WO2008122175A1 - A stepped compressing method and system of a reciprocating piston compressor - Google Patents

A stepped compressing method and system of a reciprocating piston compressor Download PDF

Info

Publication number
WO2008122175A1
WO2008122175A1 PCT/CN2007/070004 CN2007070004W WO2008122175A1 WO 2008122175 A1 WO2008122175 A1 WO 2008122175A1 CN 2007070004 W CN2007070004 W CN 2007070004W WO 2008122175 A1 WO2008122175 A1 WO 2008122175A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
reciprocating compressor
piston reciprocating
output
pneumatic ball
Prior art date
Application number
PCT/CN2007/070004
Other languages
French (fr)
Chinese (zh)
Inventor
Chunsheng Jiang
Original Assignee
Chunsheng Jiang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunsheng Jiang filed Critical Chunsheng Jiang
Publication of WO2008122175A1 publication Critical patent/WO2008122175A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps

Abstract

A stepped compressing method and system of a reciprocating piston compressor has four-stage compressing output. Every stage has individual input and output tube line. Valves control the compressing stage, and a programmable logic controller (PLC) controls the valves. The output line of every stage is divided into two sub-lines, one of which is connected with the input line of the next stage compressing. A transducer controls the driving motor. The stepped compressing method and system greatly improves the compressing efficiency, saves cost and energy sources.

Description

活塞往复式压缩机阶梯压缩方法及系统  Piston reciprocating compressor step compression method and system
技术领域  Technical field
本发明涉及一种气体压缩技术,特别是涉及一种活塞往复式压缩机阶梯压缩方法和系统。 背景技术  The present invention relates to a gas compression technique, and more particularly to a piston reciprocating compressor step compression method and system. Background technique
活塞往复式压缩机广泛应用于石油、天然气及化工等领域。 活塞往复式压缩机常用的一 种驱动方式是电动机驱动, 电动机的额定输出功率要略大于活塞往复式压缩机所需输入功率, 而活塞往复式压缩机在运行时通常是根据用户要求,在不同的工况 (入口压力,出口压力,气体 流量等)下,设计成不同的串联压缩级数, 压缩级数越高,所需要的电动机输出功率越大。比如 天然气充灌, 当天然气入口压力是 0. 8Mpa, 经活塞往复式压缩机压缩后充罐的出口压力是 25 MPa,气体流量 2220M7h。 如果按压缩级从第一级到第四级同时连续工作,将出口压力 25 MPa 的气体直接充入用户的储气容器中,所消耗的功率是 320KW。 由于用户气罐加气之初, 其罐内 压力很低, 此时就用四级压缩机同时串联工作, 以最高的压力向气罐中加气, 无疑是种浪费, 会白白浪费不少功率消耗。  Piston reciprocating compressors are widely used in petroleum, natural gas and chemical industries. A common driving method for piston reciprocating compressors is motor drive. The rated output power of the motor is slightly larger than the input power required by the piston reciprocating compressor. The piston reciprocating compressor is usually operated according to the user's requirements. Under working conditions (inlet pressure, outlet pressure, gas flow, etc.), different series compression stages are designed. The higher the compression stage, the greater the motor output power required. For example, natural gas filling, when the natural gas inlet pressure is 0. 8Mpa, the outlet pressure of the filling tank after compression by the piston reciprocating compressor is 25 MPa, and the gas flow rate is 2220M7h. If the compression stage is continuously operated from the first stage to the fourth stage, the gas with an outlet pressure of 25 MPa is directly charged into the user's gas storage container, and the power consumed is 320 kW. Since the pressure in the tank is low at the beginning of the refueling of the user's gas tank, the four-stage compressor is used in series at the same time, and the gas is added to the gas tank at the highest pressure, which is undoubtedly a waste and will waste a lot of power. Consumption.
发明内容  Summary of the invention
为弥补上述不足, 降低活塞往复式压缩机使用时的功率消耗, 本发明提供一种活塞往复 式压缩机阶梯压缩方法及系统。  In order to compensate for the above deficiencies and reduce the power consumption of the piston reciprocating compressor, the present invention provides a piston reciprocating compressor step compression method and system.
本发明活塞往复式压缩机阶梯压缩方法, 包括:  The step compression method for the piston reciprocating compressor of the present invention comprises:
在同轴多级活塞往复式压缩机的应用中, 每一级活塞式压缩机都设置单独的进气管线和 出气管线, 通过输出输入管线上阀门的控制连接成串联级数可以转换的压缩系统;  In the application of the coaxial multi-stage piston reciprocating compressor, each stage piston compressor is provided with a separate intake line and an outlet line, and the control system connected to the output line is connected to a series system capable of converting the compression system. ;
在输出压力低于活塞往复式压缩机第一级的出口额定压力的 0. 9倍时, 活塞往复式压缩 机第一级直接输出;  When the output pressure is less than 0.9 times the outlet rated pressure of the first stage of the piston reciprocating compressor, the first stage of the piston reciprocating compressor is directly output;
在输出压力低于活塞往复式压缩机第二级的出口额定压力的 0. 9倍而高于活塞往复式压 缩机第一级的出口额定压力的 0. 9倍时, 活塞往复式压缩机的第一级和第二级串联, 由第二 级输出;  The piston reciprocating compressor is at a pressure of 0.9 times higher than the outlet rated pressure of the first stage of the piston reciprocating compressor, and the output pressure is 0.9 times higher than the outlet rated pressure of the first stage of the piston reciprocating compressor. The first stage and the second stage are connected in series, and are output by the second stage;
在输出压力低于活塞往复式压缩机第三级的出口额定压力的 0. 9倍而高于活塞往复式压 缩机第二级的出口额定压力的 0. 9倍时, 活塞往复式压缩机的第一级、第二级和第三级串联, 由第三级输出;  The piston reciprocating compressor is 9.0 times higher than the outlet rated pressure of the second stage of the piston reciprocating compressor, and the output pressure is 0.9 times higher than the outlet rated pressure of the second stage of the piston reciprocating compressor. The first stage, the second stage and the third stage are connected in series, and are outputted by the third stage;
在输出压力低于活塞往复式压缩机第四级的出口额定压力而高于活塞往复式压缩机第三 级的出口额定压力的 0. 9倍时, 活塞往复式压缩机的第一级、第二级、第三级和第四级串联, 由第四级输出; 串联方式的改变受 PLC控制, PLC通过压力传感器检测各点压力, 根据上述压力区间变 换各阀门的通断, 组成不同的串联方式, 并通过一个变频器控制驱动电机, 根据不同的串联 方式确定驱动电机的输入功率。 When the output pressure is lower than the outlet rated pressure of the fourth stage of the piston reciprocating compressor and is higher than 0.9 times of the outlet rated pressure of the third stage of the piston reciprocating compressor, the first stage of the piston reciprocating compressor The second, third and fourth stages are connected in series, and are output by the fourth stage; The change of the series mode is controlled by the PLC. The PLC detects the pressure at each point through the pressure sensor, and switches the on/off of each valve according to the above pressure interval to form different series modes, and controls the drive motor through a frequency converter to determine the drive according to different series modes. The input power of the motor.
本发明活塞往复式压缩机阶梯压缩系统, 包括活塞往复式压缩机及各级输入管线和输出 管线、 气动球阀、 电磁换向阀、 冷却器、 气液分离器、 回收罐、 减压阀、 驱动电机、 变频器、 PLC, 一级输入管线经输入气动球阀连接所述活塞往复式压缩机的一级气缸的进气口, 所述一 级气缸出气口连接的一级输出管线经过一级输出气动球阀连接所述气液分离器, 经一级支路 气动球阀连接所述活塞往复式压缩机的二级气缸的进气口, 所述二级气缸出气口连接的二级 输出管线经过二级输出气动球阀连接所述气液分离器, 经二级支路气动球阀连接所述活塞往 复式压缩机的三级气缸的进气口, 所述三级气缸出气口连接的三级输出管线经过三级输出气 动球阀连接所述气液分离器, 经三级支路气动球阀连接所述活塞往复式压缩机的四级气缸的 进气口, 所述四级气缸出气口连接的四级输出管线经过四级输出气动球阀连接所述气液分离 器, 在所述压缩机的四条输出管线上分别装有主压力传感器, 所述活塞往复式压缩机的所有 气缸共驱动轴, 连接所述驱动电机, 所述驱动电机连接所述变频器, 所述输入、 输出及支路 气动球阀分别连接主电磁换向阀, 所述变频器、 主电磁换向阀和主压力传感器连接所述 PLC。  The piston reciprocating compressor step compression system of the invention comprises a piston reciprocating compressor and various input pipelines and output pipelines, pneumatic ball valves, electromagnetic reversing valves, coolers, gas-liquid separators, recovery tanks, pressure reducing valves, and drives The motor, the frequency converter, the PLC, the first-stage input pipeline is connected to the air inlet of the first-stage cylinder of the piston reciprocating compressor via an input pneumatic ball valve, and the first-stage output pipeline connected by the first-stage cylinder outlet port passes through the first-stage output pneumatic a ball valve is connected to the gas-liquid separator, and is connected to an intake port of the secondary cylinder of the piston reciprocating compressor via a primary branch pneumatic ball valve, and the secondary output line connected to the secondary cylinder outlet port passes through the secondary output a pneumatic ball valve is connected to the gas-liquid separator, and is connected to a gas inlet of a three-stage cylinder of the piston reciprocating compressor via a two-stage pneumatic ball valve, and the three-stage output pipeline connected to the three-stage cylinder air outlet passes through three stages An output pneumatic ball valve is connected to the gas-liquid separator, and a three-stage branch pneumatic ball valve is connected to an air inlet of the four-stage cylinder of the piston reciprocating compressor, The four-stage output line connected to the cylinder outlet is connected to the gas-liquid separator via a four-stage output pneumatic ball valve, and the main pressure sensor is respectively installed on the four output lines of the compressor, and all of the piston reciprocating compressor a common driving shaft of the cylinder, the driving motor is connected, the driving motor is connected to the frequency converter, and the input, output and branch pneumatic ball valves are respectively connected to a main electromagnetic reversing valve, the inverter, a main electromagnetic reversing valve and A main pressure sensor is connected to the PLC.
本发明活塞往复式压缩机阶梯压缩系统, 在所述输出气动球阀和气液分离器之间的连接 管线上分别串接一单向阀。  In the piston reciprocating compressor step compression system of the present invention, a one-way valve is connected in series to the connecting line between the output pneumatic ball valve and the gas-liquid separator.
本发明活塞往复式压缩机阶梯压缩系统, 所述活塞往复式压缩机的各气缸的出气口和气 动球阀之间的输出管线上分别串接冷却器和过滤器, 并联一温度传感器。  In the piston reciprocating compressor step compression system of the present invention, the output line between the air outlet of each cylinder of the piston reciprocating compressor and the pneumatic ball valve is connected in series with a cooler and a filter, and a temperature sensor is connected in parallel.
本发明活塞往复式压缩机阶梯压缩系统, 在前三级过滤器上, 分别有一支路连接回收气 动球阀, 所述三个回收气动球阀连接到回收罐, 所述回收罐经过回流减压阀连接所述活塞往 复式压缩机一级气缸的进气口, 所述三个回收气动球阀分别连接辅助电磁换向阀。  In the piston reciprocating compressor step compression system of the present invention, on the first three stages of the filter, there is a road connection recovery pneumatic ball valve, and the three recovery pneumatic ball valves are connected to the recovery tank, and the recovery tank is connected through a return pressure reducing valve. The intake port of the first stage cylinder of the piston reciprocating compressor, and the three recovered pneumatic ball valves are respectively connected to the auxiliary electromagnetic reversing valve.
本发明活塞往复式压缩机阶梯压缩系统, 在所述活塞往复式压缩机的一级气缸输出管线 上连接一分支管线, 通过控制减压阀连接到所述所有电磁换向阀, 所述回收罐也有一分支管 线连接所有电磁换向阀。  In the piston reciprocating compressor step compression system of the present invention, a branch line is connected to the primary cylinder output line of the piston reciprocating compressor, and is connected to all of the electromagnetic reversing valves by controlling a pressure reducing valve, the recovery tank There is also a branch line connecting all solenoid reversing valves.
本发明活塞往复式压缩机阶梯压缩系统, 在所述进气口、 所述输入气动球阀后的输入管 线上有一输入压力传感器和输入压力表, 在所述气液分离器上装有输出压力传感器和输出压 力表。  The piston reciprocating compressor step compression system of the present invention has an input pressure sensor and an input pressure gauge on the inlet line of the inlet port and the input pneumatic ball valve, and an output pressure sensor is arranged on the gas-liquid separator and Output pressure gauge.
本发明活塞往复式压缩机阶梯压缩系统, 在所述的四根输出管线、 气液分离器和回收罐 上均安装安全阀。  In the piston reciprocating compressor step compression system of the present invention, safety valves are installed on the four output lines, the gas-liquid separator and the recovery tank.
附图说明 图 1是本发明活塞往复式压缩机阶梯压缩系统的示意图; DRAWINGS Figure 1 is a schematic view of a step compression system of a piston reciprocating compressor of the present invention;
图 2是本发明活塞往复式压缩机阶梯压缩系统的电气连接图。  2 is an electrical connection diagram of a step compression system of a piston reciprocating compressor of the present invention.
具体实施方式  detailed description
为进一步阐述本发明活塞往复式压缩机阶梯压缩系统,下面结合实施例作更详尽的说明。 将活塞往复式压缩机由各级连续式消耗功率改成阶梯式消耗功率。 由于活塞往复式压缩 机在压缩气体时各级消耗的功率不同,并按压缩级的升高而逐级叠加,而用户的储气容器在达 到所要求的储气容积时,在不同的充气压力点,所需要的时间也不同, 对活塞往复式压缩机在 压缩到不同的充气压力点时, 所消耗的功率也不同。 因此我们设计了一种新的控制方法将活 塞往复式压缩机由各级连续式消耗功率改成阶梯式消耗功率。  To further illustrate the stepped compression system of the piston reciprocating compressor of the present invention, a more detailed description will be given below in conjunction with the embodiments. The piston reciprocating compressor is changed from continuous power consumption of each stage to stepped power consumption. Since the piston reciprocating compressor consumes different amounts of power when compressing the gas, and is superimposed step by step according to the increase of the compression stage, the user's gas storage container is at different inflation pressures when reaching the required gas storage volume. At the point, the time required is different, and the power consumed by the piston reciprocating compressor is different when it is compressed to different inflation pressure points. Therefore, we have devised a new control method to change the piston reciprocating compressor from continuous power consumption to stepped power consumption.
具体系统见图 1。  The specific system is shown in Figure 1.
该系统包括活塞往复式压缩机 YS、 气动球阀4、 B、 C、 电磁换向阀 SV、 冷却器 LQ、 气液 分离器 QYF、 回收罐 PV、 减压阀 PR、 安全阀 SRV、 单向阀 CV、 压力传感器 PT、 温度传感器 TS、 驱动电机、 变频器、 PLC;  The system includes piston reciprocating compressor YS, pneumatic ball valve 4, B, C, electromagnetic reversing valve SV, cooler LQ, gas-liquid separator QYF, recovery tank PV, pressure reducing valve PR, safety valve SRV, check valve CV, pressure sensor PT, temperature sensor TS, drive motor, inverter, PLC;
进气口连接的一级输入管线经输入气动球阀 A1连接所述活塞往复式压缩机 YS的一级气 缸 YS1的进气口,一级气缸 YS 1的出气口连接的一级输出管线 G1上串接一级冷却器 LQ1和一 级过滤器 Fl, 一级过滤器 F1有一路输出经过一级输出气动球阀 B1和一单向阀 CV1连接气液 分离器 QYF, 另一支路经一级支路气动球阀 A2连接所述活塞往复式压缩机的二级气缸的进气 口, 同时经一级回收气动球阀 C1连接回收罐 PV; 在一级气缸 YS1的出气口连接的一级输出 管线 G1上接有温度传感器 TS1, 在一级冷却器 LQ1后接有安全阀 SRV1 , 在一级输出气动球阀 B1前装有主压力传感器 PT11 , 在一级支路气动球阀 A2前连接有压力传感器 PT12 ;  The first input line connected to the air inlet port is connected to the air inlet of the first stage cylinder YS1 of the piston reciprocating compressor YS via the input pneumatic ball valve A1, and the first output line G1 connected to the air outlet of the first stage cylinder YS 1 is connected. Connected to the primary cooler LQ1 and the primary filter Fl, the primary filter F1 has one output through the primary output pneumatic ball valve B1 and a one-way valve CV1 connected to the gas-liquid separator QYF, the other branch through the primary branch The pneumatic ball valve A2 is connected to the intake port of the secondary cylinder of the piston reciprocating compressor, and is connected to the recovery tank PV via the first-stage recovery pneumatic ball valve C1; and connected to the primary output line G1 connected to the air outlet of the first-stage cylinder YS1. There is temperature sensor TS1, after the first cooler LQ1 is connected with safety valve SRV1, before the first-stage output pneumatic ball valve B1 is equipped with main pressure sensor PT11, before the primary branch pneumatic ball valve A2 is connected with pressure sensor PT12;
二级气缸 YS2的出气口连接的二级输出管线 G2上串接二级冷却器 LQ2和二级过滤器 F2, 二级过滤器 F2有一路输出经过二级输出气动球阀 B2和一单向阀 CV2连接气液分离器 QYF, 另一支路经二级支路气动球阀 A3连接所述活塞往复式压缩机的三级气缸的进气口,同时经二 级回收气动球阀 C2连接回收罐 PV; 在二级气缸 YS2的出气口连接的二级输出管线 G2上接有 温度传感器 TS2, 在二级冷却器 LQ2后接有安全阀 SRV2, 在二级输出气动球阀 B2前装有主压 力传感器 PT21 , 在二级支路气动球阀 A3前连接有压力传感器 PT22 ;  The secondary output line G2 connected to the outlet of the secondary cylinder YS2 is connected in series with the secondary cooler LQ2 and the secondary filter F2, and the secondary filter F2 has an output through the secondary output pneumatic ball valve B2 and a check valve CV2. Connecting the gas-liquid separator QYF, the other branch is connected to the intake port of the three-stage cylinder of the piston reciprocating compressor via the secondary branch pneumatic ball valve A3, and is connected to the recovery tank PV through the secondary recovery pneumatic ball valve C2; The secondary output line G2 connected to the outlet of the secondary cylinder YS2 is connected with a temperature sensor TS2, a safety valve SRV2 is connected after the secondary cooler LQ2, and a main pressure sensor PT21 is installed in front of the secondary output pneumatic ball valve B2. The pressure sensor PT22 is connected to the front side pneumatic ball valve A3;
三级气缸 YS3的出气口连接的三级输出管线 G3上串接三级冷却器 LQ3和三级过滤器 F3, 三级过滤器 F3有一路输出经过三级输出气动球阀 B3和一单向阀 CV3连接气液分离器 QYF, 另一支路经三级支路气动球阀 A4连接所述活塞往复式压缩机的四级气缸的进气口,同时经三 级回收气动球阀 C3连接回收罐 PV; 在三级气缸 YS3的出气口连接的三级输出管线 G3上接有 温度传感器 TS3, 在三级冷却器 LQ3后接有安全阀 SRV3, 在三级输出气动球阀 B3前装有主压 力传感器 PT31, 在三级支路气动球阀 Α4前连接有压力传感器 ΡΤ32; The three-stage output line G3 connected to the outlet of the three-stage cylinder YS3 is connected in series with the three-stage cooler LQ3 and the third-stage filter F3, and the three-stage filter F3 has one output through the three-stage output pneumatic ball valve B3 and a one-way valve CV3. Connecting the gas-liquid separator QYF, the other branch is connected to the intake port of the four-stage cylinder of the piston reciprocating compressor through the three-stage branch pneumatic ball valve A4, and is connected to the recovery tank PV through the three-stage recovery pneumatic ball valve C3; The three-stage output line G3 connected to the air outlet of the three-stage cylinder YS3 is connected with the temperature sensor TS3, the safety valve SRV3 is connected after the third-stage cooler LQ3, and the main pressure is installed before the three-stage output pneumatic ball valve B3. Force sensor PT31, a pressure sensor ΡΤ32 is connected before the three-stage branch pneumatic ball valve Α4;
四级气缸 YS4的出气口连接的四级输出管线 G4上串接四级冷却器 LQ4和四级过滤器 F4, 四级过滤器 F4有一路输出经过四级输出气动球阀 Β4和一单向阀 CV4连接气液分离器 QYF, 在四级气缸 YS4的出气口连接的四级输出管线 G4上接有温度传感器 TS4, 在四级冷却器 LQ4 后接有安全阀 SRV4和放气阀 FQ1, 在四级输出气动球阀 B4前装有主压力传感器 PT4。  The four-stage output line G4 connected to the outlet of the four-stage cylinder YS4 is connected in series with the four-stage cooler LQ4 and the four-stage filter F4, and the four-stage filter F4 has one output through the four-stage output pneumatic ball valve Β4 and a one-way valve CV4. Connected to the gas-liquid separator QYF, the temperature sensor TS4 is connected to the fourth-stage output line G4 connected to the air outlet of the four-stage cylinder YS4, and the safety valve SRV4 and the bleed valve FQ1 are connected to the fourth-stage cooler LQ4. The main pressure sensor PT4 is installed in front of the output pneumatic ball valve B4.
所有的气动球阀 Al、 Α2、 A3、 A4、 Bl、 Β2、 Β3、 Β4、 Cl、 C2、 C3, 有管线和电磁换向阀 SV1— 11连接 (本实施例中连接对是: Al— SVll; A2-SV6; A3— SV4; A4— SV2; B1— SV10; B2-SV5; B3-SV3; B4— SV1; C1— SV8; C2— SV7; C3— SV9, 但这不是唯一的连接方式, 只 要达到区别连接、 分别控制即可), 回收罐 PV有一管线连接所有电磁换向阀 SV1— 11, 一级 输出管线 G1的支路通过一减压阀 PR1连接到所有电磁换向阀,提供气动球阀控制用压缩气体。  All the pneumatic ball valves Al, Α2, A3, A4, Bl, Β2, Β3, Β4, Cl, C2, C3, have the pipeline and the electromagnetic reversing valve SV1-11 connected (the connection pair in this embodiment is: Al-SVll; A2-SV6; A3-SV4; A4-SV2; B1-SV10; B2-SV5; B3-SV3; B4-SV1; C1-SV8; C2-SV7; C3-SV9, but this is not the only way to connect The difference between the connection and the separate control can be), the recovery tank PV has a pipeline connecting all the electromagnetic reversing valves SV1—11, and the branch of the primary output line G1 is connected to all the electromagnetic reversing valves through a pressure reducing valve PR1 to provide pneumatic ball valve control. Use compressed gas.
回收罐 PV安装有压力传感器 PT6、压力表和安全阀 SRV6, 并通过减压阀 PR2连接到输入 管线上。  The recovery tank PV is equipped with a pressure sensor PT6, a pressure gauge and a safety valve SRV6, and is connected to the input line via a pressure reducing valve PR2.
进气口上输入气动球阀 A1后的输入管线上还可以安装压力表,在气液分离器上还可以安 装压力表。  A pressure gauge can also be installed on the input line after the pneumatic ball valve A1 is input to the air inlet, and a pressure gauge can also be installed on the gas-liquid separator.
气液分离器 QYF连接一安全阀 SRV5, —级过滤器 F1连接的之路也连接一安全阀 SRV0。 变频器、 电磁换向阀 SV1、 SV2、 SV3、 SV4、 SV5、 SV6、 SV10、 SV11和压力传感器 PT11、 PT21、 PT31、 PT41连接所述 PLC。  Gas-liquid separator QYF is connected to a safety valve SRV5, - Stage filter The road connected to F1 is also connected to a safety valve SRV0. Inverter, solenoid reversing valve SV1, SV2, SV3, SV4, SV5, SV6, SV10, SV11 and pressure sensor PT11, PT21, PT31, PT41 are connected to the PLC.
气动球阀的不同通断状态, 改变系统的工作状态:  The different on-off states of the pneumatic ball valve change the working state of the system:
状态一: 活塞往复式压缩机第一级将天然气从 P。=0.8 MPa压缩到 Pi<2.1=2.1X0.9=1.89 MPa时,  State 1: The first stage of the piston reciprocating compressor will take natural gas from P. =0.8 MPa compression to Pi<2.1=2.1X0.9=1.89 MPa,
A1,A3,A4, Bl, Cl, C2, C3 是阀开状态.  A1, A3, A4, Bl, Cl, C2, C3 are valve open.
A2, B2,B3,B4 是阀闭状态.  A2, B2, B3, B4 are valve closed.
此时, 活塞往复式压缩机第一级运行。 直到将用户的储气容器充到 1.89 MPa,在这个时 间段上, 活塞往复式压缩机消耗功率是<86 KW.
Figure imgf000006_0001
MPa时,活塞往复式压缩机第二级开始运行。
At this time, the piston reciprocating compressor operates in the first stage. Until the user's gas storage container is charged to 1.89 MPa, the piston reciprocating compressor consumes <86 KW during this time period.
Figure imgf000006_0001
At MPa, the second stage of the piston reciprocating compressor begins to operate.
状态二: 活塞往复式压缩机第二级将天然气从? 1.89 MPa压缩到 P2<4.6=4.6X0.9=4.14 MPa时, State 2: The second stage of the piston reciprocating compressor will take natural gas from? When 1.89 MPa is compressed to P 2 <4.6=4.6X0.9=4.14 MPa,
A1,A2,A4, B2, C2, C3 是阀开状态.  A1, A2, A4, B2, C2, C3 are valve open states.
A3, B1,B3,B4, CI 是阀闭状态. 此时, 活塞往复式压缩机第二级运行。 直到将用户的储气容器充到 4. 14 MPa,在这个时 间段上, 活塞往复式压缩机消耗功率是< 160 KW。 当 P2 4. 14 MPa时,活塞往复式压缩机第三级开始运行。 A3, B1, B3, B4, CI are valve closed. At this time, the piston reciprocating compressor operates in the second stage. Until the user's gas storage container is charged to 4. 14 MPa, the piston reciprocating compressor consumes < 160 KW during this time period. When P 2 4. 14 MPa, the third stage of the piston reciprocating compressor starts to operate.
状态三: 活塞往复式压缩机第三级将天然气从 P2=4. 14 MPa压缩到 P3 < 12. 3=12. 3X0. 9=11. 07 MPa时, State 3: The third stage of the piston reciprocating compressor compresses the natural gas from P 2 =4.14 MPa to P 3 < 12. 3=12. 3X0. 9=11. 07 MPa,
Al, A2, A3, B3, C3 是阀开状态。  Al, A2, A3, B3, C3 are valve open.
A4, B1,B2,B4, Cl, C2 是阀闭状态。  A4, B1, B2, B4, Cl, C2 are valve closed.
此时, 活塞往复式压缩机第二级, 第二级,第三级运行. 直到将用户的储气容器充到 11. 07 MPa,在这个时间段上, 活塞往复式压缩机消耗功率是<251 KW。 当 P3 11. 07 MPa时,活塞往复式压缩机第四级开始运行。 At this time, the piston reciprocating compressor is operated in the second stage, the second stage, and the third stage. Until the user's gas storage container is charged to 11.07 MPa, the piston reciprocating compressor consumes power during this period. 251 KW. When P 3 11.07 MPa, the fourth stage of the piston reciprocating compressor starts to operate.
状态四: 活塞往复式压缩机第四级将天然气从 P3=l l. 07 MPa压缩到 P4=25X0. 9=22. 5 MPa 时,  State 4: The fourth stage of the piston reciprocating compressor compresses the natural gas from P3=l l. 07 MPa to P4=25X0. 9=22. 5 MPa,
A1,A2,A3,A4, B4, 是阀开状态。  A1, A2, A3, A4, B4, are valve open.
B1,B2,B3, C1,C2,C3 是阀闭状态。  B1, B2, B3, C1, C2, and C3 are valve closed states.
此时, 活塞往复式压缩机第二级, 第二级,第三级,第四级连续运行, 直到将用户的储气 容器充到 22. 5 MPa时,在这个时间段上, 活塞往复式压缩机消耗功率 <320 KW。  At this time, the second stage, the second stage, the third stage, and the fourth stage of the piston reciprocating compressor are continuously operated until the user's gas storage container is charged to 22.5 MPa, at this time, the piston reciprocating Compressor power consumption <320 KW.
工业实用性  Industrial applicability
本发明活塞往复式压缩机阶梯压缩系统, 实施例是应用在对天然气灌装罐车气罐方面, 采用本发明, 可以有效的降低灌装过程所需要电能的 36 %, 具体是:  The piston reciprocating compressor step compression system of the present invention is applied to the natural gas filling tank car gas tank. The invention can effectively reduce the electric energy required for the filling process by 36%, specifically:
当活塞往复式压缩机第一级将天然气从 0. 8 MPa压缩到 2. 1X0. 9=1. 89 MPa, 在用户的储 气容器达到 1. 89 MPa时,再转换到两级压缩,在这个时间段上, 活塞往复式压缩机消耗功率 < 86 KW。  When the first stage of the piston reciprocating compressor compresses natural gas from 0.8 MPa to 2. 1X0. 9=1. 89 MPa, when the user's gas storage container reaches 1.89 MPa, it is converted to two-stage compression. During this time period, the piston reciprocating compressor consumes < 86 KW.
当活塞往复式压缩机第二级将天然气从 1. 89 MPa压缩到 4. 6X0. 9=4. 14 MPa, 在用户的 储气容器达到 4. 14MPa时,再转换到三级压缩,在这个时间段上, 活塞往复式压缩机消耗功率 < 160 KW。  When the second stage of the piston reciprocating compressor compresses the natural gas from 1.89 MPa to 4. 6X0. 9=4. 14 MPa, when the user's gas storage container reaches 4.14MPa, it is converted to the third-stage compression. During the time period, the piston reciprocating compressor consumes < 160 KW.
当活塞往复式压缩机第三级将天然气从 4. 14MPa压缩到 12. 3X0. 9=11. 07 MPa, 在用户的 储气容器达到 11. 07 MPa时, 再转换到四级压缩,在这个时间段上, 活塞往复式压缩机消耗功 率<251 KW。 当活塞往复式压缩机第四级将天然气从 11. 07 MPa压缩到 25X0. 9=22. 5MPa, 在用户的储 气容器达到 22. 5MPa时,在这个时间段上, 活塞往复式压缩机消耗功率 <320 KW。 When the third stage of the piston reciprocating compressor compresses the natural gas from 4. 14 MPa to 12. 3X0. 9=11. 07 MPa, when the user's gas storage container reaches 11.07 MPa, it is converted to four-stage compression. During the time period, the piston reciprocating compressor consumes <251 KW. When the fourth stage of the piston reciprocating compressor compresses the natural gas from 11.07 MPa to 25×0. 9=22. 5MPa, when the user's gas storage container reaches 22. 5MPa, during this period, the piston reciprocating compressor consumes Power <320 KW.
我们仍将活塞往复式压缩机各级压缩所消耗功率叠加在除以四得到平均消耗的功率 即(86+160+251+322) /4=205 KW。  We still superimpose the power consumed by the compression of the piston reciprocating compressor on the power divided by four to get the average power consumption (86+160+251+322) /4=205 KW.
由此我们可以算出阶梯式比连续式可以节省 1- (205/320) =36%的能耗。  From this we can calculate that stepwise than continuous can save 1- (205/320) = 36% energy consumption.
以上四种状态的控制是通过变频器控制电动机在不同工作状态, 输出不同功率. 电控系 统使用了 PLC (可编程逻辑控制器), 可以控制活塞往复式压缩机的每个操作。 该装置使用各 种传感器、 变送器、 电磁阀来控制和检测设备的运转情况, 以及在运行不正常或出现故障时 的安全关闭和故障报警, 运行状态可以实时显示在控制柜面板上的数码管上, 全中文界面的 触摸式显示屏, 为用户提供了二个易于操作的友好平台,可实现无人值守。  The above four states are controlled by the inverter to control the motor in different working states and output different powers. The electronic control system uses a PLC (Programmable Logic Controller) to control each operation of the piston reciprocating compressor. The device uses a variety of sensors, transmitters, solenoid valves to control and detect the operation of the equipment, as well as safety shutdown and fault alarms in the event of abnormal operation or failure, the operating status can be displayed in real time on the panel of the control cabinet On the tube, the touch screen of the full Chinese interface provides users with two easy-to-operate and friendly platforms that can be unattended.
本发明活塞往复式压缩机阶梯压缩系统不仅仅可以应用在天然气罐车罐装上, 还可以应 用于其它类似的空气、 石油气、 单纯气体 (如氧、 氮等) 等的压缩罐装上, 消耗电能功率比 传统的连续式减少 36%, 对于活塞往复式压缩机用户减少运营费用, 节能降耗具有重大意义, 完全符合当前建设节能型社会的发展趋势。  The step compression system of the piston reciprocating compressor of the invention can be applied not only to natural gas tanker cans, but also to other similar compressed tanks of air, petroleum gas, simple gas (such as oxygen, nitrogen, etc.), and consumes The power consumption is reduced by 36% compared with the traditional continuous type. It is of great significance for the piston reciprocating compressor users to reduce operating expenses, energy saving and consumption reduction, which fully conforms to the current development trend of building an energy-saving society.

Claims

权 利 要 求 Rights request
1、 一种活塞往复式压缩机阶梯压缩方法, 其特征在于: 1. A step compression method for a piston reciprocating compressor, characterized in that:
在同轴多级活塞往复式压缩机的应用中, 每一级活塞式压缩机都设置单独的输入管线和 输出管线, 通过输出输入管线上阀门的控制连接成串联级数可以转换的压缩系统;  In the application of a coaxial multi-stage piston reciprocating compressor, each stage piston compressor is provided with a separate input line and an output line, and is connected to a series-convertible compression system through the control of the valve on the output input line;
在输出压力低于活塞往复式压缩机第一级的出口额定压力的 0. 9倍时, 活塞往复式压缩 机第一级直接输出;  When the output pressure is less than 0.9 times the outlet rated pressure of the first stage of the piston reciprocating compressor, the first stage of the piston reciprocating compressor is directly output;
在输出压力低于活塞往复式压缩机第二级的出口额定压力的 0. 9倍而高于活塞往复式压 缩机第一级的出口额定压力的 0. 9倍时, 活塞往复式压缩机的第一级和第二级串联, 由第二 级输出;  The piston reciprocating compressor is at a pressure of 0.9 times higher than the outlet rated pressure of the first stage of the piston reciprocating compressor, and the output pressure is 0.9 times higher than the outlet rated pressure of the first stage of the piston reciprocating compressor. The first stage and the second stage are connected in series, and are output by the second stage;
在输出压力低于活塞往复式压缩机第三级的出口额定压力的 0. 9倍而高于活塞往复式压 缩机第二级的出口额定压力的 0. 9倍时, 活塞往复式压缩机的第一级、第二级和第三级串联, 由第三级输出;  The piston reciprocating compressor is 9.0 times higher than the outlet rated pressure of the second stage of the piston reciprocating compressor, and the output pressure is 0.9 times higher than the outlet rated pressure of the second stage of the piston reciprocating compressor. The first stage, the second stage and the third stage are connected in series, and are outputted by the third stage;
在输出压力低于活塞往复式压缩机第四级的出口额定压力而高于活塞往复式压缩机第三 级的出口额定压力的 0. 9倍时, 活塞往复式压缩机的第一级、第二级、第三级和第四级串联, 由第四级输出;  When the output pressure is lower than the outlet rated pressure of the fourth stage of the piston reciprocating compressor and is higher than 0.9 times of the outlet rated pressure of the third stage of the piston reciprocating compressor, the first stage of the piston reciprocating compressor The second, third and fourth stages are connected in series, and are output by the fourth stage;
串联方式的改变受 PLC控制, PLC通过压力传感器检测各点压力, 根据上述区间变换各 阀门的通断, 组成不同的串联方式, 并通过一个变频器控制驱动电机, 根据不同的串联方式 确定驱动电机的输入功率。  The change of the series mode is controlled by the PLC. The PLC detects the pressure of each point through the pressure sensor, changes the on/off of each valve according to the above interval, forms different series mode, and controls the drive motor through a frequency converter to determine the drive motor according to different series modes. Input power.
2、 种活塞往复式压缩机阶梯压缩系统, 包括活塞往复式压缩机 (YS) 及输入管线和输 出管线 (G)、 气动球阀 (A、 B、 C)、 电磁换向阀 (SV)、 冷却器 (LQ)、 气液分离器 (QYF)、 回收罐 (PV)、 减压阀 (PR)、 驱动电机、 变频器、 PLC, 其特征在于, 一级输入管线经输入气 动球阀 (A1 )连接所述活塞往复式压缩机(YS) 的一级气缸 (YS1 ) 的进气口, 所述一级气缸 2. Stepped compression system for piston reciprocating compressor, including piston reciprocating compressor (YS) and input and output lines (G), pneumatic ball valves (A, B, C), electromagnetic reversing valve (SV), cooling (LQ), gas-liquid separator (QYF), recovery tank (PV), pressure reducing valve (PR), drive motor, frequency converter, PLC, characterized in that the primary input line is connected via the input pneumatic ball valve (A1) An intake port of a primary cylinder (YS1) of the piston reciprocating compressor (YS), the first stage cylinder
(YS1 ) 出气口连接的一级输出管线 (G1 )经过一级输出气动球阀 (B1 )连接所述气液分离器 ( QYF), 经一级支路气动球阀 (A2)连接所述活塞往复式压缩机 (YS) 的二级气缸(YS2 ) 的 进气口, 所述二级气缸(YS2 )出气口连接的二级输出管线(G2 )经过二级输出气动球阀(B2 ) 连接所述气液分离器 (QYF), 经二级支路气动球阀 (A3 ) 连接所述活塞往复式压缩机 (YS) 的三级气缸 (YS3 ) 的进气口, 所述三级气缸 (YS3 ) 出气口连接的三级输出管线 (G3 ) 经过 三级输出气动球阀 (B3 ) 连接所述气液分离器 (QYF), 经三级支路气动球阀 (A4) 连接所述 活塞往复式压缩机 (YS) 的四级气缸 (YS4) 的进气口, 所述四级气缸 (YS4) 出气口连接的 四级输出管线 (G4) 经过四级输出气动球阀 (B4) 连接所述气液分离器 (QYF); 在所述压缩 机的四条输出管线 (Gl、 G2、 G3、 G4) 上分别装有主压力传感器 (PT11、 ΡΤ21、 ΡΤ31、 ΡΤ4), 所述活塞往复式压缩机的所有气缸共驱动轴, 连接所述驱动电机, 所述驱动电机连接所述变 频器, 所述输入、 输出及支路气动球阀 (Al、 Α2、 A3、 A4、 Bl、 Β2、 Β3、 Β4 ) 分别连接主电 磁换向阀(SV11、 SV6、 SV4、 SV2、 SV10、 SV5、 SV3、 SV1 ), 所述变频器、主电磁换向阀(SV11、 SV6、 SV4、 SV2、 SV10、 SV5、 SV3、 SV1 ) 和主压力传感器 (PT11、 ΡΤ21、 ΡΤ31、 ΡΤ4) 连接所 述 PLC。 (YS1) The primary output line (G1) connected to the air outlet is connected to the gas-liquid separator (QYF) via a primary output pneumatic ball valve (B1), and the piston is reciprocated via a primary branch pneumatic ball valve (A2) An intake port of a secondary cylinder (YS2) of a compressor (YS), a secondary output line (G2) connected to an outlet of the secondary cylinder (YS2) is connected to the gas-liquid via a secondary output pneumatic ball valve (B2) a separator (QYF) connected to an intake port of a three-stage cylinder (YS3) of the piston reciprocating compressor (YS) via a secondary branch pneumatic ball valve (A3), and the three-stage cylinder (YS3) air outlet connection The three-stage output line (G3) is connected to the gas-liquid separator (QYF) through a three-stage output pneumatic ball valve (B3), and is connected to the piston reciprocating compressor (YS) via a three-stage branch pneumatic ball valve (A4). The inlet of the four-stage cylinder (YS4), the outlet of the four-stage cylinder (YS4) The four-stage output line (G4) is connected to the gas-liquid separator (QYF) via a four-stage output pneumatic ball valve (B4); the main output is installed on the four output lines (Gl, G2, G3, G4) of the compressor a pressure sensor (PT11, ΡΤ21, ΡΤ31, ΡΤ4), a common drive shaft of all the cylinders of the piston reciprocating compressor, connected to the drive motor, the drive motor is connected to the inverter, the input, the output and the branch Pneumatic ball valves (Al, Α2, A3, A4, Bl, Β2, Β3, Β4) are respectively connected to the main electromagnetic directional control valves (SV11, SV6, SV4, SV2, SV10, SV5, SV3, SV1), the inverter, the main Electromagnetic directional valves (SV11, SV6, SV4, SV2, SV10, SV5, SV3, SV1) and main pressure sensors (PT11, ΡΤ21, ΡΤ31, ΡΤ4) are connected to the PLC.
3、根据权利要求 2所述的活塞往复式压缩机阶梯压缩系统, 其特征在于, 在所述输出气 动球阀 (Bl、 B2、 B3、 B4)和气液分离器 (QYF)之间的连接管线上分别串接一单向阀 (CV1、 CV2、 CV3、 CV4)。  A stepped compression system for a piston reciprocating compressor according to claim 2, wherein a connection line between said output pneumatic ball valve (B1, B2, B3, B4) and a gas-liquid separator (QYF) is provided. Connect a check valve (CV1, CV2, CV3, CV4) in series.
4、 根据权利要求 3所述的活塞往复式压缩机阶梯压缩系统, 其特征在于, 所述活塞往复 式压缩机 (YS) 的各气缸的出气口和输出气动球阀之间的输出管线 (Gl、 G2、 G3、 G4) 上分 别串接冷却器 ( LQU LQ2、 LQ3、 LQ4)和过滤器(Fl、 F2、 F3、 F4), 并联一温度传感器(TS1、 TS2、 TS3、 TS4)。  4. The piston reciprocating compressor step compression system according to claim 3, wherein an output line between the air outlet of each cylinder of the piston reciprocating compressor (YS) and the output pneumatic ball valve (Gl, G2, G3, G4) are connected in series with the cooler (LQU LQ2, LQ3, LQ4) and the filter (Fl, F2, F3, F4), and a temperature sensor (TS1, TS2, TS3, TS4) is connected in parallel.
5、 根据权利要求 4所述的活塞往复式压缩机阶梯压缩系统, 其特征在于, 在前三级过滤 器 (Fl、 F2、 F3 ) 上, 分别有一支路连接回收气动球阀 (Cl、 C2、 C3), 所述三个回收气动球 阀 (Cl、 C2、 C3 ) 连接到回收罐 (PV), 所述回收罐 (PV) 经过一回流减压阀 (PR2 ) 连接所 述活塞往复式压缩机 (YS) —级气缸 (YS1 ) 的一级进气管线; 所述三个回收气动球阀 (Cl、 C2、 C3 ) 分别连接辅助电磁换向阀 (SV8、 SV7、 SV9)。  5. The piston reciprocating compressor step compression system according to claim 4, characterized in that, in the first three stages of filters (Fl, F2, F3), there is a road connection to recover the pneumatic ball valves (Cl, C2, respectively). C3), the three recovery pneumatic ball valves (Cl, C2, C3) are connected to a recovery tank (PV), and the recovery tank (PV) is connected to the piston reciprocating compressor via a reflux pressure reducing valve (PR2) ( YS) - the primary intake line of the stage cylinder (YS1); the three recovery pneumatic ball valves (Cl, C2, C3) are respectively connected to the auxiliary electromagnetic reversing valves (SV8, SV7, SV9).
6、 根据权利要求 5所述的活塞往复式压缩机阶梯压缩系统, 其特征在于, 在所述活塞往 复式压缩机(YS)的一级气缸(YS1 )输出管线(G1 )上连接一分支管线,通过控制减压阀(PR1 ) 连接到所述所有电磁换向阀 (SV1— 11 ), 所述回收罐 (PV) 也有一分支管线连接所有电磁换 向阀 (SV1— 11 )。  6. The piston reciprocating compressor step compression system according to claim 5, wherein a branch line is connected to the primary cylinder (YS1) output line (G1) of the piston reciprocating compressor (YS) Connected to all of the electromagnetic reversing valves (SV1-11) by a control pressure reducing valve (PR1), which also has a branch line connecting all the electromagnetic reversing valves (SV1-11).
7、 根据权利要求 6所述的活塞往复式压缩机阶梯压缩系统,其特征在于,在所述进气口、 所述输入气动球阀 (A1 )后的输入管线上并联一输入压力传感器(PT0 )和输入压力表, 在所 述气液分离器 (QYF) 上装有输出压力传感器 (PT5 ) 和输出压力表。  7. The piston reciprocating compressor step compression system according to claim 6, wherein an input pressure sensor (PT0) is connected in parallel to the intake port and the input line after the input pneumatic ball valve (A1). And an input pressure gauge, an output pressure sensor (PT5) and an output pressure gauge are mounted on the gas-liquid separator (QYF).
8、 根据权利要求 7所述的活塞往复式压缩机阶梯压缩系统, 其特征在于, 在所述的四根 输出管线 (Gl、 G2、 G3、 G4)、 气液分离器 (QYF) 和回收罐 (PV) 上均安装安全阀 (SRV1、 SRV2、 SRV3、 SRV4、 SRV5、 SRV6)。  8. The piston reciprocating compressor step compression system according to claim 7, wherein said four output lines (Gl, G2, G3, G4), a gas-liquid separator (QYF), and a recovery tank Safety valves (SRV1, SRV2, SRV3, SRV4, SRV5, SRV6) are installed on (PV).
PCT/CN2007/070004 2007-04-10 2007-05-09 A stepped compressing method and system of a reciprocating piston compressor WO2008122175A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710065298.4 2007-04-10
CN200710065298A CN101285462B (en) 2007-04-10 2007-04-10 Piston reciprocating compressor step compression method and system

Publications (1)

Publication Number Publication Date
WO2008122175A1 true WO2008122175A1 (en) 2008-10-16

Family

ID=39830458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/070004 WO2008122175A1 (en) 2007-04-10 2007-05-09 A stepped compressing method and system of a reciprocating piston compressor

Country Status (2)

Country Link
CN (1) CN101285462B (en)
WO (1) WO2008122175A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109681780A (en) * 2019-02-21 2019-04-26 中国石油工程建设有限公司 A kind of complete gas well pressure charging system and operation method based on reciprocating compressor
CN112147926A (en) * 2020-09-10 2020-12-29 四机赛瓦石油钻采设备有限公司 Centralized control system and control method for wellhead gas recovery device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106221839A (en) * 2016-08-31 2016-12-14 武汉格瑞拓机械有限公司 A kind of energy-efficient biogas purification and supercharging integrated apparatus
CN106930927A (en) * 2017-04-25 2017-07-07 山东科瑞压缩机有限公司 A kind of changeable compressor of compression stage and its application method
CN109372718B (en) * 2018-09-27 2019-10-25 中石化石油机械股份有限公司三机分公司 Variable working condition Reciprocating Natural Gas Compressor design method
JP2020070740A (en) * 2018-10-30 2020-05-07 株式会社神戸製鋼所 Compressor, compressor operation method and boil-off gas recovery system
CN113235546B (en) * 2021-04-22 2022-08-05 徐守坡 Water conservancy project construction stagnant water anti-seepage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0770815A2 (en) * 1995-10-27 1997-05-02 Preussag Wasser und Rohrtechnik GmbH Gas refuelling installation
DE20103351U1 (en) * 2001-02-26 2001-05-23 Fgn Ferngas Nordbayern Gmbh Gas refueling system for motor vehicles
CN2646418Y (en) * 2003-08-14 2004-10-06 四川金星环保科技有限公司 Nursing substation compressor of energy saving natural automobile
CN2777242Y (en) * 2004-07-23 2006-05-03 西安交通大学 General complex type compressor for gas feeding station of natural gas automobiles
US20060118575A1 (en) * 2004-09-23 2006-06-08 Boyd Robert W Intelligent compressor strategy to support hydrogen fueling

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5901758A (en) * 1997-04-30 1999-05-11 The Boc Group, Inc. Method of filling gas containers
CN2735144Y (en) * 2003-03-28 2005-10-19 胡滨 Device for recovering residual air of compressed natural gas storage steel cylinder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0770815A2 (en) * 1995-10-27 1997-05-02 Preussag Wasser und Rohrtechnik GmbH Gas refuelling installation
DE20103351U1 (en) * 2001-02-26 2001-05-23 Fgn Ferngas Nordbayern Gmbh Gas refueling system for motor vehicles
CN2646418Y (en) * 2003-08-14 2004-10-06 四川金星环保科技有限公司 Nursing substation compressor of energy saving natural automobile
CN2777242Y (en) * 2004-07-23 2006-05-03 西安交通大学 General complex type compressor for gas feeding station of natural gas automobiles
US20060118575A1 (en) * 2004-09-23 2006-06-08 Boyd Robert W Intelligent compressor strategy to support hydrogen fueling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109681780A (en) * 2019-02-21 2019-04-26 中国石油工程建设有限公司 A kind of complete gas well pressure charging system and operation method based on reciprocating compressor
CN109681780B (en) * 2019-02-21 2023-10-31 中国石油工程建设有限公司 Complete gas well supercharging system based on reciprocating compressor and operation method
CN112147926A (en) * 2020-09-10 2020-12-29 四机赛瓦石油钻采设备有限公司 Centralized control system and control method for wellhead gas recovery device

Also Published As

Publication number Publication date
CN101285462A (en) 2008-10-15
CN101285462B (en) 2010-05-19

Similar Documents

Publication Publication Date Title
WO2008122175A1 (en) A stepped compressing method and system of a reciprocating piston compressor
CN113216326B (en) Non-negative pressure water supply equipment with night small-flow function and water supply method
CN107542711A (en) A kind of pressure charging system
CN114593040B (en) Variable-pressure air inlet and balance pressure conversion system and method for multistage circulating liquid seal compressor
CN215367519U (en) Double-tank negative-pressure-free water supply equipment
CN102913753A (en) Storage and gasification project output system of LNG (Liquefied Natural Gas) receiving terminal as well as method
CN108954884A (en) A kind of cold and hot double SCREW COMPRESSORs processed
JP2012002156A (en) Screw compressor and control device thereof
JP2019138200A (en) Compressor system
CN202673875U (en) Ultrahigh pressure booster device
CN2646418Y (en) Nursing substation compressor of energy saving natural automobile
CN217928246U (en) Integrated liquid-driven compressor system of hydrogen production and hydrogenation station
CN106640847B (en) Accumulator fatigue experimental device and test method
JP2013170580A (en) Method for compressing cryogenic medium
CN110566806B (en) Compression energy recycling system of hydrogen production energy storage system
CN210623025U (en) One-key dual-machine compressor control system
CN110220118B (en) Liquefied compressed natural gas high-pressure plunger pump pipeline system
CN101693385A (en) Hydraulic ceramic brick press and method for prolonging service life of hydraulic oil
CN201621469U (en) One-stop marine compressed air supply unit
CN1746545A (en) Superpressure pneumatic pressure-release valve with adjusting gas source switch
CN215013289U (en) Special oxygen remover for air-conditioned cold store
CN219673952U (en) Fixed-proportion high-pressure mixed gas supply system
CN203335360U (en) Novel variable working condition multi-stage diaphragm compressor
CN216764813U (en) Fuel gas heavy component recovery system
CN112815231B (en) Liquid-gas pressurization system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07721627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07721627

Country of ref document: EP

Kind code of ref document: A1