WO2008101091A2 - Electrical ablation apparatus, system, and method - Google Patents

Electrical ablation apparatus, system, and method Download PDF

Info

Publication number
WO2008101091A2
WO2008101091A2 PCT/US2008/053978 US2008053978W WO2008101091A2 WO 2008101091 A2 WO2008101091 A2 WO 2008101091A2 US 2008053978 W US2008053978 W US 2008053978W WO 2008101091 A2 WO2008101091 A2 WO 2008101091A2
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
electrode
electrical
electrodes
electrical waveform
Prior art date
Application number
PCT/US2008/053978
Other languages
French (fr)
Other versions
WO2008101091A3 (en
Inventor
Gary L. Long
Original Assignee
Ethicon Endo-Surgery, Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon Endo-Surgery, Inc filed Critical Ethicon Endo-Surgery, Inc
Publication of WO2008101091A2 publication Critical patent/WO2008101091A2/en
Publication of WO2008101091A3 publication Critical patent/WO2008101091A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00982Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/143Needle multiple needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Definitions

  • Electrical therapy techniques have been employed in medicine to treat pain and other conditions.
  • Electrical ablation techniques have been employed in medicine for removing diseased tissue or abnormal growths from the body.
  • Electrical therapy probes comprising electrodes may be required to electrically treat diseased tissue.
  • the electrodes may be introduced into the patient percutaneously to the tissue treatment region by passing the electrodes through the skin of the patient. If the at least two electrical therapy electrodes are introduced only percutaneously, however, the relative position between these electrodes may be limited. Nevertheless, there is a need for improved medical instruments to electrically ablate or destroy diseased tissue, such as cancer, or abnormal growths from the body. There may be a need for such electrical therapy techniques to be performed endoscopically.
  • the various embodiments are directed to an ablation device.
  • the ablation device comprises an elongate relatively flexible member having a proximal end and a distal end.
  • the flexible member comprises a working channel.
  • a first electrode extends from the working channel at the distal end of the flexible member.
  • the first electrode is adapted to be endoscopically located in a first position relative to a tissue treatment region.
  • a second electrode is adapted to be percutaneous Iy located in a second position of the tissue treatment region.
  • the first and second electrodes are adapted to couple to an electrical waveform generator and to receive an electrical waveform sufficient to ablate tissue located between the first and second electrodes.
  • FIG. 1 illustrates one embodiment of an electrical ablation system.
  • FIG. 2 is an enlarged view of one embodiment of an electrical ablation probe of the electrical ablation system shown in FIG. 1
  • FIG. 3 illustrates the use of one embodiment of the electrical ablation system to treat diseased tissue on the liver.
  • FIG. 4 is a sectional view taken along the longitudinal axis of one embodiment of the electrical ablation system shown in FIG. 1.
  • FIG. 5 is a sectional view taken along line 5—5 of one embodiment of the electrical ablation system shown in FIG. 4.
  • FIG. 6 is a sectional view taken along line 6—6 of the rotation tube of one embodiment of the electrical ablation system shown in FIG. 4.
  • FIG. 7 shows a distal portion of one embodiment of the electrical ablation system shown in FIG. 1 inserted into a hollow body or natural opening of a patient.
  • FIG. 8 is a diagram of one embodiment of a control loop for one embodiment of an electrical (e.g., IRE or RF) therapy procedure to treat diseased tissue as described herein.
  • an electrical e.g., IRE or RF
  • FIG. 9 is a graphical representation (graph) of the electric field strength (along the y- axis) as a function of the distance from an electrical therapy electrode under various conductivity environments near the diseased tissue.
  • FIG. 10 is a close up of the graph shown in FIG. 9.
  • the various embodiments described herein are directed to electrical therapy ablation devices.
  • the electrical therapy ablation devices comprise probes and electrodes that can be positioned in a tissue treatment region of a patient either endoscopically or transcutaneously (percutaneously), and in some embodiments a combination thereof.
  • An endoscopic electrode is inserted through a working channel of an endoscope.
  • a transcutaneous or percutaneous electrode has a sharp point to facilitate insertion through the skin of a patient and to enhance local current density at a target site during treatment. The placement and location of the electrodes can be important for effective and efficient therapy. Once positioned, the electrical therapy electrodes deliver electrical current to the treatment region.
  • the electrical current is generated by a control unit or generator external to the patient and typically has particular waveform characteristics, such as frequency, amplitude, and pulse width.
  • the probes may comprise one electrode containing both a cathode and an anode or may contain a plurality of electrodes with at least one serving as a cathode and at least one serving as an anode.
  • Electroporation is the generation of a destabilizing electric potential across such biological membranes. In electroporation, pores are formed when the voltage across the cell plasma membrane exceeds its dielectric strength. Electroporation destabilizing electric potentials are generally in the range of several hundred volts across a distance of several millimeters.
  • the electric potentials may be applied across a biological membrane as a way of introducing some substance into a cell, such as loading it with a molecular probe, a drug that can change the function of the cell, a piece of coding DNA, or increasing the uptake of drugs in cells.
  • the strength of the applied electrical field and/or duration of exposure to it are suitably chosen, the pores formed by the electrical pulse reseal after a short period of time, during which extracellular compounds have a chance to enter into the cell.
  • the process is reversible and the potential does not permanently damage the cell membrane. This process may be referred to as reversible electroporation (RE).
  • RE reversible electroporation
  • Electroporation may be performed with devices called electroporators. These appliances create the electric current and send it through the cell. Electroporators may comprise two or more metallic (e.g., aluminum) electrodes connected to an energy source. The energy source generates an electric field having a suitable characteristic waveform output in terms of frequency, amplitude, and pulse width.
  • Endoscopy means looking inside and refers to looking inside the human body for medical reasons. Endoscopy may be performed using an instrument called an endoscope. Endoscopy is a minimally invasive diagnostic medical procedure used to evaluate the interior surfaces of an organ by inserting a small tube into the body, often, but not necessarily, through a natural body opening. Through the endoscope, an operator may see abnormal or diseased tissue such as lesions and other surface conditions.
  • the endoscope may have a rigid or a flexible tube and in addition to providing an image for visual inspection and photography, the endoscope may be adapted and configured for taking biopsies, retrieving foreign objects, and introducing medical instruments to a tissue treatment region. Endoscopy is a vehicle for minimally invasive surgery.
  • the embodiments of the electrical therapy ablation devices may be employed for treating diseased tissue, tissue masses, tissue tumors, and lesions (diseased tissue). More particularly, the electrical therapy ablation devices may be employed in minimally invasive therapeutic treatment of diseased tissue. The electrical therapy ablation devices may be employed to deliver energy to the diseased tissue to ablate or destroy tumors, masses, lesions, and other abnormal tissue growths. In one embodiment, the electrical therapy ablation devices and techniques described herein may be employed in the treatment of cancer by quickly creating necrosis and destroying live cancerous tissue in- vivo. Minimally invasive therapeutic procedures to treat diseased tissue by introducing medical instruments to a tissue treatment region through a natural opening of the patient are known as Natural Orifice Trans lumenal Endoscopic Surgery (NOTES)TM.
  • NOTES Natural Orifice Trans lumenal Endoscopic Surgery
  • FIG. 1 illustrates one embodiment of an electrical ablation system 10.
  • the electrical ablation system 10 may be employed to electrically treat diseased tissue such as tumors and lesions inside a patient.
  • the electrical ablation system 10 may be configured to be positioned within a natural opening of the patient such as the colon or the esophagus and can be passed through the natural opening to reach a tissue treatment region.
  • the illustrated embodiment of the electrical ablation system 10 may be used to treat diseased tissue via the colon or the esophagus of the patient, for example.
  • the tissue treatment region may be located in the esophagus, colon, liver, breast, brain, and lung, among others.
  • the electrical ablation system 10 can be configured to treat a number of lesions and ostepathologies comprising metastatic lesions, tumors, fractures, infected site, inflamed sites, and the like. Once positioned at the target tissue treatment region, the electrical ablation system 10 can be configured to treat and ablate diseased tissue in that region. In one embodiment, the electrical ablation system 10 may be adapted to treat diseased tissue, such as cancers, of the gastrointestinal (GI) tract or esophagus that may be accessed orally. In another embodiment, the electrical ablation system 10 may be adapted to treat diseased tissue, such as cancers, of the liver or other organs that may be accessible trans-anally through the colon and/or the abdomen.
  • GI gastrointestinal
  • One embodiment of the electrical ablation system 10 may be mounted on a flexible endoscope 12 (also referred to as endoscope 12), such as the GIF-100 model available from Olympus Corporation.
  • the flexible endoscope 12 includes an endoscope handle 34 and an elongate relatively flexible shaft 32.
  • the electrical ablation system 10 generally comprises an electrical ablation probe 20, a plurality of electrical conductors 18, a handpiece 16 having a switch 62, and an electrical waveform generator 14.
  • the electrical ablation probe 20 is located at a distal end of the flexible shaft 32 and the electrical conductors 18 may attach to the flexible shaft 32 using a plurality of clips 30.
  • the electrical ablation probe 20 comprises electrical therapy probes 26a,b to deliver electrical energy to a desired tissue treatment region.
  • the electrical therapy probes 26a,b comprise one or more electrical therapy electrodes 28a,b.
  • a first electrical therapy probe 26a comprises a first electrical therapy electrode 28a and is electrically connected to a first electrical conductor 18a.
  • the first electrical therapy electrode 28a extends through a bore in the flexible shaft 32 such as a working channel 36 (FIG. 2) of the endoscope 12.
  • the first electrical therapy electrode 28a is introduced to the desired tissue treatment region endoscopically.
  • the first electrical therapy probe 26a may be referred to herein as an endoscopic electrical therapy probe.
  • a second electrical therapy probe 26b comprises a second electrical therapy electrode 28b and is electrically connected to a second electrical conductor 18b.
  • the second electrical therapy electrode 28b is introduced to the desired tissue treatment region transcutaneously by piercing the skin covering the tissue treatment region.
  • the second electrical therapy probe 26b may be referred to herein as a transcutaneous electrical therapy probe.
  • the electrical waveform generator 14 may be a conventional, bipolar/monopolar electrosurgical IRE generator such as one of many models commercially available, including Model Number ECM 830, available from BTX Molecular Delivery Systems Boston, MA.
  • the IRE generator generates electrical waveforms having predetermined frequency, amplitude, and pulse width. The application of these electrical waveforms to the cell membranes of the diseased tissue causes the diseased cells to die.
  • the IRE electrical waveforms may be applied to the cell membranes of diseased tissue in the tissue treatment region in order to kill the diseased cells and ablate the diseased tissue.
  • IRE electrical waveforms suitable to destroy the cells of diseased tissues are generally in the form of direct current (DC) electrical pulses delivered at a frequency in the range of 1-20Hz, amplitude in the range of 100- 1000VDC, and pulse width in the range of 0.01-lOOms.
  • DC direct current
  • an electrical waveform having amplitude of 500 VDC and pulse duration of 20ms may be delivered at a pulse repetition rate or frequency of IOHZ to destroy a reasonably large volume of diseased tissue.
  • IRE requires very little energy input into the tissue, rather the destruction of the tissue is caused by high electric fields. It has been determined that in order to destroy living tissue, the electrical waveforms have to generate an electric field of at least 30,000V/m in the tissue treatment region. The embodiments, however, are not limited in this context.
  • the electrical waveform generator 14 may comprise a radio frequency (RF) waveform generator.
  • the RF generator may be a conventional, bipolar/monopolar electrosurgical generator such as one of many models commercially available, including Model Number ICC 350, available from Erbe, GmbH. Either a bipolar mode or monopolar mode may be used. When using the bipolar mode with two electrodes, one electrode is electrically connected to one bipolar polarity, and the other electrode is electrically connected to the opposite bipolar polarity. If more than two electrodes are used, the polarity of the electrodes may be alternated so that any two adjacent electrodes have opposite polarities. Either the bipolar mode or the monopolar mode may be used with the illustrated embodiment of the electrical ablation system 10.
  • the first electrode 28a When using the bipolar mode with two electrical therapy electrodes 28a,b the first electrode 28a may be electrically connected to one bipolar polarity, and the second electrode 28b may be electrically connected to the opposite bipolar polarity (or vice- versa). If more than two electrical therapy electrodes 28 are used, the polarity of the electrodes 28 is alternated so that any two adjacent electrodes have opposite polarities. [0025] In either case, the electrical (e.g., the IRE or RF) waveform generator 14, when using the monopolar mode with two or more electrical therapy electrodes 28, a grounding pad is not needed on the patient.
  • the electrical e.g., the IRE or RF
  • an impedance circuit can be assembled by one skilled in the art, and electrically connected in series with one of the electrical therapy electrodes 28a,b that would otherwise be used with a grounding pad attached to a patient during monopolar electrosurgery.
  • Use of an impedance circuit allows use of the IRE generator in monopolar mode without use of a grounding pad attached to the patient.
  • FIG. 2 is an enlarged view of one embodiment of an electrical ablation probe 20 of the electrical ablation system 10 shown in FIG. 1.
  • the first electrical therapy electrode 28a is introduced to the tissue treatment region endoscopically and extends through the distal end of the flexible shaft 32.
  • the first electrode 28a protrudes from the distal end of an internal lumen extending between the proximal and distal ends of the flexible endoscope 12.
  • the internal lumen may be the working channel 36 of the endoscope 12.
  • the first electrode 28a may be rotateable about a central axis 39 within the working channel 36 to facilitate locating the electrode 28a in a first position in the tissue treatment region.
  • the second electrical therapy electrode 28b is introduced percutaneously to the target tissue treatment region.
  • the second electrode 28b is located in a second position in the tissue treatment region. Introducing the second electrode 28b percutaneously allows the first and second electrodes 28a,b to be spaced further apart than if the two electrodes 28a,b were both introduced endoscopically. Spacing the first and second electrodes 28a,b further apart allows the electrodes to surround a larger diseased tissue region and generate an electric field over a much larger tissue treatment region. In this manner, the operator can surround the entire tissue treatment region of a cancerous lesion, a polyp, or a tumor, for example.
  • Electrodes 28a,b may be energized with the electrical waveform generator 14 to deliver an IRE or an RF electrical waveform to treat the diseased tissue located between the first and second electrodes 28a,b. Because the electrodes 28a,b are located in the tissue treatment region independently, the operator has much more flexibility in positioning the electrodes 28a,b relative to the tissue treatment region.
  • the electrical conductors 18a,b are electrically insulated from each other and surrounding structures, except for the electrical connections the respective electrical therapy electrodes 28a,b.
  • the distal end of the flexible shaft 32 of the flexible endoscope 12 may comprise the light source 40, the viewing port 38, and the working channel 36, where the first electrode 28a may be passed therethrough.
  • the viewing port 38 transmits an image within its field of view to an optical device such as a charge coupled device (CCD) camera within the flexible endoscope 12 so that an operator may view the image on a display monitor (not shown).
  • CCD charge coupled device
  • FIG. 3 illustrates the use of one embodiment of the electrical ablation system 10 to treat a diseased tissue 48 on the liver 42.
  • the flexible shaft 32 of the endoscope 12 has been introduced to the tissue treatment region trans-anally into the abdomen.
  • the first electrical therapy electrode 28a is introduced through the working channel 36 of the flexible shaft 32.
  • the operator positions the first electrical therapy electrode 28a using endoscopic visualization so that the diseased tissue 48 to be treated lies within the field of view of the flexible endoscope 12.
  • the operator locates the first electrode 28a located in a first position 44a at a perimeter edge of the diseased tissue 48.
  • the operator then positions or introduces the second electrode 28b percutaneously through the skin 54 of the patient such that the second electrode 28b is located at a second position 44b at a perimeter edge of the diseased tissue 48.
  • the operator may energize the electrodes 28a,b with the electrical waveform generator 14 to deliver an IRE or an RF waveform suitable to destroy the diseased tissue 48.
  • the first and second electrodes 28a,b may be energized with an electrical waveform having amplitude of approximately 500 VDC and a pulse width of approximately 20ms at a frequency of approximately 10Hz.
  • the diseased tissue 48 may be destroyed. This procedure may be efficient and repeated to destroy relatively larger portions of the diseased tissue.
  • similar techniques may be employed to treat any other diseased tissues accessed trans-anally through the colon and/or the abdomen and/or accessed orally through the esophagus or the stomach. Therefor, the embodiments are not limited in this context.
  • FIG. 4 is a sectional view taken along the longitudinal axis of one embodiment of the electrical ablation system 10 shown in FIG. 1.
  • the distal portion of the flexible shaft 32 is located inside a rotation tube 22 of the electrical ablation system 10.
  • the first electrical conductor 18a passes through a strain relief 66 of a rotation knob 58.
  • an external tube 64 or sheath may be located over the flexible shaft 32 such that the first electrical conductor 18a passes between the external tube 64 and the rotation tube 22.
  • the first electrical conductor 18a connects electrically to the first electrical therapy electrode 28a.
  • the rotation tube 22 rotatab Iy joins the rotation knob 58.
  • the operator can rotatably orient the first electrode 28a, even after insertion into the natural opening (e.g., trans-anally into the abdomen) by remotely rotating the probe 26a.
  • the electrical ablation probe 20 is located within the field of view of the flexible endoscope 12 to enable the operator to see on a display monitor the tissue that is located between the electrodes 28.
  • multiple electrical therapy probes 26a-n each connected to respective electrical conductors 18a-n and electrical therapy electrodes 28a-n may be employed to surround the diseased tissue region around multiple points 44a-n. This may be beneficial in destroying relatively larger portions of the diseased tissue.
  • the operator may energize the electrodes 28a-n with the electrical waveform generator 14 to deliver an IRE or an RF waveform suitable to destroy the diseased tissue 48.
  • the electrodes 28a-n may be employed to surround the diseased tissue region around multiple points 44a-n. This may be beneficial in destroying relatively larger portions of the diseased tissue.
  • 28a-n may be energized with an electrical waveform having amplitude of approximately
  • the diseased tissue 48 may be destroyed.
  • FIG. 5 is a sectional view taken along line 5—5 of one embodiment of the electrical system 10 shown in FIG. 4.
  • the electrical conductors 18a,b connect to the respective electrical therapy electrodes 28a,b.
  • the rotation tube 22 retains the flexible shaft 32.
  • the inside diameter of the rotation tube 22 is larger than the outer diameter of the flexible endoscope 12 to allow rotation of the rotation tube 22 while holding the flexible endoscope 12 stationary, or vice versa.
  • the first electrode 28a extends outwardly from the distal end of the flexible shaft 32 through the working channel 36.
  • the second electrode 28b is connected to the waveform generator 14 through the electrical conductor 18b and is provided outside of the flexible endoscope 12 to be introduced to the tissue treatment region percutaneously.
  • the operator may endoscopically view the tissue between the electrodes 28a,b as illuminated by the light source 40 and viewed through the viewing port 38.
  • FIG. 6 is a sectional view taken along line 6—6 of the rotation tube 22 of one embodiment of the electrical ablation system 10 shown in FIG. 4.
  • the external tube 64 or sheath and the rotation tube 22 assemble and retain the first electrical conductor 18a as already described.
  • the light source 40, the viewing port 38, and the working channel 36 of the flexible endoscope 12 are shown.
  • FIG. 7 shows a distal portion of one embodiment of the electrical ablation system 10 shown in FIG. 1 inserted into a hollow body or natural opening of a patient.
  • the electrical ablation system 10 is inserted into the colon 46 through the anus 50.
  • the colon 46 includes a sphincter muscle 52 disposed between the anus 50 and the rectum 56.
  • the electrical ablation system 10 is maneuvered through several turns through the colon 46.
  • the electrical ablation system 10 is introduced to the diseased tissue 48 through the colon 46.
  • the operator may treat the diseased tissue 48 using the embodiment of the electrical ablation system 10 comprising the electrical ablation probe 20 with the electrical therapy electrode 28a introduced endoscopically and the electrical therapy electrode 28b introduced transcutaneously or percutaneously through the skin 54 as previously discussed with reference to FIGS. 1-7 as follows.
  • the operator inserts the flexible shaft 32 of the endoscope 12 into the anus 50 and maneuvers it through the colon 46.
  • the operator uses endoscopic visualization through the viewing port 38 to position the first electrical therapy electrode 28a next to the diseased tissue 48 on the liver 42 to be treated. If the diseased tissue 48 is on the liver 42, the distal end of the endoscope 12 can be advanced into the sigmoid colon.
  • an instrument such as a needle knife can be advanced through the lumen of the endoscope.
  • the needle knife can then cut an opening through the sigmoid colon and into the peritoneal space (under visualization).
  • the endoscope can then be advance into the peritoneal space and manipulate until the liver is in view.
  • the operator then introduces the second electrical therapy electrode 28b transcutaneously though the skin 54 to the diseased tissue 48. This can be done under visualization using the view from the endoscope or with fluoroscopy.
  • the transcutaneous electrode is then advanced into the liver.
  • the first and second electrodes 28a,b are placed in intimate contact with the diseased tissue 48 to be treated within the field of view of the flexible endoscope 12.
  • the operator While watching through the viewing port 38, the operator actuates the switch 62, electrically connecting the electrodes 28a,b to the waveform generator 14 through the conductors 18a,b. Electric current then passes through the portion of the diseased tissue 48 positioned between the electrodes 28a,b and within the field of view.
  • the operator deactuates the switch 62 to stop the ablation. The operator may reposition either the endoscopic electrode 28a or the transcutaneous electrode 28b for subsequent tissue treatment, or may withdraw the electrical ablation probe 20 (together with the flexible endoscope 12).
  • FIG. 8 is a diagram of one embodiment of a control loop 80 for one embodiment of an electrical (e.g., IRE or RF) therapy procedure to treat diseased tissue as described herein.
  • the electrical therapy procedure may be effective in quickly creating necrosis of live tissue and destroying diseased (e.g., cancerous) tissue in-vivo.
  • Real time information feedback about the size in volume of a necrotic zone may be helpful during an electrical therapy procedure for focal treatment of diseased tissue 48.
  • the image information 84 will generally include geometric information about the volume of the diseased tissue 48.
  • the image information 84 is provided to an image processing module 86 to calculate the volume of the diseased tissue 48 and to display a virtual model of the diseased tissue 48 on a monitor.
  • the image processing module 86 may comprise, for example, image processing software applications such as Comsol Multiphysics available by Comsol, Inc. to receive the image information 84, extract the geometric information, and determine (e.g., calculate) the voltage required to treat the proper volume and outline of the necrotic zone required to treat the diseased tissue 48.
  • the image processing module 86 creates a virtual model of a treatment zone necessary to treat the diseased tissue 48.
  • the image processing module 86 determines waveform parameters 88 of a suitable electrical waveform necessary to destroy the diseased tissue 48.
  • the waveform parameters 88 include the frequency, amplitude, and pulse width of the electrical waveform to be generated by the waveform generator 14.
  • the waveform generator 14 would then generate the suitable electrical waveform to destroy the diseased tissue 48 based on the calculated electrical waveform parameters 88.
  • the image processing module 86 also comprises image processing software applications such as Matlab available by Math Works, Inc. to receive the image information 84 and the virtual model and display an image of the diseased tissue 48 overlaid with an image of the virtual model.
  • image processing software applications such as Matlab available by Math Works, Inc. to receive the image information 84 and the virtual model and display an image of the diseased tissue 48 overlaid with an image of the virtual model.
  • the overlaid images enable the operator to determine whether the calculated electrical waveform parameters 88 are suitable for destroying the diseased tissue 48, whether too strong or too weak.
  • the electrical waveform parameters 88 may be adjusted such that the virtual model image substantially over-lays the entire diseased tissue image.
  • the calculated 88 parameters are provided to the waveform generator 14 and the diseased tissue may be treated with an electrical waveform 89 based on the calculated parameters 88 as discussed herein.
  • FIG. 9 is a graphical representation 110 (graph) of the electric field strength (along the y-axis) as a function of the distance from an electrical therapy electrode 28a,b under various conductivity environments near the diseased tissue 48.
  • FIG. 10 is a close up of the graph 110 shown in FIG. 9.
  • the volume of tissue that can be destroyed by an electrical waveform e.g., the necrotic zone
  • the electric field strength in the tissue treatment region varies throughout the tissue as a function of the applied electrical waveform parameters such as frequency, amplitude, and pulse width as well as the conductivity of the tissue in the treatment region.
  • Injecting a fluid having a higher conductivity than the tissue into the tissue treatment region extends the electric field of sufficient strength to destroy the tissue radially outwardly from the electrode 28a,b.
  • a fluid having higher conductivity than the tissue to be treated creates a larger tissue destruction zone (e.g., necrotic zone) by extending the electric field radially outwardly from the electrodes 28a,b.
  • the graph 110 illustrates the electric field strength, along the y-axis, as a function of the radial distance from the electrical therapy electrode 28a,b.
  • the y-axis is labeled in units of volts/meter (V/m x e 5 ) and the x-axis is labeled in units of mm.
  • the graph 110 illustrates a family of three functions with conductivity as a parameter.
  • a first function 112 illustrates the electric field strength as a function of the radial distance from one of the electrodes 28a,b with no conductivity plug introduced into the tissue treatment region.
  • a second function 114 illustrates the electric field strength as a function of the radial distance from one of the electrodes 28a,b with a conductivity plug of 0.2 S/m introduced in the tissue treatment region.
  • a third function 116 illustrates the electric field strength as a function of the radial distance from one of the electrodes 28a,b with a conductivity plug of 0.5 S/m introduced in the tissue treatment region.
  • the peak electric field strength of each of the functions 112, 114, 116 decreases with increased conductivity in the tissue treatment region in proximity to the electrode 28a,b.
  • the threshold 118 of each of the functions 112, 114, 116 where the electric field strength drops below the minimum threshold 118 of electric field strength required for tissue destruction becomes wider as the conductivity increases. In other words, increasing the conductivity of the tissue in the tissue treatment region extends the range of an effective electric field to destroy tissue or creates a larger necrotic zone.
  • the minimum electric field strength threshold 118 is approximately 30,000V/m.
  • the devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure.
  • reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
  • the various embodiments of the invention described herein will be processed before surgery.
  • a new or used instrument is obtained and if necessary cleaned.
  • the instrument can then be sterilized.
  • the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag.
  • the container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x- rays, or high-energy electrons.
  • the radiation kills bacteria on the instrument and in the container.
  • the sterilized instrument can then be stored in the sterile container.
  • the sealed container keeps the instrument sterile until it is opened in the medical facility.
  • It is preferred that the device is sterilized.

Abstract

A surgical instrument, such as an endoscopic or laparoscopic instrument, includes an ablation device. The ablation device includes an elongate relatively flexible member having a proximal end and a distal end. The flexible member includes a working channel. A first electrode extends from the working channel at the distal end of the flexible member and is adapted to be endoscopically located in a first position relative to a tissue treatment region. A second electrode is adapted to be percutaneously located in a second position of the tissue treatment region. The first and second electrodes are adapted to couple to an electrical waveform generator and to receive an electrical waveform sufficient to ablate tissue located between the first and second electrodes.

Description

ELECTRICAL ABLATION APPARATUS, SYSTEM, AND METHOD
CROSS REFERENCE TO RELATED APPLICATION
[0001] The present application is related to concurrently-filed U.S. Patent Application Serial No. 11/706,766 entitled ELECTROPORATION ABLATION APPARATUS, SYSTEM, AND METHOD, by Gary Long, Attorney Docket No. 07034/END6107USNP, which is incorporated herein by reference in its entirety.
BACKGROUND
[0002] Electrical therapy techniques have been employed in medicine to treat pain and other conditions. Electrical ablation techniques have been employed in medicine for removing diseased tissue or abnormal growths from the body. Electrical therapy probes comprising electrodes may be required to electrically treat diseased tissue. The electrodes may be introduced into the patient percutaneously to the tissue treatment region by passing the electrodes through the skin of the patient. If the at least two electrical therapy electrodes are introduced only percutaneously, however, the relative position between these electrodes may be limited. Nevertheless, there is a need for improved medical instruments to electrically ablate or destroy diseased tissue, such as cancer, or abnormal growths from the body. There may be a need for such electrical therapy techniques to be performed endoscopically.
SUMMARY
[0003] In one general aspect, the various embodiments are directed to an ablation device. In one embodiment, the ablation device comprises an elongate relatively flexible member having a proximal end and a distal end. The flexible member comprises a working channel. A first electrode extends from the working channel at the distal end of the flexible member. The first electrode is adapted to be endoscopically located in a first position relative to a tissue treatment region. A second electrode is adapted to be percutaneous Iy located in a second position of the tissue treatment region. The first and second electrodes are adapted to couple to an electrical waveform generator and to receive an electrical waveform sufficient to ablate tissue located between the first and second electrodes.
FIGURES
[0004] The novel features of the various embodiments are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.
[0005] FIG. 1 illustrates one embodiment of an electrical ablation system.
[0006] FIG. 2 is an enlarged view of one embodiment of an electrical ablation probe of the electrical ablation system shown in FIG. 1
[0007] FIG. 3 illustrates the use of one embodiment of the electrical ablation system to treat diseased tissue on the liver.
[0008] FIG. 4 is a sectional view taken along the longitudinal axis of one embodiment of the electrical ablation system shown in FIG. 1.
[0009] FIG. 5 is a sectional view taken along line 5—5 of one embodiment of the electrical ablation system shown in FIG. 4. [0010] FIG. 6 is a sectional view taken along line 6—6 of the rotation tube of one embodiment of the electrical ablation system shown in FIG. 4.
[0011] FIG. 7 shows a distal portion of one embodiment of the electrical ablation system shown in FIG. 1 inserted into a hollow body or natural opening of a patient.
[0012] FIG. 8 is a diagram of one embodiment of a control loop for one embodiment of an electrical (e.g., IRE or RF) therapy procedure to treat diseased tissue as described herein.
[0013] FIG. 9 is a graphical representation (graph) of the electric field strength (along the y- axis) as a function of the distance from an electrical therapy electrode under various conductivity environments near the diseased tissue.
[0014] FIG. 10 is a close up of the graph shown in FIG. 9.
DESCRIPTION
[0015] The various embodiments described herein are directed to electrical therapy ablation devices. The electrical therapy ablation devices comprise probes and electrodes that can be positioned in a tissue treatment region of a patient either endoscopically or transcutaneously (percutaneously), and in some embodiments a combination thereof. An endoscopic electrode is inserted through a working channel of an endoscope. A transcutaneous or percutaneous electrode has a sharp point to facilitate insertion through the skin of a patient and to enhance local current density at a target site during treatment. The placement and location of the electrodes can be important for effective and efficient therapy. Once positioned, the electrical therapy electrodes deliver electrical current to the treatment region. The electrical current is generated by a control unit or generator external to the patient and typically has particular waveform characteristics, such as frequency, amplitude, and pulse width. Depending on the diagnostic or therapeutic treatment rendered, the probes may comprise one electrode containing both a cathode and an anode or may contain a plurality of electrodes with at least one serving as a cathode and at least one serving as an anode.
[0016] Electrical therapy ablation may employ electroporation or electropermeabilization techniques where an externally applied electric field (electric potential) significantly increases the electrical conductivity and permeability of a cell plasma membrane. Electroporation is the generation of a destabilizing electric potential across such biological membranes. In electroporation, pores are formed when the voltage across the cell plasma membrane exceeds its dielectric strength. Electroporation destabilizing electric potentials are generally in the range of several hundred volts across a distance of several millimeters. Below certain magnitude thresholds, the electric potentials may be applied across a biological membrane as a way of introducing some substance into a cell, such as loading it with a molecular probe, a drug that can change the function of the cell, a piece of coding DNA, or increasing the uptake of drugs in cells. If the strength of the applied electrical field and/or duration of exposure to it are suitably chosen, the pores formed by the electrical pulse reseal after a short period of time, during which extracellular compounds have a chance to enter into the cell. Thus, below a certain threshold, the process is reversible and the potential does not permanently damage the cell membrane. This process may be referred to as reversible electroporation (RE).
[0017] On the other hand, excessive exposure of live cells to large electric fields can cause apoptosis and/or necrosis - the processes that result in cell death. Thus, the excessive exposure of live cells to large electric fields may be referred to as irreversible electroporation (IRE) because the cells die when exposed to such excessive electrical fields or potentials across the cell membranes. [0018] Electroporation may be performed with devices called electroporators. These appliances create the electric current and send it through the cell. Electroporators may comprise two or more metallic (e.g., aluminum) electrodes connected to an energy source. The energy source generates an electric field having a suitable characteristic waveform output in terms of frequency, amplitude, and pulse width.
[0019] Endoscopy means looking inside and refers to looking inside the human body for medical reasons. Endoscopy may be performed using an instrument called an endoscope. Endoscopy is a minimally invasive diagnostic medical procedure used to evaluate the interior surfaces of an organ by inserting a small tube into the body, often, but not necessarily, through a natural body opening. Through the endoscope, an operator may see abnormal or diseased tissue such as lesions and other surface conditions. The endoscope may have a rigid or a flexible tube and in addition to providing an image for visual inspection and photography, the endoscope may be adapted and configured for taking biopsies, retrieving foreign objects, and introducing medical instruments to a tissue treatment region. Endoscopy is a vehicle for minimally invasive surgery.
[0020] The embodiments of the electrical therapy ablation devices may be employed for treating diseased tissue, tissue masses, tissue tumors, and lesions (diseased tissue). More particularly, the electrical therapy ablation devices may be employed in minimally invasive therapeutic treatment of diseased tissue. The electrical therapy ablation devices may be employed to deliver energy to the diseased tissue to ablate or destroy tumors, masses, lesions, and other abnormal tissue growths. In one embodiment, the electrical therapy ablation devices and techniques described herein may be employed in the treatment of cancer by quickly creating necrosis and destroying live cancerous tissue in- vivo. Minimally invasive therapeutic procedures to treat diseased tissue by introducing medical instruments to a tissue treatment region through a natural opening of the patient are known as Natural Orifice Trans lumenal Endoscopic Surgery (NOTES)™.
[0021] FIG. 1 illustrates one embodiment of an electrical ablation system 10. The electrical ablation system 10 may be employed to electrically treat diseased tissue such as tumors and lesions inside a patient. The electrical ablation system 10 may be configured to be positioned within a natural opening of the patient such as the colon or the esophagus and can be passed through the natural opening to reach a tissue treatment region. The illustrated embodiment of the electrical ablation system 10 may be used to treat diseased tissue via the colon or the esophagus of the patient, for example. The tissue treatment region may be located in the esophagus, colon, liver, breast, brain, and lung, among others. The electrical ablation system 10 can be configured to treat a number of lesions and ostepathologies comprising metastatic lesions, tumors, fractures, infected site, inflamed sites, and the like. Once positioned at the target tissue treatment region, the electrical ablation system 10 can be configured to treat and ablate diseased tissue in that region. In one embodiment, the electrical ablation system 10 may be adapted to treat diseased tissue, such as cancers, of the gastrointestinal (GI) tract or esophagus that may be accessed orally. In another embodiment, the electrical ablation system 10 may be adapted to treat diseased tissue, such as cancers, of the liver or other organs that may be accessible trans-anally through the colon and/or the abdomen.
[0022] One embodiment of the electrical ablation system 10 may be mounted on a flexible endoscope 12 (also referred to as endoscope 12), such as the GIF-100 model available from Olympus Corporation. The flexible endoscope 12 includes an endoscope handle 34 and an elongate relatively flexible shaft 32. The electrical ablation system 10 generally comprises an electrical ablation probe 20, a plurality of electrical conductors 18, a handpiece 16 having a switch 62, and an electrical waveform generator 14. The electrical ablation probe 20 is located at a distal end of the flexible shaft 32 and the electrical conductors 18 may attach to the flexible shaft 32 using a plurality of clips 30. The electrical ablation probe 20 comprises electrical therapy probes 26a,b to deliver electrical energy to a desired tissue treatment region. The electrical therapy probes 26a,b comprise one or more electrical therapy electrodes 28a,b. A first electrical therapy probe 26a comprises a first electrical therapy electrode 28a and is electrically connected to a first electrical conductor 18a. The first electrical therapy electrode 28a extends through a bore in the flexible shaft 32 such as a working channel 36 (FIG. 2) of the endoscope 12. The first electrical therapy electrode 28a is introduced to the desired tissue treatment region endoscopically. The first electrical therapy probe 26a may be referred to herein as an endoscopic electrical therapy probe. A second electrical therapy probe 26b comprises a second electrical therapy electrode 28b and is electrically connected to a second electrical conductor 18b. The second electrical therapy electrode 28b is introduced to the desired tissue treatment region transcutaneously by piercing the skin covering the tissue treatment region. The second electrical therapy probe 26b may be referred to herein as a transcutaneous electrical therapy probe. Once the first and second electrical therapy electrodes 28a,b are located at respective first and second positions in the tissue treatment region, manual operation of the switch 62 of the handpiece 16 electrically connects or disconnects the electrical therapy electrodes 28a,b to the electrical waveform generator 14. Alternatively, the switch 62 may be mounted on, for example, a foot switch (not shown).
[0023] In one embodiment, the electrical waveform generator 14 may be a conventional, bipolar/monopolar electrosurgical IRE generator such as one of many models commercially available, including Model Number ECM 830, available from BTX Molecular Delivery Systems Boston, MA. The IRE generator generates electrical waveforms having predetermined frequency, amplitude, and pulse width. The application of these electrical waveforms to the cell membranes of the diseased tissue causes the diseased cells to die. Thus, the IRE electrical waveforms may be applied to the cell membranes of diseased tissue in the tissue treatment region in order to kill the diseased cells and ablate the diseased tissue. IRE electrical waveforms suitable to destroy the cells of diseased tissues are generally in the form of direct current (DC) electrical pulses delivered at a frequency in the range of 1-20Hz, amplitude in the range of 100- 1000VDC, and pulse width in the range of 0.01-lOOms. For example, an electrical waveform having amplitude of 500 VDC and pulse duration of 20ms may be delivered at a pulse repetition rate or frequency of IOHZ to destroy a reasonably large volume of diseased tissue. Unlike RF ablation systems which require high powers and energy input into the tissue to heat and destroy, IRE requires very little energy input into the tissue, rather the destruction of the tissue is caused by high electric fields. It has been determined that in order to destroy living tissue, the electrical waveforms have to generate an electric field of at least 30,000V/m in the tissue treatment region. The embodiments, however, are not limited in this context.
[0024] In one embodiment, the electrical waveform generator 14 may comprise a radio frequency (RF) waveform generator. The RF generator may be a conventional, bipolar/monopolar electrosurgical generator such as one of many models commercially available, including Model Number ICC 350, available from Erbe, GmbH. Either a bipolar mode or monopolar mode may be used. When using the bipolar mode with two electrodes, one electrode is electrically connected to one bipolar polarity, and the other electrode is electrically connected to the opposite bipolar polarity. If more than two electrodes are used, the polarity of the electrodes may be alternated so that any two adjacent electrodes have opposite polarities. Either the bipolar mode or the monopolar mode may be used with the illustrated embodiment of the electrical ablation system 10. When using the bipolar mode with two electrical therapy electrodes 28a,b the first electrode 28a may be electrically connected to one bipolar polarity, and the second electrode 28b may be electrically connected to the opposite bipolar polarity (or vice- versa). If more than two electrical therapy electrodes 28 are used, the polarity of the electrodes 28 is alternated so that any two adjacent electrodes have opposite polarities. [0025] In either case, the electrical (e.g., the IRE or RF) waveform generator 14, when using the monopolar mode with two or more electrical therapy electrodes 28, a grounding pad is not needed on the patient. Because a generator will typically be constructed to operate upon sensing connection of ground pad to the patient when in monopolar mode, it can be useful to provide an impedance circuit to simulate the connection of a ground pad to the patient. Accordingly, when the electrical ablation system 10 is used in monopolar mode without a grounding pad, an impedance circuit can be assembled by one skilled in the art, and electrically connected in series with one of the electrical therapy electrodes 28a,b that would otherwise be used with a grounding pad attached to a patient during monopolar electrosurgery. Use of an impedance circuit allows use of the IRE generator in monopolar mode without use of a grounding pad attached to the patient.
[0026] FIG. 2 is an enlarged view of one embodiment of an electrical ablation probe 20 of the electrical ablation system 10 shown in FIG. 1. The first electrical therapy electrode 28a is introduced to the tissue treatment region endoscopically and extends through the distal end of the flexible shaft 32. In one embodiment, the first electrode 28a protrudes from the distal end of an internal lumen extending between the proximal and distal ends of the flexible endoscope 12. In one embodiment, the internal lumen may be the working channel 36 of the endoscope 12. The first electrode 28a may be rotateable about a central axis 39 within the working channel 36 to facilitate locating the electrode 28a in a first position in the tissue treatment region. The second electrical therapy electrode 28b is introduced percutaneously to the target tissue treatment region. The second electrode 28b is located in a second position in the tissue treatment region. Introducing the second electrode 28b percutaneously allows the first and second electrodes 28a,b to be spaced further apart than if the two electrodes 28a,b were both introduced endoscopically. Spacing the first and second electrodes 28a,b further apart allows the electrodes to surround a larger diseased tissue region and generate an electric field over a much larger tissue treatment region. In this manner, the operator can surround the entire tissue treatment region of a cancerous lesion, a polyp, or a tumor, for example. Introducing at least one of the electrodes (e.g., the first electrode 28a) endoscopically enables the operator to accurately locate the target diseased tissue region using endoscopic visualization feedback by employing at least one light source 40 and a viewing port 38 located on the distal end of the endoscope 12. The electrodes 28a,b may be energized with the electrical waveform generator 14 to deliver an IRE or an RF electrical waveform to treat the diseased tissue located between the first and second electrodes 28a,b. Because the electrodes 28a,b are located in the tissue treatment region independently, the operator has much more flexibility in positioning the electrodes 28a,b relative to the tissue treatment region.
[0027] The electrical conductors 18a,b are electrically insulated from each other and surrounding structures, except for the electrical connections the respective electrical therapy electrodes 28a,b. The distal end of the flexible shaft 32 of the flexible endoscope 12 may comprise the light source 40, the viewing port 38, and the working channel 36, where the first electrode 28a may be passed therethrough. The viewing port 38 transmits an image within its field of view to an optical device such as a charge coupled device (CCD) camera within the flexible endoscope 12 so that an operator may view the image on a display monitor (not shown). In the embodiment shown in FIG. 2, the distal end of flexible shaft 32 is proximal to the first electrode 28a within the field of view of the flexible endoscope 12 thus enabling the operator to see the tissue treatment region to be treated near the first electrode 28a. This technique provides a more accurate way to locate the first electrode 28a in the tissue treatment region. [0028] FIG. 3 illustrates the use of one embodiment of the electrical ablation system 10 to treat a diseased tissue 48 on the liver 42. In the embodiment illustrated in FIG. 3, the flexible shaft 32 of the endoscope 12 has been introduced to the tissue treatment region trans-anally into the abdomen. The first electrical therapy electrode 28a is introduced through the working channel 36 of the flexible shaft 32. The operator positions the first electrical therapy electrode 28a using endoscopic visualization so that the diseased tissue 48 to be treated lies within the field of view of the flexible endoscope 12. The operator locates the first electrode 28a located in a first position 44a at a perimeter edge of the diseased tissue 48. The operator then positions or introduces the second electrode 28b percutaneously through the skin 54 of the patient such that the second electrode 28b is located at a second position 44b at a perimeter edge of the diseased tissue 48. Once the first and second electrodes 28a,b are located at the desired first and second positions 44a,b, the operator may energize the electrodes 28a,b with the electrical waveform generator 14 to deliver an IRE or an RF waveform suitable to destroy the diseased tissue 48. For example, in an IRE embodiment, the first and second electrodes 28a,b may be energized with an electrical waveform having amplitude of approximately 500 VDC and a pulse width of approximately 20ms at a frequency of approximately 10Hz. In this manner, the diseased tissue 48 may be destroyed. This procedure may be efficient and repeated to destroy relatively larger portions of the diseased tissue. Those skilled in the art will appreciate that similar techniques may be employed to treat any other diseased tissues accessed trans-anally through the colon and/or the abdomen and/or accessed orally through the esophagus or the stomach. Therefor, the embodiments are not limited in this context.
[0029] FIG. 4 is a sectional view taken along the longitudinal axis of one embodiment of the electrical ablation system 10 shown in FIG. 1. The distal portion of the flexible shaft 32 is located inside a rotation tube 22 of the electrical ablation system 10. The first electrical conductor 18a passes through a strain relief 66 of a rotation knob 58. In the illustrated embodiment an external tube 64 or sheath may be located over the flexible shaft 32 such that the first electrical conductor 18a passes between the external tube 64 and the rotation tube 22. The first electrical conductor 18a connects electrically to the first electrical therapy electrode 28a. The rotation tube 22 rotatab Iy joins the rotation knob 58. The operator can rotatably orient the first electrode 28a, even after insertion into the natural opening (e.g., trans-anally into the abdomen) by remotely rotating the probe 26a. The electrical ablation probe 20 is located within the field of view of the flexible endoscope 12 to enable the operator to see on a display monitor the tissue that is located between the electrodes 28.
[0030] With reference to FIGS. 3 and 4, in one embodiment, multiple electrical therapy probes 26a-n each connected to respective electrical conductors 18a-n and electrical therapy electrodes 28a-n may be employed to surround the diseased tissue region around multiple points 44a-n. This may be beneficial in destroying relatively larger portions of the diseased tissue. Once the electrodes 28a-n are located at the desired positions 44a-n, the operator may energize the electrodes 28a-n with the electrical waveform generator 14 to deliver an IRE or an RF waveform suitable to destroy the diseased tissue 48. For example, in an IRE embodiment, the electrodes
28a-n may be energized with an electrical waveform having amplitude of approximately
500 VDC and a pulse width of approximately 20ms at a frequency of approximately 10Hz. In this manner, the diseased tissue 48 may be destroyed.
[0031] FIG. 5 is a sectional view taken along line 5—5 of one embodiment of the electrical system 10 shown in FIG. 4. The electrical conductors 18a,b connect to the respective electrical therapy electrodes 28a,b. The rotation tube 22 retains the flexible shaft 32. The inside diameter of the rotation tube 22 is larger than the outer diameter of the flexible endoscope 12 to allow rotation of the rotation tube 22 while holding the flexible endoscope 12 stationary, or vice versa.
The first electrode 28a extends outwardly from the distal end of the flexible shaft 32 through the working channel 36. The second electrode 28b is connected to the waveform generator 14 through the electrical conductor 18b and is provided outside of the flexible endoscope 12 to be introduced to the tissue treatment region percutaneously. In this embodiment, the operator may endoscopically view the tissue between the electrodes 28a,b as illuminated by the light source 40 and viewed through the viewing port 38.
[0032] FIG. 6 is a sectional view taken along line 6—6 of the rotation tube 22 of one embodiment of the electrical ablation system 10 shown in FIG. 4. The external tube 64 or sheath and the rotation tube 22 assemble and retain the first electrical conductor 18a as already described. The light source 40, the viewing port 38, and the working channel 36 of the flexible endoscope 12 are shown.
[0033] FIG. 7 shows a distal portion of one embodiment of the electrical ablation system 10 shown in FIG. 1 inserted into a hollow body or natural opening of a patient. The electrical ablation system 10 is inserted into the colon 46 through the anus 50. The colon 46 includes a sphincter muscle 52 disposed between the anus 50 and the rectum 56. The electrical ablation system 10 is maneuvered through several turns through the colon 46. The electrical ablation system 10 is introduced to the diseased tissue 48 through the colon 46. [0034] The operator may treat the diseased tissue 48 using the embodiment of the electrical ablation system 10 comprising the electrical ablation probe 20 with the electrical therapy electrode 28a introduced endoscopically and the electrical therapy electrode 28b introduced transcutaneously or percutaneously through the skin 54 as previously discussed with reference to FIGS. 1-7 as follows. The operator inserts the flexible shaft 32 of the endoscope 12 into the anus 50 and maneuvers it through the colon 46. The operator uses endoscopic visualization through the viewing port 38 to position the first electrical therapy electrode 28a next to the diseased tissue 48 on the liver 42 to be treated. If the diseased tissue 48 is on the liver 42, the distal end of the endoscope 12 can be advanced into the sigmoid colon. Once in the sigmoid colon an instrument such as a needle knife can be advanced through the lumen of the endoscope. The needle knife can then cut an opening through the sigmoid colon and into the peritoneal space (under visualization). The endoscope can then be advance into the peritoneal space and manipulate until the liver is in view. The operator then introduces the second electrical therapy electrode 28b transcutaneously though the skin 54 to the diseased tissue 48. This can be done under visualization using the view from the endoscope or with fluoroscopy. The transcutaneous electrode is then advanced into the liver. The first and second electrodes 28a,b are placed in intimate contact with the diseased tissue 48 to be treated within the field of view of the flexible endoscope 12. While watching through the viewing port 38, the operator actuates the switch 62, electrically connecting the electrodes 28a,b to the waveform generator 14 through the conductors 18a,b. Electric current then passes through the portion of the diseased tissue 48 positioned between the electrodes 28a,b and within the field of view. When the operator observes that the tissue in the field of view has been ablated sufficiently, the operator deactuates the switch 62 to stop the ablation. The operator may reposition either the endoscopic electrode 28a or the transcutaneous electrode 28b for subsequent tissue treatment, or may withdraw the electrical ablation probe 20 (together with the flexible endoscope 12).
[0035] FIG. 8 is a diagram of one embodiment of a control loop 80 for one embodiment of an electrical (e.g., IRE or RF) therapy procedure to treat diseased tissue as described herein. As previously discussed, the electrical therapy procedure may be effective in quickly creating necrosis of live tissue and destroying diseased (e.g., cancerous) tissue in-vivo. Real time information feedback about the size in volume of a necrotic zone may be helpful during an electrical therapy procedure for focal treatment of diseased tissue 48.
[0036] Prior to an electrical therapy procedure, a patient 82 will have an image of the diseased tissue 48 taken for clinical purposes in an effort to reveal, diagnose, or examine the diseased tissue 48 and to identify its location more precisely. The image information 84 will generally include geometric information about the volume of the diseased tissue 48. The image information 84 is provided to an image processing module 86 to calculate the volume of the diseased tissue 48 and to display a virtual model of the diseased tissue 48 on a monitor. The image processing module 86 may comprise, for example, image processing software applications such as Comsol Multiphysics available by Comsol, Inc. to receive the image information 84, extract the geometric information, and determine (e.g., calculate) the voltage required to treat the proper volume and outline of the necrotic zone required to treat the diseased tissue 48. The image processing module 86 creates a virtual model of a treatment zone necessary to treat the diseased tissue 48. The image processing module 86 then determines waveform parameters 88 of a suitable electrical waveform necessary to destroy the diseased tissue 48. The waveform parameters 88 include the frequency, amplitude, and pulse width of the electrical waveform to be generated by the waveform generator 14. The waveform generator 14 would then generate the suitable electrical waveform to destroy the diseased tissue 48 based on the calculated electrical waveform parameters 88.
[0037] The image processing module 86 also comprises image processing software applications such as Matlab available by Math Works, Inc. to receive the image information 84 and the virtual model and display an image of the diseased tissue 48 overlaid with an image of the virtual model. The overlaid images enable the operator to determine whether the calculated electrical waveform parameters 88 are suitable for destroying the diseased tissue 48, whether too strong or too weak. Thus, the electrical waveform parameters 88 may be adjusted such that the virtual model image substantially over-lays the entire diseased tissue image. The calculated 88 parameters are provided to the waveform generator 14 and the diseased tissue may be treated with an electrical waveform 89 based on the calculated parameters 88 as discussed herein. After the diseased tissue 48 is treated with the electrical waveform 89, a new image of the diseased tissue 48 can be generated to determine the extent or effectiveness of the treatment. The cycle may be repeated as necessary to ablate the diseased tissue 48 as much as possible. [0038] FIG. 9 is a graphical representation 110 (graph) of the electric field strength (along the y-axis) as a function of the distance from an electrical therapy electrode 28a,b under various conductivity environments near the diseased tissue 48. FIG. 10 is a close up of the graph 110 shown in FIG. 9. In electrical therapy of diseased tissue 48, the volume of tissue that can be destroyed by an electrical waveform (e.g., the necrotic zone) may be defined by a minimum electric field strength applied to the tissue treatment region. The electric field strength in the tissue treatment region varies throughout the tissue as a function of the applied electrical waveform parameters such as frequency, amplitude, and pulse width as well as the conductivity of the tissue in the treatment region. When a single electrical therapy electrode 28a or 28b is located in a first position in the tissue treatment region of interest and a return pad is placed at a distance relatively far from the first position, an electric field is generated around the respective electrode 28a or 28b when it is energized with a particular electrical waveform. The magnitude of the electric field, however, diminishes rapidly in the radial direction away from the electrode 28a,b. When the electrodes 28a,b are placed relatively close together, a larger pattern of tissue can be destroyed. Injecting a fluid having a higher conductivity than the tissue into the tissue treatment region extends the electric field of sufficient strength to destroy the tissue radially outwardly from the electrode 28a,b. Thus, the addition of a fluid having higher conductivity than the tissue to be treated creates a larger tissue destruction zone (e.g., necrotic zone) by extending the electric field radially outwardly from the electrodes 28a,b.
[0039] The graph 110 illustrates the electric field strength, along the y-axis, as a function of the radial distance from the electrical therapy electrode 28a,b. The y-axis is labeled in units of volts/meter (V/m x e5) and the x-axis is labeled in units of mm. The graph 110 illustrates a family of three functions with conductivity as a parameter. A first function 112 illustrates the electric field strength as a function of the radial distance from one of the electrodes 28a,b with no conductivity plug introduced into the tissue treatment region. A second function 114 illustrates the electric field strength as a function of the radial distance from one of the electrodes 28a,b with a conductivity plug of 0.2 S/m introduced in the tissue treatment region. A third function 116 illustrates the electric field strength as a function of the radial distance from one of the electrodes 28a,b with a conductivity plug of 0.5 S/m introduced in the tissue treatment region. As shown in the graph 110, the peak electric field strength of each of the functions 112, 114, 116 decreases with increased conductivity in the tissue treatment region in proximity to the electrode 28a,b. However, the threshold 118 of each of the functions 112, 114, 116 where the electric field strength drops below the minimum threshold 118 of electric field strength required for tissue destruction becomes wider as the conductivity increases. In other words, increasing the conductivity of the tissue in the tissue treatment region extends the range of an effective electric field to destroy tissue or creates a larger necrotic zone. In one embodiment, the minimum electric field strength threshold 118 is approximately 30,000V/m.
[0040] The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
[0041] Preferably, the various embodiments of the invention described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x- rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility. [0042] It is preferred that the device is sterilized. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, steam. [0043] Although the various embodiments of the invention have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.
[0044] Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims

WHAT IS CLAIMED IS:
1. An ablation device comprising: an elongate relatively flexible member having a proximal end and a distal end, the flexible member comprising a working channel; a first electrode extending from the working channel at the distal end of the flexible member, the first electrode is adapted to be endoscopically located in a first position relative to a tissue treatment region; and a second electrode adapted to be percutaneously located in a second position of the tissue treatment region; wherein the first and second electrodes are adapted to couple to an electrical waveform generator and to receive an electrical waveform sufficient to ablate tissue located between the first and second electrodes.
2. The ablation device of claim 1, wherein the first and second electrodes are adapted to receive an irreversible electroporation (IRE) waveform from an IRE generator.
3. The ablation device of claim 1, wherein the first and second electrodes are adapted to receive a radio frequency (RF) waveform from an RF generator.
4. The ablation device of claim 1, comprising: at least a third electrode adapted to be percutaneously located in a third position of the tissue treatment region, wherein the third electrode is adapted to couple to the electrical waveform generator and to receive an electrical waveform sufficient to ablate tissue located between the first, the second, and the at least third electrodes.
5. The ablation device of claim 1, comprising: at least one illuminator supported on the device and positioned to illuminate tissue; and an image sensor supported on the device and positioned to image tissue therethrough.
6. A method comprising: receiving image information of a diseased tissue region in a patient; determining a volume and outline of a necrotic zone required to treat the diseased tissue based on the image information; and determining waveform parameters to be generated by an electrical waveform generator suitable to destroy the diseased tissue.
7. The method of claim 6, comprising: extracting geometric information from the image information; and determining the volume and outline of the necrotic zone required to treat the diseased tissue based on the geometric information.
8. The method of claim 6, comprising: providing the waveform parameters to an electrical waveform generator.
9. The method of claim 6, comprising: determining amplitude, frequency, and pulse width waveform parameters suitable to destroy the diseased tissue.
10. An ablation system, comprising: an ablation device comprising: an elongate relatively flexible member having a proximal end and a distal end, the flexible member comprising a working channel; a first electrode extending from the working channel at the distal end of the flexible member, the first electrode is adapted to be endoscopically located in a first position relative to a tissue treatment region; and a second electrode adapted to be percutaneously located in a second position of the tissue treatment region; and an electrical waveform generator electrically coupled to the ablation device; wherein the first and second electrodes are adapted to receive an electrical waveform sufficient to ablate tissue located between the first and second electrodes.
11. The ablation system of claim 10, wherein the electrical waveform generator comprises an irreversible electroporation waveform generator.
12. The ablation system of claim 10, wherein the electrical waveform generator comprises a radio frequency generator.
13. The ablation system of claim 10, wherein the ablation device comprises at least a third electrode adapted to be percutaneously located in a third position of the tissue treatment region, wherein the third electrode is adapted to couple to the electrical waveform generator and to receive an electrical waveform sufficient to ablate tissue located between the first, the second, and the at least third electrodes.
14. The ablation system of claim 10, wherein the ablation device comprises at least one illuminator supported on the device and positioned to illuminate tissue; and an image sensor supported on the device and positioned to image tissue therethrough.
15. The system of claim 10, wherein the electrical waveform generator is to receive electrical waveform parameters from an image processing module; the electrical waveform parameters are suitable to destroy the diseased tissue; and the electrical waveform parameters are determined based image information of the diseased tissue region in a patient.
16. The system of claim 15, wherein the electrical waveform parameters are determined based on a volume and outline of a necrotic zone required to treat the diseased tissue based on the image information; and the waveform parameters are to be generated by the electrical waveform generator.
17. The system of claim 16, wherein the volume and outline of the necrotic zone are determined from geometric information extracted from the image information.
18. The system of claim 15, wherein the electrical waveform parameters comprise amplitude, frequency, and pulse width of an electrical waveform suitable to destroy the diseased tissue.
19. A method comprising : introducing an elongate relatively flexible member having a proximal end and a distal end into a natural opening of a patient, the flexible member comprising a working channel and a first electrode extending from the working channel at the distal end of the flexible member, the first electrode is adapted to be endoscopically located in a first position relative to a tissue treatment region; introducing a second electrode percutaneous Iy in a second position of the tissue treatment region; and ablating the tissue located between the first and second electrodes.
20. The method of claim 19, comprising: ablating the tissue with an irreversible electroporation (IRE) waveform from an IRE generator electrically coupled to the first and second electrodes.
21. The method of claim 19 , comprising : introducing at least a third electrode percutaneously in a third position of the tissue treatment region, wherein the third electrode is adapted to couple to the electrical waveform generator and to receive an electrical waveform sufficient to ablate tissue located between the first, the second, and the at least third electrodes.
22. The method of claim 19, comprising: obtaining image information of the tissue treatment region in the patient; determining a volume and outline of a necrotic zone required to treat the tissue in based on the image information; and determining waveform parameters to be generated by an electrical waveform generator suitable to destroy the diseased tissue.
23. The method of claim 22, comprising: extracting geometric information from the image information; and determining the volume and outline of the necrotic zone required to treat the diseased tissue based on the geometric information.
24. The method of claim 23 , comprising: providing the waveform parameters to an electrical waveform generator.
25. The method of claim 23 , comprising: determining amplitude, frequency, and pulse width waveform parameters suitable to destroy the diseased tissue.
26. The method of claim 19, comprising: ablating the tissue device with a radio frequency (RF) waveform from an RF generator electrically coupled to the first and second electrodes.
27. The method of claim 19, comprising introducing a conductive liquid into the tissue treatment region, wherein the conductive liquid has a conductivity that is relatively higher than the conductivity of the tissue in the tissue treatment region.
28. A method comprising: obtaining a surgical instrument, wherein the surgical instrument comprises: an elongate relatively flexible member having a proximal end and a distal end, the flexible member comprising a working channel; a first electrode extending from the working channel at the distal end of the flexible member, the first electrode is adapted to be endoscopically located in a first position relative to a tissue treatment region; and a second electrode adapted to be percutaneously located in a second position of the tissue treatment region; wherein the first and second electrodes are adapted to couple to an electrical waveform generator and to receive an electrical waveform sufficient to ablate tissue located between the first and second electrodes; sterilizing the surgical instrument; and storing the surgical instrument in a sterile container.
PCT/US2008/053978 2007-02-15 2008-02-14 Electrical ablation apparatus, system, and method WO2008101091A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/706,591 US20080200911A1 (en) 2007-02-15 2007-02-15 Electrical ablation apparatus, system, and method
US11/706,591 2007-02-15

Publications (2)

Publication Number Publication Date
WO2008101091A2 true WO2008101091A2 (en) 2008-08-21
WO2008101091A3 WO2008101091A3 (en) 2008-11-27

Family

ID=39471981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/053978 WO2008101091A2 (en) 2007-02-15 2008-02-14 Electrical ablation apparatus, system, and method

Country Status (2)

Country Link
US (1) US20080200911A1 (en)
WO (1) WO2008101091A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9764145B2 (en) 2009-05-28 2017-09-19 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US9895189B2 (en) 2009-06-19 2018-02-20 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
US10463426B2 (en) 2001-08-13 2019-11-05 Angiodynamics, Inc. Method for treating a tubular anatomical structure
US11723710B2 (en) 2016-11-17 2023-08-15 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
US11779395B2 (en) 2011-09-28 2023-10-10 Angiodynamics, Inc. Multiple treatment zone ablation probe
US11931096B2 (en) 2010-10-13 2024-03-19 Angiodynamics, Inc. System and method for electrically ablating tissue of a patient
US11957405B2 (en) 2020-10-16 2024-04-16 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation

Families Citing this family (471)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8220690B2 (en) 2006-09-29 2012-07-17 Ethicon Endo-Surgery, Inc. Connected surgical staples and stapling instruments for deploying the same
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8827133B2 (en) 2007-01-11 2014-09-09 Ethicon Endo-Surgery, Inc. Surgical stapling device having supports for a flexible drive mechanism
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US7815662B2 (en) 2007-03-08 2010-10-19 Ethicon Endo-Surgery, Inc. Surgical suture anchors and deployment device
US7669747B2 (en) 2007-03-15 2010-03-02 Ethicon Endo-Surgery, Inc. Washer for use with a surgical stapling instrument
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8075572B2 (en) 2007-04-26 2011-12-13 Ethicon Endo-Surgery, Inc. Surgical suturing apparatus
US8100922B2 (en) 2007-04-27 2012-01-24 Ethicon Endo-Surgery, Inc. Curved needle suturing tool
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8262655B2 (en) 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8568410B2 (en) 2007-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Electrical ablation surgical instruments
US8480657B2 (en) 2007-10-31 2013-07-09 Ethicon Endo-Surgery, Inc. Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
US20090112059A1 (en) 2007-10-31 2009-04-30 Nobis Rudolph H Apparatus and methods for closing a gastrotomy
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US8262680B2 (en) 2008-03-10 2012-09-11 Ethicon Endo-Surgery, Inc. Anastomotic device
US11272979B2 (en) 2008-04-29 2022-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US9198733B2 (en) 2008-04-29 2015-12-01 Virginia Tech Intellectual Properties, Inc. Treatment planning for electroporation-based therapies
EP2280741A4 (en) 2008-04-29 2012-06-13 Virginia Tech Intell Prop Irreversible electroporation to create tissue scaffolds
US10245098B2 (en) 2008-04-29 2019-04-02 Virginia Tech Intellectual Properties, Inc. Acute blood-brain barrier disruption using electrical energy based therapy
US9867652B2 (en) 2008-04-29 2018-01-16 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US9283051B2 (en) 2008-04-29 2016-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating a treatment volume for administering electrical-energy based therapies
US10702326B2 (en) 2011-07-15 2020-07-07 Virginia Tech Intellectual Properties, Inc. Device and method for electroporation based treatment of stenosis of a tubular body part
US11254926B2 (en) 2008-04-29 2022-02-22 Virginia Tech Intellectual Properties, Inc. Devices and methods for high frequency electroporation
US10272178B2 (en) 2008-04-29 2019-04-30 Virginia Tech Intellectual Properties Inc. Methods for blood-brain barrier disruption using electrical energy
US10117707B2 (en) 2008-04-29 2018-11-06 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US8992517B2 (en) 2008-04-29 2015-03-31 Virginia Tech Intellectual Properties Inc. Irreversible electroporation to treat aberrant cell masses
US10238447B2 (en) 2008-04-29 2019-03-26 Virginia Tech Intellectual Properties, Inc. System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US8317806B2 (en) 2008-05-30 2012-11-27 Ethicon Endo-Surgery, Inc. Endoscopic suturing tension controlling and indication devices
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8679003B2 (en) 2008-05-30 2014-03-25 Ethicon Endo-Surgery, Inc. Surgical device and endoscope including same
US8652150B2 (en) 2008-05-30 2014-02-18 Ethicon Endo-Surgery, Inc. Multifunction surgical device
US8114072B2 (en) 2008-05-30 2012-02-14 Ethicon Endo-Surgery, Inc. Electrical ablation device
US8070759B2 (en) 2008-05-30 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical fastening device
US8906035B2 (en) 2008-06-04 2014-12-09 Ethicon Endo-Surgery, Inc. Endoscopic drop off bag
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8361112B2 (en) 2008-06-27 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical suture arrangement
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US8262563B2 (en) 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8529563B2 (en) 2008-08-25 2013-09-10 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8241204B2 (en) 2008-08-29 2012-08-14 Ethicon Endo-Surgery, Inc. Articulating end cap
US8480689B2 (en) 2008-09-02 2013-07-09 Ethicon Endo-Surgery, Inc. Suturing device
US8409200B2 (en) 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8114119B2 (en) 2008-09-09 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8337394B2 (en) 2008-10-01 2012-12-25 Ethicon Endo-Surgery, Inc. Overtube with expandable tip
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US8172772B2 (en) 2008-12-11 2012-05-08 Ethicon Endo-Surgery, Inc. Specimen retrieval device
US20100152725A1 (en) * 2008-12-12 2010-06-17 Angiodynamics, Inc. Method and system for tissue treatment utilizing irreversible electroporation and thermal track coagulation
US8828031B2 (en) 2009-01-12 2014-09-09 Ethicon Endo-Surgery, Inc. Apparatus for forming an anastomosis
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8252057B2 (en) 2009-01-30 2012-08-28 Ethicon Endo-Surgery, Inc. Surgical access device
US9226772B2 (en) 2009-01-30 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical device
US8037591B2 (en) 2009-02-02 2011-10-18 Ethicon Endo-Surgery, Inc. Surgical scissors
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
CA2751664A1 (en) 2009-02-06 2010-08-12 Ethicon Endo-Surgery, Inc. Driven surgical stapler improvements
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8632534B2 (en) * 2009-04-03 2014-01-21 Angiodynamics, Inc. Irreversible electroporation (IRE) for congestive obstructive pulmonary disease (COPD)
US20100256630A1 (en) * 2009-04-07 2010-10-07 Angiodynamics, Inc. Irreversible electroporation (ire) for esophageal disease
US11382681B2 (en) 2009-04-09 2022-07-12 Virginia Tech Intellectual Properties, Inc. Device and methods for delivery of high frequency electrical pulses for non-thermal ablation
US11638603B2 (en) 2009-04-09 2023-05-02 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US20110098704A1 (en) 2009-10-28 2011-04-28 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
US20110112527A1 (en) * 2009-11-06 2011-05-12 Angiodynamics, Inc. Flexible medical ablation device and method of use
US8353487B2 (en) 2009-12-17 2013-01-15 Ethicon Endo-Surgery, Inc. User interface support devices for endoscopic surgical instruments
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9592050B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc End effector comprising a distal tissue abutment member
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US8978954B2 (en) 2010-09-30 2015-03-17 Ethicon Endo-Surgery, Inc. Staple cartridge comprising an adjustable distal portion
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
WO2012088149A2 (en) 2010-12-20 2012-06-28 Virginia Tech Intellectual Properties, Inc. High-frequency electroporation for cancer therapy
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
WO2012125785A1 (en) 2011-03-17 2012-09-20 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US8986199B2 (en) 2012-02-17 2015-03-24 Ethicon Endo-Surgery, Inc. Apparatus and methods for cleaning the lens of an endoscope
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
CN104334098B (en) 2012-03-28 2017-03-22 伊西康内外科公司 Tissue thickness compensator comprising capsules defining a low pressure environment
JP6224070B2 (en) 2012-03-28 2017-11-01 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Retainer assembly including tissue thickness compensator
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140001234A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Coupling arrangements for attaching surgical end effectors to drive systems therefor
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
CN104487005B (en) 2012-06-28 2017-09-08 伊西康内外科公司 Empty squeeze latching member
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
MX368026B (en) 2013-03-01 2019-09-12 Ethicon Endo Surgery Inc Articulatable surgical instruments with conductive pathways for signal communication.
MX364729B (en) 2013-03-01 2019-05-06 Ethicon Endo Surgery Inc Surgical instrument with a soft stop.
US9629623B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgery, Llc Drive system lockout arrangements for modular surgical instruments
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
US9808249B2 (en) 2013-08-23 2017-11-07 Ethicon Llc Attachment portions for surgical instrument assemblies
CN106028966B (en) 2013-08-23 2018-06-22 伊西康内外科有限责任公司 For the firing member restoring device of powered surgical instrument
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
JP6462004B2 (en) 2014-02-24 2019-01-30 エシコン エルエルシー Fastening system with launcher lockout
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
US20150297225A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
WO2015175570A1 (en) 2014-05-12 2015-11-19 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
CN107427300B (en) 2014-09-26 2020-12-04 伊西康有限责任公司 Surgical suture buttress and buttress material
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10694972B2 (en) 2014-12-15 2020-06-30 Virginia Tech Intellectual Properties, Inc. Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US9968355B2 (en) 2014-12-18 2018-05-15 Ethicon Llc Surgical instruments with articulatable end effectors and improved firing beam support arrangements
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
CN108882932B (en) 2016-02-09 2021-07-23 伊西康有限责任公司 Surgical instrument with asymmetric articulation configuration
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
MX2019007311A (en) 2016-12-21 2019-11-18 Ethicon Llc Surgical stapling systems.
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US20180168575A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling systems
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US10881401B2 (en) 2016-12-21 2021-01-05 Ethicon Llc Staple firing member comprising a missing cartridge and/or spent cartridge lockout
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US20180168609A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Firing assembly comprising a fuse
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11389161B2 (en) 2017-06-28 2022-07-19 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11607537B2 (en) 2017-12-05 2023-03-21 Virginia Tech Intellectual Properties, Inc. Method for treating neurological disorders, including tumors, with electroporation
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11751867B2 (en) 2017-12-21 2023-09-12 Cilag Gmbh International Surgical instrument comprising sequenced systems
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311329B2 (en) 2018-03-13 2022-04-26 Virginia Tech Intellectual Properties, Inc. Treatment planning for immunotherapy based treatments using non-thermal ablation techniques
US11925405B2 (en) 2018-03-13 2024-03-12 Virginia Tech Intellectual Properties, Inc. Treatment planning system for immunotherapy enhancement via non-thermal ablation
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US20220031351A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569159B1 (en) * 1993-11-08 2003-05-27 Rita Medical Systems, Inc. Cell necrosis apparatus
EP1402837A1 (en) * 2002-09-18 2004-03-31 Ethicon Endo-Surgery, Inc. Endoscopic ablation system with a plurality of electrodes
US20050033277A1 (en) * 2002-10-23 2005-02-10 Clague Cynthia T. Electrosurgical methods and apparatus for making precise incisions in body vessels
WO2005065284A2 (en) * 2003-12-24 2005-07-21 The Regents Of The University Of California Tissue ablation with irreversible electroporation

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1127948A (en) * 1914-12-31 1915-02-09 Reinhold H Wappler Cystoscope.
US2028635A (en) * 1933-09-11 1936-01-21 Wappler Frederick Charles Forcipated surgical instrument
DE2513868C2 (en) * 1974-04-01 1982-11-04 Olympus Optical Co., Ltd., Tokyo Bipolar electrodiathermy forceps
US5133727A (en) * 1990-05-10 1992-07-28 Symbiosis Corporation Radial jaw biopsy forceps
US4258716A (en) * 1978-02-06 1981-03-31 The University Of Melbourne Microsurgical instruments
JPS5552748A (en) * 1978-10-12 1980-04-17 Olympus Optical Co Highhfrequency incising tool
US4491132A (en) * 1982-08-06 1985-01-01 Zimmer, Inc. Sheath and retractable surgical tool combination
US5190546A (en) * 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
GB2161389B (en) * 1984-07-05 1988-06-08 Wolf Gmbh Richard Instrument insert for a uretero-renoscope
US4646722A (en) * 1984-12-10 1987-03-03 Opielab, Inc. Protective endoscope sheath and method of installing same
US4984581A (en) * 1988-10-12 1991-01-15 Flexmedics Corporation Flexible guide having two-way shape memory alloy
US4911148A (en) * 1989-03-14 1990-03-27 Intramed Laboratories, Inc. Deflectable-end endoscope with detachable flexible shaft assembly
ATE124232T1 (en) * 1989-04-07 1995-07-15 Univ Melbourne IMPROVED SURGICAL INSTRUMENT.
US6004330A (en) * 1989-08-16 1999-12-21 Medtronic, Inc. Device or apparatus for manipulating matter
JPH03128028A (en) * 1989-10-13 1991-05-31 Machida Seisakusho:Kk Angle for curving operation device
US5482054A (en) * 1990-05-10 1996-01-09 Symbiosis Corporation Edoscopic biopsy forceps devices with selective bipolar cautery
US5395386A (en) * 1990-05-10 1995-03-07 Symbiosis Corporation Endoscopic pericardial scissors
US5392789A (en) * 1991-04-04 1995-02-28 Symbiosis Corporation Endoscopic scissors having scissor elements loosely engaged with a clevis
US5383877A (en) * 1991-05-01 1995-01-24 Clarke; Henry C. Instruments and method for suturing and ligation
US5383888A (en) * 1992-02-12 1995-01-24 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5275607A (en) * 1991-09-23 1994-01-04 Visionary Medical, Inc. Intraocular surgical scissors
US5190555A (en) * 1991-12-13 1993-03-02 Unisurge, Inc. Device for collection and removal of body parts during laparoscopic surgery
US5192284A (en) * 1992-01-10 1993-03-09 Pleatman Mark A Surgical collector and extractor
US5284128A (en) * 1992-01-24 1994-02-08 Applied Medical Resources Corporation Surgical manipulator
US5484451A (en) * 1992-05-08 1996-01-16 Ethicon, Inc. Endoscopic surgical instrument and staples for applying purse string sutures
WO1994000059A1 (en) * 1992-06-24 1994-01-06 Microsurge, Inc. Reusable endoscopic surgical instrument
US5470308A (en) * 1992-08-12 1995-11-28 Vidamed, Inc. Medical probe with biopsy stylet
US5297536A (en) * 1992-08-25 1994-03-29 Wilk Peter J Method for use in intra-abdominal surgery
EP0658090B1 (en) * 1992-09-01 1998-11-04 Edwin L. Adair Sterilizable endoscope with separable disposable tube assembly
US6010515A (en) * 1993-09-03 2000-01-04 University College London Device for use in tying knots
US5496347A (en) * 1993-03-30 1996-03-05 Olympus Optical Co., Ltd. Surgical instrument
US5295977A (en) * 1993-05-11 1994-03-22 Symbiosis Corporation Trocar catheter for drainage
US5480404A (en) * 1993-06-16 1996-01-02 Ethicon, Inc. Surgical tissue retrieval instrument
IL108352A (en) * 1994-01-17 2000-02-29 Given Imaging Ltd In vivo video camera system
US5401248A (en) * 1994-02-22 1995-03-28 Ethicon Endo-Surgery Seal for trocar assembly
CA2143560C (en) * 1994-03-02 2007-01-16 Mark Fogelberg Sterile occlusion fasteners and instrument and method for their placement
JP3614943B2 (en) * 1994-09-29 2005-01-26 オリンパス株式会社 Endoscopic puncture needle
US5595562A (en) * 1994-11-10 1997-01-21 Research Corporation Technologies, Inc. Magnetic enteral gastrostomy
US5593420A (en) * 1995-02-17 1997-01-14 Mist, Inc. Miniature endoscopic surgical instrument assembly and method of use
US6179837B1 (en) * 1995-03-07 2001-01-30 Enable Medical Corporation Bipolar electrosurgical scissors
US5860995A (en) * 1995-09-22 1999-01-19 Misener Medical Co. Inc. Laparoscopic endoscopic surgical instrument
US5860913A (en) * 1996-05-16 1999-01-19 Olympus Optical Co., Ltd. Endoscope whose distal cover can be freely detachably attached to main distal part thereof with high positioning precision
US5792135A (en) * 1996-05-20 1998-08-11 Intuitive Surgical, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US5976178A (en) * 1996-11-07 1999-11-02 Vascular Science Inc. Medical grafting methods
US6015421A (en) * 1997-05-15 2000-01-18 General Surgical Innovations, Inc. Apparatus and method for developing an anatomic space for laparoscopic procedures
US6019770A (en) * 1997-12-04 2000-02-01 Christoudias; George C. Versatile endoscopic retrieval bag
DE19800917A1 (en) * 1998-01-14 1999-07-15 Storz Karl Gmbh & Co Instrument for insertion during endoscopic operations
US6454727B1 (en) * 1998-03-03 2002-09-24 Senorx, Inc. Tissue acquisition system and method of use
JPH11285502A (en) * 1998-04-03 1999-10-19 Asahi Optical Co Ltd High frequency treatment tool for endoscope
CA2333121C (en) * 1998-05-21 2006-07-25 Christopher J. Walshe A tissue anchor system
US6027522A (en) * 1998-06-02 2000-02-22 Boston Scientific Corporation Surgical instrument with a rotatable distal end
US6030365A (en) * 1998-06-10 2000-02-29 Laufer; Michael D. Minimally invasive sterile surgical access device and method
JP4096325B2 (en) * 1998-12-14 2008-06-04 正喜 江刺 Active capillary and method for manufacturing the same
US7172714B2 (en) * 1999-01-11 2007-02-06 2Phase Technologies, Inc. Use of state-change materials in reformable shapes, templates or tooling
US20030171747A1 (en) * 1999-01-25 2003-09-11 Olympus Optical Co., Ltd. Medical treatment instrument
US8636648B2 (en) * 1999-03-01 2014-01-28 West View Research, Llc Endoscopic smart probe
US6179776B1 (en) * 1999-03-12 2001-01-30 Scimed Life Systems, Inc. Controllable endoscopic sheath apparatus and related method of use
JP2000325301A (en) * 1999-05-18 2000-11-28 Asahi Optical Co Ltd Auxiliary tool for inserting endoscope in large intestine
US6692462B2 (en) * 1999-05-19 2004-02-17 Mackenzie Andrew J. System and method for establishing vascular access
US7813789B2 (en) * 1999-06-15 2010-10-12 Given Imaging Ltd. In-vivo imaging device, optical system and method
US6692445B2 (en) * 1999-07-27 2004-02-17 Scimed Life Systems, Inc. Biopsy sampler
US6837846B2 (en) * 2000-04-03 2005-01-04 Neo Guide Systems, Inc. Endoscope having a guide tube
US20020023353A1 (en) * 2000-06-06 2002-02-28 Wu. Ting-Kung Surgical scissors
US6716226B2 (en) * 2001-06-25 2004-04-06 Inscope Development, Llc Surgical clip
US6569085B2 (en) * 2001-08-16 2003-05-27 Syntheon, Llc Methods and apparatus for delivering a medical instrument over an endoscope while the endoscope is in a body lumen
US6673087B1 (en) * 2000-12-15 2004-01-06 Origin Medsystems Elongated surgical scissors
US6350267B1 (en) * 2000-12-21 2002-02-26 Ethicon Endo-Surgery, Inc. Method of use of an improved specimen retrieval bag
US6997931B2 (en) * 2001-02-02 2006-02-14 Lsi Solutions, Inc. System for endoscopic suturing
US6994708B2 (en) * 2001-04-19 2006-02-07 Intuitive Surgical Robotic tool with monopolar electro-surgical scissors
US7727248B2 (en) * 2001-06-25 2010-06-01 Ethicon Endo-Surgery, Inc. Surgical clip
JP3920177B2 (en) * 2001-08-31 2007-05-30 株式会社資生堂 Column packing material and method for producing the same
US6988987B2 (en) * 2002-03-18 2006-01-24 Olympus Corporation Guide tube
JP4351458B2 (en) * 2002-03-18 2009-10-28 オリンパス株式会社 Endoscope insertion system
US6685628B2 (en) * 2002-05-15 2004-02-03 Dinh Q. Vu Endoscopic balloon for spill-proof laparoscopic ovarian cystectomy
US6837847B2 (en) * 2002-06-13 2005-01-04 Usgi Medical, Inc. Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US6932834B2 (en) * 2002-06-27 2005-08-23 Ethicon, Inc. Suture anchor
US20060041188A1 (en) * 2003-03-25 2006-02-23 Dirusso Carlo A Flexible endoscope
US7066879B2 (en) * 2003-07-15 2006-06-27 The Trustees Of Columbia University In The City Of New York Insertable device and system for minimal access procedure
EP1750595A4 (en) * 2004-05-07 2008-10-22 Valentx Inc Devices and methods for attaching an endolumenal gastrointestinal implant
US20060004409A1 (en) * 2004-05-14 2006-01-05 Nobis Rudolph H Devices for locking and/or cutting a suture
WO2005112784A2 (en) * 2004-05-14 2005-12-01 Ethicon Endo-Surgery, Inc. Devices and methods for locking and cutting a suture in a medical procedure
US7241290B2 (en) * 2004-06-16 2007-07-10 Kinetic Surgical, Llc Surgical tool kit
WO2006005061A2 (en) * 2004-06-30 2006-01-12 Sitzmann James V Medical devices for minimally invasive surgeries and other internal procedures
US20060004406A1 (en) * 2004-07-05 2006-01-05 Helmut Wehrstein Surgical instrument
US7163525B2 (en) * 2004-12-17 2007-01-16 Ethicon Endo-Surgery, Inc. Duckbill seal protector
GB2423269A (en) * 2005-02-16 2006-08-23 Samuel George Scissors with laterally restrained blades
US20070015965A1 (en) * 2005-07-13 2007-01-18 Usgi Medical Inc. Methods and apparatus for colonic cleaning
US8083787B2 (en) * 2005-07-18 2011-12-27 Tearscience, Inc. Method and apparatus for treating meibomian gland dysfunction
US20070106219A1 (en) * 2005-10-31 2007-05-10 Andreas Grabinsky Cleveland round tip (CRT) needle
US8715281B2 (en) * 2006-03-09 2014-05-06 Olympus Medical Systems Corp. Treatment device for endoscope
US20090054728A1 (en) * 2007-08-21 2009-02-26 Trusty Robert M Manipulatable guide system and methods for natural orifice translumenal endoscopic surgery
US20100010303A1 (en) * 2008-07-09 2010-01-14 Ethicon Endo-Surgery, Inc. Inflatable access device
US20100010294A1 (en) * 2008-07-10 2010-01-14 Ethicon Endo-Surgery, Inc. Temporarily positionable medical devices
US8262563B2 (en) * 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US8888792B2 (en) * 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US20100010298A1 (en) * 2008-07-14 2010-01-14 Ethicon Endo-Surgery, Inc. Endoscopic translumenal flexible overtube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569159B1 (en) * 1993-11-08 2003-05-27 Rita Medical Systems, Inc. Cell necrosis apparatus
EP1402837A1 (en) * 2002-09-18 2004-03-31 Ethicon Endo-Surgery, Inc. Endoscopic ablation system with a plurality of electrodes
US20050033277A1 (en) * 2002-10-23 2005-02-10 Clague Cynthia T. Electrosurgical methods and apparatus for making precise incisions in body vessels
WO2005065284A2 (en) * 2003-12-24 2005-07-21 The Regents Of The University Of California Tissue ablation with irreversible electroporation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10463426B2 (en) 2001-08-13 2019-11-05 Angiodynamics, Inc. Method for treating a tubular anatomical structure
US9764145B2 (en) 2009-05-28 2017-09-19 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US11707629B2 (en) 2009-05-28 2023-07-25 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US9895189B2 (en) 2009-06-19 2018-02-20 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
US11931096B2 (en) 2010-10-13 2024-03-19 Angiodynamics, Inc. System and method for electrically ablating tissue of a patient
US11779395B2 (en) 2011-09-28 2023-10-10 Angiodynamics, Inc. Multiple treatment zone ablation probe
US11723710B2 (en) 2016-11-17 2023-08-15 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
US11957405B2 (en) 2020-10-16 2024-04-16 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation

Also Published As

Publication number Publication date
WO2008101091A3 (en) 2008-11-27
US20080200911A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
US10478248B2 (en) Electroporation ablation apparatus, system, and method
US20080200911A1 (en) Electrical ablation apparatus, system, and method
US10342598B2 (en) Electrosurgical system for delivering a biphasic waveform
US10278761B2 (en) Electrical ablation devices and methods
US8568410B2 (en) Electrical ablation surgical instruments
US20090062788A1 (en) Electrical ablation surgical instruments
US20090062795A1 (en) Electrical ablation surgical instruments
US9005198B2 (en) Surgical instrument comprising an electrode
US9233241B2 (en) Electrical ablation devices and methods
US20170119465A1 (en) Electrical ablation devices comprising an injector catheter electrode
WO2009032623A2 (en) Electrical albation surgical instruments
WO2012118659A1 (en) Electrical ablation devices and methods
WO2011056464A2 (en) Electrical ablation devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08729876

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08729876

Country of ref document: EP

Kind code of ref document: A2