WO2008151091A1 - A deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method - Google Patents

A deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method Download PDF

Info

Publication number
WO2008151091A1
WO2008151091A1 PCT/US2008/065435 US2008065435W WO2008151091A1 WO 2008151091 A1 WO2008151091 A1 WO 2008151091A1 US 2008065435 W US2008065435 W US 2008065435W WO 2008151091 A1 WO2008151091 A1 WO 2008151091A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
deflection
deflection rod
implant
bone anchor
Prior art date
Application number
PCT/US2008/065435
Other languages
French (fr)
Inventor
Charles J. Winslow
John J. Flynn
James F. Zucherman
Ken Y. Hsu
Donald L. Cain
Henry A. Klyce
H. Adam R. Klyce
Original Assignee
Spartek Medical, Inc.
Mitchell, Steven, T.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/832,338 external-priority patent/US8070780B2/en
Application filed by Spartek Medical, Inc., Mitchell, Steven, T. filed Critical Spartek Medical, Inc.
Publication of WO2008151091A1 publication Critical patent/WO2008151091A1/en
Priority to US12/566,529 priority Critical patent/US8021396B2/en
Priority to US12/566,522 priority patent/US8083772B2/en
Priority to US12/566,519 priority patent/US8092501B2/en
Priority to US12/566,531 priority patent/US8114134B2/en
Priority to US12/566,534 priority patent/US8048115B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7041Screws or hooks combined with longitudinal elements which do not contact vertebrae with single longitudinal rod offset laterally from single row of screws or hooks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7004Longitudinal elements, e.g. rods with a cross-section which varies along its length
    • A61B17/7005Parts of the longitudinal elements, e.g. their ends, being specially adapted to fit in the screw or hook heads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7019Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
    • A61B17/7023Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a pivot joint
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7035Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other
    • A61B17/7037Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other wherein pivoting is blocked when the rod is clamped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7046Screws or hooks combined with longitudinal elements which do not contact vertebrae the screws or hooks being mobile in use relative to the longitudinal element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7004Longitudinal elements, e.g. rods with a cross-section which varies along its length
    • A61B17/7007Parts of the longitudinal elements, e.g. their ends, being specially adapted to fit around the screw or hook heads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7043Screws or hooks combined with longitudinal elements which do not contact vertebrae with a longitudinal element fixed to one or more transverse elements which connect multiple screws or hooks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7049Connectors, not bearing on the vertebrae, for linking longitudinal elements together
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices

Definitions

  • FIG. IA is a posterior view of an embodiment of a dynamic spine stabilization system in accordance with the present invention.
  • FIG. IB is a lateral view of the dynamic spine stabilization system of FIG. IA.
  • FIG. 2 is a posterior view of the dynamic spine stabilization system of FIG. IA implanted and extending between two vertebrae of a spine.
  • FIG. 3A is a posterior view of the dynamic spine stabilization system of FIG. IA implanted as shown in FIG. 2 and further comprising locking screws to resist rotation of the dynamic spine stabilization system.
  • FIG. 3B is a posterior view of another embodiment of the dynamic spine stabilization system of the invention.
  • FIG. 4 is a posterior view of another embodiment of the dynamic spine stabilization system of the invention.
  • FIG. 5 is a posterior view of another embodiment of the dynamic spine stabilization system of the invention.
  • FIG. 6 is a posterior view of yet another embodiment of the dynamic spine stabilization system of the invention including horizontal rods to resist rotation.
  • FIG. 7A is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.
  • FIG. 7B is a lateral view of the dynamic spine stabilization system of FIG. 7A.
  • FIG. 7C is a caudal view of the dynamic spine stabilization system of FIG. 7A.
  • FIG. 8 is a posterior view of the dynamic spine stabilization system of FIG. 7A implanted and extending between two vertebrae of a spine.
  • FIG. 9 is a posterior view of the dynamic spine stabilization system of FIG. 7A implanted in an alternative arrangement to FIG. 8 and extending between the two vertebrae.
  • FIG. 10 is a posterior view of yet another embodiment of a dynamic spine stabilization system in accordance with the present invention implanted and extending between two vertebrae of a spine.
  • FIG. HA is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.
  • FIG. HB is a lateral view of the dynamic spine stabilization system of FIG. HA.
  • FIG. 12 is a lateral view of the dynamic spine stabilization system of FIG. HA comprising an alternative seating arrangement for a horizontal rod.
  • FIG. 13 is a posterior view of the dynamic spine stabilization system of FIG. HA implanted and extending between a vertebra of the spine and two adjacent vertebrae.
  • FIG. 14A is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.
  • FIG. 14B is a lateral view of the dynamic spine stabilization system of FIG. 14A.
  • FIG. 15 is a posterior view of the dynamic spine stabilization system of FIG. 14A implanted and extending between two vertebrae of a spine.
  • FIG. 16 is a posterior view of yet another embodiment of a dynamic spine stabilization system in accordance with the present invention implanted and extending between two vertebrae of a spine.
  • FIG. 17 is a lateral view of a further embodiment of a dynamic spine stabilization system in accordance with the present invention.
  • FIG. 18 is a lateral view of yet another embodiment of a dynamic spine stabilization system in accordance with the present invention.
  • FIG. 19 is a lateral view of a further embodiment of a dynamic spine stabilization system in accordance with the present invention.
  • FIG. 2OA is an exploded perspective view of yet another embodiment of a dynamic spine system in accordance with the present invention.
  • FIG. 2OB is an perspective view the dynamic spin stabilization system of FIG. 2OA with the distraction rod system and set screw seated within the anchoring device.
  • FIG. 21 is a posterior view of the dynamic spine stabilization system of FIG. 2OA implanted and extending between a vertebra of the spine and two adjacent vertebrae.
  • FIG. 22 is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.
  • FIG. 23 is a lateral view (in partial cross-section) of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.
  • FIG. 24A is a lateral view (in partial cross-section) of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.
  • FIG. 24B is a lateral view of the dynamic spine stabilization system of FIG. 24A.
  • FIG. 25 is a posterior view of the dynamic spine stabilization system of FIG. 24A implanted and extending between a vertebra of the spine and two adjacent vertebrae.
  • FIG. 26 is a lateral view of a further embodiment of a dynamic spine stabilization system in accordance with the present invention.
  • FIG. 27 is a lateral view of yet another embodiment of a dynamic spine stabilization system in accordance with the present invention.
  • FIG. 28 is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.
  • FIG. 29 is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.
  • Embodiments of the present invention include a system or implant and method that can dynamically stabilize the spine while providing for the preservation of spinal motion.
  • Alternative embodiments can be used for spine fusion.
  • Embodiments of the invention include a construct with an anchoring system, a deflection rod system and a vertical rod system.
  • An advantage and aspect of some embodiments of anchoring systems in accordance with the present invention is that such embodiments include a head or saddle that allows for appropriate, efficient and convenient placement of the anchoring system relative to the spine in order to reduce the force that is placed on the anchoring system.
  • Such embodiments have enhanced degrees of freedom which contribute to the ease of implantation of the anchor system and are designed to isolate the head from the rest of the dynamic stabilization system and the forces that the rest of the dynamic stabilization system can place on the anchor system and the anchor system/bone interface.
  • the anchor system can provide a secure purchase in the spine.
  • An aspect and advantage of the invention is the ability to maximize the range of motion of the spine after embodiments of the dynamic stabilization, motion preservation implant of the invention are implanted in a patient. While traditional solutions to back pain include fusion, discectomy, and artificial implants that replace spine structure, embodiments of the present invention preserve the bone and ligament structure of the spine and preserve a wide range of motion of the spine, while stabilizing spines that were heretofore unstable due to degenerative and other spinal diseases. [0085] Still another aspect of the invention is the preservation of the natural motion of the spine and the maintenance of the quality of motion as well as the wide range of motion so that the spine motion is as close to that of the natural spine as possible. The present embodiments of the invention allow for the selection of a less stiff, yet dynamically stable implant for use in a non-fusion situation. A less stiff, yet dynamically stable implant relates directly to a positive patient outcome, including patient comfort and the quality of motion of the spine.
  • load sharing is provided by embodiments, and, in particular, the deflection rod or loading rod of the embodiments.
  • the terms “deflection rod” and “loading rod” can be used interchangeably.
  • this aspect of the invention is directed to restoring the normal motion of the spine.
  • the embodiment provides stiffness and support where needed to support the loads exerted on the spine during normal spine motion, which loads, the soft tissues of the spine are no longer able to accommodate since these spine tissues are either degenerated or damaged.
  • Load sharing is enhanced by the ability to select the appropriate stiffness of the deflection rod or loading rod in order to match the load sharing characteristics desired.
  • the stiffness of the implant of the system can be selected among a number of loading rods. In other words, the stiffness is variable depending on the deflection rod or loading rod selected.
  • the load sharing is between the spine and the embodiment of the invention.
  • the embodiments of the invention can be made smaller in order to fit in more spaces relative to the spine.
  • An aspect of the invention is to preserve and not restrict motion between the vertebra of the spine through the use of appropriately selected vertical rods (and optionally horizontal rods) of embodiments of the invention.
  • Another aspect of the invention is the ability to control stiffness for extension, flexion, lateral bending and axial rotation, and to control stiffness for each of these motions independently of the other motions.
  • An aspect of the invention is to use the stiffness and load bearing characteristics of super elastic materials.
  • Another aspect of the invention is to use super elastic materials to customize the implant to the motion preservation and the dynamic stabilization needs of a patient.
  • An aspect of such embodiments of the invention is to provide for a force plateau where motion of the implantation system continues without placement of additional force of the bone anchor system, or, in other words, the bone/implantation system interface.
  • an aspect of the invention is to be able to selectively vary the stiffness and selectively vary the orientation and direction that the stiffness is felt by varying the structure of the implantation system of the invention.
  • Another aspect of some embodiments of the invention is to prevent and/or provide for any off-axis implantation by allowing the implantation system to have enhanced degrees of freedom of placement of the implant.
  • a further aspect of embodiments of the invention is to control stabilized motion from micro-motion to broad extension, flexion, axial rotation, and lateral bending motions of the spine.
  • Yet another aspect of the embodiments of the invention is to be able to revise a dynamic stabilization implant should a fusion implant be indicated. This procedure can be accomplished by, for example, the removal of the deflection rod system of the implantation system and replacement with, for example, a stiffer deflection rod system. Accordingly, an aspect of the invention is to provide for a convenient path for a revision of the original implantation system, if needed.
  • a further aspect of the invention due to the ease of implanting the anchoring system, is the ability to accommodate the bone structure of the spine, even if adjacent vertebra are misaligned with respect to each other.
  • a further aspect of the invention is that the implant is constructed around features of the spine such as the spinous processes and, thus, such features do not need to be removed and the implant does not get in the way of the normal motion of the spine features and the spine features do not get in the way of the operation of the implant.
  • Another aspect of embodiments of the invention is the ability to stabilize two, three and/or more levels of the spine by the selection of appropriate embodiments and components of embodiments of the invention for implantation in a patient. Further embodiments of the invention allow for fused levels to be placed next to dynamically stabilized levels. Such embodiments of the invention enable vertebral levels adjacent to fusion levels to be shielded by providing a more anatomical change from a rigid fusion level to a dynamically stable, motion preserved, and more mobile level. [0099] Accordingly, another aspect of the embodiments of the invention is to provide a modular system that can be customized to the needs of the patient . A Deflection rod system can be selectively chosen for the particular patient as well the particular levels of the vertebrae of the spine that are treated.
  • embodiments of the invention can be selected to control stiffness and stability.
  • Another aspect of embodiments of the invention is that embodiments can be constructed to provide for higher stiffness and fusion at one level or to one portion of the spine while allowing for lower stiffness and dynamic stabilization at another adjacent level or to another portion of the spine .
  • Yet a further aspect of the invention is to provide for dynamic stabilization and motion preservation while preserving the bone and tissues of the spine in order to lessen trauma to the patient and to use the existing functional bone and tissue of the patient as optimally as possible in cooperation with embodiments of the invention.
  • Another object of the invention is to implant the embodiments of the invention in order to unload force from the spinal facets and other posterior spinal structures and also the intervertebral disc.
  • a further aspect of the invention is to implant the embodiment of the invention with a procedure that does not remove or alter bone or tear or sever tissue.
  • the muscle and other tissue can be urged out of the way during the inventive implantation procedure.
  • an aspect of the invention is to provide for a novel implantation procedure that is minimally invasive.
  • FIG. IA is a posterior view (in partial cross-section) and FIG. IB is a lateral view of an embodiment of a deflection rod system implant 100 for use with dynamic stabilization, motion preservation systems (also referred to herein simply as “dynamic stabilization systems”) in accordance with the present invention.
  • the deflection rod system implant 100 comprises a deflection rod system or deflection rod system engine 110, an anchoring device 102 and a vertical rod 120.
  • the deflection rod system 110 includes a deflection rod guide or shield 116 and a deflection rod 111 including an inner rod 112 within an outer shell 114.
  • the deflection rod 111 can have a varying diameter along its length.
  • the outer shell 114 preferably is made of PEEK or other comparable polymer and has a diameter that continuously decreases along the length of the deflection rod 111.
  • the inner rod 112 can be comprised of a super elastic material.
  • the super elastic material is comprised of Nitinol (NiTi).
  • Nitinol or nickel-titanium (NiTi) other super elastic materials include copper-zinc-aluminum and copper-aluminum -nickel. However, for biocompatibility, nickel-titanium is the preferred material.
  • the inner rod 112 can vary in diameter and shape, although in a preferred embodiment, the inner rod 112 is substantially cylindrical.
  • the diameter of the outer shell 114 can decrease in discrete steps along the length of the distraction rod 111, with the diameter of one step not being continuous with the diameter of the next adjacent step.
  • the diameters of the deflection rod can continuously increase in diameter or can have discreet step increases in diameter along the length of the deflection rod 111.
  • the deflection rod 111 can have at least one step of decreasing diameter and at least one step of increasing diameter in any order along the length of the deflection rod 111, as desired for the force and load carrying characteristics of the deflection rod 111.
  • the deflection rod 111 is arranged within the deflection rod guide or shield 116 which covers and, in this embodiment, substantially surrounds the deflection rod 111.
  • the deflection rod system 110 can be a preassembled unit provided to a surgeon for implantation by affixing the deflection rod system 110 to a bone (e.g., the pedicle of a vertebra) using an anchoring device 102 such as a bone screw.
  • the deflection rod system 110 is connected with the anchoring device 102 by an arm 130, which arm 130 can be integrally formed with the deflection rod system 110, affixed to the deflection rod system 110 by one or more fasteners or fastening features (such as protruding structures that interlockingly engage each other when coupled), press fit to the deflection rod system 110, or otherwise fixedly secured to the deflection rod system 110.
  • the arm 130 includes an aperture 131 through which the anchoring device 102 is received and driven into the bone.
  • the anchoring device 102 includes a head 104 that interferes with passage of the anchoring device 102 through the aperture 131.
  • Threads 106 of the anchoring device 102 grip the bone to hold the arm 130 between the bone and the head 104, thereby affixing the arm 103 and by extension the deflection rod system 110 to the bone.
  • the anchoring device 102 is comprised of titanium; however, other biocompatible materials such as stainless steel and/or PEEK can be used.
  • the structures described herein can vary in size and shape based on factors such as material of construction, anatomical structure of the implantation site, implantation technique and targeted system performance (e.g., stiffness).
  • the vertical rod 120 is connected to the deflection rod 111 and can urge the deflection rod 111 in response to relative movement of two vertebrae between which the vertical rod 120 extends.
  • a distal end of the deflection rod 111 can be fixedly mated with a spherical (or semi-spherical) ball or joint 118 that can pivot within a cradle at a proximal end of the vertical rod 120.
  • the vertical rod 120 can pivot in a posterior-to-anterior or anterior-to-posterior direction about the joint 118, and optionally can pivot slightly in a lateral direction.
  • the pivoting motion can allow adjustment of the vertical rod 120 relative to the deflection rod system 110 to ease manipulation of the dynamic stabilization system during implantation and optionally to reduce torque forces applied to the deflection rod 111.
  • a distal end of the vertical rod 120 can be fixedly connected with an upper (or lower) vertebra of the two vertebrae by an additional anchoring device 152, such as a bone screw.
  • the anchoring device 152 can include an arm 170 extending a clamp 162 that receives and secures the vertical rod 120.
  • the arm 170 extends laterally from the anchoring device 152 so that the anchoring device 152 can be positioned and secured to the upper pedicle 8 (a good source of bone for anchoring) while the clamp 162 can be aligned with the vertical rod 120 to receive the vertical rod 120, which extends generally (though not necessarily) parallel to the spine.
  • the dynamic stabilization system 100 comprises two substantially similar, mirrored structures connected at opposite pedicles 8,10 of the vertebrae 2,4. However, in alternative embodiments, the dynamic stabilization system can comprise dissimilar structures, for example to accommodate anatomical asymmetry. FIG.
  • FIG. 3A illustrates an alternative embodiment wherein one or both of the deflection rod system arms 330 and clamp arm 370 can include a secondary aperture for receiving a locking screw 334,364 that can resist rotation of the corresponding arm.
  • FIG. 3B illustrates an alternative embodiment wherein the deflection rod system arm 330 includes a secondary aperture for receiving the locking screw 334, and wherein the clamp and clamp arm are supplanted by an anchoring device 352 that receives the vertical rod 120 over a bone screw thread.
  • the anchoring device 352 can resemble the anchoring device 752 shown in FIGS. 7A, 7B, and described below in the description of FIGS. 7A, 7B.
  • Such anchoring devices can resemble anchoring devices described in U.S.
  • the alternative embodiment may reduce torque applied to the anchoring device 352 and simplify the anchoring device 352 to ease implantation of the anchoring device 352.
  • More lateral placement of the vertical rods provides for more stiffness in lateral bending and an easier implant approach by, for example, a Wiltse approach as described in "The Paraspinal Sacraspinalis-Splitting Approach to the Lumber Spine," by Leon L. Wiltse et al., The Journal of Bone & Joint Surgery, Vol. 50-A, No. 5, July 1968, which is incorporated herein by reference.
  • the stiffness of the deflection rod system 100 can preferably be adjusted by the selection of the materials and placement and diameters of the deflection rod system as well as the horizontal and vertical rods.
  • the vertical rods 120 in addition to the deflection rods 111, can be made of titanium or stainless steel or PEEK should a stiffer deflection rod system 100 be required.
  • the deflection rod system 100 can selectively accommodate the desired stiffness for the patient depending on the materials uses, and the diameter of the materials, and the placement of the elements of the deflection rod system 100. [00112] Should an implanted deflection rod system 100 need to be revised, that can be accomplished by removing and replacing the vertical rod 120 and/or deflection rod system 110 to obtain the desired stiffness.
  • the deflection rod system 110 having the deflection rods 111 can be removed and replaced by a deflection rod system 110 having the deflection rods 111 made of titanium, or stainless steel, or non-super elastic rods to increase the stiffness of the system. This can be accomplished in some embodiments described herein by leaving the anchoring device 102 in place and removing the existing deflection rod systems 110 and replacing the deflection rod systems with deflection rod systems having stiffer distraction rods 111 and outer shells and associated vertical rods 120.
  • the dynamic stabilization system 100 can be implanted in an arrangement vertically flipped from the arrangement of FIG. 2.
  • the deflection rod system 110 is fixedly connected with the upper vertebra by the anchoring system 102.
  • the vertical rod 120 is connected to the deflection rod 111 and extends caudally to the lower vertebra.
  • the vertical rod 102 urges the deflection rod 111 in response to relative movement of the two vertebrae between which the vertical rod 120 extends.
  • one or both of the deflection rod system arms 330 and clamp arms 370 can include a secondary aperture for receiving a locking screw 334, 364 that can resist rotation of the corresponding arm.
  • one or both of the deflection rod system arms 630 and clamp arms 670 can be adapted to connect with horizontal rods 680, 682 that extend between pedicles 8,10 of a vertebra.
  • the anchoring devices 602, 652 can include a U-shaped channel for receiving the horizontal rod 680, 682, the horizontal rod being held in the channel by a locking set screw 644, 654.
  • the horizontal rods 680, 682 are positioned between adjacent spinous processes 2, 4 associated with the vertebrae and can pierce or displace the interspinal ligament without severing or removing tissue.
  • the horizontal rods 680, 682 can resist rotation and can be used in place of locking screws.
  • the horizontal rod 680,682 can be comprised of titanium, stainless steel or PEEK or another biocompatible material, and the first and second deflection rods or loading rods can be comprised of a super elastic material.
  • the super elastic material is comprised of Nitinol (NiTi).
  • FIGS. 7A-9 illustrate a still further embodiment of a deflection rod system 700 in accordance with the present invention comprising an deflection rod system 710 connectable with an anchoring device 702 after the anchoring device 702 is secured to a pedicle.
  • Such embodiments can reduce visual obstruction of the pedicle during seating of the anchoring device 702 by reducing the size of the structure seated.
  • An anchoring block 732 receives the anchoring device 702 through an aperture 731 and is secured to the pedicle as threads 106 of the anchoring device 702 grip the bone and the head 704 is seated within the anchoring block 732.
  • the anchoring block 732 includes an internal screw thread 734 through at least a portion of the anchoring block 732 for receiving a screw 742 to secure an deflection rod system arm 730 of the deflection rod system 710.
  • the deflection rod system 710 comprises a deflection rod shield or guide 716 and a deflection rod 711 including an inner rod (not visible) within an outer shell 714.
  • the deflection rod system 710 is connected with an arm 730 having a curved base that meets a curved surface of the anchoring block 732 (Fig. 7C).
  • the arm 730 can pivot slightly relative to the anchoring device 702, allowing the surgeon to adjust an angle of protrusion of the deflection rod system 710 relative to the spine.
  • the arm 730 is fastened to the anchoring block 732 by the screw 742 which is connected through a spacer 744 having a surface in sliding contact with a curved surface of the arm 730 to distribute force generally evenly along the arm 730 when arranged at a desired orientation.
  • the joint 718 is adjacent with and located over the anchor 702 in order to minimize or eliminate the transfer of torque forces from the rod 720 to the anchor 702.
  • Other complementary mating surfaces may be used to obtain the desired relative motion.
  • a vertical rod 720 is connected to the deflection rod 711 and can urge the deflection rod 711 in response to relative movement of two vertebrae between which the vertical rod 720 extends.
  • a distal end of the deflection rod 711 can be fixedly mated with a spherical (or semi-spherical) ball or joint 718 that can pivot within a cradle at a proximal end of the vertical rod 720.
  • the vertical rod 720 can pivot in a posterior-to-anterior or anterior-to-posterior direction about the joint 718, and optionally can pivot in a lateral direction.
  • the pivoting motion can allow adjustment of the vertical rod 720 relative to the deflection rod system 710 to ease manipulation of the dynamic stabilization system during implantation and optionally to reduce torque forces applied to the deflection rod 711.
  • a distal end of the vertical rod 720 can be fixedly connected with an upper or lower vertebra of the two vertebrae by an additional anchoring device 752.
  • the anchoring device can resemble anchoring devices as described in U.S. Provisional Application No. 61/031,598.
  • the anchoring device 752 includes a saddle 758 that can receive the vertical rod 720.
  • a locking set screw 754 can be urged along threads of the saddle 758 so that the locking set screw 754 secures the vertical rod 758 against the U-shaped channel of the saddle 758.
  • a bone screw thread 756 can optionally be mated with a body of the anchoring device 752 by a fastener 772 that permits at least cranial-to-caudal pivoting.
  • the saddle 758 can include a hex-shaped outer surface to assist in seating the bone screw 756 within the upper pedicle 8.
  • the deflection rod system 700 can be arranged with the deflection rod system 710 anchored to an upper of two vertebrae, or alternatively, the lower of two vertebrae.
  • FIG. 10 is a posterior view of a still further embodiment of a deflection rod system implant 1000 in accordance with the present invention comprising an deflection rod system 610 that is engaged during spine extension, but not engaged during spine flexion.
  • the deflection rod system 610 and associated structures resemble the deflection rod system and associated structures of FIG. 6, and can be connected with a horizontal rod 680 extending between pedicles of a vertebra.
  • a vertical rod is a vertical rod
  • the boot 1020 is connected at a proximal end to a deflection rod 111 of the deflection rod system 610.
  • the distal end of the vertical rod 1010 is unattached and slides within a boot 1090.
  • the boot 1090 blocks movement of the vertical rod 1020 when the distal end of the vertical rod 1020 abuts the base of the boot 1090, and further extension movement will cause the vertical rod 1020 to deflect the deflection rod 111.
  • the boot 1090 is preferably sized to accommodate movement of vertical rod 1020 within the boot 1090 that spans a length of natural movement of the spine during extension, to avoid separation of the vertical rod 1020 from the boot 1090.
  • the distal end of the vertical rod can include a ball or other slidable structure that is held within a cavity of the boot, enabling the boot to resist both extension and flexion, and to permit a range of free motion determined by the surgeon.
  • the boot 1090 is connected with an anchoring device 1052 by an arm 1070.
  • a locking screw 1062 resists rotation of the boot 1090 about the anchoring device 1052 in response to a force applied by the vertical rod 1020.
  • FIG. HA is a posterior view (in partial cross-section) and FIG. HB is a lateral view (in partial cross-section) of a still further embodiment of a deflection rod system implant 1100 for use with dynamic stabilization systems accordance with the present invention.
  • the deflection rod system implant 1100 is adapted to support multiple motion segments and comprises a first deflection rod system HlOa connected with a vertical rod 1120a extending cranially, a second deflection rod system HlOb connected with a vertical rod 1120b extending caudally, and an anchoring device 1102.
  • the first and second deflection rod systems HlOa, HlOb can have similar or different bending or load carrying or stiffness characteristics, as prescribed by the surgeon or a physician.
  • a common arm 1130 connects the first and second deflection rod systems HlOa, HlOb with the anchoring device 1102.
  • the arm 1130 includes an aperture 1131 through which the anchoring device 1102 is received and driven into the bone.
  • the anchoring device 1102 includes a head 1104 that interferes with passage of the anchoring device 1102 through the aperture 1131. Threads 1106 of the anchoring device 1102 grip the bone to hold the arm 1130 between the bone and the head 1104, thereby affixing the arm 1103 and by extension the deflection rod systems HlOa, HlOb.
  • FIG. 12 is a lateral view of a deflection rod system implant 1200 resembling the deflection rod system implant HOO of FIG. HB with a compressor element or cradle 1236 positioned within the channel and between the horizontal rod 1180 and anchoring device 1202.
  • the head 1204 of the anchoring device 1202 has a spherical or semi-spherical shape, although alternatively the head can have some other shape that complements the compressor element or cradle 1236 while permitted at least limited movement between the two structures to allow flexibility in relative arrangement during implantation.
  • the head can have a rounded indention mateable with a spherical surface.
  • the compressor element or cradle 1236 has a generally cylindrical body so that the compressor element 1236 can fit within a bore of the arm 1230.
  • a posterior surface of the compressor element 1236 is concave and generally complementing the horizontal rod 1180 which rests thereon.
  • FIG. 13 is a posterior view of the deflection rod system implant 1200 of FIG. 11 comprising the first deflection rod system 1110a and second deflection rod system 1110b secured to a vertebra common to two adjacent motion segments targeted for stabilization by an anchoring device 1102.
  • a first vertical rod 1120a is connected to a deflection rod 1111a of the first deflection rod system 1110a and extends cranially to the upper vertebra of the upper targeted motion segment, and is secured to the upper vertebra by a clamp 162.
  • a second vertical rod 1120b is connected to a deflection rod 1111b of the second deflection rod system 1110b and extends caudally to the lower vertebra of the lower targeted motion segment, and is secured to the lower vertebra by a clamp 162.
  • the vertical rods 1120a, 1120b urge respective deflection rods lllla,llllb in response to relative movement of the two vertebrae between which the vertical rods 1120a,1120b extend.
  • vertical rod 1120a is aligned with vertical rod 1120b in order to reduce or eliminate torque forces.
  • An arm 1130 common to the deflection rod systems 1110a,1110b is connected with a horizontal rod 1180 that extends between pedicles of the common vertebra to a complementary pair of deflection rod systems.
  • the horizontal rod 1180 is positioned between adjacent spinous processes 2,4 associated with the vertebrae and can pierce or displace the interspinal ligament without severing or removing tissue.
  • the horizontal rod 1180 can resist rotation of the deflection rod systems 1110a,1110b and can be used in place of locking screws.
  • FIGS. 14A and 14B illustrate yet another embodiment of a deflection rod system implant 1400 in accordance with the present invention comprising an deflection rod system 1410 connectable with an anchoring device 1402, preferably after the anchoring device 1402 is secured to a pedicle.
  • An arm 1430 of the deflection rod system 1410 comprises a collar 1464 that can be received over a head 1404 of the anchoring device 1402 to capture a horizontal bar 1480.
  • the arm 1430 can be secured to the head 1404 by a collar screw 1450.
  • the horizontal bar 1480 can be held in place by one or both of the arm 1430 which is urged against the horizontal bar 1480 by the collar screw 1450, and a locking set screw 1458.
  • the head 1404 of the anchoring device can be connected with a yoke 1407 by a pin 1403 to allow the head 1404 to be pivoted during implantation.
  • a thread 106 of the anchoring device 1402 can be seated within the pedicle at an acute angle relative to a plane of the collar.
  • FIG. 16 is a posterior view of a still further embodiment of a deflection rod system implant 1600 in accordance with the present invention comprising an deflection rod system 1610 connected with an arm 1630 that resembles the arm 1430 of FIG. 14A-15; however, the deflection rod system 1610 is connected with the arm 1630 so that the deflection rod 111 extends toward the spinous process 2 rather than away from the spinous process (i.e., the deflection rod system 1610 is "inboard).
  • the clamp 162 is connected with the anchoring device 152 by a clamp arm 1670 that likewise extends toward a spinous process 4.
  • the embodiments described above comprise deflection rods extending generally in a transverse direction to the orientation of the bone anchor screw.
  • deflection rod systems can be oriented generally in a co-axial or collinear or parallel orientation to a bone anchor screw.
  • the deflection rod system can extend substantially co-axial or parallel to the threaded shaft of an anchoring device.
  • FIG. 17-22 can simplify implantation, reduce trauma to structures surrounding an implantation site, and reduce system components.
  • FIG. 17 illustrates an embodiment of a deflection rod system implant 1700 comprising an anchoring device 1702 with a cavity 1709 for receiving a deflection rod system 1710. It has been observed that acceptable anchoring can be achieved in a bone such as a pedicle using a thread 1706 pattern that include deep threads 1706x (i.e., having a maximum difference between inner diameter, D n , and outer diameter, D 0 , of a shaft of the anchoring device) nearer the distal end of the shaft and comparatively shallow threads 1706y nearer the shank 1705.
  • the comparatively shallow threads 1706y can enable a larger inner diameter, Di 2 , of the anchoring device 1702 shaft which can accommodate the deflection rod system 1710.
  • the cavity can have a size and shape that can accommodate deflection rod systems having a range of different performance characteristics (e.g., stiffness, range of motion).
  • a physician or surgeon can implant an anchoring device 1702 selected independently from the deflection rod system 1710 and based on the anatomy into which it is implanted.
  • the anchoring device 1702 can be selected based on the location of the vertebrae (e.g., L5-S1 vs. C7-T1) or the age and sex of the patient.
  • the deflection rod system 1710 can then be selected based on the desired performance characteristics.
  • the deflection rod system 1710 can be seated within the cavity using myriad different techniques.
  • the distraction rod guide or shield 1716 can be press fit into the walls of the cavity 1709, or the distraction rod guide 1716 can be cemented or otherwise adhesively fixed to the walls of the cavity 1709.
  • the distraction rod guide or shield 1716 can be captured in the cavity 1709 by a locking set screw or ratchet feature.
  • the distraction rod guide 1716 (and deflection rod system 1710) can have a length longer than that of the cavity 1709 so that a portion of the distraction rod guide 1716 extends outside of the cavity 1702 and posterior to the anchoring device 1702.
  • the distraction rod system 1700 of FIG. 17 generally includes less, or simpler footprint than the previously described embodiments, potentially reducing the amount of displacement of tissue and/or bone, reducing trauma to tissue and/or bone during surgery. Further, the smaller footprint can reduce the amount of tissue that needs to be exposed during implantation. Still further, arranging the deflection rod system 1710 co-axial with a shaft of the anchoring device 1702 can substantially transfer a moment force applied by the deflection rod system 1710 from a moment force tending to pivot or rotate the anchoring device 1702 about the axis of the shaft, to a moment force tending to act perpendicular to the axis of the shaft.
  • the distraction rod system implant 1700 can effectively resist repositioning of the deflection rod system 1710 and/or anchoring device 1702 without the use of locking screws or horizontal bars to resist rotation. Eliminating locking screws and/or horizontal bars can reduce exposure of tissue and/or bone to foreign bodies.
  • FIG. 18 illustrates an alternative embodiment of a deflection rod system implant 1800 comprising an anchoring device 1802 with a cavity 1809 for receiving a distraction rod 111.
  • the embodiment resembles the deflection rod system 1700 of FIG. 17; however, the distraction rod guide or shield 1816 is integrally formed in a shank 1805 of the anchoring device 1802.
  • the distraction rod guide or shield 1816 can be sized and shaped to provide, in combination with the choice of inner rod 112 and outer shell 114, a desired performance characteristic. Integrally forming the distraction rod guide 1816 in a shank 1805 of the anchoring device 1802 can potentially reduce a thickness otherwise required to accommodate separate components.
  • the distraction rod 111 can be mated with the distraction rod guide 1816 applying similar techniques to mate distraction rods within previously described distraction rod guide or shield.
  • FIG. 19 illustrates a still further embodiment of a deflection rod system implant 1900 comprising an anchoring device 1902 with a cavity 1909 including inner threads for receiving an deflection rod system screw 1913, with complementary external threads extending from an deflection rod system 1910.
  • the deflection rod system screw 1913 provides easy mating of the deflection rod system 1910 with the anchoring device 1902.
  • the deflection rod system 1910 can further include a spherical (or semi-spherical) ball or joint 1918 that allows pivoting of a vertical rod 1920 connected with the deflection rod system 1910 so that the vertical rod 1920 can be oriented in a needed direction as the deflection rod system 1910 is rotated and the deflection rod system screw 1913 is seated within the cavity 1909.
  • FIGS. 2OA and 2OB illustrate yet another embodiment of a deflection rod system implant 2000 in accordance with the present invention comprising an anchoring device 2002 with a housing 2009 for receiving a deflection rod system 2010.
  • the embodiment resembles the deflection rod system implant 1700 of FIG. 17; however, housing 2009 is connected with the anchoring device 2002 at the shank 2005, but is not formed in the shank 2005.
  • the housing 2009 permits use of one or both of (1) a threaded shaft 2006 having a smaller diameter (for example for use in smaller bones, such as in the cervical region) and (2) a deflection rod system 2010 comprising a deflection rod guide shield 2016 with a larger diameter (e.g., for use with thicker (and stiffer) deflection rods).
  • the housing 2009 further comprises a threaded screw hole 2057 extending along an axis at an acute angle to the axis of the threaded shaft.
  • the threaded screw hole 2057 receives a locking set screw 2058 that when seated (FIG.
  • FIG. 21 is a posterior view of the deflection rod system implant 2000 of FIGS. 2OA and 2OB implanted between pedicles 8,10 of adjacent vertebrae of a targeted motion segment.
  • FIG. 22 is a posterior view of still another embodiment of a deflection rod system implant 2200 in accordance with the present invention adapted to support multiple motion segments.
  • An anchoring device 2202 resembles the anchoring devices of FIGS. 17-20B and includes an outer wall 2203 having a hex portion for gripping using a torque wrench or other tool during implantation of the anchoring device 2202 in a bone.
  • An anchoring device 2202 is secured to the two pedicles 10 of a vertebra common to the two motion segments to be supported.
  • the vertical rod 2220 is connected to the deflection rod and can deflect the deflection rod in response to relative movement of two vertebrae between which the vertical rod 2220 extends.
  • Another vertical rod 2222 includes a yolk 2223 resembling a box-end wrench with a shape generally complementing the hex pattern of the outer wall of the bone anchor.
  • FIG. 23 is a lateral view (in partial cross-section) of an alternative embodiment of a deflection rod system implant 2300 for use with dynamic stabilization systems in accordance with the present invention and adapted to dynamically support multiple motion segments of the spine.
  • the deflection rod system implant 2300 resembles the deflection rod system implant 1100 of FIG. HA, but includes deflection rod systems generally oriented in an anterior-to-posterior direction.
  • the deflection rod system implant 2300 is adapted to support multiple motion segments and comprises a first deflection rod system 2310a connected with a vertical rod 120a extending cranially, a second deflection rod system 2310b connected with a vertical rod 120b extending caudally, and an anchoring device 2302.
  • the first and second deflection rod systems 2310a, 2310b can have similar or different bending characteristics, as prescribed by the surgeon or a physician.
  • a common arm 2330 connects the first and second deflection rod systems 2310a, 2310b with the anchoring device 2302.
  • FIG. 24A is a lateral view (in partial cross-section) and FIG. 24B is a cranial view (in partial cross-section) of still another embodiment of a deflection rod system implant 2400 for use with dynamic stabilization systems accordance with the present invention and adapted to dynamically support multiple motion segments is shown.
  • the deflection rod system implant 2400 resembles the deflection rod system implant 2300 of FIG. 23.
  • An arm 2430 that is mated with the anchoring device 2402 after the anchoring device 2402 has been implanted within a bone.
  • the arm 2430 receives a locking screw 2440 having threads that complement threads of a screw hole within the head 2404 of the anchoring device 2402.
  • the locking screw 2440 fixedly connects the arm 2430 to the anchoring device 2402 when the locking screw 2440 is seated within the head 2404.
  • the embodiment also includes a distraction rod guide or shield 2416 integrally formed with the arm 2430.
  • the deflection rod systems 2410 are substantially parallel. As seen in FIGS. 24A, 24B the arm 2430 can connect to the head 2404 in a number of orientations.
  • FIG. 25 is a posterior view of the deflection rod system implant 2300 of FIG. 23 comprising the first deflection rod system 2310a and second deflection rod system 2310b secured to a vertebra common to two adjacent motion segments or vertebrae targeted for stabilization by an anchoring device.
  • a first vertical rod 2320a is connected to a deflection rod 2311a of the first deflection rod system 2310a and extends cranially to the upper vertebra of the upper targeted motion segment, and is secured to the upper vertebra by an upper anchoring device 752.
  • a second vertical rod 2320b is connected to a deflection rod 2311b of the second deflection rod system 2310b and extends caudally to the lower vertebra of the lower targeted motion segment, and is secured to the lower vertebra by a lower anchoring device 752.
  • the vertical rods 2320a, 2310b deflect respective deflection rods 2311a, 2311b in response to relative movement of the two vertebrae between which the vertical rods 2320a, 2320b extend.
  • FIG. 26 illustrates an embodiment of a deflection rod system implant 2600 comprising an anchoring device 2602 with a cavity 2609 for receiving a deflection rod system 2610.
  • an anchoring device 2602 with a cavity 2609 for receiving a deflection rod system 2610.
  • the anchoring device 2602 can have a length such that when implanted a portion of the anchoring device 2602 further from the deflection rod system 2610 is seated within cancellous bone while a portion of the anchoring device 2602 nearer the deflection rod system 2610 is seated within cortical bone.
  • Screw threads 2606y having a high pitch (i.e., having a comparatively large gap between threads) and deep threads are usable with satisfactory results in cancellous bone, which bone is an osseous tissue with a low density strength but high surface area. Screw threads 2606x having a low pitch and shallow threads are usable with satisfactory results in cortical bone, which bone is an osseous tissue with a high density strength.
  • the diameter, Di 2 , of the anchoring device shaft can be expanded along a portion of the shaft that is seated within the cortical bone and/or a portion of the shaft that accommodates the deflection rod system 2610.
  • FIG. 27 illustrates a still further embodiment of a deflection rod system implant 2700 comprising an anchoring device 2702 including an external thread pattern resembling the external thread pattern of FIG.
  • the deflection rod system 1910 can further include a spherical (or semi-spherical) ball or joint 1918 that allows pivoting of a vertical rod 1920 connected with the deflection rod system 1910 so that the vertical rod 1920 can be oriented in a needed direction as the deflection rod system 1910 is rotated and the deflection rod system screw 1913 is seated within the cavity 1909. The vertical rod 1920 can then be pivoted into place extending between pedicles.
  • multiple motion segments can be stabilized by stringing together vertical rods and deflection rod systems individually selected for the corresponding motion segment.
  • the yoke 2223 of a vertical rod 2222 is fitted over the outer wall 2203 of a deflection rod system 2210.
  • An opposite end of the vertical rod 2222 is connected to an anchoring device 2202.
  • the vertical rod 2822 can be connected with a second deflection rod system 2810b anchored by an anchoring device 2802b to a pedicle 12 of a lower vertebra of the motion segment.
  • the deflection rod system 2810b allows controlled relative movement of the two vertebrae.
  • Systems and methods in accordance with the present invention can comprise a series of implants connected with, and selected for the corresponding motion segment.
  • the implants can comprise vertical rods rigidly connected between vertebrae as shown in FIG. 22 (for example to support fusion), or alternatively the vertical rods can be dynamically connected between vertebrae by a deflection rod system as shown in FIG. 28. Any combination of implants can be used having a stiffness selected for the respective motion segment.
  • FIG. 29 illustrates dynamic stabilization of three motion segments with two yoked vertical rods 2922a,2922b fitted over dynamic stabilization systems 2810a,2810b anchored at an upper vertebra of the targeted segment. [00137] While the vertical rods 2822,2922 of FIGS.
  • embodiments of systems and methods can comprise vertical rods that are connected with dynamic stabilization systems after implantation of dynamic stabilization systems.
  • the vertical rods 2822,2922 can be attachable with a dynamic stabilization system at or near the connection with the spherical ball joint.
  • Such an arrangement can allow a yoke of a vertical rod to be placed over and around the outer wall of a dynamic stabilization system (or simply past the spherical ball joint in a staging position for further adjustment) without interference from the vertical rod of that dynamic stabilization system.
  • a preferred embodiment may have the following preferred dimensions, although dimension can vary substantially based on a number of performance factors.
  • Inner rod having a diameter of about .080 inches.
  • Outer shell having a major diameter of about .165 inches and the tapered portion tapers at about 2.5 degrees per side.
  • Shield and deflection guide having a housing diameter of about .265 inches.
  • the deflection rod is secured to the deflection guide along a length of about .200 inches from the end of the deflection rod system.
  • the deflection rod system has a working length from the end of the system to the center of the ball joint of about 1.040 less the press fit length of about .200 which is length of about .840.
  • the overall length of the deflection rod system is about 1.100 inches.
  • the spherical ball in the ball and socket joint that secures the vertical rod to the deflection rod system has a diameter of about .188 inches.
  • the vertical rod has a diameter of about .150 inches.
  • Nitinol or nickel-titanium other super elastic materials include copper-zinc-aluminum and copper-aluminum-nickel. However for biocompatibility the nickel-titanium is the preferred material.
  • the implant can, in part, be made of titanium or stainless steel.
  • suitable material includes by way of example only polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyetherketone (PEK), polyetherketoneetherketoneketone (PEKEKK), and polyetheretherketoneketone (PEEKK).
  • PEEK 450G is an unfilled PEEK approved for medical implantation available from Victrex of Lancashire, Great Britain. (Victrex is located at www.matweb.com or see Boedeker www.boedeker.com). Other sources of this material include Gharda located in Panoli, India (www.ghardapolymers.com).
  • thermoplastic or thermoplastic poly condensate materials that resist fatigue, have good memory, are flexible, and/or deflectable have very low moisture absorption, and good wear and/or abrasion resistance, can be used without departing from the scope of the invention.
  • Reference to appropriate polymers that can be used in the spacer can be made to the following documents.

Abstract

A dynamic stabilization, motion preservation spinal implant system includes a deflection rod system implant. The rod system comprises a connector rod that is attached to a deflectable rod with a connector, a mount that is adapted to mount said deflection rod system relative to a bone anchor wherein the connector is adapted to be mounted in-line with the bone anchor so as to minimize any torque that said connector rod can place on the bone anchor. The system is modular so that various contructs and configurations can be created and customized to a patient.

Description

A DEFLECTION ROD SYSTEM FOR A DYNAMIC STABILIZATION AND MOTION PRESERVATION SPINAL IMPLANTATION SYSTEM AND METHOD
Inventors: Charles J. Winslow
John J. Flynn
Steven T. Mitchell
James F. Zucherman
Ken Y. Hsu Donald L. Cain
Henry A. KIy ce H. Adam R. Klyce
CLAIM TO PRIORITY
[0001] This application claims priority to all of the following applications including U.S. Provisional Application No. 60/942,162, filed June 5, 2007, entitled "Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method" (Attorney Docket No. SPART- 01010US0), [0002] U.S. Patent Application No. 11/832,260, filed August 1, 2007, entitled "Shaped Horizontal Rod for Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method" (Attorney Docket No. SPART-01006US0),
[0003] U.S. Patent Application No. 11/832,273, filed August 1, 2007, entitled "Multi-directional Deflection Profile for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method" (Attorney Docket No. SPART-01007US0),
[0004] U.S. Patent Application No. 11/832,305, filed August 1, 2007, entitled "A Horizontal Rod with a Mounting Platform for a Dynamic Stabilization and Motion Preservation Spinal Implant System and Method" (Attorney Docket No. SPART-01008US0), [0005] U.S. Patent Application No. 11/832,330, filed August 1, 2007, entitled "Multi- dimensional Horizontal Rod for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method" (Attorney Docket No. SPART-01009US0),
[0006] U.S. Patent Application No. 11/832,338, filed August 1, 2007, entitled "A Bone Anchor With a Yoke-Shaped anchor head for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method" (Attorney Docket No. SPART-0101 OUSl), [0007] U.S. Patent Application No. 11/832,358, filed August 1, 2007, entitled "A Bone Anchor With a Curved Mounting Element for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method" (Attorney Docket No. SPART-0101 IUSO), [0008] U.S. Patent Application No. 11/832,377, filed August 1, 2007, entitled "Reinforced Bone Anchor for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method" (Attorney Docket No. SPART-01012US0),
[0009] U.S. Patent Application No. 11/832,400, filed August 1, 2007, entitled "A Bone Anchor With a Compressor Element for Receiving a Rod for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method" (Attorney Docket No. SPART-01013US0), [0010] U.S. Patent Application No. 11/832,413, filed August 1, 2007, entitled "Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method with a Deflection Rod" (Attorney Docket No. SPART-01014US0), [0011] U.S. Patent Application No. 11/832,426, filed August 1, 2007, entitled "Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method with a Deflection Rod Mounted in Close Proximity to a Mounting Rod" (Attorney Docket No. SPART-01015US0), [0012] U.S. Patent Application No. 11/832,436, filed August 1, 2007, entitled "Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method" (Attorney Docket No. SPART-01016US0),
[0013] U.S. Patent Application No. 11/832,446, filed August 1, 2007, entitled "Super-Elastic Deflection Rod for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method" (Attorney Docket No. SPART-01017US0), [0014] U.S. Patent Application No. 11/832,470, filed August 1, 2007, entitled "Revision System and Method for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method" (Attorney Docket No. SPART-01020US0),
[0015] U.S. Patent Application No. 11/832,485, filed August 1, 2007, entitled "Revision System for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method" (Attorney Docket No. SPART-0102 IUSO), [0016] U.S. Patent Application No. 11/832,494, filed August 1, 2007, entitled "Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method" (Attorney Docket No. SPART-01022US0),
[0017] U.S. Patent Application No. 11/832,517, filed August 1, 2007, entitled "Implantation Method for Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method" (Attorney Docket No. SPART-01023US0),
[0018] U.S. Patent Application No. 11/832,527, filed August 1, 2007, entitled "Modular Spine Treatment Kit for Dynamic Stabilization and Motion Preservation of the Spine" (Attorney Docket No. SPART-01024US0), [0019] U.S. Patent Application No. 11/832,534, filed August 1, 2007, entitled "Horizontally Loaded Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method" (Attorney Docket No. SPART-01025US0), [0020] U.S. Patent Application No. 11/832,548, filed August 1, 2007, entitled "Dynamic
Stabilization and Motion Preservation Spinal Implantation System with Horizontal Deflection Rod and
Articulating Vertical Rods" (Attorney Docket No. SPART-01029US0),
[0021] U.S. Patent Application No. 11/832,557, filed August 1, 2007, entitled "An Anchor System for a Spine Implantation System That Can Move About three Axes" (Attorney Docket No.
SPART-01030US0,
[0022] U.S. Patent Application No. 11/832,562, filed August 1, 2007, entitled "Rod Capture
Mechanism for Dynamic Stabilization and Motion Preservation Spinal Implantation System and
Method" (Attorney Docket No. SPART-0103 IUSO), [0023] U.S. Provisional Application No. 61/028,792, filed February 14, 2008, entitled "A
Deflection Rod System for a Dynamic Stabilization and Motion Preservation Spinal Implantation
System and Method" (Attorney Docket No. SPART-01035US0),
[0024] U.S. Provisional Application 61/031,598, filed February 26, 2008, entitled "A Deflection
Rod System for a Dynamic Stabilization and Motion Preservation Spinal Implantation System and Method" (Attorney Docket No. SPART-01037US0).
[0025] All of the afore -mentioned applications are incorporated herein by reference in their entireties.
CROSS-REFERENCE TO RELATED APPLICATIONS
[0026] This application is related to all of the following applications including U.S. Patent Application No. 12/130,335, filed May 30, 2008, entitled "A Deflection Rod System For A Spine Implant Including An Inner Rod And An Outer Shell And Method" (Attorney Docket No.: SPART- 01035US1); [0027] U.S. Patent Application No. 12/130,359, filed May 30, 2008, entitled "A Deflection Rod System With A Deflection Contouring Shield For A Spine Implant And Method" (Attorney Docket No.: SPART-01035US2);
[0028] U.S. Patent Application No. 12/130,367, filed May 30, 2008, entitled "Dynamic Stabilization And Motion Preservation Spinal Implantation System With A Shielded Deflection Rod System And Method" (Attorney Docket No. : SPART-01035US3); [0029] U.S. Patent Application No. 12/130,377, filed May 30, 2008, entitled "A Deflection Rod System For Spine Implant With End Connectors And Method" (Attorney Docket No.: SPART- 01035US4);
[0030] U.S. Patent Application No. 12/130,383, filed May 30, 2008, entitled "A Deflection Rod System For A Dynamic Stabilization And Motion Preservation Spinal Implantation System And Method" (Attorney Docket No.: SPART-01035US5); [0031] U.S. Patent Application No. 12/130,395, filed May 30, 2008, entitled "A Deflection Rod
System For A Dynamic Stabilization And Motion Preservation Spinal Implantation System And
Method" (Attorney Docket No.: SPART-01037US1);
[0032] U.S. Patent Application No. 12/130,411, filed May 30, 2008, entitled "A Deflection Rod System With Mount For Dynamic Stabilization And Motion Preservation Spinal Implantation System
And Method" (Attorney Docket No.: SPART-01037US2);
[0033] U.S. Patent Application No. 12/130,423, filed May 30, 2008, entitled "A Deflection Rod
System With A Non-Linear Deflection To Load Characteristic For Dynamic Stabilization And Motion
Preservation Spinal Implantation System And Method" (Attorney Docket No.: SPART-01037US3); [0034] U.S. Patent Application No. 12/130,454, filed May 30, 2008, entitled "A Deflection Rod
System Dimensioned For Deflection To A Load Characteristic For Dynamic Stabilization And Motion
Preservation Spinal Implantation System And Method" (Attorney Docket No.: SPART-01037US4);
[0035] U.S. Patent Application No. 12/130,457, filed May 30, 2008, entitled "A Deflection Rod
System For Use With A Vertebral Fusion Implant For Dynamic Stabilization And Motion Preservation Spinal Implantation System And Method" (Attorney Docket No.: SPART-01037US5);
[0036] U.S. Patent Application No. 12/130,467, filed May 30, 2008, entitled "A Dual Deflection
Rod System For Dynamic Stabilization And Motion Preservation Spinal Implantation System And
Method" (Attorney Docket No.: SPART-01037US6);
[0037] U.S. Patent Application No. 12/130,475, filed May 30, 2008, entitled "Method For Implanting A Deflection Rod System And Customizing The Deflection Rod System For A Particular
Patient Need For Dynamic Stabilization And Motion Preservation Spinal Implantation System"
(Attorney Docket No.: SPART-01037US7);
[0038] U.S. Patent Application No. 12/130,032, filed May 30, 2008, entitled "A Spine Implant
With A Deflection Rod System Anchored To A Bone Anchor And Method" (Attorney Docket No.: SPART-01039US1);
[0039] U.S. Patent Application No. 12/130,095, filed May 30, 2008, entitled "A Spine Implant
With A Deflection Rod System Including A Deflection Limiting Shield Associated With A Bone
Screw And Method" (Attorney Docket No.: SPART-01039US2);
[0040] U.S. Patent Application No. 12/130,127, filed May 30, 2008, entitled "A Spine Implant With A Dual Deflection Rod System Including A Deflection Limiting Shield Associated With A Bone
Screw And Method" (Attorney Docket No.: SPART-01039US4);
[0041] U.S. Patent Application No. 12/130,152, filed May 30, 2008, entitled "A Spine Implant
With A Deflection Rod System And Connecting Linkages And Method" (Attorney Docket No.:
SPART-01039US7). [0042] All of the afore -mentioned applications are incorporated herein by reference in their entireties. BACKGROUND OF INVENTION
[0043] The most dynamic segment of orthopedic and neurosurgical medical practice over the past decade has been spinal devices designed to fuse the spine to treat a broad range of degenerative spinal disorders. Back pain is a significant clinical problem and the annual costs to treat it, both surgical and medical, is estimated to be over $2 billion. Motion preserving devices to treat back and extremity pain have, however, created a treatment alternative to or in combination with fusion for degenerative disk disease.
BRIEF DESCRIPTION OF THE DRAWINGS
[0044] FIG. IA is a posterior view of an embodiment of a dynamic spine stabilization system in accordance with the present invention.
[0045] FIG. IB is a lateral view of the dynamic spine stabilization system of FIG. IA.
[0046] FIG. 2 is a posterior view of the dynamic spine stabilization system of FIG. IA implanted and extending between two vertebrae of a spine.
[0047] FIG. 3A is a posterior view of the dynamic spine stabilization system of FIG. IA implanted as shown in FIG. 2 and further comprising locking screws to resist rotation of the dynamic spine stabilization system.
[0048] FIG. 3B is a posterior view of another embodiment of the dynamic spine stabilization system of the invention.
[0049] FIG. 4 is a posterior view of another embodiment of the dynamic spine stabilization system of the invention.
[0050] FIG. 5 is a posterior view of another embodiment of the dynamic spine stabilization system of the invention. [0051] FIG. 6 is a posterior view of yet another embodiment of the dynamic spine stabilization system of the invention including horizontal rods to resist rotation.
[0052] FIG. 7A is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.
[0053] FIG. 7B is a lateral view of the dynamic spine stabilization system of FIG. 7A. [0054] FIG. 7C is a caudal view of the dynamic spine stabilization system of FIG. 7A.
[0055] FIG. 8 is a posterior view of the dynamic spine stabilization system of FIG. 7A implanted and extending between two vertebrae of a spine.
[0056] FIG. 9 is a posterior view of the dynamic spine stabilization system of FIG. 7A implanted in an alternative arrangement to FIG. 8 and extending between the two vertebrae. [0057] FIG. 10 is a posterior view of yet another embodiment of a dynamic spine stabilization system in accordance with the present invention implanted and extending between two vertebrae of a spine.
[0058] FIG. HA is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.
[0059] FIG. HB is a lateral view of the dynamic spine stabilization system of FIG. HA.
[0060] FIG. 12 is a lateral view of the dynamic spine stabilization system of FIG. HA comprising an alternative seating arrangement for a horizontal rod.
[0061] FIG. 13 is a posterior view of the dynamic spine stabilization system of FIG. HA implanted and extending between a vertebra of the spine and two adjacent vertebrae.
[0062] FIG. 14A is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.
[0063] FIG. 14B is a lateral view of the dynamic spine stabilization system of FIG. 14A.
[0064] FIG. 15 is a posterior view of the dynamic spine stabilization system of FIG. 14A implanted and extending between two vertebrae of a spine.
[0065] FIG. 16 is a posterior view of yet another embodiment of a dynamic spine stabilization system in accordance with the present invention implanted and extending between two vertebrae of a spine.
[0066] FIG. 17 is a lateral view of a further embodiment of a dynamic spine stabilization system in accordance with the present invention.
[0067] FIG. 18 is a lateral view of yet another embodiment of a dynamic spine stabilization system in accordance with the present invention.
[0068] FIG. 19 is a lateral view of a further embodiment of a dynamic spine stabilization system in accordance with the present invention. [0069] FIG. 2OA is an exploded perspective view of yet another embodiment of a dynamic spine system in accordance with the present invention.
[0070] FIG. 2OB is an perspective view the dynamic spin stabilization system of FIG. 2OA with the distraction rod system and set screw seated within the anchoring device.
[0071] FIG. 21 is a posterior view of the dynamic spine stabilization system of FIG. 2OA implanted and extending between a vertebra of the spine and two adjacent vertebrae.
[0072] FIG. 22 is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.
[0073] FIG. 23 is a lateral view (in partial cross-section) of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention. [0074] FIG. 24A is a lateral view (in partial cross-section) of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention. [0075] FIG. 24B is a lateral view of the dynamic spine stabilization system of FIG. 24A. [0076] FIG. 25 is a posterior view of the dynamic spine stabilization system of FIG. 24A implanted and extending between a vertebra of the spine and two adjacent vertebrae. [0077] FIG. 26 is a lateral view of a further embodiment of a dynamic spine stabilization system in accordance with the present invention.
[0078] FIG. 27 is a lateral view of yet another embodiment of a dynamic spine stabilization system in accordance with the present invention.
[0079] FIG. 28 is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention. [0080] FIG. 29 is a posterior view of an alternative embodiment of a dynamic spine stabilization system in accordance with the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0081] Embodiments of the present invention include a system or implant and method that can dynamically stabilize the spine while providing for the preservation of spinal motion. Alternative embodiments can be used for spine fusion.
[0082] Embodiments of the invention include a construct with an anchoring system, a deflection rod system and a vertical rod system. [0083] An advantage and aspect of some embodiments of anchoring systems in accordance with the present invention is that such embodiments include a head or saddle that allows for appropriate, efficient and convenient placement of the anchoring system relative to the spine in order to reduce the force that is placed on the anchoring system. Such embodiments have enhanced degrees of freedom which contribute to the ease of implantation of the anchor system and are designed to isolate the head from the rest of the dynamic stabilization system and the forces that the rest of the dynamic stabilization system can place on the anchor system and the anchor system/bone interface. Thus, the anchor system can provide a secure purchase in the spine.
[0084] An aspect and advantage of the invention is the ability to maximize the range of motion of the spine after embodiments of the dynamic stabilization, motion preservation implant of the invention are implanted in a patient. While traditional solutions to back pain include fusion, discectomy, and artificial implants that replace spine structure, embodiments of the present invention preserve the bone and ligament structure of the spine and preserve a wide range of motion of the spine, while stabilizing spines that were heretofore unstable due to degenerative and other spinal diseases. [0085] Still another aspect of the invention is the preservation of the natural motion of the spine and the maintenance of the quality of motion as well as the wide range of motion so that the spine motion is as close to that of the natural spine as possible. The present embodiments of the invention allow for the selection of a less stiff, yet dynamically stable implant for use in a non-fusion situation. A less stiff, yet dynamically stable implant relates directly to a positive patient outcome, including patient comfort and the quality of motion of the spine.
[0086] In another aspect of the invention, load sharing is provided by embodiments, and, in particular, the deflection rod or loading rod of the embodiments. For embodiments of this invention, the terms "deflection rod" and "loading rod" can be used interchangeably. Accordingly this aspect of the invention is directed to restoring the normal motion of the spine. The embodiment provides stiffness and support where needed to support the loads exerted on the spine during normal spine motion, which loads, the soft tissues of the spine are no longer able to accommodate since these spine tissues are either degenerated or damaged. Load sharing is enhanced by the ability to select the appropriate stiffness of the deflection rod or loading rod in order to match the load sharing characteristics desired. By selecting the appropriate stiffness of the deflection rod or loading rod to match the physiology of the patient and the loads that the patient places on the spine, a better outcome is realized for the patient. Prior to implantation of the embodiment, the stiffness of the implant of the system can be selected among a number of loading rods. In other words, the stiffness is variable depending on the deflection rod or loading rod selected. In another aspect, the load sharing is between the spine and the embodiment of the invention.
[0087] As the load is carried along the deflection rod or loading rod, the embodiments of the invention can be made smaller in order to fit in more spaces relative to the spine. [0088] An aspect of the invention is to preserve and not restrict motion between the vertebra of the spine through the use of appropriately selected vertical rods (and optionally horizontal rods) of embodiments of the invention.
[0089] Another aspect of the invention is the ability to control stiffness for extension, flexion, lateral bending and axial rotation, and to control stiffness for each of these motions independently of the other motions. [0090] An aspect of the invention is to use the stiffness and load bearing characteristics of super elastic materials.
[0091] Another aspect of the invention is to use super elastic materials to customize the implant to the motion preservation and the dynamic stabilization needs of a patient. An aspect of such embodiments of the invention is to provide for a force plateau where motion of the implantation system continues without placement of additional force of the bone anchor system, or, in other words, the bone/implantation system interface.
[0092] Accordingly, an aspect of the invention is to be able to selectively vary the stiffness and selectively vary the orientation and direction that the stiffness is felt by varying the structure of the implantation system of the invention. [0093] Another aspect of some embodiments of the invention is to prevent and/or provide for any off-axis implantation by allowing the implantation system to have enhanced degrees of freedom of placement of the implant.
[0094] A further aspect of embodiments of the invention is to control stabilized motion from micro-motion to broad extension, flexion, axial rotation, and lateral bending motions of the spine.
[0095] Yet another aspect of the embodiments of the invention is to be able to revise a dynamic stabilization implant should a fusion implant be indicated. This procedure can be accomplished by, for example, the removal of the deflection rod system of the implantation system and replacement with, for example, a stiffer deflection rod system. Accordingly, an aspect of the invention is to provide for a convenient path for a revision of the original implantation system, if needed.
[0096] A further aspect of the invention, due to the ease of implanting the anchoring system, is the ability to accommodate the bone structure of the spine, even if adjacent vertebra are misaligned with respect to each other. [0097] A further aspect of the invention is that the implant is constructed around features of the spine such as the spinous processes and, thus, such features do not need to be removed and the implant does not get in the way of the normal motion of the spine features and the spine features do not get in the way of the operation of the implant.
[0098] Another aspect of embodiments of the invention is the ability to stabilize two, three and/or more levels of the spine by the selection of appropriate embodiments and components of embodiments of the invention for implantation in a patient. Further embodiments of the invention allow for fused levels to be placed next to dynamically stabilized levels. Such embodiments of the invention enable vertebral levels adjacent to fusion levels to be shielded by providing a more anatomical change from a rigid fusion level to a dynamically stable, motion preserved, and more mobile level. [0099] Accordingly, another aspect of the embodiments of the invention is to provide a modular system that can be customized to the needs of the patient . A Deflection rod system can be selectively chosen for the particular patient as well the particular levels of the vertebrae of the spine that are treated. Further, the positioning of the embodiments of the invention can be selected to control stiffness and stability. [00100] Another aspect of embodiments of the invention is that embodiments can be constructed to provide for higher stiffness and fusion at one level or to one portion of the spine while allowing for lower stiffness and dynamic stabilization at another adjacent level or to another portion of the spine . [00101] Yet a further aspect of the invention is to provide for dynamic stabilization and motion preservation while preserving the bone and tissues of the spine in order to lessen trauma to the patient and to use the existing functional bone and tissue of the patient as optimally as possible in cooperation with embodiments of the invention. [00102] Another object of the invention is to implant the embodiments of the invention in order to unload force from the spinal facets and other posterior spinal structures and also the intervertebral disc.
[00103] A further aspect of the invention is to implant the embodiment of the invention with a procedure that does not remove or alter bone or tear or sever tissue. In an aspect of the invention the muscle and other tissue can be urged out of the way during the inventive implantation procedure. [00104] Accordingly, an aspect of the invention is to provide for a novel implantation procedure that is minimally invasive.
Dynamic Stabilization, Motion Preservation System for the Spine:
[00105] Common reference numerals are used throughout the drawings and detailed description to indicate like elements; therefore, reference numerals used in a drawing may or may not be referenced in the detailed description specific to such drawing if the associated element is described elsewhere. Further, the terms "vertical" and "horizontal" are used throughout the detailed description to describe general orientation of structures relative to the spine of a human patient that is standing.
[00106] FIG. IA is a posterior view (in partial cross-section) and FIG. IB is a lateral view of an embodiment of a deflection rod system implant 100 for use with dynamic stabilization, motion preservation systems (also referred to herein simply as "dynamic stabilization systems") in accordance with the present invention. The deflection rod system implant 100 comprises a deflection rod system or deflection rod system engine 110, an anchoring device 102 and a vertical rod 120. The deflection rod system 110 includes a deflection rod guide or shield 116 and a deflection rod 111 including an inner rod 112 within an outer shell 114. The deflection rod 111 can have a varying diameter along its length. A decreasing diameter allows the deflection rods 111 to be more flexible and bendable along the length deflection rod length to more evenly distribute the load placed on the deflection rod system 100 by the spine. The outer shell 114 preferably is made of PEEK or other comparable polymer and has a diameter that continuously decreases along the length of the deflection rod 111. The inner rod 112 can be comprised of a super elastic material. Preferably, the super elastic material is comprised of Nitinol (NiTi). In addition to Nitinol or nickel-titanium (NiTi), other super elastic materials include copper-zinc-aluminum and copper-aluminum -nickel. However, for biocompatibility, nickel-titanium is the preferred material. The inner rod 112, like the overall deflection rod 111, can vary in diameter and shape, although in a preferred embodiment, the inner rod 112 is substantially cylindrical. [00107] Alternatively, the diameter of the outer shell 114 can decrease in discrete steps along the length of the distraction rod 111, with the diameter of one step not being continuous with the diameter of the next adjacent step. Alternatively, for different force and load carrying criteria the diameters of the deflection rod can continuously increase in diameter or can have discreet step increases in diameter along the length of the deflection rod 111. Still further, the deflection rod 111 can have at least one step of decreasing diameter and at least one step of increasing diameter in any order along the length of the deflection rod 111, as desired for the force and load carrying characteristics of the deflection rod 111.
[00108] The deflection rod 111 is arranged within the deflection rod guide or shield 116 which covers and, in this embodiment, substantially surrounds the deflection rod 111. The deflection rod system 110 can be a preassembled unit provided to a surgeon for implantation by affixing the deflection rod system 110 to a bone (e.g., the pedicle of a vertebra) using an anchoring device 102 such as a bone screw. The deflection rod system 110 is connected with the anchoring device 102 by an arm 130, which arm 130 can be integrally formed with the deflection rod system 110, affixed to the deflection rod system 110 by one or more fasteners or fastening features (such as protruding structures that interlockingly engage each other when coupled), press fit to the deflection rod system 110, or otherwise fixedly secured to the deflection rod system 110. In the embodiment, the arm 130 includes an aperture 131 through which the anchoring device 102 is received and driven into the bone. The anchoring device 102 includes a head 104 that interferes with passage of the anchoring device 102 through the aperture 131. Threads 106 of the anchoring device 102 grip the bone to hold the arm 130 between the bone and the head 104, thereby affixing the arm 103 and by extension the deflection rod system 110 to the bone. Preferably, the anchoring device 102 is comprised of titanium; however, other biocompatible materials such as stainless steel and/or PEEK can be used. As will be appreciated upon reflecting on the different embodiments, the structures described herein can vary in size and shape based on factors such as material of construction, anatomical structure of the implantation site, implantation technique and targeted system performance (e.g., stiffness).
[00109] Referring to FIG. 2, the vertical rod 120 is connected to the deflection rod 111 and can urge the deflection rod 111 in response to relative movement of two vertebrae between which the vertical rod 120 extends. In the embodiment shown, a distal end of the deflection rod 111 can be fixedly mated with a spherical (or semi-spherical) ball or joint 118 that can pivot within a cradle at a proximal end of the vertical rod 120. The vertical rod 120 can pivot in a posterior-to-anterior or anterior-to-posterior direction about the joint 118, and optionally can pivot slightly in a lateral direction. The pivoting motion can allow adjustment of the vertical rod 120 relative to the deflection rod system 110 to ease manipulation of the dynamic stabilization system during implantation and optionally to reduce torque forces applied to the deflection rod 111. A distal end of the vertical rod 120 can be fixedly connected with an upper (or lower) vertebra of the two vertebrae by an additional anchoring device 152, such as a bone screw. The anchoring device 152 can include an arm 170 extending a clamp 162 that receives and secures the vertical rod 120. The arm 170 extends laterally from the anchoring device 152 so that the anchoring device 152 can be positioned and secured to the upper pedicle 8 (a good source of bone for anchoring) while the clamp 162 can be aligned with the vertical rod 120 to receive the vertical rod 120, which extends generally (though not necessarily) parallel to the spine. The dynamic stabilization system 100 comprises two substantially similar, mirrored structures connected at opposite pedicles 8,10 of the vertebrae 2,4. However, in alternative embodiments, the dynamic stabilization system can comprise dissimilar structures, for example to accommodate anatomical asymmetry. FIG. 3A illustrates an alternative embodiment wherein one or both of the deflection rod system arms 330 and clamp arm 370 can include a secondary aperture for receiving a locking screw 334,364 that can resist rotation of the corresponding arm. FIG. 3B illustrates an alternative embodiment wherein the deflection rod system arm 330 includes a secondary aperture for receiving the locking screw 334, and wherein the clamp and clamp arm are supplanted by an anchoring device 352 that receives the vertical rod 120 over a bone screw thread. The anchoring device 352 can resemble the anchoring device 752 shown in FIGS. 7A, 7B, and described below in the description of FIGS. 7A, 7B. Such anchoring devices can resemble anchoring devices described in U.S. Provisional Application 61/031,598, entitled "A DEFLECTION ROD SYSTEM FOR A DYNAMIC STABILIZATION AND MOTION PRESERVATION SPINAL IMPLANTATION SYSTEM AND METHOD" (SPART-01037US0), incorporated herein by reference. The alternative embodiment may reduce torque applied to the anchoring device 352 and simplify the anchoring device 352 to ease implantation of the anchoring device 352.
[00110] More lateral placement of the vertical rods provides for more stiffness in lateral bending and an easier implant approach by, for example, a Wiltse approach as described in "The Paraspinal Sacraspinalis-Splitting Approach to the Lumber Spine," by Leon L. Wiltse et al., The Journal of Bone & Joint Surgery, Vol. 50-A, No. 5, July 1968, which is incorporated herein by reference. [00111] The stiffness of the deflection rod system 100 can preferably be adjusted by the selection of the materials and placement and diameters of the deflection rod system as well as the horizontal and vertical rods. Larger diameter rods would increase the resistance of the deflection rod system 100 to flexion, extension rotation, and bending of the spine, while smaller diameter rods would decrease the resistance of the deflection rod system 100 to flexion, extension, rotation and bending of the spine. Further, continually or discretely changing the diameter of the deflection rods 111 along the length of the deflection rods 111 changes the stiffness characteristics. Thus, with the deflection rods 111 tapered toward the vertical rod 120, the deflection rod system 100 can have more flexibility in flexion and extension of the spine. Further, using a super elastic material for the vertical rod 120 in addition to the deflection rod 111 adds to the flexibility of the deflection rod system 100. Further, the vertical rods 120, in addition to the deflection rods 111, can be made of titanium or stainless steel or PEEK should a stiffer deflection rod system 100 be required. Thus, it can be appreciated that the deflection rod system 100 can selectively accommodate the desired stiffness for the patient depending on the materials uses, and the diameter of the materials, and the placement of the elements of the deflection rod system 100. [00112] Should an implanted deflection rod system 100 need to be revised, that can be accomplished by removing and replacing the vertical rod 120 and/or deflection rod system 110 to obtain the desired stiffness. By way of example only, should a stiffer revised deflection rod system 100 be desired, more akin to a fusion, or, in fact, a fusion, then the deflection rod system 110 having the deflection rods 111 can be removed and replaced by a deflection rod system 110 having the deflection rods 111 made of titanium, or stainless steel, or non-super elastic rods to increase the stiffness of the system. This can be accomplished in some embodiments described herein by leaving the anchoring device 102 in place and removing the existing deflection rod systems 110 and replacing the deflection rod systems with deflection rod systems having stiffer distraction rods 111 and outer shells and associated vertical rods 120.
[00113] In alternative embodiments of methods of stabilizing vertebral motion segments in accordance with the present invention, the dynamic stabilization system 100 can be implanted in an arrangement vertically flipped from the arrangement of FIG. 2. As shown in FIG. 4, the deflection rod system 110 is fixedly connected with the upper vertebra by the anchoring system 102. The vertical rod 120 is connected to the deflection rod 111 and extends caudally to the lower vertebra. The vertical rod 102 urges the deflection rod 111 in response to relative movement of the two vertebrae between which the vertical rod 120 extends. As with the previously described arrangement and as shown in FIG. 5, one or both of the deflection rod system arms 330 and clamp arms 370 can include a secondary aperture for receiving a locking screw 334, 364 that can resist rotation of the corresponding arm. Referring to FIG. 6, in still further embodiments, one or both of the deflection rod system arms 630 and clamp arms 670 can be adapted to connect with horizontal rods 680, 682 that extend between pedicles 8,10 of a vertebra. The anchoring devices 602, 652 can include a U-shaped channel for receiving the horizontal rod 680, 682, the horizontal rod being held in the channel by a locking set screw 644, 654. The horizontal rods 680, 682 are positioned between adjacent spinous processes 2, 4 associated with the vertebrae and can pierce or displace the interspinal ligament without severing or removing tissue. The horizontal rods 680, 682 can resist rotation and can be used in place of locking screws. In a preferred embodiment, the horizontal rod 680,682 can be comprised of titanium, stainless steel or PEEK or another biocompatible material, and the first and second deflection rods or loading rods can be comprised of a super elastic material. Preferably, the super elastic material is comprised of Nitinol (NiTi). In addition to Nitinol or nickel-titanium (NiTi), other super elastic materials include copper-zinc-aluminum and copper-aluminum-nickel. However, for biocompatibility, the nickel- titanium is the preferred material. [00114] FIGS. 7A-9 illustrate a still further embodiment of a deflection rod system 700 in accordance with the present invention comprising an deflection rod system 710 connectable with an anchoring device 702 after the anchoring device 702 is secured to a pedicle. Such embodiments can reduce visual obstruction of the pedicle during seating of the anchoring device 702 by reducing the size of the structure seated. An anchoring block 732 receives the anchoring device 702 through an aperture 731 and is secured to the pedicle as threads 106 of the anchoring device 702 grip the bone and the head 704 is seated within the anchoring block 732. The anchoring block 732 includes an internal screw thread 734 through at least a portion of the anchoring block 732 for receiving a screw 742 to secure an deflection rod system arm 730 of the deflection rod system 710. As in previous embodiments, the deflection rod system 710 comprises a deflection rod shield or guide 716 and a deflection rod 711 including an inner rod (not visible) within an outer shell 714. As shown, the deflection rod system 710 is connected with an arm 730 having a curved base that meets a curved surface of the anchoring block 732 (Fig. 7C). The arm 730 can pivot slightly relative to the anchoring device 702, allowing the surgeon to adjust an angle of protrusion of the deflection rod system 710 relative to the spine. The arm 730 is fastened to the anchoring block 732 by the screw 742 which is connected through a spacer 744 having a surface in sliding contact with a curved surface of the arm 730 to distribute force generally evenly along the arm 730 when arranged at a desired orientation. In this arrangement, preferably, the joint 718 is adjacent with and located over the anchor 702 in order to minimize or eliminate the transfer of torque forces from the rod 720 to the anchor 702. Other complementary mating surfaces may be used to obtain the desired relative motion. [00115] A vertical rod 720 is connected to the deflection rod 711 and can urge the deflection rod 711 in response to relative movement of two vertebrae between which the vertical rod 720 extends. A distal end of the deflection rod 711 can be fixedly mated with a spherical (or semi-spherical) ball or joint 718 that can pivot within a cradle at a proximal end of the vertical rod 720. The vertical rod 720 can pivot in a posterior-to-anterior or anterior-to-posterior direction about the joint 718, and optionally can pivot in a lateral direction. The pivoting motion can allow adjustment of the vertical rod 720 relative to the deflection rod system 710 to ease manipulation of the dynamic stabilization system during implantation and optionally to reduce torque forces applied to the deflection rod 711. A distal end of the vertical rod 720 can be fixedly connected with an upper or lower vertebra of the two vertebrae by an additional anchoring device 752. The anchoring device can resemble anchoring devices as described in U.S. Provisional Application No. 61/031,598. As shown, the anchoring device 752 includes a saddle 758 that can receive the vertical rod 720. A locking set screw 754 can be urged along threads of the saddle 758 so that the locking set screw 754 secures the vertical rod 758 against the U-shaped channel of the saddle 758. A bone screw thread 756 can optionally be mated with a body of the anchoring device 752 by a fastener 772 that permits at least cranial-to-caudal pivoting. The saddle 758 can include a hex-shaped outer surface to assist in seating the bone screw 756 within the upper pedicle 8. As shown in FIGS. 8 and 9, the deflection rod system 700 can be arranged with the deflection rod system 710 anchored to an upper of two vertebrae, or alternatively, the lower of two vertebrae.
[00116] FIG. 10 is a posterior view of a still further embodiment of a deflection rod system implant 1000 in accordance with the present invention comprising an deflection rod system 610 that is engaged during spine extension, but not engaged during spine flexion. The deflection rod system 610 and associated structures resemble the deflection rod system and associated structures of FIG. 6, and can be connected with a horizontal rod 680 extending between pedicles of a vertebra. A vertical rod
1020 is connected at a proximal end to a deflection rod 111 of the deflection rod system 610. The distal end of the vertical rod 1010 is unattached and slides within a boot 1090. The boot 1090 blocks movement of the vertical rod 1020 when the distal end of the vertical rod 1020 abuts the base of the boot 1090, and further extension movement will cause the vertical rod 1020 to deflect the deflection rod 111. The boot 1090 is preferably sized to accommodate movement of vertical rod 1020 within the boot 1090 that spans a length of natural movement of the spine during extension, to avoid separation of the vertical rod 1020 from the boot 1090. Alternatively, the distal end of the vertical rod can include a ball or other slidable structure that is held within a cavity of the boot, enabling the boot to resist both extension and flexion, and to permit a range of free motion determined by the surgeon. As shown, the boot 1090 is connected with an anchoring device 1052 by an arm 1070. A locking screw 1062 resists rotation of the boot 1090 about the anchoring device 1052 in response to a force applied by the vertical rod 1020.
[00117] FIG. HA is a posterior view (in partial cross-section) and FIG. HB is a lateral view (in partial cross-section) of a still further embodiment of a deflection rod system implant 1100 for use with dynamic stabilization systems accordance with the present invention. The deflection rod system implant 1100 is adapted to support multiple motion segments and comprises a first deflection rod system HlOa connected with a vertical rod 1120a extending cranially, a second deflection rod system HlOb connected with a vertical rod 1120b extending caudally, and an anchoring device 1102. The first and second deflection rod systems HlOa, HlOb can have similar or different bending or load carrying or stiffness characteristics, as prescribed by the surgeon or a physician. A common arm 1130 connects the first and second deflection rod systems HlOa, HlOb with the anchoring device 1102. The arm 1130 includes an aperture 1131 through which the anchoring device 1102 is received and driven into the bone. The anchoring device 1102 includes a head 1104 that interferes with passage of the anchoring device 1102 through the aperture 1131. Threads 1106 of the anchoring device 1102 grip the bone to hold the arm 1130 between the bone and the head 1104, thereby affixing the arm 1103 and by extension the deflection rod systems HlOa, HlOb. The arm 1130 can be adapted to connect with a horizontal rod 1180 that extend between pedicles 10 of a vertebra. The horizontal rod 1180 can be received in U-shaped slots of the arm 1130 and urged against the head 1104 of the anchoring device 1102 by a locking set screw 1144 having external threads that mate with internal threads of the walls of the arm channel. [00118] FIG. 12 is a lateral view of a deflection rod system implant 1200 resembling the deflection rod system implant HOO of FIG. HB with a compressor element or cradle 1236 positioned within the channel and between the horizontal rod 1180 and anchoring device 1202. As shown, the head 1204 of the anchoring device 1202 has a spherical or semi-spherical shape, although alternatively the head can have some other shape that complements the compressor element or cradle 1236 while permitted at least limited movement between the two structures to allow flexibility in relative arrangement during implantation. For example, the head can have a rounded indention mateable with a spherical surface. [00119] The compressor element or cradle 1236 has a generally cylindrical body so that the compressor element 1236 can fit within a bore of the arm 1230. A posterior surface of the compressor element 1236 is concave and generally complementing the horizontal rod 1180 which rests thereon. The anterior surface of the compressor 1236 is in sliding contact with the head 1204 to allow the anchoring device 1202 to be positioned as appropriate. The locking set screw 1144 urges the horizontal rod 1180 against the compressor element 1236, which in turn is urged against the anchoring device 1202. Alternatively, the compressor element 1236 and head 1204 can have some other complementary shape that allows some or no sliding contact between the structures. [00120] FIG. 13 is a posterior view of the deflection rod system implant 1200 of FIG. 11 comprising the first deflection rod system 1110a and second deflection rod system 1110b secured to a vertebra common to two adjacent motion segments targeted for stabilization by an anchoring device 1102. A first vertical rod 1120a is connected to a deflection rod 1111a of the first deflection rod system 1110a and extends cranially to the upper vertebra of the upper targeted motion segment, and is secured to the upper vertebra by a clamp 162. A second vertical rod 1120b is connected to a deflection rod 1111b of the second deflection rod system 1110b and extends caudally to the lower vertebra of the lower targeted motion segment, and is secured to the lower vertebra by a clamp 162. The vertical rods 1120a, 1120b urge respective deflection rods lllla,llllb in response to relative movement of the two vertebrae between which the vertical rods 1120a,1120b extend. Preferably, vertical rod 1120a is aligned with vertical rod 1120b in order to reduce or eliminate torque forces. An arm 1130 common to the deflection rod systems 1110a,1110b is connected with a horizontal rod 1180 that extends between pedicles of the common vertebra to a complementary pair of deflection rod systems. The horizontal rod 1180 is positioned between adjacent spinous processes 2,4 associated with the vertebrae and can pierce or displace the interspinal ligament without severing or removing tissue. The horizontal rod 1180 can resist rotation of the deflection rod systems 1110a,1110b and can be used in place of locking screws.
[00121] FIGS. 14A and 14B illustrate yet another embodiment of a deflection rod system implant 1400 in accordance with the present invention comprising an deflection rod system 1410 connectable with an anchoring device 1402, preferably after the anchoring device 1402 is secured to a pedicle. An arm 1430 of the deflection rod system 1410 comprises a collar 1464 that can be received over a head 1404 of the anchoring device 1402 to capture a horizontal bar 1480. The arm 1430 can be secured to the head 1404 by a collar screw 1450. The horizontal bar 1480 can be held in place by one or both of the arm 1430 which is urged against the horizontal bar 1480 by the collar screw 1450, and a locking set screw 1458. Optionally, the head 1404 of the anchoring device can be connected with a yoke 1407 by a pin 1403 to allow the head 1404 to be pivoted during implantation. Such an arrangement can allow a thread 106 of the anchoring device 1402 to be seated within the pedicle at an acute angle relative to a plane of the collar. [00122] Referring to FIG. 15, the deflection rod system implant 1400 of FIGS. 14A and 14B is shown implanted between two vertebrae to stabilize the motion segment associated with the vertebrae. The deflection rod system 1410 is anchored to the upper vertebra of the motion segment and a vertical rod 120 is connected between a deflection rod 111 of the deflection rod system 1410 and a clamp 162 connected with the lower vertebra by an anchoring device 152. FIG. 16 is a posterior view of a still further embodiment of a deflection rod system implant 1600 in accordance with the present invention comprising an deflection rod system 1610 connected with an arm 1630 that resembles the arm 1430 of FIG. 14A-15; however, the deflection rod system 1610 is connected with the arm 1630 so that the deflection rod 111 extends toward the spinous process 2 rather than away from the spinous process (i.e., the deflection rod system 1610 is "inboard). The clamp 162 is connected with the anchoring device 152 by a clamp arm 1670 that likewise extends toward a spinous process 4. [00123] The embodiments described above comprise deflection rods extending generally in a transverse direction to the orientation of the bone anchor screw. In still other embodiments, deflection rod systems can be oriented generally in a co-axial or collinear or parallel orientation to a bone anchor screw. Referring to FIGS. 17-22, the deflection rod system can extend substantially co-axial or parallel to the threaded shaft of an anchoring device. As will be appreciated upon reflecting on the teaching provided herein, such embodiments can simplify implantation, reduce trauma to structures surrounding an implantation site, and reduce system components. [00124] FIG. 17 illustrates an embodiment of a deflection rod system implant 1700 comprising an anchoring device 1702 with a cavity 1709 for receiving a deflection rod system 1710. It has been observed that acceptable anchoring can be achieved in a bone such as a pedicle using a thread 1706 pattern that include deep threads 1706x (i.e., having a maximum difference between inner diameter, Dn, and outer diameter, D0, of a shaft of the anchoring device) nearer the distal end of the shaft and comparatively shallow threads 1706y nearer the shank 1705. The comparatively shallow threads 1706y can enable a larger inner diameter, Di2, of the anchoring device 1702 shaft which can accommodate the deflection rod system 1710. In some embodiments, the cavity can have a size and shape that can accommodate deflection rod systems having a range of different performance characteristics (e.g., stiffness, range of motion). A physician or surgeon can implant an anchoring device 1702 selected independently from the deflection rod system 1710 and based on the anatomy into which it is implanted. For example, the anchoring device 1702 can be selected based on the location of the vertebrae (e.g., L5-S1 vs. C7-T1) or the age and sex of the patient. The deflection rod system 1710 can then be selected based on the desired performance characteristics. The deflection rod system 1710 can be seated within the cavity using myriad different techniques. For example, the distraction rod guide or shield 1716 can be press fit into the walls of the cavity 1709, or the distraction rod guide 1716 can be cemented or otherwise adhesively fixed to the walls of the cavity 1709. Alternatively, the distraction rod guide or shield 1716 can be captured in the cavity 1709 by a locking set screw or ratchet feature. Further, the distraction rod guide 1716 (and deflection rod system 1710) can have a length longer than that of the cavity 1709 so that a portion of the distraction rod guide 1716 extends outside of the cavity 1702 and posterior to the anchoring device 1702. One of ordinary skill in the art, upon reflecting on the teachings provided herein, will appreciate the myriad ways in which the deflection rod system 1710 can be fixedly associated with an anchoring device 1702. [00125] The distraction rod system 1700 of FIG. 17 generally includes less, or simpler footprint than the previously described embodiments, potentially reducing the amount of displacement of tissue and/or bone, reducing trauma to tissue and/or bone during surgery. Further, the smaller footprint can reduce the amount of tissue that needs to be exposed during implantation. Still further, arranging the deflection rod system 1710 co-axial with a shaft of the anchoring device 1702 can substantially transfer a moment force applied by the deflection rod system 1710 from a moment force tending to pivot or rotate the anchoring device 1702 about the axis of the shaft, to a moment force tending to act perpendicular to the axis of the shaft. The distraction rod system implant 1700 can effectively resist repositioning of the deflection rod system 1710 and/or anchoring device 1702 without the use of locking screws or horizontal bars to resist rotation. Eliminating locking screws and/or horizontal bars can reduce exposure of tissue and/or bone to foreign bodies.
[00126] FIG. 18 illustrates an alternative embodiment of a deflection rod system implant 1800 comprising an anchoring device 1802 with a cavity 1809 for receiving a distraction rod 111. The embodiment resembles the deflection rod system 1700 of FIG. 17; however, the distraction rod guide or shield 1816 is integrally formed in a shank 1805 of the anchoring device 1802. The distraction rod guide or shield 1816 can be sized and shaped to provide, in combination with the choice of inner rod 112 and outer shell 114, a desired performance characteristic. Integrally forming the distraction rod guide 1816 in a shank 1805 of the anchoring device 1802 can potentially reduce a thickness otherwise required to accommodate separate components. The distraction rod 111 can be mated with the distraction rod guide 1816 applying similar techniques to mate distraction rods within previously described distraction rod guide or shield.
[00127] FIG. 19 illustrates a still further embodiment of a deflection rod system implant 1900 comprising an anchoring device 1902 with a cavity 1909 including inner threads for receiving an deflection rod system screw 1913, with complementary external threads extending from an deflection rod system 1910. The deflection rod system screw 1913 provides easy mating of the deflection rod system 1910 with the anchoring device 1902. The deflection rod system 1910 can further include a spherical (or semi-spherical) ball or joint 1918 that allows pivoting of a vertical rod 1920 connected with the deflection rod system 1910 so that the vertical rod 1920 can be oriented in a needed direction as the deflection rod system 1910 is rotated and the deflection rod system screw 1913 is seated within the cavity 1909. The vertical rod 1920 can then be pivoted into place extending between pedicles. The embodiment of FIG. 19 can simplify and shorten surgery by providing an easy technique for implanting the deflection rod system 1910. [00128] FIGS. 2OA and 2OB illustrate yet another embodiment of a deflection rod system implant 2000 in accordance with the present invention comprising an anchoring device 2002 with a housing 2009 for receiving a deflection rod system 2010. The embodiment resembles the deflection rod system implant 1700 of FIG. 17; however, housing 2009 is connected with the anchoring device 2002 at the shank 2005, but is not formed in the shank 2005. Depending on the outer diameter of the housing 2009 and the inner diameter of the cavity that receives the deflection rod system 2010, the housing 2009 permits use of one or both of (1) a threaded shaft 2006 having a smaller diameter (for example for use in smaller bones, such as in the cervical region) and (2) a deflection rod system 2010 comprising a deflection rod guide shield 2016 with a larger diameter (e.g., for use with thicker (and stiffer) deflection rods). As shown, the housing 2009 further comprises a threaded screw hole 2057 extending along an axis at an acute angle to the axis of the threaded shaft. The threaded screw hole 2057 receives a locking set screw 2058 that when seated (FIG. 20B) protrudes into the housing 2009 or against the deflection rod system 2010, where the deflection rod system 2010 is seated within the housing 2009. The locking set screw 2058 holds the deflection rod system 2018 in place within the housing 2009. In this embodiment, a deflection rod system 2010 can be selected to have an appropriate stiffness for the patient. Further, if several deflection rod system implants 2000 are used in a patient, each deflection rod system 2010, if desired, can have a different stiffness. [00129] FIG. 21 is a posterior view of the deflection rod system implant 2000 of FIGS. 2OA and 2OB implanted between pedicles 8,10 of adjacent vertebrae of a targeted motion segment. As shown, both ends of a vertical rod 2020 connected with the deflection rod system implant 2000 is connected with an deflection rod system 2010, in contrast to previous figures. Alternatively, one end of the vertical rod 2020 can be connected with an anchoring device such as described above, for example in FIG. 9. As will be appreciated, the deflection rod system implant 2000 has a small footprint from a posterior perspective. [00130] FIG. 22 is a posterior view of still another embodiment of a deflection rod system implant 2200 in accordance with the present invention adapted to support multiple motion segments. An anchoring device 2202 resembles the anchoring devices of FIGS. 17-20B and includes an outer wall 2203 having a hex portion for gripping using a torque wrench or other tool during implantation of the anchoring device 2202 in a bone. An anchoring device 2202 is secured to the two pedicles 10 of a vertebra common to the two motion segments to be supported. A vertical rod 2220 connected with an deflection rod system 2210 mated with the anchoring device 2202, extends between the vertebra and an upper vertebra of the upper motion segment, and is connected to a pedicle 8 of the segment by an upper anchoring device 752. As above, the vertical rod 2220 is connected to the deflection rod and can deflect the deflection rod in response to relative movement of two vertebrae between which the vertical rod 2220 extends. Another vertical rod 2222 includes a yolk 2223 resembling a box-end wrench with a shape generally complementing the hex pattern of the outer wall of the bone anchor.
The yolk 2223 is received over the outer wall 2203 of the anchoring device 2202, and can resist rotation the vertical rod 2222 relative to the anchoring device 2202. The vertical rod 2222 extends to the lower vertebra of the lower motion segment, and is connected to a pedicle 12 of the motion segment by a lower anchoring device 752. The vertical rod 2222 can resist movement between vertebrae 4 and 6, and thus supplement or substitute for other fusion devices, for example. [00131] FIG. 23 is a lateral view (in partial cross-section) of an alternative embodiment of a deflection rod system implant 2300 for use with dynamic stabilization systems in accordance with the present invention and adapted to dynamically support multiple motion segments of the spine. The deflection rod system implant 2300 resembles the deflection rod system implant 1100 of FIG. HA, but includes deflection rod systems generally oriented in an anterior-to-posterior direction. The deflection rod system implant 2300 is adapted to support multiple motion segments and comprises a first deflection rod system 2310a connected with a vertical rod 120a extending cranially, a second deflection rod system 2310b connected with a vertical rod 120b extending caudally, and an anchoring device 2302. The first and second deflection rod systems 2310a, 2310b can have similar or different bending characteristics, as prescribed by the surgeon or a physician. A common arm 2330 connects the first and second deflection rod systems 2310a, 2310b with the anchoring device 2302. The orientation of the deflection rod systems 2310a, 2310b can reduce the moment force that tends to cause rotation of the arm 2330; however, in other embodiments it may be desirable to include a head capable of receiving a horizontal rod to further resist moment force. In this embodiment, the deflection rod systems 2310a, 2310b are substantially parallel. [00132] FIG. 24A is a lateral view (in partial cross-section) and FIG. 24B is a cranial view (in partial cross-section) of still another embodiment of a deflection rod system implant 2400 for use with dynamic stabilization systems accordance with the present invention and adapted to dynamically support multiple motion segments is shown. The deflection rod system implant 2400 resembles the deflection rod system implant 2300 of FIG. 23. An arm 2430 that is mated with the anchoring device 2402 after the anchoring device 2402 has been implanted within a bone. The arm 2430 receives a locking screw 2440 having threads that complement threads of a screw hole within the head 2404 of the anchoring device 2402. The locking screw 2440 fixedly connects the arm 2430 to the anchoring device 2402 when the locking screw 2440 is seated within the head 2404. The embodiment also includes a distraction rod guide or shield 2416 integrally formed with the arm 2430. In this embodiment, the deflection rod systems 2410 are substantially parallel. As seen in FIGS. 24A, 24B the arm 2430 can connect to the head 2404 in a number of orientations. This can be accomplished with an arm 2430 with a convex surface that mates with a concave surface of the head 2404 as shown, by way of example only, as depicted in FIG. 7C. [00133] FIG. 25 is a posterior view of the deflection rod system implant 2300 of FIG. 23 comprising the first deflection rod system 2310a and second deflection rod system 2310b secured to a vertebra common to two adjacent motion segments or vertebrae targeted for stabilization by an anchoring device. A first vertical rod 2320a is connected to a deflection rod 2311a of the first deflection rod system 2310a and extends cranially to the upper vertebra of the upper targeted motion segment, and is secured to the upper vertebra by an upper anchoring device 752. A second vertical rod 2320b is connected to a deflection rod 2311b of the second deflection rod system 2310b and extends caudally to the lower vertebra of the lower targeted motion segment, and is secured to the lower vertebra by a lower anchoring device 752. The vertical rods 2320a, 2310b deflect respective deflection rods 2311a, 2311b in response to relative movement of the two vertebrae between which the vertical rods 2320a, 2320b extend.
[00134] FIG. 26 illustrates an embodiment of a deflection rod system implant 2600 comprising an anchoring device 2602 with a cavity 2609 for receiving a deflection rod system 2610. As mentioned above, it has been observed that acceptable anchoring can be achieved in a bone such as a pedicle using a thread 2606 pattern that include deep threads 2606x and shallow threads 2606y. The anchoring device 2602 can have a length such that when implanted a portion of the anchoring device 2602 further from the deflection rod system 2610 is seated within cancellous bone while a portion of the anchoring device 2602 nearer the deflection rod system 2610 is seated within cortical bone. Screw threads 2606y having a high pitch (i.e., having a comparatively large gap between threads) and deep threads are usable with satisfactory results in cancellous bone, which bone is an osseous tissue with a low density strength but high surface area. Screw threads 2606x having a low pitch and shallow threads are usable with satisfactory results in cortical bone, which bone is an osseous tissue with a high density strength. The diameter, Di2, of the anchoring device shaft can be expanded along a portion of the shaft that is seated within the cortical bone and/or a portion of the shaft that accommodates the deflection rod system 2610. Expanding the diameter of the shaft can allow the threads 2606yx to cut new thread patterns within the cortical bone, and can accommodate a deflection rod system 2610 (or range of deflection rod systems) having a larger diameter. Further, the diameter of the shaft can be larger when the cortical threads 20606y are, as the vertebral bone is thicker in this area. For the same reason, the corresponding diameter of the bone as shown in FIG. 27 can be larger. [00135] FIG. 27 illustrates a still further embodiment of a deflection rod system implant 2700 comprising an anchoring device 2702 including an external thread pattern resembling the external thread pattern of FIG. 26, and further including a cavity 2709 with inner threads for receiving an deflection rod system screw 1913, with complementary external threads extending from an deflection rod system 1910. The deflection rod system screw 1913 provides easy mating of the deflection rod system 1910 with the anchoring device 1902. The deflection rod system 1910 can further include a spherical (or semi-spherical) ball or joint 1918 that allows pivoting of a vertical rod 1920 connected with the deflection rod system 1910 so that the vertical rod 1920 can be oriented in a needed direction as the deflection rod system 1910 is rotated and the deflection rod system screw 1913 is seated within the cavity 1909. The vertical rod 1920 can then be pivoted into place extending between pedicles.
[00136] Referring again to FIG. 22, multiple motion segments can be stabilized by stringing together vertical rods and deflection rod systems individually selected for the corresponding motion segment. As shown in FIG. 22, the yoke 2223 of a vertical rod 2222 is fitted over the outer wall 2203 of a deflection rod system 2210. An opposite end of the vertical rod 2222 is connected to an anchoring device 2202. However, in still other embodiment (as shown in FIG. 28), the vertical rod 2822 can be connected with a second deflection rod system 2810b anchored by an anchoring device 2802b to a pedicle 12 of a lower vertebra of the motion segment. The deflection rod system 2810b allows controlled relative movement of the two vertebrae. Systems and methods in accordance with the present invention can comprise a series of implants connected with, and selected for the corresponding motion segment. The implants can comprise vertical rods rigidly connected between vertebrae as shown in FIG. 22 (for example to support fusion), or alternatively the vertical rods can be dynamically connected between vertebrae by a deflection rod system as shown in FIG. 28. Any combination of implants can be used having a stiffness selected for the respective motion segment. For example, FIG. 29 illustrates dynamic stabilization of three motion segments with two yoked vertical rods 2922a,2922b fitted over dynamic stabilization systems 2810a,2810b anchored at an upper vertebra of the targeted segment. [00137] While the vertical rods 2822,2922 of FIGS. 28 and 29 are shown to be connected with dynamic stabilization systems implanted in respective pedicles, embodiments of systems and methods can comprise vertical rods that are connected with dynamic stabilization systems after implantation of dynamic stabilization systems. The vertical rods 2822,2922 can be attachable with a dynamic stabilization system at or near the connection with the spherical ball joint. Such an arrangement can allow a yoke of a vertical rod to be placed over and around the outer wall of a dynamic stabilization system (or simply past the spherical ball joint in a staging position for further adjustment) without interference from the vertical rod of that dynamic stabilization system.
[00138] It is proposed that a preferred embodiment may have the following preferred dimensions, although dimension can vary substantially based on a number of performance factors.
• Inner rod having a diameter of about .080 inches.
• Outer shell having a major diameter of about .165 inches and the tapered portion tapers at about 2.5 degrees per side.
• Shield and deflection guide having a housing diameter of about .265 inches. • The deflection rod is secured to the deflection guide along a length of about .200 inches from the end of the deflection rod system.
• The deflection rod system has a working length from the end of the system to the center of the ball joint of about 1.040 less the press fit length of about .200 which is length of about .840.
• The overall length of the deflection rod system is about 1.100 inches. • The spherical ball in the ball and socket joint that secures the vertical rod to the deflection rod system has a diameter of about .188 inches. • The vertical rod has a diameter of about .150 inches.
Materials of Embodiments of the Invention:
[00139] In addition to Nitinol or nickel-titanium (NiTi) other super elastic materials include copper-zinc-aluminum and copper-aluminum-nickel. However for biocompatibility the nickel-titanium is the preferred material.
[00140] As desired, the implant can, in part, be made of titanium or stainless steel. Other suitable material includes by way of example only polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyetherketone (PEK), polyetherketoneetherketoneketone (PEKEKK), and polyetheretherketoneketone (PEEKK). Still, more specifically, the material can be PEEK 450G, which is an unfilled PEEK approved for medical implantation available from Victrex of Lancashire, Great Britain. (Victrex is located at www.matweb.com or see Boedeker www.boedeker.com). Other sources of this material include Gharda located in Panoli, India (www.ghardapolymers.com). [00141] As will be appreciated by those of skill in the art, other suitable similarly biocompatible thermoplastic or thermoplastic poly condensate materials that resist fatigue, have good memory, are flexible, and/or deflectable have very low moisture absorption, and good wear and/or abrasion resistance, can be used without departing from the scope of the invention. [00142] Reference to appropriate polymers that can be used in the spacer can be made to the following documents. These documents include: PCT Publication WO 02/02158 Al, dated January 10, 2002, entitled "Bio-Compatible Polymeric Materials;" PCT Publication WO 02/00275 Al, dated January 3, 2002, entitled "Bio-Compatible Polymeric Materials;" and PCT Publication WO 02/00270 Al, dated January 3, 2002, entitled "Bio-Compatible Polymeric Materials."
[00143] The foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims and their equivalents.

Claims

CLAIMSWhat is claimed is:
1. An implant adapted to be implanted in a spine comprising: a deflection rod system including a rod that is deflectable; a connector rod that is attached to said deflectable rod with a connector; a mount that is adapted to mount said deflection rod system relative to a bone anchor; wherein said connector is adapted to be mounted in-line with the bone anchor so as to minimize any torque that said connector rod can place on the bone anchor.
2. The implant of claim 1 wherein said rod of said deflection rod system is an inner rod and an outer shell positioned about said inner rod and a shield positioned about said outer shell in order to limit the deflection of said inner rod and said outer shell.
3. The implant of claim 1 wherein said inner rod is comprised of a super elastic material.
4. The implant of claim 1 wherein said rod of said deflection rod system is comprised of a super elastic material.
5. The implant of claim 1 wherein said connector is a ball and socket connector and said ball and socket connector is positioned in-line with the bone anchor.
6. The implant of claim 1 wherein said connector permits movement between said connector rod and said rod of said deflection rod system.
7. The implant of claim 1 wherein said mount is adapted to mount said deflection rod system about transverse to the bone anchor.
8. The implant of claim 1 wherein said mount mounts said rod of deflection rod system about perpendicular to said connector in a first position and said mount allows said connector and said rod to move relative to each other from said first position.
9. The implant of claim 2 wherein said inner rod has a distal end that extends from said outer shell and from said shield, and said connector is connected to said distal end.
10. An implant adapted to be implanted in a spine comprising: a deflection rod system including a rod that is deflectable; a connector rod that is attached to said deflectable rod with a connector; a bone anchor; and a mount that mounts said deflection rod system relative to said bone anchor in one of a plurality of positions.
11. The implant of claim 10 wherein said connector mounted in-line with the bone anchor so as to minimize any torque that said connector rod can place on the bone anchor.
12. The implant of claim 10 wherein said bone anchor includes a bone anchor head and said mount can mount said deflection rod system relative to said bone anchor head in one said plurality of positions.
13. The implant of claim 10 wherein said mount includes a curved mount surface and said bone anchor includes a curved anchor surface which is mated with the curved mount surface with the curved mount surface moveable relative to said curved anchor surface.
14. The implant of claim 10 wherein said rod of said deflection rod system is an inner rod and an outer shell positioned about said inner rod and a shield positioned about said outer shell in order to limit the deflection of said inner rod and said outer shell.
15. The implant of claim 10 wherein said rod of said deflection rod system is comprised of a super elastic material.
16. The implant of claim 10 wherein said connector permits movement between said connector rod and said rod of said deflection rod system.
17. The implant of claim 10 wherein said mount mounts said deflection rod system about transverse to the bone anchor.
18. The implant of claim lOwherein said mount mounts said rod of deflection rod system about perpendicular to said connector in a first position and said mount allows said connector and said rod to move relative to each other from said first position.
19. The implant of claim 14 wherein said inner rod has a distal end that extends from said outer shell and from said shield, and said connector is connected to said distal end.
20. An implant adapted to be implanted in a spine comprising: a deflection rod system including a rod that is deflectable; a connector rod that is attached to said deflection rod with a connector; a mount that mounts said deflection rod relative to a bone anchor in one of a plurality of positions; and wherein said mount includes a curved mount surface and said bone anchor includes a curved anchor surface which is mated with the curved mount surface with the curved mount surface moveable relative to said curved anchor surface.
21. The implant of claim 20 wherein said connector is adapted to be mounted in-line with the bone anchor so as to minimize any torque that said connector rod can place on the bone anchor.
22. The implant of claim 20 wherein said mount is adapted to mount said deflection rod system about transverse to a the bone anchor
23. The implant of claim 20 wherein said rod of said deflection rod system is an inner rod and an outer shell positioned about said inner rod and a shield positioned about said outer shell in order to limit the deflection of said inner rod and said outer shell.
24. The implant of claim 20 wherein said rod of said deflection rod system is comprised of a super elastic material.
25. The implant of claim 20 wherein said connector is a ball and socket connector and said ball and socket connector is positioned in-line with the bone anchor.
26. An implant adapted to be implanted in a spine comprising: a deflection rod system including a deflection rod; a bone anchor with a cavity, which cavity has an outer surface; said deflection rod system mounted in said bone anchor cavity; and a bone anchor thread which extends along said bone anchor and over the outer surface of said bone anchor cavity such that at least a portion of said deflection rod system is adapted to be implanted beneath the surface of a bone.
27. The implant of claim 26 wherein: said deflection rod of said deflection rod system is an inner rod and said deflection rod system includes an outer shell located about said inner rod and a shield with a shield cavity with said inner rod and said outer shell located in said shield cavity, said shield cavity limiting the deflection of said inner rod and said outer shell.
28. The implant of claim 26 including a threaded shaft extending from said deflection rod system and said bone anchor cavity including a thread that mates with said threaded shaft of said deflection rod system in order to mount said deflection rod system in said bone anchor cavity.
29. The implant of claim 26 wherein: said deflection rod of said deflection rod system is an inner rod and said deflection rod system includes an outer shell located about said inner rod and wherein said inner rod and outer shell are mounted in said bone anchor cavity and said bone anchor cavity limits the deflection of said inner rod and said outer shell.
30. The implant of claim 26 wherein said deflection rod of said deflection rod system is an inner rod and said deflection rod system includes an outer shell located about said inner rod and a shield with a shield cavity with said inner rod and said outer shell located in said shield cavity, said shield cavity limiting the deflection of said inner rod and said outer shell; and a threaded shaft extending from said shield of said deflection rod system and said bone anchor cavity including a thread that mates with said threaded shaft of said deflection rod system in order to mount said deflection rod system in said bone anchor cavity.
31. The implant of claim 26 wherein said deflection rod system and bone anchor are co-axial.
32. The implant of claim 26 wherein said deflection rod system and the bone anchor are co-linear.
33. The implant of claim 26 wherein said deflection rod system and the bone anchor are parallel.
34. The implant of claim 26 wherein said deflection rod of said deflection rod system extends from said bone anchor cavity.
35. The implant of claim 26 including a connector rod secured to said deflection rod with a connector so that said connector rod is movable relative to said deflection rod.
36. The implant of claim 26 including a connector rod secured to said deflection rod with a connector so that said connector rod is about transverse relative to said deflection rod and is movable relative to said deflection rod.
37. The implant of claim 26 wherein said deflection rod is comprised of a super elastic material.
38. An implant adapted to be implanted in a spine comprising: a deflection rod system including a deflection rod; a bone anchor with a cavity, which cavity has an outer surface; and a bone anchor thread which extends along said bone anchor and over the outer surface of said bone anchor cavity such that at least a portion of said deflection rod system is implanted beneath the surface of a bone; and said deflection rod comprised of a super elastic material; said deflection rod system being co-axial with said bone anchor; and a connector rod movably secured to said deflection rod.
39. An implant adapted to be implanted in a spine comprising: a first deflection rod system including a first rod that is deflectable; a second deflection rod system including a second rod that is deflectable; a mount that is connected with said first deflection rod system and that is connected with said second deflection rod system; wherein said first deflection rod system and said second deflection rod system are about parallel; a bone anchor; and said bone anchor being adapted to secure said mount to the bone of a patient.
40. An implant adapted to be implanted in a spine comprising: a first deflection rod system including a first rod that is deflectable and a first outer shell and a first shield that limits the deflection of said first rod and said first outer shell; a second deflection rod system including a second rod that is deflectable and a second outer shell and a second shield that limits the deflection of said second rod and said second outer shell; a mount that is connected with said first deflection rod system and that is connected with said second deflection rod system; wherein said first deflection rod system and said second deflection rod system are about parallel; a first connector rod movably connected to said first rod, and a second connector rod movably connected to said second rod; and a bone anchor; wherein said mount is positionable relative to said bone anchor; and said bone anchor being adapted to secure said mount to the bone of a patient.
PCT/US2008/065435 2007-06-05 2008-05-30 A deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method WO2008151091A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/566,529 US8021396B2 (en) 2007-06-05 2009-09-24 Configurable dynamic spinal rod and method for dynamic stabilization of the spine
US12/566,522 US8083772B2 (en) 2007-06-05 2009-09-24 Dynamic spinal rod assembly and method for dynamic stabilization of the spine
US12/566,519 US8092501B2 (en) 2007-06-05 2009-09-24 Dynamic spinal rod and method for dynamic stabilization of the spine
US12/566,531 US8114134B2 (en) 2007-06-05 2009-09-24 Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine
US12/566,534 US8048115B2 (en) 2007-06-05 2009-09-24 Surgical tool and method for implantation of a dynamic bone anchor

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US94216207P 2007-06-05 2007-06-05
US60/942,162 2007-06-05
US11/832,338 2007-08-01
US11/832,338 US8070780B2 (en) 2007-06-05 2007-08-01 Bone anchor with a yoke-shaped anchor head for a dynamic stabilization and motion preservation spinal implantation system and method
US2879208P 2008-02-14 2008-02-14
US61/028,792 2008-02-14
US3159808P 2008-02-26 2008-02-26
US61/031,598 2008-02-26

Publications (1)

Publication Number Publication Date
WO2008151091A1 true WO2008151091A1 (en) 2008-12-11

Family

ID=42359480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/065435 WO2008151091A1 (en) 2007-06-05 2008-05-30 A deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method

Country Status (2)

Country Link
US (5) US8048121B2 (en)
WO (1) WO2008151091A1 (en)

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833250B2 (en) 2004-11-10 2010-11-16 Jackson Roger P Polyaxial bone screw with helically wound capture connection
US10258382B2 (en) 2007-01-18 2019-04-16 Roger P. Jackson Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord
US8292926B2 (en) 2005-09-30 2012-10-23 Jackson Roger P Dynamic stabilization connecting member with elastic core and outer sleeve
US20160242816A9 (en) * 2001-05-09 2016-08-25 Roger P. Jackson Dynamic spinal stabilization assembly with elastic bumpers and locking limited travel closure mechanisms
US7862587B2 (en) 2004-02-27 2011-01-04 Jackson Roger P Dynamic stabilization assemblies, tool set and method
US10729469B2 (en) 2006-01-09 2020-08-04 Roger P. Jackson Flexible spinal stabilization assembly with spacer having off-axis core member
US8353932B2 (en) 2005-09-30 2013-01-15 Jackson Roger P Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
US8876868B2 (en) 2002-09-06 2014-11-04 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
US7621918B2 (en) 2004-11-23 2009-11-24 Jackson Roger P Spinal fixation tool set and method
US7377923B2 (en) 2003-05-22 2008-05-27 Alphatec Spine, Inc. Variable angle spinal screw assembly
US7766915B2 (en) 2004-02-27 2010-08-03 Jackson Roger P Dynamic fixation assemblies with inner core and outer coil-like member
US7967850B2 (en) 2003-06-18 2011-06-28 Jackson Roger P Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US8366753B2 (en) 2003-06-18 2013-02-05 Jackson Roger P Polyaxial bone screw assembly with fixed retaining structure
US8092500B2 (en) 2007-05-01 2012-01-10 Jackson Roger P Dynamic stabilization connecting member with floating core, compression spacer and over-mold
US7776067B2 (en) 2005-05-27 2010-08-17 Jackson Roger P Polyaxial bone screw with shank articulation pressure insert and method
US8926670B2 (en) 2003-06-18 2015-01-06 Roger P. Jackson Polyaxial bone screw assembly
US7179261B2 (en) 2003-12-16 2007-02-20 Depuy Spine, Inc. Percutaneous access devices and bone anchor assemblies
US7527638B2 (en) 2003-12-16 2009-05-05 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US8900270B2 (en) * 2004-02-17 2014-12-02 Gmedelaware 2 Llc Facet joint replacement instruments and methods
US8152810B2 (en) 2004-11-23 2012-04-10 Jackson Roger P Spinal fixation tool set and method
WO2005092218A1 (en) 2004-02-27 2005-10-06 Jackson Roger P Orthopedic implant rod reduction tool set and method
US7160300B2 (en) 2004-02-27 2007-01-09 Jackson Roger P Orthopedic implant rod reduction tool set and method
US11241261B2 (en) 2005-09-30 2022-02-08 Roger P Jackson Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure
US7651502B2 (en) 2004-09-24 2010-01-26 Jackson Roger P Spinal fixation tool set and method for rod reduction and fastener insertion
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
US8444681B2 (en) 2009-06-15 2013-05-21 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US9980753B2 (en) 2009-06-15 2018-05-29 Roger P Jackson pivotal anchor with snap-in-place insert having rotation blocking extensions
US8556938B2 (en) 2009-06-15 2013-10-15 Roger P. Jackson Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit
US9216041B2 (en) 2009-06-15 2015-12-22 Roger P. Jackson Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts
US9393047B2 (en) 2009-06-15 2016-07-19 Roger P. Jackson Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
US9168069B2 (en) 2009-06-15 2015-10-27 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
WO2006057837A1 (en) 2004-11-23 2006-06-01 Jackson Roger P Spinal fixation tool attachment structure
US7901437B2 (en) 2007-01-26 2011-03-08 Jackson Roger P Dynamic stabilization member with molded connection
US8105368B2 (en) 2005-09-30 2012-01-31 Jackson Roger P Dynamic stabilization connecting member with slitted core and outer sleeve
US20080140076A1 (en) * 2005-09-30 2008-06-12 Jackson Roger P Dynamic stabilization connecting member with slitted segment and surrounding external elastomer
CA2670988C (en) 2006-12-08 2014-03-25 Roger P. Jackson Tool system for dynamic spinal implants
US8366745B2 (en) 2007-05-01 2013-02-05 Jackson Roger P Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US8475498B2 (en) 2007-01-18 2013-07-02 Roger P. Jackson Dynamic stabilization connecting member with cord connection
US8012177B2 (en) 2007-02-12 2011-09-06 Jackson Roger P Dynamic stabilization assembly with frusto-conical connection
US10383660B2 (en) 2007-05-01 2019-08-20 Roger P. Jackson Soft stabilization assemblies with pretensioned cords
US7985243B2 (en) * 2007-06-05 2011-07-26 Spartek Medical, Inc. Deflection rod system with mount for a dynamic stabilization and motion preservation spinal implantation system and method
US7635380B2 (en) 2007-06-05 2009-12-22 Spartek Medical, Inc. Bone anchor with a compressor element for receiving a rod for a dynamic stabilization and motion preservation spinal implantation system and method
US20090105756A1 (en) 2007-10-23 2009-04-23 Marc Richelsoph Spinal implant
US9060813B1 (en) 2008-02-29 2015-06-23 Nuvasive, Inc. Surgical fixation system and related methods
US8303631B2 (en) * 2008-06-20 2012-11-06 Neil Duggal Systems and methods for posterior dynamic stabilization
JP2012529969A (en) 2008-08-01 2012-11-29 ロジャー・ピー・ジャクソン Longitudinal connecting member with tensioning cord with sleeve
WO2010028070A1 (en) * 2008-09-02 2010-03-11 Life Spine, Inc. Peek spinal mesh and peek spinal mesh applicator
US9603629B2 (en) 2008-09-09 2017-03-28 Intelligent Implant Systems Llc Polyaxial screw assembly
GB0822507D0 (en) 2008-12-10 2009-01-14 Karnezis Ioannis Surgical device for correction of spinal deformities
US9351767B2 (en) * 2009-03-24 2016-05-31 Life Spine, Inc. Supplementary spinal fixation/stabilization apparatus with dynamic inter-vertebral connection
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
US11229457B2 (en) 2009-06-15 2022-01-25 Roger P. Jackson Pivotal bone anchor assembly with insert tool deployment
EP2757988A4 (en) 2009-06-15 2015-08-19 Jackson Roger P Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
US8876869B1 (en) * 2009-06-19 2014-11-04 Nuvasive, Inc. Polyaxial bone screw assembly
WO2011066231A1 (en) * 2009-11-25 2011-06-03 Seaspine, Inc. Hybrid rod constructs for spinal applications
CN102695465A (en) 2009-12-02 2012-09-26 斯帕泰克医疗股份有限公司 Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US9827013B2 (en) 2009-12-08 2017-11-28 Concept Spine Ltd. Surgical device for correction of spinal deformities
US8617216B2 (en) * 2010-04-05 2013-12-31 David L. Brumfield Fully-adjustable bone fixation device
DE102010016854A1 (en) * 2010-05-10 2011-11-10 Ulrich Gmbh & Co. Kg Retaining device for vertebral bodies of the spine
US9113960B2 (en) * 2010-06-08 2015-08-25 Globus Medical, Inc. Conforming bone stabilization receiver
JP2013540468A (en) 2010-09-08 2013-11-07 ロジャー・ピー・ジャクソン Dynamic fixing member having an elastic part and an inelastic part
JP2013545527A (en) 2010-11-02 2013-12-26 ロジャー・ピー・ジャクソン Multi-axis bone anchor with pop-on shank and pivotable retainer
US9387013B1 (en) 2011-03-01 2016-07-12 Nuvasive, Inc. Posterior cervical fixation system
US8337530B2 (en) * 2011-03-09 2012-12-25 Zimmer Spine, Inc. Polyaxial pedicle screw with increased angulation
WO2012128825A1 (en) 2011-03-24 2012-09-27 Jackson Roger P Polyaxial bone anchor with compound articulation and pop-on shank
WO2012177412A2 (en) 2011-06-07 2012-12-27 Brigham Young University Serpentine spinal stability device and associated methods
WO2013106217A1 (en) 2012-01-10 2013-07-18 Jackson, Roger, P. Multi-start closures for open implants
US8430916B1 (en) 2012-02-07 2013-04-30 Spartek Medical, Inc. Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors
US10687860B2 (en) * 2012-04-24 2020-06-23 Retrospine Pty Ltd Segmental correction of lumbar lordosis
US20150142058A1 (en) * 2012-06-18 2015-05-21 Bruce Francis Hodgson Method and apparatus for the treatment of scoliosis
US10327818B2 (en) 2012-06-18 2019-06-25 Bruce Francis Hodgson Method and apparatus for the treatment of scoliosis
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US9510872B2 (en) * 2013-03-15 2016-12-06 Jcbd, Llc Spinal stabilization system
WO2014140831A2 (en) 2013-03-15 2014-09-18 Biomet C.V. Polyaxial pivot housing for external fixation system
US9044273B2 (en) 2013-10-07 2015-06-02 Intelligent Implant Systems, Llc Polyaxial plate rod system and surgical procedure
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
US9642651B2 (en) 2014-06-12 2017-05-09 Brigham Young University Inverted serpentine spinal stability device and associated methods
US10149702B2 (en) 2015-01-12 2018-12-11 Imds Llc Polyaxial screw and rod system
CN108601610B (en) * 2015-10-01 2021-06-29 钜旺生技股份有限公司 Spinal column protection device
US11419639B2 (en) 2017-03-30 2022-08-23 K2M, Inc. Modular offset screw
EP3600095B1 (en) 2017-03-30 2023-03-15 K2M, Inc. Bone anchor apparatus
WO2018183489A1 (en) 2017-03-30 2018-10-04 K2M, Inc. Modular screw
CN109009380B (en) * 2018-06-26 2021-03-02 黄振强 Spine posterior multi-point fixing device
US11357642B2 (en) 2020-05-08 2022-06-14 Warsaw Orthopedic, Inc. Spinal implant system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040143264A1 (en) * 2002-08-23 2004-07-22 Mcafee Paul C. Metal-backed UHMWPE rod sleeve system preserving spinal motion
US20050240265A1 (en) * 2004-04-22 2005-10-27 Kuiper Mark K Crossbar spinal prosthesis having a modular design and related implantation methods

Family Cites Families (548)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB780652A (en) 1954-04-30 1957-08-07 Zimmer Orthopaedic Ltd Improvements in or relating to apparatus for use in spinal fixation
US4065817A (en) 1975-04-22 1978-01-03 Per Ingvar Branemark Bone prosthesis and method of forming a bone joint
GB1551706A (en) 1975-04-28 1979-08-30 Downs Surgical Ltd Surgical implant
DE2649042B1 (en) 1976-10-28 1978-01-05 Ulrich Max Bernhard Corrective implant for anterior derotation spondylodesis and device for adjusting the corrective implant
US4274401A (en) 1978-12-08 1981-06-23 Miskew Don B W Apparatus for correcting spinal deformities and method for using
CH639264A5 (en) 1979-09-11 1983-11-15 Synthes Ag Instrument used for the treatment of vertebral fractures and scoliosis
DE10237531A1 (en) * 2002-08-16 2004-02-26 Tutogen Medical Gmbh implant
US4411259A (en) 1980-02-04 1983-10-25 Drummond Denis S Apparatus for engaging a hook assembly to a spinal column
US4409968A (en) 1980-02-04 1983-10-18 Drummond Denis S Method and apparatus for engaging a hook assembly to a spinal column
PL127121B1 (en) 1980-07-30 1983-09-30 Wyzsza Szkola Inzynierska Surgical strut for treating spinal affections
US4347845A (en) 1981-03-23 1982-09-07 Mayfield Jack K Hook inserter device
US4567885A (en) 1981-11-03 1986-02-04 Androphy Gary W Triplanar knee resection system
US4422451A (en) 1982-03-22 1983-12-27 Ali Kalamchi Spinal compression and distraction instrumentation
US4479491A (en) 1982-07-26 1984-10-30 Martin Felix M Intervertebral stabilization implant
DE3306657C2 (en) 1983-02-25 1986-12-11 Fa. Heinrich C. Ulrich, 7900 Ulm Spine correction implant with a distraction rod
FR2545350B1 (en) 1983-05-04 1985-08-23 Cotrel Yves DEVICE FOR SHRINKAGE OF THE RACHIS
US4611580A (en) 1983-11-23 1986-09-16 Henry Ford Hospital Intervertebral body stabilization
US4696290A (en) 1983-12-16 1987-09-29 Acromed Corporation Apparatus for straightening spinal columns
US4611581A (en) 1983-12-16 1986-09-16 Acromed Corporation Apparatus for straightening spinal columns
US4611582A (en) 1983-12-27 1986-09-16 Wisconsin Alumni Research Foundation Vertebral clamp
GB2173104B (en) 1984-02-28 1987-11-25 Peter John Webb Spinal fixation apparatus
US4604995A (en) 1984-03-30 1986-08-12 Stephens David C Spinal stabilizer
CA1227902A (en) 1984-04-02 1987-10-13 Raymond G. Tronzo Fenestrated hip screw and method of augmented internal fixation
US4573454A (en) 1984-05-17 1986-03-04 Hoffman Gregory A Spinal fixation apparatus
US4655199A (en) 1985-03-29 1987-04-07 Acromed Corporation Spinal column straightening apparatus
US4743260A (en) 1985-06-10 1988-05-10 Burton Charles V Method for a flexible stabilization system for a vertebral column
US4653481A (en) 1985-07-24 1987-03-31 Howland Robert S Advanced spine fixation system and method
US4773402A (en) 1985-09-13 1988-09-27 Isola Implants, Inc. Dorsal transacral surgical implant
US4648388B1 (en) 1985-11-01 1995-10-31 Acromed Corp Apparatus and method for maintaining vertebrae in a desired relationship
US4719905B1 (en) 1985-11-01 1995-10-31 Acromed Corp Apparatus and method for maintaining vertebrae in a desired relationship
DE3614101C1 (en) 1986-04-25 1987-10-22 Juergen Prof Dr Med Harms Pedicle screw
US4805602A (en) 1986-11-03 1989-02-21 Danninger Medical Technology Transpedicular screw and rod system
DE3639810C2 (en) 1986-11-21 1998-04-09 Heinrich Ulrich Implant for spine correction and / or stabilization
FR2612070B1 (en) 1987-03-12 1992-09-18 Privat Jean Marie POSTERIOR SPINAL OSTEOSYNTHESIS DEVICE
FR2615095B1 (en) 1987-05-15 1989-08-18 Fabrication Materiel Orthopedi OSTEOSYNTHESIS INSTRUMENTATION FOR THE CORRECTION OF LUMBAR SCOLIOSES BY POSTERIOR PATHWAY
DE3800052A1 (en) 1987-07-08 1989-07-13 Harms Juergen POSITIONING SCREW
US4913134A (en) 1987-07-24 1990-04-03 Biotechnology, Inc. Spinal fixation system
US4887595A (en) 1987-07-29 1989-12-19 Acromed Corporation Surgically implantable device for spinal columns
CH683963A5 (en) 1988-06-10 1994-06-30 Synthes Ag Internal fixation.
US4950269A (en) 1988-06-13 1990-08-21 Acromed Corporation Spinal column fixation device
FR2633177B1 (en) 1988-06-24 1991-03-08 Fabrication Materiel Orthopedi IMPLANT FOR A SPINAL OSTEOSYNTHESIS DEVICE, ESPECIALLY IN TRAUMATOLOGY
US5112332A (en) 1988-12-21 1992-05-12 Zimmer, Inc. Method of performing spinal surgery
US4955885A (en) 1988-12-21 1990-09-11 Zimmer, Inc. Surgical slider instrument and method of using instrument
GB2254394B (en) 1988-12-21 1993-03-17 Bristol Myers Squibb Co Coupler assembly
US5074864A (en) 1988-12-21 1991-12-24 Zimmer, Inc. Clamp assembly for use in a spinal system
US5201734A (en) 1988-12-21 1993-04-13 Zimmer, Inc. Spinal locking sleeve assembly
US5147359A (en) 1988-12-21 1992-09-15 Zimmer, Inc. Spinal hook body
US5116334A (en) 1988-12-21 1992-05-26 Zimmer, Inc. Posterior spinal system and method
USRE36221E (en) 1989-02-03 1999-06-01 Breard; Francis Henri Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
FR2642645B1 (en) 1989-02-03 1992-08-14 Breard Francis FLEXIBLE INTERVERTEBRAL STABILIZER AND METHOD AND APPARATUS FOR CONTROLLING ITS VOLTAGE BEFORE PLACEMENT ON THE RACHIS
US5024213A (en) 1989-02-08 1991-06-18 Acromed Corporation Connector for a corrective device
US5084049A (en) 1989-02-08 1992-01-28 Acromed Corporation Transverse connector for spinal column corrective devices
FR2642643B1 (en) 1989-02-09 1991-05-10 Vignaud Jean Louis SPINAL INSTRUMENTATION FOR UNIVERSAL PEDICULAR FIXATION WITH MICROMETRIC ADJUSTMENT DIAPASON SCREW
US4987892A (en) 1989-04-04 1991-01-29 Krag Martin H Spinal fixation device
FR2645732B1 (en) 1989-04-13 1997-01-03 Cotrel Yves VERTEBRAL IMPLANT FOR OSTEOSYNTHESIS DEVICE
DE3923996A1 (en) 1989-07-20 1991-01-31 Lutz Biedermann RECORDING PART FOR JOINTLY CONNECTING TO A SCREW FOR MAKING A PEDICLE SCREW
US5261913A (en) 1989-07-26 1993-11-16 J.B.S. Limited Company Device for straightening, securing, compressing and elongating the spinal column
US5344422A (en) 1989-10-30 1994-09-06 Synthes (U.S.A.) Pedicular screw clamp
CA2035348C (en) 1990-02-08 2000-05-16 Jean-Louis Vignaud Adjustable fastening device with spinal osteosynthesis rods
FR2659225B1 (en) 1990-03-08 1995-09-08 Sofamor TRANSVERSE FIXING DEVICE FOR PROVIDING A RIGID CROSS-LINK BETWEEN TWO RODS OF A SPINAL OSTEOSYNTHESIS SYSTEM.
US5030220A (en) 1990-03-29 1991-07-09 Advanced Spine Fixation Systems Incorporated Spine fixation system
US5360431A (en) 1990-04-26 1994-11-01 Cross Medical Products Transpedicular screw system and method of use
US5290289A (en) 1990-05-22 1994-03-01 Sanders Albert E Nitinol spinal instrumentation and method for surgically treating scoliosis
US5102412A (en) 1990-06-19 1992-04-07 Chaim Rogozinski System for instrumentation of the spine in the treatment of spinal deformities
US5129900B1 (en) 1990-07-24 1998-12-29 Acromed Corp Spinal column retaining method and apparatus
CH681853A5 (en) 1990-08-21 1993-06-15 Synthes Ag
FR2666981B1 (en) 1990-09-21 1993-06-25 Commarmond Jacques SYNTHETIC LIGAMENT VERTEBRAL.
US5300073A (en) 1990-10-05 1994-04-05 Salut, Ltd. Sacral implant system
US5127912A (en) 1990-10-05 1992-07-07 R. Charles Ray Sacral implant system
US6520990B1 (en) 1990-10-05 2003-02-18 Sdgi Holdings, Inc. Lateral fixation plates for a spinal system
CH685850A5 (en) 1990-11-26 1995-10-31 Synthes Ag anchoring device
US5113685A (en) 1991-01-28 1992-05-19 Acromed Corporation Apparatus for contouring spine plates and/or rods
FR2672202B1 (en) 1991-02-05 1993-07-30 Safir BONE SURGICAL IMPLANT, ESPECIALLY FOR INTERVERTEBRAL STABILIZER.
CH683024A5 (en) 1991-04-16 1993-12-31 Synthes Ag Connecting means for connecting a first adjustable with a second construction element, in particular of tubes or rods of a fixation device.
FR2676911B1 (en) 1991-05-30 1998-03-06 Psi Ste Civile Particuliere INTERVERTEBRAL STABILIZATION DEVICE WITH SHOCK ABSORBERS.
US5261911A (en) 1991-06-18 1993-11-16 Allen Carl Anterolateral spinal fixation system
FR2680461B1 (en) 1991-08-19 1993-11-26 Fabrication Mat Orthopedique IMPLANT FOR OSTEOSYNTHESIS DEVICE, ESPECIALLY OF THE RACHIS, AND CORRESPONDING DEVICE FOR ITS PLACEMENT.
US5257993A (en) 1991-10-04 1993-11-02 Acromed Corporation Top-entry rod retainer
NL9200288A (en) 1992-02-17 1993-09-16 Acromed Bv DEVICE FOR FIXING AT LEAST A PART OF THE CERVICAL AND / OR THORACAL SPIRIT COLUMN.
US5360429A (en) 1992-02-20 1994-11-01 Jbs Societe Anonyme Device for straightening, fixing, compressing, and elongating cervical vertebrae
DE9202745U1 (en) 1992-03-02 1992-04-30 Howmedica Gmbh, 2314 Schoenkirchen, De
US5171279A (en) 1992-03-17 1992-12-15 Danek Medical Method for subcutaneous suprafascial pedicular internal fixation
DE59301618D1 (en) 1992-06-04 1996-03-28 Synthes Ag Osteosynthetic fastener
FR2692952B1 (en) * 1992-06-25 1996-04-05 Psi IMPROVED SHOCK ABSORBER WITH MOVEMENT LIMIT.
EP0599847B1 (en) * 1992-06-25 1997-04-02 Synthes AG, Chur Osteosynthetic fixation device
US5281222A (en) 1992-06-30 1994-01-25 Zimmer, Inc. Spinal implant system
US5498264A (en) 1992-07-21 1996-03-12 Synthes (U.S.A.) Clamp connection for connecting two construction components for a setting device, particularly an osteosynthetic setting device
US5397363A (en) 1992-08-11 1995-03-14 Gelbard; Steven D. Spinal stabilization implant system
ES2099326T3 (en) 1992-08-12 1997-05-16 Synthes Ag RAQUIS FIXING ELEMENT.
GB9217578D0 (en) 1992-08-19 1992-09-30 Surgicarft Ltd Surgical implants,etc
US5382248A (en) 1992-09-10 1995-01-17 H. D. Medical, Inc. System and method for stabilizing bone segments
ZA937672B (en) 1992-10-22 1994-05-16 Danek Medical Inc Spinal rod transverse connector for supporting vertebral fixation elements
FR2697742B1 (en) 1992-11-06 1994-12-16 Biomat Osteosynthesis device for spinal consolidation.
US5562735A (en) 1992-11-09 1996-10-08 Hospital For Joint Diseases Spinal stabilization system and improved method
US5702395A (en) 1992-11-10 1997-12-30 Sofamor S.N.C. Spine osteosynthesis instrumentation for an anterior approach
DE69330909T2 (en) 1992-11-12 2002-06-20 Neville Alleyne HEART PROTECTION DEVICE
US5611354A (en) * 1992-11-12 1997-03-18 Alleyne; Neville Cardiac protection device
DE4243951C2 (en) 1992-12-23 1997-07-03 Plus Endoprothetik Ag Device for stiffening a spinal column section consisting of at least two vertebrae
CA2103200A1 (en) 1992-12-28 1994-06-29 Robert S. Howland Cervical spine rod fixation system
US5947965A (en) 1992-12-31 1999-09-07 Bryan; Donald W. Spinal fixation apparatus and method
US5527314A (en) 1993-01-04 1996-06-18 Danek Medical, Inc. Spinal fixation system
US5282801A (en) 1993-02-17 1994-02-01 Danek Medical, Inc. Top tightening clamp assembly for a spinal fixation system
US5549607A (en) 1993-02-19 1996-08-27 Alphatec Manufacturing, Inc, Apparatus for spinal fixation system
DE4307576C1 (en) 1993-03-10 1994-04-21 Biedermann Motech Gmbh Bone screw esp. for spinal column correction - has U=shaped holder section for receiving straight or bent rod
US5415661A (en) 1993-03-24 1995-05-16 University Of Miami Implantable spinal assist device
FR2704133B1 (en) 1993-04-19 1995-07-13 Stryker Corp Implant for osteosynthesis device in particular of the spine.
FR2704134B1 (en) 1993-04-20 1998-08-28 Stryker Corp Assembly piece for osteosynthesis device.
WO1994026190A1 (en) 1993-05-11 1994-11-24 Synthes Ag Chur Osteo-synthetic securing component and manipulation aid therefor
FR2705226B1 (en) 1993-05-17 1995-07-07 Tornier Sa Spine fixator to maintain a spine.
US6077262A (en) 1993-06-04 2000-06-20 Synthes (U.S.A.) Posterior spinal implant
DE4417629B4 (en) * 1993-06-24 2006-03-16 SDGI Holdings, Inc., Wilmington Implant for the replacement of vertebral bodies
US5584831A (en) 1993-07-09 1996-12-17 September 28, Inc. Spinal fixation device and method
US5437670A (en) 1993-08-19 1995-08-01 Danek Medical, Inc. Attachment plate for top-tightening clamp assembly in a spinal fixation system
FR2709246B1 (en) 1993-08-27 1995-09-29 Martin Jean Raymond Dynamic implanted spinal orthosis.
WO1995010238A1 (en) 1993-10-08 1995-04-20 Chaim Rogozinski Spinal treatment apparatus and method including multi-directional attachment member
CA2150797C (en) 1993-10-08 2011-07-05 Chaim Rogozinski Spinal treatment and long bone fixation apparatus and method
US5380326A (en) 1993-11-12 1995-01-10 Lin; Chih-I Clamping device for vertebral locking rod
FR2712481B1 (en) 1993-11-18 1996-01-12 Graf Henry Improvements to flexible inter-vertebral stabilizers.
ATE262839T1 (en) 1993-11-19 2004-04-15 Cross Med Prod Inc MOUNTING ROD SEAT WITH SLIDING LOCK
US5466237A (en) 1993-11-19 1995-11-14 Cross Medical Products, Inc. Variable locking stabilizer anchor seat and screw
US5628740A (en) 1993-12-23 1997-05-13 Mullane; Thomas S. Articulating toggle bolt bone screw
US5611800A (en) 1994-02-15 1997-03-18 Alphatec Manufacturing, Inc. Spinal fixation system
EP0669109B1 (en) 1994-02-28 1999-05-26 Sulzer Orthopädie AG Stabilizer for adjacent vertebrae
US5601552A (en) 1994-03-18 1997-02-11 Sofamor, S.N.C. Fixing device for a rigid transverse connection device between rods of a spinal osteosynthesis system
WO1998008454A1 (en) 1994-05-25 1998-03-05 Jackson Roger P Apparatus and method for spinal fixation and correction of spinal deformities
FR2721501B1 (en) 1994-06-24 1996-08-23 Fairant Paulette Prostheses of the vertebral articular facets.
EP0689798B1 (en) 1994-06-30 2000-10-18 Sulzer Orthopädie AG Device for connecting vertebrae
DE4425357C2 (en) 1994-07-18 1996-07-04 Harms Juergen Anchoring element
US5961517A (en) 1994-07-18 1999-10-05 Biedermann; Lutz Anchoring member and adjustment tool therefor
US5681310A (en) 1994-07-20 1997-10-28 Yuan; Hansen A. Vertebral auxiliary fixation device having holding capability
FR2722980B1 (en) 1994-07-26 1996-09-27 Samani Jacques INTERTEPINOUS VERTEBRAL IMPLANT
US5681311A (en) 1994-09-15 1997-10-28 Smith & Nephew, Inc. Osteosynthesis apparatus
US5690633A (en) 1994-09-23 1997-11-25 Smith & Nephew Richards, Inc. Orthopedic fracture fixation device
US6004322A (en) 1994-10-25 1999-12-21 Sdgi Holdings, Inc. Modular pedicle screw system
FR2726171B1 (en) 1994-10-28 1997-01-24 Jbs Sa REHABITABLE CONNECTING SCREW DEVICE FOR BONE JOINT, IN PARTICULAR FOR STABILIZING AT LEAST TWO VERTEBRES
EP0797411B1 (en) 1994-11-16 2002-03-27 ADVANCED SPINE FIXATION SYSTEMS, Inc. Segmental lamina grapple hooks
US6344057B1 (en) 1994-11-22 2002-02-05 Sdgi Holdings, Inc. Adjustable vertebral body replacement
US5716358A (en) 1994-12-02 1998-02-10 Johnson & Johnson Professional, Inc. Directional bone fixation device
FR2729556B1 (en) 1995-01-23 1998-10-16 Sofamor SPINAL OSTEOSYNTHESIS DEVICE WITH MEDIAN HOOK AND VERTEBRAL ANCHOR SUPPORT
US5643260A (en) 1995-02-14 1997-07-01 Smith & Nephew, Inc. Orthopedic fixation system
DE19507141B4 (en) 1995-03-01 2004-12-23 Harms, Jürgen, Prof. Dr.med. Locking
AU2101495A (en) 1995-03-13 1996-10-02 Steven D. Gelbard Spinal stabilization implant system
DE19509332C1 (en) 1995-03-15 1996-08-14 Harms Juergen Anchoring element
US5591166A (en) * 1995-03-27 1997-01-07 Smith & Nephew Richards, Inc. Multi angle bone bolt
DE19511268A1 (en) 1995-03-27 1996-10-02 Johannes Franz Dr Med Hoenig Osteosynthesis plate for bone stabilising e.g. post-tumour resection etc.
US5688272A (en) 1995-03-30 1997-11-18 Danek Medical, Inc. Top-tightening transverse connector for a spinal fixation system
US5716355A (en) 1995-04-10 1998-02-10 Sofamor Danek Group, Inc. Transverse connection for spinal rods
US5545167A (en) 1995-04-11 1996-08-13 Lin; Chih-I Retaining mechanism of vertebral fixation rod
US5630816A (en) 1995-05-01 1997-05-20 Kambin; Parviz Double barrel spinal fixation system and method
FR2734147B1 (en) 1995-05-19 1997-10-10 Klein Jean Michel IMPLANTABLE OSTEOSYNTHESIS DEVICE
JP3689146B2 (en) 1995-05-30 2005-08-31 ペンタックス株式会社 Elements for screw fixation to bone
ES2203702T3 (en) 1995-06-06 2004-04-16 Sdgi Holdings, Inc. DEVICE FOR CONNECTING ADJACENT RODS IN SPINAL INSTRUMENTATION.
US5683391A (en) 1995-06-07 1997-11-04 Danek Medical, Inc. Anterior spinal instrumentation and method for implantation and revision
US5676665A (en) 1995-06-23 1997-10-14 Bryan; Donald W. Spinal fixation apparatus and method
US5609593A (en) 1995-07-13 1997-03-11 Fastenetix, Llc Advanced polyaxial locking hook and coupling element device for use with top loading rod fixation devices
US5702392A (en) 1995-09-25 1997-12-30 Wu; Shing-Sheng Coupling plate for spinal correction and a correction device of using the same
US6273914B1 (en) 1995-09-28 2001-08-14 Sparta, Inc. Spinal implant
US5683392A (en) 1995-10-17 1997-11-04 Wright Medical Technology, Inc. Multi-planar locking mechanism for bone fixation
US5697929A (en) 1995-10-18 1997-12-16 Cross Medical Products, Inc. Self-limiting set screw for use with spinal implant systems
US5693053A (en) 1995-10-19 1997-12-02 Sdgi Holdings, Inc. Variable angle and transitional linking member
US5688273A (en) 1995-10-23 1997-11-18 Fastenetix, Llc. Spinal implant apparatus having a single central rod and plow hooks
US5690632A (en) 1995-11-30 1997-11-25 Schwartz; Paul Steven Osteosynthesis screw fastener having angularly adjustable threads and methods of use therefor
US5667507A (en) 1995-12-04 1997-09-16 Fastenetix, Llc Compression locking variable length cross-link device for use with dual rod apparatus
AU1352097A (en) 1995-12-22 1997-07-17 Ohio Medical Instrument Company, Inc. Spinal fixation device with laterally attachable connectors
US5669910A (en) 1996-01-02 1997-09-23 Pioneer Laboratories, Inc. Crosslink for implantable rods
FR2743712B1 (en) 1996-01-19 1998-04-30 Louis Rene POSTERIOR VERTEBRAL OSTEOSYNTHESIS ANCHORING DEVICE
US5690629A (en) 1996-04-24 1997-11-25 Acromed Corporation Apparatus for maintaining vertebrae of a spinal column in a desired spatial relationship
US5702399A (en) 1996-05-16 1997-12-30 Pioneer Laboratories, Inc. Surgical cable screw connector
US5843082A (en) 1996-05-31 1998-12-01 Acromed Corporation Cervical spine stabilization method and system
US5713900A (en) 1996-05-31 1998-02-03 Acromed Corporation Apparatus for retaining bone portions in a desired spatial relationship
US5879350A (en) 1996-09-24 1999-03-09 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5885286A (en) 1996-09-24 1999-03-23 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5797911A (en) 1996-09-24 1998-08-25 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5725528A (en) 1997-02-12 1998-03-10 Third Millennium Engineering, Llc Modular polyaxial locking pedicle screw
US5800435A (en) 1996-10-09 1998-09-01 Techsys, Llc Modular spinal plate for use with modular polyaxial locking pedicle screws
US5735851A (en) 1996-10-09 1998-04-07 Third Millennium Engineering, Llc Modular polyaxial locking pedicle screw
US5964760A (en) 1996-10-18 1999-10-12 Spinal Innovations Spinal implant fixation assembly
US5863293A (en) 1996-10-18 1999-01-26 Spinal Innovations Spinal implant fixation assembly
US6171311B1 (en) 1996-10-18 2001-01-09 Marc Richelsoph Transverse connector
US6416515B1 (en) 1996-10-24 2002-07-09 Spinal Concepts, Inc. Spinal fixation system
US5728098A (en) 1996-11-07 1998-03-17 Sdgi Holdings, Inc. Multi-angle bone screw assembly using shape-memory technology
US5720751A (en) 1996-11-27 1998-02-24 Jackson; Roger P. Tools for use in seating spinal rods in open ended implants
US5782833A (en) 1996-12-20 1998-07-21 Haider; Thomas T. Pedicle screw system for osteosynthesis
US5683393A (en) 1996-12-23 1997-11-04 Third Millennium Engineering, Llc Bidirectional rod-hook locking mechanism
US5776135A (en) 1996-12-23 1998-07-07 Third Millennium Engineering, Llc Side mounted polyaxial pedicle screw
US6001098A (en) 1997-01-17 1999-12-14 Howmedica Gmbh Connecting element for spinal stabilizing system
ATE310455T1 (en) 1997-01-22 2005-12-15 Synthes Ag DEVICE FOR CONNECTING A LONG SUPPORT TO A PEDICLE SCREW
US5733286A (en) 1997-02-12 1998-03-31 Third Millennium Engineering, Llc Rod securing polyaxial locking screw and coupling element assembly
US5752957A (en) 1997-02-12 1998-05-19 Third Millennium Engineering, Llc Polyaxial mechanism for use with orthopaedic implant devices
US5713904A (en) 1997-02-12 1998-02-03 Third Millennium Engineering, Llc Selectively expandable sacral fixation screw-sleeve device
EP1905392B1 (en) 1997-03-07 2011-05-18 Kyphon SÀRL System for percutaneous bone and spinal stabilization, fixation and repair
FR2762986B1 (en) 1997-05-07 1999-09-24 Aesculap Jbs OSTEOSYNTHESIS SYSTEM FOR VERTEBRAL ARTHRODESIS
US5785711A (en) 1997-05-15 1998-07-28 Third Millennium Engineering, Llc Polyaxial pedicle screw having a through bar clamp locking mechanism
US5810819A (en) 1997-05-15 1998-09-22 Spinal Concepts, Inc. Polyaxial pedicle screw having a compression locking rod gripping mechanism
US6783526B1 (en) 1997-05-15 2004-08-31 Howmedica Osteonics Corp. Transverse rod connector clip
US6413257B1 (en) 1997-05-15 2002-07-02 Surgical Dynamics, Inc. Clamping connector for spinal fixation systems
US5989254A (en) 1997-05-20 1999-11-23 Katz; Akiva Raphael Pedicle screw assembly
IES970411A2 (en) 1997-06-03 1997-12-03 Tecos Holdings Inc Pluridirectional and modulable vertebral osteosynthesis device of small overall size
US5891145A (en) 1997-07-14 1999-04-06 Sdgi Holdings, Inc. Multi-axial screw
FR2770767B1 (en) 1997-11-10 2000-03-10 Dimso Sa IMPLANT FOR VERTEBRA
ES2226186T3 (en) 1997-11-29 2005-03-16 Surgicraft Limited SURGICAL IMPLANT AND SURGICAL FIXING SCREW.
EP0923908B1 (en) 1997-12-17 2003-04-23 Robert Lange Apparatus for stabilizing certain vertebrae of the spine
US5980523A (en) 1998-01-08 1999-11-09 Jackson; Roger Transverse connectors for spinal rods
EP0933065A1 (en) 1998-02-02 1999-08-04 Sulzer Orthopädie AG Pivotable attachment system for a bone screw
FR2774581B1 (en) 1998-02-10 2000-08-11 Dimso Sa INTEREPINOUS STABILIZER TO BE ATTACHED TO SPINOUS APOPHYSIS OF TWO VERTEBRES
US6010503A (en) 1998-04-03 2000-01-04 Spinal Innovations, Llc Locking mechanism
US6569164B1 (en) 1998-04-29 2003-05-27 Stryker Spine Spinal osteosynthesis system for anterior fixation
FR2778089B1 (en) 1998-04-30 2000-07-21 Dimso Sa SPINAL OSTEOSYNTHESIS SYSTEM WITH FLANGE AND LATCH
DE29808593U1 (en) 1998-05-13 1999-09-23 Howmedica Gmbh Device for connecting two spaced longitudinal rods of a spinal implant
US6113601A (en) 1998-06-12 2000-09-05 Bones Consulting, Llc Polyaxial pedicle screw having a loosely coupled locking cap
US6090111A (en) 1998-06-17 2000-07-18 Surgical Dynamics, Inc. Device for securing spinal rods
US6565565B1 (en) 1998-06-17 2003-05-20 Howmedica Osteonics Corp. Device for securing spinal rods
US5989251A (en) 1998-06-17 1999-11-23 Surgical Dynamics, Inc. Apparatus for spinal stabilization
FR2781663B1 (en) 1998-07-30 2000-10-13 Materiel Orthopedique En Abreg SPINAL OSTEOSYNTHESIS DEVICE
US6231575B1 (en) 1998-08-27 2001-05-15 Martin H. Krag Spinal column retainer
FR2783411B1 (en) 1998-09-18 2000-12-01 Eurosurgical POSTERIOR SPINAL OSTEOSYNTHESIS DEVICE
US5899904A (en) 1998-10-19 1999-05-04 Third Milennium Engineering, Llc Compression locking vertebral body screw, staple, and rod assembly
US5925047A (en) 1998-10-19 1999-07-20 Third Millennium Engineering, Llc Coupled rod, anterior vertebral body screw, and staple assembly
US5910142A (en) 1998-10-19 1999-06-08 Bones Consulting, Llc Polyaxial pedicle screw having a rod clamping split ferrule coupling element
US5947969A (en) 1998-10-19 1999-09-07 Third Millennium Engineering, Llc Rotatable locking vertebral body screw, staple and rod assembly
US6193720B1 (en) 1998-11-30 2001-02-27 Depuy Orthopaedics, Inc. Cervical spine stabilization method and system
US6033410A (en) 1999-01-04 2000-03-07 Bristol-Myers Squibb Company Orthopaedic instrumentation
US6050997A (en) 1999-01-25 2000-04-18 Mullane; Thomas S. Spinal fixation system
KR100324698B1 (en) 1999-01-30 2002-02-27 구자교 Spine fixing device
US6302888B1 (en) 1999-03-19 2001-10-16 Interpore Cross International Locking dovetail and self-limiting set screw assembly for a spinal stabilization member
DE60032225T2 (en) 1999-03-30 2007-09-13 Howmedica Osteonics Corp. APPARATUS FOR STABILIZING THE SPINE
US6183473B1 (en) 1999-04-21 2001-02-06 Richard B Ashman Variable angle connection assembly for a spinal implant system
US6299613B1 (en) 1999-04-23 2001-10-09 Sdgi Holdings, Inc. Method for the correction of spinal deformities through vertebral body tethering without fusion
US6210413B1 (en) 1999-04-23 2001-04-03 Sdgi Holdings, Inc. Connecting apparatus using shape-memory technology
US6254602B1 (en) 1999-05-28 2001-07-03 Sdgi Holdings, Inc. Advanced coupling device using shape-memory technology
US6273888B1 (en) 1999-05-28 2001-08-14 Sdgi Holdings, Inc. Device and method for selectively preventing the locking of a shape-memory alloy coupling system
US6547789B1 (en) 1999-07-02 2003-04-15 Sulzer Orthopedics Ltd. Holding apparatus for the spinal column
FR2796546B1 (en) * 1999-07-23 2001-11-30 Eurosurgical POLYAXIAL CONNECTOR FOR SPINAL IMPLANT
DE19936286C2 (en) 1999-08-02 2002-01-17 Lutz Biedermann bone screw
EP1204382B2 (en) 1999-08-14 2006-09-27 Aesculap AG & Co. KG Bone screw
US7220281B2 (en) 1999-08-18 2007-05-22 Intrinsic Therapeutics, Inc. Implant for reinforcing and annulus fibrosis
US7553329B2 (en) 1999-08-18 2009-06-30 Intrinsic Therapeutics, Inc. Stabilized intervertebral disc barrier
US6280442B1 (en) 1999-09-01 2001-08-28 Sdgi Holdings, Inc. Multi-axial bone screw assembly
DE19944120B4 (en) 1999-09-15 2008-08-28 Ulrich Gmbh & Co. Kg Bone screw for variable angle connection with a side member
WO2001022893A1 (en) 1999-09-27 2001-04-05 Blackstone Medical, Inc. A surgical screw system and related methods
US6554834B1 (en) 1999-10-07 2003-04-29 Stryker Spine Slotted head pedicle screw assembly
US6217578B1 (en) 1999-10-19 2001-04-17 Stryker Spine S.A. Spinal cross connector
US6592625B2 (en) 1999-10-20 2003-07-15 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and spinal disc annulus stent
US6811567B2 (en) 1999-10-22 2004-11-02 Archus Orthopedics Inc. Facet arthroplasty devices and methods
US7674293B2 (en) 2004-04-22 2010-03-09 Facet Solutions, Inc. Crossbar spinal prosthesis having a modular design and related implantation methods
EP1223872B2 (en) 1999-10-22 2007-09-26 Archus Orthopedics Inc. Facet arthroplasty devices
US20050261770A1 (en) 2004-04-22 2005-11-24 Kuiper Mark K Crossbar spinal prosthesis having a modular design and related implantation methods
DE10005385A1 (en) 2000-02-07 2001-08-09 Ulrich Gmbh & Co Kg Pedicle screw
US6248106B1 (en) 2000-02-25 2001-06-19 Bret Ferree Cross-coupled vertebral stabilizers
US6293949B1 (en) 2000-03-01 2001-09-25 Sdgi Holdings, Inc. Superelastic spinal stabilization system and method
KR200200582Y1 (en) 2000-03-15 2000-10-16 최길운 Prosthesis for connecting bone
US6309391B1 (en) 2000-03-15 2001-10-30 Sdgi Holding, Inc. Multidirectional pivoting bone screw and fixation system
US6565566B1 (en) 2000-03-22 2003-05-20 Spinal Concepts, Inc. Sacral screw assembly and method
US6805695B2 (en) 2000-04-04 2004-10-19 Spinalabs, Llc Devices and methods for annular repair of intervertebral discs
JP2001309923A (en) 2000-04-28 2001-11-06 Robert Reed Shokai Co Ltd System supporting spinal rod and connection parts to be used therefor
US6645207B2 (en) 2000-05-08 2003-11-11 Robert A. Dixon Method and apparatus for dynamized spinal stabilization
US6749614B2 (en) 2000-06-23 2004-06-15 Vertelink Corporation Formable orthopedic fixation system with cross linking
US6482207B1 (en) 2000-07-13 2002-11-19 Fastenetix, Llc Efficient assembling modular locking pedicle screw
EP1174092A3 (en) 2000-07-22 2003-03-26 Corin Spinal Systems Limited A pedicle attachment assembly
FR2812185B1 (en) 2000-07-25 2003-02-28 Spine Next Sa SEMI-RIGID CONNECTION PIECE FOR RACHIS STABILIZATION
US6626905B1 (en) 2000-08-02 2003-09-30 Sulzer Spine-Tech Inc. Posterior oblique lumbar arthrodesis
US6458131B1 (en) 2000-08-07 2002-10-01 Salut, Ltd. Apparatus and method for reducing spinal deformity
US20060025771A1 (en) 2000-08-23 2006-02-02 Jackson Roger P Helical reverse angle guide and advancement structure with break-off extensions
US7833250B2 (en) 2004-11-10 2010-11-16 Jackson Roger P Polyaxial bone screw with helically wound capture connection
US6554831B1 (en) 2000-09-01 2003-04-29 Hopital Sainte-Justine Mobile dynamic system for treating spinal disorder
US6485491B1 (en) 2000-09-15 2002-11-26 Sdgi Holdings, Inc. Posterior fixation system
US6755829B1 (en) 2000-09-22 2004-06-29 Depuy Acromed, Inc. Lock cap anchor assembly for orthopaedic fixation
US6620164B2 (en) 2000-09-22 2003-09-16 Showa Ika Kohgyo Co., Ltd. Rod for cervical vertebra and connecting system thereof
US6695845B2 (en) 2000-10-16 2004-02-24 Robert A Dixon Method and apparatus utilizing interference fit screw shanks for nonmetallic spinal stabilization
US6520962B1 (en) 2000-10-23 2003-02-18 Sdgi Holdings, Inc. Taper-locked adjustable connector
DE10055888C1 (en) 2000-11-10 2002-04-25 Biedermann Motech Gmbh Bone screw, has connector rod receiving part with unsymmetrically arranged end bores
US6656181B2 (en) 2000-11-22 2003-12-02 Robert A Dixon Method and device utilizing tapered screw shanks for spinal stabilization
US6726689B2 (en) 2002-09-06 2004-04-27 Roger P. Jackson Helical interlocking mating guide and advancement structure
US6565605B2 (en) 2000-12-13 2003-05-20 Medicinelodge, Inc. Multiple facet joint replacement
JP4471491B2 (en) 2000-12-27 2010-06-02 京セラ株式会社 Spine correction and fixation device
DE50100793D1 (en) 2000-12-27 2003-11-20 Biedermann Motech Gmbh Screw for connecting to a rod
US6488681B2 (en) 2001-01-05 2002-12-03 Stryker Spine S.A. Pedicle screw assembly
JP2004524887A (en) 2001-01-12 2004-08-19 デピュイ スパイン、インコーポレイテッド Multi-axis screw with improved fixation
US6451021B1 (en) 2001-02-15 2002-09-17 Third Millennium Engineering, Llc Polyaxial pedicle screw having a rotating locking element
DE10108965B4 (en) 2001-02-17 2006-02-23 DePuy Spine Sàrl bone screw
US7104991B2 (en) 2001-02-27 2006-09-12 Robert A Dixon Method and device for using extended interference fit screw shanks for spinal stabilization
US6652585B2 (en) 2001-02-28 2003-11-25 Sdgi Holdings, Inc. Flexible spine stabilization system
US6827743B2 (en) 2001-02-28 2004-12-07 Sdgi Holdings, Inc. Woven orthopedic implants
US7090698B2 (en) 2001-03-02 2006-08-15 Facet Solutions Method and apparatus for spine joint replacement
US7344539B2 (en) 2001-03-30 2008-03-18 Depuy Acromed, Inc. Intervertebral connection system
DE10116412C1 (en) 2001-04-02 2003-01-16 Ulrich Gmbh & Co Kg Implant to be inserted between the vertebral body of the spine
US6554832B2 (en) 2001-04-02 2003-04-29 Endius Incorporated Polyaxial transverse connector
ATE306855T1 (en) 2001-04-24 2005-11-15 Co Ligne Ag INSTRUMENTS FOR STABILIZING CERTAIN VERTEBRATES OF THE SPINE
TW524094U (en) * 2001-05-02 2003-03-11 Jung-Chiuan Ye Retaining and recovering apparatus for spines
US7862587B2 (en) 2004-02-27 2011-01-04 Jackson Roger P Dynamic stabilization assemblies, tool set and method
US6478797B1 (en) 2001-05-16 2002-11-12 Kamaljit S. Paul Spinal fixation device
US6475219B1 (en) 2001-06-07 2002-11-05 Alexis P. Shelokov Anterior vertebral protection method and device
GB0114783D0 (en) * 2001-06-16 2001-08-08 Sengupta Dilip K A assembly for the stabilisation of vertebral bodies of the spine
US20030004511A1 (en) 2001-06-27 2003-01-02 Ferree Bret A. Polyaxial pedicle screw system
FR2827498B1 (en) 2001-07-18 2004-05-14 Frederic Fortin FLEXIBLE VERTEBRAL CONNECTION DEVICE CONSISTING OF PALLIANT ELEMENTS OF THE RACHIS
FR2827499B1 (en) 2001-07-20 2004-05-07 Henry Graf INTERVERTEBRAL LINK DEVICE
JP4755782B2 (en) 2001-08-01 2011-08-24 昭和医科工業株式会社 Bone implant implant
FR2829014B1 (en) 2001-09-03 2005-04-08 Stryker Spine SPINAL OSTEOSYNTHESIS SYSTEM COMPRISING A SUPPORT SKATE
US6899714B2 (en) 2001-10-03 2005-05-31 Vaughan Medical Technologies, Inc. Vertebral stabilization assembly and method
US6652526B1 (en) 2001-10-05 2003-11-25 Ruben P. Arafiles Spinal stabilization rod fastener
GB2382304A (en) 2001-10-10 2003-05-28 Dilip Kumar Sengupta An assembly for soft stabilisation of vertebral bodies of the spine
US6623485B2 (en) 2001-10-17 2003-09-23 Hammill Manufacturing Company Split ring bone screw for a spinal fixation system
US6887242B2 (en) 2001-10-17 2005-05-03 Ortho Innovations, Llc Split ring bone screw for a spinal fixation system
US6783527B2 (en) 2001-10-30 2004-08-31 Sdgi Holdings, Inc. Flexible spinal stabilization system and method
FR2832620B1 (en) 2001-11-27 2004-01-23 Eurosurgical CONNECTOR FOR VERTEBRAL ANCHORAGE SYSTEM
US6572653B1 (en) 2001-12-07 2003-06-03 Rush E. Simonson Vertebral implant adapted for posterior insertion
FR2833151B1 (en) 2001-12-12 2004-09-17 Ldr Medical BONE ANCHORING IMPLANT WITH POLYAXIAL HEAD
FR2835173B1 (en) 2002-01-28 2004-11-05 Biomet Merck France INTERTEPINEOUS VERTEBRAL IMPLANT
US6932817B2 (en) 2002-02-01 2005-08-23 Innovative Spinal Design Polyaxial modular skeletal hook
US7335201B2 (en) 2003-09-26 2008-02-26 Zimmer Spine, Inc. Polyaxial bone screw with torqueless fastening
US7678136B2 (en) 2002-02-04 2010-03-16 Spinal, Llc Spinal fixation assembly
US7163538B2 (en) * 2002-02-13 2007-01-16 Cross Medical Products, Inc. Posterior rod system
FR2836368B1 (en) 2002-02-25 2005-01-14 Spine Next Sa SEQUENTIAL LINK DEVICE
US7530992B2 (en) 2002-03-27 2009-05-12 Biedermann Motech Gmbh Bone anchoring device for stabilising bone segments and seat part of a bone anchoring device
DE10213855A1 (en) 2002-03-27 2003-10-16 Biedermann Motech Gmbh Bone anchoring device for stabilizing bone segments and receiving part of a bone anchoring device
US6966910B2 (en) 2002-04-05 2005-11-22 Stephen Ritland Dynamic fixation device and method of use
US7294128B2 (en) 2002-04-09 2007-11-13 Nas Medical Technologies, Inc. Bone fixation apparatus
US6740086B2 (en) * 2002-04-18 2004-05-25 Spinal Innovations, Llc Screw and rod fixation assembly and device
US7048736B2 (en) 2002-05-17 2006-05-23 Sdgi Holdings, Inc. Device for fixation of spinous processes
EP1509148B1 (en) 2002-05-21 2011-03-16 Warsaw Orthopedic, Inc. Vertebrae bone anchor and cable for coupling it to a rod
DE20207851U1 (en) 2002-05-21 2002-10-10 Metz Stavenhagen Peter Anchoring element for fastening a rod of a device for setting up a human or animal spine to a vertebral bone
ES2246036T3 (en) 2002-05-21 2006-02-01 Spinelab Ag ELASTIC SYSTEM FOR THE STABILIZATION OF THE VERTEBRAL COLUMN.
WO2003103506A2 (en) 2002-06-07 2003-12-18 Boehm Frank H Jr Cervical spine stabilizing system and method
US7060066B2 (en) 2002-06-28 2006-06-13 Mayo Foundation For Medical Education And Research Spinal fixation support device and methods of using
FR2842093B1 (en) * 2002-07-12 2005-04-15 Scient X BONE ANCHORING DEVICE WITH SPHERICAL JOINT
US20040015166A1 (en) 2002-07-22 2004-01-22 Gorek Josef E. System and method for stabilizing the spine by securing spine stabilization rods in crossed disposition
FR2842724B1 (en) 2002-07-23 2005-05-27 Spine Next Sa VERTEBRAL FASTENING SYSTEM
US7107091B2 (en) 2002-07-25 2006-09-12 Orthosoft Inc. Multiple bone tracking
DE10236691B4 (en) * 2002-08-09 2005-12-01 Biedermann Motech Gmbh Dynamic stabilization device for bones, in particular for vertebrae
US7306603B2 (en) 2002-08-21 2007-12-11 Innovative Spinal Technologies Device and method for percutaneous placement of lumbar pedicle screws and connecting rods
US20040049285A1 (en) 2002-09-09 2004-03-11 Brian Haas Duo-fixation prosthetic joints
FR2844180B1 (en) 2002-09-11 2005-08-05 Spinevision CONNECTING ELEMENT FOR THE DYNAMIC STABILIZATION OF A SPINAL FIXING SYSTEM AND SPINAL FASTENING SYSTEM COMPRISING SUCH A MEMBER
JP4047112B2 (en) 2002-09-12 2008-02-13 昭和医科工業株式会社 Rod part fixing structure of vertebra connecting member
FR2845587B1 (en) 2002-10-14 2005-01-21 Scient X DYNAMIC DEVICE FOR INTERVERTEBRAL CONNECTION WITH MULTIDIRECTIONALLY CONTROLLED DEBATMENT
EP3222231A1 (en) 2002-10-30 2017-09-27 Zimmer Spine, Inc. Spinal stabilization system insertion
US9539012B2 (en) 2002-10-30 2017-01-10 Zimmer Spine, Inc. Spinal stabilization systems with quick-connect sleeve assemblies for use in surgical procedures
US20040147928A1 (en) 2002-10-30 2004-07-29 Landry Michael E. Spinal stabilization system using flexible members
US20060095035A1 (en) 2004-11-03 2006-05-04 Jones Robert J Instruments and methods for reduction of vertebral bodies
FR2847152B1 (en) 2002-11-19 2005-02-18 Eurosurgical VERTEBRAL ANCHORING DEVICE AND ITS LOCKING DEVICE ON A POLY AXIAL SCREW
US20040111088A1 (en) 2002-12-06 2004-06-10 Picetti George D. Multi-rod bone attachment member
FR2848408B1 (en) 2002-12-17 2005-08-19 Vitatech DEVICE WITH ANTERIOR PLATE FOR MAINTAINING THE RACHIS
DE10260222B4 (en) * 2002-12-20 2008-01-03 Biedermann Motech Gmbh Tubular element for an implant and implant to be used in spine or bone surgery with such an element
US7101398B2 (en) 2002-12-31 2006-09-05 Depuy Acromed, Inc. Prosthetic facet joint ligament
US6843791B2 (en) 2003-01-10 2005-01-18 Depuy Acromed, Inc. Locking cap assembly for spinal fixation instrumentation
US7104992B2 (en) 2003-01-14 2006-09-12 Ebi, L.P. Spinal fixation system
US20040158247A1 (en) 2003-02-07 2004-08-12 Arthit Sitiso Polyaxial pedicle screw system
US7282064B2 (en) 2003-02-11 2007-10-16 Spinefrontier Lls Apparatus and method for connecting spinal vertebrae
US20040162560A1 (en) 2003-02-19 2004-08-19 Raynor Donald E. Implant device including threaded locking mechanism
JP4598760B2 (en) 2003-02-25 2010-12-15 リットランド、ステファン ADJUSTING ROD AND CONNECTOR DEVICE, AND ITS USING METHOD
IL155222A0 (en) 2003-04-03 2003-11-23 Hadasit Med Res Service An implant for treating idiopathic scoliosis and a method for using the same
US20060200128A1 (en) 2003-04-04 2006-09-07 Richard Mueller Bone anchor
US6964666B2 (en) 2003-04-09 2005-11-15 Jackson Roger P Polyaxial bone screw locking mechanism
US6716214B1 (en) 2003-06-18 2004-04-06 Roger P. Jackson Polyaxial bone screw with spline capture connection
US7473267B2 (en) 2003-04-25 2009-01-06 Warsaw Orthopedic, Inc. System and method for minimally invasive posterior fixation
US8652175B2 (en) 2003-05-02 2014-02-18 Rachiotek, Llc Surgical implant devices and systems including a sheath member
US7635379B2 (en) 2003-05-02 2009-12-22 Applied Spine Technologies, Inc. Pedicle screw assembly with bearing surfaces
US7713287B2 (en) 2003-05-02 2010-05-11 Applied Spine Technologies, Inc. Dynamic spine stabilizer
US20050182401A1 (en) 2003-05-02 2005-08-18 Timm Jens P. Systems and methods for spine stabilization including a dynamic junction
US20050177164A1 (en) 2003-05-02 2005-08-11 Carmen Walters Pedicle screw devices, systems and methods having a preloaded set screw
US20050171543A1 (en) 2003-05-02 2005-08-04 Timm Jens P. Spine stabilization systems and associated devices, assemblies and methods
US7615068B2 (en) 2003-05-02 2009-11-10 Applied Spine Technologies, Inc. Mounting mechanisms for pedicle screws and related assemblies
US7029475B2 (en) 2003-05-02 2006-04-18 Yale University Spinal stabilization method
WO2004098453A2 (en) 2003-05-06 2004-11-18 Triage Medical, Inc. Proximal anchors for bone fixation system
DE10320417A1 (en) 2003-05-07 2004-12-02 Biedermann Motech Gmbh Dynamic anchoring device and dynamic stabilization device for bones, in particular for vertebrae, with such an anchoring device
US20040230304A1 (en) 2003-05-14 2004-11-18 Archus Orthopedics Inc. Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces
US7377923B2 (en) 2003-05-22 2008-05-27 Alphatec Spine, Inc. Variable angle spinal screw assembly
US6986771B2 (en) 2003-05-23 2006-01-17 Globus Medical, Inc. Spine stabilization system
FR2855392B1 (en) 2003-05-28 2005-08-05 Spinevision CONNECTION DEVICE FOR SPINAL OSTESYNTHESIS
US7270665B2 (en) 2003-06-11 2007-09-18 Sdgi Holdings, Inc. Variable offset spinal fixation system
US8137386B2 (en) 2003-08-28 2012-03-20 Jackson Roger P Polyaxial bone screw apparatus
US8366753B2 (en) 2003-06-18 2013-02-05 Jackson Roger P Polyaxial bone screw assembly with fixed retaining structure
EP1653873B1 (en) 2003-06-27 2011-06-08 Médicréa Technologies Vertebral osteosynthesis equipment
US7309355B2 (en) 2003-06-27 2007-12-18 Depuy Mitek, Inc. Flexible tibial sheath
US7087057B2 (en) 2003-06-27 2006-08-08 Depuy Acromed, Inc. Polyaxial bone screw
US6945974B2 (en) 2003-07-07 2005-09-20 Aesculap Inc. Spinal stabilization implant and method of application
US8979900B2 (en) 2003-09-24 2015-03-17 DePuy Synthes Products, LLC Spinal stabilization device
US7815665B2 (en) 2003-09-24 2010-10-19 N Spine, Inc. Adjustable spinal stabilization system
US7875060B2 (en) 2003-09-24 2011-01-25 Spinefrontier, LLS Multi-axial screw with a spherical landing
US7763052B2 (en) 2003-12-05 2010-07-27 N Spine, Inc. Method and apparatus for flexible fixation of a spine
US7137985B2 (en) 2003-09-24 2006-11-21 N Spine, Inc. Marking and guidance method and system for flexible fixation of a spine
US20050203513A1 (en) 2003-09-24 2005-09-15 Tae-Ahn Jahng Spinal stabilization device
FR2860138A1 (en) 2003-09-26 2005-04-01 Stryker Spine ASSEMBLY AND METHOD OF FIXING BONES
US20050090822A1 (en) 2003-10-24 2005-04-28 Dipoto Gene Methods and apparatus for stabilizing the spine through an access device
WO2005034800A2 (en) 2003-10-03 2005-04-21 Acker David E Prosthetic spinal disc nucleus
US20050080415A1 (en) 2003-10-14 2005-04-14 Keyer Thomas R. Polyaxial bone anchor and method of spinal fixation
US7967826B2 (en) 2003-10-21 2011-06-28 Theken Spine, Llc Connector transfer tool for internal structure stabilization systems
US7588588B2 (en) 2003-10-21 2009-09-15 Innovative Spinal Technologies System and method for stabilizing of internal structures
US7588575B2 (en) 2003-10-21 2009-09-15 Innovative Spinal Technologies Extension for use with stabilization systems for internal structures
EP1694228B1 (en) 2003-10-23 2011-08-31 TRANS1, Inc. Spinal mobility preservation apparatus
US20050096652A1 (en) 2003-10-31 2005-05-05 Burton Charles V. Integral flexible spine stabilization device and method
DE50304374D1 (en) 2003-10-31 2006-09-07 Spinelab Ag Locking device for pedicle screws for fixing elastic rod elements
ES2287686T3 (en) 2003-11-07 2007-12-16 Impliant Ltd. VERTEBRAL PROTESIS.
US8632570B2 (en) * 2003-11-07 2014-01-21 Biedermann Technologies Gmbh & Co. Kg Stabilization device for bones comprising a spring element and manufacturing method for said spring element
US7083622B2 (en) 2003-11-10 2006-08-01 Simonson Peter M Artificial facet joint and method
US7862586B2 (en) 2003-11-25 2011-01-04 Life Spine, Inc. Spinal stabilization systems
US7553320B2 (en) 2003-12-10 2009-06-30 Warsaw Orthopedic, Inc. Method and apparatus for replacing the function of facet joints
US20050131406A1 (en) 2003-12-15 2005-06-16 Archus Orthopedics, Inc. Polyaxial adjustment of facet joint prostheses
US20050143737A1 (en) 2003-12-31 2005-06-30 John Pafford Dynamic spinal stabilization system
US7806914B2 (en) 2003-12-31 2010-10-05 Spine Wave, Inc. Dynamic spinal stabilization system
US7678137B2 (en) 2004-01-13 2010-03-16 Life Spine, Inc. Pedicle screw constructs for spine fixation systems
US7815664B2 (en) 2005-01-04 2010-10-19 Warsaw Orthopedic, Inc. Systems and methods for spinal stabilization with flexible elements
US8562649B2 (en) 2004-02-17 2013-10-22 Gmedelaware 2 Llc System and method for multiple level facet joint arthroplasty and fusion
US8152810B2 (en) 2004-11-23 2012-04-10 Jackson Roger P Spinal fixation tool set and method
US7862594B2 (en) 2004-02-27 2011-01-04 Custom Spine, Inc. Polyaxial pedicle screw assembly
US7819902B2 (en) * 2004-02-27 2010-10-26 Custom Spine, Inc. Medialised rod pedicle screw assembly
US7789896B2 (en) 2005-02-22 2010-09-07 Jackson Roger P Polyaxial bone screw assembly
DE102004010844A1 (en) 2004-03-05 2005-10-06 Biedermann Motech Gmbh Stabilizing device for the dynamic stabilization of vertebrae or bones and rod-shaped element for such a stabilization device
US7214227B2 (en) 2004-03-22 2007-05-08 Innovative Spinal Technologies Closure member for a medical implant device
US7717939B2 (en) 2004-03-31 2010-05-18 Depuy Spine, Inc. Rod attachment for head to head cross connector
US7503924B2 (en) 2004-04-08 2009-03-17 Globus Medical, Inc. Polyaxial screw
US8475495B2 (en) 2004-04-08 2013-07-02 Globus Medical Polyaxial screw
US20050228382A1 (en) 2004-04-12 2005-10-13 Marc Richelsoph Screw and rod fixation assembly and device
US7648520B2 (en) 2004-04-16 2010-01-19 Kyphon Sarl Pedicle screw assembly
US7833256B2 (en) 2004-04-16 2010-11-16 Biedermann Motech Gmbh Elastic element for the use in a stabilization device for bones and vertebrae and method for the manufacture of such elastic element
US7811311B2 (en) 2004-12-30 2010-10-12 Warsaw Orthopedic, Inc. Screw with deployable interlaced dual rods
US7051451B2 (en) 2004-04-22 2006-05-30 Archus Orthopedics, Inc. Facet joint prosthesis measurement and implant tools
US20050267470A1 (en) 2004-05-13 2005-12-01 Mcbride Duncan Q Spinal stabilization system to flexibly connect vertebrae
FR2870711B1 (en) 2004-05-26 2006-09-01 Sdgi Holdings Inc DEVICE FOR CONNECTING THE ROD OF A SPINAL OSTEOSYNTHESIS DEVICE TO A VERTEBRA, AND A OSTEOSYNTHESIS DEVICE COMPRISING SAME
US7935135B2 (en) 2004-06-09 2011-05-03 Zimmer Spine, Inc. Spinal fixation device
US8858599B2 (en) 2004-06-09 2014-10-14 Warsaw Orthopedic, Inc. Systems and methods for flexible spinal stabilization
US7559943B2 (en) 2004-06-09 2009-07-14 Zimmer Spine, Inc. Spinal fixation device with internal drive structure
US7731736B2 (en) 2004-06-14 2010-06-08 Zimmer Spine, Inc. Fastening system for spinal stabilization system
US7857834B2 (en) 2004-06-14 2010-12-28 Zimmer Spine, Inc. Spinal implant fixation assembly
US20060015100A1 (en) 2004-06-23 2006-01-19 Panjabi Manohar M Spinal stabilization devices coupled by torsional member
US7871413B2 (en) 2004-07-21 2011-01-18 Solco Biomedical Co., Ltd. Pedicle screw and operating device thereof
WO2006017641A2 (en) 2004-08-03 2006-02-16 Vertech Innovations, L.L.C. Spinous process reinforcement device and method
US7658753B2 (en) 2004-08-03 2010-02-09 K Spine, Inc. Device and method for correcting a spinal deformity
TW200612860A (en) * 2004-08-09 2006-05-01 Innovative Spinal Technologies System and method for dynamic skeletal stabilization
US7854752B2 (en) * 2004-08-09 2010-12-21 Theken Spine, Llc System and method for dynamic skeletal stabilization
US7766945B2 (en) 2004-08-10 2010-08-03 Lanx, Inc. Screw and rod fixation system
WO2006016371A2 (en) 2004-08-13 2006-02-16 Mazor Surgical Technologies Ltd Minimally invasive spinal fusion
US20060052783A1 (en) 2004-08-17 2006-03-09 Dant Jack A Polyaxial device for spine stabilization during osteosynthesis
US20060052784A1 (en) 2004-08-17 2006-03-09 Zimmer Spine, Inc. Polyaxial device for spine stabilization during osteosynthesis
US20060052786A1 (en) 2004-08-17 2006-03-09 Zimmer Spine, Inc. Polyaxial device for spine stabilization during osteosynthesis
US20060058787A1 (en) 2004-08-24 2006-03-16 Stryker Spine Spinal implant assembly
US20060058788A1 (en) 2004-08-27 2006-03-16 Hammer Michael A Multi-axial connection system
JP4499789B2 (en) 2004-09-22 2010-07-07 パク、キュン−ウ Bioflexible spinal fixation device using shape memory alloy
US8092496B2 (en) 2004-09-30 2012-01-10 Depuy Spine, Inc. Methods and devices for posterior stabilization
US20060084978A1 (en) 2004-09-30 2006-04-20 Mokhtar Mourad B Spinal fixation system and method
WO2006039636A2 (en) 2004-10-01 2006-04-13 Simmons Edward D Screw sleeve made of polyetheretherketone (peek)
US7572280B2 (en) 2004-10-05 2009-08-11 Warsaw Orthopedic, Inc. Multi-axial anchor assemblies for spinal implants and methods
US7722654B2 (en) 2004-10-05 2010-05-25 Warsaw Orthopedic, Inc. Spinal implants with multi-axial anchor assembly and methods
US7794477B2 (en) 2004-10-05 2010-09-14 Warsaw Orthopedic, Inc. Spinal implants and methods with extended multi-axial anchor assemblies
US8123807B2 (en) 2004-10-20 2012-02-28 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8167944B2 (en) 2004-10-20 2012-05-01 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8409282B2 (en) 2004-10-20 2013-04-02 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US9023084B2 (en) 2004-10-20 2015-05-05 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilizing the motion or adjusting the position of the spine
US8012207B2 (en) 2004-10-20 2011-09-06 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8317864B2 (en) 2004-10-20 2012-11-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8535352B2 (en) 2004-10-20 2013-09-17 Exactech, Inc. Multi-level minimally invasive spinal stabilization system
US8162985B2 (en) 2004-10-20 2012-04-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
WO2006047711A2 (en) 2004-10-25 2006-05-04 Alphaspine, Inc. Pedicle screw systems and methods
US20060161153A1 (en) 2004-10-25 2006-07-20 Alphaspine, Inc. Pedicle screw systems and methods of assembling/installing the same
US7691129B2 (en) 2004-10-27 2010-04-06 Felix Brent A Spinal stabilizing system
US7513905B2 (en) 2004-11-03 2009-04-07 Jackson Roger P Polyaxial bone screw
US7572279B2 (en) 2004-11-10 2009-08-11 Jackson Roger P Polyaxial bone screw with discontinuous helically wound capture connection
WO2006057837A1 (en) 2004-11-23 2006-06-01 Jackson Roger P Spinal fixation tool attachment structure
JP4782144B2 (en) 2004-11-23 2011-09-28 ロジャー・ピー・ジャクソン Multi-axis bone screw with multi-component shaft cage
EP1816990A4 (en) 2004-12-01 2009-10-14 Univ California Systems, devices and methods for treatment of intervertebral disorders
US7811288B2 (en) 2004-12-02 2010-10-12 Zimmer Spine, Inc. Instruments and methods for adjusting separation distance of vertebral bodies with a minimally invasive spinal stabilization procedure
US8066749B2 (en) 2004-12-13 2011-11-29 Warsaw Orthopedic, Inc. Implant for stabilizing a bone graft during spinal fusion
US7578833B2 (en) 2004-12-13 2009-08-25 Dr. Robert S. Bray, Jr. Bone fastener assembly for bone retention apparatus
US7306606B2 (en) 2004-12-15 2007-12-11 Orthopaedic Innovations, Inc. Multi-axial bone screw mechanism
US20060149242A1 (en) 2004-12-17 2006-07-06 Gary Kraus Spinal stabilization systems supplemented with diagnostically opaque materials
EP1719468A1 (en) 2004-12-17 2006-11-08 Zimmer GmbH Intervertebral stabilization system
US7704270B2 (en) 2004-12-22 2010-04-27 Stryker Spine Variable offset connectors and bone fixation methods
FR2880256B1 (en) 2004-12-30 2007-04-06 Neuro France Implants Sarl SYSTEM OF VERTEBRAL OSTEOSYNTHESIS
US20060229613A1 (en) 2004-12-31 2006-10-12 Timm Jens P Sheath assembly for spinal stabilization device
US7445627B2 (en) 2005-01-31 2008-11-04 Alpinespine, Llc Polyaxial pedicle screw assembly
US20070088359A1 (en) 2005-02-07 2007-04-19 Woods Richard W Universal dynamic spine stabilization device and method of use
US7294129B2 (en) 2005-02-18 2007-11-13 Ebi, L.P. Spinal fixation device and associated method
BRPI0607139A2 (en) 2005-02-18 2009-08-11 M S Abdou bone fixation set
US7361196B2 (en) 2005-02-22 2008-04-22 Stryker Spine Apparatus and method for dynamic vertebral stabilization
US7594924B2 (en) 2005-03-03 2009-09-29 Accelerated Innovation, Llc Spinal stabilization using bone anchor seat and cross coupling with improved locking feature
WO2006096351A1 (en) 2005-03-03 2006-09-14 Accelerated Innovation, Llc Spinal stabilization using bone anchor and anchor seat with tangential locking feature
US7951172B2 (en) 2005-03-04 2011-05-31 Depuy Spine Sarl Constrained motion bone screw assembly
US20060229607A1 (en) 2005-03-16 2006-10-12 Sdgi Holdings, Inc. Systems, kits and methods for treatment of the spinal column using elongate support members
US7338491B2 (en) 2005-03-22 2008-03-04 Spinefrontier Inc Spinal fixation locking mechanism
WO2006102605A2 (en) 2005-03-23 2006-09-28 Alphaspine, Inc. Percutaneous pedicle screw assembly
BRPI0608131A2 (en) 2005-03-25 2011-05-24 Blackstone Medical Inc multi-axial connection system
US20060241757A1 (en) 2005-03-31 2006-10-26 Sdgi Holdings, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US20060235385A1 (en) 2005-03-31 2006-10-19 Dale Whipple Low profile polyaxial screw
WO2006105935A1 (en) 2005-04-04 2006-10-12 Zimmer Gmbh Pedicle screw
EP2992844B1 (en) 2005-04-08 2019-12-11 Paradigm Spine, LLC. Interspinous vertebral and lumbosacral stabilization devices
US7708762B2 (en) 2005-04-08 2010-05-04 Warsaw Orthopedic, Inc. Systems, devices and methods for stabilization of the spinal column
US7794481B2 (en) 2005-04-22 2010-09-14 Warsaw Orthopedic, Inc. Force limiting coupling assemblies for spinal implants
US20060247631A1 (en) 2005-04-27 2006-11-02 Ahn Sae Y Spinal pedicle screw assembly
US7585312B2 (en) 2005-04-29 2009-09-08 Warsaw Orthopedic, Inc. Spinal stabilization apparatus and method
US7850715B2 (en) 2005-04-29 2010-12-14 Warsaw Orthopedic Inc. Orthopedic implant apparatus
US20060247623A1 (en) 2005-04-29 2006-11-02 Sdgi Holdings, Inc. Local delivery of an active agent from an orthopedic implant
US20060264937A1 (en) 2005-05-04 2006-11-23 White Patrick M Mobile spine stabilization device
US20060264935A1 (en) 2005-05-04 2006-11-23 White Patrick M Orthopedic stabilization device
US7828830B2 (en) 2005-05-12 2010-11-09 Lanx, Inc. Dynamic spinal stabilization
US7967844B2 (en) 2005-06-10 2011-06-28 Depuy Spine, Inc. Multi-level posterior dynamic stabilization systems and methods
US7828825B2 (en) 2005-06-20 2010-11-09 Warsaw Orthopedic, Inc. Multi-level multi-functional spinal stabilization systems and methods
US7799060B2 (en) 2005-06-20 2010-09-21 Warsaw Orthopedic, Inc. Multi-directional spinal stabilization systems and methods
US20070016190A1 (en) 2005-07-14 2007-01-18 Medical Device Concepts Llc Dynamic spinal stabilization system
US7811309B2 (en) 2005-07-26 2010-10-12 Applied Spine Technologies, Inc. Dynamic spine stabilization device with travel-limiting functionality
US7713288B2 (en) * 2005-08-03 2010-05-11 Applied Spine Technologies, Inc. Spring junction and assembly methods for spinal device
US7699875B2 (en) 2006-04-17 2010-04-20 Applied Spine Technologies, Inc. Spinal stabilization device with weld cap
US7625394B2 (en) 2005-08-05 2009-12-01 Warsaw Orthopedic, Inc. Coupling assemblies for spinal implants
US20070049936A1 (en) 2005-08-26 2007-03-01 Dennis Colleran Alignment instrument for dynamic spinal stabilization systems
CH705709B1 (en) 2005-08-29 2013-05-15 Bird Biedermann Ag Spinal implant.
US7533672B2 (en) 2005-09-06 2009-05-19 Synthes Usa, Llc Methods and apparatus for vascular protection in spinal surgery
DE502006002049D1 (en) 2005-09-13 2008-12-24 Bird Biedermann Ag Dynamic clamping device for spinal implant
US20070083200A1 (en) 2005-09-23 2007-04-12 Gittings Darin C Spinal stabilization systems and methods
US7879074B2 (en) 2005-09-27 2011-02-01 Depuy Spine, Inc. Posterior dynamic stabilization systems and methods
JP2009512465A (en) 2005-09-30 2009-03-26 パラダイム・スパイン・リミテッド・ライアビリティ・カンパニー Hinge multi-axis screw and method of using the same
US7857833B2 (en) 2005-10-06 2010-12-28 Abdou M Samy Devices and methods for inter-vertebral orthopedic device placement
US7927359B2 (en) 2005-10-06 2011-04-19 Paradigm Spine, Llc Polyaxial screw
US20070093814A1 (en) 2005-10-11 2007-04-26 Callahan Ronald Ii Dynamic spinal stabilization systems
US8075599B2 (en) 2005-10-18 2011-12-13 Warsaw Orthopedic, Inc. Adjustable bone anchor assembly
US7862591B2 (en) 2005-11-10 2011-01-04 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
AU2006318673A1 (en) 2005-11-18 2007-05-31 Life Spine, Inc. Dynamic spinal stabilization devices and systems
US7699873B2 (en) 2005-11-23 2010-04-20 Warsaw Orthopedic, Inc. Spinous process anchoring systems and methods
US7819899B2 (en) 2006-01-03 2010-10-26 Zimmer Spine, Inc. Instrument for pedicle screw adhesive materials
US7918792B2 (en) 2006-01-04 2011-04-05 Depuy Spine, Inc. Surgical retractor for use with minimally invasive spinal stabilization systems and methods of minimally invasive surgery
US8029545B2 (en) 2006-02-07 2011-10-04 Warsaw Orthopedic Inc. Articulating connecting member and anchor systems for spinal stabilization
US7520879B2 (en) 2006-02-07 2009-04-21 Warsaw Orthopedic, Inc. Surgical instruments and techniques for percutaneous placement of spinal stabilization elements
US20070233068A1 (en) 2006-02-22 2007-10-04 Sdgi Holdings, Inc. Intervertebral prosthetic assembly for spinal stabilization and method of implanting same
US20070233090A1 (en) 2006-02-23 2007-10-04 Naifeh Bill R Aligning cross-connector
US20070233091A1 (en) 2006-02-23 2007-10-04 Naifeh Bill R Multi-level spherical linkage implant system
US8088148B2 (en) 2006-02-24 2012-01-03 Medical Design, LLC Dynamic/static facet fixation device and method
US8262696B2 (en) 2006-02-24 2012-09-11 Medical Design, LLC Multilevel facet/laminar fixation system
US8470008B2 (en) 2006-03-01 2013-06-25 Warsaw Othropedic, Inc. Modular fastener assemblies for spinal stabilization systems and methods
US7927358B2 (en) 2006-03-07 2011-04-19 Zimmer Spine, Inc. Spinal stabilization device
US7842072B2 (en) 2006-03-16 2010-11-30 Zimmer Spine, Inc. Spinal fixation device with variable stiffness
US8025681B2 (en) 2006-03-29 2011-09-27 Theken Spine, Llc Dynamic motion spinal stabilization system
US20070288012A1 (en) 2006-04-21 2007-12-13 Dennis Colleran Dynamic motion spinal stabilization system and device
US8435267B2 (en) 2006-04-24 2013-05-07 Spinefrontier Inc Spine fixation method and apparatus
US7563274B2 (en) 2006-04-25 2009-07-21 Warsaw Orthopedic, Inc. Surgical instruments and techniques for controlling spinal motion segments with positioning of spinal stabilization elements
US20070270838A1 (en) 2006-05-08 2007-11-22 Sdgi Holdings, Inc. Dynamic spinal stabilization device with dampener
US7785350B2 (en) 2006-05-08 2010-08-31 Warsaw Orthopedic, Inc. Load bearing flexible spinal connecting element
US8012179B2 (en) 2006-05-08 2011-09-06 Warsaw Orthopedic, Inc. Dynamic spinal stabilization members and methods
US20070288009A1 (en) 2006-06-08 2007-12-13 Steven Brown Dynamic spinal stabilization device
US7927356B2 (en) 2006-07-07 2011-04-19 Warsaw Orthopedic, Inc. Dynamic constructs for spinal stabilization
US7967847B2 (en) 2006-07-24 2011-06-28 Warsaw Orthopedic, Inc. Spinal stabilization and reconstruction with fusion rods
US20080033433A1 (en) 2006-08-01 2008-02-07 Dante Implicito Dynamic spinal stabilization device
US7806913B2 (en) 2006-08-16 2010-10-05 Depuy Spine, Inc. Modular multi-level spine stabilization system and method
US9526525B2 (en) 2006-08-22 2016-12-27 Neuropro Technologies, Inc. Percutaneous system for dynamic spinal stabilization
US20080065073A1 (en) 2006-09-08 2008-03-13 Michael Perriello Offset dynamic motion spinal stabilization system
US8425601B2 (en) 2006-09-11 2013-04-23 Warsaw Orthopedic, Inc. Spinal stabilization devices and methods of use
WO2008034130A2 (en) * 2006-09-15 2008-03-20 Alpinespine Llc Dynamic pedicle screw system
WO2008073830A1 (en) 2006-12-10 2008-06-19 Paradigm Spine, Llc Posterior functionally dynamic stabilization system
US7828824B2 (en) * 2006-12-15 2010-11-09 Depuy Spine, Inc. Facet joint prosthesis
US7875059B2 (en) * 2007-01-18 2011-01-25 Warsaw Orthopedic, Inc. Variable stiffness support members
WO2008098206A1 (en) 2007-02-09 2008-08-14 Altiva Corporation Dynamic stabilization device
CA2721898A1 (en) 2007-05-25 2009-12-18 Exactech, Inc. Dynamic rod

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040143264A1 (en) * 2002-08-23 2004-07-22 Mcafee Paul C. Metal-backed UHMWPE rod sleeve system preserving spinal motion
US20050240265A1 (en) * 2004-04-22 2005-10-27 Kuiper Mark K Crossbar spinal prosthesis having a modular design and related implantation methods

Also Published As

Publication number Publication date
US20080306542A1 (en) 2008-12-11
US20080306540A1 (en) 2008-12-11
US8048122B2 (en) 2011-11-01
US20080306525A1 (en) 2008-12-11
US20080306541A1 (en) 2008-12-11
US8048121B2 (en) 2011-11-01
US8298267B2 (en) 2012-10-30
US8048123B2 (en) 2011-11-01
US8012181B2 (en) 2011-09-06
US20100030271A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
US8048121B2 (en) Spine implant with a defelction rod system anchored to a bone anchor and method
US7635380B2 (en) Bone anchor with a compressor element for receiving a rod for a dynamic stabilization and motion preservation spinal implantation system and method
US7963978B2 (en) Method for implanting a deflection rod system and customizing the deflection rod system for a particular patient need for dynamic stabilization and motion preservation spinal implantation system
WO2010036949A2 (en) A modular in-line deflection rod and bone anchor system and method for dynamic stabilization of the spine
WO2008154194A1 (en) Dynamic stabilization and motion preservation spinal implantation system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08756578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/04/10)

122 Ep: pct application non-entry in european phase

Ref document number: 08756578

Country of ref document: EP

Kind code of ref document: A1