WO2008068858A1 - 情報再生装置及び方法、並びにコンピュータプログラム - Google Patents

情報再生装置及び方法、並びにコンピュータプログラム Download PDF

Info

Publication number
WO2008068858A1
WO2008068858A1 PCT/JP2006/324290 JP2006324290W WO2008068858A1 WO 2008068858 A1 WO2008068858 A1 WO 2008068858A1 JP 2006324290 W JP2006324290 W JP 2006324290W WO 2008068858 A1 WO2008068858 A1 WO 2008068858A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform distortion
read signal
value
waveform
read
Prior art date
Application number
PCT/JP2006/324290
Other languages
English (en)
French (fr)
Inventor
Yoshio Sasaki
Shogo Miyanabe
Hiroyuki Uchino
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to US12/517,273 priority Critical patent/US8107341B2/en
Priority to JP2008548144A priority patent/JP4861435B2/ja
Priority to PCT/JP2006/324290 priority patent/WO2008068858A1/ja
Publication of WO2008068858A1 publication Critical patent/WO2008068858A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10037A/D conversion, D/A conversion, sampling, slicing and digital quantisation or adjusting parameters thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10481Improvement or modification of read or write signals optimisation methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B2020/1264Formatting, e.g. arrangement of data block or words on the record carriers wherein the formatting concerns a specific kind of data
    • G11B2020/1265Control data, system data or management information, i.e. data used to access or process user data
    • G11B2020/1287Synchronisation pattern, e.g. VCO fields
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2541Blu-ray discs; Blue laser DVR discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2562DVDs [digital versatile discs]; Digital video discs; MMCDs; HDCDs

Definitions

  • the present invention relates to an information reproducing apparatus and method for reproducing recorded data recorded on a recording medium, for example, and particularly to a read signal obtained by reading the recorded data recorded on the recording medium.
  • the present invention relates to an information reproducing apparatus and method for performing waveform equalization such as filtering processing, and a technical field of a computer program for causing a computer to function as such an information reproducing apparatus.
  • Waveform equalization is performed by applying a filtering process that emphasizes the high frequency to the read signal, which is powerful to improve the S / N ratio of the read signal read from the recording medium.
  • Techniques for performing are known.
  • Patent Document 1 there is a technique (a technique related to a so-called limit equalizer) that can emphasize a high frequency without causing intersymbol interference by performing filtering processing after limiting the amplitude of a read signal. It is disclosed.
  • Patent Document 1 Japanese Patent No. 3459563
  • waveform distortion may occur in the read signal.
  • Waveform distortion refers to a state in which there is a deviation between the signal level that should be originally taken and the signal level that actually appears in the read signal. If the waveform distortion force is included within the limit range of the limit equalizer (that is, the higher the coherence between the waveform distortion and the limit value of the limit equalizer), the limit is applied after the amplitude limit. The high-frequency emphasis that is applied leads to further emphasis on waveform distortion. As a result, for example, a mark having a relatively long run length may be misidentified as another mark.
  • a mark with a run length of 8T may be misidentified as a mark with a run length of ⁇ , a space with a run length of 2 ⁇ , and a mark with a run length of 2 ⁇ ⁇ ⁇ ⁇ .
  • the present invention has been made in view of, for example, the conventional problems described above.
  • an information reproducing apparatus and method capable of suitably reproducing recorded data even when waveform distortion occurs, and It is an object to provide a computer program.
  • the information reproducing apparatus of the present invention includes a determination unit that determines whether or not a read signal read from a recording medium satisfies a desired reproduction characteristic!
  • Correction means for correcting waveform distortion generated in at least a read signal corresponding to a long mark among the read signals when the determination means determines that the read signal does not satisfy the desired reproduction characteristic.
  • Waveform equalizing means for performing waveform equalization processing on the read signal in which the waveform distortion is corrected;
  • the information reproducing method of the present invention includes a determination step of determining whether or not a read signal read from a recording medium satisfies a desired reproduction characteristic, and the determination In the process, when it is determined that the read signal satisfies the desired reproduction characteristics! // !, the waveform distortion generated in at least the read signal corresponding to the long mark is detected.
  • the computer program of the present invention includes a determination unit that determines whether or not a read signal read from a recording medium satisfies a desired reproduction characteristic, and the determination unit When the read signal satisfies the desired reproduction characteristics and is determined as! /,!, Correction means for correcting waveform distortion generated in at least the read signal corresponding to the long mark among the read signals And a computer program for reproduction control for controlling a computer provided in an information reproducing apparatus comprising waveform equalization means for performing waveform equalization processing on the read signal in which the waveform distortion is corrected,
  • the computer program of the present invention includes a determination unit that determines whether or not a read signal read from a recording medium satisfies a desired reproduction characteristic, and the determination unit When the read signal satisfies the desired reproduction characteristics and is determined as! /,!, Correction means for correcting waveform distortion generated in at least the read signal corresponding to the long mark among the read signals.
  • a computer program for reproduction control for controlling a computer provided in an information reproducing apparatus compris
  • FIG. 1 is a block diagram conceptually showing the basic structure of an information reproducing apparatus in an example.
  • FIG. 2 is a block diagram conceptually showing the structure of a limit equalizer according to the present example.
  • FIG. 3 is a waveform diagram conceptually showing an operation for setting an upper limit and a lower limit of an amplitude limit value on a sample value series.
  • FIG. 4 is a waveform diagram conceptually showing an operation of acquiring a high-frequency emphasized read sample value series on the sample value series.
  • FIG. 5 is a waveform diagram conceptually showing a first example of waveform distortion.
  • FIG. 6 is a waveform diagram conceptually showing a second example of waveform distortion.
  • FIG. 7 is a flowchart conceptually showing a flow of operations of the waveform distortion correction circuit.
  • FIG. 8 is a block diagram conceptually showing the structure of a waveform distortion correction circuit.
  • FIG. 9 is a waveform diagram conceptually showing a waveform distortion correction operation by the waveform distortion correction circuit on a sample value series.
  • FIG. 10 is a waveform diagram conceptually showing a waveform of a read signal before and after correction of waveform distortion.
  • FIG. 11 is a waveform diagram conceptually showing the operation of acquiring a high-frequency emphasized read sample value series when the waveform distortion is not corrected and when the waveform distortion is corrected, on the sample value series.
  • FIG. 12 is a graph showing changes in symbol error rate with respect to waveform distortion rate.
  • FIG. 13 is a block diagram conceptually showing the structure of a waveform distortion correction circuit provided in the information reproducing apparatus in the first modified example.
  • FIG. 14 is a block diagram conceptually showing the structure of a waveform distortion detection circuit included in a waveform distortion correction circuit included in an information reproducing apparatus according to a first modification.
  • FIG. 15 is a flowchart conceptually showing a flow of operations of the information reproducing apparatus in the first modified example.
  • FIG. 16 is a flowchart conceptually showing a flow of operations of the information reproducing apparatus in the second modified example.
  • FIG. 17 is a timing chart conceptually showing a waveform distortion correction operation by the waveform distortion correction circuit included in the information reproducing apparatus according to the third modification on the first read signal.
  • FIG. 18 is a timing chart conceptually showing a waveform distortion correction operation by the waveform distortion correction circuit included in the information reproducing apparatus according to the third modification on the second read signal.
  • FIG. 19 is a flowchart conceptually showing a flow of a first operation by the waveform distortion correction circuit provided in the information reproducing apparatus in the third modified example.
  • FIG. 20 is a flowchart conceptually showing a second operation flow by the waveform distortion correction circuit included in the information reproducing apparatus in the third modified example.
  • FIG. 22 is a waveform diagram conceptually showing a waveform distortion correction operation by the waveform distortion correction circuit provided in the information reproducing apparatus in the fourth modified example on a sample value series.
  • FIG. 23 is a block diagram conceptually showing the structure of a waveform distortion correction circuit in an information reproducing apparatus in a fourth modification.
  • FIG. 24 is a waveform diagram conceptually showing, on a sample value series, a waveform distortion correction operation performed by a waveform distortion correction circuit included in an information reproducing apparatus according to a fifth modification.
  • FIG. 25 is a block diagram conceptually showing the structure of a waveform distortion correction circuit in an information reproducing apparatus in a fifth modification.
  • FIG. 26 is a waveform diagram conceptually showing a waveform distortion correction operation by the waveform distortion correction circuit provided in the information reproducing apparatus in the sixth modified example on a sample value series.
  • FIG. 27 is a block diagram conceptually showing the structure of a waveform distortion correction circuit in an information reproducing apparatus in a sixth modification.
  • FIG. 28 is a waveform diagram conceptually showing, on a sample value series, a waveform distortion correction operation by a waveform distortion correction circuit included in an information reproducing apparatus according to a seventh modification.
  • FIG. 29 is a block diagram conceptually showing the structure of a waveform distortion correction circuit in an information reproducing apparatus in a seventh modification.
  • FIG.31 Pre-conditions for the case where the waveform distortion is corrected and the case where the waveform distortion is not corrected. It is a graph which shows the change of the symbol error rate with respect to the amplification factor of an equalizer.
  • FIG. 32 is a waveform diagram conceptually showing a waveform of a read signal corresponding to minT according to a change in asymmetry.
  • FIG. 33 is a waveform chart conceptually showing another waveform or the like of a read signal before and after correction of waveform distortion.
  • ⁇ 34 A block diagram conceptually showing the basic structure of the information reproducing apparatus in the ninth modification.
  • ⁇ ⁇ 35 A waveform diagram conceptually showing the asymmetry value.
  • FIG. 36 is a graph showing a change in symbol error rate with respect to an offset value normalized by the amplitude of a read signal.
  • FIG. 38 is a table showing the appearance probability of recorded data for each run length.
  • FIG. 40 is a graph showing a change in offset value normalized by the amplitude of the read signal with respect to the overall ⁇ value normalized by the amplitude of the read signal.
  • FIG. 41 is a waveform chart conceptually showing a partial ⁇ value.
  • FIG. 42 is a graph showing a change in offset value normalized by the amplitude of the read signal with respect to the partial ⁇ value normalized by the amplitude of the read signal.
  • FIG. 44 is a block diagram conceptually showing the basic structure of the information reproducing apparatus in the tenth modification.
  • FIG.45 Symbol error for the offset value normalized by the amplitude of the read signal when the offset value is only added (that is, when the offset value is not subtracted) and when the offset value is added and subtracted. It is a graph which shows the change of a rate.
  • FIG. 46 is a plan view schematically showing a mark on the recording surface of a read-only optical disc.
  • a determining means for determining whether or not the read signal read by the recording medium force satisfies a desired reproduction characteristic, and the read signal is generated by the determining means.
  • Correction means for correcting waveform distortion occurring in a read signal corresponding to at least a long mark of the read signal when it is determined that the desired reproduction characteristic is satisfied, and the waveform distortion is corrected Waveform equalizing means for performing waveform equalization processing on the read signal.
  • whether or not the read signal satisfies the desired reproduction characteristic is determined by the operation of the determining unit.
  • the desired reproduction characteristics will be described in detail later.
  • the operation of the correcting means causes at least a long mark (eg, run lengths 7T to 11T and 14T if the recording medium is a DVD and run lengths 6T to 9T if the recording medium is a Blu-ray Disc).
  • a long mark eg, run lengths 7T to 11T and 14T if the recording medium is a DVD and run lengths 6T to 9T if the recording medium is a Blu-ray Disc.
  • Waveform distortion that occurs in the read signal corresponding to the mark is corrected.
  • the waveform distortion (more specifically, so as not to adversely affect the waveform equalization by the waveform equalization means (specifically, for example, amplitude limitation and high-frequency emphasis filtering described later)).
  • the waveform equalization process is performed on the read signal whose waveform distortion has been corrected by the operation of the waveform equalization means.
  • various signal processing for example, binarization processing or decoding processing
  • the recorded data is reproduced.
  • the waveform distortion is selectively corrected by the correction unit.
  • various recording states are mixed in the recording medium that permits random recording.
  • the waveform distortion is not discontinuous or distributed in a discrete manner, or a read signal with a strong force is read, or read signals having various signal levels are read. I need to take it. Therefore, normally, the recorded data is reproduced without correcting the waveform distortion, and in the above-described case, the recorded data is reproduced while selectively correcting the waveform distortion, thereby reducing the load on the information reproducing apparatus.
  • Various effects can be enjoyed.
  • Another aspect of the embodiment of the information reproducing apparatus of the present invention further includes a detecting unit that detects the waveform distortion, and the correcting unit is configured to detect the desired reproduction characteristic of the read signal by the determining unit. When it is determined that the waveform distortion is not satisfied and the waveform distortion is detected by the detection means, the waveform distortion is corrected.
  • the waveform distortion when the waveform distortion is detected, the waveform distortion is selectively corrected. Therefore, it is possible to enjoy the various effects described above while reducing the load on the information reproducing apparatus.
  • the determination means includes (0 error correction of the read signal (more specifically, error correction of recording data obtained by the read signal power)). GO, when the error rate of the read signal (more specifically, the read error rate of the recorded data obtained by the read signal force) is equal to or higher than a predetermined threshold, and (m) included in the recorded data The read signal is used to read the user data and the read signal corresponding to the synchronous data included in the recorded data cannot be read. Judge that the characteristics are satisfied.
  • the determination unit is configured such that the read signal satisfies the desired reproduction characteristic after the waveform distortion is corrected by the correction unit.
  • the correction unit corrects the waveform distortion again when the determination unit determines again that the read signal satisfies the desired reproduction characteristic and is! / ⁇ . .
  • the waveform distortion is corrected until a desired reproduction characteristic is satisfied. For this reason, reading of the read signal is retried until a desired reproduction characteristic is satisfied, and a more suitable reproduction operation can be realized.
  • the correction means includes the determination means.
  • the second waveform distortion correction is different from the first waveform distortion correction condition used when the previous waveform distortion was corrected. It may be configured to correct the waveform distortion again using a condition.
  • the waveform distortion is corrected while appropriately changing the waveform distortion correction condition, so that the waveform distortion can be corrected appropriately.
  • the correcting means is used for reading user data included in the recorded data and corresponds to synchronous data included in the recorded data.
  • the waveform distortion generated in the read signal is corrected.
  • the read signal corresponding to the synchronization data important when reproducing the record data can be read at least reliably, the record data can be suitably reproduced.
  • the correction means is a space that forms a pair with the mark constituting the synchronization data in the read signal.
  • the waveform distortion may be corrected before, after the space, and at least one of the positions satisfying the periodicity of the synchronization data with the space as a base point.
  • the correcting means has a run length of 9T paired with a mark having a run length of 9T constituting the synchronization data in the read signal.
  • the correction unit determines whether the run length constituting the synchronization data in the read signal is a 14T space position. Et al. It may be configured to correct the waveform distortion at the position where the time corresponding to the run length near 1488T has elapsed.
  • the waveform equalizing means limits the amplitude level of the read signal in which the waveform distortion is corrected to a predetermined amplitude limit value.
  • Amplitude limiting means for acquiring an amplitude limiting signal
  • filtering means for acquiring an equalization correction signal by performing high-frequency emphasis filtering processing on the amplitude limiting signal.
  • the amplitude level of the read signal whose waveform distortion has been corrected (hereinafter, referred to as "distortion correction signal" as appropriate) is limited by the operation of the amplitude limiting means.
  • the signal level of the distortion correction signal whose amplitude level is larger than the upper limit or lower limit of the amplitude limit value is limited to the upper limit or lower limit of the amplitude limit value.
  • the amplitude level of the signal component whose amplitude level is below the upper limit of the amplitude limit value and above the lower limit of the distortion correction signal is not limited.
  • the distortion correction signal subjected to the amplitude level limitation in this way is output to the filtering means as an amplitude limitation signal.
  • the filtering means performs high frequency emphasis filtering processing on the amplitude limited signal. As a result, an equalization correction signal is acquired. Thereafter, for example, binary correction processing or decoding processing is performed on the equalization correction signal. As a result, it is possible to perform reproduction processing of recording data (for example, video data, audio data, etc.) recorded on the recording medium.
  • recording data for example, video data, audio data, etc.
  • the waveform distortion generated in the read signal is corrected before the waveform equalization processing by the waveform equalization means is performed, even if the waveform distortion occurs in the read signal read from the recording medium,
  • the waveform distortion has little or no adverse effect on amplitude limiting and high frequency emphasis filtering. More specifically, for example, the waveform distortion is more uniform due to the waveform distortion becoming a value below the upper limit of the amplitude limit value or a value above the lower limit.
  • the inconvenience of layer enhancement can be preferably prevented.
  • the high frequency emphasis of the read signal can be suitably performed by the limit equalizer (that is, the amplitude limiting unit and the filtering unit).
  • the long mark is a mark whose signal level has a maximum amplitude.
  • Embodiments according to the information reproducing method of the present invention include a determination step of determining whether or not a read signal read by a recording medium force satisfies a desired reproduction characteristic, and V and A correction step for correcting waveform distortion occurring in a read signal corresponding to at least a long mark of the read signal when the read signal satisfies the desired reproduction characteristic! And a waveform equalization step for performing a waveform equalization process on the read signal corrected.
  • the embodiment of the information reproducing method of the present invention can also adopt various aspects.
  • Embodiments of the computer program according to the present invention include a determination unit that determines whether or not a read signal read by a recording medium force satisfies a desired reproduction characteristic, and the determination unit determines whether the read signal is the desired signal. When it is determined that the reproduction characteristic is satisfied, correction means for correcting waveform distortion generated in a read signal corresponding to at least a long mark of the read signal, and the read signal in which the waveform distortion is corrected A waveform equalization means for performing waveform equalization processing on the information reproducing apparatus (that is, the information of the present invention described above)
  • the computer program is read from a recording medium such as a ROM, a CD-ROM, a DVD-ROM, and a hard disk that stores the computer program, and then executed. If the computer program is executed after being downloaded to the computer via the communication means, the above-described embodiment of the information reproducing apparatus of the present invention can be realized relatively easily.
  • the embodiment of the computer program of the present invention also has various aspects, and the read signal obtained by reading the recording medium power is the same.
  • a program command executable by a computer provided in the playback apparatus (that is, the embodiment (including various aspects thereof) according to the above-described information playback apparatus of the present invention) is clearly embodied, and the compilation is executed.
  • the embodiment of the computer program product of the present invention if the computer program product is read into a computer from a recording medium such as a ROM, CD-ROM, DVD-ROM, or hard disk that stores the computer program product.
  • a recording medium such as a ROM, CD-ROM, DVD-ROM, or hard disk that stores the computer program product.
  • the computer program product which is a transmission wave
  • the computer program product may also be configured with a computer-readable code (or computer-readable instruction) that functions as an embodiment of the information reproducing apparatus of the present invention described above.
  • the embodiment of the computer program product of the present invention can also adopt various aspects.
  • the determination unit, the correction unit, and the waveform equalization unit are provided.
  • it includes a determination step, a correction step, and a waveform equalization step.
  • a computer is caused to function as the embodiment of the information reproducing apparatus of the present invention. Therefore, the data can be suitably reproduced even when the waveform distortion occurs.
  • FIG. 1 is a block diagram conceptually showing the basic structure of the information reproducing apparatus in the example.
  • the information reproducing apparatus 1 includes a spindle motor 10, a pickup (PU) 11, a HPF (High Pass Filter) 12, and an AZD variable ⁇ with 13, a pre-equalizer (p re equalizer) 14, a limit equalizer (limit equalizer) 15, a binarizing circuit 1 6, a decoding circuit 17, a waveform distortion correction circuit 18, a reproducing characteristic judging circuit 20 ing
  • the pickup 11 photoelectrically converts the reflected light when the recording surface of the optical disk 100 rotated by the spindle motor 10 is irradiated with the laser light LB, and generates a read signal R.
  • the HPF 12 removes the low frequency component of the read signal R output from the pickup, and
  • the resulting read signal R is output to the AZD converter 13.
  • the A / D converter 13 samples a read signal in accordance with a sampling clock output from a PLL (Phased Lock Loop) (not shown) or the like, and a read sample value system obtained as a result thereof Output column RS to pre-equalizer 14.
  • PLL Phase Lock Loop
  • the pre-equalizer 14 removes intersymbol interference based on the transmission characteristics of the information reading system composed of the pickup 11 and the optical disc 100, and outputs the read sample value series RS obtained as a result to the waveform distortion correction circuit 18. .
  • the reproduction characteristic determination circuit 20 constitutes one specific example of the “determination means” in the present invention, and an output from the decoding circuit 17 indicates whether or not the read signal R satisfies a desired reproduction characteristic.
  • This determination result is output to the waveform distortion correction circuit 18.
  • the waveform distortion correction circuit 18 constitutes one specific example of the “correction means” in the present invention, and the waveform distortion generated in the read sample value series RS (that is, generated in the read signal R 1).
  • the waveform distortion correction circuit 18 uses the reproduction characteristic determination circuit 20 to obtain a desired read signal R.
  • the waveform distortion correction circuit 18 uses the reproduction characteristic determination circuit 20 to obtain the desired read signal R.
  • the limit equalizer 15 performs high-frequency emphasis processing on the distortion-corrected read sample value sequence RS without increasing intersymbol interference, and obtains a high-frequency emphasized read sample obtained as a result.
  • the binary key circuit 16 performs a binarization process on the high-frequency emphasized read sample value series RS,
  • the binary signal obtained as a result is output to the decoding circuit 17.
  • the decoding circuit 17 performs a decoding process or the like on the binarized signal and outputs a reproduction signal obtained as a result to an external reproduction device such as a display or a speaker. As a result, data (for example, video data, audio data, etc.) recorded on the optical disc 100 is reproduced.
  • FIG. 2 is a block diagram conceptually showing the structure of the limit equalizer 15.
  • the limit equalizer 15 includes an amplitude limit value setting block 151, an amplitude limit block 152, and a high frequency emphasis block 153.
  • the amplitude limit value setting block 151 is based on the distortion correction read sample value series RS.
  • the upper and lower limits of the amplitude limit value used in the amplitude limit block 152 are set.
  • the amplitude limit block 152 is based on the upper and lower limits of the amplitude limit value set in the amplitude limit value setting block 151, and the amplitude limit of the distortion correction read sample value series RS.
  • the sample value series RS that has been subjected to amplitude limiting processing is a high-frequency emphasis block.
  • the high frequency emphasis block 153 performs filtering processing for emphasizing the high frequency on the sample value series RS on which the amplitude limiting process has been performed. as a result,
  • a high-frequency emphasized read sample value series RS is obtained.
  • the reference sample timing detection circuit 1511 detects the reference sample timing based on the distortion correction read sample value series RS.
  • the detected reference sample timing is output to the sample hold circuit 1514 via the delay device 1512 that gives a delay of one clock and the OR circuit 1513.
  • the read sample value series RS output from the interpolation filter 1522 is sampled and held in accordance with the reference sample timing output via the delay circuit 1512 and the OR circuit 1513.
  • the interpolation filter 1522 performs an interpolation operation on the distortion correction read sample value series RS.
  • the read signal R read from the optical disc 100 is converted into an AZD conversion.
  • An interpolated sample value series obtained when sampling is performed at an intermediate timing of the clock timing by the sampling clock used in the converter 14 is generated.
  • the generated interpolated sample value series is included in the distortion corrected read sample value series RS to read the read sample.
  • sample value series RS As a sample value series RS, it is output to the limiter 1523 and the sample hold circuit 1514.
  • the read sample value series RS that has been sampled and held is referred to by a subtractor 1515.
  • the subtraction result is output to the averaging circuit 1516.
  • Averaging times In path 1516 the average of the absolute values of the sample values is calculated.
  • the average value of the calculated sample values is set as the upper and lower limits of the amplitude limit value. Specifically, the value obtained by adding the average value to the reference level is set as the upper limit of the amplitude limit value, and the value obtained by subtracting is set as the lower limit of the amplitude limit value.
  • a value obtained by adding a positive sign to the average value of the calculated sample values is set as the upper limit of the amplitude limit value, and the average value of the calculated sample values is set.
  • a value with a negative sign is set as the lower limit of the amplitude limit value.
  • Fig. 3 is a waveform conceptually showing the operation of setting the upper and lower limits of the amplitude limit value on the distortion correction read sample value series RS.
  • FIG. 1 A first figure.
  • FIG. 3 shows data having a relatively short run length in the read signal (specifically, when the optical disc 100 is a Blu-ray Disc, the run length is 2T, 3 ⁇ , and 4 ⁇ ).
  • Read signal R obtained when reading
  • the average value L of the absolute values of the interpolated sample values (that is, the sample values generated by the interpolation filter 1522) and the interpolated sample values located after the zero cross point (that is, after time) is Are set as absolute values of the upper limit and lower limit of the amplitude limit value.
  • the upper limit of the amplitude limit value is set to L
  • the lower limit of the amplitude limit value is set to L.
  • the limiter 1523 limits the amplitude on the sample value series RS based on the upper limit and the lower limit set in the amplitude limit value setting block 151.
  • the sample value included in the sample value series RS is smaller than the upper limit L and lower limit.
  • the sample value is output as it is as the sample value series RS.
  • the upper limit L is output as the sample value series RS.
  • the sample value series RS is output as the sample value series RS.
  • the lower limit—L is output as the sample value series RS.
  • the run time is the shortest in the sample value series RS, and data (for example, if the optical disc 100 is a DVD, it is run-length 3T data, and the optical disc 100 is a Blu-ray Disc). If so, only the sample value series RS corresponding to run length 2T data) is increased in signal level.
  • the sample value series RS input to the high frequency emphasis block 153 receives the multiplication coefficient k via delay devices 1532, 1533, and 1534 that add a delay of one clock as it is.
  • the coefficient multipliers 1535 and 1538 having the multiplication coefficient k and the coefficient multipliers 1536 and 1537 having the multiplication coefficient k are input.
  • the outputs of the coefficient multipliers 1535, 1536, 1537 and 1538 are added in an adder 1539.
  • the high-frequency read sample value RS which is the result of the addition, is added to the distortion correction read sample value series RS input to the adder 1531 via the delay unit 1530 that adds a delay of 3 clocks in the Karo arithmetic unit 1531. .
  • a high-frequency emphasized read sample value series RS is obtained.
  • Figure 4 shows the acquisition operation of the high-frequency emphasized read sample value series RS.
  • FIG. 4 is a waveform diagram conceptually showing on a distortion correction read sample value series RS.
  • the high-frequency read sample value RS output from the adder 1531 is the time point D (— 1 ⁇ 5), D (— 0 ⁇ 5) in the sample value series RS. , D (0.5) and D (l
  • the sample values Sip (1) and Sip (2) at the time points D (0.5) and D (l. 5) corresponding to the run length 2T data are substantially the same.
  • the amplitude limiter and the high frequency emphasis are performed in the limit equalizer 15 after correcting the waveform distortion.
  • specific examples of waveform distortion correction will be described in detail.
  • FIG. 5 is a waveform diagram conceptually showing a first example of waveform distortion
  • FIG. 6 is a waveform diagram conceptually showing a second example of waveform distortion.
  • the waveform distortion is caused by the signal level that should be taken and the actual read signal R.
  • the amount of distortion D and the amount of waveform distortion D ' which is the signal level from the zero level to the top of the waveform distortion.
  • the thick dotted line indicates the signal level that should be taken when waveform distortion occurs. Waveform distortion has occurred! /! In the case of /, of course, the waveform distortion amount D is zero.
  • waveform distortion shown in FIG. 5 (a) is caused by the signal levels at the front and rear ends of the read signal R.
  • waveform distortion there may also be waveform distortion in which the signal level has changed. Needless to say, the configuration and operation to be described later can be adopted even when the waveform distortion of the deviation is targeted.
  • FIGS. 5 (a) to 5 (c) the waveform distortion generated in the optical disc 100 in which the reflectance of the laser beam LB is reduced by forming the mark has been described.
  • waveform distortion occurs such that the signal level unintentionally increases below the zero level.
  • the reflectance of the laser beam LB increases by recording data, such as an optical disc such as a Blu-ray Disc using a dye film as a recording layer.
  • waveform distortions that occur in an optical disc (so-called Low to High disc) 100. In other words, at signal levels above the zero level, waveform distortion can occur where the signal level decreases unintentionally.
  • a mark having a relatively long run length (hereinafter referred to as “long mark” as appropriate).
  • the run length is 7T to 11T or 14T.
  • the optical disc 100 is a Blu-ray Disc, it is preferable to pay attention to waveform distortion generated in a read signal corresponding to run length 6T to 9 mm.
  • the mark corresponding to the sync data for example, if the optical disc 100 is a DVD, it is run-length 14T data, and the optical disc 100 is Blu-ray In the case of Disc, it is preferable to pay attention to waveform distortion that occurs in the read signal corresponding to run length 9T data).
  • FIG. 7 is a flowchart conceptually showing the flow of operation of the waveform distortion correction circuit 18, and FIG. 8 is a block diagram conceptually showing the configuration of the waveform distortion correction circuit 18.
  • FIG. 4 is a waveform diagram conceptually showing a waveform distortion correction operation by the waveform distortion correction circuit 18 on a sample value sequence RS.
  • the read signal R is regenerated as desired by the operation of the reproduction characteristic determination circuit 20.
  • step S102 It is determined whether or not the raw characteristic is satisfied (in other words, whether or not the reproduction characteristic of the read signal is a desired value) (step S102).
  • a symbol error rate (SER: Symbol Error Rate) is equal to or less than a predetermined threshold (eg, approximately 0.001), for example, error correction code (ECC) is used. It is sequentially determined whether the force is possible or not, or whether the synchronization data is readable. If it is determined that the symbol error rate is equal to or less than a predetermined threshold (for example, approximately 0.0001%), error correction using, for example, ECC is possible, and that synchronous data can be read, read Signal R
  • a predetermined threshold for example, approximately 0.001
  • ECC error correction code
  • RF is determined to satisfy the desired playback characteristics. On the other hand, if it is determined that the symbol error rate is not less than a predetermined threshold (for example, approximately 0.0001%), error correction using, for example, ECC is possible, or that synchronous data cannot be read, Read signal R
  • the predetermined threshold which is a criterion for determining the symbol error rate, is preferably set based on whether or not a suitable reproduction operation is being performed. Specifically, it is preferable to set a symbol error rate value at which a suitable reproduction operation is not performed as a predetermined threshold value.
  • step S102 when it is determined that the symbol error rate is equal to or lower than a predetermined threshold, error correction is possible, and synchronization data can be read (step S102: Yes), Proceed to step S107.
  • step S102 the symbol error rate is equal to or lower than a predetermined threshold value. If the error correction is not possible, or if it is determined that the synchronous data cannot be read (step S102: No), then the waveform distortion of the long mark is measured (step S103).
  • the waveform distortion amount D or the maximum amplitude A of the read signal R (or
  • the waveform distortion rate (ie, D / AX 100), which represents the ratio of D ').
  • step S104 it is determined whether or not the waveform distortion is greater than or equal to a predetermined value. For example, it is determined whether or not the waveform distortion rate is approximately 30% or more.
  • step S104 If the result of determination in step S104 is that the waveform distortion is not greater than or equal to a predetermined value (for example, the waveform distortion rate is approximately 30% or less) (step S104: No), step Proceed to S107.
  • a predetermined value for example, the waveform distortion rate is approximately 30% or less
  • step S104 if it is determined that the waveform distortion is equal to or greater than a predetermined value (eg, the waveform distortion rate is approximately 30% or more) (step S104: Yes), then the waveform distortion correction conditions such as the waveform distortion correction level and the correction range are set (step S105).
  • a predetermined value e.g, the waveform distortion rate is approximately 30% or more
  • step S105 The waveform distortion correction conditions will be described in detail later (see Fig. 9 etc.).
  • step S106 the waveform distortion of the long mark is corrected based on the waveform distortion correction condition set in step S105 (step S106).
  • step S107 it is determined whether or not the power to end the regenerating operation is determined. If the regenerating operation is not ended (step S107: No), the process returns to step S101, and the operations after step S101 are repeated again. It is.
  • the operation shown in FIG. 7 is mainly performed by the waveform distortion correction circuit 18.
  • the waveform distortion correction circuit 18 a specific circuit configuration of the waveform distortion correction circuit will be described.
  • the waveform distortion correction circuit 18 includes a delay adjustment circuit 181, a distortion correction value detection circuit 182, a mark Z space length detection circuit 183, a timing generation circuit 184, and a selector 185. And.
  • the read sample value series RS output from the pre-equalizer 14 includes a delay adjustment circuit 181,
  • the distortion correction value detection circuit 182 holds the sample value S (k) at the time when the time corresponding to the zero cross point force minT has elapsed, and supplies it to the selector 185 as the distortion correction value amd. Output.
  • delay adjustment circuit 181 sets a delay amount corresponding to the longest run length of the recording data, and outputs read sample value series RS to selector 185 at a desired timing.
  • the optical disc 100 is a Blu-ray Disc
  • a delay amount corresponding to 9T which is the longest run length
  • 14T which is the longest run length
  • minT is a read signal R (more detailed) corresponding to the record data having the shortest run length.
  • minT indicates a read signal R corresponding to recorded data having a run length of 3T.
  • optical disc 100 is a Blu-ray Disc
  • MinT indicates the read signal R corresponding to the recording data with a run length of 2T.
  • the mark Z space length detection circuit 183 detects the mark Z space length by detecting, for example, the interval between zero cross points, the number of consecutive code bits, and the like. The detection result is output to the timing generation circuit 184.
  • the timing generation circuit 184 generates a timing signal SW based on the mark Z space length detected by the mark Z space length detection circuit 183, and outputs the generated timing signal SW to the selector 185.
  • the timing generation circuit 184 includes a (0 mark Z space length detection circuit).
  • the selector 185 When the high-level timing signal SW is output from the timing generation circuit 184, the selector 185 outputs the distortion correction value amd output from the distortion correction value detection circuit 182 and the distortion correction read sample value. Output to limit equalizer 15 as series RS.
  • the selector 185 reads the read sample value series RS output from the delay adjustment circuit 181 when the low-level timing signal SW is output from the timing generation circuit 184.
  • waveform distortion correction conditions set in step S105 of FIG. 7 are substantially generated by the distortion correction value amd detected by the distortion correction value detection circuit 182 and the timing generation circuit 184. This corresponds to the timing signal SW.
  • the waveform distortion correction circuit 18 operates as shown in the waveform diagram of the sample value series RS.
  • the distortion is corrected to the distortion correction value amd detected by the value detection circuit 182. As a result, waveform distortion is corrected.
  • Fig. 10 shows the waveform of read signal R before and after correction of waveform distortion.
  • FIG. 11 is a waveform diagram conceptually showing the high-frequency emphasized read sample value series RS when the waveform distortion is not corrected and when the waveform distortion is corrected.
  • Figure 12 is a waveform diagram conceptually showing the operation on the sample value series RS.
  • Shape distortion can be mistaken for a normal mark (for example, a mark with a relatively short run length). Therefore, the binary signal waveform after the binary value of the read signal R is not distorted. The resulting false signal will be included. As a result, consistency with the original recorded data is not achieved.
  • the high frequency emphasized read sample value series RS output from the high frequency emphasized block 153 is the sum of the high frequency emphasized read sample value series RS and S (O).
  • RS is represented by (1 k) XSip (— l) + kXSip (0) + kXSip (l) + (— k) XSip (2)
  • the value of the high-frequency emphasized read sample value series RS is increased by the value obtained by multiplying the sum of (0) and Sip (1) by K.
  • the waveform distortion is similarly compensated for the optical disc 100 in which the reflectance of the laser beam LB is reduced by forming the marks shown in FIGS. 6 (a) to 6 (c).
  • the effect of correcting the waveform distortion can be seen from the change in the symbol error rate with respect to the waveform distortion rate.
  • the SER value when the waveform distortion is corrected is improved compared to the SER value when the waveform distortion is not corrected.
  • the sample values before and after the reference sample point in the read signal that cause intersymbol interference when high-frequency emphasis is performed.
  • the variation of the is forcibly suppressed. For this reason, even if sufficient high frequency emphasis is performed in the high frequency emphasis block 153, intersymbol interference does not occur.
  • the limit equalizer 15 After the waveform distortion is corrected, the amplitude limitation and the high frequency emphasis are performed in the limit equalizer 15. For this reason, in the limit equalizer 15, it is possible to suitably prevent the inconvenience of emphasizing waveform distortion that should not occur. Furthermore, due to the emphasis on waveform distortion, for example, in an information reproducing apparatus that employs PRM L, for example, it is possible to suitably prevent, for example, a problem that a mark having a relatively long run length is misidentified as another mark. be able to. As a result, the binary error due to waveform distortion hardly occurs, and a suitable reproduction operation can be performed.
  • the read signal R satisfies the desired reproduction characteristic by the reproduction characteristic judgment circuit 20.
  • the waveform distortion correction circuit 18 selectively corrects the waveform distortion.
  • different from the optical disc 100 in which only sequential recording is permitted various recording is performed in the optical disc 100 in which random recording is permitted.
  • the state is mixed.
  • the read signal R in which the waveform distortion is discontinuously or discretely distributed or not, is read, or the signal level is varied.
  • the recorded data is reproduced without correcting the waveform distortion, and the read signal R does not satisfy the desired reproduction characteristics (that is,
  • the recorded data is reproduced while selectively correcting the waveform distortion, thereby reducing the load on the information reproducing apparatus 1 and the various effects described above. You can enjoy it.
  • the read signal R It is preferable to perform error correction processing in addition to decoding processing.
  • the read signal R the read signal R
  • the above-described decoding circuit 17 is preferably a decoding Z correction circuit 17.
  • FIG. 13 is a block diagram conceptually showing the configuration of the waveform distortion correction circuit 18a included in the information reproducing apparatus la according to the first modification
  • FIG. 14 is an information reproducing apparatus according to the first modification
  • FIG. 15 is a block diagram conceptually showing the configuration of the waveform distortion detection circuit 186a included in the waveform distortion correction circuit 18a included in la
  • FIG. 15 conceptually shows the operation flow of the information reproducing apparatus la according to the first modification. It is a flowchart.
  • the read signal R does not satisfy the desired reproduction characteristics.
  • the waveform distortion is selectively corrected.
  • a specific configuration and an operation example of the first modification will be described.
  • the waveform distortion correction circuit 18a includes a delay adjustment circuit 181, a waveform distortion detection circuit 186a, a mark Z space length detection circuit 183, a timing generation circuit 184, and a selector 185.
  • AND circuit 187a As shown in FIG. 13, the waveform distortion correction circuit 18a includes a delay adjustment circuit 181, a waveform distortion detection circuit 186a, a mark Z space length detection circuit 183, a timing generation circuit 184, and a selector 185.
  • AND circuit 187a As shown in FIG. 13, the waveform distortion correction circuit 18a includes a delay adjustment circuit 181, a waveform distortion detection circuit 186a, a mark Z space length detection circuit 183, a timing generation circuit 184, and a selector 185.
  • the detection result of the mark Z space length by the mark Z space length detection circuit 183 is output to the waveform distortion detection circuit 186a in addition to the timing generation circuit 184.
  • the AND circuit 187a receives the timing signal SW and the waveform output from the timing generation circuit 184 when waveform distortion is detected based on the outputs of the timing generation circuit 184 and the waveform distortion detection circuit 186a.
  • a high-level timing signal SWO is generated.
  • the AND circuit 187a detects the waveform distortion based on the outputs of the timing generation circuit 184 and the waveform distortion detection circuit 186a, in other words (that is, the timing output from the timing generation circuit 184).
  • a low-level timing signal SWO is generated.
  • the waveform distortion is selectively corrected when the waveform distortion is detected.
  • the waveform distortion detection circuit 186a includes a shift register 1831a and a selector 1
  • the read sample value series RS input to the waveform distortion detection circuit 186a is the shift register c
  • the shift register 1831a shifts the input read sample value series RS c one clock at a time, and outputs it from the output DO to the selector 1832a as D14.
  • the selector 1832a selectively samples and holds three outputs based on the force mark Z space length out of the output DO to D14 at the timing output from the mark Z space length detection circuit 183, and the distortion correction amount. This is output to each of the detection circuit 1837a, the maximum value detection circuit 1833a, and the minimum value detection circuit 1834a.
  • the selector 1832a outputs from the mark Z space length detection circuit 183.
  • the Z space length is 6T
  • three outputs D2, D3, and D4 are selectively sampled and held from outputs DO to D14, and distortion correction amount detection circuit 1837a, maximum value detection circuit 1833a and Output to each of the minimum value detection circuit 1834a.
  • the selector 18 32a selectively samples and holds three outputs D2, D3, and D5 among the outputs DO to D14.
  • the distortion correction amount detection circuit 1837a, the maximum value detection circuit 1833a, and the minimum value detection circuit 1834a are output.
  • the selector 1832a When the mark Z space length output from the mark Z space length detection circuit 183 is 8T, the selector 1832a selectively samples and holds three outputs D2, D4, and D6 from the outputs DO to D14. And output to the distortion correction amount detection circuit 1837a, the maximum value detection circuit 1833a, and the minimum value detection circuit 1834a.
  • the selector 1832a When the mark Z space length output from the mark Z space length detection circuit 183 is 9T, the selector 1832a selectively samples and holds the three outputs D2, D 4 and D7 among the outputs DO to D14.
  • the distortion correction amount detection circuit 1837a, the maximum value detection circuit 1833a, and the minimum value detection circuit 1834a are output.
  • the selector 1832a When the mark Z space length output from the mark Z space length detection circuit 183 is 1 OT, the selector 1832a selectively holds the three outputs D2, D5, and D8 from the outputs DO to D14.
  • the distortion correction amount detection circuit 1837a, the maximum value detection circuit 1833a, and the minimum value detection circuit 1834a are output.
  • the selector 1832a When the mark Z space length output from the mark Z space length detection circuit 183 is 11T, the selector 1832a selectively samples and holds three outputs D2, D5, and D9 among the outputs DO to D14.
  • the distortion correction amount detection circuit 1837a, the maximum value detection circuit 1833a, and the minimum value detection circuit 1834a are output.
  • the selector 1832a When the mark Z space length output from the mark Z space length detection circuit 183 is 14T, the selector 1832a selectively samples and holds three outputs D2, D 7 and D 12 from the outputs DO to D14.
  • the distortion correction amount detection circuit 1837a, the maximum value detection circuit 1833a, and the minimum value detection circuit 1834a are output.
  • the operation of the selector 18 32a is substantially the same as the signal level at the front end of the waveform distortion shown in FIGS. 5 (a) to 5 (c) and 6 (a) to 6 (c). This corresponds to the operation of selectively outputting the signal level at the middle part and the signal level at the rear end part.
  • a desired one of the three outputs (that is, the signal level at the front end, the signal level at the intermediate end, and the signal level at the rear end) is output from the selector 1832a.
  • One signal level is output as the distortion correction amount amd.
  • the signal level at the middle part has changed.
  • the signal level is output as the distortion correction amount amd.
  • the signal level at the front end is output as the distortion correction amount amd for the waveform distortion in which the signal level at the rear end has changed.
  • the maximum value detection circuit 1833a the maximum value (that is, the maximum signal level) of the three outputs output from the selector 1832a is detected, and the detected maximum value is output to the subtracter 1 835a. Is done.
  • the minimum value detection circuit 1834a the minimum value (that is, the minimum signal level) of the three outputs output from the selector 1832a is detected, and the detected minimum value is output to the subtracter 1835a.
  • the subtractor 1835a subtracts the minimum value detected by the minimum value detection circuit 1834a from the maximum value detected by the maximum value detection circuit 1833a, thereby calculating the waveform distortion amount D. .
  • the determination circuit 1836a determines whether the waveform distortion output from the subtracter 1835a is greater than or equal to a predetermined value X. If the amount of waveform distortion D is relatively small, the waveform distortion detection signal DT of low level is output without considering that the waveform distortion has been detected. On the other hand, when the waveform distortion amount D is relatively large (for example, when the waveform distortion rate is approximately 30% or more), it is assumed that the waveform distortion has been detected, and a high level waveform distortion detection signal DT is output. . As shown in FIG. 15, the operation flow at this time is performed by first reproducing data recorded on the optical disc 100 (step S101). In the reproduction operation, it is determined whether or not the read signal R satisfies the desired reproduction characteristic! / (Step S102). [0134] As a result of the determination in step S102, the read signal R satisfies the desired reproduction characteristics.
  • step S102 If it is determined (step S102: Yes), the process proceeds to step S107.
  • step S102 the read signal R satisfies the desired reproduction characteristics.
  • step S102 If it is determined that the waveform distortion is not detected (step S102: No), then it is determined whether the waveform distortion is actually detected by the waveform distortion detection circuit 186a (step S20 Do).
  • step S201 if it is determined that the waveform distortion is not detected (step S201: No), the waveform distortion is not corrected (that is, the operation from step S103 to step S106). Without proceeding to step S107.
  • step S201 determines whether waveform distortion has been detected (step S201: Yes) or not. If it is determined in step S201 that waveform distortion has been detected (step S201: Yes), after correcting the waveform distortion (that is, the operation of step S103 and step S106). After doing so, go to step S107.
  • the waveform distortion correction circuit 18 selectively corrects the waveform distortion.
  • various recording states are mixed in the optical disc 100 in which random recording is permitted.
  • the read signal R in which the waveform distortion is not discontinuous is distributed discretely, or does not work.
  • the signal level of the waveform distortion is set to any one of the signal level at the front end, the signal level at the intermediate end, and the signal level at the rear end. Can be corrected to one signal level. For this reason, waveform distortion of various shapes can be suitably corrected.
  • the signal level of the waveform distortion is corrected to the signal level at the front end, so that FIG. Waveform distortion in which the signal level at the front end has changed as shown in b) and Fig. 6 (b) cannot be corrected appropriately.
  • the information reproducing apparatus la according to the first modification according to the information reproducing apparatus la according to the first modification,
  • Such waveform distortion can also be suitably corrected.
  • FIG. 16 is a flowchart conceptually showing a flow of operations of the information reproducing apparatus lb according to the second modification.
  • the operation flow at this time is performed by first reproducing the data recorded on the optical disc 100 (step S101). During playback, read signal R force S
  • Step S102 It is determined whether or not the desired reproduction characteristic is satisfied! / (Step S102).
  • step S102 As a result of the determination in step S102, the read signal R satisfies the desired reproduction characteristics.
  • step S102 If it is determined (step S102: Yes), the process proceeds to step S107.
  • step S102 the read signal R satisfies a desired reproduction characteristic.
  • step S102 If it is determined that the waveform distortion is not detected (step S102: No), then it is determined whether the waveform distortion is actually detected by the waveform distortion detection circuit 186a (step S20 Do).
  • step S201 If it is determined in step S201 that no waveform distortion is detected (No in step S201), the waveform distortion is not corrected (that is, the operation from step S103 to step S106). Without proceeding to step S107.
  • step S201 when it is determined that the waveform distortion is detected as a result of the determination in step S201 (step S201: Yes), the waveform distortion of the long mark is measured (step S103). Thereafter, it is determined whether or not the force is greater than or equal to the predetermined value (step S104).
  • step S104 If the result of determination in step S104 is that the waveform distortion is not greater than or equal to a predetermined value (for example, the waveform distortion rate is approximately 30% or less) (step S104: No), step Proceed to S107. On the other hand, if the result of determination in step S104 is that the waveform distortion is greater than or equal to a predetermined value (eg, the waveform distortion rate is approximately 30% or greater) (step S104: Yes), then Waveform distortion correction conditions #x (where X is an integer greater than or equal to 1 with 1 as an initial value) such as a waveform distortion correction level and a correction range are set (step S301). Thereafter, in step S301, the waveform distortion of the long mark is corrected based on the waveform distortion correction condition #X set in step S301 (step S106).
  • a predetermined value for example, the waveform distortion rate is approximately 30% or less
  • step S302 it is determined whether or not the number of retries, which is the number of times the waveform distortion is corrected, is greater than or equal to a predetermined value.
  • step S302 if it is determined that the number of retries is not equal to or greater than the predetermined value (step S302: No), X is incremented by 1, and then the process returns to step S102, and after step S102 Repeat the operation. That is, correction of waveform distortion is repeated while changing the waveform distortion correction conditions as appropriate (in other words, retry is performed).
  • step S302 if it is determined that the number of retries is greater than or equal to the predetermined number (step S302: Yes), the process proceeds to step S107.
  • FIG. 17 is a timing chart conceptually showing the waveform distortion correction operation by the waveform distortion correction circuit 18c included in the information reproducing apparatus lc according to the third modification on the first read signal R.
  • FIG. 18 conceptually shows the waveform distortion correction operation by the waveform distortion correction circuit 18c included in the information reproducing apparatus lc according to the third modification on the second read signal R.
  • FIG. 19 is a timing chart conceptually showing a flow of the first operation by the information reproducing apparatus lc according to the third modified example
  • FIG. 20 is an information reproducing apparatus according to the third modified example
  • FIG. 21 is a flowchart conceptually showing a flow of the second operation by lc
  • FIG. 21 is a flowchart conceptually showing a flow of the third operation by the information reproducing apparatus lc according to the third modification.
  • recorded data recorded on the optical disc 100 includes the user data.
  • Synchronization data used to synchronize when playing the one data for example, if the optical disc 100 is a DVD, it is run-length 14T recording data, and if the optical disc 100 is a B1 u-ray disc, the run length is 9T recording data).
  • the waveform distortion is corrected only to the synchronization data.
  • the synchronization data is composed of 9T marks and 9T spaces.
  • the synchronization data may be configured to correct waveform distortion before or after the detected 9T space.
  • the position where the time corresponding to the detected 9T spacer et al., 1932T (or 1932T person ⁇ 1: ⁇ 1 is a predetermined constant) has passed or It may be configured to correct waveform distortion in the vicinity of the position shifted by j81T from the position: ⁇ 1 is a predetermined constant).
  • the optical disc is a DVD
  • the synchronization data is a 14T mark or a 14T space
  • the 14T space is detected, and the detected 14 mm space is detected.
  • step S101 a reproduction operation of data recorded on the optical disc 100 is performed.
  • step S401 it is determined whether or not a 9T space is detected.
  • step S401 if it is determined that the 9T space is not detected (step S401: No), the process returns to step S401 again, and the operation for determining whether or not the 9T space is detected is performed. Repeated.
  • step S401 determines whether the 9T space has been detected. It is determined whether the data (in other words, the read signal R) is a 9T mark (step S).
  • step S402 if it is determined that the recording data immediately before or after the 9T space is a 9T mark (step S402: Yes), the operation is ended as it is.
  • step S402 determines whether the recorded data immediately before or after the 9T space is not a 9T mark (step S402: No).
  • step S40 4 immediately before or immediately after the 9T space or Waveform distortion near both positions is corrected.
  • the waveform distortion correction in step S404 the step 103 force in FIG. 7 is performed in the same manner as the operation in step S106 or the operations in steps S201 to S106 in FIG.
  • step S101 the reproduction operation of data recorded on the optical disc 100 is performed.
  • step S401 it is determined whether or not a 9T space is detected.
  • step S401 if it is determined that the 9T space is not detected (step S401: No), the process returns to step S401 again, and the operation of determining whether or not the 9T space is detected is performed. Repeated.
  • step S401 determines whether or not the recording data at the position where the time corresponding to the operator a 1) has passed (or the position shifted by j8 IT from the position) is a 9T mark.
  • step S502 the position where the time corresponding to 1932T (or 1932T person a 1) has elapsed from the detected 9T space (or the position shifted by j8 1T from the position) is recorded. If it is determined that the data is a 9T mark (Step S402: Y es) The operation is terminated as it is.
  • step S502 the position where the time corresponding to 1932T (or 1932T person a 1) has elapsed from the detected 9T space (or the position shifted by j8 IT from the position). If it is determined that the recorded data is not a 9T mark (step S502: No), a position (or 1932T (or 1932T person ⁇ 1)) has elapsed from the detected 9T space (or The waveform distortion in the vicinity of the position shifted by j81T from the position is corrected (step S504).
  • the correction of the waveform distortion in step S504 is performed in the same manner as the operation from step 103 to step S106 in FIG. 7 or the operation from step S201 to step S106 in FIG.
  • step S101 a reproduction operation of data recorded on the optical disc 100 is performed.
  • step S60 Do it is determined whether or not a 14T space is detected.
  • step S601 if it is determined that the 14T space is not detected (step S601: No), the process returns to step S601 again, and the determination operation as to whether the 14T space is detected is repeated. It is.
  • step S601 determines whether the 14T space has been detected (step S601: Yes) is a 14T mark or 14T space.
  • step S602 a position where a time corresponding to 1488T (or 1488T person a 2) has elapsed from the detected 14T space (or a position shifted by j8 2T from the position) Read signal R force mark or 14T space
  • step S602 Yes
  • the operation is terminated as it is.
  • step S602 from the detected 14T space, 1488T ( Alternatively, it is determined that the read signal R force ⁇ 4T mark or 14T space at the position where the time corresponding to 1488T (oc 2) has elapsed (or the position shifted by j8 2T from the position) is not 4T mark or 14T space.
  • Step S604 the position corresponding to 1488T (or 1488T person a 2) has elapsed from the detected 14T space (or a position shifted by j8 2T from this position).
  • Waveform distortion is corrected (step S604).
  • the correction of waveform distortion in step S604 is performed in the same manner as the operation from step 103 to step S106 in FIG. 7 or the operation from step S201 to step S106 in FIG.
  • FIG. 22 conceptually shows the waveform distortion correction operation by the waveform distortion correction circuit 18d included in the information reproducing apparatus Id according to the fourth modification on the sample value series RS.
  • FIG. 23 is a block diagram conceptually showing the structure of a waveform distortion correction circuit 18d provided in the information reproducing apparatus Id according to the fourth modification.
  • the run length is set as the distortion correction value amd.
  • the center sample of the (min + 3) T mark (that is, for the waveform distortion shown in Figs. 5 (a) to 5 (c), the minimum amplitude value of the (min + 3) T mark is The average value of (min + 3) T mark maximum amplitude) is used for the waveform distortion shown in (a) to Fig. 6 (c).
  • (min + k) T is a read signal R (more specifically, the read signal R) corresponding to the second shortest recording data whose run length is k + 1 (where k is an integer of 1 or more).
  • Read signal R corresponding to the recorded data (more specifically, corresponding to the read signal R
  • the read sample value series RS) is shown.
  • the optical disc 100 is a DVD
  • (min + 3) T indicates a read signal R corresponding to recording data with a run length of 5T.
  • the waveform distortion correction circuit 18d includes a delay adjustment circuit 181, a distortion correction value detection circuit 182d, a mark Z space length detection circuit 183, and a timing generation circuit 184. , And selector 185.
  • the distortion correction value detection circuit 182d receives the recording data whose run length is (min + 3) T while monitoring the mark Z space length output from the mark Z space length detection circuit 183. If this occurs, the center sample value is held, averaged, and output to the selector 185 as a distortion correction value amd.
  • the waveform distortion is corrected, so that the corrected signal level increases from the original signal level (that is, the signal level before correction). For this reason, the signal level can be brought close to the maximum amplitude of the read signal R by correcting the waveform distortion.
  • the average value of the center samples of recording data having other run lengths is used instead of the average value of the center sample of recording data whose run length is (min + 3) T. It may be used.
  • the recording data having other run lengths is preferably recording data capable of realizing the maximum amplitude.
  • FIG. 24 conceptually shows the waveform distortion correction operation by the waveform distortion correction circuit 18e included in the information reproducing device le according to the fifth modification on the sample value series RS.
  • FIG. 25 is a waveform diagram of the information reproducing device le according to the fifth modification. It is a block diagram which shows notionally the structure of the correction circuit 18e.
  • the maximum or minimum value of the digital code for indicating the read sample value series RS (specifically, the distortion correction value amd (specifically, FIG. 5 (a )
  • the waveform distortion correction circuit 18e includes a delay adjustment circuit 181, a distortion correction value detection circuit 182e, a mark Z space length detection circuit 183, and a timing generation circuit 184. , And selector 185.
  • the distortion correction value detection circuit 182e outputs the maximum value or minimum value of the digital code to the selector 185 as the distortion correction value amd.
  • the load of the waveform distortion correction circuit 18e (that is, the load of the information reproducing device le) can be relatively reduced.
  • the load of the waveform distortion correction circuit 18e (that is, the load of the information reproducing device le) is not limited to the maximum value or the minimum value of the digital code, even if a predetermined fixed value is used as the distortion correction value amd.
  • the above-mentioned various effects can be suitably enjoyed while relatively reducing
  • FIG. 26 conceptually shows the waveform distortion correction operation by the waveform distortion correction circuit 18f included in the information reproducing apparatus If according to the sixth modification on the sample value series RS.
  • FIG. 27 is a block diagram conceptually showing the structure of a waveform distortion correction circuit 18f provided in the information reproducing apparatus If according to the sixth modification. Note that the same reference numerals are assigned to the same configurations and operations as the various configurations and operations in the above-described embodiment, and detailed descriptions thereof are omitted.
  • the upper limit L or lower limit L of the amplitude limit value in the limit equalizer 15 (specifically, FIG. 5 (a) To the waveform distortion shown in Fig. 5 (c) is the lower limit L of the amplitude limit value, and for the waveform distortion shown in Figs. 6 (a) to 6 (c), the upper limit of the amplitude limit value L) is used.
  • the waveform distortion correction circuit 18f includes a delay adjustment circuit 181, a mark Z space length detection circuit 183, a timing generation circuit 184, and a selector 185, as shown in FIG. .
  • the selector 185 sets the upper limit L or lower limit L of the amplitude limit value of the limit equalizer 15 to the distortion correction sample value series RS. Output as.
  • limit equalizer 15 emphasizes waveform distortion that should not occur. Can be prevented. Furthermore, due to the fact that the waveform distortion is emphasized, for example, in an information reproducing apparatus employing PRML, for example, it is possible to suitably prevent, for example, a problem that a mark having a relatively long run length is misidentified as another mark. Can do. As a result, there is almost no binary error due to waveform distortion, and a suitable reproduction operation can be performed.
  • a value equal to or higher than the upper limit L or lower limit of the amplitude limit value in the limit equalizer 15 may be used. Even if comprised in this way, the various effects mentioned above can be enjoyed suitably.
  • FIG. 28 conceptually shows the waveform distortion correction operation by the waveform distortion correction circuit 18g included in the information reproducing device lg according to the seventh modification on the sample value series RS.
  • FIG. 29 is a block diagram conceptually showing the structure of a waveform distortion correction circuit 18g provided in the information reproducing apparatus lg according to the seventh modification.
  • the upper limit L or lower limit L of the amplitude limit value in the limit equalizer 15 (specifically, FIG. 5 (a)
  • the lower limit L of the amplitude limit value To the waveform distortion shown in Fig. 5 (c) is the lower limit L of the amplitude limit value
  • the upper limit of the amplitude limit value A value twice that of L) ie 2L or 2L is used.
  • the waveform distortion correction circuit 18g includes a delay adjustment circuit 181, an amplifier 182g, a mark Z space length detection circuit 183, a timing generation circuit 184, and a selector 185. And.
  • the amplifier 182g amplifies the upper limit L or the lower limit L of the amplitude limit value of the limit equalizer 15, and outputs it to the selector 185 as a distortion correction value amd.
  • limit equalizer 15 emphasizes waveform distortion that should not occur. Can be prevented. Furthermore, due to the fact that the waveform distortion is emphasized, for example, in an information reproducing apparatus employing PRML, for example, it is possible to suitably prevent, for example, a problem that a mark having a relatively long run length is misidentified as another mark. Can do. As a result, there is almost no binary error due to waveform distortion, and a suitable reproduction operation can be performed.
  • the signal level is corrected to a signal level that is twice or less the upper limit L or lower limit L of the amplitude limit value, so that the inconvenience of waveform distortion falling below the upper limit L or lower limit L of the amplitude limit value must be reliably prevented. Can do. As a result, for example, long marks are mistakenly distinguished from other marks. Inconveniences that occur can be suitably prevented. As a result, there is almost no occurrence of binary conversion error due to waveform distortion, and a suitable reproduction operation can be performed.
  • FIG. 30 shows symbols for asymmetry in the case where the amplification factor of the pre-collider 14h included in the information reproducing apparatus lh according to the eighth modification is increased and in the case where the amplification factor is not increased.
  • FIG. 31 is a graph showing the change in symbol error rate with respect to the amplification factor of the pre-equalizer 14h when the waveform distortion is corrected and when the waveform distortion is not corrected.
  • Fig. 32 is a waveform conceptually showing the waveform of the read signal R corresponding to minT according to the change in asymmetry.
  • Fig. 33 shows other waveforms of the read signal R before and after correction of waveform distortion.
  • the pre-equalizer 14h arbitrarily increases the amplification factor of the pre-equalizer 14h as compared with the reference amplification factor preset in the pre-equalizer 14h (or, further, Can be reduced).
  • the pre-equalizer 14h is set in advance and the pre-equalizer 14h is increased in comparison with the reference gain, and then the waveform distortion is corrected.
  • the equalizer 15 amplitude limiting and high frequency emphasis are performed.
  • the gain of the pre-equalizer 14h is the signal level of minT space (more specifically, the signal level at the apex of minT space, that is, the maximum signal level of minT space)
  • the amplification factor of the pre-equalizer 14h is increased compared to the reference amplification factor preset in the pre-equalizer 14h.
  • the signal level force of the minT space when the reference level is not zero.
  • Reference level it is preferable to increase the amplification factor of the pre-equalizer 14h as compared with the reference amplification factor preset in the pre-equalizer 14h.
  • the pre-equalizer 14h increases the reference amplification factor preset in the pre-equalizer 14h by about ldB to about 3dB. Specifically, for example, when the reference gain is set in advance to the pre-equalizer 14h! And the reference gain is 5 dB, the read sample value sequence RS has an inter-code interval with an amplification rate of about 6 dB to 8 dB. It is preferable to remove interference (in other words, waveform shaping).
  • the pre-equalizer 14h reads the read signal R corresponding to the recording data with the shortest run length.
  • the reference gain of the pre-equalizer 14h (that is, the gain when the gain is not increased) is 5 dB.
  • the gain is increased to 7.4 dB compared to the symbol error rate when the gain is not increased (that is, when the gain is 5. OdB).
  • the symbol error rate is improved when this is done.
  • the symbol error rate can be improved by increasing the amplification factor of the pre-equalizer 14h in a predetermined case. In other words, it is possible to improve the reproduction characteristics. Especially when the asymmetry is relatively large, the amplification factor is increased! ], The symbol error rate increases, but when compared with the symbol error rate when the gain is not increased, the value is still improved!
  • the symbol error rate compared to the symbol error rate when the amplification factor of the pre-equalizer 14h is not increased is compared with the symbol error rate.
  • the error rate is getting worse.
  • the bad symbol error rate is that the waveform distortion is excessively emphasized because the amplification factor is excessively increased.
  • the run length in which the waveform distortion occurs is relatively long. This is because the mark is misidentified as another mark.
  • the signal level of the minT space is the minT mark. It becomes larger than the signal level.
  • the signal waveform of minT gradually decreases (ie, the negative side) from the center level of all T (ie, the reference level or zero level). Shift to.
  • the signal level force at the apex of minT space may be below the center level of all T.
  • minT is mistakenly recognized as waveform distortion. It might be.
  • FIG. 33 by correcting minT as waveform distortion, a signal corresponding to minT does not appear in the binarized signal, leading to a deterioration in symbol error rate.
  • the signal level force minT mark in the minT space It becomes smaller than the signal level.
  • the minT signal waveform gradually shifts upward (ie, positive) with respect to all T center levels (ie, reference level or zero level). If the symmetry increases to some extent, the signal level force at the apex of the minT space can exceed the center level of all dings. In this case, minT may be misrecognized as waveform distortion. As a result, minT is corrected as waveform distortion, so that a signal equivalent to minT does not appear in the binary signal, leading to a bad symbol error rate.
  • the amplification factor of the pre-equalizer 14h is increased! (In particular, the frequency of the read signal R corresponding to the recording data with the shortest run length and the frequency
  • the minT signal waveform can be shifted.
  • the above-described inconveniences below or exceeding the center level of T at the apex of minT space can be suitably prevented.
  • the pre-equalizer 14 is arranged at the rear stage of the AZD converter 13. That is, a configuration in which the pre-equalizer 14 performs digital signal processing is disclosed. Needless to say, however, the pre-equalizer 14 may be configured to be arranged in the front stage of the AZD change. In other words, even if the pre-equalizer 14 is configured to perform analog signal processing or is configured in this way, the amplification factor is increased as in the configuration in which the pre-equalizer 14 performs digital signal processing. Needless to say.
  • FIG. 34 is a block diagram conceptually showing the basic structure of the information reproducing apparatus li according to the ninth modification.
  • FIG. 34 is a block diagram conceptually showing the basic structure of the information reproducing apparatus li according to the ninth modification.
  • the information reproducing apparatus li includes a spindle motor 10, a pickup 11, an HPF 12, an AZD conversion 13, a pre-equalizer 14, and a limit equalizer 15.
  • a binarization circuit 16 a decoding circuit 17, a waveform distortion correction circuit 18, an adder 19li, an offset generation circuit 19-2i, and a reproduction characteristic determination circuit 20.
  • the decoding circuit 17 described above preferably performs error correction processing in addition to decoding processing.
  • SER is used as the reproduction characteristic of read signal R.
  • the decoding circuit 17 described above becomes the decoding Z correction circuit 17.
  • the adder 19—li is used for the read sample value series RS output from the pre-equalizer 14.
  • the read sample value series RS to which the offset value OFS is added is output to the waveform distortion correction circuit 18 c
  • the offset generation circuit 19-2i generates an offset value OFS.
  • the offset value OFS will be described in detail later (see FIG. 35 and subsequent figures).
  • the offset generation circuit 192 2i operates to offset the offset value OFS with respect to the read signal R (more specifically, the read sample value series RS).
  • an offset value ⁇ FS may be added when the ⁇ value described later is not approximately 0, and the offset value OFS may not be added if the ⁇ value is approximately 0. .
  • an offset value OFS is added, for example, the symbol error rate is equal to or higher than the predetermined threshold. If the error correction is not possible and the synchronous data is not readable, the offset value OFS may not be added. /.
  • the offset value OFS is added to the read sample value series RS).
  • FIG. 35 is a waveform diagram conceptually showing the asymmetry value
  • FIG. 36 is a symbol error for the offset value OFS normalized by the amplitude of the read signal R.
  • FIG. 37 is a graph showing the change in rate.
  • FIG. 37 shows the fluctuation of the read signal R with respect to the asymmetry value.
  • FIG. 38 is a graph showing changes in offset values normalized by width, and FIG. 38 is a table showing the appearance probability of recorded data of each run length.
  • the asymmetry value corresponds to the recording data with the shortest run length with respect to the amplitude center of the read signal R corresponding to the recording data with the longest run length.
  • ImaxCnt is the amplitude center of the read signal R corresponding to the record data with the longest run length, and the run is based on ImaxCnt.
  • the run length based on ImaxCnt is the longest
  • the bottom amplitude of the read signal R corresponding to the recorded data is ImaxL
  • the run length based on ImaxCnt is the longest.
  • IminH the magnitude of the top amplitude of the read signal R corresponding to short recorded data
  • the run length based on Cnt is the shortest, and the read signal R corresponding to the recorded data
  • Asymmetry value Asy ((ImaxH + ImaxL)-(Imin H + IminL)) / (2 X (ImaxH-ImaxL)) Note that ImaxCnt has the longest run time, and the top amplitude value and bottom amplitude value of the read signal R corresponding to the recording data.
  • the offset value OFS normalized by the amplitude of the read signal R is approximately 2
  • the symbol error rate is the smallest.
  • the force is about 7%, the symbol error rate when the offset value OFS is added is improved.
  • the offset value OFS normalized by the amplitude of the read signal R is approximately 3
  • the symbol error rate is the smallest.
  • the offset value OFS normalized by the amplitude of the read signal R is approximately 4
  • the symbol error rate is the smallest.
  • the symbol error rate when the offset value OFS is added is improved as compared with the symbol error rate when the offset value OFS is not added.
  • the symbol error rate is improved by adding the offset value OFS having the same polarity as the asymmetry.
  • Fig. 36 (a) Force is also when the symbol error rate shown in Fig. 36 (c) is the smallest.
  • FIG. 38 (a) shows random data on a Blu-ray Disc, which is a specific example of the optical disc 100. This indicates the appearance probability of each run-length recorded data in one ECC block in consideration of the run-length.
  • the appearance probability of recorded data with a run length of 2T is about 38%
  • the appearance probability of recorded data with a run length of 3T is about 25%.
  • the probability of appearance of recorded data with a run length of 4T is approximately 16%
  • the probability of appearance of recorded data with a run length of 5T is approximately 10%
  • the probability of appearance of recorded data with a run length of 6T is approximately 6%.
  • the appearance probability of recorded data with a run length of 7T is about 3%
  • the appearance probability of recorded data with a run length of 8T is about 1.6%
  • the appearance probability of recorded data with a run length of 9T is about 0.35%.
  • the appearance probability shown here is an appearance probability that does not take run length into consideration.
  • the 7T recorded data, the recorded data with a run length of 8T, and the recorded data with a run length of 9T have the same weight when calculating the appearance probability.
  • one piece of recorded data of a certain run length appears, it shows the probability of appearance when the number of occurrences is counted as one.
  • OFS can be approximated by a value obtained by multiplying the appearance probability of recorded data with the shortest run length without considering the run length by an asymmetry value.
  • the offset normalized by the amplitude of the read signal R is used.
  • the set value OFS can be approximated by a 0.3809 X asymmetry value.
  • Fig. 38 (b) when random data is recorded on a DVD, which is a specific example of the optical disc 100, the run length of the recorded data of each run length in one ECC block is not considered.
  • the appearance probability is shown.
  • the appearance probability of recorded data with a run length of 3T is about 32% in one ECC block, and the appearance probability of recorded data with a run length of 4T is about 24%.
  • the appearance probability of recorded data with a run length of 5T is The appearance probability of recorded data with a run length of 6T is approximately 11.5%, the appearance probability of recorded data with a run length of 7 km is approximately 7%, and the recorded data with a run length of 8 mm is approximately 17%.
  • the appearance probability of recorded data with a run length of 9 mm is about 2%, the appearance probability of recorded data with a run length of 10T is about 1.3%, and the run length is about 3%.
  • the appearance probability of 11T recorded data is about 0.24%, and the appearance probability of recorded data with a run length of 14T is about 0.3%. Again, this is normalized by the amplitude of the read signal R.
  • the offset value OFS can be approximated by a value obtained by multiplying the appearance probability of recorded data with the shortest run length without considering the run length by an asymmetry value.
  • the DVD which is a specific example of the optical disc 100, is normalized by the amplitude of the read signal R.
  • the offset value OFS can be approximated by a 0.3184 X symmetry value.
  • the offset value OFS normalized by the amplitude of the read signal R is recorded data with the shortest run length.
  • the offset generation circuit 19-2i generates the offset value OFS based on the asymmetry value.
  • the improvement of the reproduction characteristics (for example, the symbol error rate) by adding the offset value OFS can be explained for the same reason as already described with reference to FIGS. 32 and 33.
  • the signal waveform of minT can be shifted by adding the offset value OFS.
  • FIG. 39 is a waveform diagram conceptually showing the entire j8 value
  • FIG. 40 is the whole normalized by the amplitude of the read signal R) and normalized by the amplitude of the read signal R with respect to the eight values.
  • the overall ⁇ value is recorded for all types of run-length recording data (for example, if the optical disc 100 is a DVD, the recording data of run lengths 3 to 11T and 14T are recorded). If the optical disc 100 is a Blu-ray Disc, the average position of the amplitude center of each read signal R corresponding to run length 2T to 9T recording data) is shown. Specifically, if the optical disc 100 is a DVD, the recording data of run lengths 3 to 11T and 14T are recorded). If the optical disc 100 is a Blu-ray Disc, the average position of the amplitude center of each read signal R corresponding to run length 2T to 9T recording data) is shown. Specifically
  • the overall ⁇ value (Al + ⁇ 2) / (A1 ⁇ ⁇ 2).
  • the whole X j8 value is 1. Shown by 2768.
  • the coefficient to be multiplied by the overall ⁇ value in the formula for obtaining the offset value shown in FIG. the appearance probability of 38% (0.3809) of recorded data with a run length of 2 km can be regarded as almost the same value. For this reason, it is normalized by the amplitude of the read signal R.
  • the offset value OFS can be approximated by a value obtained by multiplying the appearance probability of recorded data with the shortest run length by the overall ⁇ value. That is, in the Blu-ray Disc that is a specific example of the optical disc 100, the offset value OFS normalized by the amplitude of the read signal R is 0.
  • 3809 X can be approximated by ⁇ value.
  • the amplitude of the read signal R is
  • the offset value OFS normalized by can be approximated by 0.38 X whole j8 value.
  • the offset value OFS normalized by the amplitude of the read signal R is recorded data with the shortest run length.
  • the appearance probability X without considering the run length can be approximated by the overall ⁇ value.
  • the offset generation circuit 19-2i generates the offset value OFS based on the entire
  • the offset value OFS is generated based on the 13 values as a whole, the same effect as when the offset value OFS is generated based on the asymmetry value can be suitably enjoyed.
  • FIG. 41 is a waveform diagram conceptually showing the partial j8 value
  • FIG. 42 is a portion normalized by the amplitude of the read signal R).
  • the partial / 3 value indicates the amplitude center of the read signal corresponding to the record data with the shortest run length and the read signal corresponding to the record data with the second shortest run length.
  • the deviation from the amplitude center of the signal is shown. Specifically, the recorded data with the shortest run length
  • the amplitude center of the corresponding read signal is IminCnt, and the top amplitude of the read signal R corresponding to the second shortest recorded data with IminCnt as the reference is Imin + 1H
  • IminCnt has the shortest run length ⁇ ⁇
  • X part j8 value is shown as 0.1721.
  • Fig. 38 (a) when random data is recorded on a Blu-ray Disc, which is a specific example of the optical disc 100, the appearance of each run-length recorded data in one ECC block in consideration of the run length Probability is shown.
  • the appearance probability of recorded data with a run length of 2T is about 22%
  • the appearance probability of recorded data with a run length of 3T is about 22%.
  • the probability of appearance of recorded data with a run length of 4T is approximately 19%
  • the probability of appearance of recorded data with a run length of 5T is approximately 14%
  • the probability of appearance of recorded data with a run length of 6T is approximately 10%.
  • the run length is 7T
  • the appearance probability of recorded data is about 6%
  • the appearance probability of recording data with a run length of 8T is about 4%
  • the appearance probability of recording data with a run length of 9cm is about 0.9%.
  • the appearance probability (sample appearance probability in the figure) shown here is an appearance probability in consideration of run length.
  • the weight for calculating the appearance probability of each of the record data of 7 cm, the record data of 8 cm run length, and the record data of 9 cm run length is proportional to the run length.
  • the recorded data with run length ⁇ appears that is, if one recorded data containing ⁇ sample values appears by sampling
  • the number of occurrences is counted as ⁇ times. The probability of occurrence is shown.
  • the FS can be approximated by a value obtained by multiplying the appearance probability of the recorded data with the shortest run length in consideration of the run length by the partial j8 value.
  • Fig. 38 (b) considers the run length of the recorded data of each run length in one ECC block when random data is recorded on the DVD which is a specific example of the optical disc 100.
  • the appearance probability is shown.
  • the appearance probability of recorded data with a run length of 3T is about 20% in one ECC block
  • the appearance probability of recorded data with a run length of 4T is about 20%.
  • the appearance probability of recorded data with a run length of 5T is about 18%
  • the appearance probability of recorded data with a run length of 6T is about 14%
  • the appearance probability of recorded data with a run length of 7T is about 10%.
  • the appearance probability of recorded data with a run length of 8T is about 7%
  • the appearance probability of recorded data with a run length of 9T is about 4.5%
  • the appearance probability of recorded data with a run length of 10T is about 3%
  • the run length is
  • the appearance probability of 1 IT recording data is about 0.5%
  • the appearance probability of recording data with a run length of 14T is about 0.9%. In this case as well, it is normalized by the amplitude of the read signal R.
  • the offset value OFS can be approximated by multiplying the appearance probability of the recorded data with the shortest run length by considering the run length and the partial j8 value.
  • an offset that is normally set by the amplitude of the read signal R is used.
  • the net value OFS can be approximated by 0.22026 X part
  • the offset value OFS normalized by the amplitude of the read signal R is recorded data with the shortest run length.
  • the appearance probability considering the run length X part can be approximated by ⁇ value.
  • the offset generation circuit 19-2i generates the offset value OFS based on the partial j8 value.
  • the offset value OFS is generated based on the partial ⁇ value, the same effect as that when the offset value OFS is generated based on the asymmetry value can be suitably enjoyed.
  • FIG. 43 is a waveform diagram conceptually showing the ⁇ value.
  • the ⁇ value is recorded data of all types of run length (for example, if the optical disc 100 is a DVD, it is recorded data of run lengths 3 to 11T and 14T, respectively, If 100 is a Blu-ray Disc, the amplitude center (that is, the reference level) of each read signal R corresponding to run length 2T to 9T recording data)
  • the deviation rate of the amplitude center of the read signal R corresponding to the recording data with the shortest run length with respect to the zero level in this embodiment is shown. Specifically, all types of run
  • the center of the amplitude of the read signal R corresponding to the recorded data (that is,
  • the run length based on the amplitude center (that is, all T center levels) of the read signal R corresponding to the recorded data of all types of run length is the largest.
  • the magnitude of the bottom amplitude of the read signal R corresponding to long recorded data is set to IminL.
  • the offset generation circuit 19-2i outputs the ⁇ value as the offset value OFS to the adder 19-li. That is, the offset generation circuit 19-2i generates the ⁇ value itself. As described above, even when the offset value OFS is generated based on the ⁇ value in this way, the same effect as when the offset value OFS is generated based on the asymmetry value can be suitably enjoyed.
  • FIG. 44 is a block diagram conceptually showing the basic structure of the information reproducing apparatus in the tenth modified example.
  • FIG. 45 shows a case where only the offset value OFS is added (that is, the offset value OFS is subtracted). When the offset value OFS is added to and subtracted from the offset value OFS.
  • the information reproducing apparatus lj includes a spindle motor 10, a pickup 11, an HPF 12, an AZD conversion 13, a pre-equalizer 14, and a limit equalizer 15.
  • a binary circuit 16 a decoding circuit 17, a waveform distortion correction circuit 18, an adder 19 lj, an offset generation circuit 19 3 ⁇ 4, a subtractor 19 3 ⁇ 4, and a reproduction characteristic circuit 20. .
  • the decoding circuit 17 described above preferably performs error correction processing in addition to decoding processing.
  • SER the reproduction characteristic of the read signal R .
  • the decoding circuit 17 described above is preferably a decoding Z correction circuit 17.
  • the adder 19-lj applies the read sample value sequence RS output from the pre-equalizer 14 to the read sample value sequence RS.
  • the read sample value series RS to which the offset value OFS is added is output to the waveform distortion correction circuit 18 c
  • the offset generation circuit 19 2j generates an offset value OFS.
  • the subtractor 19 3 ⁇ 4 generates an offset generation circuit from the distortion correction read sample value series RS.
  • the offset value OFS is applied to the read signal R (more specifically, the read sample value series RS) by the operation of the offset generation circuit 193 ⁇ 4.
  • the offset value OFS may be added, and when the ⁇ value is approximately 0, the offset value OFS may not be added.
  • the offset value OFS may not be added, for example, when the symbol error rate is equal to or higher than a predetermined threshold, error correction is impossible, or synchronous data cannot be read, an offset value OFS is added, for example, the symbol error rate is equal to or higher than the predetermined threshold. If the error correction is not possible and the synchronization data is not readable, the offset value OFS may not be added.
  • the offset value OFS generated in the tenth modified example has the reference level and the length at which the waveform distortion occurs when the waveform distortion shown in FIGS. 5 (a) to 5 (c) occurs. It is preferable that the difference is less than the maximum value of the mark signal level (that is, the waveform distortion amount D '). More preferably, the difference between the reference level and the maximum value of the signal level of the long mark in which waveform distortion occurs (that is, the waveform distortion amount D ′) is preferably 1Z2. In other words, an offset is generated in which the waveform distortion approaches the reference level.
  • the offset value OFS generated in the tenth modified example has the reference level and the length at which the waveform distortion occurs when the waveform distortion shown in FIGS. 6 (a) to 6 (c) occurs. It is preferable that the difference from the minimum value of the signal level of the mark (that is, the waveform distortion amount D ′) is less. More preferably, it is 1Z2 of the difference between the reference level and the minimum value of the signal level of the long mark in which waveform distortion occurs (that is, the waveform distortion amount ⁇ D ′). That is, an offset is generated in which the waveform distortion approaches the reference level.
  • the offset value OFS is also subtracted from the distortion correction read sample value series RS force. In other words, the offset added before correcting the waveform distortion.
  • the offset value OFS is added to the read sample value series RS), and the waveform
  • the symbol error rate when the offset value OFS is added and subtracted compared to the range of the offset value OFS that improves the symbol error rate when only the offset value OFS is added It can be seen that the range of offset value OFS that improves is widened. That is, by adding and subtracting the offset value OFS, the range of the offset value OFS that can favorably improve the symbol error rate can be expanded.
  • the offset value OFS added before correcting the waveform distortion and the offset value OFS subtracted after correcting the waveform distortion are the same.
  • the offset value OFS added before correcting the waveform distortion and the offset value OFS subtracted after correcting the waveform distortion do not necessarily have to be the same.
  • the offset value OFS that is added before correcting the waveform distortion is less than the offset value OFS that is subtracted after correcting the waveform distortion.
  • the offset value OFS added before correcting the waveform distortion is a value determined according to the asymmetry value, overall value, and partial j8 value, rather than the offset value OFS to be subtracted after correcting the waveform distortion.
  • the distortion correction read sample value series RS after correcting the waveform distortion, the above asymmetry value, the overall ⁇ value, and the partial ⁇ value.
  • waveform distortion generally occurs due to variations in the shape and length of marks formed on the recording surface of the optical disc 100. Therefore, for example, waveform distortion is likely to occur in a recordable optical disc 100 such as DVD-RZRW, DV D + RZRW, DVD-RAM, or BD-RZRE. However, even in a read-only optical disc 100 such as a DVD-ROM or a BD-ROM, for example, as shown in FIG. 46, synchronous data having a relatively long mark force is adjacent in the tracking direction. ! In this case, waveform distortion occurs. Needless to say, the above-described information reproducing apparatus 1 can suitably correct the waveform distortion generated in the read-only optical disc 100 as well.
  • the present invention is not limited to the above-described embodiments, but can be changed as appropriate without departing from the gist or concept of the invention which can be read, and information reproduction accompanied by such changes. Apparatuses and methods, and computer programs are also included in the technical scope of the present invention.

Abstract

記録再生装置(1)は、記録媒体(100)から読み取られた読取信号(RRF)が所望の再生特性を満たしているか否かを判定する判定手段(20)と、読取信号が所望の再生特性を満たしていないと判定された場合に、読取信号のうち長マークに対応する読取信号に生ずる波形歪みを補正する補正手段(18)と、波形歪みが補正された読取信号に対して波形等化処理を行う波形等化手段(15)とを備える。

Description

明 細 書
情報再生装置及び方法、並びにコンピュータプログラム
技術分野
[0001] 本発明は、例えば記録媒体に記録された記録データの再生を行う情報再生装置 及び方法であって、特に記録媒体に記録された記録データを読み取ることで得られ る読取信号に対してフィルタリング処理等の波形等化を行う情報再生装置及び方法 、並びにコンピュータをこのような情報再生装置として機能させるコンピュータプロダラ ムの技術分野に関する。
背景技術
[0002] 記録データが高密度記録されて!、る記録媒体から読み取られた読取信号の SN比 を改善すベぐ力かる読取信号に対して高域を強調するフィルタリング処理を施して 波形等化を行う技術が知られている。特に、特許文献 1によれば、読取信号の振幅 制限を行った後にフィルタリング処理を行うことで、符号間干渉を生じさせることなぐ 高域を強調することができる技術 (いわゆるリミットイコライザに関する技術)が開示さ れている。
[0003] 特許文献 1:特許第 3459563号
発明の開示
発明が解決しょうとする課題
[0004] ここで、読取信号には波形歪みが生じ得る。波形歪みとは、本来とるべき信号レべ ルと実際に読取信号に現れた信号レベルとの間にずれが生じている状態を示す。こ のような波形歪み力 リミットイコライザにおける振幅制限を行う範囲内に含まれてしま うと (つまり、波形歪みとリミットイコライザにおける振幅制限値との干渉性が高くなるほ ど)、振幅制限の後に行われる高域強調によって波形歪みがより一層強調されること につながる。これにより、例えばランレングスが相対的に長いマークを他のマークと誤 判別してしまう不都合につながりかねない。具体的には、例えば、ランレングスが 8T のマークを、ランレングス力 Τのマークと、ランレングスが 2Τのスペースと、ランレング スが 2Τのマークとして誤判別してしまう不都合につながりかねない。 [0005] 本発明は、例えば上述した従来の問題点に鑑みなされたものであり、例えば波形 歪みが生じている場合においても好適に記録データを再生することができる情報再 生装置及び方法、並びにコンピュータプログラムを提供することを課題とする。
課題を解決するための手段
[0006] 上記課題を解決するために、本発明の情報再生装置は、記録媒体から読み取られ た読取信号が所望の再生特性を満たして!/、る力否かを判定する判定手段と、前記判 定手段により前記読取信号が前記所望の再生特性を満たして 、な 、と判定された場 合に、前記読取信号のうち少なくとも長マークに対応する読取信号に生ずる波形歪 みを補正する補正手段と、前記波形歪みが補正された前記読取信号に対して波形 等化処理を行う波形等化手段と
を備える。
[0007] 上記課題を解決するために、本発明の情報再生方法は、記録媒体から読み取られ た読取信号が所望の再生特性を満たして 、る力否かを判定する判定工程と、前記判 定工程にお!、て前記読取信号が前記所望の再生特性を満たして!/、な!、と判定され た場合に、前記読取信号のうち少なくとも長マークに対応する読取信号に生ずる波 形歪みを補正する補正工程と、前記波形歪みが補正された前記読取信号に対して 波形等化処理を行う波形等化工程とを備える。
[0008] 上記課題を解決するために、本発明のコンピュータプログラムは、記録媒体から読 み取られた読取信号が所望の再生特性を満たしている力否かを判定する判定手段 と、前記判定手段により前記読取信号が前記所望の再生特性を満たして!/、な!、と判 定された場合に、前記読取信号のうち少なくとも長マークに対応する読取信号に生 ずる波形歪みを補正する補正手段と、前記波形歪みが補正された前記読取信号に 対して波形等化処理を行う波形等化手段とを備える情報再生装置に備えられたコン ピュータを制御する再生制御用のコンピュータプログラムであって、該コンピュータを
、前記判定手段、前記補正手段及び前記波形等化手段の少なくとも一部として機能 させる。
[0009] 本発明の作用及び他の利得は次に説明する実施の形態力 明らかにされよう。
図面の簡単な説明 [図 1]本実施例に係る情報再生装置の基本構成を概念的に示すブロック図である。
[図 2]本実施例に係るリミットイコライザの構成を概念的に示すブロック図である。
[図 3]振幅制限値の上限及び下限の設定動作を、サンプル値系列上で概念的に示 す波形図である。
[図 4]高域強調読取サンプル値系列の取得動作を、サンプル値系列上で概念的に 示す波形図である。
[図 5]波形歪みの第 1の例を概念的に示す波形図である。
[図 6]波形歪みの第 2の例を概念的に示す波形図である。
[図 7]波形歪み補正回路の動作の流れを概念的に示すフローチャートである。
[図 8]波形歪み補正回路の構成を概念的に示すブロック図である。
[図 9]波形歪み補正回路による波形歪みの補正動作を、サンプル値系列上で概念的 に示す波形図である。
[図 10]波形歪みの補正前後における読取信号の波形等を概念的に示す波形図であ る。
[図 11]波形歪みが補正されない場合及び波形歪みが補正される場合の夫々におけ る高域強調読取サンプル値系列の取得動作を、サンプル値系列上で概念的に示す 波形図である。
[図 12]波形歪み率に対するシンボルエラーレートの変化を示すグラフである。
[図 13]第 1変形例に係る情報再生装置が備える波形歪み補正回路の構成を概念的 に示すブロック図である。
[図 14]第 1変形例に係る情報再生装置が備える波形歪み補正回路が備える波形歪 み検出回路の構成を概念的に示すブロック図である。
[図 15]第 1変形例に係る情報再生装置の動作の流れを概念的に示すフローチャート である。
[図 16]第 2変形例に係る情報再生装置の動作の流れを概念的に示すフローチャート である。
[図 17]第 3変形例に係る情報再生装置が備える波形歪み補正回路による波形歪み の補正動作を、第 1の読取信号上で概念的に示すタイミングチャートである。 [図 18]第 3変形例に係る情報再生装置が備える波形歪み補正回路による波形歪み の補正動作を、第 2の読取信号上で概念的に示すタイミングチャートである。
[図 19]第 3変形例に係る情報再生装置が備える波形歪み補正回路による第 1の動作 の流れを概念的に示すフローチャートである。
[図 20]第 3変形例に係る情報再生装置が備える波形歪み補正回路による第 2の動作 の流れを概念的に示すフローチャートである。
圆 21]第 3変形例に係る情報再生装置が備える波形歪み補正回路による第 3の動作 の流れを概念的に示すフローチャートである。
[図 22]第 4変形例に係る情報再生装置が備える波形歪み補正回路による波形歪み の補正動作を、サンプル値系列上で概念的に示す波形図である。
[図 23]第 4変形例に係る情報再生装置が備える波形歪み補正回路の構成を概念的 に示すブロック図である。
[図 24]第 5変形例に係る情報再生装置が備える波形歪み補正回路による波形歪み の補正動作を、サンプル値系列上で概念的に示す波形図である。
[図 25]第 5変形例に係る情報再生装置が備える波形歪み補正回路の構成を概念的 に示すブロック図である。
[図 26]第 6変形例に係る情報再生装置が備える波形歪み補正回路による波形歪み の補正動作を、サンプル値系列上で概念的に示す波形図である。
[図 27]第 6変形例に係る情報再生装置が備える波形歪み補正回路の構成を概念的 に示すブロック図である。
[図 28]第 7変形例に係る情報再生装置が備える波形歪み補正回路による波形歪み の補正動作を、サンプル値系列上で概念的に示す波形図である。
[図 29]第 7変形例に係る情報再生装置が備える波形歪み補正回路の構成を概念的 に示すブロック図である。
圆 30]第 8変形例に係る情報再生装置が備えるプリイコライザの増幅率を増力!]させた 場合と、該増幅率を増カロさせない場合との夫々における、ァシンメトリに対するシンポ ルエラ一レートの変化を示すグラフである。
[図 31]波形歪みを補正した場合と波形歪みを補正しない場合との夫々における、プリ イコライザの増幅率に対するシンボルエラーレートの変化を示すグラフである。
[図 32]ァシンメトリの変化に応じた minTに対応する読取信号の波形を概念的に示す 波形図である。
[図 33]波形歪みの補正前後における読取信号の他の波形等を概念的に示す波形 図である。
圆 34]第 9変形例に係る情報再生装置の基本構成を概念的に示すブロック図である 圆 35]ァシンメトリ値を概念的に示す波形図である。
[図 36]読取信号の振幅で正規ィ匕されたオフセット値に対するシンボルエラーレートの 変化を示すグラフである。
圆 37]ァシンメトリ値に対する読取信号の振幅で正規化されたオフセット値の変化を 示すグラフであ。
[図 38]各ランレングスの記録データの出現確率を示す表である。
圆 39]全体 β値を概念的に示す波形図である。
[図 40]読取信号の振幅で正規化された全体 β値に対する読取信号の振幅で正規化 されたオフセット値の変化を示すグラフである。
[図 41]部分 β値を概念的に示す波形図である。
[図 42]読取信号の振幅で正規化された部分 β値に対する読取信号の振幅で正規化 されたオフセット値の変化を示すグラフである。
圆 43] α値を概念的に示す波形図である。
圆 44]第 10変形例に係る情報再生装置の基本構成を概念的に示すブロック図であ る。
[図 45]オフセット値を付加しかしない場合 (つまり、オフセット値を減算しない場合)と、 オフセット値を付加及び減算する場合の夫々における、読取信号の振幅で正規化さ れたオフセット値に対するシンボルエラーレートの変化を示すグラフである。
[図 46]再生専用型の光ディスクの記録面上のマークの様子を模式的に示す平面図 である。
符号の説明 [0011] 1、 2 情報再生装置
10 スピンドルモータ
11 ピックアップ
12 HPF
13 AZD変翻
14 プリイコライザ
15 リミットイコライザ
16 2値化回路
17 復号回路
18 波形歪み補正回路
181 遅延調整回路
182 歪み補正値検出回路
183 マーク Zスペース長検出回路
184 タイミング生成回路
185 セレクタ
186 波形歪み検出回路
19- li 加算器
19 2i オフセット生成回路
19-3 減算器
151 振幅制限値設定ブロック
1516 平均化回路
152 振幅制限ブロック
1522 ネ綱フィルタ
1523 ッタ
153 高域強調ブロック
20 再生特性判定回路
発明を実施するための最良の形態
[0012] 以下、発明を実施するための最良の形態として、本発明の情報再生装置及び方法 、並びにコンピュータプログラムに係る実施形態の説明を進める。
[0013] (情報再生装置の実施形態)
本発明の情報再生装置に係る実施形態は、記録媒体力 読み取られた読取信号 が所望の再生特性を満たして 、る力否かを判定する判定手段と、前記判定手段によ り前記読取信号が前記所望の再生特性を満たして 、な 、と判定された場合に、前記 読取信号のうち少なくとも長マークに対応する読取信号に生ずる波形歪みを補正す る補正手段と、前記波形歪みが補正された前記読取信号に対して波形等化処理を 行う波形等化手段とを備える。
[0014] 本発明の情報再生装置に係る実施形態によれば、判定手段の動作により、読取信 号が所望の再生特性を満たして 、る力否かが判定される。所望の再生特性にっ 、て は、後に詳述する。
[0015] その後、補正手段の動作により、少なくとも長マーク (例えば、記録媒体が DVDで あればランレングス 7Tから 11T及び 14Tのマークであり記録媒体が Blu— ray Disc であればランレングス 6Tから 9Tのマーク)に対応する読取信号に生ずる波形歪みが 補正される。ここでは、波形歪みが、波形等化手段による波形等化 (具体的には、例 えば、後述の振幅制限及び高域強調フィルタリング)に悪影響を与えなくなるように、 波形歪みが(より具体的には、例えば波形歪みの信号レベル等)が補正されることが 好ましい。
[0016] その後、波形等化手段の動作により、波形歪みが補正された読取信号に対して波 形等化処理が行われる。その後、波形等化処理が行われた読取信号に対して、各種 信号処理 (例えば、 2値化処理ゃ復号処理等)が行われることで、記録データの再生 が行われる。
[0017] 本実施形態では特に、判定手段により読取信号が所望の再生特性を満たしていな いと判定された場合に、選択的に補正手段による波形歪みの補正が行われる。ここ で、特に、シーケンシャル記録のみが許可されている記録媒体とは異なって、ランダ ム記録が許可されている記録媒体においては、様々な記録状態が混在している。こ の場合、波形歪みが不連続にな 、しは離散的に分布したり或 、はして 、な力つたり する読取信号を読み取ったり、大小様々な信号レベルを有する読み取り信号を読み 取る必要がある。従って、通常は波形歪みを補正することなく記録データを再生し、 上述した場合に選択的に波形歪みを補正しながら記録データを再生することで、情 報再生装置の負荷を低減させつつ、上述した各種効果を享受することができる。
[0018] このように、本実施形態に係る情報再生装置によれば、波形歪みが生じている場合 においても、良好に振幅制限を行いながら波形等化を行うことができる。その結果、 波形歪みが生じている場合においても、好適に記録データを再生することができる。
[0019] 本発明の情報再生装置に係る実施形態の他の態様は、前記波形歪みを検出する 検出手段を更に備え、前記補正手段は、前記判定手段により前記読取信号が前記 所望の再生特性を満たしていないと判定され且つ前記検出手段により前記波形歪 みが検出された場合に、前記波形歪みを補正する。
[0020] この態様によれば、波形歪みが検出された場合に、選択的に波形歪みが補正され る。従って、情報再生装置の負荷を低減させつつ、上述した各種効果を享受すること ができる。
[0021] 本発明の情報再生装置に係る実施形態の他の態様は、前記判定手段は、(0前記 読取信号のエラー訂正 (より具体的には、読取信号力 得られる記録データのエラー 訂正)が不能である場合、 GO前記読取信号のエラーレート (より具体的には、読取信 号力 得られる記録データの読取エラーレート)が所定の閾値以上である場合、及び (m)記録データに含まれるユーザデータを読み取るために用いられ且つ前記記録デ ータに含まれる同期データに相当する読取信号を読み取ることができな 、場合の少 なくとも 1つの場合に、前記読取信号が前記所望の再生特性を満たしていると判定 する。
[0022] この態様によれば、読取信号が所望の再生特性を満たしている力否かを好適に判 定することができる。
[0023] 本発明の情報再生装置に係る実施形態の他の態様は、前記判定手段は、前記補 正手段により前記波形歪みが補正された後に、前記読取信号が前記所望の再生特 性を満たしているか否かを再度判定し、前記補正手段は、前記判定手段により前記 読取信号が前記所望の再生特性を満たして!/ヽな ヽと再度判定された場合に、前記 波形歪みを再度補正する。 [0024] この態様によれば、所望の再生特性が満たされるまで波形歪みが補正される。この ため、所望の再生特性が満たされるまで、読取信号の読取をいわばリトライすることに つながり、より好適な再生動作を実現することができる。
[0025] 上述の如く読取信号が所望の再生特性を満たして!/ヽな ヽと再度判定された場合に 波形歪みを再度補正する情報再生装置の態様では、前記補正手段は、前記判定手 段により前記読取信号が前記所望の再生特性を満たして 、な 、と再度判定された場 合に、前回波形歪みを補正したときに用いた第 1波形歪み補正条件とは異なる第 2 の波形歪み補正条件を用いて、前記波形歪みを再度補正するように構成してもよ ヽ
[0026] このように構成すれば、波形歪み補正条件を適宜変更しながら波形歪みが補正さ れるため、波形歪みを好適に補正することができる。
[0027] 本発明の情報再生装置に係る実施形態の他の態様では、前記補正手段は、記録 データに含まれるユーザデータを読み取るために用いられ且つ前記記録データに含 まれる同期データに相当する前記読取信号に生ずる前記波形歪みを補正する。
[0028] この態様によれば、記録データを再生する際に重要な同期データに相当する読取 信号は少なくとも確実に読み取ることができるため、記録データを好適に再生するこ とがでさる。
[0029] 上述の如く同期データに相当する読み取り信号に生ずる波形歪みを補正する情報 再生装置の態様では、前記補正手段は、前記読取信号のうち前記同期データを構 成するマークと対をなすスペースの前、該スペースの後、及び該スペースを基点とし て前記同期データの周期性を満たす位置の少なくとも一方において、前記波形歪み 補正をするように構成してもよい。具体的には、例えば、前記記録媒体が Blu— ray Discである場合、前記補正手段は、前記読取信号のうち前記同期データを構成する ランレングスが 9Tのマークと対をなすランレングスが 9Tのスペースの前、該 9Tのス ペースの後、及び該 9Tのスペースの位置から 1932T付近のランレングスに相当する 時間が経過した位置の少なくとも一つにぉ ヽて、波形歪みを補正するように構成して もよい。或いは、例えば、前記記録媒体が DVDである場合、前記補正手段は、前記 読取信号のうち前記同期データを構成するランレングスが 14Tのスペースの位置か ら 1488T付近のランレングスに相当する時間が経過した位置において、波形歪みを 補正するように構成してもよ ヽ。
[0030] このように構成すれば、同期データが出現する周期性に着目して、比較的容易に 同期データに相当する読み取り信号の波形歪みを補正することができる。
[0031] 本発明の情報再生装置に係る実施形態の他の態様は、前記波形等化手段は、前 記波形歪みが補正された前記読取信号の振幅レベルを所定の振幅制限値にて制 限して振幅制限信号を取得する振幅制限手段と、前記振幅制限信号に対して高域 強調フィルタリング処理を行うことで等化補正信号を取得するフィルタリング手段とを 備える。
[0032] この態様によれば、振幅制限手段の動作により、波形歪みが補正された読取信号( 以下、適宜"歪み補正信号"と称する)の振幅レベルが制限される。具体的には、歪 み補正信号のうち振幅レベルが振幅制限値の上限よりも大きい又は下限より小さい 信号成分は、振幅レベルが振幅制限値の上限又は下限に制限される。他方、歪み 補正信号のうち振幅レベルが振幅制限値の上限以下且つ下限以上である信号成分 は、振幅レベルが制限されることはない。このように振幅レベルの制限が施された歪 み補正信号は、振幅制限信号としてフィルタリング手段へ出力される。フィルタリング 手段においては、振幅制限信号に対して高域強調フィルタリング処理を行う。その結 果、等化補正信号が取得される。その後は、等化補正信号に対して、例えば 2値ィ匕 処理や復号化処理等が行われる。これにより、記録媒体に記録された記録データ( 例えば、映像データや音声データ等)の再生処理を行うことができる。
[0033] これにより、フィルタリング手段上において、読取信号 (又はそのサンプル値)のばら つき(つまり、ジッタ)の発生を抑制することができ、その結果、符号間干渉を生じさせ ることなぐ読取信号の高域強調を行うことができる。
[0034] 更に、波形等化手段による波形等化処理が行われる前に、読取信号に生ずる波形 歪みが補正されるため、記録媒体から読み取られた読取信号に波形歪みが生じてい たとしても、該波形歪みが振幅制限及び高域強調フィルタリングに悪影響を与えるこ とは殆ど或いは全くなくなる。より具体的には、例えば、波形歪みが振幅制限値の上 限以下の値となったり或いは下限以上の値となることに起因して、波形歪みがより一 層強調されてしまう不都合を好適に防止することができる。つまり、波形歪みを補正 することで、波形歪みと振幅制限値との干渉性を低く抑えることができる。この結果、 例えば、長マークを他のマークと誤判別してしまう不都合を好適に防止することがで きる。これにより、リミットイコライザ (つまり、振幅制限手段及びフィルタリング手段)に ぉ 、て、読取信号の高域強調を好適に行うことができる。
[0035] 本発明の情報再生装置に係る実施形態の他の態様は、前記長マークは、信号レ ベルが最大振幅となるマークである。
[0036] この態様によれば、このような長マークに対応する読取信号に生ずる波形歪みを好 適に補正することができる。
[0037] (情報再生方法の実施形態)
本発明の情報再生方法に係る実施形態は、記録媒体力 読み取られた読取信号 が所望の再生特性を満たして ヽるカゝ否かを判定する判定工程と、前記判定工程にお V、て前記読取信号が前記所望の再生特性を満たして!、な 、と判定された場合に、前 記読取信号のうち少なくとも長マークに対応する読取信号に生ずる波形歪みを補正 する補正工程と、前記波形歪みが補正された前記読取信号に対して波形等化処理 を行う波形等化工程とを備える。
[0038] 本発明の情報再生方法に係る実施形態によれば、上述した本発明の情報再生装 置に係る実施形態が享受することができる各種効果と同様の効果を享受することが できる。
[0039] 尚、上述した本発明の情報再生装置に係る実施形態における各種態様に対応し て、本発明の情報再生方法に係る実施形態も各種態様を採ることが可能である。
[0040] (コンピュータプログラムの実施形態)
本発明のコンピュータプログラムに係る実施形態は、記録媒体力 読み取られた読 取信号が所望の再生特性を満たして 、る力否かを判定する判定手段と、前記判定 手段により前記読取信号が前記所望の再生特性を満たして 、な 、と判定された場合 に、前記読取信号のうち少なくとも長マークに対応する読取信号に生ずる波形歪み を補正する補正手段と、前記波形歪みが補正された前記読取信号に対して波形等 化処理を行う波形等化手段とを備える情報再生装置 (即ち、上述した本発明の情報 再生装置に係る実施形態 (但し、その各種態様を含む))に備えられたコンピュータを 制御する再生制御用のコンピュータプログラムであって、該コンピュータを、前記判定 手段、前記補正手段及び前記波形等化手段の少なくとも一部として機能させる。
[0041] 本発明のコンピュータプログラムに係る実施形態によれば、当該コンピュータプログ ラムを格納する ROM、 CD-ROM, DVD-ROM,ハードディスク等の記録媒体か ら、当該コンピュータプログラムをコンピュータに読み込んで実行させれば、或いは、 当該コンピュータプログラムを、通信手段を介してコンピュータにダウンロードさせた 後に実行させれば、上述した本発明の情報再生装置に係る実施形態を比較的簡単 に実現できる。
[0042] 尚、上述した本発明の情報再生装置に係る実施形態における各種態様に対応し て、本発明のコンピュータプログラムに係る実施形態も各種態様を採記録媒体力 読 み取られた読取信号が所望の再生特性を満たしている力否かを判定する判定手段 と、前記判定手段により前記読取信号が前記所望の再生特性を満たして!/、な!、と判 定された場合に、前記読取信号のうち少なくとも長マークに対応する読取信号に生 ずる波形歪みを補正する補正手段と、前記波形歪みが補正された前記読取信号に 対して波形等化処理を行う波形等化手段とを備える情報再生装置 (即ち、上述した 本発明の情報再生装置に係る実施形態 (但し、その各種態様を含む))に備えられた コンピュータにより実行可能なプログラム命令を明白に具現ィ匕し、該コンピュータを、 前記判定手段、前記補正手段及び前記波形等化手段のうち少なくとも一部として機 能させる。
[0043] 本発明のコンピュータプログラム製品に係る実施形態によれば、当該コンピュータ プログラム製品を格納する ROM、 CD-ROM, DVD-ROM,ハードディスク等の 記録媒体から、当該コンピュータプログラム製品をコンピュータに読み込めば、或い は、例えば伝送波である当該コンピュータプログラム製品を、通信手段を介してコン ピュータにダウンロードすれば、上述した本発明の情報再生装置に係る実施形態を 比較的容易に実施可能となる。更に具体的には、当該コンピュータプログラム製品は 、上述した本発明の情報再生装置に係る実施形態として機能させるコンピュータ読 取可能なコード (或 、はコンピュータ読取可能な命令)力も構成されてよ 、。 [0044] 尚、上述した本発明の情報再生装置に係る実施形態における各種態様に対応し て、本発明のコンピュータプログラム製品に係る実施形態も各種態様を採ることが可 能である。
[0045] 本実施形態のこのような作用及び他の利得は次に説明する実施例から更に明らか にされよう。
[0046] 以上説明したように、本発明の情報再生装置に係る実施形態によれば、判定手段 と、補正手段と、波形等化手段とを備える。本発明の情報再生方法に係る実施形態 によれば、判定工程と、補正工程と、波形等化工程とを備える。本発明のコンビユー タプログラムに係る実施形態によれば、コンピュータを本発明の情報再生装置に係る 実施形態として機能させる。従って、波形歪みが生じている場合においても好適にデ ータを再生することができる。
実施例
[0047] 以下、本発明の実施例を図面に基づいて説明する。
[0048] (1— 1)基本構成
初めに、図 1を参照して、本発明の情報再生装置に係る本実施例について説明を 進める。ここに、図 1は、本実施例に係る情報再生装置の基本構成を概念的に示す ブロック図である。
[0049] 図 1に示すように、本実施例に係る情報再生装置 1は、スピンドルモータ 10と、ピッ クアップ(PU : Pick Up) 11と、 HPF (High Pass Filter) 12と、 AZD変^^ 13と、プリ イコライザ(pre Equalizer) 14と、リミットイコライザ(Limit Equalizer) 15と、 2値化回路 1 6と、復号回路 17と、波形歪み補正回路 18と、再生特性判定回路 20とを備えている
[0050] ピックアップ 11は、スピンドルモータ 10によって回転する光ディスク 100の記録面に レーザ光 LBを照射した際の反射光を光電変換して読取信号 R を生成する。
RF
[0051] HPF12は、ピックアップより出力される読取信号 R の低域成分を除去し、その結
RF
果得られる読取信号 R を AZD変換器 13へ出力する。
HC
[0052] A/D変換器 13は、不図示の PLL (Phased Lock Loop)等から出力されるサンプリ ングクロックに応じて読取信号をサンプリングし、その結果得られる読取サンプル値系 列 RSをプリイコライザ 14へ出力する。
[0053] プリイコライザ 14は、ピックアップ 11及び光ディスク 100から構成される情報読取系 の伝送特性に基づく符号間干渉を除去し、その結果得られる読取サンプル値系列 R Sを波形歪み補正回路 18へ出力する。
C
[0054] 再生特性判定回路 20は、本発明における「判定手段」の一具体例を構成しており 、読取信号 R が所望の再生特性を満たしているか否かを、復号回路 17からの出力
RF
に基づいて判定する。この判定結果は、波形歪み補正回路 18へ出力される。
[0055] 波形歪み補正回路 18は、本発明における「補正手段」の一具体例を構成しており 、読取サンプル値系列 RS に生じている波形歪み(つまり、読取信号 R に生じてい
C RF
る波形歪み)を補正する。その結果得られる、歪み補正読取サンプル値系列 RS
CAM
は、リミットイコライザ 15へ出力される。
[0056] 特に、波形歪み補正回路 18は、再生特性判定回路 20により、読取信号 R が所望
RF
の再生特性を満たしていないと判定された場合に、読取サンプル値系列 RS
Cに生じ て 、る波形歪み(つまり、読取信号 R
RFに生じて 、る波形歪み)を補正する。言 、換え れば、波形歪み補正回路 18は、再生特性判定回路 20により、読取信号 R が所望
RF
の再生特性を満たしていると判定された場合には、読取サンプル値系列 RS
Cに生じ て ヽる波形歪み(つまり、読取信号 R
RFに生じて ヽる波形歪み)を補正しな 、。
[0057] 尚、波形歪み補正回路 18の具体的な構成及び動作については後に詳述する(図 6以降参照)。
[0058] リミットイコライザ 15は、符号間干渉を増加させることなく歪み補正読取サンプル値 系列 RS に対して高域強調処理を施し、その結果得られる高域強調読取サンプ
CAM
ル値系列 RS を、 2値ィ匕回路 16へ出力する。
H
[0059] 2値ィ匕回路 16は、高域強調読取サンプル値系列 RS に対して 2値化処理を行い、
H
その結果得られる 2値ィ匕信号を復号回路 17へ出力する。
[0060] 復号回路 17は、 2値化信号に対して復号処理等を行い、その結果得られる再生信 号を、ディスプレイやスピーカ等の外部再生機器へ出力する。その結果、光ディスク 1 00に記録されたデータ (例えば、映像データや音声データ等)が再生される。
[0061] 続いて、図 2を参照して、リミットイコライザ 15のより詳細な構成について説明する。 図 2は、リミットイコライザ 15の構成を概念的に示すブロック図である。図 2に示すよう に、リミットイコライザ 15は、振幅制限値設定ブロック 151と、振幅制限ブロック 152と 、高域強調ブロック 153とを備えている。
[0062] 振幅制限値設定ブロック 151は、歪み補正読取サンプル値系列 RS に基づいて
CAM
、振幅制限ブロック 152において用いられる振幅制限値の上限及び下限を設定する 。振幅制限ブロック 152は、振幅制限値設定ブロック 151において設定された振幅制 限値の上限及び下限に基づいて、歪み補正読取サンプル値系列 RS の振幅制
CAM
限処理を行う。振幅制限処理が行われたサンプル値系列 RS は、高域強調ブロッ
LIM
ク 153へ出力される。高域強調ブロック 153は、振幅制限処理が行われたサンプル 値系列 RS に対して、高域を強調するためのフィルタリング処理を行う。その結果、
LIM
高域強調読取サンプル値系列 RS が得られる。
H
[0063] より具体的には、リファレンスサンプルタイミング検出回路 1511により、歪み補正読 取サンプル値系列 RS に基づいて、リファレンスサンプルタイミングが検出される。
CAM
検出されたリファレンスサンプルタイミングは、 1クロックの遅延を付与する遅延器 151 2及び OR回路 1513を介してサンプルホールド回路 1514へ出力される。サンプルホ 一ルド回路 1514においては、遅延器 1512及び OR回路 1513を介して出力されるリ ファレンスサンプルタイミングに応じて、補間フィルタ 1522より出力される読取サンプ ル値系列 RSがサンプルホールドされる。
P
[0064] 尚、補間フィルタ 1522は、歪み補正読取サンプル値系列 RS に対して補間演
CAM
算処理を施すことにより、光ディスク 100から読み取られた読取信号 R を、 AZD変
RF
换器 14において用いられるサンプリングクロックによるクロックタイミングの中間タイミ ングでサンプリングした際に得られる補間サンプル値系列を生成する。生成された補 間サンプル値系列は、歪み補正読取サンプル値系列 RS に含められて、読取サ
CAM
ンプル値系列 RSとして、リミッタ 1523及びサンプルホールド回路 1514へ出力され
P
る。
[0065] サンプルホールドされた読取サンプル値系列 RSは、減算器 1515においてリファ
P
レンスレベル Rfが減算される。但し、リファレンスレベル Rfとしてゼロレベルを用いて いる場合は、 Rf=0となる。減算結果は、平均化回路 1516へ出力される。平均化回 路 1516においては、サンプル値の絶対値の平均値が算出される。算出されたサン プル値の平均値は、振幅制限値の上限及び下限として設定される。具体的には、リ ファレンスレベルに平均値を加算した値が、振幅制限値の上限、減算した値が振幅 制限値の下限として設定される。リファレンスレベルとしてゼロレベルを用いている場 合は、算出されたサンプル値の平均値に正の符号を付した値を振幅制限値の上限と して設定し、算出されたサンプル値の平均値に負の符号を付した値を振幅制限値の 下限として設定する。以下の説明では、説明の簡略化のために、リファレンスレベル Rfとしてゼロレベルを用いた構成を説明する。
[0066] 具体的に、図 3を参照して、振幅制限値設定ブロック 151において設定される振幅 制限値の上限及び下限について説明する。ここに、図 3は、振幅制限値の上限及び 下限の設定動作を、歪み補正読取サンプル値系列 RS 上で概念的に示す波形
CAM
図である。
[0067] 図 3には、読取信号のうち、ランレングスが相対的に短いデータ(具体的には、光デ イスク 100が Blu— ray Discである場合においては、ランレングスが 2T、 3Τ及び 4Τ のデータ)を読み取った際に得られる読取信号 R
RFとその歪み補正読取サンプル値 系列 RS を示す。図 3に示すように、ゼロクロス点の前(つまり、時間的に前)〖こ位
CAM
置する補間サンプル値(つまり、補間フィルタ 1522にお 、て生成されたサンプル値) と、ゼロクロス点の後(つまり、時間的に後)に位置する補間サンプル値の絶対値の平 均値 Lが、振幅制限値の上限及び下限の絶対値として設定される。つまり、振幅制限 値の上限は Lと設定され、振幅制限値の下限が Lと設定される。
[0068] 再び図 2において、リミッタ 1523は、振幅制限値設定ブロック 151において設定さ れた上限及び下限に基づいて、サンプル値系列 RSに対して振幅制限を行う。具体
P
的には、サンプル値系列 RSに含まれるサンプル値が、上限 Lよりも小さく且つ下限
P
—Lよりも大きい場合には、そのサンプル値をそのままサンプル値系列 RS として出
LIM
力する。一方、サンプル値系列 RSに含まれるサンプル値が、上限 L以上である場合
P
には、上限 Lをサンプル値系列 RS として出力する。他方、サンプル値系列 RSに
LIM P
含まれるサンプル値が、下限— L以下である場合には、下限— Lをサンプル値系列 R S として出力する。 [0069] 高域強調ブロック 153においては、サンプル値系列 RS 中における最もランレン ダスが短!、データ(例えば、光ディスク 100が DVDであればランレングス 3Tのデータ であり、光ディスク 100が Blu— ray Discであればランレングス 2Tのデータ)に対応 するサンプル値系列 RS のみ、その信号レベルを増大させる。
[0070] 具体的には、高域強調ブロック 153へ入力されるサンプル値系列 RS は、そのま ま又は 1クロックの遅延を付加する遅延器 1532、 1533及び 1534を介して、乗算係 数 kを有する係数乗算器 1535及び 1538、並びに乗算係数 kを有する係数乗算 器 1536及び 1537へ入力される。係数乗算器 1535、 1536、 1537及び 1538の出 力は、加算器 1539において加算される。その加算結果である高域読取サンプル値 RS は、カロ算器 1531において、 3クロックの遅延を付加する遅延器 1530を介して 加算器 1531に入力される歪み補正読取サンプル値系列 RS と加算される。その 結果、高域強調読取サンプル値系列 RS が得られる。
[0071] ここで、図 4を参照して、高域強調読取サンプル値系列 RS の取得動作についてよ り詳細に説明する。ここに、図 4は、高域強調読取サンプル値系列 RS の取得動作を
、歪み補正読取サンプル値系列 RS 上で概念的に示す波形図である。
[0072] 図 4 (a)に示すように、加算器 1531から出力される高域読取サンプル値 RS は、 サンプル値系列 RS 中における時点 D (— 1· 5)、 D (— 0· 5)、 D (0. 5)及び D (l
. 5)の夫々でのサンプル値に基づいて算出される。具体的には、サンプル値系列 R S 中における時点 D (— l. 5)、D (— 0. 5)、D (0. 5)及び D (l. 5)の夫々でのサ ンプル値を、 Sip (— 1)、 Sip (0)、 Sip (1)及び Sip (2)とすると、 RS = (— k) X Sip
(一 l) +k X Sip (0) +kX Sip (l) + (— k) X Sip (2)となる。
[0073] このとき、図 4 (b)に示すように、ランレングス 2Tのデータに対応する時点 D (— 1. 5 )及び D (— 0. 5)におけるサンプル値 Sip (— 1)及び Sip (0)は、互いに略同一となる 。また、ランレングス 2Tのデータに対応する時点 D (0. 5)及び D (l. 5)におけるサン プル値 Sip (1)及び Sip (2)は、互いに略同一となる。
[0074] また、図 4 (c)に示すように、ランレングス 3T及び 4Tの夫々のデータに対応する時 点 D (— 1. 5)及び D (— 0. 5)におけるサンプル値 Sip (— 1)及び Sip (0)は、振幅制 限ブロック 152による振幅制限により、共に振幅制限値の上限 Lとなる。同様に、ラン レングス 3T及び 4Tの夫々のデータに対応する時点 D (0. 5)及び D (l. 5)における サンプル値 Sip (1)及び Sip (2)は、振幅制限ブロック 152による振幅制限により、共 に振幅制限値の下限—Lとなる。つまり、リファレンスサンプル点前後のサンプル値の ばらつきが強制的に抑制される。
[0075] このため、高域強調を強くかけるために、係数乗算器 1535、 1536、 1537及び 15 38の係数 kの値を大きくしても、ゼロクロス点 D (O)において得られる高域読取サンプ ル値 RS は一定値に維持される。従って、符号間干渉は生じな 、。このように、リミ
HIG
ットイコライザ 15を備える情報再生装置 1によれば、高域強調した際に、符号間干渉 が生ずる原因となるところの読取信号中におけるゼロクロス点前後のサンプル値のば らつきが強制的に抑えられる。このため、高域強調ブロック 153において十分な高域 強調を行っても符号間干渉が生ずることはない。
[0076] 本実施例に係る情報再生装置 1では特に、波形歪みを補正した後に、リミットィコラ ィザ 15において、振幅制限及び高域強調が行われる。以下、波形歪み補正の具体 例について、詳細に説明を進める。
[0077] (1 2)波形歪み
初めに、図 5及び図 6を参照して、波形歪みについて説明する。ここに、図 5は、波 形歪みの第 1の例を概念的に示す波形図であり、図 6は、波形歪みの第 2の例を概 念的に示す波形図である。
[0078] 図 5 (a)に示すように、波形歪みは、本来とるべき信号レベルと実際に読取信号 R
RF
に現れた信号レベルとの差を示す。この波形歪みは、読取信号 R の最大振幅 Aに
RF
対する歪み量 D及びゼロレベルから波形歪みの頂点までの信号レベルである波形歪 み量 D'で定量的に定義される。図 5 (a)において、太い点線は、波形歪みが発生し て!ヽな 、ときに本来とるべき信号レベルを示して 、る。波形歪みが発生して!/、な!/、場 合には、当然に波形歪み量 Dはゼロである。
[0079] 尚、図 5 (a)に示す波形歪みは、読取信号 R の前端部及び後端部の信号レベル
RF
と比較して、中間部の信号レベルが変化してしまった波形歪みを示している。このよう な波形歪み以外にも、図 5 (b)に示すように、読取信号 R の後端部の信号レベルと
RF
比較して、前端部及び中間部の信号レベルが変化してしまった波形歪みや、図 5 (c) に示すように、読取信号 R の前端部の信号レベルと比較して、中間部及び後端部
RF
の信号レベルが変化してしまった波形歪みも存在しえる。 、ずれの波形歪みを対象 としていても、後述する構成及び動作を採用することができることは言うまでもない。
[0080] また、図 5 (a)から図 5 (c)においては、マークを形成することによって、レーザ光 LB の反射率が減少する光ディスク 100に生ずる波形歪みについて説明した。つまり、ゼ ロレベル以下の信号レベルにぉ 、て、信号レベルが意図せず増加するような波形歪 みが発生する例について説明した。し力しながら、図 6 (a)に示すように、例えば色素 膜を記録層として用いた Blu— ray Disc等の光ディスクのように、データを記録する ことによって、レーザ光 LBの反射率が増加する光ディスク(いわゆる、 Low to Hig hディスク) 100に生ずる波形歪みも存在し得る。つまり、ゼロレベル以上の信号レべ ルにおいて、信号レベルが意図せず減少するような波形歪みも発生し得る。尚、ゼロ レベル以上の信号レベルにぉ 、て、信号レベルが意図せず減少するような波形歪み が発生する場合においても、ゼロレベル以上の信号レベルにおいて、図 5 (b)におい て示した信号レベルが意図せず減少するような波形歪みが発生する場合と同様に、 図 6 (b)に示すように、読取信号 R の後端部の信号レベルと比較して、前端部及び
RF
中間部の信号レベルが変化してしまった波形歪みが存在し得る。また、図 5 (c)にお いて示した信号レベルが意図せず減少するような波形歪みが発生する場合と同様に 、図 6 (c)に示すように、読取信号 R の前端部の信号レベルと比較して、中間部及
RF
び後端部の信号レベルが変化してしまった波形歪みも存在し得る。
[0081] また、本実施例においては、ランレングスが相対的に長いマーク(以降、適宜"長マ ーク"と称し、例えば、光ディスク 100が DVDであればランレングス 7Tから 11T又は 1 4Tのデータであり、光ディスク 100が Blu— ray Discであればランレングス 6Tから 9 Τのデータ)に対応する読取信号に発生する波形歪みに着目することが好ましい。或 いは、同期データ(つまり、 syncデータ)の重要性を考慮すれば、同期データに対応 するマーク(例えば、光ディスク 100が DVDであればランレングス 14Tのデータであり 、光ディスク 100が Blu— ray Discであればランレングス 9Tのデータ)に対応する読 取信号に発生する波形歪みに着目することが好ましい。
[0082] (1 - 3)波形歪み補正回路の動作例 続いて、図 7から図 9を参照して、波形歪み補正回路 18の具体的な動作例につい て説明する。ここに、図 7は、波形歪み補正回路 18の動作の流れを概念的に示すフ ローチャートであり、図 8は、波形歪み補正回路 18の構成を概念的に示すブロック図 であり、図 9は、波形歪み補正回路 18による波形歪みの補正動作を、サンプル値系 列 RS上で概念的に示す波形図である。
C
[0083] 図 7に示すように、まず、光ディスク 100に記録されたデータの再生動作が行われる
(ステップ S 101)。
[0084] 再生動作の際には、再生特性判定回路 20の動作により、読取信号 R が所望の再
RF
生特性を満たして ヽるカゝ否か (言 ヽ換えれば、読取信号の再生特性が所望値である か否力)が判定される(ステップ S 102)。
[0085] 具体的には、シンボルエラーレート(SER: Symbol Error Rate)が所定閾値(例えば 、概ね 0. 001)以下であるか否か、例えば ECC (Error Correction Code)等を用いた エラー訂正が可能である力否力 又は同期データが読取可能である力否かが逐次 判定される。シンボルエラーレートが所定閾値 (例えば、概ね 0. 0001%)以下であり 、例えば ECC等を用いたエラー訂正が可能であり、且つ同期データが読取可能であ ると判定された場合には、読取信号 R
RFが所望の再生特性を満たしていると判定され る。他方、シンボルエラーレートが所定閾値 (例えば、概ね 0. 0001%)以下でない、 例えば ECC等を用いたエラー訂正が可能でな 、、又は同期データが読取可能でな いと判定された場合には、読取信号 R
RFが所望の再生特性を満たしていないと判定 される。
[0086] 尚、シンボルエラーレートの判定基準である所定閾値は、好適な再生動作が行わ れている力否かに基づいて設定されることが好ましい。具体的には、好適な再生動作 が行われなくなるシンボルエラーレートの値を所定閾値として設定することが好ましい
[0087] ステップ S102における判定の結果、シンボルエラーレートが所定閾値以下である、 且つエラー訂正が可能である、且つ同期データが読取可能であると判定された場合 には(ステップ S102 :Yes)、ステップ S107へ進む。
[0088] 他方、ステップ S102における判定の結果、シンボルエラーレートが所定閾値以下 でない、エラー訂正が可能でない、又は同期データが読取可能でないと判定された 場合には (ステップ S 102 : No)、続いて、長マークの波形歪みが測定される (ステツ プ S103)。ここでは、例えば、読取信号 R の最大振幅 Aに対する波形歪み量 D (又
RF
は D' )の比率を示す波形歪み率 (つまり、 D/AX 100)が測定される。
[0089] その後、波形歪みが所定値以上である力否かが判定される (ステップ S 104)。例え ば、波形歪み率が概ね 30%以上である力否かが判定される。
[0090] ステップ S104における判定の結果、波形歪みが所定値以上でな 、(例えば、波形 歪み率が概ね 30%以下である)と判定された場合には (ステップ S 104 : No)、ステツ プ S 107へ進む。
[0091] 他方、ステップ S104における判定の結果、波形歪みが所定値以上である(例えば 、波形歪み率が概ね 30%以上である)と判定された場合には (ステップ S104 :Yes) 、続いて、波形歪みの補正レベルや補正範囲等の波形歪み補正条件が設定される( ステップ S105)。波形歪み補正条件については、後に詳述する(図 9等参照)。
[0092] その後、ステップ S105において設定された波形歪み補正条件に基づいて、長マ ークの波形歪みが補正される (ステップ S 106)。
[0093] その後、再生動作を終了する力否かが判定され (ステップ S107)、再生動作を終了 しない場合には(ステップ S107 :No)、ステップ S101へ戻り、再度ステップ S101以 降の動作が繰り返される。
[0094] 図 7に示す動作は、主として、波形歪み補正回路 18により行われる。ここで、波形 歪み補正回路の具体的な回路構成について説明する。
[0095] 図 8に示すように、波形歪み補正回路 18は、遅延調整回路 181と、歪み補正値検 出回路 182と、マーク Zスペース長検出回路 183と、タイミング生成回路 184と、セレ クタ 185とを備えている。
[0096] プリイコライザ 14から出力される読取サンプル値系列 RSは、遅延調整回路 181、
C
歪み補正値検出回路 182及びマーク Zスペース長検出回路 183の夫々へ出力され る。
[0097] 歪み補正値検出回路 182は、ゼロクロス点力 、 minTに相当する時間が経過した 時点におけるサンプル値 S (k)をホールドして、歪み補正値 amdとしてセレクタ 185へ 出力する。
[0098] また、遅延調整回路 181は、記録データの最長ランレングスに応じた遅延量を設定 し、所望のタイミングで読取サンプル値系列 RS をセレクタ 185へ出力する。具体的
c
には、光ディスク 100が Blu— ray Discである場合には、最長ランレングスである 9T に相当する遅延量を設定し、光ディスク 100が DVDである場合には、最長ランレング スである 14Tに相当する遅延量を設定する。
[0099] 尚、 minTは、ランレングスが最も短い記録データに対応する読取信号 R (より具
RF
体的には、該読取信号 R に対応する読取サンプル値系列 RS )を示している。例え
RF C
ば、光ディスク 100が DVDであれば、 minTは、ランレングスが 3Tの記録データに対 応する読取信号 R を示している。例えば、光ディスク 100が Blu— ray Discであれ
RF
ば、 minTは、ランレングスが 2Tの記録データに対応する読取信号 R を示している
RF
[0100] マーク Zスペース長検出回路 183は、例えばゼロクロス点の間隔や、符号ビットの 連続回数等を検出することで、マーク Zスペース長を検出する。その検出結果は、タ イミング生成回路 184へ出力される。
[0101] タイミング生成回路 184は、マーク Zスペース長検出回路 183において検出される マーク Zスペース長に基づいて、タイミング信号 SWを生成し、該生成したタイミング 信号 SWをセレクタ 185へ出力する。
[0102] 具体的には、タイミング生成回路 184は、(0マーク Zスペース長検出回路 183にお いて検出されるマーク Zスペース長が、波形歪み補正の対象となる長マークであり、 且つ (ii)第 1のゼロクロス点力 minTに相当する時間が少なくとも経過した時点 T1か ら、第 1のゼロクロス点の次に位置する第 2のゼロクロス点力 minTに相当する時間 を遡った時点 T2までの間の期間には、ハイレベルのタイミング信号 SW(SW= 1)を 生成し、該生成したタイミング信号 SWをセレクタ 185へ出力する。他方、タイミング生 成回路 184は、(0マーク Zスペース長検出回路 183において検出されるマーク Zス ペース長が、波形歪み補正の対象となる長マーク以外のマークであるか、又は GO第 1のゼロクロス点力も minTに相当する時間が少なくとも経過した時点 T1から、第 1の ゼロクロス点の次に位置する第 2のゼロクロス点力 minTに相当する時間を遡った 時点 T2までの間の期間以外の期間には、ローレベルのタイミング信号 SW(SW=0) を生成し、該生成したタイミング信号 SWをセレクタ 185へ出力する。
[0103] セレクタ 185は、ハイレベルのタイミング信号 SWがタイミング生成回路 184から出 力されて 、る場合には、歪み補正値検出回路 182から出力される歪み補正値 amdを 、歪み補正読取サンプル値系列 RS として、リミットイコライザ 15へ出力する。他方
CAM
、セレクタ 185は、ローレベルのタイミング信号 SWがタイミング生成回路 184から出 力されている場合には、遅延調整回路 181から出力される読取サンプル値系列 RS
C
を、歪み補正読取サンプル値系列 RS として、リミットイコライザ 15へ出力する。
CAM
[0104] 尚、図 7のステップ S105において設定される波形歪み補正条件は、実質的には、 歪み補正値検出回路 182において検出される歪み補正値 amd及びタイミング生成 回路 184にお 、て生成されるタイミング信号 SWに相当する。
[0105] このような波形歪み補正回路 18による動作を、サンプル値系列 RSを示す波形図
C
上でより明確に説明する。
[0106] 図 9に示すように、第 1のゼロクロス点力 minTに相当する時間が少なくとも経過し た時点 T1から、第 1のゼロクロス点の次に位置する第 2のゼロクロス点力 minTに相 当する時間を遡った時点 T2までの間の期間(つまり、タイミング信号 SWがハイレべ ルである期間)には、サンプル値系列 RS に含まれるサンプル値力 波形歪み補正
C
値検出回路 182において検出される歪み補正値 amdに補正される。その結果、波形 歪みが補正される。
[0107] この波形歪みを補正することで得られる効果について、図 10から図 12を参照しな 力 説明する。ここに、図 10は、波形歪みの補正前後における読取信号 R の波形
RF
等を概念的に示す波形図であり、図 11は、波形歪みが補正されない場合及び波形 歪みが補正される場合の夫々における高域強調読取サンプル値系列 RS の取得動
H
作を、サンプル値系列 RS上で概念的に示す波形図であり、図 12は、波形歪み率に c
対するシンボルエラーレートの変化を示すグラフである。
[0108] 図 10の左側に示すように、読取信号 R に波形歪みが生じている場合には、該波
RF
形歪みを通常のマーク (例えば、ランレングスが相対的に短いマーク)と誤認識してし まいかねない。従って、読取信号 R を 2値ィ匕した後の 2値ィ匕波形には、波形歪みに 起因した誤信号が含まれてしまう。この結果、元の記録データとの整合性がとれずに
、 2値ィ匕エラーが発生してしまう。
[0109] 他方で、図 10の右側に示すように、読取信号 R に生じた波形歪みを補正した場
RF
合には、読取信号 R を 2値ィ匕した後の 2値ィ匕波形には、波形歪みに起因した誤信
RF
号が含まれることはなくなる。従って、元の記録データとの整合性を取ることができ、 2 値ィ匕エラーは発生しない。
[0110] より具体的に説明すると、波形歪みの大きさ等の条件によっては、図 11 (a)に示す ように、波形歪みがリミットイコライザ 15における振幅制限値の下限— Lを上回る信号 レベルを有しかねない。この場合、高域強調ブロック 153から出力される高域強調読 取サンプル値系列 RS は、高域強調読取サンプル値系列 RS と S(O)との和であり
H HIG
、RS は、 (一 k) XSip (— l)+kXSip(0)+kXSip(l) + (— k) XSip(2)にて示
HIG
されることは前述した。ここで、 Sip (— 1)と Sip (2)は、下限 Lに抑制されるため、 R S =S(0)+kX (— 2X—L + Sip(0)+Sip(l))となる。これでは、下限 Lと Sip(
H
0)と Sip (1)の和を K倍した値だけ、高域強調読取サンプル値系列 RS の値が大きく
H
なってしまう。これは、本来発生するべきでない波形歪みを強調してしまっているため 好ましくない。更には、波形歪みが強調されることに起因して、例えば PRMLを採用 する情報再生装置においては、例えば波形歪みが生じているランレングスが相対的 に長 、マークを他のマークと誤判別してしまう不都合につながりかねな ヽ。その結果 、 2値ィ匕エラーが発生してしまう。
[0111] また、図示はしないが、図 6 (a)から図 6(c)に示すマークを形成することによって、 レーザ光 LBの反射率が減少する光ディスク 100についても同様に、 Sip (— 1)と Sip (2)は、上限 Lに抑制されるため、 RS =S(0)+kX (一 2XL+Sip(0)+Sip(l))
H
となる。これでは、上限 Lと Sip (0)と Sip (1)の和を K倍した値だけ、高域強調読取サ ンプル値系列 RS の値が大きくなつてしまう。これは、本来発生するべきでない波形
H
歪みを強調してしまって 、るため好ましくな 、。
[0112] 他方、図 11 (b)に示すように、波形歪みが補正される場合には、波形歪みの信号レ ベルを、リミットイコライザ 15における振幅制限値の下限— L以下の信号レベルに補 正することができる。この場合、 Sip(— 1)と Sip(O)と、 Sip (1)と Sip (2)は、下限一 L に抑制されるため、 RS =S (0)となる。このため、波形歪みを強調する不都合を防ぐ
H
ことができ、その結果、 2値ィ匕エラーが発生してしまうという不都合を防ぐことができる
[0113] また、図示はしないが、図 6 (a)から図 6 (c)に示すマークを形成することによって、 レーザ光 LBの反射率が減少する光ディスク 100についても同様に、波形歪みが補 正される場合には、 Sip (— 1)と Sip (0)と、 Sip (1)と Sip (2)は、上限 Lに抑制される ため、 RS =S (0)となる。このため、波形歪みを強調する不都合を防ぐことができ、
H
その結果、 2値ィ匕エラーが発生してしまうという不都合を防ぐことができる。
[0114] このように、波形歪みを補正することによる効果は、波形歪み率に対するシンボル エラーレートの変化からも分かる。図 12に示すように、波形歪みが補正されない場合 における SERの値と比較して、波形歪みが補正される場合における SERの値は改 善している。
[0115] 以上説明したように、本実施例に係る情報再生装置 1によれば、高域強調した際に 、符号間干渉が生ずる原因となるところの読取信号中におけるリファレンスサンプル 点前後のサンプル値のばらつきが強制的に抑えられる。このため、高域強調ブロック 153において十分な高域強調を行っても符号間干渉が生ずることはない。
[0116] 特に、本実施例に係る情報再生装置 1によれば、波形歪みを補正した後に、リミット イコライザ 15における振幅制限及び高域強調を行っている。このため、リミットィコライ ザ 15において、本来発生するべきでない波形歪みを強調してしまう不都合を好適に 防止することができる。更には、波形歪みが強調されることに起因して、例えば PRM Lを採用する情報再生装置においては、例えばランレングスが相対的に長いマーク を他のマークと誤判別してしまう不都合を好適に防止することができる。その結果、波 形歪みに起因して 2値ィ匕エラーが発生することは殆どなくなり、好適な再生動作を行 うことができる。
[0117] 加えて、再生特性判定回路 20により読取信号 R が所望の再生特性を満たしてい
RF
ないと判定された場合に、選択的に波形歪み補正回路 18による波形歪みの補正が 行われる。ここで、特に、シーケンシャル記録のみが許可されている光ディスク 100と は異なって、ランダム記録が許可されている光ディスク 100においては、様々な記録 状態が混在している。この場合、波形歪みが不連続にないしは離散的に分布したり 或いはしていなかったりする読取信号 R を読み取ったり、大小様々な信号レベルを
RF
有する読取信号 R
RFを読み取る必要がある。従って、通常は波形歪みを補正すること なく記録データを再生し、読取信号 R が所望の再生特性を満たしていない (つまり、
RF
波形歪みが発生して 、る可能性が高 、)場合に選択的に波形歪みを補正しながら記 録データを再生することで、情報再生装置 1の負荷を低減させつつ、上述した各種 効果を享受することができる。
[0118] 尚、読取信号 R の再生特性として SERを用いる場合には、上述の復号回路 17は
RF
、復号処理にカ卩えてエラー訂正処理を行うことが好ましい。つまり、読取信号 R の再
RF
生特性として SERを用いる場合には、上述の復号回路 17は、復号 Z訂正回路 17と なることが好ましい。
[0119] (2)第 1変形例
続いて、図 13から図 15を参照して、本実施例に係る情報再生装置 1の第 1変形例 について説明する。ここに、図 13は、第 1変形例に係る情報再生装置 laが備える波 形歪み補正回路 18aの構成を概念的に示すブロック図であり、図 14は、第 1変形例 に係る情報再生装置 laが備える波形歪み補正回路 18aが備える波形歪み検出回路 186aの構成を概念的に示すブロック図であり、図 15は、第 1変形例に係る情報再生 装置 laの動作の流れを概念的に示すフローチャートである。
[0120] 図 7に示した動作例では、読取信号 R が所望の再生特性を満たしていない場合
RF
には常に波形歪みを補正していた。し力しながら、第 1変形例においては、読取信号 R が所望の再生特性を満たしていない場合であっても、波形歪みが実際に検出さ
RF
れた場合に選択的に波形歪み補正を行うように構成されている。以下、第 1変形例の 具体的構成及び動作例について説明する。
[0121] 図 13に示すように、波形歪み補正回路 18aは、遅延調整回路 181と、波形歪み検 出回路 186aと、マーク Zスペース長検出回路 183と、タイミング生成回路 184と、セ レクタ 185と、 AND回路 187aとを備えている。
[0122] この態様では、マーク Zスペース長検出回路 183によるマーク Zスペース長の検出 結果は、タイミング生成回路 184に加えて、波形歪み検出回路 186aへ出力される。 [0123] 波形歪み検出回路 186aは、波形歪みを検出し、且つ波形歪みを検出したことを示 す波形歪み検出信号 DTを AND回路 187aへ出力する。より具体的には、波形歪み 検出回路 186aは、波形歪みが検出されている場合には、ハイレベルの波形歪み検 出信号 DT(DT= 1)を AND回路 187aへ出力し、波形歪みが検出されていない場 合には、ローレベルの波形歪み検出信号 DT(DT=0)を AND回路 187aへ出力す る。
[0124] AND回路 187aは、タイミング生成回路 184及び波形歪み検出回路 186aの夫々 の出力に基づいて、波形歪みが検出された場合 (つまり、タイミング生成回路 184か ら出力されるタイミング信号 SW及び波形歪み検出回路 186aから出力される波形歪 み検出信号 DTの夫々がハイレベルである場合)には、ハイレベルのタイミング信号 S WOを生成する。他方、 AND回路 187aは、タイミング生成回路 184及び波形歪み検 出回路 186aの夫々の出力に基づ 、て、波形歪みが検出されて 、な 、場合 (つまり、 タイミング生成回路 184から出力されるタイミング信号 SW及び波形歪み検出回路 18 6aから出力される波形歪み検出信号 DTのいずれか一方がローレベルである場合) には、ローレベルのタイミング信号 SWOを生成する。つまり、第 6変形例においては、 波形歪みが検出されている場合に、選択的に波形歪みが補正される。
[0125] 波形歪み検出回路 186aは、図 14に示すように、シフトレジスタ 1831aと、セレクタ 1
832aと、最大値検出回路 1833aと、最小値検出回路 1834aと、減算器 1835aと、判 定回路 1836aとを備える。
[0126] 波形歪み検出回路 186aに入力される読取サンプル値系列 RSは、シフトレジスタ c
1831aに出力される。シフトレジスタ 1831aは、入力される読取サンプル値系列 RS c を 1クロックずつシフトさせながら、出力 DOから D14としてセレクタ 1832aへ出力する
[0127] セレクタ 1832aは、マーク Zスペース長検出回路 183から出力されるタイミングで、 出力 DOから D14のうち力 マーク Zスペース長に基づいて、 3つの出力を選択的に サンプルホールドし、歪み補正量検出回路 1837a、最大値検出回路 1833a及び最 小値検出回路 1834aの夫々に出力する。
[0128] より具体的には、セレクタ 1832aは、マーク Zスペース長検出回路 183から出力さ れるマーク Zスペース長が 6Tである場合には、出力 DOから D14のうちから 3つの出 力 D2、 D3及び D4を選択的にサンプルホールドし、歪み補正量検出回路 1837a、 最大値検出回路 1833a及び最小値検出回路 1834aの夫々に出力する。セレクタ 18 32aは、マーク Zスペース長検出回路 183から出力されるマーク Zスペース長が 7T である場合には、出力 DOから D14のうち力も 3つの出力 D2、 D3及び D5を選択的に サンプルホールドし、歪み補正量検出回路 1837a、最大値検出回路 1833a及び最 小値検出回路 1834aの夫々に出力する。セレクタ 1832aは、マーク Zスペース長検 出回路 183から出力されるマーク Zスペース長が 8Tである場合には、出力 DOから D 14のうちから 3つの出力 D2、 D4及び D6を選択的にサンプルホールドし、歪み補正 量検出回路 1837a、最大値検出回路 1833a及び最小値検出回路 1834aの夫々に 出力する。セレクタ 1832aは、マーク Zスペース長検出回路 183から出力されるマー ク Zスペース長が 9Tである場合には、出力 DOから D14のうち力も 3つの出力 D2、 D 4及び D7を選択的にサンプルホールドし、歪み補正量検出回路 1837a、最大値検 出回路 1833a及び最小値検出回路 1834aの夫々に出力する。セレクタ 1832aは、 マーク Zスペース長検出回路 183から出力されるマーク Zスペース長が 1 OTである 場合には、出力 DOから D14のうちから 3つの出力 D2、 D5及び D8を選択的にサン プルホールドし、歪み補正量検出回路 1837a、最大値検出回路 1833a及び最小値 検出回路 1834aの夫々に出力する。セレクタ 1832aは、マーク Zスペース長検出回 路 183から出力されるマーク Zスペース長が 11Tである場合には、出力 DOから D14 のうち力も 3つの出力 D2、 D5及び D9を選択的にサンプルホールドし、歪み補正量 検出回路 1837a、最大値検出回路 1833a及び最小値検出回路 1834aの夫々に出 力する。セレクタ 1832aは、マーク Zスペース長検出回路 183から出力されるマーク Zスペース長が 14Tである場合には、出力 DOから D14のうちから 3つの出力 D2、 D 7及び D 12を選択的にサンプルホールドし、歪み補正量検出回路 1837a、最大値検 出回路 1833a及び最小値検出回路 1834aの夫々に出力する。このようなセレクタ 18 32aの動作は、実質的には、図 5 (a)から図 5 (c)及び図 6 (a)から図 6 (c)に示す波形 歪みの、前端部の信号レベル、中間部の信号レベル及び後端部の信号レベルを選 択的に出力する動作に相当する。 [0129] その後、歪み補正量検出回路 1837aにおいては、セレクタ 1832aから出力される 3 つの出力(つまり、前端部の信号レベル、中間部の信号レベル及び後端部の夫々の 信号レベル)のうち所望の 1つの信号レベルが歪み補正量 amdとして出力される。具 体的には、図 5 (a)及び図 6 (a)に示すように中間部の信号レベルが変化してしまった 波形歪みに対しては、例えば前端部の信号レベル又は後端部の信号レベルが歪み 補正量 amdとして出力される。図 5 (b)及び図 6 (b)に示すように前端部の信号レべ ルが変化してしまった波形歪みに対しては、例えば後端部の信号レベルが歪み補正 量 amdとして出力される。図 5 (c)及び図 6 (c)に示すように後端部の信号レベルが変 化してしまった波形歪みに対しては、前端部の信号レベルが歪み補正量 amdとして 出力される。
[0130] また、最大値検出回路 1833aにおいては、セレクタ 1832aより出力される 3つの出 力の最大値 (つまり、最大信号レベル)が検出され、該検出された最大値が減算器 1 835aへ出力される。
[0131] 同様に、最小値検出回路 1834aにおいては、セレクタ 1832aより出力される 3つの 出力の最小値 (つまり、最小信号レベル)が検出され、該検出された最小値が減算器 1835aへ出力される。
[0132] その後、減算器 1835aにおいて、最大値検出回路 1833aにおいて検出された最 大値から、最小値検出回路 1834aにおいて検出された最小値が減算されることで、 波形歪み量 Dが算出される。
[0133] その後、判定回路 1836aにおいて、減算器 1835aより出力される波形歪み量が所 定値 X以上である力否かが判定される。波形歪み量 Dが相対的に小さい場合には、 波形歪みを検出したとはみなさず、ローレベルの波形歪み検出信号 DTを出力する。 他方、波形歪み量 Dが相対的に大きい場合 (例えば、波形歪み率が概ね 30%以上 である場合)には、波形歪みを検出したとみなして、ハイレベルの波形歪み検出信号 DTを出力する。 このときの動作の流れは、図 15に示すように、まず、光ディスク 10 0に記録されたデータの再生動作が行われる (ステップ S101)。再生動作の際には、 読取信号 R が所望の再生特性を満たして!/、るか否かが判定される (ステップ S 102) [0134] ステップ S102における判定の結果、読取信号 R が所望の再生特性を満たしてい
RF
ると判定された場合には (ステップ S102 :Yes)、ステップ S107へ進む。
[0135] 他方、ステップ S102における判定の結果、読取信号 R が所望の再生特性を満た
RF
していないと判定された場合には (ステップ S 102 : No)、続いて、波形歪み検出回路 186aにおいて波形歪みが実際に検出されている力否かが判定される (ステップ S 20 D o
[0136] ステップ S201における判定の結果、波形歪みが検出されていないと判定された場 合には (ステップ S201 :No)、波形歪みを補正することなく(つまり、ステップ S103か らステップ S106の動作を行うことなく)、ステップ S107へ進む。
[0137] 他方、ステップ S201における判定の結果、波形歪みが検出されていると判定され た場合には (ステップ S201 : Yes)、波形歪みを補正した後に(つまり、ステップ S103 力 ステップ S106の動作を行った後に)、ステップ S107へ進む。
[0138] このように、波形歪みが検出された場合に選択的に波形歪みを補正することで、情 報再生装置 laの負荷を低減させつつ、上述した各種効果を享受することができる。
[0139] カロえて、波形歪みが実際に発生している場合に、選択的に波形歪み補正回路 18 による波形歪みの補正が行われる。ここで、特に、シーケンシャル記録のみが許可さ れている光ディスク 100とは異なって、ランダム記録が許可されている光ディスク 100 においては、様々な記録状態が混在している。この場合、波形歪みが不連続にない しは離散的に分布したり或いはしていな力つたりする読取信号 R
RFを読み取ったり、 大小様々な信号レベルを有する読取信号 R を読み取る必要がある。従って、通常
RF
は波形歪みを補正することなく記録データを再生し、波形歪みが実際に発生してい る場合に選択的に波形歪みを補正しながら記録データを再生することで、情報再生 装置 1の負荷を低減させつつ、上述した各種効果を享受することができる。
[0140] 加えて、第 1変形例に係る情報再生装置 laによれば、波形歪みの信号レベルを、 前端部の信号レベル、中間部の信号レベル及び後端部の夫々の信号レベルのうち 所望の 1つの信号レベルに補正することができる。このため、様々な形状の波形歪み を好適に補正することができる。具体的には、図 7から図 9を参照して説明した構成で は、波形歪みの信号レベルを、前端部の信号レベルに補正しているため、特に図 5 ( b)及び図 6 (b)に示すような前端部の信号レベルが変化してしまった波形歪みを好 適に補正することができない。しかるに、第 1変形例に係る情報再生装置 laによれば
、このような波形歪みをも好適に補正することができる。
[0141] (3)第 2変形例
続いて、図 16を参照して、本実施例に係る情報再生装置 1の第 2変形例について 説明する。ここに、図 16は、第 2変形例に係る情報再生装置 lbの動作の流れを概念 的に示すフローチャートである。
[0142] 図 7に示した動作例では、波形歪み補正条件がただ 1つ設定されている。しかしな がら、第 2変形例においては、複数の波形歪み補正条件を設定しておき、それらを順 に適用しながら波形歪み補正を行うように構成されている。
[0143] このときの動作の流れは、図 16に示すように、まず、光ディスク 100に記録されたデ ータの再生動作が行われる (ステップ S 101)。再生動作の際には、読取信号 R 力 S
RF
所望の再生特性を満たして!/、るか否かが判定される (ステップ S 102)。
[0144] ステップ S102における判定の結果、読取信号 R が所望の再生特性を満たしてい
RF
ると判定された場合には (ステップ S102 :Yes)、ステップ S107へ進む。
[0145] 他方、ステップ S102における判定の結果、読取信号 R が所望の再生特性を満た
RF
していないと判定された場合には (ステップ S 102 : No)、続いて、波形歪み検出回路 186aにおいて波形歪みが実際に検出されている力否かが判定される (ステップ S 20 D o
[0146] ステップ S201における判定の結果、波形歪みが検出されていないと判定された場 合には (ステップ S201 :No)、波形歪みを補正することなく(つまり、ステップ S103か らステップ S106の動作を行うことなく)、ステップ S107へ進む。
[0147] 他方、ステップ S201における判定の結果、波形歪みが検出されていると判定され た場合には (ステップ S201: Yes)、長マークの波形歪みが測定される (ステップ S10 3)。その後、波形歪みが所定値以上である力否かが判定される (ステップ S 104)。
[0148] ステップ S104における判定の結果、波形歪みが所定値以上でな 、(例えば、波形 歪み率が概ね 30%以下である)と判定された場合には (ステップ S 104 : No)、ステツ プ S 107へ進む。 [0149] 他方、ステップ S104における判定の結果、波形歪みが所定値以上である(例えば 、波形歪み率が概ね 30%以上である)と判定された場合には (ステップ S104 :Yes) 、続いて、波形歪みの補正レベルや補正範囲等の波形歪み補正条件 # x (但し、 Xは 、 1を初期値とする、 1以上の整数)が設定される (ステップ S301)。その後、ステップ S301にお 、て設定された波形歪み補正条件 # Xに基づ!/、て、長マークの波形歪み が補正される (ステップ S 106)。
[0150] 続いて、波形歪みを補正した回数であるリトライ回数が所定値以上である力否かが 判定される(ステップ S302)。
[0151] ステップ S302における判定の結果、リトライ回数が所定値以上でないと判定された 場合には (ステップ S302 : No)、 Xを 1だけインクリメントした後に、ステップ S102へ戻 り、ステップ S 102以降の動作を繰り返す。つまり、波形歪み補正条件を適宜変更し ながら波形歪みの補正が繰り返される(言い換えれば、リトライされる)。
[0152] 他方、ステップ S302における判定の結果、リトライ回数が所定以上であると判定さ れた場合には(ステップ S302: Yes)、ステップ S 107へ進む。
[0153] 尚、複数の波形歪み補正条件としては、図 22から図 45を参照して以下に詳述する 変形例における動作で用いられる波形歪み補正条件を用いることが好まし 、。
[0154] (4)第 3変形例
続いて、図 17から図 21を参照して、第 3変形例に係る情報再生装置 lcについて説 明する。ここに、図 17は、第 3変形例に係る情報再生装置 lcが備える波形歪み補正 回路 18cによる波形歪みの補正動作を、第 1の読取信号 R 上で概念的に示すタイミ
RF
ングチャートであり、図 18は、第 3変形例に係る情報再生装置 lcが備える波形歪み 補正回路 18cによる波形歪みの補正動作を、第 2の読取信号 R 上で概念的に示す
RF
タイミングチャートであり、図 19は、第 3変形例に係る情報再生装置 lcによる第 1の動 作の流れを概念的に示すフローチャートであり、図 20は、第 3変形例に係る情報再 生装置 lcによる第 2の動作の流れを概念的に示すフローチャートであり、図 21は、第 3変形例に係る情報再生装置 lcによる第 3の動作の流れを概念的に示すフローチヤ ートである。
[0155] 光ディスク 100に記録される記録データには、通常のユーザデータに加えて、該ュ 一ザデータを再生する際の同期をとるために用いられる同期データ (例えば、光ディ スク 100が DVDであればランレングス 14Tの記録データであり、光ディスク 100が B1 u-ray Discであればランレングス 9Tの記録データ)が含まれている。第 3変形例に おいては、このような同期データが記録データに含まれていることを考慮して、同期 データに限定して波形歪みを補正するように構成されて 、る。
[0156] より具体的には、図 17に示すように、光ディスクが Blu— ray Discである場合には 、同期データは 9Tマークと 9Tスペースとにより構成されているため、まず、 9Tスぺー スを検出し、該検出された 9Tスペースの前又は後の、波形歪みを補正するように構 成してもよい。また、同期データが出現する周期性に着目して、検出された 9Tスぺー スカら、 1932T (或いは、 1932T士 α 1 : α 1は所定の定数)に相当する時間が経過 した位置 (或いは、該位置から j8 1Tだけずれた位置: β 1は所定の定数)付近の波 形歪みを補正するように構成してもよ ヽ。
[0157] また、図 18に示すように、光ディスクが DVDである場合には、同期データは 14Tマ ークまたは 14Tスペースであるため、まず、 14Tスペースを検出し、該検出された 14 Τスペースから、 1488T (或いは、 1488Τ± α 2 : α 2は定数)に相当する時間が経 過した位置 (或いは、該位置から j8 2Τだけずれた位置: β 2は所定の定数)付近の 波形歪みを補正するように構成してもよ ヽ。
[0158] 光ディスク 100が Blu— ray Discである場合の動作の流れ (第 1の動作の流れ)に ついて、図 19を参照して説明する。
[0159] 図 19に示すように、まず、光ディスク 100に記録されたデータの再生動作が行われ る(ステップ S 101)。
[0160] 再生動作の際には、 9Tスペースが検出されるか否かが判定される(ステップ S401
) o
[0161] ステップ S401〖こおける判定の結果、 9Tスペースが検出されないと判定された場合 には(ステップ S401 :No)、再度ステップ S401に戻り、 9Tスペースが検出される力 否かの判定動作が繰り返される。
[0162] 他方、ステップ S401〖こおける判定の結果、 9Tスペースが検出されたと判定された 場合には (ステップ S401 : Yes)、続いて、 9Tスペースの直前又は直後の記録デー タ(言 、換えれば、読取信号 R )が 9Tマークであるか否かが判定される (ステップ S
RF
402)。
[0163] ステップ S402〖こおける判定の結果、 9Tスペースの直前又は直後の記録データが 9Tマークであると判定された場合には (ステップ S402 : Yes)、そのまま動作を終了 する。
[0164] 他方、ステップ S402〖こおける判定の結果、 9Tスペースの直前又は直後の記録デ ータが 9Tマークでないと判定された場合には(ステップ S402 : No)、 9Tスペースの 直前若しくは直後又はその両方の位置付近の波形歪みが補正される (ステップ S40 4)。ステップ S404における波形歪みの補正については、図 7におけるステップ 103 力もステップ S106の動作又は図 15におけるステップ S201からステップ S106の動 作と同様に行われる。
[0165] 続いて、光ディスク 100が Blu— ray Discである場合の他の動作の流れ(第 2の動 作の流れ)について、図 20を参照して説明する。
[0166] 図 20に示すように、まず、光ディスク 100に記録されたデータの再生動作が行われ る(ステップ S 101)。
[0167] 再生動作の際には、 9Tスペースが検出されるか否かが判定される(ステップ S401
) o
[0168] ステップ S401〖こおける判定の結果、 9Tスペースが検出されないと判定された場合 には(ステップ S401 : No)、再度ステップ S401に戻り、 9Tスペースが検出される力 否かの判定動作が繰り返される。
[0169] 他方、ステップ S401〖こおける判定の結果、 9Tスペースが検出されたと判定された 場合には(ステップ S401 : Yes)、続いて、検出された 9Tスペースから、 1932T (或 いは、 1932T士 a 1)に相当する時間が経過した位置(或いは、該位置から j8 ITだ けずれた位置)の記録データが 9Tマークであるか否かが判定される(ステップ S 502)
[0170] ステップ S502における判定の結果、検出された 9Tスペースから、 1932T (或いは 、 1932T士 a 1)に相当する時間が経過した位置(或いは、該位置から j8 1Tだけず れた位置)の記録データが 9Tマークであると判定された場合には (ステップ S402: Y es)そのまま動作を終了する。
[0171] 他方、ステップ S502における判定の結果、検出された 9Tスペースから、 1932T ( 或いは、 1932T士 a 1)に相当する時間が経過した位置(或いは、該位置から j8 IT だけずれた位置)の記録データが 9Tマークでな ヽと判定された場合には (ステップ S 502 : No)、検出された 9Tスペースから、 1932T (或いは、 1932T士 α 1)に相当す る時間が経過した位置 (或いは、該位置から j8 1Tだけずれた位置)付近の波形歪み が補正される(ステップ S504)。ステップ S504における波形歪みの補正については 、図 7におけるステップ 103からステップ S 106の動作又は図 15におけるステップ S2 01からステップ S 106の動作と同様に行われる。
[0172] 続、て、光ディスク 100が DVDである場合の動作の流れ (第 3の動作の流れ)につ いて、図 21を参照して説明する。
[0173] 図 21に示すように、まず、光ディスク 100に記録されたデータの再生動作が行われ る(ステップ S 101)。
[0174] 再生動作の際には、 14Tスペースが検出されるか否かが判定される(ステップ S60 D o
[0175] ステップ S601における判定の結果、 14Tスペースが検出されないと判定された場 合には(ステップ S601 : No)、再度ステップ S601に戻り、 14Tスペースが検出される か否かの判定動作が繰り返される。
[0176] 他方、ステップ S601における判定の結果、 14Tスペースが検出されたと判定され た場合には(ステップ S601 : Yes)、続いて、検出された 14Tスペースから、 1488T ( 或いは、 1488T士 a 2)に相当する時間が経過した位置(或いは、該位置から j8 2T だけずれた位置)の読取信号 R が 14Tマーク又は 14Tスペースであるか否かが判
RF
定される(ステップ S602)。
[0177] ステップ S602における判定の結果、検出された 14Tスペースから、 1488T (或い は、 1488T士 a 2)に相当する時間が経過した位置(或いは、該位置から j8 2Tだけ ずれた位置)の読取信号 R 力 マーク又は 14Tスペースであると判定された場
RF
合には (ステップ S602 : Yes)、そのまま動作を終了する。
[0178] 他方、ステップ S602における判定の結果、検出された 14Tスペースから、 1488T ( 或いは、 1488T士 oc 2)に相当する時間が経過した位置(或いは、該位置から j8 2T だけずれた位置)の読取信号 R 力^ 4Tマーク又は 14Tスペースでないと判定され
RF
た場合には(ステップ S602 : No)、検出された 14Tスペースから、 1488T (或いは、 1 488T士 a 2)に相当する時間が経過した位置(或いは、該位置から j8 2Tだけずれ た位置)の波形歪みが補正される (ステップ S604)。ステップ S604における波形歪 みの補正については、図 7におけるステップ 103からステップ S 106の動作又は図 15 におけるステップ S201からステップ S 106の動作と同様に行われる。
[0179] このように、同期データが記録データに含まれていることを考慮しながら波形歪みを 補正することで、ユーザデータよりもその重要性が高い同期データの高域強調を好 適に行うことができ、その結果同期データの再生を好適に行うことができる。これによ り、再生動作の安定性をより一層高めることができる。
[0180] (5)第 4変形例:波形歪み補正値 amdの他の例
続いて、図 22及び図 23を参照して、第 4変形例に係る情報再生装置 Idについて 説明する。ここに、図 22は、第 4変形例に係る情報再生装置 Idが備える波形歪み補 正回路 18dによる波形歪みの補正動作を、サンプル値系列 RS上で概念的に示す
C
波形図であり、図 23は、第 4変形例に係る情報再生装置 Idが備える波形歪み補正 回路 18dの構成を概念的に示すブロック図である。
[0181] 尚、上述した実施例における各種構成及び動作と同一の構成及び動作に関しては 、同一の参照符号を付することで、それらの詳細な説明については省略する。
[0182] 図 22に示すように、第 4変形例においては、歪み補正値 amdとして、ランレングスが
(min+ 3) Tのマークのセンターサンプル(つまり、図 5 (a)から図 5 (c)に示す波形歪 みに対しては、(min+ 3) Tのマークの最小振幅値であり、図 6 (a)から図 6 (c)に示 す波形歪みに対しては、(min+ 3) Tのマークの最大振幅値)の平均値が用いられる
[0183] 尚、(min+k) Tは、ランレングスが k+ 1 (但し、 kは 1以上の整数)番目に短い記録 データに対応する読取信号 R (より具体的には、該読取信号 R に対応する読取サ
RF RF
ンプル値系列 RS )を示している。従って、(min+ 3) Tは、ランレングスが 4番目に短
c
い記録データに対応する読取信号 R (より具体的には、該読取信号 R に対応する 読取サンプル値系列 RS )を示している。例えば、光ディスク 100が DVDであれば、 c
(min+ 3)Tは、ランレングスが 6Tの記録データに対応する読取信号 R を示してい
RF
る。例えば、光ディスク 100が Blu— ray Discであれば、(min+ 3)Tは、ランレング スが 5Tの記録データに対応する読取信号 R を示している。
RF
[0184] この場合、波形歪み補正回路 18dは、図 23に示すように、遅延調整回路 181と、歪 み補正値検出回路 182dと、マーク Zスペース長検出回路 183と、タイミング生成回 路 184と、セレクタ 185とを備えている。
[0185] 歪み補正値検出回路 182dは、マーク Zスペース長検出回路 183より出力されるマ ーク Zスペース長をモニタリングしながら、ランレングスが(min+ 3)Tである記録デ ータが入力された場合に、そのセンターサンプル値をホールドして平均化し、歪み補 正値 amdとしてセレクタ 185へ出力する。
[0186] このように、歪み補正値 amdとして、ランレングスが(min+ 3)Tである記録データの センターサンプルの平均値を用いても、上述した各種効果を好適に享受することが できる。
[0187] 更に、場合によっては、波形歪みが補正されることで、補正後の信号レベルが、元 の信号レベル(つまり、補正前の信号レベル)よりも増加する。このため、波形歪みが 補正されることで、信号レベルを、読取信号 R の最大振幅に近づけることができる。
RF
その結果、特に PRML (Partial Response Maximum Likelihood)を採用する情報再生 装置において、記録データをより好適に再生することができる。
[0188] 尚、歪み補正値 amdとして、ランレングスが(min+ 3)Tである記録データのセンタ 一サンプルの平均値に代えて、他のランレングスを有する記録データのセンターサン プルの平均値を用いてもよい。この場合、他のランレングスを有する記録データとして 、最大振幅を実現できる記録データであることが好まし 、。
[0189] (6)第 5変形例:波形歪み補正値 amdの他の例
続いて、図 24及び図 25を参照しながら、第 5変形例に係る情報再生装置 leにつ いて説明する。ここに、図 24は、第 5変形例に係る情報再生装置 leが備える波形歪 み補正回路 18eによる波形歪みの補正動作を、サンプル値系列 RS上で概念的に
C
示す波形図であり、図 25は、第 5変形例に係る情報再生装置 leが備える波形歪み 補正回路 18eの構成を概念的に示すブロック図である。
[0190] 尚、上述した実施例における各種構成及び動作と同一の構成及び動作に関しては
、同一の参照符号を付することで、それらの詳細な説明については省略する。
[0191] 図 24に示すように、第 5変形例においては、歪み補正値 amdとして、読取サンプル 値系列 RS を示すためのデジタルコードの最大値又は最小値 (具体的には、図 5 (a)
H
力 図 5 (c)に示す波形歪みに対しては、デジタルコードの最小値であり、図 6 (a)か ら図 6 (c)に示す波形歪みに対しては、デジタルコードの最大値)が用いられる。例え ば、デジタルコードが 8ビットであれば、デジタルコードの最大値は、 2' (8— 1)—1 = 127となり、デジタノレコードの最 /J、値は、 - 2" (8— 1) = 128となる。
[0192] この場合、波形歪み補正回路 18eは、図 25に示すように、遅延調整回路 181と、歪 み補正値検出回路 182eと、マーク Zスペース長検出回路 183と、タイミング生成回 路 184と、セレクタ 185とを備えている。
[0193] 歪み補正値検出回路 182eは、デジタルコードの最大値又は最小値を、歪み補正 値 amdとしてセレクタ 185へ出力する。
[0194] このように、歪み補正値 amdとして、デジタルコードの最大値又は最小値を用いても 、上述した各種効果を好適に享受することができる。
[0195] 力!]えて、歪み補正値 amdを逐次検出する必要がなくなるため、波形歪み補正回路 18eの負荷 (つまり、情報再生装置 leの負荷)を相対的に低減させることができる。
[0196] 尚、デジタルコードの最大値又は最小値に限らず、所定の固定値を歪み補正値 a mdとして用いたとしても、波形歪み補正回路 18eの負荷 (つまり、情報再生装置 le の負荷)を相対的に低減させつつ、上述した各種効果を好適に享受することができる
[0197] (7)第 6変形例:波形歪み補正値 amdの他の例
続いて、図 26及び図 27を参照して、第 6変形例に係る情報再生装置 Ifについて 説明する。ここに、図 26は、第 6変形例に係る情報再生装置 Ifが備える波形歪み補 正回路 18fによる波形歪みの補正動作を、サンプル値系列 RS上で概念的に示す
C
波形図であり、図 27は、第 6変形例に係る情報再生装置 Ifが備える波形歪み補正 回路 18fの構成を概念的に示すブロック図である。 [0198] 尚、上述した実施例における各種構成及び動作と同一の構成及び動作に関しては 、同一の参照符号を付することで、それらの詳細な説明については省略する。
[0199] 図 26に示すように、第 6変形例においては、歪み補正値 amdとして、リミットィコライ ザ 15における振幅制限値の上限 L又は下限— L (具体的には、図 5 (a)から図 5 (c) に示す波形歪みに対しては、振幅制限値の下限 Lであり、図 6 (a)から図 6 (c)に示 す波形歪みに対しては、振幅制限値の上限 L)が用いられる。
[0200] この場合、波形歪み補正回路 18fは、図 27に示すように、遅延調整回路 181と、マ ーク Zスペース長検出回路 183と、タイミング生成回路 184と、セレクタ 185とを備え ている。
[0201] セレクタ 185は、ハイレベルのタイミング信号 SWがタイミング生成回路 184から出 力されている場合には、リミットイコライザ 15の振幅制限値の上限 L又は下限— Lを、 歪み補正サンプル値系列 RS として出力する。
CAM
[0202] このように、歪み補正値 amdとして、リミットイコライザ 15における振幅制限値の上限 L又は下限—Lを用いても、上述した各種効果を好適に享受することができる。
[0203] 力!]えて、波形歪みの信号レベルがリミットイコライザ 15の振幅制限値の上限 L又は 下限— Lに補正されるため、リミットイコライザ 15において、本来発生するべきでない 波形歪みを強調してしまう不都合を確実に防止することができる。更には、波形歪み が強調されることに起因して、例えば PRMLを採用する情報再生装置においては、 例えばランレングスが相対的に長いマークを他のマークと誤判別してしまう不都合を 好適に防止することができる。その結果、波形歪みに起因して 2値ィ匕エラーが発生す ることは殆どなくなり、好適な再生動作を行うことができる。
[0204] 尚、歪み補正値 amdとして、リミットイコライザ 15における振幅制限値の上限 L以上 の値又は下限— L以下の値を用いるように構成してもよい。このように構成しても、上 述した各種効果を好適に享受することができる。
[0205] (8)第 7変形例:波形歪み補正値 amdの他の例
続いて、図 28及び図 29を参照して、第 7変形例に係る情報再生装置 lgについて 説明する。ここに、図 28は、第 7変形例に係る情報再生装置 lgが備える波形歪み補 正回路 18gによる波形歪みの補正動作を、サンプル値系列 RS上で概念的に示す 波形図であり、図 29は、第 7変形例に係る情報再生装置 lgが備える波形歪み補正 回路 18gの構成を概念的に示すブロック図である。
[0206] 尚、上述した実施例における各種構成及び動作と同一の構成及び動作に関しては
、同一の参照符号を付することで、それらの詳細な説明については省略する。
[0207] 図 28に示すように、第 7変形例においては、歪み補正値 amdとして、リミットィコライ ザ 15における振幅制限値の上限 L又は下限— L (具体的には、図 5 (a)から図 5 (c) に示す波形歪みに対しては、振幅制限値の下限 Lであり、図 6 (a)から図 6 (c)に示 す波形歪みに対しては、振幅制限値の上限 L)の 2倍の値 (つまり、 2L又は 2L)が 用いられる。
[0208] この場合、波形歪み補正回路 18gは、図 21に示すように、遅延調整回路 181と、増 幅器 182gと、マーク Zスペース長検出回路 183と、タイミング生成回路 184と、セレ クタ 185とを備えている。
[0209] 増幅器 182gは、リミットイコライザ 15の振幅制限値の上限 L又は下限— Lを 2倍に 増幅した後に、歪み補正値 amdとしてセレクタ 185へ出力する。
[0210] このように、歪み補正値 amdとして、リミットイコライザ 15における振幅制限値の上限
L又は下限 Lの 2倍の値を用いても、上述した各種効果を好適に享受することがで きる。
[0211] 力!]えて、波形歪みの信号レベルがリミットイコライザ 15の振幅制限値の上限 L又は 下限— Lに補正されるため、リミットイコライザ 15において、本来発生するべきでない 波形歪みを強調してしまう不都合を確実に防止することができる。更には、波形歪み が強調されることに起因して、例えば PRMLを採用する情報再生装置においては、 例えばランレングスが相対的に長いマークを他のマークと誤判別してしまう不都合を 好適に防止することができる。その結果、波形歪みに起因して 2値ィ匕エラーが発生す ることは殆どなくなり、好適な再生動作を行うことができる。
[0212] 更には、読取信号 R にノイズ成分が重畳してしまった場合であっても、波形歪み
RF
の信号レベルを振幅制限値の上限 L又は下限 Lの 2倍以下の信号レベルに補正 するため、波形歪みが振幅制限値の上限 L以下又は下限 L以上の値となる不都合 を確実に防止することができる。この結果、例えば、長マークを他のマークと誤判別し てしまう不都合を好適に防止することができる。その結果、波形歪みに起因して 2値 化工ラーが発生することは殆どなくなり、好適な再生動作を行うことができる。
[0213] (9)第 8変形例:プリイコライザにおける増幅率の増加
続いて、図 30から図 33を参照して、第 8変形例に係る情報再生装置 lhについて 説明する。ここに、図 30は、第 8変形例に係る情報再生装置 lhが備えるプリィコライ ザ 14hの増幅率を増加させた場合と、該増幅率を増カロさせない場合との夫々におけ る、ァシンメトリに対するシンボルエラーレートの変化を示すグラフであり、図 31は、波 形歪みを補正した場合と波形歪みを補正しない場合との夫々における、プリィコライ ザ 14hの増幅率に対するシンボルエラーレートの変化を示すグラフであり、図 32は、 ァシンメトリの変化に応じた minTに対応する読取信号 R の波形を概念的に示す波
RF
形図であり、図 33は、波形歪みの補正前後における読取信号 R の他の波形等を概
RF
念的に示す波形図である。
[0214] 第 8変形例においては、プリイコライザ 14hは、プリイコライザ 14hに予め設定されて いる基準増幅率と比較して、プリイコライザ 14hの増幅率を任意に増加させる(或い は、更には減少させる)ことができる。つまり、第 8変形例においては、プリイコライザ 1 4hに予め設定されて 、る基準増幅率と比較して、プリイコライザ 14hの増幅率を増加 させた後に、波形歪みを補正し、その後に、リミットイコライザ 15において、振幅制限 及び高域強調が行われる。
[0215] 具体的には、プリイコライザ 14hの増幅率は、 minTスペースの信号レベル(より具 体的には、 minTスペースの頂点の信号レベルであって、つまりは、 minTスペースの 最大信号レベル)力 ゼロレベル以下である場合に、プリイコライザ 14hに予め設定さ れて 、る基準増幅率と比較して、プリイコライザ 14hの増幅率を増加させる。
[0216] 但し、ここでは、リファレンスレベルとしてゼロレベルを用いている場合の動作例を説 明しているため、リファレンスレベルがゼロレベルでない場合においては、 minTスぺ ースの信号レベル力 リファレンスレベル以下である場合に、プリイコライザ 14hに予 め設定されて 、る基準増幅率と比較して、プリイコライザ 14hの増幅率を増加させる ことが好ましい。
[0217] また、ここでは、マークを形成することによって、レーザ光 LBの反射率が減少する光 ディスク 100を対象としている場合の動作例を説明している。従って、マークを形成す ること〖こよって、レーザ光 LBの反射率が増加する光ディスク 100を対象として ヽる場 合には、 minTスペースの信号レベル(より具体的には、 minTスペースの頂点の信 号レベルであって、つまりは、 minTスペースの最小信号レベル) 1S ゼロレベル(或 いは、リファレンスレベル)以上である場合に、プリイコライザ 14hに予め設定されてい る基準増幅率と比較して、プリイコライザ 14hの増幅率を増加させる。
[0218] ここで、プリイコライザ 14hは、プリイコライザ 14hに予め設定されている基準増幅率 を、概ね ldBから 3dB程度増加させることが好ましい。具体的には、例えば、プリィコ ライザ 14hに予め設定されて!、る基準増幅率が 5dBである場合には、概ね 6dBから 8 dB程度の増幅率で、読取サンプル値系列 RSに対して符号間干渉を除去 (言 、換え れば、波形整形)することが好ましい。
[0219] また、プリイコライザ 14hは、ランレングスが最も短い記録データに対応する読取信 号 R
RFの周波数及び該周波数の近傍付近の信号成分に対する波形整形を行う際に
、上述した増幅率を増カロさせることが好ましい。他方、ランレングスが最も短い記録デ ータに対応する読取信号 R
RFの周波数及び該周波数の近傍付近以外の信号成分に 対する波形整形を行う際には、上述した基準増幅率を用いる(つまり、増幅率を増加 させない)ことが好ましい。
[0220] このように、第 8変形例に係る情報再生装置 lhによれば、波形歪みを補正する前に
、プリイコライザ 14hにおいて増幅率を増加させているため、以下の図 30から図 33を 用いた説明に示す効果を享受することができる。
[0221] 尚、図 30及び図 31に示すグラフにおいては、プリイコライザ 14hの基準増幅率(つ まり、増幅率を増加させない場合の増幅率)は、 5dBであるものとする。
[0222] 図 30 (a)に示すように、増幅率を増加させない場合(つまり、増幅率が 5. OdBであ る場合)におけるシンボルエラーレートと比較して、増幅率を 7. 4dBに増加させた場 合におけるシンボルエラーレートは改善している。
[0223] 尚、図 30 (b)に示すように、波形歪みを補正しない場合においては、増幅率を増加 させない場合(つまり、増幅率が 5. OdBである場合)におけるシンボルエラーレートと 比較して、増幅率を 7. 4dBに増加させた場合におけるシンボルエラーレートは悪ィ匕 している。これは、増幅率の増加によって波形歪みが増幅されたことに起因している 。従って、増幅率を増カロさせた場合には、波形歪み補正を行うことが極めて好ましい 。これにより、図 30 (a)に示すように、シンボルエラーレートを改善することができる。
[0224] まとめると、図 30 (a)に示すグラフから分力るように、プリイコライザ 14hの増幅率を 所定の場合に増加させることで、シンボルエラーレートの改善を図ることができる。つ まり、再生特性の改善を図ることができる。特に、ァシンメトリが相対的に大きくなつた 場合においても、増幅率を増力!]させる場合におけるシンボルエラーレートは増加して いるものの、増幅率を増カロさせない場合におけるシンボルエラーレートと比較すると、 依然その値は改善されて!、る。
[0225] また、図 31に示すように、ァシンメトリを 8%に固定して波形歪みを補正する場合に おいては、プリイコライザ 14hの増幅率を、概ね IdBから 3dB程度増加させれば、プリ イコライザ 14hの増幅率を増加させない場合(つまり、増幅率が 5. OdBである場合) におけるシンボルエラーレートと比較して、シンボルエラーレートが改善して!/、る。
[0226] 尚、図 31に示すように、プリイコライザ 14hの増幅率を、概ね 3dB以上増加させた 場合には、プリイコライザ 14hの増幅率を増加させない場合におけるシンボルエラー レートと比較して、シンボルエラーレートが悪化している。このシンボルエラーレートの 悪ィ匕は、増幅率を過度に増加させてしまったことによって波形歪みが過度に強調さ れてしまい、その結果、例えば波形歪みが生じているランレングスが相対的に長いマ ークを他のマークと誤判別してしまったことによる。
[0227] このように、プリイコライザ 14hの増幅率を増加させることで、再生特性 (例えば、シ ンボルエラーレート)が改善することは、以下のような理由力 説明できる。
[0228] 図 32の上側に示すように、マークを形成することによって、レーザ光 LBの反射率が 減少する光ディスク 100を対象として!/、る場合には、 minTスペースの信号レベルが 、 minTマークの信号レベルよりも大きくなる。この場合、ァシンメトリが大きくなるにつ れて、 minTの信号波形が、全ての Tのセンターレベル(つまり、リファレンスレベルな いしはゼロレベル)に対して、徐々に下側(つまり、負の側)へシフトする。ァシンメトリ がある程度大きくなると、 minTスペースの頂点の信号レベル力 全ての Tのセンター レベルを下回ってしまいかねない。この場合、 minTを波形歪みと誤認識してしまい かねない。その結果、図 33に示すように、 minTが波形歪みとして補正されることで、 minTに相当する信号が 2値化信号中に現れず、シンボルエラーレートの悪化につ ながってしまう。
[0229] 同様に、図 32の下側に示すように、マークを形成することによって、レーザ光 LBの 反射率が増加する光ディスク 100を対象としている場合には、 minTスペースの信号 レベル力 minTマークの信号レベルよりも小さくなる。この場合、ァシンメトリが大きく なるにつれて、 minTの信号波形が、全ての Tのセンターレベル(つまり、リファレンス レベルないしはゼロレベル)に対して、徐々に上側(つまり、正の側)へシフトする。ァ シンメトリがある程度大きくなると、 minTスペースの頂点の信号レベル力 全ての丁の センターレベルを上回ってしまいかねない。この場合、 minTを波形歪みと誤認識し てしまいかねない。その結果、 minTが波形歪みとして補正されることで、 minTに相 当する信号が 2値ィ匕信号中に現れず、シンボルエラーレートの悪ィ匕につながってしま
[0230] しかるに、第 8変形例によれば、プリイコライザ 14hの増幅率を増力!]させる(特に、ラ ンレングスが最も短 ヽ記録データに対応する読取信号 R の周波数及び該周波数の
RF
近傍付近の信号成分に対する増幅率を増加させる)ことで、 minTの信号波形をシフ トさせることができる。その結果、上述した minTスペースの頂点の信号レベル力 全 ての Tのセンターレベルを下回る又は上回る不都合を好適に防止することができる。 その結果、シンボルエラーレートの悪ィ匕を好適に防止することができる。
[0231] また、図 1に示す構成では、プリイコライザ 14は、 AZD変換器 13の後段に配置さ れている。つまり、プリイコライザ 14がデジタル信号処理を行う構成が開示されている 。し力しながら、プリイコライザ 14を AZD変 の前段に配置するように構成して もよいことは言うまでもない。つまり、プリイコライザ 14がアナログ信号処理を行うように 構成してもよぐこのように構成する場合であっても、プリイコライザ 14がデジタル信号 処理を行う構成と同様に、増幅率を増カロさせてもよいは言うまでもない。
[0232] (10)第 9変形例:オフセットの付カロ
続いて、図 34を参照して、第 9変形例に係る情報再生装置 liについて説明する。こ こに、図 34は、第 9変形例に係る情報再生装置 liの基本構成を概念的に示すブロッ ク図である。
[0233] 図 34に示すように、第 9変形例に係る情報再生装置 liは、スピンドルモータ 10と、 ピックアップ 11と、 HPF12と、 AZD変翻 13と、プリイコライザ 14と、リミットィコライ ザ 15と、 2値化回路 16と、復号回路 17と、波形歪み補正回路 18と、加算器 19 liと 、オフセット生成回路 19— 2iと、再生特性判定回路 20とを備えている。
[0234] 尚、図 34に示す構成においても、図 1に示す構成と同様に、読取信号 R の再生
RF
特性として SERを用いる場合には、上述の復号回路 17は、復号処理に加えてエラ 一訂正処理を行うことが好ましい。つまり、読取信号 R の再生特性として SERを用
RF
いる場合には、上述の復号回路 17は、復号 Z訂正回路 17となることが好ましい。
[0235] 加算器 19— liは、プリイコライザ 14より出力される読取サンプル値系列 RS に対し
C
て、オフセット生成回路において生成されたオフセット値 OFSを加算する。オフセット 値 OFSが付加された読取サンプル値系列 RSは、波形歪み補正回路 18へ出力さ c
れる。
[0236] オフセット生成回路 19— 2iは、オフセット値 OFSを生成する。尚、オフセット値 OFS については、後に詳述する(図 35以降参照)。
[0237] より具体的には、再生動作の際には、オフセット生成回路 19 2iの動作により、読 取信号 R (より具体的には、読取サンプル値系列 RS )に対してオフセット値 OFS
RF C
が付加される。この場合、例えば、後述の α値が概ね 0でない場合に、オフセット値 Ο FSを付カ卩し、 α値が概ね 0であれば、オフセット値 OFSを付カ卩しないように構成して もよい。或いは、例えばシンボルエラーレートが所定閾値以上である、エラー訂正が 不可能である、又は同期データが読取不可能である場合には、オフセット値 OFSを 付加し、例えば、シンボルエラーレートが所定閾値以上でない、且つエラー訂正が不 可能でない、且つ同期データが読取不可能でない場合には、オフセット値 OFSを付 カロしな 、ように構成してもよ!/、。
[0238] このように、第 9変形例においては、波形歪みを補正する前に、読取信号 R (より
RF
具体的には、読取サンプル値系列 RS )に対してオフセット値 OFSが付加されるため
C
、以下に示す効果を更に享受することができる。以下、図 35から図 43を参照して、ォ フセット値 OFSを付加することによって得られる効果について、オフセット値 OFSの 生成動作と共に説明する。
[0239] (10— 1)ァシンメトリ値に基づくオフセット値 OFSの付カロ
まず、図 35から図 38を参照して、ァシンメトリ値に基づくオフセット値 OFSの付カロに ついて説明する。ここに、図 35は、ァシンメトリ値を概念的に示す波形図であり、図 3 6は、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSに対するシンボルエラー
RF
レートの変化を示すグラフであり、図 37は、ァシンメトリ値に対する読取信号 R の振
RF
幅で正規ィ匕されたオフセット値の変化を示すグラフであり、図 38は、各ランレングスの 記録データの出現確率を示す表である。
[0240] 図 35に示すように、ァシンメトリ値は、ランレングスが最も長い記録データに対応す る読取信号 R の振幅中心に対する、ランレングスが最も短い記録データに対応する
RF
読取信号の振幅中心のずれを示す。具体的には、ランレングスが最も長い記録デー タに対応する読取信号 R の振幅中心を ImaxCntとし、 ImaxCntを基準とするラン
RF
レングスが最も長 ヽ記録データに対応する読取信号 R のトップ振幅の大きさを Ima
RF
xHとし、 ImaxCntを基準とするランレングスが最も長 、記録データに対応する読取 信号 R のボトム振幅の大きさを ImaxLとし、 ImaxCntを基準とするランレングスが最
RF
も短い記録データに対応する読取信号 R のトップ振幅の大きさを IminHとし、 Imax
RF
Cntを基準とするランレングスが最も短 、記録データに対応する読取信号 R のボト
RF
ム振幅の大きさを IminLとすると、ァシンメトリ値 Asy= ( (ImaxH+ImaxL)— (Imin H+IminL) ) / (2 X (ImaxH— ImaxL) )にて示される。尚、 ImaxCntは、ランレン ダスが最も長 、記録データに対応する読取信号 R のトップ振幅値とボトム振幅値と
RF
の平均値である。
[0241] 図 36 (a)に示すように、光ディスク 100の一具体例である Blu— ray Discにおいて ァシンメトリ値が 6%の場合には、オフセット値 OFSを付カ卩しな!/、場合のシンボルエラ 一レートと比較して、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSが、 0%
RF
力 5%程度であれば、オフセット値 OFSを付カ卩した場合のシンボルエラーレートは 改善している。特に、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSが概ね 2
RF
%程度であるときに、シンボルエラーレートが最も小さくなる。
[0242] 尚、シンボルエラーレートが最も小さくなるとき、後述する全体 β値は 9. 3%であり、 部分 j8値は 10. 0%であり、 α値は 3. 0%であることを付記しておく。
[0243] 図 36 (b)に示すように、光ディスク 100の一具体例である Blu— ray Discにおいて ァシンメトリ値が 8%の場合には、オフセット値 OFSを付カ卩しな!/、場合のシンボルエラ 一レートと比較して、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSが、 0%
RF
力 7%程度であれば、オフセット値 OFSを付カ卩した場合のシンボルエラーレートは 改善している。特に、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSが概ね 3
RF
%程度であるときに、シンボルエラーレートが最も小さくなる。
[0244] 尚、シンボルエラーレートが最も小さくなるとき、後述する全体 β値は 12. 3%であり
、部分 j8値は 14. 0%であり、 α値は 4. 4%であることを付記しておく。
[0245] 図 36 (c)に示すように、光ディスク 100の一具体例である Blu— ray Discにおいて ァシンメトリ値が 11%の場合には、オフセット値 OFSを付カ卩しな!/、場合のシンボルェ ラーレートと比較して、読取信号 R の振幅で正規ィ匕されたオフセット値 OFS力 0%
RF
力 9%程度であれば、オフセット値 OFSを付カ卩した場合のシンボルエラーレートは 改善している。特に、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSが概ね 4
RF
%程度であるときに、シンボルエラーレートが最も小さくなる。
[0246] 尚、シンボルエラーレートが最も小さくなるとき、後述する全体 β値は 15. 0%であり
、部分 j8値は 19. 0%であり、 α値は 5. 4%であることを付記しておく。
[0247] このように、オフセット値 OFSを付カ卩しない場合のシンボルエラーレートと比較して、 オフセット値 OFSを付カ卩した場合のシンボルエラーレートは改善していることが分か る。特に、ァシンメトリと同一極性のオフセット値 OFSを付加することで、シンボルエラ 一レートが改善して 、ることが分かる。
[0248] 図 36 (a)力も図 36 (c)において示したシンボルエラーレートが最も小さくなるときの
、ァシンメトリ値とオフセット値 OFSとをプロットしたグラフが、図 37に示される。図 15 に示すように、読取信号 R の振幅で正規化されたオフセット値 OFSは、 OFS = 0.
RF
3947 Xアシンメトリー 0. 2895にて示される。
[0249] ここで、図 38 (a)及び図 38 (b)に示される、各ランレングスの記録データの、ランレ ングスを考慮しない出現確率に着目してみる。
[0250] 図 38 (a)には、光ディスク 100の一具体例である Blu— ray Discにランダムデータ を記録した場合の、 1ECCブロック中の各ランレングスの記録データの、ランレングス を考慮した出現確率を示している。図 38 (a)に示すように、 1ECCブロック中におい ては、ランレングスが 2Tの記録データの出現確率は約 38%であり、ランレングスが 3 Tの記録データの出現確率は約 25%であり、ランレングスが 4Tの記録データの出現 確率は約 16%であり、ランレングスが 5Tの記録データの出現確率は約 10%であり、 ランレングスが 6Tの記録データの出現確率は約 6%であり、ランレングスが 7Tの記 録データの出現確率は約 3%であり、ランレングスが 8Tの記録データの出現確率は 約 1. 6%であり、ランレングスが 9Tの記録データの出現確率は約 0. 35%である。
[0251] 尚、ここで示す出現確率(図中の T出現確率)は、ランレングスを考慮しない出現確 率である。つまり、ランレングスが 2Tの記録データと、ランレングスが 3Tの記録データ と、ランレングス力 S4Tの記録データと、ランレングスが 5Tの記録データと、ランレング スが 6Tの記録データと、ランレングスが 7Tの記録データと、ランレングスが 8Tの記録 データと、ランレングスが 9Tの記録データとの夫々の、出現確率を算出する際の重 み付けは同一である。つまり、あるランレングスの記録データが 1つ出現すれば、その 出現回数が 1回とカウントされる場合の出現確率を示して ヽる。
[0252] 係る出現確率と図 37に示すグラフ(或いは、数式)を考慮するに、図 37に示すオフ セット値を求めるための数式におけるァシンメトリに掛け合わせる係数 0. 3947と、ラ ンレングスが 2Tの記録データの出現確率 38% (0. 3809)とは、概ね同一の値であ るとみなすことができる。このため、読取信号 R の振幅で正規ィ匕されたオフセット値
RF
OFSは、ランレングスが最も短い記録データの、ランレングスを考慮しない出現確率 に、ァシンメトリ値を乗じた値で近似することができる。つまり、光ディスク 100の一具 体例である Blu— ray Discにおいては、読取信号 R の振幅で正規化されたオフセ
RF
ット値 OFSは、 0. 3809 Xァシンメトリ値で近似することができる。
[0253] また、図 38 (b)には、光ディスク 100の一具体例である DVDにランダムデータを記 録した場合の、 1ECCブロック中の各ランレングスの記録データの、ランレングスを考 慮しない出現確率を示している。図 38 (b)に示すように、 1ECCブロック中には、ラン レングスが 3Tの記録データの出現確率は約 32%であり、ランレングスが 4Tの記録 データの出現確率は約 24%であり、ランレングスが 5Tの記録データの出現確率は 約 17%であり、ランレングスが 6Tの記録データの出現確率は約 11. 5%であり、ラン レングスが 7Τの記録データの出現確率は約 7%であり、ランレングスが 8Τの記録デ ータの出現確率は約 4%であり、ランレングスが 9Τの記録データの出現確率は約 2 %であり、ランレングスが 10Tの記録データの出現確率は約 1. 3%であり、ランレング スが 11Tの記録データの出現確率は約 0. 24%であり、ランレングスが 14Tの記録デ ータの出現確率は約 0. 3%である。この場合も、読取信号 R の振幅で正規化され
RF
たオフセット値 OFSは、ランレングスが最も短い記録データの、ランレングスを考慮し ない出現確率に、ァシンメトリ値を乗じた値で近似することができる。つまり、つまり、 光ディスク 100の一具体例である DVDにおいては、読取信号 R の振幅で正規化さ
RF
れたオフセット値 OFSは、 0. 3184 Xァシンメトリ値で近似することができる。
[0254] もちろん、 Blu— ray Discや DVD以外の光ディスクにおいても同様に、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSは、ランレングスが最も短い記録データ
RF
の、ランレングスを考慮しない出現確率 Xァシンメトリ値で近似することができる。
[0255] 以上説明したように、オフセット生成回路 19— 2iは、ァシンメトリ値に基づいてオフ セット値 OFSを生成する。このように、オフセット値 OFSを付加することで、再生特性( 例えば、シンボルエラーレート)が改善することは、図 32及び図 33を用いて既に述べ た理由と同様の理由力 説明できる。具体的には、第 9変形例によれば、オフセット 値 OFSを付加することで、 minTの信号波形をシフトさせることができる。その結果、 上述した minTスペースの頂点の信号レベルが、全ての Tのセンターレベルを下回る 又は上回る不都合を好適に防止することができる。その結果、シンボルエラーレート の悪ィ匕を好適に防止することができる。
[0256] (10— 2)全体 j8値に基づくオフセット値 OFSの付カロ
続いて、図 39及び図 40を参照して、全体 |8値に基づくオフセット値 OFSの付加に ついて説明する。ここに、図 39は、全体 j8値を概念的に示す波形図であり、図 40は 、読取信号 R の振幅で正規化された全体 )8値に対する読取信号 R の振幅で正規
RF RF
化されたオフセット値の変化を示すグラフである。
[0257] 図 39に示すように、全体 β値は、全ての種類のランレングスの記録データ(例えば 、光ディスク 100が DVDであればランレングス 3Τから 11T及び 14Tの夫々の記録デ ータであり、光ディスク 100が Blu— ray Discであればランレングス 2Tから 9Tの記 録データ)に対応する夫々の読取信号 R の振幅中心の平均位置を示す。具体的に
RF
は、全ての種類のランレングスの記録データに対応する読取信号 R の振幅中心(つ
RF
まり、全 Τセンターレベル)を基準とする(つまり、原点又は基点とする)上側(正側)の 最大振幅(トップ振幅)の大きさを A1とし、全ての種類のランレングスの記録データに 対応する読取信号 R の
RF 振幅中心を基準とする下側 (負側)の最大振幅 (ボトム振幅
)の大きさを Α2とすると、全体 β値 = (Al +Α2) / (A1— Α2)にて示される。
[0258] 図 36 (a)から図 36 (c)において示したシンボルエラーレートが最も小さくなるときの 、全体 j8値とオフセット値 OFSとをプロットしたグラフ力 図 40に示される。図 40に示 すように、読取信号 R の振幅で正規化されたオフセット値 OFSは、 OFS = 0. 3506
RF
X全体 j8値一 1. 2768にて示される。
[0259] ここで、図 38に示す出現確率と図 40に示すグラフ(或いは、数式)を考慮するに、 図 40に示すオフセット値を求めるための数式における全体 β値に掛け合わせる係数 0. 3506と、ランレングスが 2Τの記録データの出現確率 38% (0. 3809)とは、概ね 同一の値であるとみなすことができる。このため、読取信号 R の振幅で正規化され
RF
たオフセット値 OFSは、ランレングスが最も短い記録データの出現確率に全体 β値 を乗じた値で近似することができる。つまり、光ディスク 100の一具体例である Blu— r av Discにおいては、読取信号 R の振幅で正規化されたオフセット値 OFSは、 0.
RF
3809 X全体 β値で近似することができる。
[0260] 同様に、光ディスク 100の一具体例である DVDにおいては、読取信号 R の振幅
RF
で正規化されたオフセット値 OFSは、 0. 3184 X全体 j8値で近似することができる。
[0261] もちろん、 Blu— ray Discや DVD以外の光ディスクにおいても同様に、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSは、ランレングスが最も短い記録データ
RF
の、ランレングスを考慮しない出現確率 X全体 β値で近似することができる。
[0262] 以上説明したように、オフセット生成回路 19— 2iは、全体 |8値に基づいてオフセッ ト値 OFSを生成する。このように全体 13値に基づ!/、てオフセット値 OFSを生成しても 、ァシンメトリ値に基づいてオフセット値 OFSを生成した場合と同様の効果を好適に 享受することができる。 [0263] (10— 3)部分 |8値に基づくオフセット値 OFSの付カロ
続いて、図 41及び図 42を参照して、部分 j8値に基づくオフセット値 OFSの付加に ついて説明する。ここに、図 41は、部分 j8値を概念的に示す波形図であり、図 42は 、読取信号 R の振幅で正規化された部分 )8値に対する読取信号 R の振幅で正規
RF RF
化されたオフセット値の変化を示すグラフである。
[0264] 図 41に示すように、部分 /3値は、ランレングスが最も短い記録データに対応する読 取信号 の振幅中心と、ランレングスが 2番目に短い記録データに対応する読取信
RF
号 の振幅中心とのずれを示す。具体的には、ランレングスが最も短い記録データに
RF
対応する読取信号の振幅中心を IminCntとし、 IminCntを基準とするランレングスが 2番目に短い記録データに対応する読取信号 R のトップ振幅の大きさを Imin+ 1H
RF
とし、 IminCntを基準とするランレングスが 2番目に短い記録データに対応する読取 信号 R のボトム振幅の大きさを Imin+ 1Lとすると、部分 β値 = (lmin+ 1H+Imin
RF
+ lL)Z(Imin+ lH— Imin+ 1L)にて示される。尚、 IminCntは、ランレングスが 最も短 ヽ記録データに対応する読取信号 R のトップ振幅値 IminHとボトム振幅値 I
RF
minLとの平均値である。
[0265] 図 36 (a)から図 36 (c)において示したシンボルエラーレートが最も小さくなるときの 、部分 j8値とオフセット値 OFSとをプロットしたグラフ力 図 42に示される。図 42に示 すように、読取信号 R の振幅で正規化されたオフセット値 OFSは、 OFS = 0. 2213
RF
X部分 j8値一 0. 1721にて示される。
[0266] ここで、図 38 (a)及び図 38 (b)に示される、各ランレングスの記録データの、ランレ ングスを考慮した出現確率に着目してみる。
[0267] 図 38 (a)には、光ディスク 100の一具体例である Blu— ray Discにランダムデータ を記録した場合の、 1ECCブロック中の各ランレングスの記録データの、ランレングス を考慮した出現確率を示している。図 38 (a)に示すように、 1ECCブロック中におい ては、ランレングスが 2Tの記録データの出現確率は約 22%であり、ランレングスが 3 Tの記録データの出現確率は約 22%であり、ランレングスが 4Tの記録データの出現 確率は約 19%であり、ランレングスが 5Tの記録データの出現確率は約 14%であり、 ランレングスが 6Tの記録データの出現確率は約 10%であり、ランレングスが 7Tの記 録データの出現確率は約 6%であり、ランレングスが 8Tの記録データの出現確率は 約 4%であり、ランレングスが 9Τの記録データの出現確率は約 0. 9%である。
[0268] 尚、ここで示す出現確率(図中のサンプル出現確率)は、ランレングスを考慮した出 現確率である。つまり、ランレングスが 2Τの記録データと、ランレングスが 3Τの記録 データと、ランレングスが 4Τの記録データと、ランレングスが 5Τの記録データと、ラン レングスが 6Τの記録データと、ランレングスが 7Τの記録データと、ランレングスが 8Τ の記録データと、ランレングスが 9Τの記録データとの夫々の、出現確率を算出する 際の重み付けは、ランレングスに比例する。つまり、ランレングスが ηΤの記録データ 力 つ出現すれば(つまり、サンプリングすることで η個のサンプル値を含む記録デー タが 1つ出現すれば)、その出現回数が η回とカウントされる場合の出現確率を示して いる。
[0269] 係る出現確率と図 42に示すグラフ(或いは、数式)を考慮するに、図 42に示すオフ セット値を求めるための数式における部分 j8値に掛け合わせる係数 0. 2213と、ラン レングスが 2Tの記録データの出現確率 22% (0. 2255)とは、概ね同一の値である とみなすことができる。このため、読取信号 R の振幅で正規ィ匕されたオフセット値 O
RF
FSは、ランレングスが最も短い記録データの、ランレングスを考慮した出現確率に、 部分 j8値を乗じた値で近似することができる。つまり、光ディスク 100の一具体例であ る Blu— ray Discにおいては、読取信号 R の振幅で正規化されたオフセット値 OF
RF
Sは、 0. 2255 X部分 |8値で近似することができる。
[0270] また、図 38 (b)には、光ディスク 100の一具体例である DVDにランダムデータを記 録した場合の、 1ECCブロック中の各ランレングスの記録データの、ランレングスを考 慮した出現確率を示している。図 38 (b)に示すように、 1ECCブロック中には、ランレ ンダスが 3Tの記録データの出現確率は約 20%であり、ランレングスが 4Tの記録デ ータの出現確率は約 20%であり、ランレングスが 5Tの記録データの出現確率は約 1 8%であり、ランレングスが 6Tの記録データの出現確率は約 14%であり、ランレング スが 7Tの記録データの出現確率は約 10%であり、ランレングスが 8Tの記録データ の出現確率は約 7%であり、ランレングスが 9Tの記録データの出現確率は約 4. 5% であり、ランレングスが 10Tの記録データの出現確率は約 3%であり、ランレングスが 1 ITの記録データの出現確率は約 0. 5%であり、ランレングスが 14Tの記録データ の出現確率は約 0. 9%である。この場合も、読取信号 R の振幅で正規ィ匕されたォ
RF
フセット値 OFSは、ランレングスが最も短い記録データの、ランレングスを考慮した出 現確率に、部分 j8値を乗じた値で近似することができる。つまり、つまり、光ディスク 1 00の一具体例である DVDにおいては、読取信号 R の振幅で正規ィ匕されたオフセ
RF
ット値 OFSは、 0. 2026 X部分 |8値で近似することができる。
[0271] もちろん、 Blu— ray Discや DVD以外の光ディスクにおいても同様に、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSは、ランレングスが最も短い記録データ
RF
の、ランレングスを考慮した出現確率 X部分 β値で近似することができる。
[0272] 以上説明したように、オフセット生成回路 19— 2iは、部分 j8値に基づいてオフセッ ト値 OFSを生成する。このように部分 β値に基づ 、てオフセット値 OFSを生成しても 、ァシンメトリ値に基づいてオフセット値 OFSを生成した場合と同様の効果を好適に 享受することができる。
[0273] (10-4) α値に基づくオフセット値 OFSの付カロ
続いて、図 43を参照して、 α値に基づくオフセット値 OFSの付カ卩について説明す る。ここに、図 43は、 α値を概念的に示す波形図である。
[0274] 図 43に示すように、 α値は、全ての種類のランレングスの記録データ(例えば、光 ディスク 100が DVDであればランレングス 3Τから 11T及び 14Tの夫々の記録データ であり、光ディスク 100が Blu— ray Discであればランレングス 2Tから 9Tの記録デ ータ)に対応する夫々の読取信号 R の振幅中心(つまり、リファレンスレベルであり、
RF
本実施例においてはゼロレベル)に対する、ランレングスが最も短い記録データに対 応する読取信号 R の振幅中心の乖離率を示す。具体的には、全ての種類のランレ
RF
ンダスの記録データに対応する読取信号 R の振幅中心(つまり、全 Τセンターレべ
RF
ル)を基準とするランレングスが最も長 、記録データに対応する読取信号 R のトップ
RF
振幅の大きさを ImaxHとし、全ての種類のランレングスの記録データに対応する読 取信号 R の振幅中心(つまり、全 Tセンターレベル)を基準とするランレングスが最も
RF
長い記録データに対応する読取信号 R のボトム振幅の大きさを IminLとし、全ての
RF
種類のランレングスの記録データに対応する夫々の読取信号 R の振幅中心に対す る、ランレングスが最も短い記録データに対応する読取信号 R の振幅中心のずれ
RF
量を ARefとすると、 α値 = Δ Ref / (imaxH - ImaxL)にて示される。
[0275] この場合、オフセット生成回路 19— 2iは、 α値をオフセット値 OFSとして加算器 19 — liへ出力する。つまり、オフセット生成回路 19— 2iは、 α値そのものを生成する。こ のように、このように α値に基づいてオフセット値 OFSを生成しても、ァシンメトリ値に 基づいてオフセット値 OFSを生成した場合と同様の効果を好適に享受することがで きる。
[0276] (11)第 10変形例:オフセットの付加及び減算
続いて、図 44及び図 45を参照して、第 10変形例に係る情報再生装置 ljについて 説明する。ここに、図 44は、第 10変形例に係る情報再生装置の基本構成を概念的 に示すブロック図であり、図 45は、オフセット値 OFSを加算するのみの場合(つまり、 オフセット値 OFSを減算しない場合)と、オフセット値 OFSを加算及び減算する場合 の夫々における、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSに対するシ
RF
ンボルエラーレートの変化を示すグラフである。
[0277] 図 44に示すように、第 10変形例に係る情報再生装置 ljは、スピンドルモータ 10と、 ピックアップ 11と、 HPF12と、 AZD変翻 13と、プリイコライザ 14と、リミットィコライ ザ 15と、 2値ィ匕回路 16と、復号回路 17と、波形歪み補正回路 18と、加算器 19 ljと 、オフセット生成回路 19 ¾と、減算器 19 ¾と、再生特性回路 20とを備えている。
[0278] 尚、図 44に示す構成においても、図 1や図 34に示す構成と同様に、読取信号 R
RF
の再生特性として SERを用いる場合には、上述の復号回路 17は、復号処理に加え てエラー訂正処理を行うことが好ましい。つまり、読取信号 R の再生特性として SER
RF
を用いる場合には、上述の復号回路 17は、復号 Z訂正回路 17となることが好ましい [0279] 加算器 19— ljは、プリイコライザ 14より出力される読取サンプル値系列 RS に対し
C
て、オフセット生成回路において生成されたオフセット値 OFSを加算する。オフセット 値 OFSが付加された読取サンプル値系列 RSは、波形歪み補正回路 18へ出力さ c
れる。
[0280] オフセット生成回路 19 2jは、オフセット値 OFSを生成する。 [0281] 減算器 19 ¾は、歪み補正読取サンプル値系列 RS から、オフセット生成回路
CAM
19 ¾にお 、て生成されたオフセット値 OFSを減算する。オフセット値 OFSが減算 された歪み補正読取サンプル値系列 RS は、リミットイコライザ 15へ出力される。
CAM
[0282] より具体的には、再生動作の際には、オフセット生成回路 19 ¾の動作により、読 取信号 R (より具体的には、読取サンプル値系列 RS )に対してオフセット値 OFS
RF C
が付加される。この場合、例えば、 α値が概ね 0でない場合に、オフセット値 OFSを 付カロし、 α値が概ね 0であれば、オフセット値 OFSを付カ卩しないように構成してもよい 。或いは、例えばシンボルエラーレートが所定閾値以上である、エラー訂正が不可能 である、又は同期データが読取不可能である場合には、オフセット値 OFSを付加し、 例えば、シンボルエラーレートが所定閾値以上でない、且つエラー訂正が不可能で ない、且つ同期データが読取不可能でない場合には、オフセット値 OFSを付加しな いように構成してもよい。
[0283] 第 10変形例において生成されるオフセット値 OFSは、図 5 (a)から図 5 (c)に示す 波形歪みが生じている場合には、リファレンスレベルと、波形歪みが生じている長マ ークの信号レベルの最大値との差 (つまり、波形歪み量 D ' )未満であることが好まし い。より好ましくは、リファレンスレベルと、波形歪みが生じている長マークの信号レべ ルの最大値との差(つまり、波形歪み量 D' )の 1Z2であることが好ましい。つまり、波 形歪みがリファレンスレベルに近づくオフセットが生成される。
[0284] 第 10変形例において生成されるオフセット値 OFSは、図 6 (a)から図 6 (c)に示す 波形歪みが生じている場合には、リファレンスレベルと、波形歪みが生じている長マ ークの信号レベルの最小値との差 (つまり、波形歪み量 D ' )未満であることが好ま しい。より好ましくは、リファレンスレベルと、波形歪みが生じている長マークの信号レ ベルの最小値との差(つまり、波形歪み量—D' )の 1Z2であることが好ましい。つまり 、波形歪みがリファレンスレベルに近づくオフセットが生成される。
[0285] そして、波形歪みが補正された後、このオフセット値 OFSが、歪み補正読取サンプ ル値系列 RS 力も減算される。つまり、波形歪みを補正する前に付加されたオフセ
CAM
ット値 OFSと同一のオフセット値 OFS力 歪み補正読取サンプル値系列 RS から
CAM
減算される。 [0286] このように、第 10変形例においては、波形歪みを補正する前に、読取信号 R (より
RF
具体的には、読取サンプル値系列 RS )に対してオフセット値 OFSが付加され、波形
C
歪みが補正された後に、付加されたオフセット値 OFSが減算されるため、図 45を参 照して以下に説明する効果を更に享受することができる。
[0287] 図 45に示すように、オフセット値 OFSを付カ卩のみした場合におけるシンボルエラー レートが改善するオフセット値 OFSの範囲と比較して、オフセット値 OFSを付加及び 減算した場合におけるシンボルエラーレートが改善するオフセット値 OFSの範囲が 広がっていることが分かる。つまり、オフセット値 OFSを付加及び減算することで、シ ンボルエラーレートを好適に改善することができるオフセット値 OFSの範囲を広げる ことができる。
[0288] 更に、波形歪みを補正した後に同一のオフセット値 OFSを減算するため、オフセッ ト値 OFSを比較的容易に生成することができるという効果をも享受することができる。
[0289] 尚、上述の実施例では、波形歪みを補正する前に付加するオフセット値 OFSと、波 形歪みを補正した後に減算するオフセット値 OFSとは同一である。しかしながら、波 形歪みを補正する前に付加するオフセット値 OFSと、波形歪みを補正した後に減算 するオフセット値 OFSとは、必ずしも同一でなくともよい。この場合、波形歪みを補正 する前に付加するオフセット値 OFSは、波形歪みを補正した後に減算するオフセット 値 OFSよりも、図 39を参照して説明した全体 β値にランレングス長を考慮しない min Tの出現確率を乗じた値に相当する大きさ(或いは、図 35を参照して説明したァシン メトリにランレングス長を考慮しな ヽ minTの出現確率を乗じた値に相当する大きさ、 図 41を参照して説明した部分 /3値にランレングス長を考慮した minTの出現確率を 乗じた値に相当する大きさ、又は図 43を参照して説明した α値に相当する大きさ)だ け大きいことが好ましい。
[0290] このように、波形歪みを補正する前に付加するオフセット値 OFSを、波形歪みを補 正した後に減算するオフセット値 OFSよりも、ァシンメトリ値や全体 値や部分 j8値 に応じて定まる値に相当する大きさだけ大きくすることで、波形歪みを補正した後の 歪み補正読取サンプル値系列 RS に上述したァシンメトリ値や全体 β値や部分 β
CAM
値に応じて定まるに相当する大きさのオフセット成分を残すことができる。これにより、 波形歪みが補正された後の歪み補正読取サンプル値系列 RS において、ランレ
CAM
ンダスが最も短い記録データに対応する読取信号 R の振幅中心を、リファレンスレ
RF
ベルに合わせることができる。
[0291] 尚、波形歪みは、一般的には、光ディスク 100の記録面上に形成されるマークの形 状や長さ等のばらつきに起因して発生する。従って、例えば DVD— RZRWや、 DV D+RZRWや、 DVD—RAMや、 BD—RZRE等の記録型の光ディスク 100にお いて、波形歪みが発生しやすい。しかしながら、例えば DVD—ROMや、 BD-RO M等の再生専用型の光ディスク 100においても、図 46に示すように、相対的に長い マーク力も構成される同期データがトラッキング方向にぉ 、て隣接して!/、る場合には 、波形歪みが生ずる。このような再生専用型の光ディスク 100において発生する波形 歪みに対しても、上述した情報再生装置 1によれば、好適に補正することができること は言うまでもない。
[0292] 本発明は、上述した実施例に限られるものではなぐ請求の範囲及び明細書全体 力 読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、その ような変更を伴う情報再生装置及び方法、並びにコンピュータプログラムもまた本発 明の技術的範囲に含まれるものである。

Claims

請求の範囲
[1] 記録媒体力 読み取られた読取信号が所望の再生特性を満たしているか否かを判 定する判定手段と、
前記判定手段により前記読取信号が前記所望の再生特性を満たして!/、な!/、と判定 された場合に、前記読取信号のうち少なくとも長マークに対応する読取信号に生ずる 波形歪みを補正する補正手段と、
前記波形歪みが補正された前記読取信号に対して波形等化処理を行う波形等化 手段と
を備えることを特徴とする情報再生装置。
[2] 前記波形歪みを検出する検出手段を更に備え、
前記補正手段は、前記判定手段により前記読取信号が前記所望の再生特性を満 たしていないと判定され且つ前記検出手段により前記波形歪みが検出された場合に 、前記波形歪みを補正することを特徴とする請求の範囲第 1項に記載の情報再生装 置。
[3] 前記判定手段は、(0前記読取信号のエラー訂正が可能である場合、 GO前記読取 信号のエラーレートが所定の閾値以下である場合、又は (m)記録データに含まれるュ 一ザデータを読み取るために用いられ且つ前記記録データに含まれる同期データ に相当する読取信号を読み取ることができる場合の少なくとも 1つの場合に、前記読 取信号が前記所望の再生特性を満たしていると判定することを特徴とする請求の範 囲第 1項に記載の情報再生装置。
[4] 前記判定手段は、前記補正手段により前記波形歪みが補正された後に、前記読取 信号が前記所望の再生特性を満たしている力否力を再度判定し、
前記補正手段は、前記判定手段により前記読取信号が前記所望の再生特性を満 たして 、な 、と再度判定された場合に、前記波形歪みを再度補正することを特徴と する請求の範囲第 1項に記載の情報再生装置。
[5] 前記補正手段は、前記判定手段により前記読取信号が前記所望の再生特性を満 たして 、な 、と再度判定された場合に、前回波形歪みを補正したときに用いた第 1波 形歪み補正条件とは異なる第 2の波形歪み補正条件を用いて、前記波形歪みを再 度補正することを特徴とする請求の範囲第 4項に記載の情報再生装置。
[6] 前記補正手段は、記録データに含まれるユーザデータを読み取るために用いられ 且つ前記記録データに含まれる同期データに相当する前記読取信号に生ずる前記 波形歪みを補正することを特徴とする請求の範囲第 1項に記載の情報再生装置。
[7] 前記補正手段は、前記読取信号のうち前記同期データを構成するマークと対をな すスペースの前、該スペースの後、及び該スペースを基点として前記同期データの 周期性を満たす位置の少なくとも一つにおいて、前記波形歪みを補正することを特 徴とする請求の範囲第 6項に記載の情報再生装置。
[8] 前記記録媒体が Blu— ray Discである場合、前記補正手段は、前記読取信号の うち前記同期データを構成するランレングスが 9Tのマークと対をなすランレングスが 9 Tのスペースの前、該 9Tのスペースの後、及び該 9Tのスペースの位置から 1932T 付近のランレングスに相当する時間が経過した位置の少なくとも一つにおいて、前記 波形歪みを補正することを特徴とする請求の範囲第 7項に記載の情報再生装置。
[9] 前記記録媒体が DVDである場合、前記補正手段は、前記読取信号のうち前記同 期データを構成するランレングスが 14Tのスペースの位置から 1488T付近のランレ ンダスに相当する時間が経過した位置において、前記波形歪みを補正することを特 徴とする請求の範囲第 7項に記載の情報再生装置。
[10] 前記波形等化手段は、
前記波形歪みが補正された前記読取信号の振幅レベルを所定の振幅制限値にて 制限して振幅制限信号を取得する振幅制限手段と、
前記振幅制限信号に対して高域強調フィルタリング処理を行うことで等化補正信号 を取得するフィルタリング手段と
を備えることを特徴とする請求の範囲第 1項に記載の情報再生装置。
[11] 前記長マークは、信号レベルが最大振幅となるマークであることを特徴とする請求 の範囲第 1項に記載の情報再生装置。
[12] 記録媒体力 読み取られた読取信号が所望の再生特性を満たしているか否かを判 定する判定工程と、
前記判定工程にお!、て前記読取信号が前記所望の再生特性を満たして!/、な 、と 判定された場合に、前記読取信号のうち少なくとも長マークに対応する読取信号に 生ずる波形歪みを補正する補正工程と、
前記波形歪みが補正された前記読取信号に対して波形等化処理を行う波形等化 工程と
を備えることを特徴とする情報再生方法。
記録媒体力 読み取られた読取信号が所望の再生特性を満たしているか否かを判 定する判定手段と、前記判定手段により前記読取信号が前記所望の再生特性を満 たしていないと判定された場合に、前記読取信号のうち少なくとも長マークに対応す る読取信号に生ずる波形歪みを補正する補正手段と、前記波形歪みが補正された 前記読取信号に対して波形等化処理を行う波形等化手段とを備える情報再生装置 に備えられたコンピュータを制御する再生制御用のコンピュータプログラムであって、 該コンピュータを、前記判定手段、前記補正手段及び前記波形等化手段の少なく とも一部として機能させることを特徴とする再生制御用のコンピュータプログラム。
PCT/JP2006/324290 2006-12-05 2006-12-05 情報再生装置及び方法、並びにコンピュータプログラム WO2008068858A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/517,273 US8107341B2 (en) 2006-12-05 2006-12-05 Information reproducing apparatus and method, and computer program
JP2008548144A JP4861435B2 (ja) 2006-12-05 2006-12-05 情報再生装置及び方法、並びにコンピュータプログラム
PCT/JP2006/324290 WO2008068858A1 (ja) 2006-12-05 2006-12-05 情報再生装置及び方法、並びにコンピュータプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/324290 WO2008068858A1 (ja) 2006-12-05 2006-12-05 情報再生装置及び方法、並びにコンピュータプログラム

Publications (1)

Publication Number Publication Date
WO2008068858A1 true WO2008068858A1 (ja) 2008-06-12

Family

ID=39491777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324290 WO2008068858A1 (ja) 2006-12-05 2006-12-05 情報再生装置及び方法、並びにコンピュータプログラム

Country Status (3)

Country Link
US (1) US8107341B2 (ja)
JP (1) JP4861435B2 (ja)
WO (1) WO2008068858A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097209A (ja) * 2011-11-01 2013-05-20 Nippon Hoso Kyokai <Nhk> ホログラム再生装置およびホログラム歪補償方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5012366B2 (ja) 2007-09-26 2012-08-29 Tdk株式会社 再生信号評価方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303474A (ja) * 2002-04-05 2003-10-24 Pioneer Electronic Corp ディスク評価装置
WO2005024822A1 (ja) * 2003-09-02 2005-03-17 Matsushita Electric Industrial Co., Ltd. 再生信号処理装置、及び再生信号処理方法
JP2005093033A (ja) * 2003-09-19 2005-04-07 Matsushita Electric Ind Co Ltd 光ディスク装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027234A (ja) * 1988-02-22 1990-01-11 Hitachi Ltd 光デイスクのデリートパターン検出回路
EP0750306B1 (en) * 1995-06-22 2002-06-05 Matsushita Electric Industrial Co., Ltd. A method of maximum likelihood decoding and a digital information playback apparatus
KR100465361B1 (ko) * 1996-02-08 2005-05-24 소니 가부시끼 가이샤 데이터복호장치
JP3855361B2 (ja) * 1997-05-08 2006-12-06 ソニー株式会社 情報再生装置および再生方法
JP3459563B2 (ja) 1998-03-06 2003-10-20 パイオニア株式会社 波形等化器および記録情報再生装置
JP2000187844A (ja) * 1998-12-22 2000-07-04 Canon Inc 再生装置、方法及びコンピュータ読み取り可能な記憶媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303474A (ja) * 2002-04-05 2003-10-24 Pioneer Electronic Corp ディスク評価装置
WO2005024822A1 (ja) * 2003-09-02 2005-03-17 Matsushita Electric Industrial Co., Ltd. 再生信号処理装置、及び再生信号処理方法
JP2005093033A (ja) * 2003-09-19 2005-04-07 Matsushita Electric Ind Co Ltd 光ディスク装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097209A (ja) * 2011-11-01 2013-05-20 Nippon Hoso Kyokai <Nhk> ホログラム再生装置およびホログラム歪補償方法

Also Published As

Publication number Publication date
US8107341B2 (en) 2012-01-31
JPWO2008068858A1 (ja) 2010-03-11
US20100074081A1 (en) 2010-03-25
JP4861435B2 (ja) 2012-01-25

Similar Documents

Publication Publication Date Title
JP2003272166A (ja) ディスク再生装置
JP4707314B2 (ja) 非対称再生信号におけるオフセットを補償する方法
JP4075075B2 (ja) 情報信号再生装置、方法、及び、光ディスク再生装置
WO2008068858A1 (ja) 情報再生装置及び方法、並びにコンピュータプログラム
JP4861432B2 (ja) 情報再生装置及び方法、並びにコンピュータプログラム
JP4861433B2 (ja) 情報再生装置及び方法、並びにコンピュータプログラム
JP4081002B2 (ja) 補正された信号を得るための波形イコライザおよび情報を再生するための装置
JP2000243032A (ja) オフセットコントロール回路及びオフセットコントロール方法
JP4861434B2 (ja) 情報再生装置及び方法、並びにコンピュータプログラム
JP3797303B2 (ja) ディスク再生装置
JP4915876B2 (ja) 情報再生装置及び方法、並びにコンピュータプログラム
JP5031768B2 (ja) 情報再生装置及び方法、並びにコンピュータプログラム
US8102744B2 (en) Recording medium playback device and recording medium playback method
US20090316557A1 (en) Information reproducing apparatus and method, and computer program
JP5234966B2 (ja) 情報再生装置及び方法、並びにコンピュータプログラム
JP2004342290A (ja) 光学記憶媒体からの読み出し信号を復号するための電子回路、光学記憶媒体を読み出すための電子装置、光学記憶媒体を読み出すための方法及びコンピュータプログラム製品
KR20070086144A (ko) 정보 매체로부터 정보의 재생
JP3736337B2 (ja) 信号再生回路
JP2001273639A (ja) 光ディスク装置
JP2007073099A (ja) 波形等化制御装置
KR20030033832A (ko) 광 기록매체 등화 장치
JP2006092658A (ja) 光ディスク再生装置及び光ディスク再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06834045

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548144

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12517273

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06834045

Country of ref document: EP

Kind code of ref document: A1