WO2009020456A1 - Automatic wafer edge inspection and review system - Google Patents

Automatic wafer edge inspection and review system Download PDF

Info

Publication number
WO2009020456A1
WO2009020456A1 PCT/US2007/024224 US2007024224W WO2009020456A1 WO 2009020456 A1 WO2009020456 A1 WO 2009020456A1 US 2007024224 W US2007024224 W US 2007024224W WO 2009020456 A1 WO2009020456 A1 WO 2009020456A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
inspection
edge
substrate
wafer edge
Prior art date
Application number
PCT/US2007/024224
Other languages
French (fr)
Inventor
Ju Jin
Satish Sadam
Vishal Verma
Zhiyan Huang
Siming Lin
Michael D. Robbins
Paul F. Forderhase
Original Assignee
Accretech Usa, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Accretech Usa, Inc. filed Critical Accretech Usa, Inc.
Publication of WO2009020456A1 publication Critical patent/WO2009020456A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9503Wafer edge inspection

Definitions

  • the present disclosure relates to illumination and inspection of a substrate, particularly illumination and inspection of specular surfaces of a silicon wafer edge with diffuse light from a plurality of light sources for enhanced viewing of the wafer edge.
  • Substrate processing particularly silicon wafer processing involves deposition and etching of films and other processes at various stages in the eventual manufacture of integrated circuits. Because of this processing, contaminants, particles, and other defects develop in the edge area of the wafer. This includes particles, contaminants and other defects such as chips, cracks or delamination that develop on edge exclusion zones (near edge top surface and near edge back surface), and edge (including top bevel, crown and bottom bevel) of the wafer. It has been shown that a significant percentage of yield loss, in terms of final integrated circuits, results from particulate contamination originating from the edge area of the wafer causing killer defects inside the FQA (fixed quality area) portion of the wafer. See for example, Braun, The Wafer's Edge, Semiconductor International (March 1 , 2006), for a discussion of defects and wafer edge inspection methodologies.
  • an in-process wafer typically has a reflective specular (“mirror") surface. Attempts at illuminating this surface from a surface normal position frequently results in viewing reflections of surrounding environment of the wafer edge thus making it difficult to visualize defects or distinguish the defects from reflective artifact.
  • the wafer edge area has a plurality of specular surfaces extending from the near edge top surface across the top bevel, the crown, the bottom bevel to the near edge bottom surface. These too cause non-uniform reflection of light necessary for viewing the wafer edge area and defect inspection.
  • color fidelity to observed films and contrast of lighting are important considerations for any wafer edge inspection system.
  • the object of the present invention is to provide a color image- based edge defect inspection and review system. It comprises an illuminator to provide uniform diffused illumination across the five wafer edge regions: top near edge surface, top bevel, apex, bottom bevel and bottom near edge surface, an optical imaging subsystem to image a portion of wafer edge supported by a wafer chuck, a positioning assembly to orientate the optical imaging subsystem to the user-defined inspection angle, an eccentricity sensor to actively measure the center offset of a wafer relative to the rotation center of the wafer chuck, a wafer chuck to hold the backside of a wafer onto the supporting pins, a linear stage to move a wafer from its load position to the inspection position, a rotary stage rotates the wafer in a step-and-stop fashion, a control console to provide tool control functions as well as at least the following capabilities: 1 ) automatic capture of defects of interest with enough sensitivity and speed, 2) automatic defect detection and classification, 3) automatic measurement of wafer edge exclusion
  • a substrate illumination system has a light diffuser with an opening extending at least a portion of its length for receiving an edge of a wafer.
  • the system also comprises a plurality of light sources in proximity to the light diffuser.
  • the system further comprises an optic for viewing the wafer wherein the optic is exterior of the light diffuser and is angled off of the wafer edge surface normal position.
  • the system comprises an illumination control system for independently controlling the plurality of light sources. Individually or by groups or sections, the plurality of lights can be dimmed or brightened. In addition, the plurality of lights can change color, individually or by groups or sections. Yet another aspect of the system comprises a rotation mechanism for rotating the optic from a position facing the top of the wafer to a position facing the bottom of the wafer.
  • the plurality of light sources is an LED matrix or alternatively a flexible OLED or LCD. In this aspect the flexible OLED or LCD can act in place of the plurality of lights or in place of both the light diffuser and the plurality of lights.
  • the light sources can also be one or more halogen lamps. The one or more halogen lamps can be coupled to an array of fiber optics.
  • the system comprises a method for imaging the specular surface of a substrate.
  • This method comprises, isolating a portion of the substrate in a light diffuser, emitting light onto the specular surface to be imaged and imaging the specular surface with an optic positioned at an angle off the specular surface normal from a position exterior to the light emitter.
  • Figure 1 shows a schematic top view of the substrate illumination system of the present disclosure
  • Figure 2 shows a schematic side view of the system as shown in Figure 1 ;
  • Figure 3 shows a detailed view of a portion of the view shown in Figure 2;
  • Figure 4 shows a schematic side view of an alternative embodiment of the substrate illumination system;
  • Figure 5 shows a detailed view of a portion of the view shown in Figure 4.
  • Figure 6 shows a schematic side view of another alternative embodiment of the substrate illumination system
  • Figure 7 shows a perspective view of yet another embodiment of the substrate illumination system.
  • Figure 8 shows a top plan view of the alternative embodiment of the substrate illumination system as shown in Figure 7;
  • Figure 9 shows a perspective view of a wafer edge inspection and review system of the present disclosure;
  • Figure 10 shows a cross section view of the illuminator shown in Figure 9;
  • Figure 11 shows a enlarged cross section view of the wafer edge regions
  • Figure 12 shows a schematic view of the optical imaging subsystem shown in Figure 9;
  • Figure 13 shows the inspection angles of the optical imaging subsystem shown in Figure 9;
  • Figure 14 shows the angle between the principal axis of the optical imaging subsystem and the normal of the edge portion;
  • Figure 15 illustrates the step-and-stop angular motion of a wafer;
  • Figure 16 shows a user interface for semi-automated defect review
  • Figure 17 shows the process to review a specific defect of interest
  • Figures 18 and 19 show an example of edge exclusion measurement.
  • the system 10 (the "system") of the disclosure has a diffuser 12 with a slot 14 along its length and a plurality of lights 16 surrounding its exterior radial periphery. Exterior of the diffuser 12 is an optic 18 that is connected to an imaging system 20 for viewing a substrate 22 as the substrate is held within the slot 14. The plurality of lights 16 are connected to a light controller 34.
  • the system 10 can be used to uniformly illuminate for brightfield inspection of all surfaces of an edge area of the substrate 22 including, a near edge top surface 24, a near edge bottom surface 26, a top bevel 28, a bottom bevel 30 and a crown 32.
  • the optic 18 is a lens or combination of lenses, prisms, and related optical hardware.
  • the optic 18 is aimed at the substrate 22 at an angle off a surface normal to the crown 32 of the substrate 22.
  • the angle of the optic 18 advantageously allows for preventing a specular surface of the substrate 22 from reflecting back the optic 18 whereby the optic 18 "sees itself.”
  • the viewing angle is typically 3 to 6 degrees off normal. Some optimization outside of this range is possible depending on illuminator alignment relative to the substrate 22 and the specific optic 18 configuration.
  • the imaging system 20 is for example a charge-coupled device (CCD) camera suitable for microscopic imaging.
  • the imaging system 20 may be connected to a display monitor and/or computer (not shown) for viewing, analyzing, and storing images of the substrate 22.
  • Diffuser 12 is formed of a translucent material suitable for providing uniform diffuse illumination.
  • the diffuser 12 may be formed of a frosted glass, a sand blasted quartz or a plastic or the like, where light passing through it is uniformly diffused.
  • the diffuser 12 is a circular cylinder as illustrated.
  • Diffuser 12 may be an elliptic cylinder, generalized cylinder, or other shape that allows for surrounding and isolating a portion of a substrate 22 including the substrate 22 edge.
  • the slot 14 in the diffuser 12 extends for a suitable length to allow introduction of the substrate 22 into the diffuser 12 far enough to provide uniform illumination of the edge area and to isolate the edge area from the outside of the diffuser 12.
  • the interior of the diffuser 12 serves as a uniform neutral background for any reflection from the specular surface of the substrate 22 that is captured by the optic 18.
  • the optic 18 while looking towards focal point F on the specular surface of the crown 32 images (sees) the interior of the diffuser 12 at location /.
  • the optic 18 looking towards focal points P and F" on the specular surfaces of the top bevel 28 and bottom bevel 30 respectively, images the interior of the diffuser 12 at locations /'and /".
  • the angle of the optic 18 in cooperation with the diffuser 12 prevents reflective artifacts from interfering with viewing the plurality of specular surfaces of the edge area of the substrate 22. Instead, and advantageously, a uniform background of the diffuser 12 interior is seen in the reflection of the specular surfaces of the substrate 22.
  • the plurality of lights 16 is a highly incoherent light source including an incandescent light.
  • the plurality of lights 16 is an array of LEDs.
  • a quartz halogen bulb can be the light source with fiber optics (not shown) used to distribute light of this single light source radially around the diffuser 12.
  • the plurality of lights 16 is an array of fiber optics each coupled to an independent, remotely located quartz tungsten halogen (QTH) lamp.
  • QTH quartz tungsten halogen
  • the plurality of lights 16 is preferably a white light source to provide the best color fidelity.
  • color fidelity is important because of film thickness information conveyed by thin film interference colors. If the substrate 22 surface is illuminated with light having some spectral bias, the thin film interference information can be distorted. Slight amounts of spectral bias in the light source can be accommodated by using filters and/or electronic adjustment (i.e., camera white balance).
  • a substrate 22 for example, a wafer is placed on a rotatable chuck (not shown) that moves the edge of the wafer into the slot 14 of the diffuser 12.
  • the light controller 34 activates in suitable brightness the plurality of lights 16 for providing uniform illumination of the edge area of the wafer.
  • the wafer is viewed through the imaging system 20 via the optic 18 and inspected for defects.
  • the wafer may be automatically rotated or manually rotated to allow for selective viewing of the wafer edge.
  • observation of the wafer edge for defects is facilitated and is unhindered by a specular surface of the wafer.
  • the plurality of lights 16 are individually controlled by the light controller 34.
  • light controller 34 is a dimmer/switch suitable for dimming individually or in groups a plurality of lights.
  • light controller 34 can be the type as disclosed in U.S. patents 6,369,524 or 5,629,607, incorporated herein by reference.
  • Light controller 34 provides for dimming and brightening or alternatively turning on/off individually or in groups each of the lights in the plurality of lights 16.
  • the intensity of a portion of the plurality of lights 16 is dimmed or brightened to anticipate the reflective effect of specular surfaces that are inherent to the substrate 22, particularly at micro locations along the edge profile that have very small radii of curvature. These micro locations are the transition zones 33 where the top surface 24 meets the top bevel 28 and the top bevel meets the crown 32 and the crown meets the bottom bevel 30 and the bottom bevel 30 meets the bottom surface 26.
  • FIG. 4 An example of addressable illumination is illustrated in Figures 4 and 5 where higher intensity illumination 36 is directed to a top bevel 28, crown 32 and bottom bevel 30 while lower intensity illumination 38 is directed to the transition zones 33 in between. With this illumination configuration, the image of these transition zones 33 are seen illuminated with similar intensity as compared to the top bevel 28, crown 32 and bottom bevel 30.
  • addressable illumination is useful to accommodate intensity variation seen by the optic 18 due to view factor of the substrate 22 edge area. Some portions of the substrate 22 edge area have a high view factor with respect to the illumination from the diffuser 12 and consequently appear relatively bright. Other portions with low view factor appear relatively dark. Addressable illumination allows mapping an intensity profile onto the wafer surface that allows for the view factor variation and provides a uniformly illuminated image. The required intensity profile can change with viewing angle change of the optic 18.
  • Addressability of the illumination or its intensity can be accomplished in a number of ways.
  • One embodiment is to locate independently controllable light-emitting diodes (LEDs) around the outside of the diffuser 12 consistent with the plurality of lights 16.
  • Another alternative is to employ a small flexible organic light-emitting diode (OLED), liquid crystal display (LCD) or other micro-display module.
  • OLED organic light-emitting diode
  • LCD liquid crystal display
  • Such modules are addressable to a much greater degree than an LED matrix.
  • the flexible OLED, LCD or other micro- display module can replace both the plurality of lights 16 and the diffuser 12.
  • a flexible OLED can both illuminate and have a surface layer with a matte finish suitable for acting as a diffuser and neutral background for imaging.
  • the flexible OLED can be formed into a suitable shape such as a cylinder. Examples of a suitable OLED are disclosed in U.S. patents 7,019,717 and 7,005,671 , incorporated herein by reference.
  • those modules can also provide programmable illumination across a broad range of colors including white light. Color selection can be used to highlight different thin films and can be used in combination with part of an OLED, for example, emitting one color while another part of the OLED emits another color of light. In some cases it can be beneficial to use only part of the light spectrum, for example, to gain sensitivity to a film residue in a given thickness range. This is one mode of analysis particularly applicable to automatic defect classification. One analysis technique to detect backside etch polymer residue preferentially looks at light reflected in the green portion of the spectrum. Thus, this embodiment of the system 10 provides for a suitable color differential based inspection of the substrate 22. [0048] Now referring to Figure 6, in another embodiment of the system
  • the optic 18 is rotatable in a radial direction 40 around the substrate 22 at a maintained distance from a center point of the substrate 22 edge.
  • the optic 18 is rotatable while maintaining the angle of the optic 18 relative to surface normal of the substrate 22 edge. This allows for focused imaging of all regions of the substrate 22 surface, including the top surface 24, bottom surface 26, top bevel 28, bottom bevel 30 and crown 32.
  • the rotating optic 18 can also include the imaging system 20 or consist of a lens and a CCD camera combination or can be a subset of this consisting of moving mirrors and prisms. This embodiment provides the additional advantage of using one set of camera hardware to view the substrate 22 rather than an array of cameras.
  • the optic 18 in another embodiment of the system 10, includes a fold mirror 50 and a zoom lens assembly 52.
  • the optic 18 is connected to a rotatable armature 54 for rotating the optic 18 radially around the edge of the substrate 22 (as similarly discussed in relation to Figure 6).
  • the substrate 22 is retained on a rotatable chuck 56.
  • the diffuser 12 is housed in an Illumination cylinder 58 that is retained on a support member 60 connected to a support stand 62.
  • an automatic wafer edge inspection and review system 10 consists of an illuminator 11 , an optical imaging subsystem 64, a wafer supporting chuck 66 (not shown), a positioning assembly 68, an eccentricity sensor 70, a linear stage 72, a rotary stage 74, and a control console 76.
  • the eccentricity sensor 70 is used to provide eccentricity data to the controller to allow the controller to positionally adjust the substrate 22 with respect to the imaging system 64.
  • data from the eccentricity sensor 70 can be used to adjust the optics system to ensure uniformity of the image and focus as opposed to or in conjunction with the supporting chuck 66.
  • top near edge surface 78 top bevel 80, apex 82, bottom bevel 84, and bottom near edge surface 86, as show in Figure 11. It is also envisioned the illuminator 11 can vary the intensity or color of the illumination depending upon the expected defect or substrate region. Additionally, the illuminator 11 can individually illuminate different regions of the wafer. The light controller received input from the system controller 76.
  • the optical imaging subsystem 64 has a filter 121 , a mirror 122, an attachment objective lens 123, a motorized focus lens 124, a motorized zoom lens 125, and a magnifier lens 126, and a high resolution area scan color camera 127.
  • the motorized focus lens 124 automatically or manually sets best focus position before starting automatic inspection and during the review process.
  • the filter 121 can be a polarizer, or optical filter which allows the passage of predetermined frequencies.
  • the motorized zoom lens 125 can be configured in the low magnification range for inspection purpose and high magnification range for review purpose. As shown in Figure 14, the positioning assembly 68 orientates the optical imaging subsystem 64 to the predefined inspection angle 51.
  • the optical imaging subsystem 64 is orientated in such a way that its principal axis 128 preferably is kept from the normal direction 191 of the wafer edge portion under inspection.
  • the linear stage 72 moves the wafer from its load position to the inspection position, and also performs the eccentricity compensation to bring the wafer always to the best focus position during the image acquisition period.
  • the rotary stage 74 rotates the substrate 22 along the circumference direction in a step-and-stop manner, as shown in Figure 15, it is envisioned a continuous rotation of the wafer is possible.
  • the control console 76 controls the system 10 via the tool control software. In this regard, the console 76 controls the motion of linear stage 72 and rotary stage 74, positioning the assembly 68 to the user-defined inspection angle.
  • the controller further presets the magnification of the motorized zoom lens 125 and focus position of the motorized focus lens 124, initializing the image acquisition timing and other essential functions to complete the automatic inspection of a wafer using user-predefined routines.
  • the control console 76 also displays the acquired images and runs the defect inspection and classification software, reporting the results files to a factory automation system.
  • a substrate 22 is picked up from a FOUP (not shown) or an open cassette (not shown) in the equipment front end module (not shown) by the transportation robot arm 27, placed onto the rotational table of the aligner (not shown).
  • the aligner detects the center of the substrate 22 as well as its notch, aligns the wafer to the center axis of the rotational table.
  • the transport robot arm 27 picks up the substrate 22 from the aligner, places it onto the wafer chuck (not shown) of the inspection and review system 10.
  • the wafer is rotated and the eccentricity sensor 70 starts to measure the eccentricity of the wafer relatively to the spin center of the rotary stage 74.
  • the eccentricity information is fed back to the control console 76.
  • the positioning assembly 68 moves the optical imaging subsystem 64 to the routine inspection angle.
  • the linear stage 72 moves the substrate 22 to the inspection position from the load position.
  • the rotary stage 74 starts to move forward one step (routine-defined angle) and stops completely.
  • the illuminator 11 is turned on, and the camera 127 takes an image of the portion of the wafer edge within the field of view of the optical imaging system 64.
  • the rotary stage 74 rotates one more step, settling down completely.
  • the linear stage 72 moves the substrate 22 to the best focus position based on the eccentricity data stored in the control console 76.
  • the control console 76 downloads the previous images from the camera to the onboard memory and the hard disk media.
  • the camera 127 takes the second picture of the wafer edge. The above steps are repeated until the region of interest or the whole circumference of the substrate 22 is imaged.
  • control console 76 moves the positioning assembly 68 to another inspection angle, repeating the steps described above.
  • the images of the edge of the substrate 22 at the new inspection angle are recorded until all inspection angles of interest are covered.
  • the transport robot arm 27 picks the substrate 22 from the inspection chamber, and place it back to a FOUP or a cassette in the equipment front end module.
  • the inspection and classification software installed in control console 76 processes the raw images, detects the defects of interest, classifies them into different classes or category and outputs to the results files.
  • the location and the inspection angle of the specific defect can be retrieved from the results files.
  • an operator inputs this information to the review system setup area of tool control software in the control console 76.
  • the control console 76 automatically moves the substrate 22 and the positioning assembly 68 to the predetermined positions, locates the specific defect of interest.
  • the user adjusts the magnification of the motorized zoom lens 125 to the desired value, focusing on the defect by adjusting the position of the motorized focus lens 124.
  • the operator can now review the details of the defect on the display and record its image to storage devices of the control console 76.
  • the system is used to measure the cut line 141 of the edge bead removal of a film layer 140.
  • the positioning assembly 68 moves the optical imaging subsystem 64 and the area scan camera 127. In this position, the top near edge surface of the substrate 22 with the cut line 141 is visible within the field of view.
  • the motorized focus lens 124 is set to the position where the image is under best focus.
  • the rotary stage 74 starts to move forward one step (predefined angle) and stops completely.
  • the illuminator 1 1 is turned on, and the camera 127 takes an image of a portion of the near top edge surface including the cut line 141. Then, the rotary stage 74 moves one more step, settling down completely.
  • the control console 76 downloads the image from the camera 127 to the onboard memory and the hard disk media. Upon completion, the camera 127 takes the second picture. The above steps are repeated until the whole cut line along the circumference of the substrate 22 is completely imaged and recorded onto onboard memory and the hard disk media.
  • control console 76 processes the recorded images to calculate the profile of the cut line 141 as well as the following parameters: the center disposition from the wafer center, mean edge exclusion distance, the standard deviation, and the peak-to-peak variation.
  • the results are output to the results file with predefined format.
  • the wafer edge inspection and review system 10 can be used to measure multiple cut lines, for example, 151 , 152, and 153 of multiple film layers 154, 155, and 156.
  • the positioning assembly 68 moves the optical imaging subsystem 64 and the area scan camera 127 to a position so that the top near edge surface of the substrate 22 with the cut lines 151 , 152 and 153 is within the field of view.
  • the motorized focus lens 124 is set to the position where the image is under best focus.
  • the rotary stage 74 starts to move forward one step and stops completely.
  • the illuminator 11 is turned on, and the camera 127 takes an image of a portion of the near top edge surface including the cut lines 151 , 152 and 153.
  • the rotary stage 74 moves a second step, settling down completely. While the rotary stage is in motion, the control console 76 downloads the picture from the camera 127 to the onboard memory and the hard disk media. Upon completion, the camera 127 takes the second picture. The above steps are repeated until the whole cut lines along the circumference of the substrate 22 are completed imaged and recorded onto onboard memory and the hard disk media.
  • a cost effective yet efficient and effective system for illuminating and inspecting the plurality of surfaces of the edge area of a substrate 22 and providing high quality imaging of the inspected surfaces while avoiding the interference associated with specular surfaces.
  • the system provides for improving quality control of wafer processing through edge inspection with the intended benefit of identifying and addressing defects and their causes in the IC manufacturing process with resulting improvement in yield and throughput.

Abstract

A substrate illumination and inspection system provides for illuminating and inspecting a substrate particularly the substrate edge. The system uses a light diffuser with a plurality of lights disposed at its exterior or interior for providing uniform diffuse illumination of a substrate. An optic and imaging system exterior of the light diffuser are used to inspect the plurality of surfaces of the substrate including specular surfaces. The optic can be rotated radially relative to a center point of the substrate edge to allow for focused inspection of all surfaces of the substrate edge.

Description

AUTOMATIC WAFER EDGE INSPECTION AND REVIEW SYSTEM
CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application is a continuation of U.S. Patent Application No. 1 1/891 ,657, filed August 9, 2007, and, is a continuation-in-part of U.S. Patent Application No. 1 1/417,297, filed May 02, 2006, entitled "Substrate Illumination and Inspection System". The disclosure of the above application is incorporated herein by reference.
FIELD
[0002] The present disclosure relates to illumination and inspection of a substrate, particularly illumination and inspection of specular surfaces of a silicon wafer edge with diffuse light from a plurality of light sources for enhanced viewing of the wafer edge. BACKGROUND
[0003] The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
[0004] Substrate processing, particularly silicon wafer processing involves deposition and etching of films and other processes at various stages in the eventual manufacture of integrated circuits. Because of this processing, contaminants, particles, and other defects develop in the edge area of the wafer. This includes particles, contaminants and other defects such as chips, cracks or delamination that develop on edge exclusion zones (near edge top surface and near edge back surface), and edge (including top bevel, crown and bottom bevel) of the wafer. It has been shown that a significant percentage of yield loss, in terms of final integrated circuits, results from particulate contamination originating from the edge area of the wafer causing killer defects inside the FQA (fixed quality area) portion of the wafer. See for example, Braun, The Wafer's Edge, Semiconductor International (March 1 , 2006), for a discussion of defects and wafer edge inspection methodologies.
[0005] Attempts at high magnification inspection of this region of the wafer have been confounded by poor illumination of these surfaces. It is difficult to properly illuminate and inspect the edge area of an in-process wafer. An in- process wafer typically has a reflective specular ("mirror") surface. Attempts at illuminating this surface from a surface normal position frequently results in viewing reflections of surrounding environment of the wafer edge thus making it difficult to visualize defects or distinguish the defects from reflective artifact. Further, the wafer edge area has a plurality of specular surfaces extending from the near edge top surface across the top bevel, the crown, the bottom bevel to the near edge bottom surface. These too cause non-uniform reflection of light necessary for viewing the wafer edge area and defect inspection. In addition, color fidelity to observed films and contrast of lighting are important considerations for any wafer edge inspection system.
[0006] Therefore, there is a need for a system that adequately illuminates the edge area of a wafer for inspection. It is important that the system provide for illumination and viewing suitable for a highly reflective surface extending over a plurality of surfaces and for a variety of defects to be observed. The system must provide for efficient and effective inspection of the edge area for a variety of defects.
SUMMARY [0007] Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
[0008] The object of the present invention is to provide a color image- based edge defect inspection and review system. It comprises an illuminator to provide uniform diffused illumination across the five wafer edge regions: top near edge surface, top bevel, apex, bottom bevel and bottom near edge surface, an optical imaging subsystem to image a portion of wafer edge supported by a wafer chuck, a positioning assembly to orientate the optical imaging subsystem to the user-defined inspection angle, an eccentricity sensor to actively measure the center offset of a wafer relative to the rotation center of the wafer chuck, a wafer chuck to hold the backside of a wafer onto the supporting pins, a linear stage to move a wafer from its load position to the inspection position, a rotary stage rotates the wafer in a step-and-stop fashion, a control console to provide tool control functions as well as at least the following capabilities: 1 ) automatic capture of defects of interest with enough sensitivity and speed, 2) automatic defect detection and classification, 3) automatic measurement of wafer edge exclusion width; and 4) automatic report of inspection results to the yield management system of a semiconductor fabrication plant.
[0009] In accordance with the present disclosure, a substrate illumination system has a light diffuser with an opening extending at least a portion of its length for receiving an edge of a wafer. The system also comprises a plurality of light sources in proximity to the light diffuser. The system further comprises an optic for viewing the wafer wherein the optic is exterior of the light diffuser and is angled off of the wafer edge surface normal position.
[0010] In an additional aspect, the system comprises an illumination control system for independently controlling the plurality of light sources. Individually or by groups or sections, the plurality of lights can be dimmed or brightened. In addition, the plurality of lights can change color, individually or by groups or sections. Yet another aspect of the system comprises a rotation mechanism for rotating the optic from a position facing the top of the wafer to a position facing the bottom of the wafer. In an additional aspect of the system, the plurality of light sources is an LED matrix or alternatively a flexible OLED or LCD. In this aspect the flexible OLED or LCD can act in place of the plurality of lights or in place of both the light diffuser and the plurality of lights. The light sources can also be one or more halogen lamps. The one or more halogen lamps can be coupled to an array of fiber optics.
[0011] In yet an additional aspect, the system comprises a method for imaging the specular surface of a substrate. This method comprises, isolating a portion of the substrate in a light diffuser, emitting light onto the specular surface to be imaged and imaging the specular surface with an optic positioned at an angle off the specular surface normal from a position exterior to the light emitter. DRAWINGS
[0012] The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
[0013] Figure 1 shows a schematic top view of the substrate illumination system of the present disclosure;
[0014] Figure 2 shows a schematic side view of the system as shown in Figure 1 ;
[0015] Figure 3 shows a detailed view of a portion of the view shown in Figure 2; [0016] Figure 4 shows a schematic side view of an alternative embodiment of the substrate illumination system;
[0017] Figure 5 shows a detailed view of a portion of the view shown in Figure 4;
[0018] Figure 6 shows a schematic side view of another alternative embodiment of the substrate illumination system;
[0019] Figure 7 shows a perspective view of yet another embodiment of the substrate illumination system; and
[0020] Figure 8 shows a top plan view of the alternative embodiment of the substrate illumination system as shown in Figure 7; [0021] Figure 9 shows a perspective view of a wafer edge inspection and review system of the present disclosure;
[0022] Figure 10 shows a cross section view of the illuminator shown in Figure 9;
[0023] Figure 11 shows a enlarged cross section view of the wafer edge regions;
[0024] Figure 12 shows a schematic view of the optical imaging subsystem shown in Figure 9;
[0025] Figure 13 shows the inspection angles of the optical imaging subsystem shown in Figure 9; [0026] Figure 14 shows the angle between the principal axis of the optical imaging subsystem and the normal of the edge portion; [0027] Figure 15 illustrates the step-and-stop angular motion of a wafer;
[0028] Figure 16 shows a user interface for semi-automated defect review; [0029] Figure 17 shows the process to review a specific defect of interest; and
[0030] Figures 18 and 19 show an example of edge exclusion measurement.
DETAILED DESCRIPTION
[0031] The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. [0032] Referring to Figures 1 , 2, and 3 a substrate illumination system
10 (the "system") of the disclosure has a diffuser 12 with a slot 14 along its length and a plurality of lights 16 surrounding its exterior radial periphery. Exterior of the diffuser 12 is an optic 18 that is connected to an imaging system 20 for viewing a substrate 22 as the substrate is held within the slot 14. The plurality of lights 16 are connected to a light controller 34.
[0033] The system 10 can be used to uniformly illuminate for brightfield inspection of all surfaces of an edge area of the substrate 22 including, a near edge top surface 24, a near edge bottom surface 26, a top bevel 28, a bottom bevel 30 and a crown 32. [0034] The optic 18 is a lens or combination of lenses, prisms, and related optical hardware. The optic 18 is aimed at the substrate 22 at an angle off a surface normal to the crown 32 of the substrate 22. The angle of the optic 18 advantageously allows for preventing a specular surface of the substrate 22 from reflecting back the optic 18 whereby the optic 18 "sees itself." The viewing angle is typically 3 to 6 degrees off normal. Some optimization outside of this range is possible depending on illuminator alignment relative to the substrate 22 and the specific optic 18 configuration. [0035] The imaging system 20 is for example a charge-coupled device (CCD) camera suitable for microscopic imaging. The imaging system 20 may be connected to a display monitor and/or computer (not shown) for viewing, analyzing, and storing images of the substrate 22. [0036] Diffuser 12 is formed of a translucent material suitable for providing uniform diffuse illumination. The diffuser 12 may be formed of a frosted glass, a sand blasted quartz or a plastic or the like, where light passing through it is uniformly diffused. In a preferred embodiment, the diffuser 12 is a circular cylinder as illustrated. Diffuser 12 may be an elliptic cylinder, generalized cylinder, or other shape that allows for surrounding and isolating a portion of a substrate 22 including the substrate 22 edge. The slot 14 in the diffuser 12 extends for a suitable length to allow introduction of the substrate 22 into the diffuser 12 far enough to provide uniform illumination of the edge area and to isolate the edge area from the outside of the diffuser 12. [0037] Importantly, the interior of the diffuser 12 serves as a uniform neutral background for any reflection from the specular surface of the substrate 22 that is captured by the optic 18. Thus, the optic 18 while looking towards focal point F on the specular surface of the crown 32 images (sees) the interior of the diffuser 12 at location /. Similarly, the optic 18 looking towards focal points P and F" on the specular surfaces of the top bevel 28 and bottom bevel 30 respectively, images the interior of the diffuser 12 at locations /'and /".
[0038] The angle of the optic 18 in cooperation with the diffuser 12 prevents reflective artifacts from interfering with viewing the plurality of specular surfaces of the edge area of the substrate 22. Instead, and advantageously, a uniform background of the diffuser 12 interior is seen in the reflection of the specular surfaces of the substrate 22.
[0039] The plurality of lights 16 is a highly incoherent light source including an incandescent light. In a preferred embodiment, the plurality of lights 16 is an array of LEDs. Alternatively, a quartz halogen bulb can be the light source with fiber optics (not shown) used to distribute light of this single light source radially around the diffuser 12. In another preferred embodiment the plurality of lights 16 is an array of fiber optics each coupled to an independent, remotely located quartz tungsten halogen (QTH) lamp.
[0040] The plurality of lights 16 is preferably a white light source to provide the best color fidelity. In substrate 22 observation, color fidelity is important because of film thickness information conveyed by thin film interference colors. If the substrate 22 surface is illuminated with light having some spectral bias, the thin film interference information can be distorted. Slight amounts of spectral bias in the light source can be accommodated by using filters and/or electronic adjustment (i.e., camera white balance). [0041 ] In operation, a substrate 22, for example, a wafer is placed on a rotatable chuck (not shown) that moves the edge of the wafer into the slot 14 of the diffuser 12. The light controller 34 activates in suitable brightness the plurality of lights 16 for providing uniform illumination of the edge area of the wafer. The wafer is viewed through the imaging system 20 via the optic 18 and inspected for defects. The wafer may be automatically rotated or manually rotated to allow for selective viewing of the wafer edge. Thus, observation of the wafer edge for defects is facilitated and is unhindered by a specular surface of the wafer.
[0042] With added reference to Figures 4 and 5, in an embodiment of the system 10 the plurality of lights 16 are individually controlled by the light controller 34. In this embodiment light controller 34 is a dimmer/switch suitable for dimming individually or in groups a plurality of lights. Alternatively, light controller 34 can be the type as disclosed in U.S. patents 6,369,524 or 5,629,607, incorporated herein by reference. Light controller 34 provides for dimming and brightening or alternatively turning on/off individually or in groups each of the lights in the plurality of lights 16.
[0043] The intensity of a portion of the plurality of lights 16 is dimmed or brightened to anticipate the reflective effect of specular surfaces that are inherent to the substrate 22, particularly at micro locations along the edge profile that have very small radii of curvature. These micro locations are the transition zones 33 where the top surface 24 meets the top bevel 28 and the top bevel meets the crown 32 and the crown meets the bottom bevel 30 and the bottom bevel 30 meets the bottom surface 26.
[0044] An example of addressable illumination is illustrated in Figures 4 and 5 where higher intensity illumination 36 is directed to a top bevel 28, crown 32 and bottom bevel 30 while lower intensity illumination 38 is directed to the transition zones 33 in between. With this illumination configuration, the image of these transition zones 33 are seen illuminated with similar intensity as compared to the top bevel 28, crown 32 and bottom bevel 30.
[0045] Further, addressable illumination is useful to accommodate intensity variation seen by the optic 18 due to view factor of the substrate 22 edge area. Some portions of the substrate 22 edge area have a high view factor with respect to the illumination from the diffuser 12 and consequently appear relatively bright. Other portions with low view factor appear relatively dark. Addressable illumination allows mapping an intensity profile onto the wafer surface that allows for the view factor variation and provides a uniformly illuminated image. The required intensity profile can change with viewing angle change of the optic 18.
[0046] Addressability of the illumination or its intensity can be accomplished in a number of ways. One embodiment is to locate independently controllable light-emitting diodes (LEDs) around the outside of the diffuser 12 consistent with the plurality of lights 16. Another alternative is to employ a small flexible organic light-emitting diode (OLED), liquid crystal display (LCD) or other micro-display module. Such modules are addressable to a much greater degree than an LED matrix. In this embodiment the flexible OLED, LCD or other micro- display module can replace both the plurality of lights 16 and the diffuser 12. For example, a flexible OLED can both illuminate and have a surface layer with a matte finish suitable for acting as a diffuser and neutral background for imaging. Further, the flexible OLED can be formed into a suitable shape such as a cylinder. Examples of a suitable OLED are disclosed in U.S. patents 7,019,717 and 7,005,671 , incorporated herein by reference.
[0047] Further, those modules can also provide programmable illumination across a broad range of colors including white light. Color selection can be used to highlight different thin films and can be used in combination with part of an OLED, for example, emitting one color while another part of the OLED emits another color of light. In some cases it can be beneficial to use only part of the light spectrum, for example, to gain sensitivity to a film residue in a given thickness range. This is one mode of analysis particularly applicable to automatic defect classification. One analysis technique to detect backside etch polymer residue preferentially looks at light reflected in the green portion of the spectrum. Thus, this embodiment of the system 10 provides for a suitable color differential based inspection of the substrate 22. [0048] Now referring to Figure 6, in another embodiment of the system
10, the optic 18 is rotatable in a radial direction 40 around the substrate 22 at a maintained distance from a center point of the substrate 22 edge. The optic 18 is rotatable while maintaining the angle of the optic 18 relative to surface normal of the substrate 22 edge. This allows for focused imaging of all regions of the substrate 22 surface, including the top surface 24, bottom surface 26, top bevel 28, bottom bevel 30 and crown 32. The rotating optic 18 can also include the imaging system 20 or consist of a lens and a CCD camera combination or can be a subset of this consisting of moving mirrors and prisms. This embodiment provides the additional advantage of using one set of camera hardware to view the substrate 22 rather than an array of cameras.
[0049] Now referring to Figures 7 and 8, in another embodiment of the system 10, the optic 18 includes a fold mirror 50 and a zoom lens assembly 52. The optic 18 is connected to a rotatable armature 54 for rotating the optic 18 radially around the edge of the substrate 22 (as similarly discussed in relation to Figure 6). The substrate 22 is retained on a rotatable chuck 56. The diffuser 12 is housed in an Illumination cylinder 58 that is retained on a support member 60 connected to a support stand 62.
[0050] The operation of this embodiment of the system 10 is substantially the same as described above with the additional functionality of radially moving the optic 18 to further aid in inspecting all surfaces of the edge of the substrate 22. Further, the substrate 22 can be rotated either manually or automatically by the rotatable chuck 56 to facilitate the inspection process. [0051] Referring to Figure 9 an automatic wafer edge inspection and review system 10 consists of an illuminator 11 , an optical imaging subsystem 64, a wafer supporting chuck 66 (not shown), a positioning assembly 68, an eccentricity sensor 70, a linear stage 72, a rotary stage 74, and a control console 76. The eccentricity sensor 70 is used to provide eccentricity data to the controller to allow the controller to positionally adjust the substrate 22 with respect to the imaging system 64. Optionally, data from the eccentricity sensor 70 can be used to adjust the optics system to ensure uniformity of the image and focus as opposed to or in conjunction with the supporting chuck 66. [0052] Referring to Figure 10 and as described above, the illuminator
1 1 provides uniform illumination across the five wafer edge regions: top near edge surface 78, top bevel 80, apex 82, bottom bevel 84, and bottom near edge surface 86, as show in Figure 11. It is also envisioned the illuminator 11 can vary the intensity or color of the illumination depending upon the expected defect or substrate region. Additionally, the illuminator 11 can individually illuminate different regions of the wafer. The light controller received input from the system controller 76.
[0053] Referring to Figure 12, the optical imaging subsystem 64 has a filter 121 , a mirror 122, an attachment objective lens 123, a motorized focus lens 124, a motorized zoom lens 125, and a magnifier lens 126, and a high resolution area scan color camera 127. The motorized focus lens 124 automatically or manually sets best focus position before starting automatic inspection and during the review process. The filter 121 can be a polarizer, or optical filter which allows the passage of predetermined frequencies. [0054] The motorized zoom lens 125 can be configured in the low magnification range for inspection purpose and high magnification range for review purpose. As shown in Figure 14, the positioning assembly 68 orientates the optical imaging subsystem 64 to the predefined inspection angle 51. To improve the image, the optical imaging subsystem 64 is orientated in such a way that its principal axis 128 preferably is kept from the normal direction 191 of the wafer edge portion under inspection. The linear stage 72 moves the wafer from its load position to the inspection position, and also performs the eccentricity compensation to bring the wafer always to the best focus position during the image acquisition period. While the rotary stage 74 rotates the substrate 22 along the circumference direction in a step-and-stop manner, as shown in Figure 15, it is envisioned a continuous rotation of the wafer is possible. [0055] The control console 76 controls the system 10 via the tool control software. In this regard, the console 76 controls the motion of linear stage 72 and rotary stage 74, positioning the assembly 68 to the user-defined inspection angle. The controller further presets the magnification of the motorized zoom lens 125 and focus position of the motorized focus lens 124, initializing the image acquisition timing and other essential functions to complete the automatic inspection of a wafer using user-predefined routines. The control console 76 also displays the acquired images and runs the defect inspection and classification software, reporting the results files to a factory automation system.
[0056] Referring generally to Figure 9 which shows the operation of one embodiment, a substrate 22 is picked up from a FOUP (not shown) or an open cassette (not shown) in the equipment front end module (not shown) by the transportation robot arm 27, placed onto the rotational table of the aligner (not shown). The aligner detects the center of the substrate 22 as well as its notch, aligns the wafer to the center axis of the rotational table. After alignment is completed, the transport robot arm 27 picks up the substrate 22 from the aligner, places it onto the wafer chuck (not shown) of the inspection and review system 10.
[0057] Then, the wafer is rotated and the eccentricity sensor 70 starts to measure the eccentricity of the wafer relatively to the spin center of the rotary stage 74. The eccentricity information is fed back to the control console 76. At the same time, the positioning assembly 68 moves the optical imaging subsystem 64 to the routine inspection angle. Then the linear stage 72 moves the substrate 22 to the inspection position from the load position. The rotary stage 74 starts to move forward one step (routine-defined angle) and stops completely. The illuminator 11 is turned on, and the camera 127 takes an image of the portion of the wafer edge within the field of view of the optical imaging system 64. After completion, the rotary stage 74 rotates one more step, settling down completely. The linear stage 72 moves the substrate 22 to the best focus position based on the eccentricity data stored in the control console 76. During the movement of the stage 72, the control console 76 downloads the previous images from the camera to the onboard memory and the hard disk media. Then, the camera 127 takes the second picture of the wafer edge. The above steps are repeated until the region of interest or the whole circumference of the substrate 22 is imaged.
[0058] If the system is set to inspect the edge regions of substrate 22 in more than one inspection angles, the control console 76 moves the positioning assembly 68 to another inspection angle, repeating the steps described above. The images of the edge of the substrate 22 at the new inspection angle are recorded until all inspection angles of interest are covered.
[0059] After the completion of imaging all the predefined edge regions of substrate 22, the transport robot arm 27 picks the substrate 22 from the inspection chamber, and place it back to a FOUP or a cassette in the equipment front end module.
[0060] While the system 10 takes pictures of the edge of substrate 22, the inspection and classification software installed in control console 76 processes the raw images, detects the defects of interest, classifies them into different classes or category and outputs to the results files. To review a specific defect found by the system 10, the location and the inspection angle of the specific defect can be retrieved from the results files. As shown in Figure 16, an operator inputs this information to the review system setup area of tool control software in the control console 76. The control console 76 automatically moves the substrate 22 and the positioning assembly 68 to the predetermined positions, locates the specific defect of interest. Then, the user adjusts the magnification of the motorized zoom lens 125 to the desired value, focusing on the defect by adjusting the position of the motorized focus lens 124. The operator can now review the details of the defect on the display and record its image to storage devices of the control console 76.
[0061] Referring to Figures 9 and 18, the system is used to measure the cut line 141 of the edge bead removal of a film layer 140. The positioning assembly 68 moves the optical imaging subsystem 64 and the area scan camera 127. In this position, the top near edge surface of the substrate 22 with the cut line 141 is visible within the field of view. The motorized focus lens 124 is set to the position where the image is under best focus. The rotary stage 74 starts to move forward one step (predefined angle) and stops completely. The illuminator 1 1 is turned on, and the camera 127 takes an image of a portion of the near top edge surface including the cut line 141. Then, the rotary stage 74 moves one more step, settling down completely. While the stage is in motion, the control console 76 downloads the image from the camera 127 to the onboard memory and the hard disk media. Upon completion, the camera 127 takes the second picture. The above steps are repeated until the whole cut line along the circumference of the substrate 22 is completely imaged and recorded onto onboard memory and the hard disk media.
[0062] During operation, the control console 76 processes the recorded images to calculate the profile of the cut line 141 as well as the following parameters: the center disposition from the wafer center, mean edge exclusion distance, the standard deviation, and the peak-to-peak variation. The results are output to the results file with predefined format.
[0063] As shown in Figures 9 and 19, the wafer edge inspection and review system 10 can be used to measure multiple cut lines, for example, 151 , 152, and 153 of multiple film layers 154, 155, and 156. The positioning assembly 68 moves the optical imaging subsystem 64 and the area scan camera 127 to a position so that the top near edge surface of the substrate 22 with the cut lines 151 , 152 and 153 is within the field of view. The motorized focus lens 124 is set to the position where the image is under best focus. The rotary stage 74 starts to move forward one step and stops completely. The illuminator 11 is turned on, and the camera 127 takes an image of a portion of the near top edge surface including the cut lines 151 , 152 and 153. Then, the rotary stage 74 moves a second step, settling down completely. While the rotary stage is in motion, the control console 76 downloads the picture from the camera 127 to the onboard memory and the hard disk media. Upon completion, the camera 127 takes the second picture. The above steps are repeated until the whole cut lines along the circumference of the substrate 22 are completed imaged and recorded onto onboard memory and the hard disk media.
[0064] It should be appreciated that while the embodiments of the system 10 are described in relation to an automated system, a manual system would also be suitable. This includes a hybrid automated/manual inspection with automated or manual defect classification as described in U.S. Provisional Patent Application 60/964,163, filed August 9, 2007, entitled "Apparatus and Method for Wafer Edge Defects Detection" and U.S. Provisional Patent Application 60/964,149, filed August 9, 2007, entitled "Apparatus and Method for Wafer Edge Exclusion Measurement", both incorporated herein by reference. This also includes automated inspection in conjunction with automated wafer handling including robotic wafer handling with wafers delivered via FOUP or FOSB.
[0065] Thus, a cost effective yet efficient and effective system is provided for illuminating and inspecting the plurality of surfaces of the edge area of a substrate 22 and providing high quality imaging of the inspected surfaces while avoiding the interference associated with specular surfaces. The system provides for improving quality control of wafer processing through edge inspection with the intended benefit of identifying and addressing defects and their causes in the IC manufacturing process with resulting improvement in yield and throughput.

Claims

CLAIMS What is claimed is:
1. An automatic wafer edge inspection and review system comprising: an illuminator configured to provide illumination across a wafer edge; an optical imaging subsystem to image a portion of the wafer edge; a positioning assembly to orientate the optical imaging subsystem to an inspection angle; an eccentricity sensor to actively measure the center offset of a wafer edge relative to the rotation center of the wafer chuck; and a wafer chuck to hold the backside of a wafer.
2. The system of claim 1 wherein the optical imaging subsystem further comprises an optical filter to cut off certain wavelength spectrum; a mirror; an objective lens; a motorized focus lens to provide routine-defined focus adjustment; a motorized zoom lens; a magnifier lens; and a high resolution area scan color camera to image a portion of the wafer edge.
3. The system of claim 1 wherein the illuminator comprises, a cylindrical light diffuser having a slit extending at least a portion of its length for receiving an edge portion of a wafer; a plurality of light sources exterior or interior to the cylindrical light diffuser; and an intensity controller for independently controlling the plurality of light sources.
4. The system of claim 1 wherein the optical imaging subsystem is orientated in such a way that its principal axis is always kept away from the normal direction of the wafer edge portion under inspection.
5. The system of claim 1 further comprising a rotary stage which rotates the wafer in a step-and-stop fashion; a control console to provide tool control functions, image display, defect inspection, defect classification and edge exclusion measurement capabilities.
6. The system of claim 5 wherein the eccentricity sensor measures the eccentricity of a wafer and provides a signal to the control console.
7. The system of claim 5 wherein the rotary stage rotates the wafer along the circumference direction in a step-and-stop manner.
8. The system of claim 6 wherein the linear stage performs the eccentricity compensation, and brings the wafer to a best focus position based on the signal from the eccentricity sensor.
9. The system of claim 5 wherein the control console performs automatic defect inspection and classification, automatic measurement of edge bead removal cut lines and semi-automated defect review.
10. The system of claim 2 wherein the filter is a polarizer.
11. An automatic wafer edge inspection and review system of claim 1 wherein the wafer chuck is a pin-chuck and wafer is held on top of a plurality of pins by vacuum.
12. A wafer edge illumination and inspection system comprising: a light diffuser having a slit extending at least a portion of its length for receiving a portion of a wafer including a portion of the wafer edge; a plurality of light sources in proximity to the light diffuser; and an optical imaging subsystem for viewing the wafer wherein the optic is exterior of the light diffuser, and is positioned at an angle off a wafer edge surface normal, wherein the optical imaging subsystem further comprises an optical filter to cut off certain wavelength spectrum, a mirror, an objective lens, a motorized focus lens to provide routine-defined focus adjustment, a motorized zoom lens, a magnifier lens, and a high resolution area scan color camera to image a portion of the wafer edge.
13. The wafer edge illumination and inspection system of claim 12 further comprising: an illumination control system for independently controlling the plurality of light sources.
14. The wafer edge illumination and inspection system of claim 12 further comprising: a rotation mechanism for rotating the optic radially relative to a center point of the wafer edge region.
15. The wafer edge illumination and inspection system of claim 12, wherein the light diffuser is a quartz tube.
16. The wafer edge illumination and inspection system of claim 12, wherein the plurality of light sources is an LED matrix.
17. The LED matrix of claim 16 wherein each LED is independently controllable.
18. The wafer edge illumination and inspection system of claim 12, wherein the plurality of light sources is an array of fiber optics each coupled to an independent remotely located lamp.
19. The array of fiber optics of claim 18 wherein each lamp is independently controllable.
20. The wafer edge illumination and inspection system of claim 12, wherein the plurality of light sources is an LCD matrix.
21. The wafer edge illumination and inspection system of claim 12, wherein the plurality of light sources is a flexible OLED.
22. A substrate imaging system for imaging a specular surface of a substrate, comprising: a light diffuser housing having an opening for receiving a portion of the substrate wherein the interior of the light diffuser housing is a uniform neutral background to a specular surface being imaged wherein the light diffuser housing extends from over a top surface of the wafer to over an edge of the wafer and over a bottom surface of the wafer; an optical subsystem angled off a surface normal of the substrate area to be imaged wherein the optical lens is exterior to the light diffuser, wherein the optical subsystem comprise, a mirror, an objective lens, a motorized focus lens to provide routine-defined focus adjustment, a motorized zoom lens to provide both inspection and review functions, a magnifier lens, and a high resolution area scan color camera to image a portion of wafer edge; a light source disposed in the light diffuser housing; and an eccentricity sensor to actively measure the center offset of a wafer edge relative to the rotation center of the wafer chuck.
23. The substrate imaging system of claim 22 wherein the light source is coupled to a fiber optic for directing light from the light source to a plurality of locations of the light diffuser housing.
24. The substrate imaging system of claim 22 wherein the light source is one selected from the group of an LED matrix, LCD matrix, and OLED.
25. The substrate imaging system of claim 22 further comprising a light controller for controlling the color and brightness of the light source.
26. The substrate imaging system of claim 16 wherein the light source is one selected from the group of an LED matrix, LCD matrix, and OLED, wherein the light diffuser housing is a covering attached to the light source.
PCT/US2007/024224 2007-08-09 2007-11-19 Automatic wafer edge inspection and review system WO2009020456A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/891,657 2007-08-09
US11/891,657 US7508504B2 (en) 2006-05-02 2007-08-09 Automatic wafer edge inspection and review system

Publications (1)

Publication Number Publication Date
WO2009020456A1 true WO2009020456A1 (en) 2009-02-12

Family

ID=40342102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/024224 WO2009020456A1 (en) 2007-08-09 2007-11-19 Automatic wafer edge inspection and review system

Country Status (3)

Country Link
US (1) US7508504B2 (en)
TW (1) TW200908184A (en)
WO (1) WO2009020456A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10545096B1 (en) 2018-10-11 2020-01-28 Nanotronics Imaging, Inc. Marco inspection systems, apparatus and methods
US10915992B1 (en) 2019-08-07 2021-02-09 Nanotronics Imaging, Inc. System, method and apparatus for macroscopic inspection of reflective specimens
US11593919B2 (en) 2019-08-07 2023-02-28 Nanotronics Imaging, Inc. System, method and apparatus for macroscopic inspection of reflective specimens
US11961210B2 (en) 2023-02-27 2024-04-16 Nanotronics Imaging, Inc. System, method and apparatus for macroscopic inspection of reflective specimens

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1893939A1 (en) * 2005-06-17 2008-03-05 Volvo Aero Corporation A method and a device for measurement of edges
EP1826555A1 (en) * 2006-02-28 2007-08-29 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Apparatus and method for inspecting circuit structures
TW200802666A (en) * 2006-04-03 2008-01-01 Rudolph Technologies Inc Wafer bevel inspection mechanism
US20090116727A1 (en) * 2006-05-02 2009-05-07 Accretech Usa, Inc. Apparatus and Method for Wafer Edge Defects Detection
US20090122304A1 (en) * 2006-05-02 2009-05-14 Accretech Usa, Inc. Apparatus and Method for Wafer Edge Exclusion Measurement
US8335403B2 (en) * 2006-11-27 2012-12-18 Nec Laboratories America, Inc. Soft edge smoothness prior and application on alpha channel super resolution
US8233696B2 (en) * 2007-09-22 2012-07-31 Dynamic Micro System Semiconductor Equipment GmbH Simultaneous wafer ID reading
US20090207245A1 (en) * 2007-12-27 2009-08-20 Fujifilm Corporation Disk inspection apparatus and method
SG188094A1 (en) * 2008-01-30 2013-03-28 Rudolph Technologies Inc High resolution edge inspection
JPWO2009133847A1 (en) * 2008-04-30 2011-09-01 株式会社ニコン Observation apparatus and observation method
JP5260188B2 (en) * 2008-08-27 2013-08-14 富士フイルム株式会社 Hard disk inspection apparatus and method, and program
DE102009026186A1 (en) * 2009-07-16 2011-01-27 Hseb Dresden Gmbh Device and method for edge and surface inspection
TWI532116B (en) * 2010-04-11 2016-05-01 肯提克有限公司 Method and system for wafer registration
US20110262712A1 (en) * 2010-04-22 2011-10-27 Primestar Solar, Inc. Method for increasing the working surface area of a photovoltaic (pv) module and associated substrates
US20110317003A1 (en) * 2010-06-02 2011-12-29 Porat Roy Method and system for edge inspection using a tilted illumination
CN103313854A (en) * 2010-11-02 2013-09-18 卡巴-诺塔赛斯有限公司 Device for irradiating substrate material in the form of a sheet or web and uses thereof
US8781070B2 (en) 2011-08-11 2014-07-15 Jordan Valley Semiconductors Ltd. Detection of wafer-edge defects
US9082802B2 (en) * 2011-11-28 2015-07-14 Macronix International Co., Ltd. Wafer centering hardware design and process
KR101829676B1 (en) * 2011-12-29 2018-02-20 삼성전자주식회사 Method of thermally treating wafer
US9404873B2 (en) * 2012-03-09 2016-08-02 Kla-Tencor Corp. Wafer inspection with multi-spot illumination and multiple channels
US9157868B2 (en) * 2013-03-07 2015-10-13 Kla-Tencor Corporation System and method for reviewing a curved sample edge
US9964399B2 (en) 2013-03-15 2018-05-08 Bwxt Nuclear Energy, Inc. Non-destructive mapping of surface condition to evaluate wear conditions
US9313383B2 (en) * 2013-03-15 2016-04-12 Lockmasters Security Institute, Inc. System, device and method for capturing an image of multiple views of an object
US9689804B2 (en) 2013-12-23 2017-06-27 Kla-Tencor Corporation Multi-channel backside wafer inspection
US9885671B2 (en) * 2014-06-09 2018-02-06 Kla-Tencor Corporation Miniaturized imaging apparatus for wafer edge
US9726624B2 (en) 2014-06-18 2017-08-08 Bruker Jv Israel Ltd. Using multiple sources/detectors for high-throughput X-ray topography measurement
US9645097B2 (en) 2014-06-20 2017-05-09 Kla-Tencor Corporation In-line wafer edge inspection, wafer pre-alignment, and wafer cleaning
US10648927B2 (en) * 2015-05-15 2020-05-12 Taiwan Semiconductor Manufacturing Company Ltd. Method and apparatus for monitoring edge bevel removal area in semiconductor apparatus and electroplating system
US11557048B2 (en) 2015-11-16 2023-01-17 Applied Materials, Inc. Thickness measurement of substrate using color metrology
US10565701B2 (en) 2015-11-16 2020-02-18 Applied Materials, Inc. Color imaging for CMP monitoring
CN107026096A (en) * 2016-02-01 2017-08-08 易发精机股份有限公司 Crystal round fringes measure module
GB2552537B (en) 2016-07-28 2020-05-27 Smiths Heimann Sas Inspection system with source of radiation and method
KR102566162B1 (en) * 2016-08-23 2023-08-10 삼성전자주식회사 Wafer inspection apparatus and wafer instection method using the same
US10254214B1 (en) 2018-02-20 2019-04-09 Nanotronics Imaging, Inc. Systems, devices, and methods for combined wafer and photomask inspection
US10978331B2 (en) 2018-03-30 2021-04-13 Taiwan Semiconductor Manufacturing Co., Ltd. Systems and methods for orientator based wafer defect sensing
CN112272766A (en) * 2018-05-01 2021-01-26 纳米系统解决方案株式会社 Inspection apparatus
KR102211781B1 (en) * 2018-11-23 2021-02-05 세메스 주식회사 Substrate treating apparatus, apparatus and method of eccentricity inspection
US11100628B2 (en) 2019-02-07 2021-08-24 Applied Materials, Inc. Thickness measurement of substrate using color metrology
JP7344047B2 (en) * 2019-08-22 2023-09-13 株式会社ジェーイーエル How to align the board
DE102021200598A1 (en) * 2021-01-22 2022-07-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Process and device for creating meaningful cutting edge images
WO2022240630A1 (en) * 2021-05-14 2022-11-17 Applied Materials, Inc. Edge inspection system for inspection of optical devices
US11927545B1 (en) 2023-01-12 2024-03-12 Camtek Ltd Semiconductor edge and bevel inspection tool system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136916A (en) * 1998-10-15 2000-05-16 Wacker Siltronic Corp Method and apparatus for detecting, monitoring and characterizing edge defect on semiconductor wafer
JP2003243465A (en) * 2002-02-19 2003-08-29 Honda Electron Co Ltd Inspection equipment for wafer
JP2006294969A (en) * 2005-04-13 2006-10-26 Reitetsukusu:Kk Inspection apparatus and method for wafer

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099831A (en) 1971-11-29 1978-07-11 Vision Engineering, Ltd. High magnification optical apparatus with rotatable reflective lenticulated surface
US5629607A (en) 1984-08-15 1997-05-13 Callahan; Michael Initializing controlled transition light dimmers
US5172005A (en) * 1991-02-20 1992-12-15 Pressco Technology, Inc. Engineered lighting system for tdi inspection comprising means for controlling lighting elements in accordance with specimen displacement
US5461417A (en) 1993-02-16 1995-10-24 Northeast Robotics, Inc. Continuous diffuse illumination method and apparatus
US5883710A (en) 1994-12-08 1999-03-16 Kla-Tencor Corporation Scanning system for inspecting anomalies on surfaces
US5864394A (en) 1994-06-20 1999-01-26 Kla-Tencor Corporation Surface inspection system
US6288780B1 (en) 1995-06-06 2001-09-11 Kla-Tencor Technologies Corp. High throughput brightfield/darkfield wafer inspection system using advanced optical techniques
US6512631B2 (en) 1996-07-22 2003-01-28 Kla-Tencor Corporation Broad-band deep ultraviolet/vacuum ultraviolet catadioptric imaging system
US5825482A (en) 1995-09-29 1998-10-20 Kla-Tencor Corporation Surface inspection system with misregistration error correction and adaptive illumination
JP4306800B2 (en) 1996-06-04 2009-08-05 ケーエルエー−テンカー テクノロジィース コーポレイション Optical scanning system for surface inspection
US6021380A (en) * 1996-07-09 2000-02-01 Scanis, Inc. Automatic semiconductor wafer sorter/prober with extended optical inspection
US6483638B1 (en) 1996-07-22 2002-11-19 Kla-Tencor Corporation Ultra-broadband UV microscope imaging system with wide range zoom capability
US6064517A (en) 1996-07-22 2000-05-16 Kla-Tencor Corporation High NA system for multiple mode imaging
US6914250B2 (en) 1997-03-07 2005-07-05 Clare Chemical Research, Inc. Fluorometric detection using visible light
US5912735A (en) 1997-07-29 1999-06-15 Kla-Tencor Corporation Laser/white light viewing laser imaging system
US6608676B1 (en) 1997-08-01 2003-08-19 Kla-Tencor Corporation System for detecting anomalies and/or features of a surface
US6956644B2 (en) 1997-09-19 2005-10-18 Kla-Tencor Technologies Corporation Systems and methods for a wafer inspection system using multiple angles and multiple wavelength illumination
US6201601B1 (en) 1997-09-19 2001-03-13 Kla-Tencor Corporation Sample inspection system
US6614520B1 (en) 1997-12-18 2003-09-02 Kla-Tencor Corporation Method for inspecting a reticle
EP0935134B1 (en) 1998-02-05 2000-09-27 Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Apparatus and method for inspecting the edge micro-texture of a semiconductor wafer
US6020957A (en) 1998-04-30 2000-02-01 Kla-Tencor Corporation System and method for inspecting semiconductor wafers
US6282309B1 (en) 1998-05-29 2001-08-28 Kla-Tencor Corporation Enhanced sensitivity automated photomask inspection system
US6324298B1 (en) 1998-07-15 2001-11-27 August Technology Corp. Automated wafer defect inspection system and a process of performing such inspection
US6661521B1 (en) 1998-09-11 2003-12-09 Robotic Vision Systems, Inc. Diffuse surface illumination apparatus and methods
US6204917B1 (en) 1998-09-22 2001-03-20 Kla-Tencor Corporation Backside contamination inspection device
US6217034B1 (en) 1998-09-24 2001-04-17 Kla-Tencor Corporation Edge handling wafer chuck
US6208411B1 (en) 1998-09-28 2001-03-27 Kla-Tencor Corporation Massively parallel inspection and imaging system
US6999183B2 (en) 1998-11-18 2006-02-14 Kla-Tencor Corporation Detection system for nanometer scale topographic measurements of reflective surfaces
US6369524B2 (en) 1999-02-26 2002-04-09 Maf Technologies Corp. Addressable light dimmer and addressing system
US6414752B1 (en) 1999-06-18 2002-07-02 Kla-Tencor Technologies Corporation Method and apparatus for scanning, stitching, and damping measurements of a double-sided metrology inspection tool
US6433561B1 (en) 1999-12-14 2002-08-13 Kla-Tencor Corporation Methods and apparatus for optimizing semiconductor inspection tools
US6525883B2 (en) 1999-12-27 2003-02-25 Kabushiki Kaisha Topcon Optical characteristic measuring instrument
US6862142B2 (en) 2000-03-10 2005-03-01 Kla-Tencor Technologies Corporation Multi-detector microscopic inspection system
US6661580B1 (en) 2000-03-10 2003-12-09 Kla-Tencor Technologies Corporation High transmission optical inspection tools
US6590645B1 (en) 2000-05-04 2003-07-08 Kla-Tencor Corporation System and methods for classifying anomalies of sample surfaces
US6545752B1 (en) 2000-07-07 2003-04-08 Daitron, Inc. Method and apparatus for detecting defects along the edge of electronic media
US6636301B1 (en) 2000-08-10 2003-10-21 Kla-Tencor Corporation Multiple beam inspection apparatus and method
US6879390B1 (en) 2000-08-10 2005-04-12 Kla-Tencor Technologies Corporation Multiple beam inspection apparatus and method
US6538375B1 (en) 2000-08-17 2003-03-25 General Electric Company Oled fiber light source
US7136234B2 (en) 2000-09-12 2006-11-14 Kla-Tencor Technologies Corporation Broad band DUV, VUV long-working distance catadioptric imaging system
US6919957B2 (en) 2000-09-20 2005-07-19 Kla-Tencor Technologies Corp. Methods and systems for determining a critical dimension, a presence of defects, and a thin film characteristic of a specimen
EP1319244A1 (en) 2000-09-20 2003-06-18 Kla-Tencor Inc. Methods and systems for semiconductor fabrication processes
JP3593982B2 (en) 2001-01-15 2004-11-24 ソニー株式会社 Active matrix type display device, active matrix type organic electroluminescence display device, and driving method thereof
US7072034B2 (en) 2001-06-08 2006-07-04 Kla-Tencor Corporation Systems and methods for inspection of specimen surfaces
US6495312B1 (en) 2001-02-01 2002-12-17 Lsi Logic Corporation Method and apparatus for removing photoresist edge beads from thin film substrates
US7345751B2 (en) 2001-03-26 2008-03-18 Kla-Tencor Technologies Corporation Material independent optical profilometer
US6538730B2 (en) 2001-04-06 2003-03-25 Kla-Tencor Technologies Corporation Defect detection system
US6674522B2 (en) 2001-05-04 2004-01-06 Kla-Tencor Technologies Corporation Efficient phase defect detection system and method
US6603541B2 (en) 2001-06-28 2003-08-05 Kla-Tencor Technologies Corporation Wafer inspection using optimized geometry
US6922236B2 (en) 2001-07-10 2005-07-26 Kla-Tencor Technologies Corp. Systems and methods for simultaneous or sequential multi-perspective specimen defect inspection
US6882415B1 (en) 2001-07-16 2005-04-19 August Technology Corp. Confocal 3D inspection system and process
JP4468696B2 (en) 2001-09-19 2010-05-26 オリンパス株式会社 Semiconductor wafer inspection equipment
US6778267B2 (en) 2001-09-24 2004-08-17 Kla-Tencor Technologies Corp. Systems and methods for forming an image of a specimen at an oblique viewing angle
JP4166455B2 (en) 2001-10-01 2008-10-15 株式会社半導体エネルギー研究所 Polarizing film and light emitting device
US7088443B2 (en) 2002-02-11 2006-08-08 Kla-Tencor Technologies Corporation System for detecting anomalies and/or features of a surface
US6833913B1 (en) 2002-02-26 2004-12-21 Kla-Tencor Technologies Corporation Apparatus and methods for optically inspecting a sample for anomalies
US6724473B2 (en) 2002-03-27 2004-04-20 Kla-Tencor Technologies Corporation Method and system using exposure control to inspect a surface
JP3936220B2 (en) 2002-03-28 2007-06-27 株式会社レイテックス Edge inspection equipment
US7130039B2 (en) 2002-04-18 2006-10-31 Kla-Tencor Technologies Corporation Simultaneous multi-spot inspection and imaging
US7126681B1 (en) 2002-04-23 2006-10-24 Kla-Tencor Technologies Corporation Closed region defect detection system
GB2388189B (en) 2002-04-29 2006-01-11 Robert Jeffrey Geddes Carr Optical detection and analysis of particles
US6850321B1 (en) 2002-07-09 2005-02-01 Kla-Tencor Technologies Corporation Dual stage defect region identification and defect detection method and apparatus
US20050122509A1 (en) 2002-07-18 2005-06-09 Leica Microsystems Semiconductor Gmbh Apparatus for wafer inspection
US6820349B2 (en) 2002-09-30 2004-11-23 August Technology Corp. End effector alignment tool for substrate handling system
US6781688B2 (en) 2002-10-02 2004-08-24 Kla-Tencor Technologies Corporation Process for identifying defects in a substrate having non-uniform surface properties
KR100492158B1 (en) 2002-11-19 2005-06-02 삼성전자주식회사 Apparatus for inspecting a wafer
US6844927B2 (en) 2002-11-27 2005-01-18 Kla-Tencor Technologies Corporation Apparatus and methods for removing optical abberations during an optical inspection
US6903338B2 (en) 2003-01-30 2005-06-07 Kla-Tencor Technologies Corporation Method and apparatus for reducing substrate edge effects in electron lenses
US7227984B2 (en) 2003-03-03 2007-06-05 Kla-Tencor Technologies Corporation Method and apparatus for identifying defects in a substrate surface by using dithering to reconstruct under-sampled images
EP1639342A4 (en) 2003-05-19 2010-04-14 Kla Tencor Tech Corp Apparatus and methods for enabling robust separation between signals of interest and noise
US7068363B2 (en) 2003-06-06 2006-06-27 Kla-Tencor Technologies Corp. Systems for inspection of patterned or unpatterned wafers and other specimen
US7298940B2 (en) * 2003-06-10 2007-11-20 Abu-Ageel Nayef M Illumination system and display system employing same
US6947588B2 (en) 2003-07-14 2005-09-20 August Technology Corp. Edge normal process
US6770862B1 (en) 2003-07-28 2004-08-03 Kla-Tencor Technologies Corporation Scalable wafer inspection
US6985220B1 (en) 2003-08-20 2006-01-10 Kla-Tencor Technologies Corporation Interactive threshold tuning
US7013222B2 (en) 2003-09-12 2006-03-14 Lsi Logic Corporation Wafer edge inspection data gathering
US7130036B1 (en) 2003-09-16 2006-10-31 Kla-Tencor Technologies Corp. Methods and systems for inspection of an entire wafer surface using multiple detection channels
US6946670B1 (en) 2003-09-30 2005-09-20 Kla-Tencor Technologies Corporation Effective scanning resolution enhancement
US7227628B1 (en) 2003-10-10 2007-06-05 Kla-Tencor Technologies Corp. Wafer inspection systems and methods for analyzing inspection data
US7092082B1 (en) 2003-11-26 2006-08-15 Kla-Tencor Technologies Corp. Method and apparatus for inspecting a semiconductor wafer
US7001055B1 (en) 2004-01-30 2006-02-21 Kla-Tencor Technologies Corporation Uniform pupil illumination for optical inspection systems
DE102005014593A1 (en) 2005-03-31 2006-10-05 Leica Microsystems Semiconductor Gmbh Optical inspection system for disk-shaped objects e.g. semiconductor wafers, has inspection modules for performing macro-inspection and micro-inspection of structured surface, boundary area, extended edge and rear of disk-shaped objects
US7161667B2 (en) 2005-05-06 2007-01-09 Kla-Tencor Technologies Corporation Wafer edge inspection
US7161669B2 (en) 2005-05-06 2007-01-09 Kla- Tencor Technologies Corporation Wafer edge inspection
US7199946B2 (en) 2005-06-06 2007-04-03 Kla-Tencor Technologies Corp. Systems configured to provide illumination of a specimen during inspection
WO2007035834A2 (en) 2005-09-21 2007-03-29 Kla-Tencor Technologies Corporation Methods and systems for creating a recipe for a defect review process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136916A (en) * 1998-10-15 2000-05-16 Wacker Siltronic Corp Method and apparatus for detecting, monitoring and characterizing edge defect on semiconductor wafer
JP2003243465A (en) * 2002-02-19 2003-08-29 Honda Electron Co Ltd Inspection equipment for wafer
JP2006294969A (en) * 2005-04-13 2006-10-26 Reitetsukusu:Kk Inspection apparatus and method for wafer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10545096B1 (en) 2018-10-11 2020-01-28 Nanotronics Imaging, Inc. Marco inspection systems, apparatus and methods
US10914686B2 (en) 2018-10-11 2021-02-09 Nanotronics Imaging, Inc. Macro inspection systems, apparatus and methods
US11408829B2 (en) 2018-10-11 2022-08-09 Nanotronics Imaging, Inc. Macro inspection systems, apparatus and methods
US11656184B2 (en) 2018-10-11 2023-05-23 Nanotronics Imaging, Inc. Macro inspection systems, apparatus and methods
US10915992B1 (en) 2019-08-07 2021-02-09 Nanotronics Imaging, Inc. System, method and apparatus for macroscopic inspection of reflective specimens
US11341617B2 (en) 2019-08-07 2022-05-24 Nanotronics Imaging, Inc. System, method and apparatus for macroscopic inspection of reflective specimens
US11593919B2 (en) 2019-08-07 2023-02-28 Nanotronics Imaging, Inc. System, method and apparatus for macroscopic inspection of reflective specimens
US11663703B2 (en) 2019-08-07 2023-05-30 Nanotronics Imaging, Inc. System, method and apparatus for macroscopic inspection of reflective specimens
US11961210B2 (en) 2023-02-27 2024-04-16 Nanotronics Imaging, Inc. System, method and apparatus for macroscopic inspection of reflective specimens

Also Published As

Publication number Publication date
US7508504B2 (en) 2009-03-24
TW200908184A (en) 2009-02-16
US20080030731A1 (en) 2008-02-07

Similar Documents

Publication Publication Date Title
US7508504B2 (en) Automatic wafer edge inspection and review system
US20090122304A1 (en) Apparatus and Method for Wafer Edge Exclusion Measurement
US20070258085A1 (en) Substrate illumination and inspection system
US20090116727A1 (en) Apparatus and Method for Wafer Edge Defects Detection
US6822734B1 (en) Apparatus and method for fabricating flat workpieces
JP4514007B2 (en) Method and apparatus for inspecting appearance of subject
US8089622B2 (en) Device and method for evaluating defects in the edge area of a wafer and use of the device in inspection system for wafers
US8817249B2 (en) Device and method for inspecting moving semiconductor wafers
EP1001460A1 (en) Method and apparatus for detecting, monitoring and characterizing edge defects on semiconductor wafers
US20100053603A1 (en) Surface inspection apparatus and surface inspection method
US8087799B2 (en) Illumination means and inspection means having an illumination means
KR101444474B1 (en) Inspection apparatus
JP2991593B2 (en) Semiconductor wafer shape recognition device for dicing machine
JP2007155448A (en) Edge inspection device
JP2008267904A (en) Visual inspecting apparatus and method for inspecting surface state
US20130016206A1 (en) Device and method for edge- and surface inspeciton
KR100281881B1 (en) cream solder inspection apparatus and the method thereof
KR20030015207A (en) Imaging system
KR101442792B1 (en) Method for Inspecting Sapphire Wafer
JP2009288121A (en) Apparatus and method for inspecting lens
US5757479A (en) Optical inspection apparatus
WO2009021202A2 (en) Apparatus and method for wafer edge defects detection
WO2009021207A2 (en) Apparatus and method for wafer edge exclusion measurement
US20090207245A1 (en) Disk inspection apparatus and method
US6963394B2 (en) Inspecting device for semiconductor wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07862143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07862143

Country of ref document: EP

Kind code of ref document: A1