeigt ist die Kreisstromsollwert Dvb an den Eingang eines Reglers 10 ge- legt, bei dem es sich beispielsweise um einen Proportionalregler handelt. Am Ausgang des Reglers 10 kann die Asymmetriespannung Uasym abgegriffen werden.
Figur 6 verdeutlicht den Nachweis einer horizontalen gleich- sinnigen Unsymmetrie. Hierzu werden die Zweigenergieistwerte Uc^pI, ... ,Uc]ζn3 der Phasenmodulzweige 6pl,...6n3 desselben
Phasenmoduls 2a, 2b, 2c jeweils zu Phasenmodulenergiesummenwer- ten aufaddiert, wobei die Zweigenergieistwerte zuvor durch den Regler 10 proportional zu Zwischenwerten verstärkt werden. Zum Aufaddieren dient ein Addierer. 12. Aus den Phasenmo- dulenergiesummenwerten am Ausgang des Addierers 12 wird dem Mittelwertbildner 13 der Mittelwert gebildet und von jedem Phasenmodulenergiesummenwert einer Phase durch Differenzbildner 11 abgezogen. Am Ausgang jedes Differenzbildners 11 können vertikale Kreisstromsollwerte Dhgll, Dhgl2, Dhgl3 für jede Phase abgegriffen werden.
Figur 7 verdeutlicht, wie eine gegensinnige horizontale Un- symmetrie nachgewiesen werden kann. Hierzu werden die Zweigenergieistwerte Uc]^ pl, ... ,Uc^ n3 zunächst wieder durch einen Regler 10 verstärkt. Anschließend wird im Gegensatz zu dem in Figur 6 gezeigten Verfahren die Differenz zwischen Zweigenergieistwerten Uc^ pl, Uc^nI der Phasenmodulzweige des gleichen Phasenmoduls 2a, 2b, 2c berechnet. Aus der Differenz wird wieder der Mittelwert über alle drei Phasen gebildet, wobei der Mittelwert von der besagten Differenz abgezogen wird. Am Ausgang des zweiten Differenzbildners 11 kann schließlich der gegensinnige horizontale Unsymmetriestrom- sollwert Dhgel, Dhge2 und Dhge3 für jede Phase abgegriffen werden.
Figur 8 verdeutlicht, wie aus den Kreisstromsollwerten Dghll, Dghl2, Dhgl3 durch einen Proportionalregler 10 Kreisspannungssollwerte uhgll, uhgl2 und uhgl3 erzeugt werden. Diese Kreisspannungssollwerte werden, wie zuvor beschrieben, in die Regelung eingespeist, so dass sich die gewünschten Kreisströme zum Ausgleich der Symmetrien einstellen.
Figur 9 verdeutlich die Erzeugung einer netzfrequenten Gegen- systemspannung uhgel, uhge2 und uhge3. Ausgehend von den gegensinnigen horizontalen Unsymmetriestromsollwerten Dhgel, Dhge2 und Dhge3. Die besagten Unsymmetriestromsollwerte werden zunächst in dem zweidimensionalen Vektorraum transformiert und anschließend durch einen Regler 10 proportional verstärkt. Die verstärkten Unsymmetriesollwerte dienen als Amplitude einer Kosinusfunktion und einer negativen Sinusfunktion mit dem Argument ωt und der Phasenverschiebung δ. Nach der Transformation in den dreidimensionalen Raum erhält man die netzfrequente Gegensystemsollspannung uh- gel,ughe2,uhge3 zum Einspeisen in die Stromregelungseinheit und zum Aufschalten auf weiter Sollwerte der Regelung.
Figur 10 verdeutlicht Mittel zur zeitgleichen Kompensation von vertikalen Unsymmetrien und horizontalen gegensinnigen Unsymmetrien. Wie im Zusammenhang mit Figur 7 beschrieben, werden zunächst Zweigenergieistwerte Uc]TpI, ... ,Uc^ n3 der
Phasenmodulzweige 6pl,...6n3 eines gemeinsamen Phasenmoduls durch einen Regler 10 proportional verstärkt und anschließend die Differenz in dem Differenzbildner 11 gebildet. Parallel hierzu werden Kosinusfunktionen gebildet, die von der Netz- frequenz ω und von der Phase δ abhängen. Die phasenweise gebildeten Kosinusfunktionen sind um — zueinander phasenver-
3 schoben. Die phasenverschobenen Kosinusfunktionen werden mit der sich am Ausgang des Differenzbildners 11 ergebenden Pha- senzweigmoduldifferenz als Amplitude multipliziert, so dass sich eine Mitsystemsollspannung uvbl, uvb2 und Uub3 ergibt.
Figur 11 verdeutlicht die Struktur der Regelungsmittel. Die Regelungsmittel umfassen eine Stromregeleinheit 10 sowie Ansteuereinheiten 9pl, 9p2, 9p3 und 9nl und 9n2 und 9n3. Jede der Ansteuereinheiten ist einem Phasenmodulzweig βpl, 6p2, 6p3, 6nl, 6n2 beziehungsweise 6n3 zugeordnet. Die Ansteuereinheit 9pl ist beispielsweise mit jedem Submodul 7 des Pha- senmodulzweiges βpl verbunden und erzeugt die Steuersignale für die abschaltbaren Leistungshalbleiter Tl, T2. In jedem Submodul 7 ist ein figürlich nicht dargestellter Submodul- spannungssensor vorgesehen. Der Submodulspannungssensor dient zur Erfassung der an dem Kondensator 8 als Energiespeicher des Submoduls 7 abfallenden Kondensatorspannung' unter Gewinnung eines Kondensatorspannungswertes Uc. Der Kondensatorspannungswert Uc wird der jeweiligen Ansteuereinheit, hier 9pl, zur Verfügung gestellt. Die Ansteuereinheit 9pl erhält somit die Kondensatorspannungswerte sämtlicher Submodule 7 des ihr zugeordneten Phasenmodulzweiges 6pl und summiert diese zum Erhalt eines Zweigenergieistwertes oder hier Zweigspannungsistwert
Figure imgf000021_0001
der ebenfalls dem Phasenmodulzweig βpl zugeordnet ist. Dieser Zweigspannungsistwert Uc]TpI wird der Stromregeleinheit 10 zugeführt.
Im Übrigen ist die Stromregeleinheit 10 mit verschiedenen figürlich nicht dargestellten Messsensoren verbunden. So dienen wechselspannungsseitig der Phasenmodule 2a, 2b, 2c angeordne- te Stromwandler zum Erzeugen und Zuführen von Phasenstrom- messwerten II, 12, 13 und an jedem Phasenmodul angeordnete Stromwandler zum Erzeugen und Zuführen von Phasenmodulzweig- strömen Izwg sowie ein im Gleichspannungskreis des Stromrichters angeordnete Stromwandler zum Bereitstellen von Gleich- strommesswerten Id. Spannungswandler des Wechselstromnetzes stellen Netzspannungsmesswerte Ul, U2, U3 und Gleichspannungswandler positive Gleichspannungsmesswerte Udp und negative Gleichspannungsmesswerte Udn bereit, wobei die positiven Gleichspannungswerte Udp, einer zwischen dem positiven Gleichspannungsanschluss p und Erde abfallenden Gleichspannung und die negativen Gleichspannungswerte Udn, einer zwischen dem negativen Gleichspannungsanschluss und Erde abfallenden Spannung entsprechen. Der Stromregeleinheit 10 werden ferner Sollwerte zugeführt. In dem in Figur 11 gezeigten Ausführungsbeispiel werden der Regelungseinheit 10 ein Wirkstromsollwert Ipref sowie ein Blindstromsollwert Iqref zugeführt. Ferner wird ein Gleich- Spannungssollwert Udref an den Eingang der Stromregeleinheit 10 gelegt. Statt eines Gleichspannungssollwertes üdref ist auch die Verwendung eines Gleichstomsollwertes Idref im Rahmen der Erfindung möglich.
Die Sollwerte Ipref, Iqref und Udref sowie die besagten Messwerte treten unter Einsatz verschiedener Regler in Wechselwirkung miteinander, wobei für jede Ansteuereinheit 9pl, 9p2, 9p3, 9nl, 9n2 und 9n3 ein Zweigspannungssollwert Uplref, Up2ref, Up3ref, ünlref, Un2ref, Un3ref erzeugt wird. Jede An- Steuereinheit 9 erzeugt Steuersignale für die ihr zugeordneten Submodule 7, so dass die an der Reihenschaltung der Sub- module anfallende Spannung UpI, Up2, Up3, UnI, Un2, Un3 dem jeweiligen Zweigspannungssollwert Uplref, Up2ref, Up3ref, Unlref, Un2ref, Un3ref möglichst entspricht.
Die Stromregeleinheit 10 bildet aus ihren Eingangswerten geeignete Zweigspannungssollwerte Uplref, Up2ref, Up3ref, Unlref, Un2ref, Un3ref.
Figur 12 zeigt, dass beispielsweise der Zweigspannungssollwert Upref durch Linearkombination eines Netzphasenspannungs- sollwertes Unetzl, eines Zweigspannungszwischensollwertes Uzwgpl, eines Gleichspannungssollwertes Udc, eines Symmetrie- rungsspannungssollwertes Uasym und eines Balancierungsspan- nungssollwertes Ubalpl berechnet wird. Dies erfolgt für jeden der Phasenmodulzweige 6pl, 6p2, 6p3, βnl, 6n2, 6n3 unabhängig voneinander. Mit den Zweigspannungszwischensollwerten Uzwg können in Verbindung mit den eingestellten Zweiginduktivitäten die Kreisströme gezielt eingestellt werden. Auch die Ba- lancierungsspannungssollwerte Ubal dienen zum Ausgleich von Unsymmetrien hinsichtlich der in den Phasenmodulzweigen gespeicherten 6pl, 6p2, 6p3, 6nl, 6n2, 6n3 Energien.

Claims

Patentansprüche
1. Vorrichtung (1) zum Umrichten eines elektrischen Stromes mit wenigstens einem Phasenmodul (2a, 2b, 2c), das einen Wech- selspannungsanschluss (3i,32,33) und wenigstens einen Gleich- spannungsanschluss (p,n) aufweist, wobei zwischen jedem Gleichspannungsanschluss (p,n) und jedem Wechselspannungsan- schluss (3i,32,33) ein Phasenmodulzweig (6pl, 6p2, 6p3, 6nl, 6n2, 6n3) ausgebildet ist, und wobei jeder Phasenmodulzweig (6pl, 6p2, 6p3, 6nl, 6n2, 6n3) über eine Reihenschaltung aus Submodulen (7) verfügt, die jeweils einen Energiespeicher (8) und wenigstens einen Leistungshalbleiter (Tl, T2) aufweisen, mit Submodulsensoren zum Erfassen einer in dem Energiespeicher (8) gespeicherten Energie unter Gewinnung von Energiespeicherenergiewerten und mit Regelungsmitteln (9) zum Regeln der Vorrichtung (1) in Abhängigkeit der Energiespeicherenergiewerte und vorgegebener Sollwerte, d a d u r c h g e k e n n z e i c h n e t , dass die Regelungsmittel (9) eine Summationseinheit zum Aufsummie- ren der Energiespeicherenergiewerte (Uc) unter Gewinnung von Zweigenergieistwerten (Uc^pI, ... ,Uc^ n3) und Mittel zum Berechnen von Kreisstromsollwerten (Dvb, Dhgl, Dhge) in Abhängigkeit der Zweigenergieistwerte (Uc^ pl, ... ,Uc^ n3) aufweisen, wobei die Regelungsmittel (9) zum Ausgleich von Unsymmetrien bei den Zweigenergieistwerten (Uc^ pl, ... , Uc]T n3) in Abhängigkeit der Kreisstromsollwerte (Dvb, Dhgl, Dhge) eingerichtet sind.
2. Vorrichtung (1) nach Anspruch 1, g e k e n n z e i c h n e t d u r c h einen positiven und einen negativen Gleichspannungsanschluss (p,n), wobei Summationsmittel die Zweigenergieistwerte der Phasenmodulzweige, die mit dem positiven Gleichspannungsan- Schluss (p) verbunden sind, zu einer positiven Zweigsumme und die Zweigenergieistwerte der Phasenmodulzweige, die mit dem negativen Gleichspannungsanschluss (n) verbunden sind, zu einer negativen Zweigsumme aufsummieren und Differenzmittel (11), die Differenz aus der positiven Zweigsumme und der negativen Zweigsumme unter Gewinnung eines Vertikalkreisstromsollwertes Dvb zum Ausgleich einer vertikalen Unsymmetrie bilden.
3. Vorrichtung (1) nach Anspruch 2, g e k e n n z e i c h n e t d u r c h
Mittel zum Erzeugen einer netzfrequenten Mitsystemsollspan- nung Uvbl,Uvb2,Uvb3 in Abhängigkeit des Vertikalkreissollstromes Dvb zum Ausgleich der vertikalen Unsymmetrie.
4. Vorrichtung (1) nach Anspruch 2., g e k e n n z e i c h n e t d u r c h
Mittel zum Erzeugen einer Asymmetriespannung Uasym in Abhängigkeit der Kreisstromsollwerte Dvb zum Ausgleich der verti- kalen Unsymmetrie.
5. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, g e k e n n z e i c h n e t d u r c h
Mittel zum Nachweis einer gleichsinnigen horizontalen Unsym- metrie, wobei die besagten Mittel Kreisstromsollwerte
Dhgll, Dhgl2, Dhgl3 in Abhängigkeit der nachgewiesenen gleichsinnigen horizontalen Unsymmetrie erzeugen.
6. Vorrichtung (1) nach Anspruch 5, g e k e n n z e i c h n e t d u r c h
Mittel zum Erzeugen von Kreisspannungssollwerten uhgll, uhgl2, uhgl3, die jeweils einem Phasenmodul (2a, 2b, 2c) zugeordnet sind.
7. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, g e k e n n z e i c h n e t d u r c h
Mittel zum Nachweis einer gegensinnigen horizontalen Unsym- metrie, wobei die besagten Mittel Kreisstromsollwerte Dhgel, Dhge2, Dhge3 in Abhängigkeit der nachgewiesenen gegensinnigen horizontalen Unsymmetrie erzeugen.
8. Vorrichtung (1) nach Anspruch 7, g e k e n n z e i c h n e t d u r c h Mittel zum Erzeugen eines netzfrequenten Gegensystemkreis- spannung uhgel, uhge2, uhge3 in Abhängigkeit der Kreisstromsollwerte Dhgel, Dhge2,Dhge3.
9. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, g e k e n n z e i c h n e t d u r c h
Mittel zur zeitgleichen Kompensation von vertikalen und horizontalen gegensinnigen Unsymmetrien.
10. Verfahren zum ümrichten eines Stromes mittels eines Um- richters (1), der wenigstens ein Phasenmodul (2a, 2b, 2c) mit wenigstens einem Gleichspannungsanschluss (p,n) und einem Wechselspannungsanschluss (3i,32,33) aufweist, wobei zwischen jedem Gleichspannungsanschluss (p,n) und dem Wechselspannungsanschluss (31,32/33) ein Phasenmodulzweig (6pl, 6p2, 6p3, 6nl, 6n2, 6n3) ausgebildet ist, der über eine Reihenschaltung aus Submodulen (7) verfügt, die jeweils einen Energiespeicher (8) und wenigstens einen Leistungshalbleiter (Tl, T2) aufweisen, wobei die in jedem Energiespeicher (8) gespeicherte Energie unter Gewinnung eines Energiespeicherener- giewertes (Uc) erfasst, alle Energiespeicherenergiewerte (Uc) eines Phasenmodulzweiges unter Gewinnung von Zweigenergieistwerten (UcV pl, ... ,Uc]T n3) aufsummiert werden und in Abhängigkeit der Zweigenergieistwerte (Uc^pI, ... ,Uc]^ n3) Kreis- Stromsollwerte bestimmt werden, wobei in Abhängigkeit der Kreisstromsollwerte Kreisströme in den Phasenmodulen (2a, 2b, 2c) zum Ausgleich von Unsymmetrien erzeugt werden.
11. Verfahren nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , dass die Zweigenergieistwerte (UcJ] pl, UcJ] p2, UcJ] p3) aller Phasenmodule, die mit einem positiven Gleichspannungsanschluss (p) verbunden sind unter Gewinnung einer positiven Gesamtsum- me und die Zweigenergieistwerte (UcJ] nl, UcJ] n2, UcJ] n3) aller
Phasenmodulzweige, die mit einem negativen Gleichspannungsanschluss (n) verbunden sind, unter Gewinnung einer negativen Gesamtsumme aufsummiert werden, wobei die Differenz zwischen der positiven und der negativen Gesamtsumme unter Gewinnung eines vertikalen Kreisstromsollwertes Dvb gebildet wird.
12. Verfahren nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , dass ausgehend von dem vertikalen Kreisstromsollwert Dvb eine netzfrequente Mitsystemsollspannung Uvbl,Uvb2,Uvb3 erzeugt wird.
13. Verfahren nach Anspruch 11 d a d u r c h g e k e n n z e i c h n e t , dass ausgehend von dem vertikalen Kreisstromsollwert Dvb mittels eines Proportionalreglers (10) eine Asymmetriesollspannung Uasym erzeugt wird.
14. Verfahren nach einem der Ansprüche 10 bis 13, d a d u r c h g e k e n n z e i c h n e t , dass die Zweigenergieistwerte (UcJ] pl, UcJ] nl) aller Phasenmodulzweige eines Phasenmoduls (2a, 2c, 2c) unter Gewinnung von Pha- senmodulenergiesummenwerten, die jeweils einer Phase zugeord- net sind, aufsummiert werden, der Mittelwert der Phasenmodul- energiesummenwerte über alle Phasen berechnet wird und für jede Phase die Differenz aus dem besagten Mittelwert und dem jeweiligen Phasenmodulenergiesummenwert unter Gewinnung von gleichsinnigen horizontalen Unsymmetriestromsollwerten Dhgll,Dhgl2,Dhgl3 berechnet wird.
15. Verfahren nach Anspruch 14, d a d u r c h g e k e n n z e i c h n e t , dass das aus den gleichsinnigen horizontalen Unsymmetriestromsollwerten Dhgll, Dhgl2, Dhgl3 mittels Regler Kreisspaήnungssoll- werte Uhgll,Uhgl2,Uhgl3 gebildet werden, die als Sollspannung in die Regelung eingehen.
16. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die Zweigenergieistwerte (Uc^ pl,Uc^] nl) aller Phasenmodul- zweige eines Phasenmoduls (2a, 2c, 2c) unter Gewinnung von Pha- senmodulenergiedifferenzwerten, die jeweils einer Phase zuge- ordnet sind, voneinander abgezogen werden, der Mittelwert der Phasenmodulenergiedifferenzwerte über alle Phasen berechnet wird und für jede Phase die Differenz aus dem besagten Mittelwert und dem jeweiligen Phasenmodulenergiedifferenzwert unter Gewinnung von gegensinnigen horizontalen Unsymmetrie- Stromsollwerten Dhgel, Dhge2, Dhge3 berechnet wird.
17. Vorrichtung (1) nach Anspruch 16, d a d u r c h g e k e n n z e i c h n e t, dass das aus den gegensinnigen horizontalen Unsymmetriestromsoll- werten Dhgel, Dhge2, Dhge3 ein netzfrequentes Gegenspannungssystem uhgel, uhge2, uhge3 erzeugt wird.
18. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Zweigenergieistwert Uc]T) pl eines Phasenmodulzweiges
(6nl), der mit einem negativen Gleichspannungsanschluss (n) verbunden ist, von dem Zweigenergieistwert Uc^) pl des Pha- senmodulzweiges (βpl) des gleichen Phasenmoduls (2a), der mit dem positiven Gleichspannungsanschluss (p) verbunden ist, unter Gewinnung einer Phasenzweigmoduldifferenz abgezogen wird, wobei die Phasenzweigmoduldifferenz als Amplitude einer periodischen Funktion dient, die mit der Netzfrequenz schwingt und einem Phasenmodul zugeordnet ist, wobei die periodischen Funktionen der anderen Phasenmodule jeweils phasenverschoben sind, so dass eine Mitsystemsollspannung gebildet ist.
PCT/DE2006/002251 2006-12-08 2006-12-08 Herstellung eines wirkleistungsgleichgewichts der phasenmodule eines umrichters WO2008067788A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US12/518,200 US8144489B2 (en) 2006-12-08 2006-12-08 Production of a real power equilibrium of the phase modules of a converter
CN2006800565636A CN101548459B (zh) 2006-12-08 2006-12-08 变流器相模块的有功功率平衡的产生
PCT/DE2006/002251 WO2008067788A1 (de) 2006-12-08 2006-12-08 Herstellung eines wirkleistungsgleichgewichts der phasenmodule eines umrichters
JP2009539599A JP4999930B2 (ja) 2006-12-08 2006-12-08 変換器の相モジュールにおける有効電力均衡の生成
DE112006004198T DE112006004198A5 (de) 2006-12-08 2006-12-08 Herstellung eines Wirkleistungsgleichgewichts der Phasenmodule eines Umrichters
EP06828682.2A EP2100366B1 (de) 2006-12-08 2006-12-08 Herstellung eines wirkleistungsgleichgewichts der phasenmodule eines umrichters
PL06828682T PL2100366T3 (pl) 2006-12-08 2006-12-08 Wytwarzanie równowagi mocy czynnej modułów fazowych przekształtnika
DK06828682.2T DK2100366T3 (en) 2006-12-08 2006-12-08 Creating an equilibrium in active power of the phase modules of a converter
ES06828682.2T ES2643896T3 (es) 2006-12-08 2006-12-08 Producción de un equilibrio de potencia activa de los módulos de fase de un convertidor
CA2671821A CA2671821C (en) 2006-12-08 2006-12-08 Production of a real power equilibrium of the phase modules of a converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2006/002251 WO2008067788A1 (de) 2006-12-08 2006-12-08 Herstellung eines wirkleistungsgleichgewichts der phasenmodule eines umrichters

Publications (2)

Publication Number Publication Date
WO2008067788A1 true WO2008067788A1 (de) 2008-06-12
WO2008067788A8 WO2008067788A8 (de) 2009-06-11

Family

ID=38556383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/002251 WO2008067788A1 (de) 2006-12-08 2006-12-08 Herstellung eines wirkleistungsgleichgewichts der phasenmodule eines umrichters

Country Status (10)

Country Link
US (1) US8144489B2 (de)
EP (1) EP2100366B1 (de)
JP (1) JP4999930B2 (de)
CN (1) CN101548459B (de)
CA (1) CA2671821C (de)
DE (1) DE112006004198A5 (de)
DK (1) DK2100366T3 (de)
ES (1) ES2643896T3 (de)
PL (1) PL2100366T3 (de)
WO (1) WO2008067788A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040057A1 (ja) * 2009-09-30 2011-04-07 国立大学法人東京工業大学 モータ始動方法
WO2011067090A2 (de) 2009-12-01 2011-06-09 Abb Schweiz Ag Verfahren zum betrieb einer umrichterschaltung sowie vorrichtung zur durchführung des verfahrens
WO2011082935A1 (de) 2009-12-17 2011-07-14 Abb Schweiz Ag Verfahren zum betrieb einer direktumrichterschaltung sowie vorrichtung zur durchführung des verfahrens
WO2011120572A1 (en) * 2010-03-31 2011-10-06 Areva T&D Uk Limited Converter
US9806599B2 (en) 2015-06-15 2017-10-31 Ge Energy Power Conversion Technology Ltd Converter submodule with short-circuit device and power converter having same
WO2019228631A1 (de) * 2018-05-30 2019-12-05 Siemens Aktiengesellschaft Verfahren zum ansteuern einer umrichteranordnung

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2369570T3 (es) * 2006-12-08 2011-12-02 Siemens Aktiengesellschaft Elementos de protección de semiconductores para controlar cortocircuitos en el lado cc en el caso de convertidores indirectos de tensión.
EP2534748B1 (de) * 2010-02-11 2018-10-17 Siemens Aktiengesellschaft Regelung eines modularen umrichters mit verteilten energiespeichern mit hilfe eines beobachters für die ströme und einer schätzereinheit für die zwischenkreisenergie
JP5452330B2 (ja) * 2010-04-12 2014-03-26 株式会社日立製作所 電力変換装置
JP5941922B2 (ja) * 2010-11-04 2016-06-29 ベンショウ・インコーポレイテッド 整流装置に接続されるモジュール式多電圧値出力変換器装置
ITMI20110832A1 (it) * 2011-05-12 2012-11-13 St Microelectronics Srl Dispositivo di sensing di corrente per un regolatore di tensione multifase a commutazione
DE102012202173B4 (de) * 2012-02-14 2013-08-29 Siemens Aktiengesellschaft Verfahren zum Betrieb eines mehrphasigen, modularen Multilevelstromrichters
WO2013126660A2 (en) 2012-02-24 2013-08-29 Board Of Trustees Of Michigan State University Transformer-less unified power flow controller
JP6091781B2 (ja) * 2012-07-11 2017-03-08 株式会社東芝 半導体電力変換装置
CN104662431B (zh) * 2012-08-07 2017-06-23 Abb股份有限公司 用于控制多级转换器的方法和装置
EP2887524B1 (de) 2012-08-20 2021-08-11 Toshiba Mitsubishi-Electric Industrial Systems Corporation Stromwandler
EP2891240A1 (de) * 2012-08-28 2015-07-08 ABB Technology AG Steuerung eines modularen wandlers in zwei stufen
WO2014046555A1 (en) * 2012-09-21 2014-03-27 Auckland Uniservices Limited Improvements in or relating to modular multi-level converters
US9559611B2 (en) 2012-09-28 2017-01-31 General Electric Company Multilevel power converter system and method
US9431918B2 (en) 2012-09-28 2016-08-30 General Electric Company Grounding scheme for modular embedded multilevel converter
CN104854784B (zh) * 2012-12-06 2018-06-26 维斯塔斯风力系统集团公司 三相ac电气系统,以及用于补偿这样的系统中的电感不平衡的方法
US9479075B2 (en) 2013-07-31 2016-10-25 General Electric Company Multilevel converter system
US9252681B2 (en) 2013-08-30 2016-02-02 General Electric Company Power converter with a first string having controllable semiconductor switches and a second string having switching modules
US9325273B2 (en) 2013-09-30 2016-04-26 General Electric Company Method and system for driving electric machines
EP2955838B1 (de) * 2014-06-10 2018-03-28 General Electric Technology GmbH Halbleiterschaltungsanordnung
WO2015188877A1 (de) * 2014-06-13 2015-12-17 Siemens Aktiengesellschaft Umrichter zur blindleistungsabgabe sowie verfahren zu dessen regelung
US9857812B2 (en) 2014-08-01 2018-01-02 General Electric Company Systems and methods for advanced diagnostic in modular power converters
KR101678802B1 (ko) * 2016-04-26 2016-11-22 엘에스산전 주식회사 모듈형 멀티레벨 컨버터 및 그의 제어 방법
KR101659252B1 (ko) * 2016-07-26 2016-09-22 엘에스산전 주식회사 모듈형 멀티레벨 컨버터 및 그의 제어 방법
JP6662826B2 (ja) * 2017-09-04 2020-03-11 矢崎総業株式会社 コルゲートチューブ及びワイヤーハーネス
JP7165037B2 (ja) 2018-11-30 2022-11-02 株式会社日立製作所 電力変換装置および電力変換装置の制御方法
WO2021111502A1 (ja) 2019-12-02 2021-06-10 三菱電機株式会社 電力変換装置
CN111917320B (zh) * 2020-07-03 2021-12-21 浙江大学 一种开关串联的桥式电路及谐振电路和逆变电路
JP7360559B2 (ja) 2020-09-18 2023-10-12 日立三菱水力株式会社 モジュラー・マルチレベル電力変換器および可変速発電電動装置
EP4027506A1 (de) 2021-01-08 2022-07-13 Siemens Energy Global GmbH & Co. KG Stromrichter und verfahren zum betreiben des stromrichters

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3142142A1 (de) * 1981-10-23 1983-05-11 Siemens AG, 1000 Berlin und 8000 München Kommutierungseinrichtung fuer einen aus einer gleichspannungsquelle gespeisten elektromotor
US5345375A (en) * 1991-12-16 1994-09-06 Regents Of The University Of Minnesota System and method for reducing harmonic currents by current injection
WO1998034335A1 (de) * 1997-01-31 1998-08-06 Siemens Aktiengesellschaft Regelungsanordnung zur ein-/rückspeisung von energie aus einem drehstromnetz in einem umrichter mit spannungszwischenkreis
US6058031A (en) * 1997-10-23 2000-05-02 General Electric Company Five level high power motor drive converter and control system
SE521885C2 (sv) * 2001-04-11 2003-12-16 Abb Ab Strömriktare
FI112006B (fi) * 2001-11-14 2003-10-15 Kone Corp Sähkömoottorikäyttö
FI113108B (fi) * 2002-03-07 2004-02-27 Abb Oy Menetelmä ja laitteisto puhallinmoottorin ohjaamiseksi
DE10323503A1 (de) 2003-05-23 2004-12-30 Siemens Ag Stromrichter
US7050311B2 (en) * 2003-11-25 2006-05-23 Electric Power Research Institute, Inc. Multilevel converter based intelligent universal transformer
FI116646B (fi) * 2004-06-17 2006-01-13 Vacon Oyj Taajuusmuuttajan verkkosillan ohjaus
CN1270438C (zh) * 2004-08-20 2006-08-16 清华大学 3kv~10kv中高压多电平三相交流电动机变频驱动装置
CN101103514B (zh) * 2005-01-25 2011-09-07 Abb瑞士有限公司 用于操作变换器电路的方法以及用于实施该方法的装置
DK2100364T3 (en) * 2006-12-08 2018-12-03 Siemens Ag CONTROL OF A MODULAR CONVERTER WITH DISTRIBUTED ENERGY STORES
US7800925B2 (en) * 2008-03-05 2010-09-21 Honeywell International Inc. Mitigation of unbalanced input DC for inverter applications

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LESNICAR A ET AL: "A new modular voltage source inverter topology", 2003, XP002454302, Retrieved from the Internet <URL:http://www.unibw.de/eit62/forsch/SP/M2LC/m2lcveroef> [retrieved on 20071010] *
LESNICAR A ET AL: "An innovative modular multilevel converter topology suitable for a wide power range", INSPEC, 2003, XP002447365 *
MARQUARDT ET AL: "New Concept for High Voltage - Modular Multilevel Converter", POWER ELECTRONICS SPECIALISTS CONFERENCE, 2004. PESC 04. 2004 IEEE 35TH ANNUAL AACHEN, GERMANY 20-25 JUNE 2004, PISCATAWAY, NJ, USA,IEEE, US, 2004, XP002447362, ISBN: 0-7803-8399-0 *
MARQUARDT R ET AL: "Modulares Stromrichterkonzept für Netzkupplungsanwendung bei hohen Spa", INTERNET CITATION, 2002, XP002447360, Retrieved from the Internet <URL:www.unibw.de/eit62/forsch/SP/M2LC/m2lcveroef/anle2002bdnau> [retrieved on 20071005] *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078213A (ja) * 2009-09-30 2011-04-14 Tokyo Institute Of Technology モータ始動方法
WO2011040057A1 (ja) * 2009-09-30 2011-04-07 国立大学法人東京工業大学 モータ始動方法
US8830713B2 (en) 2009-12-01 2014-09-09 Abb Schweiz Ag Method and apparatus for operating a converter circuit having plural input and output phase connections and plural two-pole switching cells
WO2011067090A2 (de) 2009-12-01 2011-06-09 Abb Schweiz Ag Verfahren zum betrieb einer umrichterschaltung sowie vorrichtung zur durchführung des verfahrens
WO2011082935A1 (de) 2009-12-17 2011-07-14 Abb Schweiz Ag Verfahren zum betrieb einer direktumrichterschaltung sowie vorrichtung zur durchführung des verfahrens
KR20120093371A (ko) * 2009-12-17 2012-08-22 에이비비 슈바이쯔 아게 직접 컨버터 회로의 동작 방법 및 그 방법을 수행하기 위한 디바이스
CN102754323A (zh) * 2009-12-17 2012-10-24 Abb瑞士有限公司 用于运行直接变换器电路的方法以及用于执行该方法的设备
JP2013514752A (ja) * 2009-12-17 2013-04-25 アーベーベー・シュバイツ・アーゲー ダイレクトコンバータ回路を作動するための方法、およびその方法を実行するための装置
US8687397B2 (en) 2009-12-17 2014-04-01 Abb Schweiz Ag Method for operating a direct converter circuit and device to carry out the method
RU2537963C2 (ru) * 2009-12-17 2015-01-10 Абб Швайц Аг Способ управления прямым преобразователем и устройство для его осуществления
CN102754323B (zh) * 2009-12-17 2015-02-18 Abb瑞士有限公司 用于运行直接变换器电路的方法以及用于执行该方法的设备
KR101628431B1 (ko) 2009-12-17 2016-06-08 에이비비 슈바이쯔 아게 직접 컨버터 회로의 동작 방법 및 그 방법을 수행하기 위한 디바이스
WO2011120572A1 (en) * 2010-03-31 2011-10-06 Areva T&D Uk Limited Converter
US9806599B2 (en) 2015-06-15 2017-10-31 Ge Energy Power Conversion Technology Ltd Converter submodule with short-circuit device and power converter having same
WO2019228631A1 (de) * 2018-05-30 2019-12-05 Siemens Aktiengesellschaft Verfahren zum ansteuern einer umrichteranordnung

Also Published As

Publication number Publication date
DK2100366T3 (en) 2017-10-16
JP4999930B2 (ja) 2012-08-15
PL2100366T3 (pl) 2017-12-29
CN101548459B (zh) 2012-07-04
CN101548459A (zh) 2009-09-30
ES2643896T3 (es) 2017-11-27
EP2100366A1 (de) 2009-09-16
JP2010512136A (ja) 2010-04-15
WO2008067788A8 (de) 2009-06-11
US20100020577A1 (en) 2010-01-28
EP2100366B1 (de) 2017-07-19
CA2671821C (en) 2015-10-27
DE112006004198A5 (de) 2009-11-12
US8144489B2 (en) 2012-03-27
CA2671821A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
EP2100366B1 (de) Herstellung eines wirkleistungsgleichgewichts der phasenmodule eines umrichters
EP2100364B1 (de) Steuerung eines modularen stromrichters mit verteilten energiespeichern
EP2100367B1 (de) Vorrichtung zum umrichten eines elektrischen stromes
JP6180641B2 (ja) 電力変換装置
DE112014007062T5 (de) Antriebs- und steuerungsvorrichtung für mehrwicklungsmotor
EP2707944B1 (de) Hybridumrichter und verfahren zu seiner regelung
DE102007063434A1 (de) Wechselrichtersystem und Steuerverfahren
DE10108766A1 (de) Impulsbreitenmodulationsgesteuerte Stromumwandlungseinheit
DE10326077A1 (de) Verfahren in Verbindung mit Umrichterbrücken
DE112013006680T5 (de) Dreiphasen-Spannungs-Umsetzungsvorrichtung
WO2015104922A1 (ja) 電力変換装置
DE3810870C2 (de)
EP2992595A1 (de) Umrichteranordnung mit parallel geschalteten mehrstufen-umrichtern sowie verfahren zu deren steuerung
EP2887517B1 (de) Verfahren zum Ansteuern eines mehrstufigen Mehrphasenwechselrichters
Kadandani et al. Review of circulating current control methods in modular multilevel converter
DE19654830B4 (de) Steuerungssystem für eine Leistungswandlerschaltung
EP3138176B1 (de) Umrichter zur symmetrischen blindleistungskompensation sowie verfahren zu dessen regelung
DE3243701C2 (de) Verfahren und Schaltungsanordnung zur dynamischen Blindleistungskompensation und Symmetrierung von unsymmetrischen Netzen und Lasten mit Stromrichtern
EP2384528B1 (de) Verfahren zum balancieren der zwischenkreisspannungen in einem selbstgeführten multilevel-blindstromkompensator und selbstgeführter multilevel-blindstromkompensator
WO1990010339A1 (de) Saugdrehdrossel und verfahren zum parallelbetrieb zweier stromrichter
Martinez et al. A decoupled energy control strategy for the Series Bridge Converter (SBC) for HVDC applications
Fawzi et al. Circulating current control and energy balancing of modular multi-level converters
EP3682539B1 (de) Verfahren zum betrieb eines mehrphasigen mehrstufenstromrichters und ein entsprechender mehrphasiger mehrstufenstromrichter
EP3788710A1 (de) Einrichtung und verfahren zur gleichstromversorgung
SriKavitha et al. Adaptive Control Strategy of Active Power Filter for Harmonic Compensation of Non Linear Loads

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680056563.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06828682

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2006828682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006828682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2671821

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2009539599

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12518200

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120060041983

Country of ref document: DE

REF Corresponds to

Ref document number: 112006004198

Country of ref document: DE

Date of ref document: 20091112

Kind code of ref document: P