WO2009122834A1 - 4-パーフルオロイソプロピルアニリン類の製造方法 - Google Patents

4-パーフルオロイソプロピルアニリン類の製造方法 Download PDF

Info

Publication number
WO2009122834A1
WO2009122834A1 PCT/JP2009/053816 JP2009053816W WO2009122834A1 WO 2009122834 A1 WO2009122834 A1 WO 2009122834A1 JP 2009053816 W JP2009053816 W JP 2009053816W WO 2009122834 A1 WO2009122834 A1 WO 2009122834A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
organic base
hydrogen
Prior art date
Application number
PCT/JP2009/053816
Other languages
English (en)
French (fr)
Inventor
真太朗 佐々木
孝司 久米
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CN200980101180.XA priority Critical patent/CN101878192B/zh
Publication of WO2009122834A1 publication Critical patent/WO2009122834A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton

Definitions

  • the present invention relates to an industrial production method of 4-perfluoroisopropylanilines useful as an intermediate for pharmaceuticals and agricultural chemicals.
  • R 1 and R 2 are the same or different hydrogen atoms, alkyl groups having 1 to 10 carbon atoms, cycloalkyl groups having 3 to 8 carbon atoms, —COR 7 (wherein R 7 is a hydrogen atom) , An alkyl group having 1 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or a phenyl group or a substituted phenyl group) and COOR 8 (wherein R 8 represents a group selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, and a phenyl group.
  • R 3 , R 4 , R 5 and R 6 are the same or different hydrogen atom, halogen atom, hydroxyl group, nitro group, alkyl group having 1 to 10 carbon atoms, haloalkyl group having 1 to 10 carbon atoms, 1 to carbon atoms 10 alkoxy groups, alkylthio groups having 1 to 10 carbon atoms, —N (R 9 ) (R 10 ) (wherein R 9 and R 10 are the same or different hydrogen atoms, alkyl groups having 1 to 10 carbon atoms, carbon atoms, Represents a cycloalkyl group having a number of 3 to 8 or a phenyl group, and R 9 and R 10 may be combined to form an alkylene group having a carbon number of 3 to 6),-(R ')-N ( R 9 ) (R 10 ) (wherein R ′ represents an alkylene group having 1 to 6 carbon atoms, and R 9 and R 10 have the same meaning as described above), and a group
  • R 1 , R 2 , R 3 and R 5 may be combined to form an alkylene group having 2 to 4 carbon atoms, and R 3 , R 4 , R 5 and R 6 Among them, two adjacent groups can be combined to form an alkylene group having 3 to 5 carbon atoms.
  • Examples of the production method include the following A) to C).
  • perfluoroisopropylanilines are described as intermediates for medicines, agricultural chemicals, chemicals, etc., for example, phthalamide derivatives having a perfluoroisopropyl group on the benzene ring are useful as insecticides in agriculture and horticulture. (Patent Document 5).
  • the method (B) is disadvantageous for industrial mass production in that it is necessary to prepare halogenated benzenes in advance and that a copper equivalent or more is required as a catalyst.
  • the substituent at the 4-position is —NH 2
  • the —NH 2 group reacts with a perfluoroisopropyl group to produce “dimer A” or “dimer B” represented by the following formula: Is generated in a considerable amount, and the yield of the target product is greatly reduced (see the reference example described later) (in this specification, a chemical species having a perfluoroisopropyl group at the right end is similar to this). “Dimer A”, and the chemical species whose right end is a 2-hydroxyhexafluoroisopropyl group is called “Dimer B”).
  • the present invention provides an aminoaryl group-containing fluoroalcohol represented by the formula [1] in the presence of an organic base or a “salt or complex comprising an organic base and hydrogen fluoride” in the presence of an organic solvent.
  • the present inventor used the conventionally known sulfuryl fluoride as a fluorinating agent and applied it to the aminoaryl group-containing fluoroalcohol represented by the formula [1]. We obtained practically and industrially advantageous knowledge that the target product was obtained with high selectivity and high yield.
  • the present invention provides a specific “organic base” or a specific “organic base and fluoride in the presence of a specific organic solvent.
  • the present invention it is not necessary to use expensive reagents such as the method A) and B), and it is not necessary to use a large amount of difficult-to-handle reagents such as the method C). Further, compared to the method C), the production of the above “dimer” and other by-products can be remarkably suppressed, and the desired 4-perfluoroisopropylaniline can be produced with higher selectivity. In addition, the purification operation after the reaction was greatly reduced.
  • the applicant of the present invention converts the aminoaryl group-containing fluoroalcohol represented by the formula [1] in the presence of an organic base or a “salt or complex composed of an organic base and hydrogen fluoride” in a perfluoroalkanesulfonyl fluoride.
  • a method for producing 4-perfluoroisopropylanilines represented by the formula [2] using a glycan has already been filed (Japanese Patent Application No. 2007-326140).
  • perfluoroalkanesulfonyl fluoride used in this method can be replaced with sulfuryl fluoride and reacted under more suitable reaction conditions, so that it can be supplied more easily than conventional production methods. It became. This is a very excellent method for efficiently producing the target product on an industrial scale.
  • the present invention makes it possible to produce the desired 4-perfluoroisopropylanilines using sulfuryl fluoride, which is inexpensive and suitable for handling in large quantities, while greatly suppressing the production of by-products. There is an effect.
  • the present invention provides a sulfuryl fluoride containing an aminoaryl group-containing fluoroalcohol represented by the formula [1] in the presence of an organic base or a “salt or complex comprising an organic base and hydrogen fluoride” in the presence of an organic solvent.
  • a sulfuryl fluoride containing an aminoaryl group-containing fluoroalcohol represented by the formula [1] in the presence of an organic base or a “salt or complex comprising an organic base and hydrogen fluoride” in the presence of an organic solvent.
  • R 1 and R 2 are the same or different and are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a carbon number of 3 -COR 7 (wherein R 7 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or phenyl) A group or a substituted phenyl group) and COOR 8 (wherein R 8 represents an alkyl group having 1 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, or a phenyl group). Represents a selected group.
  • R 3 , R 4 , R 5 , and R 6 are the same or different and are a hydrogen atom, a halogen atom, a hydroxyl group, a nitro group, an alkyl group having 1 to 10 carbon atoms, or a haloalkyl group having 1 to 10 carbon atoms.
  • R ′ represents an alkylene group having 1 to 6 carbon atoms, R 9 and R 10 have the same meanings as described above
  • phenyl represents a group selected from the group consisting of groups.
  • R 1 , R 2 , R 3 and R 5 may be combined to form an alkylene group having 2 to 4 carbon atoms, and R 3 , R 4 , R 5 and R 6 Among them, two adjacent groups can be combined to form an alkylene group having 3 to 5 carbon atoms.
  • R 1 and R 2 are preferably hydrogen or an alkyl group having 1 to 6 carbon atoms (more preferably a methyl group or an ethyl group), and R 3 to R 6 are also hydrogen or an alkyl group having 1 to 6 carbon atoms.
  • a group (a methyl group or an ethyl group is more preferred) is preferred.
  • R 1 and R 2 are hydrogen and R 3 to R 6 are hydrogen or a methyl group, it is one of particularly preferable ones.
  • aminoaryl group-containing fluoroalcohols used as raw materials are, for example, J. Am. Chem. Soc. 87, p. Each compound can be produced according to the method described in 2410 (1965).
  • the amount of sulfuryl fluoride used in the present invention is preferably at least equimolar with respect to the raw material aminoaryl group-containing fluoroalcohol in terms of economy. However, since it is wasted if it is used too much, it is preferably 10 molar equivalents or less, more preferably 2 molar equivalents or less.
  • the organic base used in this reaction is trimethylamine, triethylamine [(C 2 H 5 ) 3 N], diisopropylethylamine (((CH 3 ) 2 CH) 2 N (C 2 H 5 )), tripropylamine, tributylamine Secondary amines such as diisopropylamine (((CH 3 ) 2 CH) 2 NH), pyridine, 2,3-lutidine, 2,4-lutidine, 2,5-lutidine, 2,6- Lutidine, 3,4-lutidine, 3,5-lutidine, 2,3,4-collidine, 2,4,5-collidine, 2,5,6-collidine, 2,4,6-collidine, 3,4, Nitrogen-containing aromatic heterocyclic compounds such as 5-collidine, 3,5,6-collidine, pyrrolidine, 2-methylpyrrolidine, piperidine, 2-methylpiperidine, morpholine, 2-methylmorpholine, 1,8-diaza Cyclo [5.4.0] nitrogen-containing cyclic compounds such as unde
  • tertiary amines such as trimethylamine, triethylamine, diisopropylethylamine, tripropylamine, tributylamine, secondary amines such as diisopropylamine, pyridine, 2,3-lutidine, 2,4-lutidine, 2,6-lutidine, Nitrogen-containing aromatic heterocyclic compounds such as 3,4-lutidine, 3,5-lutidine, 2,4,6-collidine and 3,5,6-collidine are preferable, and trimethylamine, triethylamine, diisopropylethylamine, tripropylamine are preferable. Tertiary amines such as tributylamine are more preferable.
  • organic base of the “salt or complex comprising an organic base and hydrogen fluoride” examples include trimethylamine, triethylamine [(C 2 H 5 ) 3 N], diisopropylethylamine (((CH 3 ) 2 CH) 2 N (C 2 H 5 )), tertiary amines such as tripropylamine and tributylamine, secondary amines such as diisopropylamine (((CH 3 ) 2 CH) 2 NH), pyridine, 2, 3 -Lutidine, 2,4-lutidine, 2,5-lutidine, 2,6-lutidine, 3,4-lutidine, 3,5-lutidine, 2,3,4-collidine, 2,4,5-collidine, 2 , 5,6-collidine, 2,4,6-collidine, 3,4,5-collidine, 3,5,6-collidine and other nitrogen-containing aromatic heterocyclic compounds, pyrrolidine, 2-methylpyrrolidine, piperidy ,
  • tertiary amines such as trimethylamine, triethylamine, diisopropylethylamine, tripropylamine, tributylamine, secondary amines such as diisopropylamine, pyridine, 2,3-lutidine, 2,4-lutidine, 2,6-lutidine, Nitrogen-containing aromatic heterocyclic compounds such as 3,4-lutidine, 3,5-lutidine, 2,4,6-collidine and 3,5,6-collidine are preferable, and trimethylamine, triethylamine, diisopropylethylamine, tripropylamine are preferable. Tertiary amines such as tributylamine are more preferable.
  • the present invention can be carried out in the presence of these organic bases, but using a “salt or complex comprising an organic base and hydrogen fluoride” instead of the organic base or together with the organic base. You can also. In order to obtain a higher yield, it is more preferable to carry out the reaction of the present invention in the presence of “a salt or complex comprising an organic base and hydrogen fluoride”.
  • the molar ratio of the organic base to hydrogen fluoride in the “salt or complex comprising an organic base and hydrogen fluoride” is in the range of 100: 1 to 1: 100, and usually in the range of 50: 1 to 1:50. The range of 25: 1 to 1:25 is particularly preferable.
  • “complex consisting of 1 mol of triethylamine and 3 mol of hydrogen fluoride” commercially available from Aldrich (2003-2004 General Catalog), and “pyridine 30% ( ⁇ 10 mol%) and hydrogen fluoride up to 70 It is very convenient to use “complex consisting of% ( ⁇ 90 mol%)”.
  • the above organic base and hydrogen fluoride can be separately added at the above-mentioned ratio to form a “salt or complex comprising an organic base and hydrogen fluoride” in the reaction system.
  • the amount of the “salt or complex comprising an organic base and hydrogen fluoride” is not particularly limited, but 0.3 mol or more as a fluorine anion (F ⁇ ) per 1 molar equivalent of an aminoaryl group-containing fluoroalcohol. It may be used, usually 0.5 to 50 mol, more preferably 0.7 to 25 mol.
  • reaction solvents include aliphatic hydrocarbons such as n-hexane, cyclohexane and n-heptane, aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene, halogens such as methylene chloride, chloroform and 1,2-dichloroethane.
  • Hydrocarbons such as diethyl ether, tetrahydrofuran and tert-butyl methyl ether, esters such as ethyl acetate and butyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like
  • esters such as ethyl acetate and butyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like
  • Examples include amides, nitriles such as acetonitrile and propionitrile, and dimethyl sulfoxide.
  • esters such as ethyl acetate and butyl acetate, amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, nitriles such as acetonitrile and propionitrile, and dimethyl sulfoxide are preferable. Nitriles such as acetonitrile and propionitrile are more preferable.
  • the amount of the reaction solvent to be used is not particularly limited, but it may be 0.1 L (liter) or more per 1 mol of aminoaryl group-containing fluoroalcohol, usually 0.1 to 20 L, particularly preferably 0. 1 to 10 L is more preferable.
  • the temperature condition is not particularly limited, but may be in the range of ⁇ 100 to + 100 ° C., usually ⁇ 90 to + 90 ° C., and more preferably ⁇ 80 to + 80 ° C.
  • the pressure condition is not particularly limited, but may be, for example, in the range of normal pressure (0.1 MPa (absolute pressure reference, hereinafter the same)) to 2 MPa. In this case, 0.1 MPa to 1.5 MPa is preferable. In particular, 0.1 MPa to 1 MPa is more preferable.
  • the pressure-resistant reaction vessel After adding the aminoaryl group-containing fluoroalcohol to the pressure-resistant reaction vessel, the pressure is reduced under the condition of degassing of the inert gas (air, nitrogen) in the pressure-resistant reaction vessel.
  • the reaction After adding a base or a “salt or complex comprising an organic base and hydrogen fluoride” and sulfuryl fluoride, the reaction can be carried out with the container sealed.
  • reaction vessel used in the reaction examples include a pressure-resistant reaction vessel lined with Monel, Hastelloy, nickel, or a fluorine resin such as these metals, polytetrafluoroethylene, or perfluoropolyether resin.
  • the reaction time is not particularly limited, but may be in the range of 0.1 to 72 hours, and varies depending on the substrate and reaction conditions. It is preferable that the end point is the time when the raw material is almost disappeared by tracking the situation.
  • the organic solvent is particularly preferably a nitrile such as acetonitrile or propionitrile, and the amount of the organic solvent used is 0 with respect to 1 mol of the alcohol.
  • 1 to 10 L tertiary amines such as trimethylamine, triethylamine, diisopropylethylamine, tri-n-propylamine, tributylamine and the like are particularly suitable as the organic base, and the amount of the organic base used is 10 mol with respect to 1 mol of the alcohol.
  • the target product can be obtained with a high selectivity and a high yield by reacting at a reaction temperature of -80 to + 80 ° C. and a reaction temperature of 0.1 MPa to 1 MPa within 24 hours.
  • reaction-terminated solution is poured into water or an aqueous solution of an alkali metal inorganic base (eg, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate or potassium carbonate), and an organic solvent (
  • an alkali metal inorganic base eg, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate or potassium carbonate
  • organic solvent e.g, a crude product can be obtained by extraction with toluene, mesitylene, methylene chloride, ethyl acetate or the like.
  • % of the composition analysis value means “mol%” of the composition obtained by measuring the reaction mixture with a nuclear magnetic resonance analyzer (NMR, unless otherwise specified, the measurement nucleus is 19 F). Or gas chromatography (GC, unless otherwise stated, represents “area%” of the composition obtained by measurement with a detector.
  • reaction solution was concentrated by gradually depressurizing to 127 hPa at 50 ° C.
  • a 30% aqueous potassium hydroxide solution was gradually added to the concentrated residue for neutralization, followed by liquid separation.
  • the separated organic layer was purified by distillation under reduced pressure to obtain 24 g of the desired product as a colorless oil. This compound had a boiling point of 76 ° C. at 670 Pa. The isolation yield was 62%.
  • the target product 4-heptafluoroisopropyl-2-methylaniline was 0.3%
  • the starting material 2- (4-amino-3-methylphenyl) -1,1,1, 3,3,3-hexafluoropropane-2-ol is 88.7%
  • "sulfonamide compound” is 11.0% (sulfonamide compound A is 8.0%, sulfonamide compound B) (In this comparative example, the final post-processing operation is not performed).
  • the gas chromatograph composition at the end of the reaction was 33.7% of the target product 4-heptafluoroisopropyl-2-methylaniline, no starting material was detected, and 66.7% of the “dimer” (dimer A, Total value of dimerized product B).

Abstract

以下の式で表される4-パーフルオロイソプロピルアニリン類の製造方法が開示されている。 この方法においては、有機溶媒存在下、有機塩基又は「有機塩基とフッ化水素からなる塩または錯体」を共存させて、対応するアミノアリール基含有フルオロアルコール類をフッ化スルフリル(SO22)と反応させる。本発明によれば、副生物の生成を顕著に抑制しつつ、目的物を製造できる。

Description

4-パーフルオロイソプロピルアニリン類の製造方法
 本発明は、医薬、農薬の中間体として有用な、4-パーフルオロイソプロピルアニリン類の工業的な製造方法に関する。
発明の背景
 従来知られている、式[2]で表される、4-パーフルオロイソプロピルアニリン類
Figure JPOXMLDOC01-appb-C000003
[式[2]において、R1およびR2は同一又は異なる水素原子、炭素数1~10のアルキル基、炭素数3~8のシクロアルキル基、-COR7 (式中、Rは水素原子、炭素数1~10のアルキル基、炭素数1~10のハロアルキル基、炭素数3~8のシクロアルキル基、又はフェニル基もしくは置換されたフェニル基を示す。)およびCOOR8 (式中、R8 は炭素数1~10のアルキル基、炭素数1~10のハロアルキル基、又はフェニル基を示す。)からなる群より選ばれた基を表す。R3 、R4 、R5 、およびR6は同一又は異なる水素原子、ハロゲン原子、ヒドロキシル基、ニトロ基、炭素数1~10のアルキル基、炭素数1~10のハロアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルチオ基、-N(R9)(R10) (式中、R9 及びR10 は同一又は異なる水素原子、炭素数1~10のアルキル基、炭素数3~8のシクロアルキル基、又はフェニル基を示す。R9とR10は一緒になって炭素数3~6のアルキレン基を形成することもできる。)、-(R’)-N(R9 )(R10)(式中、R’は炭素数1~6のアルキレン基を表す。R9及びR10 の意味は前記と同じ)、およびフェニル基からなる群より選ばれた基を表す。
 R1、R2 、R3 及びR5のうち任意の2つの基が一緒になって、炭素数2~4のアルキレン基を形成することもでき、R3、R4、R5 及びR6 のうち、隣り合った2個の基が一緒になって、炭素数3~5のアルキレン基を構成することもできる。]
の製造方法としては、次のA)~C)が挙げられる。
 A)アニリン類と2-ハロゲン化パーフルオロイソプロピルとをラジカル反応開始剤の存在下に反応させてアニリンの4位をパーフルオロイソプロピル基に置換する方法(特許文献1、特許文献2)。
Figure JPOXMLDOC01-appb-C000004
[上記反応式において、R1~R6の意味は、式[1]と同じ。]
 B)ハロゲン化ベンゼン類と2-ヨードヘプタフルオロプロパンを原料とし、金属銅の存在下にカップリングさせる方法(特許文献3、非特許文献1、非特許文献2)。
Figure JPOXMLDOC01-appb-C000005
[上記反応式において、R1~R6の意味は、式[1]と同じ。]
 C)フェニルグリニャール試薬とヘキサフルオロアセトンを反応させて得られる2-フェニル-1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールを、四フッ化イオウなどのフッ素化剤を用いて脱ヒドロキシルフッ素化した後、混酸によりニトロ化し、さらにニトロ基を還元してアニリン類を得る方法(特許文献4)。
Figure JPOXMLDOC01-appb-C000006
 一方、パーフルオロイソプロピルアニリン類は医農薬、化学品等の中間体として、例えば、ベンゼン環上にパーフルオロイソプロピル基を有するフタラミド誘導体が農業および園芸分野での殺虫剤として有用である事が記載されている(特許文献5)。
 なお、ヒドロキシル基を有する化合物に、パーフルオロアルカンスルホニルフルオリドを反応させ、脱ヒドロキシフッ素化を生じさせる反応は、既に知られており(非特許文献3、特許文献6等)、ヒドロキシル基を有する化合物に、フッ化スルフリル(SO22)を反応させて対応するフッ素化物を得る反応も知られている(特許文献7)。しかしながら、アミノ基を含有するアリール基を含むフルオロアルコールの脱ヒドロキシルフッ素化については、知られていなかった。
特開第2001-122836号公報 特開第2003-335735号公報 ドイツ公開特許第2606982号公報 カナダ特許明細書第1,022,573号 特表第2005-529963号公報 特開第2004-323518号公報 特開第2006-290870号公報 Tetrahedron,25,5921(1969) Bull.Chem.Soc.Jpn.,65.2141(1992) Organic Letters,第6巻、第9号(2004年)、第1465~1468頁
発明の概要
 上記A)の方法では、あらかじめ2-ハロゲン化パーフルオロイソプロピルを調製する必要がある。この方法においては、2-ハロゲン化パーフルオロイソプロピルとして、高価なヨウ化物を用いた場合以外は、目的物は満足のいく収率では得られない。
 B)の方法では予めハロゲン化ベンゼン類を調製する必要がある点、触媒として当量以上の銅を必要とすることなどの点で、工業的に量産を行うには不利である。
 C)の方法は、フッ素化剤として四フッ化イオウという、大量の取り扱いの容易でない試薬を用いる必要があり、必ずしも工業的に有利とは言えない。さらに、この四フッ化イオウを用いた脱ヒドロキシルフッ素化反応を、アミノアリール基含有フルオロアルコールに適用する場合には、目的とする4-パーフルオロイソプロピルアニリン類の他に、望まれない副生物が相当量生成することが判っている。特に、4位の置換基が-NH2であるときには、-NH2基がパーフルオロイソプロピル基と反応して、下記式で表される「二量化体A」または「二量化体B」
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
が相当量生成し、目的物の収率が大幅に低下するという問題がある(後述の参考例を参照)(本明細書において、これに類する、右端部がパーフルオロイソプロピル基である化学種を「二量化体A」、右端部が2-ヒドロキシヘキサフルオロイソプロピル基である化学種を「二量化体B」と呼ぶ)。
 このように、医薬、農薬の中間体として有用な4-パーフルオロイソプロピルアニリン類の既知の製造方法はいずれも、小規模で目的物を得るには適しているものの、大量規模の製造法としては、十分満足のいくものではなかった。
 そこで本発明者らは、上記課題に鑑みて鋭意検討したところ、式[1]で表されるアミノアリール基含有フルオロアルコール類
Figure JPOXMLDOC01-appb-C000009
を、フッ化スルフリル(SO22)と反応させて、式[2]で表される4-パーフルオロイソプロピルアニリン類
Figure JPOXMLDOC01-appb-C000010
を製造する際、有機溶媒存在下、有機塩基又は「有機塩基とフッ化水素からなる塩または錯体」を共存させることにより、高選択率で脱ヒドロキシルフッ素化反応が起こり、式[2]で表される、4-パーフルオロイソプロピルアニリン類が得られることを見出した(式[1]及び式[2]において、R1からR6の意味は、前記と同じ。)。
 すなわち、本発明は、有機溶媒存在下、有機塩基又は「有機塩基とフッ化水素からなる塩または錯体」を共存させて、式[1]で表されるアミノアリール基含有フルオロアルコール類を、フッ化スルフリル(SO22)と反応させることを含む、式[2]で表される4-パーフルオロイソプロピルアニリン類の製造方法を提供する。
 なお、R1とR2が共に水素原子である場合(すなわち、4位置換基が-NH2である場合)には、上記C)の方法にならって、式[1]で表される化合物の代わりに、「アミノ基非含有のアリール基を有するフルオロアルコール」を原料とし、これを、パーフルオロアルカンスルホニルフルオリド(RfSO2F;Rf:パーフルオロアルキル基)と反応させて、ヒドロキシル基をフッ素に置換し、かかる後に、該アリール基をニトロ化し、次いで還元する、という方法も想定される(以下の式を参照)。
Figure JPOXMLDOC01-appb-C000011
 ところが、「アミノ基非含有のアリール基を有するフルオロアルコール」を原料とした場合、パーフルオロアルカンスルホニルフルオリドによる脱ヒドロキシルフッ素化はほとんど進行しないことが判った(上式)。
 また、前述した、四フッ化硫黄を用いたアミノアリール基含有フルオロアルコールに対する脱ヒドロキシルフッ素化についても、上記「二量化体」等の副生物が相当量生成するということからも、本発明者らは、式[1]で表されるアミノアリール基含有フルオロアルコール類に対し、フッ化スルフリル(SO22)を用いてフッ素化を試みても、はたして対応する目的物が良好に得られるかどうか、不明であった。
 ところが本発明者は、従来から知られているフッ化スルフリルをフッ素化剤として用い、式[1]で表されるアミノアリール基含有フルオロアルコール類に対して適用させたところ、脱ヒドロキシルフッ素化が効率よく進行し、高選択率かつ高収率で該目的物を得たという、実用的かつ工業的にも有利な知見を得た。
 また、式[1]で表されるアミノアリール基含有フルオロアルコール類のうち、R1~R6が特定の置換基のアルコール類(詳細は後述の実施例参照)の際に、格段と脱ヒドロキシルフッ素化が進行し、高選択的で該目的物を得ることとなった。
 また本発明は、式[1]で表されるアミノアリール基含有フルオロアルコール類を出発原料に用いた際、特定の有機溶媒存在下、特定の「有機塩基」又は特定の「有機塩基とフッ化水素からなる塩または錯体」を共存させるといった、「好適な反応条件下」で反応させることで、特に脱ヒドロキシルフッ素化が良好に進行し、該目的物を更に高収率で製造できるという知見も得た。
 本発明によれば、上記A)の方法、B)の方法のような高価な試薬を用いることなく、また上記C)の方法のような、大量の取り扱いが難しい試薬を用いる必要もない。さらに、C)の方法に比べ、上記「二量化体」その他の副生物の生成を顕著に抑制することができ、目的とする4-パーフルオロイソプロピルアニリン類を、より高い選択率で製造できる。また、これに伴い、反応後の精製操作も大幅に軽減されることとなった。
 なお、本出願人は、式[1]で表されるアミノアリール基含有フルオロアルコール類を、有機塩基又は「有機塩基とフッ化水素からなる塩または錯体」の存在下で、パーフルオロアルカンスルホニルフルオリドを用いた、式[2]で表される4-パーフルオロイソプロピルアニリン類の製造方法を既に出願している(特願2007-326140)。本発明では、この方法で用いているパーフルオロアルカンスルホニルフルオリドをフッ化スルフリルに代えて、更に好適な反応条件下で反応させることで、従来の製造方法と比べて容易に供給することが可能となった。該目的物を工業的規模で効率良く製造する上で非常に優れた方法である。
詳細な説明
 本発明は、安価で、大量の取り扱いにも好適なフッ化スルフリルを用いて、副生物の生成を大幅に抑制しつつ、目的とする4-パーフルオロイソプロピルアニリン類を製造することを可能にするという効果を奏する。
 以下、本発明を詳細に説明する。本発明は、式[1]で表されるアミノアリール基含有フルオロアルコール類を、有機溶媒存在下、有機塩基又は「有機塩基とフッ化水素からなる塩または錯体」の存在下で、フッ化スルフリルと反応させることにより、脱ヒドロキシルフッ素化反応を生ぜしめ、式[2]で表される4-パーフルオロイソプロピルアニリン類を製造することによりなる。
Figure JPOXMLDOC01-appb-C000012
 本発明で用いられる式[1]で表されるアミノアリール基含有フルオロアルコール類において、R1およびR2は同一に、又は異なって、水素原子、炭素数1~10のアルキル基、炭素数3~8のシクロアルキル基、-COR7 (式中、Rは水素原子、炭素数1~10のアルキル基、炭素数1~10のハロアルキル基、炭素数3~8のシクロアルキル基、又はフェニル基もしくは置換されたフェニル基を示す。)およびCOOR8 (式中、R8 は炭素数1~10のアルキル基、炭素数1~10のハロアルキル基、又はフェニル基を示す。)からなる群より選ばれた基を表す。
 R3、R4 、R5 、およびR6 は、同一に、又は異なって、水素原子、ハロゲン原子、ヒドロキシル基、ニトロ基、炭素数1~10のアルキル基、炭素数1~10のハロアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルチオ基、-N(R9)(R10) (式中、R9 及びR10 は、同一に、又は異なって、水素原子、炭素数1~10のアルキル基、炭素数3~8のシクロアルキル基、又はフェニル基を示す。R9とR10は一緒になって炭素数3~6のアルキレン基を形成することもできる。)、-(R’)-N(R9 )(R10)(式中、R’は炭素数1~6のアルキレン基を表す。R9及びR10 の意味は前記と同じ)、およびフェニル基からなる群より選ばれた基を表す。
 R1、R2 、R3 及びR5 のうち任意の2つの基が一緒になって、炭素数2~4のアルキレン基を形成することもでき、R3、R4、R5 及びR6 のうち、隣り合った2個の基が一緒になって、炭素数3~5のアルキレン基を構成することもできる。
 これらのうち、R1、R2は水素もしくは炭素数1~6のアルキル基(メチル基、エチル基がより好ましい)が好ましく、R3~R6も同じく、水素もしくは炭素数1~6のアルキル基(メチル基、エチル基がより好ましい)が好ましい。
 例えば、本実施例にも示すように、当該アルコール類のうち、R1、R2は水素で、かつR3~R6が水素もしくはメチル基の場合は、特に好ましいものの一つである。
 原料となるこれらのアミノアリール基含有フルオロアルコールは、例えばJ.Am.Chem.Soc.,第87巻,p.2410(1965)に記載の方法に準じてそれぞれの化合物を製造することができる。
 本発明で用いられるフッ化スルフリルの使用量は、原料のアミノアリール基含有フルオロアルコール類に対して少なくとも等モル以上を用いることが、経済面で好ましい。しかし、あまり多量に用いるとかえって無駄になるため、10モル当量以下であることが好ましく、さらに好ましくは2モル当量以下の範囲である。
 本反応に使用する有機塩基は、トリメチルアミン、トリエチルアミン[(C253N]、ジイソプロピルエチルアミン(((CH32CH)2N(C25))、トリプロピルアミン、トリブチルアミン等の3級アミン、ジイソプロピルアミン(((CH32CH)2NH)等の2級アミン、ピリジン、2,3-ルチジン、2,4-ルチジン、2,5-ルチジン、2,6-ルチジン、3,4-ルチジン、3,5-ルチジン、2,3,4-コリジン、2,4,5-コリジン、2,5,6-コリジン、2,4,6-コリジン、3,4,5-コリジン、3,5,6-コリジン等の含窒素芳香族複素環式化合物、ピロリジン、2-メチルピロリジン、ピペリジン、2-メチルピペリジン、モルホリン、2-メチルモルホリン、1,8-ジアザビシクロ[5.4.0]ウンデク-7-エン(DBU)等の含窒素環式化合物が挙げられる。これらの中でもトリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリプロピルアミン、トリブチルアミン等の3級アミン、ジイソプロピルアミン等の2級アミン、ピリジン、2,3-ルチジン、2,4-ルチジン、2,6-ルチジン、3,4-ルチジン、3,5-ルチジン、2,4,6-コリジン、3,5,6-コリジン等の含窒素芳香族複素環式化合物が好ましく、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリプロピルアミン、トリブチルアミン等の3級アミンがより好ましい。
 有機塩基の使用量としては、特に制限はないが、アミノアリール基含有フルオロアルコール1モルに対して1モル当量以上を使用することが、収率面から好ましい。上限値に制限はないが、通常は20モル当量以下が好ましく、経済性の面から特に10モル当量以下が好ましい。
 上記、有機塩基と共に用いることができる「有機塩基とフッ化水素からなる塩または錯体」の有機塩基としては、トリメチルアミン、トリエチルアミン[(C253N]、ジイソプロピルエチルアミン(((CH32CH)2N(C25))、トリプロピルアミン、トリブチルアミン等の3級アミン、ジイソプロピルアミン(((CH32CH)2NH)等の2級アミン、ピリジン、2,3-ルチジン、2,4-ルチジン、2,5-ルチジン、2,6-ルチジン、3,4-ルチジン、3,5-ルチジン、2,3,4-コリジン、2,4,5-コリジン、2,5,6-コリジン、2,4,6-コリジン、3,4,5-コリジン、3,5,6-コリジン等の含窒素芳香族複素環式化合物、ピロリジン、2-メチルピロリジン、ピペリジン、2-メチルピペリジン、モルホリン、2-メチルモルホリン、1,8-ジアザビシクロ[5.4.0]ウンデク-7-エン(DBU)等の含窒素環式化合物が挙げられる。これらの中でもトリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリプロピルアミン、トリブチルアミン等の3級アミン、ジイソプロピルアミン等の2級アミン、ピリジン、2,3-ルチジン、2,4-ルチジン、2,6-ルチジン、3,4-ルチジン、3,5-ルチジン、2,4,6-コリジン、3,5,6-コリジン等の含窒素芳香族複素環式化合物が好ましく、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリプロピルアミン、トリブチルアミン等の3級アミンがより好ましい。
 本発明は、これらの有機塩基が存在する条件で実施することができるが、上記有機塩基に代えて、或いは上記有機塩基と共に、「有機塩基とフッ化水素からなる塩または錯体」を使用することもできる。より高い収率を得るためには、「有機塩基とフッ化水素からなる塩または錯体」の共存下、本発明の反応を実施することが、より好ましい。
 「有機塩基とフッ化水素からなる塩または錯体」の有機塩基とフッ化水素のモル比としては、100:1~1:100の範囲であり、通常は50:1~1:50の範囲が好ましく、特に25:1~1:25の範囲がより好ましい。さらにアルドリッチ(Aldrich、2003-2004総合カタログ)から市販されている、「トリエチルアミン1モルとフッ化水素3モルからなる錯体」、および「ピリジン~30%(~10モル%)とフッ化水素~70%(~90モル%)からなる錯体」を使用するのが極めて便利である。
 また、本発明は、上記有機塩基とフッ化水素を上述の割合で別々に加え、反応系内で「有機塩基とフッ化水素からなる塩または錯体」を形成させることもできる。
 「有機塩基とフッ化水素からなる塩または錯体」の使用量としては、特に制限はないが、アミノアリール基含有フルオロアルコール1モル当量に対してフッ素アニオン(F-)として0.3モル以上を使用すればよく、通常は0.5~50モルが好ましく、特に0.7~25モルがより好ましい。
 また、本発明は、有機溶媒を共存させて反応を行うことで、脱ヒドロキシフッ素化が良好に進行する。ここで有機溶媒とは、本発明の反応に直接関与しない不活性な有機化合物のことを言う。反応溶媒としては、n-ヘキサン、シクロヘキサン、n-ヘプタン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素類、塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素類、ジエチルエーテル、テトラヒドロフラン、tert-ブチルメチルエーテル等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、アセトニトリル、プロピオニトリル等のニトリル類、ジメチルスルホキシド等が挙げられる。
 その中でも酢酸エチル、酢酸ブチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、アセトニトリル、プロピオニトリル等のニトリル類、ジメチルスルホキシドが好ましく、アセトニトリル、プロピオニトリル等のニトリル類がより好ましい。これらの反応溶媒は単独又は組み合わせて使用することができる。
 本発明は、反応系内に有機溶媒を共存させない場合、脱ヒドロキシルフッ素化が有機溶媒を共存させた場合と比べ進行しにくく、変換率が低下する(後述の比較例1参照)。本発明では、有機溶媒を加えることで脱ヒドロキシルフッ素化反応が劇的に進行し、さらに高選択率で当該目的物を良好に得ることができる。
 反応溶媒の使用量としては、特に制限はないが、アミノアリール基含有フルオロアルコール1モルに対して0.1L(リットル)以上を使用すればよく、通常は0.1~20Lが好ましく、特に0.1~10Lがより好ましい。
 温度条件としては、特に制限はないが、-100~+100℃の範囲で行えばよく、通常は-90~+90℃が好ましく、特に-80~+80℃がより好ましい。
 圧力条件としては、特に制限はないが、例えば常圧(0.1MPa(絶対圧基準。以下、同じ。))~2MPaの範囲で行えばよく、この場合、0.1MPa~1.5MPaが好ましく、特に0.1MPa~1MPaがより好ましい。
 なお、後述の実施例に示すように、耐圧反応容器にアミノアリール基含有フルオロアルコールを加えた後に、耐圧反応容器内の不活性ガス(空気、窒素)の脱気を目的として減圧条件にし、有機塩基又は「有機塩基とフッ化水素からなる塩または錯体」、及びフッ化スルフリルを加えた後、容器を密閉して反応させることもできる。
 反応に使われる反応容器としては、モネル、ハステロイ、ニッケル、又はこれらの金属やポリテトラフルオロエチレン、パーフルオロポリエーテル樹脂などのフッ素樹脂でライニングされた耐圧反応容器などが挙げられる。
 反応時間としては、特に制限はないが、0.1~72時間の範囲で行えばよく、基質および反応条件により異なるため、ガスクロマトグラフィー、液体クロマトグラフィー、NMR等の分析手段により、反応の進行状況を追跡して原料が殆ど消失した時点を終点とすることが好ましい。
 なお、本発明における目的物である4-パーフルオロイソプロピルアニリン類を製造する際の「好適な反応条件」を、以下、述べる。
 式[1]で表されるアミノアリール基含有フルオロアルコール類に対し、有機溶媒としては特にアセトニトリル、プロピオニトリル等のニトリル類が好ましく、該有機溶媒の使用量がアルコール類1モルに対して0.1~10L、有機塩基としてトリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリn-プロピルアミン、トリブチルアミン等の3級アミンが特に好適であり、該有機塩基の使用量が該アルコール類1モルに対し10モル当量以下、反応温度として-80~+80℃、そして0.1MPa~1MPaにて24時間以内で反応させることで、該目的物を高選択率かつ高収率で得ることができる。
 後処理としては、特に制限はないが、通常は反応終了液を水またはアルカリ金属の無機塩基(例えば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウムまたは炭酸カリウム等)の水溶液に注ぎ込み、有機溶媒(例えば、トルエン、メシチレン、塩化メチレンまたは酢酸エチル等)で抽出することにより、粗生成物を得ることができる。
 必要に応じて、活性炭処理、蒸留、再結晶等により、さらに高い化学純度に精製することができる。
 以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 ここで、組成分析値の「%」とは、反応混合物を核磁気共鳴分析装置(NMR、特に記述のない場合、測定核は19F)によって測定して得られた組成の「モル%」を、又はガスクロマトグラフィー(GC、特に記述のない場合、検出器によって測定して得られた組成の「面積%」を表す。
 4-へプタフルオロイソプロピル-2-メチルアニリンの製造
Figure JPOXMLDOC01-appb-C000013
 500mlオートクレーブに2-(4-アミノ-3-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン-2-オ-ル39g(142mmol)を加え、反応器を減圧した後、ジイソプロピルエチルアミン73.4g(568mmol)およびアセトニトリル64gを減圧下に加えた。この反応混合物を10分間室温で攪拌した後、氷冷下においてフッ化水素酸4.3g(213mmol)を、反応器内温度が10℃以下を保つように加え、さらにフッ化スルフリル36g(355mmol)を導入した後、室温下で25時間攪拌した。反応の経過は19F-NMRにより追跡した(変換率93.0%)。
 反応終了時の19F-NMRより、目的物4-へプタフルオロイソプロピル-2-メチルアニリンが72.7%、原料の2-(4-アミノ-3-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン-2-オ-ルが7.0%であり、他に「スルホンアミド体」が12.9%(スルホンアミド体Aが9.8%、スルホンアミド体Bが3.0%)であった。
Figure JPOXMLDOC01-appb-C000014
 反応後、反応液を50℃において127hPaまで徐々に減圧することで濃縮した。この濃縮残渣に30%水酸化カリウム水溶液を徐々に加え中和した後、分液した。分離した有機層を減圧蒸留により精製し、目的物24gを無色油状物として得た。この化合物は670Paにおいて、沸点76℃を示した。単離収率は62%であった。
 実施例1と同じ機器、操作にて、2-(4-アミノ-3-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン-2-オ-ル20.0g(73.2mmol)を原料とし、減圧下において、ジイソプロピルエチルアミン37.8g(292.8mmol)およびアセトニトリル33.1g、フッ化水素酸1.46g(73.2mmol)、フッ化スルフリル14.9g(146.4mmol)を加え、室温下で 14時間、50℃で3時間反応させた(変換率88%)。
 反応後、実施例1と同じ精製操作にて、目的物14.2gを無色油状物として得た。単離収率は70.3%であった。
 実施例1と同じ機器、操作にて、2-(4-アミノ-3-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン-2-オ-ル20.0g(73.2mmol)を原料とし、減圧下において、ジイソプロピルエチルアミン37.8g(292.8mmol)、1,8-ジアザビシクロ[5,4,0]ウンデカ-7-エン1.1g(7.3mmol)およびアセトニトリル33.1g、フッ化水素酸1.46g(73.2mmol)、フッ化スルフリル14.9g(146.4mmol)を加え、室温下で 13時間、50℃で3時間反応させた(変換率89.3%)。
 反応終了時の19F-NMRより、目的物4-へプタフルオロイソプロピル-2-メチルアニリンが77.0%、原料の2-(4-アミノ-3-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン-2-オ-ルが10.7%であり、他に「スルホンアミド体」が11.3%(スルホンアミド体Aが4.5%、スルホンアミド体Bが6.8%)であった(なお、本実施例では、最後の後処理操作までは行っていない。)
 実施例1と同じ機器、操作にて、2-(4-アミノ-3-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン-2-オ-ル7.76g(28.4mmol)を原料とし、減圧下において、ジイソプロピルアミン11.5g(113.6mmol)およびアセトニトリル12.8g、フッ化水素酸0.85g(42.6mmol)、フッ化スルフリル4.35g(42.6mmol)を加え、室温下で20時間反応させた(変換率95%)。
 反応終了時の19F-NMRより、目的物4-へプタフルオロイソプロピル-2-メチルアニリンが66.3%、原料の2-(4-アミノ-3-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン-2-オ-ルが5.5%であり、他に「スルホンアミド体」が9.2%(スルホンアミド体Aが1.8%、スルホンアミド体Bが7.4%)であった(なお、本実施例では、最後の後処理操作までは行っていない)。
 実施例1と同じ機器、操作にて、2-(4-アミノ-3-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン-2-オ-ル39g(142mmol)を原料とし、減圧下において、トリエチルアミン57.5g(568mmol)およびアセトニトリル64g、フッ化水素酸3.7g(186mmol)、フッ化スルフリル36g(355mmol)を加え、室温下で20時間反応させた(変換率91.7%)。
 反応終了時の19F-NMRより、目的物4-へプタフルオロイソプロピル-2-メチルアニリンが49.7%、原料の2-(4-アミノ-3-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン-2-オ-ルが8.3%であり、他に「スルホンアミド体」が37.4%(スルホンアミド体Aが9.8%、スルホンアミド体Bが25.6%)であった。
反応後、実施例1と同じ精製操作にて、目的物7.9gを無色油状物として得た。単離収率は20.31%であった。
 実施例1と同じ機器、操作にて、2-(4-アミノ-3-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン-2-オ-ル39g(142mmol)を原料とし、減圧下において、ジイソプロピルエチルアミン73.4g(568mmol)およびアセトニトリル64g、フッ化水素酸8.5g(426mmol)、フッ化スルフリル17g(170mmol)を加え、70℃で22時間反応させた。
 反応終了時の19F-NMRより、目的物4-へプタフルオロイソプロピル-2-メチルアニリンが42.2%、原料の2-(4-アミノ-3-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン-2-オ-ルが16.6%であり、他に「スルホンアミド体」が34.1%(スルホンアミド体Aが11.1%、スルホンアミド体Bが23.0%)であった。
[比較例1]
4-へプタフルオロイソプロピル-2-メチルアニリンの製造
Figure JPOXMLDOC01-appb-C000015
 100mlオートクレーブに2-(4-アミノ-3-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン-2-オ-ル7.8g(28.4mmol)を加えて反応器を減圧にした後、ジイソプロピルエチルアミン29.4g(227.3mmol)を加えた。この反応混合物を10分間室温で攪拌した後、氷冷下においてフッ化水素酸0.9g(42.6mmol)を、反応器内温度が10℃以下を保つように加え、さらにフッ化スルフリル4.4g(42.6mmol)を導入した後、室温下で21時間攪拌した(変換率11.3%)。
 反応終了時の19F-NMRより、目的物4-へプタフルオロイソプロピル-2-メチルアニリンが0.3%、原料の2-(4-アミノ-3-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン-2-オ-ルが88.7%であり、他に「スルホンアミド体」が11.0%(スルホンアミド体Aが8.0%、スルホンアミド体Bが3.0%)であった(なお、本比較例では、最後の後処理操作までは行っていない)。
[参考例]
 実施例1と同じ2-(4-アミノ-3-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン-2-オ-ル10gを原料とし、HF100ml中でSF415gを加え、50~60℃で20時間反応させた。
 反応終了時のガスクロマトグラフ組成は、目的物4-へプタフルオロイソプロピル-2-メチルアニリンが33.7%、原料は検出されず、「二量化体」が66.7%(二量化体A、二量化体Bの合計値)であった。
 すなわち、参考例では、「二量化体」の副生が多く、目的物の収率が低下することがわかった。

Claims (7)

  1. 有機溶媒存在下、有機塩基又は「有機塩基とフッ化水素からなる塩または錯体」を共存させて、式[1]で表されるアミノアリール基含有フルオロアルコール類
    Figure JPOXMLDOC01-appb-C000001
    を、フッ化スルフリル(SO22)と反応させることを含む、式[2]で表される4-パーフルオロイソプロピルアニリン類の製造方法。
    Figure JPOXMLDOC01-appb-C000002

    [式[1]及び式[2]において、R1およびR2は同一又は異なる水素原子、炭素数1~10のアルキル基、炭素数3~8のシクロアルキル基、-COR7 (式中、Rは水素原子、炭素数1~10のアルキル基、炭素数1~10のハロアルキル基、炭素数3~8のシクロアルキル基、又はフェニル基もしくは置換されたフェニル基を示す。)及びCOOR8 (式中、R8 は炭素数1~10のアルキル基、炭素数1~10のハロアルキル基、又はフェニル基を示す。)からなる群より選ばれた基を表す。R3 、R4 、R5 、及びR6は、同一又は異なる水素原子、ハロゲン原子、ヒドロキシル基、ニトロ基、炭素数1~10のアルキル基、炭素数1~10のハロアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルチオ基、-N(R9)(R10) (式中、R9 及びR10 は、同一又は異なる水素原子、炭素数1~10のアルキル基、炭素数3~8のシクロアルキル基、又はフェニル基を示す。R9とR10 は一緒になって炭素数3~6のアルキレン基を形成することもできる。)、-(R’)-N(R9 )(R10)(式中、R’は炭素数1~6のアルキレン基を表す。R9及びR10 の意味は前記と同じ)、及びフェニル基からなる群より選ばれた基を表す。
     R1、R2 、R3 及びR5のうち任意の2つの基が一緒になって、炭素数2~4のアルキレン基を形成することもでき、R3、R4、R5 及びR6 のうち、隣り合った2個の基が一緒になって、炭素数3~5のアルキレン基を構成することもできる。]
  2. 有機塩基がトリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリn-プロピルアミン、又はトリブチルアミンである、請求項1に記載の方法。
  3. 有機溶媒が酢酸エチル、酢酸ブチル、N,N-ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、又はプロピオニトリルである、請求項1又は2に記載の方法。
  4. 有機溶媒がアセトニトリル又はプロピオニトリルである、請求項1乃至3のいずれか1項に記載の方法。
  5. 式[1]及び式[2]において、R1~R6の各々が独立に水素もしくは炭素数1~6のアルキル基である、請求項1乃至4のいずれか1項に記載の方法。
  6. 式[1]及び式[2]において、R1とR2の各々が水素であり、R3~R6の各々が独立に水素もしくはメチル基である、請求項1乃至5のいずれか1項に記載の方法。
  7. 塩又は錯体の有機塩基がトリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリプロピルアミン、又はトリブチルアミンである、請求項1乃至6のいずれか1項に記載の方法。
PCT/JP2009/053816 2008-03-31 2009-03-02 4-パーフルオロイソプロピルアニリン類の製造方法 WO2009122834A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980101180.XA CN101878192B (zh) 2008-03-31 2009-03-02 4-全氟异丙基苯胺类的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-089056 2008-03-31
JP2008089056A JP5412742B2 (ja) 2008-03-31 2008-03-31 4−パーフルオロイソプロピルアニリン類の製造方法

Publications (1)

Publication Number Publication Date
WO2009122834A1 true WO2009122834A1 (ja) 2009-10-08

Family

ID=41135229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053816 WO2009122834A1 (ja) 2008-03-31 2009-03-02 4-パーフルオロイソプロピルアニリン類の製造方法

Country Status (3)

Country Link
JP (1) JP5412742B2 (ja)
CN (1) CN101878192B (ja)
WO (1) WO2009122834A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207800A (ja) * 2010-03-29 2011-10-20 Central Glass Co Ltd 2−フルオロイソ酪酸エステルの製造方法
CN102731317A (zh) * 2012-07-10 2012-10-17 中化蓝天集团有限公司 一种全氟烷基化苯胺衍生物的制备方法
CN112897488A (zh) * 2021-03-19 2021-06-04 常州高优纳米新材料有限公司 一种微通道反应器制备双氟磺酰亚胺的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2485092A1 (en) 2004-11-22 2012-08-08 Hodogaya Chemical Co., Ltd. Electrophotographic photosensitive body
CN114105722B (zh) * 2021-11-17 2023-10-20 浙江工业大学 一种制备有机氟化合物的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290870A (ja) * 2005-03-18 2006-10-26 Central Glass Co Ltd スルフリルフルオリドを用いるフッ素化反応
JP2008007488A (ja) * 2006-06-30 2008-01-17 Central Glass Co Ltd 脱ヒドロキシフッ素化剤
JP2008037781A (ja) * 2006-08-04 2008-02-21 Central Glass Co Ltd 2’−デオキシ−2’−フルオロウリジンの製造方法
JP2008174552A (ja) * 2006-12-19 2008-07-31 Central Glass Co Ltd 4−パーフルオロイソプロピルアニリン類の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248889B1 (en) * 1998-11-20 2001-06-19 3M Innovative Properties Company Process for converting an alcohol to the corresponding fluoride
JP2008013519A (ja) * 2006-07-07 2008-01-24 Central Glass Co Ltd 光学活性2−フルオロアルコール誘導体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290870A (ja) * 2005-03-18 2006-10-26 Central Glass Co Ltd スルフリルフルオリドを用いるフッ素化反応
JP2008007488A (ja) * 2006-06-30 2008-01-17 Central Glass Co Ltd 脱ヒドロキシフッ素化剤
JP2008037781A (ja) * 2006-08-04 2008-02-21 Central Glass Co Ltd 2’−デオキシ−2’−フルオロウリジンの製造方法
JP2008174552A (ja) * 2006-12-19 2008-07-31 Central Glass Co Ltd 4−パーフルオロイソプロピルアニリン類の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WILLIAM A. SHEPPARD: "The Electronic Properties of Fluoroalkyl Groups. Fluorine p-PI Interaction", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 87, no. 11, 1965, pages 2410 - 2420 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207800A (ja) * 2010-03-29 2011-10-20 Central Glass Co Ltd 2−フルオロイソ酪酸エステルの製造方法
CN102731317A (zh) * 2012-07-10 2012-10-17 中化蓝天集团有限公司 一种全氟烷基化苯胺衍生物的制备方法
CN112897488A (zh) * 2021-03-19 2021-06-04 常州高优纳米新材料有限公司 一种微通道反应器制备双氟磺酰亚胺的方法
CN112897488B (zh) * 2021-03-19 2023-10-24 常州高优纳米新材料有限公司 一种微通道反应器制备双氟磺酰亚胺的方法

Also Published As

Publication number Publication date
CN101878192B (zh) 2014-03-05
JP2009242270A (ja) 2009-10-22
JP5412742B2 (ja) 2014-02-12
CN101878192A (zh) 2010-11-03

Similar Documents

Publication Publication Date Title
EP2216325B1 (en) Process for preparation of trifluoromethanesulfonyl fluoride
EP3452437B1 (en) Method for aromatic fluorination
JP5412742B2 (ja) 4−パーフルオロイソプロピルアニリン類の製造方法
JP5926802B2 (ja) セボフルランの製造方法
JP6618699B2 (ja) 1,1−ジ置換ヒドラジン化合物の製造方法
JP5106048B2 (ja) パーフルオロアルキル基を有するベンゼン類の製造方法
JP5793996B2 (ja) フルオロ硫酸芳香環エステル類の製造方法
KR102436959B1 (ko) 1-(3,5-디클로로페닐)-2,2,2-트리플루오로에타논 및 그의 유도체의 제조 방법
DK2931703T3 (en) METHOD FOR PREPARING BIS (3-AMINOPHENYL) -DISULPHIDES AND 3-AMINOTHIOLS
JP5853771B2 (ja) α,α−ジフルオロ芳香族化合物の製造方法
JP2008174552A (ja) 4−パーフルオロイソプロピルアニリン類の製造方法
JP5853772B2 (ja) α,α−ジフルオロ芳香族化合物の製造方法
EP1903021B1 (en) Process for production of fluorocompounds
US7390927B2 (en) Process for preparing 3-aminophenylacetylenes
JP4675065B2 (ja) 4−フルオロプロリン誘導体の製造方法
JP5088254B2 (ja) フルオロアルキルハライドの製造方法
WO2017033813A1 (ja) アルケニルハライドの製造方法
JP5378688B2 (ja) フッ素化試薬組成物およびgem−ジフルオロ化合物の製造方法
JP6349329B2 (ja) 5−フルオロ−1−メチル−3−ジフルオロメチル−1h−ピラゾール−4−カルバルデヒドを調製する方法
JP2017008006A (ja) 3,3−ジフルオロ−1−クロロ−2−プロパノンの実用的な製造方法
JP2003113153A (ja) β−オキソニトリル誘導体又はそのアルカリ金属塩の製法
WO2019087810A1 (ja) 2-デオキシ-2-フルオロ-グルコースの製造方法
JP2022011265A (ja) ジフルオロメチレン化合物及びその製造方法
JP2019196319A (ja) 1,1−ジ置換ヒドラジン化合物の製造方法
JP2017202992A (ja) (トリフルオロメチル)マロン酸エステルの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101180.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09728390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09728390

Country of ref document: EP

Kind code of ref document: A1