WO2008085744A1 - Portable multifunction device,method, and graphical user interface for translating displayed content - Google Patents

Portable multifunction device,method, and graphical user interface for translating displayed content Download PDF

Info

Publication number
WO2008085744A1
WO2008085744A1 PCT/US2007/088885 US2007088885W WO2008085744A1 WO 2008085744 A1 WO2008085744 A1 WO 2008085744A1 US 2007088885 W US2007088885 W US 2007088885W WO 2008085744 A1 WO2008085744 A1 WO 2008085744A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
touch screen
page
translating
screen display
Prior art date
Application number
PCT/US2007/088885
Other languages
French (fr)
Inventor
Francisco Ryan Tolmasky
Richard Williamson
Chris Blumenberg
Patrick Lee Coffman
Original Assignee
Apple Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc. filed Critical Apple Inc.
Priority to EP07869934A priority Critical patent/EP2118728A1/en
Publication of WO2008085744A1 publication Critical patent/WO2008085744A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04886Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures by partitioning the display area of the touch-screen or the surface of the digitising tablet into independently controllable areas, e.g. virtual keyboards or menus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/0485Scrolling or panning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/161Indexing scheme relating to constructional details of the monitor
    • G06F2200/1614Image rotation following screen orientation, e.g. switching from landscape to portrait mode

Definitions

  • An example of the inflexibility of many conventional user interfaces is the difficulty of using touch screen interfaces on portable devices to translate displayed content, particularly displayed content that includes a frame displaying a portion of content and also includes other content outside of the frame. Sometimes a user may desire to translate only the displayed portion of content in the frame, without translating the other content outside of the frame. Other times a user may desire to translate both content in the frame and content outside of the frame. Conventional touch screen interfaces lack a user-friendly method of distinguishing between these two operations. [0005] Accordingly, there is a need for portable multifunction devices with more transparent and intuitive user interfaces for translating displayed content in accordance with a user's intentions that are easy to use, configure, and/or adapt. Such interfaces increase the effectiveness, efficiency and user satisfaction with portable multifunction devices.
  • the device has a touch-sensitive display (also known as a "touch screen") with a graphical user interface (GUI), one or more processors, memory and one or more modules, programs or sets of instructions stored in the memory for performing multiple functions.
  • GUI graphical user interface
  • the user interacts with the GUI primarily through finger contacts and gestures on the touch-sensitive display.
  • the functions may include telephoning, video conferencing, e-mailing, instant messaging, blogging, digital photographing, digital videoing, web browsing, digital music playing, and/or digital video playing. Instructions for performing these functions may be included in a computer program product configured for execution by one or more processors.
  • a computer-implemented method for use in conjunction with a portable multifunction device with a touch screen display, comprises displaying a portion of page content on the touch screen display.
  • the portion of page content includes a frame displaying a portion of frame content and also includes other content of the page.
  • the method further comprises detecting an N-fmger translation gesture on or near the touch screen display, and, in response to detecting the N-fmger translation gesture, translating the page content to display a new portion of page content on the touch screen display, wherein translating the page content includes translating the displayed portion of the frame content and the other content of the page.
  • the method comprises detecting an M-fmger translation gesture on or near the touch screen display, where M is a different number than N, and, in response to detecting the M-fmger translation gesture, translating the frame content to display a new portion of frame content on the touch screen display, without translating the other content of the page.
  • a graphical user interface on a portable multifunction device with a touch screen display comprises a portion of page content on the touch screen display.
  • the portion of page content includes a frame displaying a portion of frame content and also includes other content of the page.
  • the page content is translated to display a new portion of page content on the touch screen display, wherein translating the page content includes translating the other content of the page.
  • the frame content is translated to display a new portion of frame content on the touch screen display, without translating the other content of the page.
  • a portable multifunction device comprises a touch screen display, one or more processors, memory, and one or more programs.
  • the one or more programs are stored in the memory and configured to be executed by the one or more processors.
  • the one or more programs include instructions for displaying a portion of page content on the touch screen display.
  • the portion of page content includes a frame displaying a portion of frame content and also includes other content of the page.
  • the one or more programs also include instructions for detecting an N-finger translation gesture on or near the touch screen display; instructions for translating the page content, in response to detecting the N-fmger translation gesture, to display a new portion of page content on the touch screen display, wherein the instructions for translating the page content include instructions for translating the displayed portion of the frame content and the other content of the page; instructions for detecting an M-finger translation gesture on or near the touch screen display, where M is a different number than N; and instructions for translating the frame content, in response to detecting the M-finger translation gesture, to display a new portion of frame content on the touch screen display, without translating the other content of the page.
  • a computer readable storage medium stores instructions, which when executed by a portable multifunction device with a touch screen display, cause the device to display a portion of page content on the touch screen display.
  • the portion of page content includes a frame displaying a portion of frame content and also includes other content of the page.
  • the instructions also cause the device to detect an N- finger translation gesture on or near the touch screen display and to translate the page content, in response to detecting the N-finger translation to display a new portion of page content on the touch screen display, wherein translating the page content includes translating the displayed portion of the frame content and the other content of the page.
  • the instructions further cause the device to detect an M-finger translation gesture on or near the touch screen display, where M is a different number than N, and to translate the frame content, in response to detecting the M-finger translation gesture, to display a new portion of frame content on the touch screen display, without translating the other content of the page.
  • a portable multifunction device with a touch screen display comprises means for displaying a portion of page content on the touch screen display.
  • the portion of page content includes a frame displaying a portion of frame content and also includes other content of the page.
  • the device also comprises means for detecting an N-finger translation gesture on or near the touch screen display and means for translating the page content, in response to detecting the N-finger translation gesture, to display a new portion of page content on the touch screen display, wherein the means for translating the page content include means for translating the displayed portion of the frame content and the other content of the page.
  • the device further comprises means for detecting an M-finger translation gesture on or near the touch screen display, where M is a different number than N, and means for translating the frame content, in response to detecting the M- finger translation gesture, to display a new portion of frame content on the touch screen display, without translating the other content of the page.
  • the disclosed embodiments thus allow users to easily translate page content or just translate frame content within the page content, depending on the number of fingers used in the gesture.
  • Figures IA and IB are block diagrams illustrating portable multifunction devices with touch-sensitive displays in accordance with some embodiments.
  • Figure 2 illustrates a portable multifunction device having a touch screen in accordance with some embodiments.
  • Figure 3 illustrates an exemplary user interface for unlocking a portable electronic device in accordance with some embodiments.
  • Figures 4 A and 4B illustrate exemplary user interfaces for a menu of applications on a portable multifunction device in accordance with some embodiments.
  • Figures 5A-5C illustrate exemplary user interfaces for translating page content or translating just frame content within the page content in accordance with some embodiments.
  • Figure 6 is a flow diagram illustrating a process for translating content in accordance with some embodiments.
  • the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
  • the device is a portable communications device such as a mobile telephone that also contains other functions, such as PDA and/or music player functions.
  • the user interface may include a physical click wheel in addition to a touch screen or a virtual click wheel displayed on the touch screen.
  • a click wheel is a user- interface device that may provide navigation commands based on an angular displacement of the wheel or a point of contact with the wheel by a user of the device.
  • a click wheel may also be used to provide a user command corresponding to selection of one or more items, for example, when the user of the device presses down on at least a portion of the wheel or the center of the wheel.
  • breaking contact with a click wheel image on a touch screen surface may indicate a user command corresponding to selection.
  • a portable multifunction device that includes a touch screen is used as an exemplary embodiment.
  • the device supports a variety of applications, such as a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a blogging application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application, and/or a digital video player application.
  • applications such as a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a blogging application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application, and/or a digital video player application.
  • the various applications that may be executed on the device may use at least one common physical user-interface device, such as the touch screen.
  • One or more functions of the touch screen as well as corresponding information displayed on the device may be adjusted and/or varied from one application to the next and/or within a respective application.
  • a common physical architecture (such as the touch screen) of the device may support the variety of applications with user interfaces that are intuitive and transparent.
  • the user interfaces may include one or more soft keyboard embodiments.
  • the soft keyboard embodiments may include standard (QWERTY) and/or non-standard configurations of symbols on the displayed icons of the keyboard, such as those described in U.S.
  • the keyboard embodiments may include a reduced number of icons (or soft keys) relative to the number of keys in existing physical keyboards, such as that for a typewriter. This may make it easier for users to select one or more icons in the keyboard, and thus, one or more corresponding symbols.
  • the keyboard embodiments may be adaptive. For example, displayed icons may be modified in accordance with user actions, such as selecting one or more icons and/or one or more corresponding symbols.
  • One or more applications on the portable device may utilize common and/or different keyboard embodiments.
  • the keyboard embodiment used may be tailored to at least some of the applications.
  • one or more keyboard embodiments may be tailored to a respective user.
  • one or more keyboard embodiments may be tailored to a respective user based on a word usage history (lexicography, slang, individual usage) of the respective user.
  • Some of the keyboard embodiments may be adjusted to reduce a probability of a user error when selecting one or more icons, and thus one or more symbols, when using the soft keyboard embodiments.
  • IB are block diagrams illustrating portable multifunction devices 100 with touch-sensitive displays 112 in accordance with some embodiments.
  • the touch-sensitive display 112 is sometimes called a "touch screen" for convenience, and may also be known as or called a touch-sensitive display system.
  • the device 100 may include a memory 102 (which may include one or more computer readable storage mediums), a memory controller 122, one or more processing units (CPU's) 120, a peripherals interface 118, RF circuitry 108, audio circuitry 110, a speaker 111, a microphone 113, an input/output (I/O) subsystem 106, other input or control devices 116, and an external port 124.
  • the device 100 may include one or more optical sensors 164. These components may communicate over one or more communication buses or signal lines 103.
  • the device 100 is only one example of a portable multifunction device 100, and that the device 100 may have more or fewer components than shown, may combine two or more components, or a may have a different configuration or arrangement of the components.
  • the various components shown in Figures IA and IB may be implemented in hardware, software or a combination of both hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • Memory 102 may include high-speed random access memory and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.
  • the peripherals interface 118 couples the input and output peripherals of the device to the CPU 120 and memory 102.
  • the one or more processors 120 run or execute various software programs and/or sets of instructions stored in memory 102 to perform various functions for the device 100 and to process data.
  • the peripherals interface 118, the CPU 120, and the memory controller 122 may be implemented on a single chip, such as a chip 104. In some other embodiments, they may be implemented on separate chips.
  • the RF (radio frequency) circuitry 108 receives and sends RF signals, also called electromagnetic signals.
  • the RF circuitry 108 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals.
  • the RF circuitry 108 may include well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth.
  • SIM subscriber identity module
  • the RF circuitry 108 may communicate with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication.
  • networks such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication.
  • networks such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication.
  • WLAN wireless local area network
  • MAN metropolitan area network
  • the wireless communication may use any of a plurality of communications standards, protocols and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.1 Ig and/or IEEE 802.1 In), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for email (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), and/or Instant Messaging and Presence Service (IMPS)), and/or Short
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data GSM Environment
  • SMS Message Service
  • the audio circuitry 110, the speaker 111, and the microphone 113 provide an audio interface between a user and the device 100.
  • the audio circuitry 110 receives audio data from the peripherals interface 118, converts the audio data to an electrical signal, and transmits the electrical signal to the speaker 111.
  • the speaker 111 converts the electrical signal to human-audible sound waves.
  • the audio circuitry 110 also receives electrical signals converted by the microphone 113 from sound waves.
  • the audio circuitry 110 converts the electrical signal to audio data and transmits the audio data to the peripherals interface 118 for processing. Audio data may be retrieved from and/or transmitted to memory 102 and/or the RF circuitry 108 by the peripherals interface 118.
  • the audio circuitry 110 also includes a headset jack (e.g. 212, Figure 2).
  • the headset jack provides an interface between the audio circuitry 110 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).
  • the I/O subsystem 106 couples input/output peripherals on the device 100, such as the touch screen 112 and other input/control devices 116, to the peripherals interface 118.
  • the I/O subsystem 106 may include a display controller 156 and one or more input controllers 160 for other input or control devices.
  • the one or more input controllers 160 receive/send electrical signals from/to other input or control devices 116.
  • the other input/control devices 116 may include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth.
  • Patent Application 11/322,549 "Unlocking a Device by Performing Gestures on an Unlock Image," filed December 23, 2005, which is hereby incorporated by reference in its entirety.
  • a longer press of the push button (e.g., 206) may turn power to the device 100 on or off.
  • the user may be able to customize a functionality of one or more of the buttons.
  • the touch screen 112 is used to implement virtual or soft buttons and one or more soft keyboards.
  • the touch-sensitive touch screen 112 provides an input interface and an output interface between the device and a user.
  • the display controller 156 receives and/or sends electrical signals from/to the touch screen 112.
  • the touch screen 112 displays visual output to the user.
  • the visual output may include graphics, text, icons, video, and any combination thereof (collectively termed "graphics"). In some embodiments, some or all of the visual output may correspond to user-interface objects, further details of which are described below.
  • a touch screen 112 has a touch-sensitive surface, sensor or set of sensors that accepts input from the user based on haptic and/or tactile contact.
  • the touch screen 112 and the display controller 156 (along with any associated modules and/or sets of instructions in memory 102) detect contact (and any movement or breaking of the contact) on the touch screen 112 and converts the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages or images) that are displayed on the touch screen.
  • user-interface objects e.g., one or more soft keys, icons, web pages or images
  • a point of contact between a touch screen 112 and the user corresponds to a finger of the user.
  • the touch screen 112 may use LCD (liquid crystal display) technology, or
  • the touch screen 112 and the display controller 156 may detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with a touch screen 112.
  • a touch-sensitive display in some embodiments of the touch screen 112 may be analogous to the multi-touch sensitive tablets described in the following U.S. Patents: 6,323,846 (Westerman et al), 6,570,557 (Westerman et al), and/or 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in their entirety.
  • a touch screen 112 displays visual output from the portable device 100, whereas touch sensitive tablets do not provide visual output.
  • a touch-sensitive display in some embodiments of the touch screen 112 may be as described in the following applications: (1) U.S. Patent Application No. 11/381,313, "Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. Patent Application No.
  • the touch screen 112 may have a resolution in excess of 100 dpi. In an exemplary embodiment, the touch screen has a resolution of approximately 160 dpi.
  • the user may make contact with the touch screen 112 using any suitable object or appendage, such as a stylus, a finger, and so forth.
  • the user interface is designed to work primarily with finger-based contacts and gestures, which are much less precise than stylus- based input due to the larger area of contact of a finger on the touch screen.
  • the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
  • the device 100 may include a touchpad (not shown) for activating or deactivating particular functions.
  • the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output.
  • the touchpad may be a touch-sensitive surface that is separate from the touch screen 112 or an extension of the touch-sensitive surface formed by the touch screen.
  • the device 100 may include a physical or virtual click wheel as an input control device 116.
  • a user may navigate among and interact with one or more graphical objects (henceforth referred to as icons) displayed in the touch screen 112 by rotating the click wheel or by moving a point of contact with the click wheel (e.g., where the amount of movement of the point of contact is measured by its angular displacement with respect to a center point of the click wheel).
  • the click wheel may also be used to select one or more of the displayed icons. For example, the user may press down on at least a portion of the click wheel or an associated button.
  • User commands and navigation commands provided by the user via the click wheel may be processed by an input controller 160 as well as one or more of the modules and/or sets of instructions in memory 102.
  • the click wheel and click wheel controller may be part of the touch screen 112 and the display controller 156, respectively.
  • the click wheel may be either an opaque or semitransparent object that appears and disappears on the touch screen display in response to user interaction with the device.
  • a virtual click wheel is displayed on the touch screen of a portable multifunction device and operated by user contact with the touch screen.
  • the device 100 may also include one or more optical sensors 164.
  • Figures IA and IB show an optical sensor coupled to an optical sensor controller 158 in I/O subsystem 106.
  • the optical sensor 164 may include charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors.
  • CCD charge-coupled device
  • CMOS complementary metal-oxide semiconductor
  • the optical sensor 164 receives light from the environment, projected through one or more lens, and converts the light to data representing an image.
  • an imaging module 143 also called a camera module
  • the optical sensor 164 may capture still images or video.
  • the device 100 may also include one or more proximity sensors 166. Figures
  • IA and IB show a proximity sensor 166 coupled to the peripherals interface 118.
  • the proximity sensor 166 may be coupled to an input controller 160 in the I/O subsystem 106.
  • the proximity sensor 166 may perform as described in U.S. Patent Application Nos.
  • the proximity sensor turns off and disables the touch screen 112 when the multifunction device is placed near the user's ear (e.g., when the user is making a phone call). In some embodiments, the proximity sensor keeps the screen off when the device is in the user's pocket, purse, or other dark area to prevent unnecessary battery drainage when the device is a locked state.
  • the device 100 may also include one or more accelerometers 168.
  • Figures IA and IB show an accelerometer 168 coupled to the peripherals interface 118.
  • the accelerometer 168 may be coupled to an input controller 160 in the I/O subsystem 106.
  • the accelerometer 168 may perform as described in U.S. Patent Publication No. 20050190059, "Acceleration-based Theft Detection System for Portable Electronic Devices," and U.S. Patent Publication No. 20060017692, "Methods And Apparatuses For Operating A Portable Device Based On An Accelerometer," both of which are which are incorporated herein by reference in their entirety.
  • information is displayed on the touch screen display in a portrait view or a landscape view based on an analysis of data received from the one or more accelerometers.
  • the operating system 126 e.g., Darwin, RTXC, LINUX, UNIX, OS X, WINDOWS, or an embedded operating system such as Vx Works
  • the operating system 126 includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
  • the contact/motion module 130 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred, determining if there is movement of the contact and tracking the movement across the touch screen 112, and determining if the contact has been broken (i.e., if the contact has ceased). Determining movement of the point of contact may include determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations may be applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., "multitouch'Vmultiple finger contacts).
  • the contact/motion module 130 and the display controller 156 also detects contact on a touchpad.
  • the contact/motion module 130 and the controller 160 detects contact on a click wheel.
  • the graphics module 132 includes various known software components for rendering and displaying graphics on the touch screen 112, including components for changing the intensity of graphics that are displayed.
  • graphics includes any object that can be displayed to a user, including without limitation text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations and the like.
  • the text input module 134 which may be a component of graphics module
  • 132 provides soft keyboards for entering text in various applications (e.g., contacts 137, e- mail 140, IM 141, blogging 142, browser 147, and any other application that needs text input).
  • applications e.g., contacts 137, e- mail 140, IM 141, blogging 142, browser 147, and any other application that needs text input).
  • the applications 136 may include the following modules (or sets of instructions), or a subset or superset thereof:
  • a contacts module 137 (sometimes called an address book or contact list);
  • a camera module 143 for still and/or video images
  • widget modules 149 which may include weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, dictionary widget 149-5, and other widgets obtained by the user, as well as user-created widgets 149-6;
  • Examples of other applications 136 that may be stored in memory 102 include other word processing applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
  • the contacts module 137 may be used to manage an address book or contact list, including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 138, video conference 139, e-mail 140, or IM 141; and so forth.
  • the telephone module 138 may be used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in the address book 137, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation and disconnect or hang up when the conversation is completed.
  • the wireless communication may use any of a plurality of communications standards, protocols and technologies.
  • the videoconferencing module 139 may be used to initiate, conduct, and terminate a video conference between a user and one or more other participants.
  • the e-mail client module 140 may be used to create, send, receive, and manage e-mail.
  • the e-mail module 140 makes it very easy to create and send e-mails with still or video images taken with camera module 143.
  • the instant messaging module 141 may be used to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages and to view received instant messages.
  • SMS Short Message Service
  • MMS Multimedia Message Service
  • XMPP extensible Markup Language
  • SIMPLE Session Initiation Protocol
  • IMPS Internet Messaging Protocol
  • transmitted and/or received instant messages may include graphics, photos, audio files, video files and/or other attachments as are supported in a MMS and/or an Enhanced Messaging Service (EMS).
  • EMS Enhanced Messaging Service
  • instant messaging refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).
  • the blogging module 142 may be used to send text, still images, video, and/or other graphics to a blog (e.g., the user's blog).
  • the camera module 143 may be used to capture still images or video (including a video stream) and store them into memory 102, modify characteristics of a still image or video, or delete a still image or video from memory 102.
  • the image management module 144 may be used to arrange, modify or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.
  • display controller 156, contact module 130, graphics module 132, text input module 134, and camera module 143 may be used to arrange, modify or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.
  • the video player module 145 may be used to display, present or otherwise play back videos (e.g., on the touch screen or on an external, connected display via external port 124).
  • the music player module 146 allows the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files.
  • the device 100 may include the functionality of an MP3 player, such as an iPod (trademark of Apple Computer, Inc.).
  • the browser module 147 may be used to browse the Internet, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages. Embodiments of user interfaces and associated processes using browser module 147 are described further below.
  • the widget creator module 150 may be used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).
  • search module 151 may be used to search for text, music, sound, image, video, and/or other files in memory 102 that match one or more search criteria (e.g., one or more user-specified search terms).
  • the notes module 153 may be used to create and manage notes, to do lists, and the like.
  • the map module 154 may be used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions; data on stores and other points of interest at or near a particular location; and other location-based data).
  • modules i.e., sets of instructions
  • video player module 145 may be combined with music player module 146 into a single module (e.g., video and music player module 152, Figure IB).
  • memory 102 may store a subset of the modules and data structures identified above. Furthermore, memory 102 may store additional modules and data structures not described above.
  • the device 100 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen 112 and/or a touchpad.
  • a touch screen and/or a touchpad as the primary input/control device for operation of the device 100, the number of physical input/control devices (such as push buttons, dials, and the like) on the device 100 may be reduced.
  • the predefined set of functions that may be performed exclusively through a touch screen and/or a touchpad include navigation between user interfaces.
  • the touchpad when touched by the user, navigates the device 100 to a main, home, or root menu from any user interface that may be displayed on the device 100.
  • the touchpad may be referred to as a "menu button.”
  • the menu button may be a physical push button or other physical input/control device instead of a touchpad.
  • Figure 2 illustrates a portable multifunction device 100 having a touch screen
  • the touch screen may display one or more graphics within user interface (UI) 200.
  • UI user interface
  • a user may select one or more of the graphics by making contact or touching the graphics, for example, with one or more fingers 202 (not drawn to scale in the figure).
  • selection of one or more graphics occurs when the user breaks contact with the one or more graphics.
  • the contact may include a gesture, such as one or more taps, one or more swipes (from left to right, right to left, upward and/or downward) and/or a rolling of a finger (from right to left, left to right, upward and/or downward) that has made contact with the device 100.
  • inadvertent contact with a graphic may not select the graphic. For example, a swipe gesture that sweeps over an application icon may not select the corresponding application when the gesture corresponding to selection is a tap.
  • the device 100 may also include one or more physical buttons, such as
  • menu button 204 may be used to navigate to any application 136 in a set of applications that may be executed on the device 100.
  • the menu button is implemented as a soft key in a GUI in touch screen 112.
  • the device 100 includes a touch screen 112, a menu button 204, a push button 206 for powering the device on/off and locking the device, volume adjustment button(s) 208, a Subscriber Identity Module (SIM) card slot 210, a head set jack
  • SIM Subscriber Identity Module
  • the push button 206 may be used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process.
  • the device 100 also may accept verbal input for activation or deactivation of some functions through the microphone 113.
  • UI user interfaces
  • associated processes may be implemented on a portable multifunction device 100.
  • Figure 3 illustrates an exemplary user interface for unlocking a portable electronic device in accordance with some embodiments.
  • user interface 300 includes the following elements, or a subset or superset thereof:
  • Unlock image 302 that is moved with a finger gesture to unlock the device
  • the device detects contact with the touch-sensitive display (e.g., a user's finger making contact on or near the unlock image 302) while the device is in a user-interface lock state.
  • the device moves the unlock image 302 in accordance with the contact.
  • the device transitions to a user-interface unlock state if the detected contact corresponds to a predefined gesture, such as moving the unlock image across channel 306.
  • a predefined gesture such as moving the unlock image across channel 306.
  • the device maintains the user-interface lock state if the detected contact does not correspond to the predefined gesture.
  • Figures 4A and 4B illustrate exemplary user interfaces for a menu of applications on a portable multifunction device in accordance with some embodiments.
  • user interface 400A includes the following elements, or a subset or superset thereof:
  • Icons for other applications such as one or more of the following: o IM 141; o Image management 144; o Camera 143; o Video player 145; o Weather 149-1; o Stocks 149-2; o Blog 142; o Calendar 148; o Calculator 149-3; o Alarm clock 149-4; o Dictionary 149-5; and o User-created widget 149-6.
  • user interface 400B includes the following elements, or a subset or superset thereof:
  • Settings 412 which provides access to settings for the device 100 and its various applications 136, as described further below; and • Video and music player module 152, also referred to as iPod (trademark of Apple
  • UI 400A or 400B provides integrated access to both widget-based applications and non-widget-based applications.
  • all of the widgets, whether user-created or not, are displayed in UI 400A or 400B.
  • activating the icon for user-created widget 149-6 may lead to another UI that contains the user-created widgets or icons corresponding to the user-created widgets.
  • a user may rearrange the icons in UI 400A or 400B, e.g., using processes described in U.S. Patent Application No. 11/459,602, "Portable Electronic Device With Interface Reconfiguration Mode," filed July 24, 2006, which is hereby incorporated by reference in its entirety.
  • UI 400A or 400B includes a gauge (not shown) that displays an updated account usage metric for an account associated with usage of the device (e.g., a cellular phone account), as described in U.S. Patent Application 11/322,552, "Account Information Display For Portable Communication Device," filed December 23, 2005, which is hereby incorporated by reference in its entirety.
  • Figures 5A-5C illustrate exemplary user interfaces for translating page content or translating just frame content within the page content in accordance with some embodiments.
  • Previous page icon 3902 that when activated (e.g., by a finger tap on the icon) initiates display of the previous web page;
  • Next page icon 3906 that when activated (e.g., by a finger tap on the icon) initiates display of the next web page;
  • New window icon 3922 that when activated (e.g., by a finger tap on the icon) initiates display of a UI for adding new windows to the browser;
  • Portion 4206 ( Figures 5 A & 5B) of frame content, such as a portion of a map or a scrollable list of items, that is displayed within frame 4204;
  • New portion 4212 (Figure 5B) of page content that is displayed in response to an N- finger translation gesture 4210;
  • the page content is web page content.
  • the page content is a word processing, spreadsheet, email or presentation document.
  • An N-fmger translation gesture (e.g., 4210) is detected (6004) on or near the touch screen display.
  • the page content is translated (6006) to display a new portion (e.g., 4212, Figure 5B) of page content on the touch screen display.
  • Translating the page content includes translating the displayed portion (e.g., 4206) of the frame content and the other content (e.g., 4208) of the page.
  • translating the page content comprises translating the page content in a vertical, horizontal, or diagonal direction.
  • translating the page content has an associated direction of translation that corresponds to a direction of movement of the N-fmger translation gesture.
  • the direction of translation corresponds directly to the direction of finger movement; in some embodiments, however, the direction of translation is mapped from the direction of finger movement in accordance with a rule.
  • the rule may state that if the direction of finger movement is within a predetermined angle (e.g., 27°) of a standard axis, the direction of translation is along the standard axis, and otherwise the direction of translation is substantially the same as the direction of finger movement.
  • translating the page content has an associated speed of translation that corresponds to a speed of movement of the N-fmger translation gesture.
  • translating the page content is in accordance with a simulation of an equation of motion having friction.
  • An M-fmger translation gesture (e.g., 4214, Figure 5A) is detected (6008) on or near the touch screen display, where M is a different number than N. In some embodiments, N is equal to 1 and M is equal to 2.
  • the frame content is translated (6010) to display a new portion (e.g., 4216, Figure 5C) of frame content on the touch screen display, without translating the other content (e.g., 4208) of the page.
  • the user when the page content includes more than one frame content (i.e., two or more instances of frame content in different regions of the page content), the user performs the M-finger translation gesture 4214 on top of, or at least partially on top of a respective frame content in order to identify that respective frame content as the frame content to translate.
  • translating the frame content comprises translating the frame content in a vertical, horizontal, or diagonal direction.
  • translating the frame content has an associated direction of translation that corresponds to a direction of movement of the M-finger translation gesture.
  • the direction of translation corresponds directly to the direction of finger movement; in some embodiments, however, the direction of translation is mapped from the direction of finger movement in accordance with a rule.
  • the rule may state that if the direction of finger movement is within a predetermined angle (e.g., 27°) of a standard axis, the direction of translation is along the standard axis, and otherwise the direction of translation is substantially the same as the direction of finger movement.
  • translating the frame content has an associated speed of translation that corresponds to a speed of movement of the M-finger translation gesture. In some embodiments, translating the frame content is in accordance with a simulation of an equation of motion having friction.
  • the frame content comprises a map. In some embodiments, the frame content comprises a scrollable list of items. [00103] In some embodiments, the other content of the page includes text.
  • the page content is translated to display a new portion 4212 ( Figure 5B) of page content on the touch screen display, wherein translating the page content includes translating the other content 4208 of the page.
  • the frame content is translated to display a new portion 4216 (Figure 5C) of frame content on the touch screen display, without translating the other content 4208 of the page.
  • the M-fmger gesture 4214 may be performed by the user on top of the frame content to be translated so as to identify which frame content to translate.

Abstract

A computer- implemented method, for use in conjunction with a portable multifunction device (100) with a touch screen display (112), comprises displaying a portion of page content (4202), including a frame (4204) displaying a portion of frame content (4206) and also including other content of the page (4208), on the touch screen display (112). An N-finger translation gesture (4210) is detected on or near the touch screen display (112). In response, the page content (4202), including the displayed portion of the frame content (4206) and the other content of the page (4208), is translated to display a new portion of page content (4212) on the touch screen display (112). An M-finger translation gesture (4214) is detected on or near the touch screen display (112), where M is a different number than N. In response, the frame content (4206) is translated to display a new portion of frame content (4216) on the touch screen display (112), without translating the other content of the page (4208).

Description

Portable Multifunction Device, Method, and Graphical User Interface for Translating Displayed Content
TECHNICAL FIELD
[0001] The disclosed embodiments relate generally to portable electronic devices, and more particularly, to portable devices that translate displayed content in response to detected finger gestures.
BACKGROUND
[0002] As portable electronic devices become more compact, and the number of functions performed by a given device increase, it has become a significant challenge to design a user interface that allows users to easily interact with a multifunction device. This challenge is particular significant for handheld portable devices, which have much smaller screens than desktop or laptop computers. This situation is unfortunate because the user interface is the gateway through which users receive not only content but also responses to user actions or behaviors, including user attempts to access a device's features, tools, and functions. Some portable communication devices (e.g., mobile telephones, sometimes called mobile phones, cell phones, cellular telephones, and the like) have resorted to adding more pushbuttons, increasing the density of push buttons, overloading the functions of pushbuttons, or using complex menu systems to allow a user to access, store and manipulate data. These conventional user interfaces often result in complicated key sequences and menu hierarchies that must be memorized by the user.
[0003] Many conventional user interfaces, such as those that include physical pushbuttons, are also inflexible. This is unfortunate because it may prevent a user interface from being configured and/or adapted by either an application running on the portable device or by users. When coupled with the time consuming requirement to memorize multiple key sequences and menu hierarchies, and the difficulty in activating a desired pushbutton, such inflexibility is frustrating to most users.
[0004] An example of the inflexibility of many conventional user interfaces is the difficulty of using touch screen interfaces on portable devices to translate displayed content, particularly displayed content that includes a frame displaying a portion of content and also includes other content outside of the frame. Sometimes a user may desire to translate only the displayed portion of content in the frame, without translating the other content outside of the frame. Other times a user may desire to translate both content in the frame and content outside of the frame. Conventional touch screen interfaces lack a user-friendly method of distinguishing between these two operations. [0005] Accordingly, there is a need for portable multifunction devices with more transparent and intuitive user interfaces for translating displayed content in accordance with a user's intentions that are easy to use, configure, and/or adapt. Such interfaces increase the effectiveness, efficiency and user satisfaction with portable multifunction devices.
SUMMARY [0006] The above deficiencies and other problems associated with user interfaces for portable devices are reduced or eliminated by the disclosed portable multifunction device. In some embodiments, the device has a touch-sensitive display (also known as a "touch screen") with a graphical user interface (GUI), one or more processors, memory and one or more modules, programs or sets of instructions stored in the memory for performing multiple functions. In some embodiments, the user interacts with the GUI primarily through finger contacts and gestures on the touch-sensitive display. In some embodiments, the functions may include telephoning, video conferencing, e-mailing, instant messaging, blogging, digital photographing, digital videoing, web browsing, digital music playing, and/or digital video playing. Instructions for performing these functions may be included in a computer program product configured for execution by one or more processors.
[0007] In one aspect of the invention, a computer-implemented method, for use in conjunction with a portable multifunction device with a touch screen display, comprises displaying a portion of page content on the touch screen display. The portion of page content includes a frame displaying a portion of frame content and also includes other content of the page. The method further comprises detecting an N-fmger translation gesture on or near the touch screen display, and, in response to detecting the N-fmger translation gesture, translating the page content to display a new portion of page content on the touch screen display, wherein translating the page content includes translating the displayed portion of the frame content and the other content of the page. Additionally, the method comprises detecting an M-fmger translation gesture on or near the touch screen display, where M is a different number than N, and, in response to detecting the M-fmger translation gesture, translating the frame content to display a new portion of frame content on the touch screen display, without translating the other content of the page.
[0008] In another aspect of the invention, a graphical user interface on a portable multifunction device with a touch screen display comprises a portion of page content on the touch screen display. The portion of page content includes a frame displaying a portion of frame content and also includes other content of the page. In response to detecting an N- finger translation gesture on or near the touch screen display, the page content is translated to display a new portion of page content on the touch screen display, wherein translating the page content includes translating the other content of the page. In response to detecting an M- finger translation gesture on or near the touch screen display, where M is a different number than N, the frame content is translated to display a new portion of frame content on the touch screen display, without translating the other content of the page.
[0009] In another aspect of the invention, a portable multifunction device comprises a touch screen display, one or more processors, memory, and one or more programs. The one or more programs are stored in the memory and configured to be executed by the one or more processors. The one or more programs include instructions for displaying a portion of page content on the touch screen display. The portion of page content includes a frame displaying a portion of frame content and also includes other content of the page. The one or more programs also include instructions for detecting an N-finger translation gesture on or near the touch screen display; instructions for translating the page content, in response to detecting the N-fmger translation gesture, to display a new portion of page content on the touch screen display, wherein the instructions for translating the page content include instructions for translating the displayed portion of the frame content and the other content of the page; instructions for detecting an M-finger translation gesture on or near the touch screen display, where M is a different number than N; and instructions for translating the frame content, in response to detecting the M-finger translation gesture, to display a new portion of frame content on the touch screen display, without translating the other content of the page.
[0010] In another aspect of the invention, a computer readable storage medium stores instructions, which when executed by a portable multifunction device with a touch screen display, cause the device to display a portion of page content on the touch screen display. The portion of page content includes a frame displaying a portion of frame content and also includes other content of the page. The instructions also cause the device to detect an N- finger translation gesture on or near the touch screen display and to translate the page content, in response to detecting the N-finger translation to display a new portion of page content on the touch screen display, wherein translating the page content includes translating the displayed portion of the frame content and the other content of the page. The instructions further cause the device to detect an M-finger translation gesture on or near the touch screen display, where M is a different number than N, and to translate the frame content, in response to detecting the M-finger translation gesture, to display a new portion of frame content on the touch screen display, without translating the other content of the page.
[0011] In another aspect of the invention, a portable multifunction device with a touch screen display comprises means for displaying a portion of page content on the touch screen display. The portion of page content includes a frame displaying a portion of frame content and also includes other content of the page. The device also comprises means for detecting an N-finger translation gesture on or near the touch screen display and means for translating the page content, in response to detecting the N-finger translation gesture, to display a new portion of page content on the touch screen display, wherein the means for translating the page content include means for translating the displayed portion of the frame content and the other content of the page. The device further comprises means for detecting an M-finger translation gesture on or near the touch screen display, where M is a different number than N, and means for translating the frame content, in response to detecting the M- finger translation gesture, to display a new portion of frame content on the touch screen display, without translating the other content of the page.
[0012] The disclosed embodiments thus allow users to easily translate page content or just translate frame content within the page content, depending on the number of fingers used in the gesture. BRIEF DESCRIPTION OF THE DRAWINGS
[0013] For a better understanding of the aforementioned embodiments of the invention as well as additional embodiments thereof, reference should be made to the Description of Embodiments below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures. [0014] Figures IA and IB are block diagrams illustrating portable multifunction devices with touch-sensitive displays in accordance with some embodiments. [0015] Figure 2 illustrates a portable multifunction device having a touch screen in accordance with some embodiments.
[0016] Figure 3 illustrates an exemplary user interface for unlocking a portable electronic device in accordance with some embodiments. [0017] Figures 4 A and 4B illustrate exemplary user interfaces for a menu of applications on a portable multifunction device in accordance with some embodiments.
[0018] Figures 5A-5C illustrate exemplary user interfaces for translating page content or translating just frame content within the page content in accordance with some embodiments. [0019] Figure 6 is a flow diagram illustrating a process for translating content in accordance with some embodiments.
DESCRIPTION OF EMBODIMENTS
[0020] Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments. [0021] It will also be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first gesture could be termed a second gesture, and, similarly, a second gesture could be termed a first gesture, without departing from the scope of the present invention. [0022] The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term "and/or" as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms "comprises" and/or "comprising," when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. [0023] Embodiments of a portable multifunction device, user interfaces for such devices, and associated processes for using such devices are described. In some embodiments, the device is a portable communications device such as a mobile telephone that also contains other functions, such as PDA and/or music player functions.
[0024] The user interface may include a physical click wheel in addition to a touch screen or a virtual click wheel displayed on the touch screen. A click wheel is a user- interface device that may provide navigation commands based on an angular displacement of the wheel or a point of contact with the wheel by a user of the device. A click wheel may also be used to provide a user command corresponding to selection of one or more items, for example, when the user of the device presses down on at least a portion of the wheel or the center of the wheel. Alternatively, breaking contact with a click wheel image on a touch screen surface may indicate a user command corresponding to selection. For simplicity, in the discussion that follows, a portable multifunction device that includes a touch screen is used as an exemplary embodiment. It should be understood, however, that some of the user interfaces and associated processes may be applied to other devices, such as personal computers and laptop computers, that may include one or more other physical user-interface devices, such as a physical click wheel, a physical keyboard, a mouse and/or a joystick.
[0025] The device supports a variety of applications, such as a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a blogging application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application, and/or a digital video player application.
[0026] The various applications that may be executed on the device may use at least one common physical user-interface device, such as the touch screen. One or more functions of the touch screen as well as corresponding information displayed on the device may be adjusted and/or varied from one application to the next and/or within a respective application. In this way, a common physical architecture (such as the touch screen) of the device may support the variety of applications with user interfaces that are intuitive and transparent. [0027] The user interfaces may include one or more soft keyboard embodiments. The soft keyboard embodiments may include standard (QWERTY) and/or non-standard configurations of symbols on the displayed icons of the keyboard, such as those described in U.S. Patent Applications 11/459,606, "Keyboards For Portable Electronic Devices," filed July 24, 2006, and 11/459,615, "Touch Screen Keyboards For Portable Electronic Devices," filed July 24, 2006, the contents of which are hereby incorporated by reference in their entirety. The keyboard embodiments may include a reduced number of icons (or soft keys) relative to the number of keys in existing physical keyboards, such as that for a typewriter. This may make it easier for users to select one or more icons in the keyboard, and thus, one or more corresponding symbols. The keyboard embodiments may be adaptive. For example, displayed icons may be modified in accordance with user actions, such as selecting one or more icons and/or one or more corresponding symbols. One or more applications on the portable device may utilize common and/or different keyboard embodiments. Thus, the keyboard embodiment used may be tailored to at least some of the applications. In some embodiments, one or more keyboard embodiments may be tailored to a respective user. For example, one or more keyboard embodiments may be tailored to a respective user based on a word usage history (lexicography, slang, individual usage) of the respective user. Some of the keyboard embodiments may be adjusted to reduce a probability of a user error when selecting one or more icons, and thus one or more symbols, when using the soft keyboard embodiments.
[0028] Attention is now directed towards embodiments of the device. Figures IA and
IB are block diagrams illustrating portable multifunction devices 100 with touch-sensitive displays 112 in accordance with some embodiments. The touch-sensitive display 112 is sometimes called a "touch screen" for convenience, and may also be known as or called a touch-sensitive display system. The device 100 may include a memory 102 (which may include one or more computer readable storage mediums), a memory controller 122, one or more processing units (CPU's) 120, a peripherals interface 118, RF circuitry 108, audio circuitry 110, a speaker 111, a microphone 113, an input/output (I/O) subsystem 106, other input or control devices 116, and an external port 124. The device 100 may include one or more optical sensors 164. These components may communicate over one or more communication buses or signal lines 103.
[0029] It should be appreciated that the device 100 is only one example of a portable multifunction device 100, and that the device 100 may have more or fewer components than shown, may combine two or more components, or a may have a different configuration or arrangement of the components. The various components shown in Figures IA and IB may be implemented in hardware, software or a combination of both hardware and software, including one or more signal processing and/or application specific integrated circuits. [0030] Memory 102 may include high-speed random access memory and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Access to memory 102 by other components of the device 100, such as the CPU 120 and the peripherals interface 118, may be controlled by the memory controller 122. [0031] The peripherals interface 118 couples the input and output peripherals of the device to the CPU 120 and memory 102. The one or more processors 120 run or execute various software programs and/or sets of instructions stored in memory 102 to perform various functions for the device 100 and to process data.
[0032] In some embodiments, the peripherals interface 118, the CPU 120, and the memory controller 122 may be implemented on a single chip, such as a chip 104. In some other embodiments, they may be implemented on separate chips.
[0033] The RF (radio frequency) circuitry 108 receives and sends RF signals, also called electromagnetic signals. The RF circuitry 108 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. The RF circuitry 108 may include well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. The RF circuitry 108 may communicate with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The wireless communication may use any of a plurality of communications standards, protocols and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.1 Ig and/or IEEE 802.1 In), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for email (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), and/or Instant Messaging and Presence Service (IMPS)), and/or Short
Message Service (SMS)), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
[0034] The audio circuitry 110, the speaker 111, and the microphone 113 provide an audio interface between a user and the device 100. The audio circuitry 110 receives audio data from the peripherals interface 118, converts the audio data to an electrical signal, and transmits the electrical signal to the speaker 111. The speaker 111 converts the electrical signal to human-audible sound waves. The audio circuitry 110 also receives electrical signals converted by the microphone 113 from sound waves. The audio circuitry 110 converts the electrical signal to audio data and transmits the audio data to the peripherals interface 118 for processing. Audio data may be retrieved from and/or transmitted to memory 102 and/or the RF circuitry 108 by the peripherals interface 118. In some embodiments, the audio circuitry 110 also includes a headset jack (e.g. 212, Figure 2). The headset jack provides an interface between the audio circuitry 110 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).
[0035] The I/O subsystem 106 couples input/output peripherals on the device 100, such as the touch screen 112 and other input/control devices 116, to the peripherals interface 118. The I/O subsystem 106 may include a display controller 156 and one or more input controllers 160 for other input or control devices. The one or more input controllers 160 receive/send electrical signals from/to other input or control devices 116. The other input/control devices 116 may include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 160 may be coupled to any (or none) of the following: a keyboard, infrared port, USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 208, Figure 2) may include an up/down button for volume control of the speaker 111 and/or the microphone 113. The one or more buttons may include a push button (e.g., 206, Figure X). A quick press of the push button may disengage a lock of the touch screen 112 or begin a process that uses gestures on the touch screen to unlock the device, as described in U.S. Patent Application 11/322,549, "Unlocking a Device by Performing Gestures on an Unlock Image," filed December 23, 2005, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 206) may turn power to the device 100 on or off. The user may be able to customize a functionality of one or more of the buttons. The touch screen 112 is used to implement virtual or soft buttons and one or more soft keyboards.
[0036] The touch-sensitive touch screen 112 provides an input interface and an output interface between the device and a user. The display controller 156 receives and/or sends electrical signals from/to the touch screen 112. The touch screen 112 displays visual output to the user. The visual output may include graphics, text, icons, video, and any combination thereof (collectively termed "graphics"). In some embodiments, some or all of the visual output may correspond to user-interface objects, further details of which are described below.
[0037] A touch screen 112 has a touch-sensitive surface, sensor or set of sensors that accepts input from the user based on haptic and/or tactile contact. The touch screen 112 and the display controller 156 (along with any associated modules and/or sets of instructions in memory 102) detect contact (and any movement or breaking of the contact) on the touch screen 112 and converts the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages or images) that are displayed on the touch screen. In an exemplary embodiment, a point of contact between a touch screen 112 and the user corresponds to a finger of the user.
[0038] The touch screen 112 may use LCD (liquid crystal display) technology, or
LPD (light emitting polymer display) technology, although other display technologies may be used in other embodiments. The touch screen 112 and the display controller 156 may detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with a touch screen 112.
[0039] A touch-sensitive display in some embodiments of the touch screen 112 may be analogous to the multi-touch sensitive tablets described in the following U.S. Patents: 6,323,846 (Westerman et al), 6,570,557 (Westerman et al), and/or 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in their entirety. However, a touch screen 112 displays visual output from the portable device 100, whereas touch sensitive tablets do not provide visual output.
[0040] A touch-sensitive display in some embodiments of the touch screen 112 may be as described in the following applications: (1) U.S. Patent Application No. 11/381,313, "Multipoint Touch Surface Controller," filed May 2, 2006; (2) U.S. Patent Application No.
10/840,862, "Multipoint Touchscreen," filed May 6, 2004; (3) U.S. Patent Application No. 10/903,964, "Gestures For Touch Sensitive Input Devices," filed July 30, 2004; (4) U.S. Patent Application No. 11/048,264, "Gestures For Touch Sensitive Input Devices," filed January 31, 2005; (5) U.S. Patent Application No. 11/038,590, "Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices," filed January 18, 2005; (6) U.S. Patent Application No. 11/228,758, "Virtual Input Device Placement On A Touch Screen User Interface," filed September 16, 2005; (7) U.S. Patent Application No. 11/228,700, "Operation Of A Computer With A Touch Screen Interface," filed September 16, 2005; (8) U.S. Patent Application No. 11/228,737, "Activating Virtual Keys Of A Touch-Screen Virtual Keyboard," filed September 16, 2005; and (9) U.S. Patent Application No. 11/367,749, "Multi-Functional Hand-Held Device," filed March 3, 2006. All of these applications are incorporated by reference herein in their entirety.
[0041] The touch screen 112 may have a resolution in excess of 100 dpi. In an exemplary embodiment, the touch screen has a resolution of approximately 160 dpi. The user may make contact with the touch screen 112 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which are much less precise than stylus- based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
[0042] In some embodiments, in addition to the touch screen, the device 100 may include a touchpad (not shown) for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad may be a touch-sensitive surface that is separate from the touch screen 112 or an extension of the touch-sensitive surface formed by the touch screen. [0043] In some embodiments, the device 100 may include a physical or virtual click wheel as an input control device 116. A user may navigate among and interact with one or more graphical objects (henceforth referred to as icons) displayed in the touch screen 112 by rotating the click wheel or by moving a point of contact with the click wheel (e.g., where the amount of movement of the point of contact is measured by its angular displacement with respect to a center point of the click wheel). The click wheel may also be used to select one or more of the displayed icons. For example, the user may press down on at least a portion of the click wheel or an associated button. User commands and navigation commands provided by the user via the click wheel may be processed by an input controller 160 as well as one or more of the modules and/or sets of instructions in memory 102. For a virtual click wheel, the click wheel and click wheel controller may be part of the touch screen 112 and the display controller 156, respectively. For a virtual click wheel, the click wheel may be either an opaque or semitransparent object that appears and disappears on the touch screen display in response to user interaction with the device. In some embodiments, a virtual click wheel is displayed on the touch screen of a portable multifunction device and operated by user contact with the touch screen.
[0044] The device 100 also includes a power system 162 for powering the various components. The power system 162 may include a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.
[0045] The device 100 may also include one or more optical sensors 164. Figures IA and IB show an optical sensor coupled to an optical sensor controller 158 in I/O subsystem 106. The optical sensor 164 may include charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors. The optical sensor 164 receives light from the environment, projected through one or more lens, and converts the light to data representing an image. In conjunction with an imaging module 143 (also called a camera module), the optical sensor 164 may capture still images or video. In some embodiments, an optical sensor is located on the back of the device 100, opposite the touch screen display 112 on the front of the device, so that the touch screen display may be used as a viewfmder for either still and/or video image acquisition. In some embodiments, an optical sensor is located on the front of the device so that the user's image may be obtained for videoconferencing while the user views the other video conference participants on the touch screen display. In some embodiments, the position of the optical sensor 164 can be changed by the user (e.g., by rotating the lens and the sensor in the device housing) so that a single optical sensor 164 may be used along with the touch screen display for both video conferencing and still and/or video image acquisition.
[0046] The device 100 may also include one or more proximity sensors 166. Figures
IA and IB show a proximity sensor 166 coupled to the peripherals interface 118. Alternately, the proximity sensor 166 may be coupled to an input controller 160 in the I/O subsystem 106. The proximity sensor 166 may perform as described in U.S. Patent Application Nos. 11/241,839, "Proximity Detector In Handheld Device," filed September 30, 2005; 11/240,788, "Proximity Detector In Handheld Device," filed September 30, 2005; 11/620,702, "Using Ambient Light Sensor To Augment Proximity Sensor Output"; 11/586,862, "Automated Response To And Sensing Of User Activity In Portable Devices," filed October 24, 2006; and 11/638,251, "Methods And Systems For Automatic Configuration Of Peripherals," which are hereby incorporated by reference in their entirety.
In some embodiments, the proximity sensor turns off and disables the touch screen 112 when the multifunction device is placed near the user's ear (e.g., when the user is making a phone call). In some embodiments, the proximity sensor keeps the screen off when the device is in the user's pocket, purse, or other dark area to prevent unnecessary battery drainage when the device is a locked state.
[0047] The device 100 may also include one or more accelerometers 168. Figures IA and IB show an accelerometer 168 coupled to the peripherals interface 118. Alternately, the accelerometer 168 may be coupled to an input controller 160 in the I/O subsystem 106. The accelerometer 168 may perform as described in U.S. Patent Publication No. 20050190059, "Acceleration-based Theft Detection System for Portable Electronic Devices," and U.S. Patent Publication No. 20060017692, "Methods And Apparatuses For Operating A Portable Device Based On An Accelerometer," both of which are which are incorporated herein by reference in their entirety. In some embodiments, information is displayed on the touch screen display in a portrait view or a landscape view based on an analysis of data received from the one or more accelerometers.
[0048] In some embodiments, the software components stored in memory 102 may include an operating system 126, a communication module (or set of instructions) 128, a contact/motion module (or set of instructions) 130, a graphics module (or set of instructions) 132, a text input module (or set of instructions) 134, a Global Positioning System (GPS) module (or set of instructions) 135, and applications (or set of instructions) 136.
[0049] The operating system 126 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, WINDOWS, or an embedded operating system such as Vx Works) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
[0050] The communication module 128 facilitates communication with other devices over one or more external ports 124 and also includes various software components for handling data received by the RF circuitry 108 and/or the external port 124. The external port 124 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with the 30-pin connector used on iPod (trademark of Apple
Computer, Inc.) devices.
[0051] The contact/motion module 130 may detect contact with the touch screen 112
(in conjunction with the display controller 156) and other touch sensitive devices (e.g., a touchpad or physical click wheel). The contact/motion module 130 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred, determining if there is movement of the contact and tracking the movement across the touch screen 112, and determining if the contact has been broken (i.e., if the contact has ceased). Determining movement of the point of contact may include determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations may be applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., "multitouch'Vmultiple finger contacts). In some embodiments, the contact/motion module 130 and the display controller 156 also detects contact on a touchpad. In some embodiments, the contact/motion module 130 and the controller 160 detects contact on a click wheel.
[0052] The graphics module 132 includes various known software components for rendering and displaying graphics on the touch screen 112, including components for changing the intensity of graphics that are displayed. As used herein, the term "graphics" includes any object that can be displayed to a user, including without limitation text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations and the like. [0053] The text input module 134, which may be a component of graphics module
132, provides soft keyboards for entering text in various applications (e.g., contacts 137, e- mail 140, IM 141, blogging 142, browser 147, and any other application that needs text input).
[0054] The GPS module 135 determines the location of the device and provides this information for use in various applications (e.g., to telephone 138 for use in location-based dialing, to camera 143 and/or blogger 142 as picture/video metadata, and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).
[0055] The applications 136 may include the following modules (or sets of instructions), or a subset or superset thereof:
• a contacts module 137 (sometimes called an address book or contact list);
• a telephone module 138;
• a video conferencing module 139;
• an e-mail client module 140; • an instant messaging (IM) module 141;
• a blogging module 142;
• a camera module 143 for still and/or video images;
• an image management module 144;
• a video player module 145; • a music player module 146;
• a browser module 147;
• a calendar module 148; • widget modules 149, which may include weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, dictionary widget 149-5, and other widgets obtained by the user, as well as user-created widgets 149-6;
• widget creator module 150 for making user-created widgets 149-6; • search module 151;
• video and music player module 152, which merges video player module 145 and music player module 146;
• notes module 153; and/or
• map module 154. [0056] Examples of other applications 136 that may be stored in memory 102 include other word processing applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
[0057] In conjunction with touch screen 112, display controller 156, contact module
130, graphics module 132, and text input module 134, the contacts module 137 may be used to manage an address book or contact list, including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 138, video conference 139, e-mail 140, or IM 141; and so forth.
[0058] In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, contact module 130, graphics module 132, and text input module 134, the telephone module 138 may be used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in the address book 137, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation and disconnect or hang up when the conversation is completed. As noted above, the wireless communication may use any of a plurality of communications standards, protocols and technologies.
[0059] In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, optical sensor 164, optical sensor controller 158, contact module 130, graphics module 132, text input module 134, contact list 137, and telephone module 138, the videoconferencing module 139 may be used to initiate, conduct, and terminate a video conference between a user and one or more other participants.
[0060] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact module 130, graphics module 132, and text input module 134, the e-mail client module 140 may be used to create, send, receive, and manage e-mail. In conjunction with image management module 144, the e-mail module 140 makes it very easy to create and send e-mails with still or video images taken with camera module 143.
[0061] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact module 130, graphics module 132, and text input module 134, the instant messaging module 141 may be used to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages and to view received instant messages. In some embodiments, transmitted and/or received instant messages may include graphics, photos, audio files, video files and/or other attachments as are supported in a MMS and/or an Enhanced Messaging Service (EMS). As used herein, "instant messaging" refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS). [0062] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact module 130, graphics module 132, text input module 134, image management module 144, and browsing module 147, the blogging module 142 may be used to send text, still images, video, and/or other graphics to a blog (e.g., the user's blog).
[0063] In conjunction with touch screen 112, display controller 156, optical sensor(s) 164, optical sensor controller 158, contact module 130, graphics module 132, and image management module 144, the camera module 143 may be used to capture still images or video (including a video stream) and store them into memory 102, modify characteristics of a still image or video, or delete a still image or video from memory 102.
[0064] In conjunction with touch screen 112, display controller 156, contact module 130, graphics module 132, text input module 134, and camera module 143, the image management module 144 may be used to arrange, modify or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images. [0065] In conjunction with touch screen 112, display controller 156, contact module
130, graphics module 132, audio circuitry 110, and speaker 111, the video player module 145 may be used to display, present or otherwise play back videos (e.g., on the touch screen or on an external, connected display via external port 124). [0066] In conjunction with touch screen 112, display system controller 156, contact module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, and browser module 147, the music player module 146 allows the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files. In some embodiments, the device 100 may include the functionality of an MP3 player, such as an iPod (trademark of Apple Computer, Inc.).
[0067] In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, and text input module 134, the browser module 147 may be used to browse the Internet, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages. Embodiments of user interfaces and associated processes using browser module 147 are described further below.
[0068] In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, text input module 134, e-mail module 140, and browser module 147, the calendar module 148 may be used to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to do lists, etc.).
[0069] In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, text input module 134, and browser module 147, the widget modules 149 are mini-applications that may be downloaded and used by a user (e.g., weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, and dictionary widget 149-5) or created by the user (e.g., user- created widget 149-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).
[0070] In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, text input module 134, and browser module 147, the widget creator module 150 may be used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).
[0071] In conjunction with touch screen 112, display system controller 156, contact module 130, graphics module 132, and text input module 134, the search module 151 may be used to search for text, music, sound, image, video, and/or other files in memory 102 that match one or more search criteria (e.g., one or more user-specified search terms).
[0072] In conjunction with touch screen 112, display controller 156, contact module
130, graphics module 132, and text input module 134, the notes module 153 may be used to create and manage notes, to do lists, and the like. [0073] In conjunction with RF circuitry 108, touch screen 112, display system controller 156, contact module 130, graphics module 132, text input module 134, GPS module 135, and browser module 147, the map module 154 may be used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions; data on stores and other points of interest at or near a particular location; and other location-based data). [0074] Each of the above identified modules and applications correspond to a set of instructions for performing one or more functions described above. These modules (i.e., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules may be combined or otherwise rearranged in various embodiments. For example, video player module 145 may be combined with music player module 146 into a single module (e.g., video and music player module 152, Figure IB). In some embodiments, memory 102 may store a subset of the modules and data structures identified above. Furthermore, memory 102 may store additional modules and data structures not described above.
[0075] In some embodiments, the device 100 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen 112 and/or a touchpad. By using a touch screen and/or a touchpad as the primary input/control device for operation of the device 100, the number of physical input/control devices (such as push buttons, dials, and the like) on the device 100 may be reduced.
[0076] The predefined set of functions that may be performed exclusively through a touch screen and/or a touchpad include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates the device 100 to a main, home, or root menu from any user interface that may be displayed on the device 100. In such embodiments, the touchpad may be referred to as a "menu button." In some other embodiments, the menu button may be a physical push button or other physical input/control device instead of a touchpad. [0077] Figure 2 illustrates a portable multifunction device 100 having a touch screen
112 in accordance with some embodiments. The touch screen may display one or more graphics within user interface (UI) 200. In this embodiment, as well as others described below, a user may select one or more of the graphics by making contact or touching the graphics, for example, with one or more fingers 202 (not drawn to scale in the figure). In some embodiments, selection of one or more graphics occurs when the user breaks contact with the one or more graphics. In some embodiments, the contact may include a gesture, such as one or more taps, one or more swipes (from left to right, right to left, upward and/or downward) and/or a rolling of a finger (from right to left, left to right, upward and/or downward) that has made contact with the device 100. In some embodiments, inadvertent contact with a graphic may not select the graphic. For example, a swipe gesture that sweeps over an application icon may not select the corresponding application when the gesture corresponding to selection is a tap.
[0078] The device 100 may also include one or more physical buttons, such as
"home" or menu button 204. As described previously, the menu button 204 may be used to navigate to any application 136 in a set of applications that may be executed on the device 100. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI in touch screen 112.
[0079] In one embodiment, the device 100 includes a touch screen 112, a menu button 204, a push button 206 for powering the device on/off and locking the device, volume adjustment button(s) 208, a Subscriber Identity Module (SIM) card slot 210, a head set jack
212, and a docking/charging external port 124. The push button 206 may be used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, the device 100 also may accept verbal input for activation or deactivation of some functions through the microphone 113. [0080] Attention is now directed towards embodiments of user interfaces ("UI") and associated processes that may be implemented on a portable multifunction device 100.
[0081] Figure 3 illustrates an exemplary user interface for unlocking a portable electronic device in accordance with some embodiments. In some embodiments, user interface 300 includes the following elements, or a subset or superset thereof:
• Unlock image 302 that is moved with a finger gesture to unlock the device;
• Arrow 304 that provides a visual cue to the unlock gesture;
• Channel 306 that provides additional cues to the unlock gesture; . Time 308; • Day 310;
• Date 312; and
• Wallpaper image 314.
[0082] In some embodiments, the device detects contact with the touch-sensitive display (e.g., a user's finger making contact on or near the unlock image 302) while the device is in a user-interface lock state. The device moves the unlock image 302 in accordance with the contact. The device transitions to a user-interface unlock state if the detected contact corresponds to a predefined gesture, such as moving the unlock image across channel 306. Conversely, the device maintains the user-interface lock state if the detected contact does not correspond to the predefined gesture. As noted above, processes that use gestures on the touch screen to unlock the device are described in U.S. Patent Applications 11/322,549, "Unlocking A Device By Performing Gestures On An Unlock Image," filed December 23, 2005, and 11/322,550, "Indication Of Progress Towards Satisfaction Of A User Input Condition," filed December 23, 2005, which are hereby incorporated by reference in their entirety. [0083] Figures 4A and 4B illustrate exemplary user interfaces for a menu of applications on a portable multifunction device in accordance with some embodiments. In some embodiments, user interface 400A includes the following elements, or a subset or superset thereof:
• Signal strength indicator(s) 402 for wireless communication(s), such as cellular and Wi-Fi signals; • Time 404;
• Battery status indicator 406;
• Tray 408 with icons for frequently used applications, such as one or more of the following: o Phone 138, which may include an indicator 414 of the number of missed calls or voicemail messages; o E-mail client 140, which may include an indicator 410 of the number of unread e-mails; o Browser 147; and o Music player 146; and
• Icons for other applications, such as one or more of the following: o IM 141; o Image management 144; o Camera 143; o Video player 145; o Weather 149-1; o Stocks 149-2; o Blog 142; o Calendar 148; o Calculator 149-3; o Alarm clock 149-4; o Dictionary 149-5; and o User-created widget 149-6.
[0084] In some embodiments, user interface 400B includes the following elements, or a subset or superset thereof:
. 402, 404, 406, 141, 148, 144, 143, 149-3, 149-2, 149-1, 149-4, 410, 414, 138, 140, and 147, as described above; • Map 154;
• Notes 153;
• Settings 412, which provides access to settings for the device 100 and its various applications 136, as described further below; and • Video and music player module 152, also referred to as iPod (trademark of Apple
Computer, Inc.) module 152.
[0085] In some embodiments, UI 400A or 400B displays all of the available applications 136 on one screen so that there is no need to scroll through a list of applications (e.g., via a scroll bar). In some embodiments, as the number of applications increase, the icons corresponding to the applications may decrease in size so that all applications may be displayed on a single screen without scrolling. In some embodiments, having all applications on one screen and a menu button enables a user to access any desired application with at most two inputs, such as activating the menu button 204 and then activating the desired application (e.g., by a tap or other finger gesture on the icon corresponding to the application). [0086] In some embodiments, UI 400A or 400B provides integrated access to both widget-based applications and non-widget-based applications. In some embodiments, all of the widgets, whether user-created or not, are displayed in UI 400A or 400B. In other embodiments, activating the icon for user-created widget 149-6 may lead to another UI that contains the user-created widgets or icons corresponding to the user-created widgets. [0087] In some embodiments, a user may rearrange the icons in UI 400A or 400B, e.g., using processes described in U.S. Patent Application No. 11/459,602, "Portable Electronic Device With Interface Reconfiguration Mode," filed July 24, 2006, which is hereby incorporated by reference in its entirety. For example, a user may move application icons in and out of tray 408 using finger gestures. [0088] In some embodiments, UI 400A or 400B includes a gauge (not shown) that displays an updated account usage metric for an account associated with usage of the device (e.g., a cellular phone account), as described in U.S. Patent Application 11/322,552, "Account Information Display For Portable Communication Device," filed December 23, 2005, which is hereby incorporated by reference in its entirety. [0089] Figures 5A-5C illustrate exemplary user interfaces for translating page content or translating just frame content within the page content in accordance with some embodiments.
[0090] In some embodiments, user interfaces 4200A-4200C (Figures 5A-5C) include the following elements, or a subset or superset thereof:
• 402, 404, and 406, as described above;
• Previous page icon 3902 that when activated (e.g., by a finger tap on the icon) initiates display of the previous web page;
• Next page icon 3906 that when activated (e.g., by a finger tap on the icon) initiates display of the next web page;
• Refresh icon 3910 that when activated (e.g., by a finger tap on the icon) initiates a refresh of the web page;
• Bookmarks icon 3918 that when activated (e.g., by a finger tap on the icon) initiates display of a bookmarks list or menu for the browser; • Add bookmark icon 3920 that when activated (e.g., by a finger tap on the icon) initiates display of a UI for adding bookmarks;
• New window icon 3922 that when activated (e.g., by a finger tap on the icon) initiates display of a UI for adding new windows to the browser;
• Portion 4202 (Figures 5 A & 5C) of page content, such as web page content;
• Frame 4204 that displays a portion 4206 of frame content;
• Portion 4206 (Figures 5 A & 5B) of frame content, such as a portion of a map or a scrollable list of items, that is displayed within frame 4204;
• Other content 4208, besides the portion 4206 of frame content, in portion 4202;
• New portion 4212 (Figure 5B) of page content that is displayed in response to an N- finger translation gesture 4210; and
• New portion 4216 (Figure 5C) of frame content that is displayed in response to an M- finger translation gesture 4214, where M is a different number from N (e.g., N = I and
M = 2). [0091] Figure 6 is a flow diagram illustrating a process 6000 for translating content in accordance with some embodiments. In some embodiments, a portable multifunction device (e.g., device 100) displays (6002) a portion (e.g., 4202, Figure 5A) of page content on a touch screen display. The portion of page content includes a frame (e.g., 4204) displaying a portion (e.g., 4206) of frame content and also includes other content (e.g., 4208) of the page.
[0092] In some embodiments, the page content is web page content. In some embodiments, the page content is a word processing, spreadsheet, email or presentation document.
[0093] An N-fmger translation gesture (e.g., 4210) is detected (6004) on or near the touch screen display.
[0094] In response to detecting the N-fmger translation gesture, the page content is translated (6006) to display a new portion (e.g., 4212, Figure 5B) of page content on the touch screen display. Translating the page content includes translating the displayed portion (e.g., 4206) of the frame content and the other content (e.g., 4208) of the page. [0095] In some embodiments, translating the page content comprises translating the page content in a vertical, horizontal, or diagonal direction. In some embodiments, translating the page content has an associated direction of translation that corresponds to a direction of movement of the N-fmger translation gesture. In some embodiments, the direction of translation corresponds directly to the direction of finger movement; in some embodiments, however, the direction of translation is mapped from the direction of finger movement in accordance with a rule. For example, the rule may state that if the direction of finger movement is within a predetermined angle (e.g., 27°) of a standard axis, the direction of translation is along the standard axis, and otherwise the direction of translation is substantially the same as the direction of finger movement. [0096] In some embodiments, translating the page content has an associated speed of translation that corresponds to a speed of movement of the N-fmger translation gesture. In some embodiments, translating the page content is in accordance with a simulation of an equation of motion having friction.
[0097] An M-fmger translation gesture (e.g., 4214, Figure 5A) is detected (6008) on or near the touch screen display, where M is a different number than N. In some embodiments, N is equal to 1 and M is equal to 2. [0098] In response to detecting the M-finger translation gesture 4214, the frame content is translated (6010) to display a new portion (e.g., 4216, Figure 5C) of frame content on the touch screen display, without translating the other content (e.g., 4208) of the page. Although not shown in Figures 5A-5C, it is noted that when the page content includes more than one frame content (i.e., two or more instances of frame content in different regions of the page content), the user performs the M-finger translation gesture 4214 on top of, or at least partially on top of a respective frame content in order to identify that respective frame content as the frame content to translate.
[0099] In some embodiments, translating the frame content comprises translating the frame content in a vertical, horizontal, or diagonal direction.
[00100] In some embodiments, translating the frame content has an associated direction of translation that corresponds to a direction of movement of the M-finger translation gesture. In some embodiments, the direction of translation corresponds directly to the direction of finger movement; in some embodiments, however, the direction of translation is mapped from the direction of finger movement in accordance with a rule. For example, the rule may state that if the direction of finger movement is within a predetermined angle (e.g., 27°) of a standard axis, the direction of translation is along the standard axis, and otherwise the direction of translation is substantially the same as the direction of finger movement.
[00101] In some embodiments, translating the frame content has an associated speed of translation that corresponds to a speed of movement of the M-finger translation gesture. In some embodiments, translating the frame content is in accordance with a simulation of an equation of motion having friction.
[00102] In some embodiments, the frame content comprises a map. In some embodiments, the frame content comprises a scrollable list of items. [00103] In some embodiments, the other content of the page includes text.
[00104] A graphical user interface (e.g., UI 4200A, Figure 5A) on a portable multifunction device with a touch screen display comprises a portion 4202 of page content on the touch screen display, which includes: (1) a frame 4204 displaying a portion 4206 of frame content and (2) other content 4208 of the page. In response to detecting an N-fmger translation gesture 4210 on or near the touch screen display, the page content is translated to display a new portion 4212 (Figure 5B) of page content on the touch screen display, wherein translating the page content includes translating the other content 4208 of the page. In response to detecting an M-fmger translation gesture 4214 on or near the touch screen display, where M is a different number than N, the frame content is translated to display a new portion 4216 (Figure 5C) of frame content on the touch screen display, without translating the other content 4208 of the page. As noted above, the M-fmger gesture 4214 may be performed by the user on top of the frame content to be translated so as to identify which frame content to translate.
[00105] Thus, depending on the number of fingers used in the gesture, a user may easily translate page content or just translate frame content within the page content. [00106] The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.

Claims

What is claimed is:
1. A computer-implemented method, comprising: at a portable multifunction device with a touch screen display, displaying a portion of web page content on the touch screen display, wherein the portion of web page content includes: a frame displaying a portion of frame content, and other content of the web page, comprising content of the web page other than the frame content; detecting a translation gesture by a single finger on or near the touch screen display; in response to detecting the translation gesture by the single finger, translating the web page content to display a new portion of web page content on the touch screen display, wherein translating the web page content includes translating the displayed portion of the frame content and the other content of the web page; detecting a translation gesture by two fingers on or near the touch screen display; and in response to detecting the translation gesture by the two fingers, translating the frame content to display a new portion of frame content on the touch screen display, without translating the other content of the web page.
2. A computer-implemented method, comprising: at a portable multifunction device with a touch screen display, displaying a portion of page content on the touch screen display, wherein the portion of page content includes: a frame displaying a portion of frame content, and other content of the page; detecting an N-finger translation gesture on or near the touch screen display; in response to detecting the N-finger translation gesture, translating the page content to display a new portion of page content on the touch screen display, wherein translating the page content includes translating the displayed portion of the frame content and the other content of the page; detecting an M-finger translation gesture on or near the touch screen display, where M is a different number than N; and in response to detecting the M-finger translation gesture, translating the frame content to display a new portion of frame content on the touch screen display, without translating the other content of the page.
3. The computer-implemented method of claim 2, where N is equal to 1 and M is equal to 2.
4. The computer-implemented method of claim 2, wherein the page content is web page content.
5. The computer-implemented method of claim 2, wherein the page content is a word processing, spreadsheet, email or presentation document.
6. The computer-implemented method of claim 2, wherein translating the page content comprises translating the page content in a vertical, horizontal, or diagonal direction.
7. The computer-implemented method of claim 2, wherein translating the page content has an associated direction of translation that corresponds to a direction of movement of the N-fϊnger translation gesture.
8. The computer-implemented method of claim 2, wherein translating the page content has an associated speed of translation that corresponds to a speed of movement of the N- finger translation gesture.
9. The computer-implemented method of claim 2, wherein translating the page content is in accordance with a simulation of an equation of motion having friction.
10. The computer-implemented method of claim 2, wherein translating the frame content comprises translating the frame content in a vertical, horizontal, or diagonal direction.
11. The computer-implemented method of claim 2, wherein translating the frame content comprises translating the frame content in a diagonal direction.
12. The computer-implemented method of claim 2, wherein translating the frame content has an associated direction of translation that corresponds to a direction of movement of the
M-finger translation gesture.
13. The computer-implemented method of claim 2, wherein translating the frame content has an associated speed of translation that corresponds to a speed of movement of the M- finger translation gesture.
14. The computer-implemented method of claim 2, wherein translating the frame content is in accordance with a simulation of an equation of motion having friction.
15. The computer-implemented method of claim 2, wherein the frame content comprises a map.
16. The computer-implemented method of claim 2, wherein the frame content comprises a scrollable list of items.
17. The computer-implemented method of claim 2, wherein the other content of the page includes text.
18. A graphical user interface on a portable multifunction device with a touch screen display, comprising: a portion of page content on the touch screen display, which includes: a frame displaying a portion of frame content, and other content of the page; wherein: in response to detecting an N-fmger translation gesture on or near the touch screen display, the page content is translated to display a new portion of page content on the touch screen display, wherein translating the page content includes translating the other content of the page; and in response to detecting an M-fmger translation gesture on or near the touch screen display, where M is a different number than N, the frame content is translated to display a new portion of frame content on the touch screen display, without translating the other content of the page.
19. A portable multifunction device, comprising: a touch screen display; one or more processors; memory; and one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including: instructions for displaying a portion of page content on the touch screen display, wherein the portion of page content includes: a frame displaying a portion of frame content, and other content of the page; instructions for detecting an N-fmger translation gesture on or near the touch screen display; instructions for translating the page content, in response to detecting the N- finger translation gesture, to display a new portion of page content on the touch screen display, wherein the instructions for translating the page content include instructions for translating the displayed portion of the frame content and the other content of the page; instructions for detecting an M-fmger translation gesture on or near the touch screen display, where M is a different number than N; and instructions for translating the frame content, in response to detecting the M- finger translation gesture, to display a new portion of frame content on the touch screen display, without translating the other content of the page.
20. A computer readable storage medium that stores one or more programs, the one or more programs comprising: instructions for displaying a portion of page content on the touch screen display, wherein the portion of page content includes: a frame displaying a portion of frame content, and other content of the page; instructions for detecting an N-fmger translation gesture on or near the touch screen display; instructions for translating the page content, in response to detecting the N-fmger translation to display a new portion of page content on the touch screen display, wherein translating the page content includes translating the displayed portion of the frame content and the other content of the page; instructions for detecting an M-fmger translation gesture on or near the touch screen display, where M is a different number than N; and instructions for translating the frame content, in response to detecting the M-fmger translation gesture, to display a new portion of frame content on the touch screen display, without translating the other content of the page.
21. A portable multifunction device with a touch screen display, comprising: means for displaying a portion of page content on the touch screen display, wherein the portion of page content includes: a frame displaying a portion of frame content, and other content of the page; means for detecting an N-fϊnger translation gesture on or near the touch screen display; means for translating the page content, in response to detecting the N-fmger translation gesture, to display a new portion of page content on the touch screen display, wherein the means for translating the page content include means for translating the displayed portion of the frame content and the other content of the page; means for detecting an M-fmger translation gesture on or near the touch screen display, where M is a different number than N; and means for translating the frame content, in response to detecting the M-fϊnger translation gesture, to display a new portion of frame content on the touch screen display, without translating the other content of the page.
PCT/US2007/088885 2007-01-07 2007-12-27 Portable multifunction device,method, and graphical user interface for translating displayed content WO2008085744A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07869934A EP2118728A1 (en) 2007-01-07 2007-12-27 Portable multifunction device,method, and graphical user interface for translating displayed content

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US87925307P 2007-01-07 2007-01-07
US60/879,253 2007-01-07
US87946907P 2007-01-08 2007-01-08
US60/879,469 2007-01-08
US94697607P 2007-06-28 2007-06-28
US60/946,976 2007-06-28
US93799307P 2007-06-29 2007-06-29
US60/937,993 2007-06-29
US11/960,675 2007-12-19
US11/960,675 US7966578B2 (en) 2007-01-07 2007-12-19 Portable multifunction device, method, and graphical user interface for translating displayed content

Publications (1)

Publication Number Publication Date
WO2008085744A1 true WO2008085744A1 (en) 2008-07-17

Family

ID=39107851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/088885 WO2008085744A1 (en) 2007-01-07 2007-12-27 Portable multifunction device,method, and graphical user interface for translating displayed content

Country Status (5)

Country Link
US (1) US7966578B2 (en)
EP (1) EP2118728A1 (en)
AU (1) AU2008100010B4 (en)
DE (1) DE202008000268U1 (en)
WO (1) WO2008085744A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061582A1 (en) * 2009-11-20 2011-05-26 Sony Ericsson Mobile Communications Ab Methods, devices, and computer program products for providing multi-region touch scrolling
EP2592828A1 (en) * 2011-11-09 2013-05-15 OpenTV, Inc. Apparatus and method for navigating an electronic program guide
KR101272865B1 (en) * 2012-11-30 2013-06-10 (주)인스웨이브시스템즈 Apparatus and method for displaying content in mobile terminal
US9262002B2 (en) 2010-11-03 2016-02-16 Qualcomm Incorporated Force sensing touch screen
US11120473B2 (en) * 2008-07-15 2021-09-14 Google Llc Geographic and keyword context in embedded applications

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8296684B2 (en) * 2008-05-23 2012-10-23 Hewlett-Packard Development Company, L.P. Navigating among activities in a computing device
US8683362B2 (en) 2008-05-23 2014-03-25 Qualcomm Incorporated Card metaphor for activities in a computing device
US8564544B2 (en) 2006-09-06 2013-10-22 Apple Inc. Touch screen device, method, and graphical user interface for customizing display of content category icons
US7844915B2 (en) 2007-01-07 2010-11-30 Apple Inc. Application programming interfaces for scrolling operations
US20080168402A1 (en) 2007-01-07 2008-07-10 Christopher Blumenberg Application Programming Interfaces for Gesture Operations
US20080168478A1 (en) 2007-01-07 2008-07-10 Andrew Platzer Application Programming Interfaces for Scrolling
US8448138B2 (en) * 2008-01-15 2013-05-21 Microsoft Corporation Recording user-driven events within a computing system
US8645827B2 (en) * 2008-03-04 2014-02-04 Apple Inc. Touch event model
US8416196B2 (en) 2008-03-04 2013-04-09 Apple Inc. Touch event model programming interface
US8717305B2 (en) 2008-03-04 2014-05-06 Apple Inc. Touch event model for web pages
US20090295746A1 (en) * 2008-04-29 2009-12-03 Davidson Philip L Event registration and dispatch system and method for multi-point controls
US8174503B2 (en) 2008-05-17 2012-05-08 David H. Cain Touch-based authentication of a mobile device through user generated pattern creation
JP4181211B1 (en) * 2008-06-13 2008-11-12 任天堂株式会社 Information processing apparatus and startup program executed therein
US8130275B2 (en) * 2008-06-13 2012-03-06 Nintendo Co., Ltd. Information-processing apparatus, and storage medium storing a photographing application launch program executed by information-processing apparatus
KR101027566B1 (en) * 2008-11-17 2011-04-06 (주)메디슨 Ultrasonic diagnostic apparatus and method for generating commands in ultrasonic diagnostic apparatus
US8610673B2 (en) * 2008-12-03 2013-12-17 Microsoft Corporation Manipulation of list on a multi-touch display
US8957865B2 (en) * 2009-01-05 2015-02-17 Apple Inc. Device, method, and graphical user interface for manipulating a user interface object
US8285499B2 (en) 2009-03-16 2012-10-09 Apple Inc. Event recognition
US8566045B2 (en) 2009-03-16 2013-10-22 Apple Inc. Event recognition
US9311112B2 (en) 2009-03-16 2016-04-12 Apple Inc. Event recognition
US8566044B2 (en) 2009-03-16 2013-10-22 Apple Inc. Event recognition
US9684521B2 (en) 2010-01-26 2017-06-20 Apple Inc. Systems having discrete and continuous gesture recognizers
KR20110051073A (en) * 2009-11-09 2011-05-17 엘지전자 주식회사 Method of executing application program in portable terminal
US8786559B2 (en) * 2010-01-06 2014-07-22 Apple Inc. Device, method, and graphical user interface for manipulating tables using multi-contact gestures
US20110179381A1 (en) * 2010-01-21 2011-07-21 Research In Motion Limited Portable electronic device and method of controlling same
US9292161B2 (en) * 2010-03-24 2016-03-22 Microsoft Technology Licensing, Llc Pointer tool with touch-enabled precise placement
US8704783B2 (en) 2010-03-24 2014-04-22 Microsoft Corporation Easy word selection and selection ahead of finger
US20110288913A1 (en) * 2010-05-20 2011-11-24 Google Inc. Interactive Ads
KR101673925B1 (en) 2010-05-26 2016-11-09 삼성전자주식회사 Portable Device having the touch lock status and Operation system thereof
US10216408B2 (en) 2010-06-14 2019-02-26 Apple Inc. Devices and methods for identifying user interface objects based on view hierarchy
US8773370B2 (en) 2010-07-13 2014-07-08 Apple Inc. Table editing systems with gesture-based insertion and deletion of columns and rows
US8564728B2 (en) 2010-09-08 2013-10-22 Telefonaktiebolaget L M Ericsson (Publ) Gesture-based control of IPTV system
US20120066295A1 (en) * 2010-09-09 2012-03-15 Natarajan Sambamoorthy System and method for accessing and utilizing a plurality of smartphone applications
US8711552B2 (en) 2010-10-06 2014-04-29 Compal Electronics Inc. Modular system having expandable form factor
KR101522345B1 (en) 2010-11-12 2015-05-21 주식회사 케이티 Method for displaying background pictures in mobile communication apparatus and apparatus the same
US8949370B1 (en) * 2011-01-12 2015-02-03 Google Inc. Mobile application generation
US20120242584A1 (en) * 2011-03-22 2012-09-27 Nokia Corporation Method and apparatus for providing sight independent activity reports responsive to a touch gesture
US9047050B2 (en) 2011-03-24 2015-06-02 Compal Electronics, Inc. Modular system having cross platform master device
US9298363B2 (en) 2011-04-11 2016-03-29 Apple Inc. Region activation for touch sensitive surface
KR101199618B1 (en) 2011-05-11 2012-11-08 주식회사 케이티테크 Apparatus and Method for Screen Split Displaying
US8775213B2 (en) 2011-07-21 2014-07-08 Emergent Health Care Solutions, Llc Method, apparatus, and system for reading, processing, presenting, and/or storing electronic medical record information
US9424393B2 (en) 2011-07-21 2016-08-23 Emergent Health Care Solutions, Llc Method, apparatus, and system for reading, processing, presenting, and/or storing electronic medical record information
US8713482B2 (en) * 2011-07-28 2014-04-29 National Instruments Corporation Gestures for presentation of different views of a system diagram
US8782525B2 (en) 2011-07-28 2014-07-15 National Insturments Corporation Displaying physical signal routing in a diagram of a system
US9417754B2 (en) 2011-08-05 2016-08-16 P4tents1, LLC User interface system, method, and computer program product
US9317196B2 (en) 2011-08-10 2016-04-19 Microsoft Technology Licensing, Llc Automatic zooming for text selection/cursor placement
US8971572B1 (en) 2011-08-12 2015-03-03 The Research Foundation For The State University Of New York Hand pointing estimation for human computer interaction
US10467677B2 (en) 2011-09-28 2019-11-05 Nara Logics, Inc. Systems and methods for providing recommendations based on collaborative and/or content-based nodal interrelationships
US11727249B2 (en) 2011-09-28 2023-08-15 Nara Logics, Inc. Methods for constructing and applying synaptic networks
US10789526B2 (en) 2012-03-09 2020-09-29 Nara Logics, Inc. Method, system, and non-transitory computer-readable medium for constructing and applying synaptic networks
US9229568B2 (en) * 2011-09-30 2016-01-05 Oracle International Corporation Touch device gestures
DE202012013272U1 (en) 2012-01-05 2015-11-16 SONOTEC Dr. zur Horst-Meyer & Münch oHG Mobile device for computer-aided input and output of data with an integrated screen output unit
US8589825B2 (en) 2012-02-28 2013-11-19 Huawei Technologies Co., Ltd. Communication application triggering method and electronic device
KR101931676B1 (en) 2012-03-23 2018-12-24 삼성디스플레이 주식회사 Photo sensor, display device including the same and driving method thereof
US8904304B2 (en) * 2012-06-25 2014-12-02 Barnesandnoble.Com Llc Creation and exposure of embedded secondary content data relevant to a primary content page of an electronic book
US9239824B2 (en) 2012-07-27 2016-01-19 Semantic Compaction Systems, Inc. Apparatus, method and computer readable medium for a multifunctional interactive dictionary database for referencing polysemous symbol sequences
US9557846B2 (en) 2012-10-04 2017-01-31 Corning Incorporated Pressure-sensing touch system utilizing optical and capacitive systems
US9389138B2 (en) 2012-10-26 2016-07-12 General Electric Company Apparatus and method to detect damage of a component of a system
US9733716B2 (en) 2013-06-09 2017-08-15 Apple Inc. Proxy gesture recognizer
JP6155869B2 (en) 2013-06-11 2017-07-05 ソニー株式会社 Display control apparatus, display control method, and program
US9329765B2 (en) * 2013-06-14 2016-05-03 Htc Corporation Method and electronic apparatus for scrolling frame content and recording medium using the same
JP2015148991A (en) * 2014-02-07 2015-08-20 ソニー株式会社 Information processing apparatus, information processing method, and program
RU203578U1 (en) * 2020-08-21 2021-04-13 Юрий Борисович Соколов INTELLIGENT MULTIFUNCTIONAL CENTER
US11856049B2 (en) * 2020-10-26 2023-12-26 Zebra Technologies Corporation Pin board interface

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827094A2 (en) * 1996-08-30 1998-03-04 Sun Microsystems, Inc. Method and apparatus for displaying information on a computer controlled display device
EP0827064A2 (en) * 1996-08-29 1998-03-04 International Business Machines Corporation Selection device for touchscreen systems
WO2002001338A1 (en) * 2000-06-28 2002-01-03 Intel Corporation Providing a scrolling function for a multiple frame web page
US20040021676A1 (en) * 2002-08-01 2004-02-05 Tatung Co., Ltd. Method and apparatus of view window scrolling
EP1517228A2 (en) * 2003-09-16 2005-03-23 Smart Technologies, Inc. Gesture recognition method and touch system incorporating the same
WO2006020305A2 (en) * 2004-07-30 2006-02-23 Apple Computer, Inc. Gestures for touch sensitive input devices
US20060164399A1 (en) * 2005-01-21 2006-07-27 Cheston Richard W Touchpad diagonal scrolling
WO2006126055A2 (en) * 2005-05-23 2006-11-30 Nokia Corporation Improved pocket computer and associated methods

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8479122B2 (en) * 2004-07-30 2013-07-02 Apple Inc. Gestures for touch sensitive input devices
US7663607B2 (en) * 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
KR100595920B1 (en) 1998-01-26 2006-07-05 웨인 웨스터만 Method and apparatus for integrating manual input
US7688306B2 (en) 2000-10-02 2010-03-30 Apple Inc. Methods and apparatuses for operating a portable device based on an accelerometer
US7218226B2 (en) 2004-03-01 2007-05-15 Apple Inc. Acceleration-based theft detection system for portable electronic devices
US6677932B1 (en) 2001-01-28 2004-01-13 Finger Works, Inc. System and method for recognizing touch typing under limited tactile feedback conditions
US6570557B1 (en) 2001-02-10 2003-05-27 Finger Works, Inc. Multi-touch system and method for emulating modifier keys via fingertip chords
TWI248576B (en) * 2004-07-05 2006-02-01 Elan Microelectronics Corp Method for controlling rolling of scroll bar on a touch panel
US8564544B2 (en) * 2006-09-06 2013-10-22 Apple Inc. Touch screen device, method, and graphical user interface for customizing display of content category icons

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827064A2 (en) * 1996-08-29 1998-03-04 International Business Machines Corporation Selection device for touchscreen systems
EP0827094A2 (en) * 1996-08-30 1998-03-04 Sun Microsystems, Inc. Method and apparatus for displaying information on a computer controlled display device
WO2002001338A1 (en) * 2000-06-28 2002-01-03 Intel Corporation Providing a scrolling function for a multiple frame web page
US20040021676A1 (en) * 2002-08-01 2004-02-05 Tatung Co., Ltd. Method and apparatus of view window scrolling
EP1517228A2 (en) * 2003-09-16 2005-03-23 Smart Technologies, Inc. Gesture recognition method and touch system incorporating the same
WO2006020305A2 (en) * 2004-07-30 2006-02-23 Apple Computer, Inc. Gestures for touch sensitive input devices
US20060164399A1 (en) * 2005-01-21 2006-07-27 Cheston Richard W Touchpad diagonal scrolling
WO2006126055A2 (en) * 2005-05-23 2006-11-30 Nokia Corporation Improved pocket computer and associated methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KORPELA, JUKKA: "Using inline frames (iframe elements) to embed documents into HTML documents", 25 September 2006 (2006-09-25), XP002476099, Retrieved from the Internet <URL:http://web.archive.org/web/20060925113551/http://www.cs.tut.fi/~jkorpela/html/iframe.html> [retrieved on 20080411] *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11120473B2 (en) * 2008-07-15 2021-09-14 Google Llc Geographic and keyword context in embedded applications
WO2011061582A1 (en) * 2009-11-20 2011-05-26 Sony Ericsson Mobile Communications Ab Methods, devices, and computer program products for providing multi-region touch scrolling
US9262002B2 (en) 2010-11-03 2016-02-16 Qualcomm Incorporated Force sensing touch screen
US8997151B2 (en) 2011-09-07 2015-03-31 Opentv, Inc. Apparatus and method for EPG sorting and automatic realignment
US9319747B2 (en) 2011-09-07 2016-04-19 Opentv, Inc. Apparatus and method for EPG sorting and automatic realignment
US10063930B2 (en) 2011-09-07 2018-08-28 Opentv, Inc. Apparatus and method for EPG sorting and automatic realignment
EP2592828A1 (en) * 2011-11-09 2013-05-15 OpenTV, Inc. Apparatus and method for navigating an electronic program guide
KR101272865B1 (en) * 2012-11-30 2013-06-10 (주)인스웨이브시스템즈 Apparatus and method for displaying content in mobile terminal
WO2014084461A1 (en) * 2012-11-30 2014-06-05 (주)인스웨이브시스템즈 Apparatus for configuring screen of mobile terminal, and method therefor

Also Published As

Publication number Publication date
AU2008100010A4 (en) 2008-02-14
EP2118728A1 (en) 2009-11-18
DE202008000268U1 (en) 2008-06-19
US7966578B2 (en) 2011-06-21
US20080168405A1 (en) 2008-07-10
AU2008100010B4 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
US10778828B2 (en) Portable multifunction device, method, and graphical user interface for configuring and displaying widgets
US10409461B2 (en) Portable multifunction device, method, and graphical user interface for interacting with user input elements in displayed content
AU2008100010B4 (en) Portable multifunction device, method, and graphical user interface for translating displayed content
US9575646B2 (en) Modal change based on orientation of a portable multifunction device
AU2008100011A4 (en) Positioning a slider icon on a portable multifunction device
US7978176B2 (en) Portrait-landscape rotation heuristics for a portable multifunction device
AU2007292384B2 (en) Methods for determining a cursor position from a finger contact with a touch screen display
US8504946B2 (en) Portable device, method, and graphical user interface for automatically scrolling to display the top of an electronic document
US7978182B2 (en) Screen rotation gestures on a portable multifunction device
US8116807B2 (en) Airplane mode indicator on a portable multifunction device
US20080165145A1 (en) Portable Multifunction Device, Method, and Graphical User Interface for Interpreting a Finger Swipe Gesture
WO2008085742A2 (en) Portable multifunction device, method and graphical user interface for interacting with user input elements in displayed content
WO2009151752A1 (en) Touch screen device, method, and graphical user interface for manipulating three-dimensional virtual objects
AU2012201240B2 (en) Methods for determining a cursor position from a finger contact with a touch screen display

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780051764.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07869934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007869934

Country of ref document: EP