WO2010024159A1 - Powder of tungsten alloy with transition metal dissolved therein as solid solution and process for producing same - Google Patents

Powder of tungsten alloy with transition metal dissolved therein as solid solution and process for producing same Download PDF

Info

Publication number
WO2010024159A1
WO2010024159A1 PCT/JP2009/064494 JP2009064494W WO2010024159A1 WO 2010024159 A1 WO2010024159 A1 WO 2010024159A1 JP 2009064494 W JP2009064494 W JP 2009064494W WO 2010024159 A1 WO2010024159 A1 WO 2010024159A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten
transition metal
solid solution
alloy powder
cobalt
Prior art date
Application number
PCT/JP2009/064494
Other languages
French (fr)
Japanese (ja)
Inventor
政夫 森下
宏明 山本
政昭 池邉
政弘 岩崎
秀文 柳田
宏 西牧
Original Assignee
サンアロイ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンアロイ工業株式会社 filed Critical サンアロイ工業株式会社
Priority to EP09809812A priority Critical patent/EP2332675A1/en
Priority to US12/737,875 priority patent/US20110243787A1/en
Priority to CN2009801335673A priority patent/CN102131601A/en
Publication of WO2010024159A1 publication Critical patent/WO2010024159A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a transition metal solid solution tungsten alloy powder and a method for producing the same.
  • Tungsten has a high melting point and elastic modulus, and is useful as a raw material for filament materials and tungsten carbide (WC).
  • WC tungsten carbide
  • the resources are mainly unevenly distributed in China, the price tends to rise with the rapid increase in domestic demand in China.
  • Patent Document 1 a method for producing a tungsten alloy powder by using a coprecipitation method of a metal salt or a metal hydroxide is conventionally known (Patent Document 1, Patent Document 2).
  • the alloy powder contains a transition metal element phase in addition to the tungsten phase and the tungsten phase alloyed with the transition metal element. Was not progressing sufficiently.
  • an object of the present invention is to provide a novel tungsten alloy powder in which a transition metal element is dissolved (including forced solid solution) and a method for producing the same.
  • the present inventor has conducted extensive research, and as a result, the tungsten ion and the transition metal ion are uniformly and uniformly formed in an aqueous solution at the ionic level, and after evaporating to dryness or spray drying, thermal decomposition is performed.
  • the inventors have found that when a tungsten powder is obtained by performing hydrogen thermal reduction, a tungsten alloy powder in which the transition metal element is completely forcibly dissolved can be produced, and the present invention is made here.
  • At least one transition metal element selected from the group consisting of cobalt, iron, manganese and nickel is dissolved in a tungsten lattice, and the formula [1 In the transition metal solid solution tungsten alloy powder.
  • M represents one or more selected from Co, Fe, Mn or Ni
  • transition metal solid solution tungsten alloy powder represented by the formula: Fe-W
  • Nickel is dissolved in tungsten lattice, formula: Ni-W
  • the transition metal solid solution tungsten alloy powder shown by these is mentioned.
  • a part of the cobalt, iron, and nickel can be substituted with one or more selected from the group of iron, manganese, and nickel, which are other transition metals, and a composite transition metal solid solution tungsten powder can be obtained.
  • the amount of transition metal dissolved in tungsten can be up to the equivalent mole of tungsten.
  • the second object of the present invention is to provide a production method for obtaining the transition metal solid solution tungsten powder, which is selected from the group consisting of an aqueous solution containing tungsten ions and cobalt, iron, iron-manganese and nickel.
  • An aqueous solution containing at least one kind of transition metal ions was mixed at a ratio of 60 mol% or more of tungsten ions and 40 mol% or less of transition metal ions, and the mixed aqueous solution was evaporated to dryness or spray dried.
  • MW where M is Co, One or more selected from Fe, Mn or Ni
  • the aqueous solution containing tungsten ions is an aqueous solution of ammonium paratungstate (5 (NH 4) 2 O ⁇ 12WO 3 ⁇ 5H 2 O), which is at least one selected from the group consisting of cobalt, iron, manganese and nickel.
  • the aqueous solution containing transition metal ions is preferably a transition metal complex salt aqueous solution.
  • transition metal complex salts As transition metal complex salts, acetate (Fe (OH) (C 2 H 3 OO) 2 , Co (C 2 H 3 O 3 ) 2 .4H 2 O, Mn (CH 3 COO) 2 .4H 2 O, Ni ( C 2 H 3 O 3 ) 2 ⁇ xH 2 O) and sulfates (FeSO 4 ⁇ 7H 2 O, CoSO 4 ⁇ 7H 2 O, NiSO 4 ⁇ 6H 2 O, MnSO 4 ⁇ 5H 2 O) it can.
  • sulfates FeSO 4 ⁇ 7H 2 O, CoSO 4 ⁇ 7H 2 O, NiSO 4 ⁇ 6H 2 O, MnSO 4 ⁇ 5H 2 O
  • the tungsten alloy powder obtained by the present invention is characterized in that the transition metal element is dissolved in the tungsten lattice and the bcc phase peak is observed in the X-ray diffraction pattern. Then, it turns out that a transition metal element or its metal compound does not exist substantially in a tungsten grain boundary.
  • the transition metal solid solution tungsten alloy powder represented by the formula [1] Formula [1]: MW (where M is Co, Fe, Mn or Ni) One or more selected)
  • the cobalt is basically contained in an amount of 0.3 to 20.8% by weight and the balance is made of tungsten, but all or a part of cobalt is replaced with one or more elements of iron, manganese and nickel. Is formed.
  • the M component including cobalt is less than 0.3% by weight of the tungsten alloy powder, the resource saving effect cannot be obtained, and if it exceeds 20.8% by weight, the second phase is precipitated at the tank stainless grain boundary, It can be seen that the tungsten alloy powder does not become a solid solution (forced solid solution) of the transition metal element.
  • Cobalt is present in substitution for the lattice position of tungsten, so that it acts as an alternative element for tungsten and is effective for resource saving of tungsten, which is rising in price.
  • catalytic activity can be increased by dissolving cobalt in a solid solution (forced solid solution), and the alloy powder of the present invention can be given a function as a catalyst.
  • nickel has a function similar to that of cobalt and is characterized by a lower price than cobalt. Nickel also imparts catalytic activity over cobalt.
  • Iron is characterized by improving the strength of tank stainless powder and being inexpensive.
  • iron and iron-manganese can effectively utilize their transformation characteristics, and can be used to improve the fracture toughness of the cemented carbide mold.
  • transition metal ions examples include metal complex salts such as iron, nickel, manganese and cobalt acetates (Co (C 2 H 3 O 3 ) 2 .4H 2 O, Fe (OH) (C 2 H 3 OO) 2 , Mn (CH 3 COO) 2 .4H 2 O, Ni (C 2 H 3 O 3 ) 2 .xH 2 O) are water-soluble and do not generate harmful substances. The load is small.
  • transition metal sulfates of iron, nickel and cobalt is also effective for realizing a recycling society.
  • copper electrorefining processes concentrate iron, nickel and cobalt transition metals in sulfuric acid in the electrolyte. Therefore, the waste liquid generated by electrolytic refining of copper can be used as a raw material for the tungsten alloy powder of the present invention, and sulfuric acid generated during evaporation to dryness or spray drying can also be effectively used as a by-product. .
  • tungsten metal complex salts may be used alone or in combination of two or more to form tungsten metal or It will be apparent to those skilled in the art from the examples that two or more transition metals can be dissolved and replaced with part of the tungsten metal.
  • the solution method is the process of the present invention, and includes transition metal acetates (Co (C 2 H 3 O 3 ) 2 .4H 2 O, Fe (OH) (C 2 H 3 OO) 2 , Mn
  • NH 4 ammonium paratungstate
  • Sample No. 1 is a powder metallurgy, which is a conventional technique of powder metallurgy, and 7.42% by weight of pure cobalt powder and the remaining pure tungsten powder are weighed and mixed to obtain the chemical composition shown in Table 1, and then 2 ton / cm.
  • This is a conventional material obtained by compression molding at a pressure of 2 and holding in hydrogen gas at 1073 K for 1 h. A pure cobalt phase remained as the second phase, and alloying with tungsten did not proceed.
  • Sample No. 2 is the material of the present invention obtained by a solution method.
  • An aqueous solution of transition metal acetate (Co (C 2 H 3 O 3 ) 2 .4H 2 O) and ammonium paratungstate were mixed.
  • transition metal acetate Co (C 2 H 3 O 3 ) 2 .4H 2 O
  • ammonium paratungstate were mixed.
  • the peak of the bcc W phase was observed, and a W alloy powder in which Co was uniformly and forcibly dissolved was obtained.
  • Sample No. 3 is a material of the present invention obtained by a solution method.
  • An aqueous solution of transition metal acetate (Co (C 2 H 3 O 3 ) 2 .4H 2 O) and ammonium paratungstate were mixed so that the composition was 80 mol% W-20 mol% Co.
  • transition metal acetate Co (C 2 H 3 O 3 ) 2 .4H 2 O
  • ammonium paratungstate were mixed so that the composition was 80 mol% W-20 mol% Co.
  • the bcc W phase was observed, and a W alloy powder in which Co was forcibly solid-solved was obtained.
  • the equilibrium phase at the hydrogen thermal reduction temperature of 1073 K of this composition is the W phase and the Co 7 W 6 phase.
  • Sample No. 4 and sample no. 5 is a material of the present invention obtained by a solution method. It was confirmed that a W alloy powder in which Co was uniformly and solid-solved up to the composition of 60 mol% W-40 mol% Co was obtained. When the solution method was applied, forced solid solution alloy powder could be produced in a non-equilibrium state without forming an equilibrium phase Co 7 W 6 phase up to this composition.
  • Sample No. 6 is a material of the present invention obtained by a solution method in which a part of a Co (C 2 H 3 O 3) 2 .4H 2 O aqueous solution is replaced with an Fe (OH) (C 2 H 3 OO) 2 aqueous solution. . It has been found that forced solid solution alloy powder can be produced even if a part of Co is replaced by Fe.
  • Sample No. 7 is a part of Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution, Fe (OH) (C 2 H 3 OO) 2 , Mn (CH 3 COO) 2 .4H 2 O and Ni (C It is the material of the present invention obtained by a solution method in which the solution is replaced with an aqueous solution of 2 H 3 O 3 ) 2 .xH 2 O. It has been found that forced solid solution alloy powder can be produced even if a part of Co is replaced by Fe, Mn, and Ni.
  • Sample No. 8 is a material of the present invention obtained by a solution method in which a part of a Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution is replaced with a Ni (C 2 H 3 O 3) 2 .xH 2 O aqueous solution. It is. Even if a part of Co was replaced by Ni, forced solid solution alloy powder could be produced.
  • Sample No. 9 is a part of an aqueous solution of Co (C 2 H 3 O 3 ) 2 .4H 2 O, Fe (OH) (C 2 H 3 OO) 2 and Ni (C 2 H 3 O 3 ) 2 .xH 2 O. It is this invention material obtained by the solution method replaced with the aqueous solution. The forced solid solution alloy powder could be produced even if a part of Co was replaced with a composite of Fe and Ni.
  • Sample No. 10 is a comparative material obtained by the solution method. With this composition of 10 mol% W-90 mol% Co, Co 3 W as an equilibrium phase finally precipitated as the second phase. Therefore, if the amount of Co is large, even if the solution method is used, the diffusion of W atoms in the Co lattice is easy, so that it is impossible to produce a forced solid solution.
  • Sample No. 11 is a comparative material obtained by the solution method. With this composition of 50 mol% W-50 mol% Co, Co 7 W 6 which is an equilibrium phase finally precipitated as the second phase. Therefore, even in this composition, since W atoms diffuse, it was impossible to produce a forced solid solution.
  • Sample No. 12 is a material of the present invention obtained by a solution method in which a part of a Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution is replaced with an Fe (OH) (C 2 H 3 OO) 2 aqueous solution. .
  • This is a forced solid solution alloy powder in which a part of Co is replaced with a small amount of Fe.
  • Sample No. 13 is the material of the present invention obtained by a solution method in which a part of the Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution is replaced with an Fe (OH) (C 2 H 3 OO) 2 aqueous solution. .
  • the forced solid solution alloy powder could be produced without adding the Ni (C 2 H 3 O 3 ) 2 .xH 2 O aqueous solution shown in No. 8.
  • Sample No. 14 is the material of the present invention obtained by a solution method in which the entire Co (C 2 H 3 O 3) 2 .4H 2 O aqueous solution is replaced with an Fe (OH) (C 2 H 3 OO) 2 aqueous solution. Even if all were replaced with Fe, it was possible to produce forced solid solution alloy powder.
  • Sample No. 15 replaces all Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution with Fe (OH) (C 2 H 3 OO) 2 aqueous solution and Mn (CH 3 COO) 2 .4H 2 O aqueous solution. It is this invention material obtained by the solution method. Even if all of Co was replaced with Fe and Mn, forced solid solution alloy powder could be produced.
  • Invention material No. 1 in Table 2. 22-No. No. 27 was prepared by adding and mixing graphite to a tungsten alloy powder in which a transition metal was forcibly dissolved by a solution method. That is, transition metal acetates (Co (C 2 H 3 O 3 ) 2 .4H 2 O, Fe (OH) (C 2 H 3 OO) 2 , Mn (CH 3 COO) 2 .4H 2 O and / or Ni An aqueous solution of (C 2 H 3 O 3 ) 2 ⁇ xH 2 O) and an aqueous solution of ammonium paratungstate (5 (NH 4) 2 O ⁇ 12WO 3 ⁇ 5H 2 O) were mixed and then evaporated to dryness (or sprayed) Dried), the resulting solid was thermally decomposed into oxides at 823 K in the atmosphere, and reduced to hydrogen by reducing it to 1073 K in hydrogen gas for 1 h. Produced. Next, graphite was mixed with this tungsten alloy powder, and held in Ar
  • Sample No. 21 is WC carbide obtained by mixing graphite with WO 3 which is a conventional technique of powder metallurgy and carbonizing it at 1473K for 1 hour.
  • the metal phase was not included in the WC skeleton.
  • Sample No. 22, Sample No. 23, sample no. 24, Sample No. 25, Sample No. 26, Sample No. 27 and no. 28 is the material of the present invention obtained by the solution method and carbonization. A unique tissue in which a metal phase was encapsulated in the WC skeleton was obtained. This metal phase is useful for resource saving of tungsten and for improving the mechanical properties of the carbide. Sample No. 22, Sample No. 23, sample no. 24 and sample no. It was found that many metal phases were included in the order of 25.
  • Sample No. 26, Sample No. 27 and no. 28 is a carbide whose cost is reduced by substituting cobalt of the metal phase contained therein with iron, iron-manganese and nickel.
  • Sample No. 29 and No. 30 is a comparative material obtained by the solution method and carbonization.
  • Sample No. When the amount of cobalt is larger than the amount of tungsten as in 29, tungsten is diffused in cobalt during the production of the tank stainless alloy powder, and Co 3 W and Co 7 W 6 in an equilibrium phase are generated. As a result, when this alloy powder is carbonized, the metal phase surrounds the carbide, and the metal phase cannot be included in the carbide.
  • 31 and no. No. 32 was prepared by adding and mixing graphite to a tungsten alloy powder in which a transition metal was forcibly dissolved by a solution method. That is, in the same manner as Sample No. 26, transition metal acetate (Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution, Fe (OH) (C 2 H 3 OO) 2 aqueous solution and ammonium paratungstate After mixing (5 (NH 4 ) 2 O ⁇ 12WO 3 ⁇ 5H 2 O) aqueous solution, it was evaporated to dryness (or spray drying), and the resulting solid was thermally decomposed into oxides at 823 K in the atmosphere.
  • transition metal acetate Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution, Fe (OH) (C 2 H 3 OO) 2 aqueous solution and ammonium paratungstate
  • a tank stainless alloy powder in which transition metal elements were forcibly dissolved was prepared by holding it at 1073 K in hydrogen gas for 1 h, and then graphite was mixed with this tungsten alloy powder, and 1473 K in Ar.
  • a tungsten carbide was produced by holding for 1 h at a specific structure in which a Co—Fe solid solution phase was encapsulated in the WC skeleton.
  • 33 and no. No. 34 was prepared by adding and mixing graphite to a tungsten alloy powder in which Fe and Mn were forcibly dissolved by a solution method. That is, Fe (OH) (C 2 H 3 OO) 2 aqueous solution, Mn (CH 3 COO) 2 .4H 2 O aqueous solution, ammonium paratungstate (5 (NH 4 ) 2 O.12WO 3 .5H 2 O) aqueous solution After mixing, after evaporating to dryness (or spray drying), the resulting solid was thermally decomposed into oxides at 823 K in the atmosphere, and then heated to 1073 K in hydrogen gas for 1 h for hydrothermal reduction Thus, a tank stainless alloy powder in which the transition metal element was forcibly dissolved was prepared.
  • FIG. The result of having observed 23 invention materials by EPMA is shown. From the SEM image and the corresponding X-ray images of W and C, it was found that a WC skeleton was formed. Further, it can be understood from the X-ray image of Co that a metal phase is formed in the WC skeleton. That is, (A) is an SEM image. The part that appears white is the WC skeleton, and the part that appears black is a domain made of metal Co. The Co domain inevitably grows when sintered at 1623 K for 3.6 ks, but it remains below 3 mm. (B) is an X-ray image of W. The formation of the WC skeleton is shown. (C) is an X-ray image of Co.
  • (D) is an X-ray image of C.
  • the formation of the WC skeleton is shown.
  • the formation of this metal phase is effective for reducing the amount of tungsten used and also improves the mechanical properties. Therefore, the cemented carbide in which this new WC carbide is dispersed is suitable as an abrasion resistant material.
  • the cemented carbide can be manufactured by a known manufacturing method, that is, by sintering the tungsten carbide of the present invention together with Co powder.
  • FIG. An EPMA photograph is shown in a cemented carbide made as a prototype by adding 3.6 mass of binder phase Co to 34 invention materials and sintering at 1623 K for 3.6 ks. It was found that a Fe—Mn solid solution phase was formed in the WC skeleton in the cemented carbide, and a part of the binder phase Co was distributed to the Fe—Mn solid solution phase during sintering. The Vickers hardness was Hv1945, indicating a very high hardness.
  • (A) is an SEM image.
  • the part that appears white is the WC skeleton, and the part that appears black is the domain composed of the Fe—Mn solid solution phase. The metal domain inevitably grows during sintering, but it remains below 1 mm.
  • the trace of the Vickers hardness test of this SEM image is shown.
  • the Vickers hardness was Hv1945, indicating a very high hardness. It was also found that cracks did not occur at the tip of the Vickers hardness test indentation and that the toughness was good.
  • (B) is an X-ray image of W. The formation of the WC skeleton is shown.
  • (C) shows the formation of a Fe—Mn solid solution domain which is an X-ray image of Fe.
  • D is an X-ray image of Co. It shows that a part of the binder phase Co is distributed to the Fe—Mn solid solution domains during sintering.
  • E is an X-ray image of C. The formation of the WC skeleton is shown.
  • F is an X-ray image of Mn. The formation of Fe-Mn solid solution domains is shown. The reason why the WC carbide including the metal domain exhibits such a high hardness is that in the present invention, the WC skeleton has succeeded in creating a microstructure that restrains deformation of the metal domain.
  • the alloy powder of the present invention has the transition metal element uniformly and uniformly dissolved in the tungsten lattice. Therefore, as an alloy powder in which a part of tungsten is replaced with a transition metal element, it can be widely used in applications for saving tungsten resources such as tungsten carbide raw material for cemented carbide.
  • the tungsten alloy powder of the present invention forms tungsten carbide in the same manner as the tungsten powder, and can produce a cemented carbide sintered with the binder phase Co.
  • Sample No. It is a figure which shows the result of having observed the metal phase inclusion tungsten carbide in 23 material of this invention by EMPA.
  • A is a SEM image
  • the white part is a WC skeleton
  • the black part is a domain made of Co.
  • B is an X-ray image of W and shows the formation of the WC skeleton.
  • C is an X-ray image of Co, showing the formation of a Co domain in the WC skeleton.
  • D is an X-ray image of C, showing the formation of a WC skeleton.
  • Sample No. It is a figure which shows the result of having observed the metal phase inclusion tungsten carbide in 34 this invention materials by EMPA.
  • (A) is an SEM image, the white portion is a WC skeleton, and the black portion is a domain composed of a Fe—Mn solid solution phase.
  • (B) is an X-ray image of W and shows the formation of a WC skeleton.
  • (C) is an X-ray image of Fe and shows the formation of a Fe—Mn solid solution domain.
  • (D) is an x-ray image of Co and shows that a part of the binder phase Co is distributed to the Fe—Mn solid solution domain during sintering.
  • (E) is an X-ray image of C and shows the formation of a WC skeleton.
  • (F) is an X-ray image of Mn, showing the formation of Fe—Mn solid solution domains.

Abstract

Disclosed is a powder of a tungsten alloy with a transition metal dissolved therein as a solid solution that is suitable as a material for a cemented carbide represented by formula [1] and a material for a catalyst.  The powder of the tungsten alloy is characterized in that at least one transition metal element selected from the group consisting of cobalt, iron, manganese, and nickel is dissolved as a solid solution in a tungsten grating and a peak derived from a bcc tungsten phase appears in an X-ray diffraction diagram. Formula [1]: M-W wherein M represents one or more elements selected from Co, Fe, Mn, or Ni. The use of the powder of the tungsten alloy can provide a tungsten carbide with a transition metal dissolved therein as a solid solution in which a solid solution phase of at least one transition metal element selected from the group consisting of cobalt, iron, manganese, and nickel, tungsten, and carbon is included in a tungsten carbide skeleton, and a tungsten carbide diffused cemented carbide.

Description

遷移金属固溶タングステン合金粉末及びその製造方法Transition metal solid solution tungsten alloy powder and method for producing the same
 本発明は遷移金属固溶タングステン合金粉末及びその製造方法に関する。 The present invention relates to a transition metal solid solution tungsten alloy powder and a method for producing the same.
 タングステンは高い融点と弾性率を有し、フィラメント材料やタングステン炭化物(WC)の原料として有用である。しかしながら、その資源は専ら中国に偏在していることから、中国の国内需要の急増に伴い、その価格が高騰する傾向にある。タングステンを省資源化した材料を開発するためには、タングステンの一部を遷移金属元素で代替する必要がある。 Tungsten has a high melting point and elastic modulus, and is useful as a raw material for filament materials and tungsten carbide (WC). However, since the resources are mainly unevenly distributed in China, the price tends to rise with the rapid increase in domestic demand in China. In order to develop a material that saves tungsten, it is necessary to replace a part of tungsten with a transition metal element.
 しかしながら、タングステンはその融点の高さから溶融製造は困難である。また、形状付与のために粉末冶金技術を用いる場合にも、タングステン粉末と遷移金属元素の素粉末混合法では、合金化が進行しない問題がある。さらに、合金粉末製造のためのアトマイズ法の適用も困難である。 However, it is difficult to melt and manufacture tungsten because of its high melting point. In addition, when using powder metallurgy technology for imparting a shape, there is a problem that alloying does not proceed in the powder mixing method of tungsten powder and transition metal element. Furthermore, it is difficult to apply the atomizing method for producing the alloy powder.
 他方、従来から金属塩又は金属水酸化物の共沈法を用いてタングステン合金粉末を製造する方法が知られている(特許文献1、特許文献2)。 On the other hand, a method for producing a tungsten alloy powder by using a coprecipitation method of a metal salt or a metal hydroxide is conventionally known (Patent Document 1, Patent Document 2).
特表2002-527626号公報JP-T-2002-527626 米国特許第4913731号明細書U.S. Pat. No. 4,913,731
 しかしながら、特許文献1、2記載の製造方法では共沈という操作の関係上、合金粉末にはタングステン相及び遷移金属元素を合金化したタングステン相以外に、遷移金属元素の相が含まれ、合金化が十分進行していなかった。 However, due to the operation of coprecipitation in the production methods described in Patent Documents 1 and 2, the alloy powder contains a transition metal element phase in addition to the tungsten phase and the tungsten phase alloyed with the transition metal element. Was not progressing sufficiently.
 本発明はかかる問題点に鑑み、遷移金属元素を固溶(強制固溶を含む)した新規タングステン合金粉末及びその製造方法を提供することを課題とする。 In view of such problems, an object of the present invention is to provide a novel tungsten alloy powder in which a transition metal element is dissolved (including forced solid solution) and a method for producing the same.
 上記目標を達成するため、本発明者は、鋭意研究を重ねた結果、水溶液中にタングステンイオンと遷移金属イオンをイオンレベルで均一・一様化し、蒸発乾固又は噴霧乾燥した後、熱分解させ、水素熱還元を行ってタングステン粉末を得ると、遷移金属元素を完全に強制固溶したタングステン合金粉末を作製できることを見出し、ここに本発明をなしたものである。 In order to achieve the above goal, the present inventor has conducted extensive research, and as a result, the tungsten ion and the transition metal ion are uniformly and uniformly formed in an aqueous solution at the ionic level, and after evaporating to dryness or spray drying, thermal decomposition is performed. The inventors have found that when a tungsten powder is obtained by performing hydrogen thermal reduction, a tungsten alloy powder in which the transition metal element is completely forcibly dissolved can be produced, and the present invention is made here.
 すなわち、本発明はコバルト、鉄、マンガン及びニッケルの群から選ばれる少なくとも1種の遷移金属元素がタングステン格子中に固溶されてなり、X線回折図形にbccタングステン相ピークが認められる式[1]で示される遷移金属固溶タングステン合金粉末にある。
  式[1]:M-W(但し、MはCo,Fe,MnまたはNiから選ばれる1種以上を示す)
 本発明の遷移金属固溶タングステン合金粉末には単一遷移金属がタングステンに固溶した、1)コバルトがタングステン格子中に固溶されてなり、Co-Wで示される遷移金属固溶タングステン合金粉末、2)鉄がタングステン格子中に固溶されてなり、式:Fe-Wで示される遷移金属固溶タングステン合金粉末、3)ニッケルがタングステン格子中に固溶されてなり、式:Ni-Wで示される遷移金属固溶タングステン合金粉末が挙げられる。
That is, according to the present invention, at least one transition metal element selected from the group consisting of cobalt, iron, manganese and nickel is dissolved in a tungsten lattice, and the formula [1 In the transition metal solid solution tungsten alloy powder.
Formula [1]: MW (wherein M represents one or more selected from Co, Fe, Mn or Ni)
In the transition metal solid solution tungsten alloy powder of the present invention, a single transition metal is dissolved in tungsten. 1) Cobalt is dissolved in a tungsten lattice, and a transition metal solid solution tungsten alloy powder represented by Co—W is obtained. 2) Iron is dissolved in tungsten lattice, transition metal solid solution tungsten alloy powder represented by the formula: Fe-W, 3) Nickel is dissolved in tungsten lattice, formula: Ni-W The transition metal solid solution tungsten alloy powder shown by these is mentioned.
 上記コバルト、鉄、ニッケルの一部は、他の遷移金属である鉄、マンガン及びニッケルの群から選ばれる1種以上と置換することができ、複合遷移金属固溶タングステン粉末を得ることができる。その内、4)コバルトの一部を、鉄、マンガン、鉄-マンガン及びニッケルの群から選ばれる1種以上と置換した式[2]:Co-M1-W(但し、M1はFe,MnまたはNiから選ばれる1種以上を示す)で示される遷移金属固溶タングステン合金粉末、5)鉄がタングステン格子中に固溶されてなり、鉄の一部がコバルト、マンガン及びニッケルの群から選ばれる1種以上と置換した式[3]:Fe-M2-W(但し、M2は,Co,MnまたはNiから選ばれる1種以上を示す)で示される遷移金属固溶タングステン合金粉末が好ましい。 A part of the cobalt, iron, and nickel can be substituted with one or more selected from the group of iron, manganese, and nickel, which are other transition metals, and a composite transition metal solid solution tungsten powder can be obtained. Among them, 4) Formula [2] in which a part of cobalt is substituted with one or more selected from the group consisting of iron, manganese, iron-manganese and nickel (where M1 is Fe, Mn or Transition metal solid solution tungsten alloy powder represented by 1) selected from Ni), 5) iron is dissolved in tungsten lattice, and a part of iron is selected from the group of cobalt, manganese and nickel A transition metal solid solution tungsten alloy powder represented by the formula [3]: Fe-M2-W (wherein M2 represents one or more selected from Co, Mn or Ni) substituted with one or more is preferable.
 タングステンに対する遷移金属の固溶量はタングステンの等量モルまで可能である。固溶元素としては、コバルトの場合、タングステン60~90mol%に対しコバルト40~10mol%が適当であり、他の遷移金属も同様である。 The amount of transition metal dissolved in tungsten can be up to the equivalent mole of tungsten. As a solid solution element, in the case of cobalt, 40 to 10 mol% of cobalt is appropriate with respect to 60 to 90 mol% of tungsten, and the same applies to other transition metals.
 本発明は、上記遷移金属固溶タングステン粉末を得る製造方法を提供することを第2の目的とするものであり、タングステンイオンを含む水溶液と、コバルト、鉄、鉄―マンガン及びニッケルの群から選ばれる少なくとも1種の遷移金属イオンを含む水溶液を、タングステンイオンが60mol%以上、遷移金属イオンが40mol%以下の比率で混合し、該混合水溶液を蒸発乾固させるか又は噴霧乾燥させ、得られた固形物を熱分解した後水素熱還元することによって、遷移金属元素を固溶した式[1]で示される遷移金属固溶タングステン合金粉末
  式[1]:M-W(但し、MはCo、Fe、MnまたはNiから選ばれる1種以上を示す)
を製造するようにしたことを特徴とする遷移金属固溶タングステン合金粉末の製造方法を提供するものである。
The second object of the present invention is to provide a production method for obtaining the transition metal solid solution tungsten powder, which is selected from the group consisting of an aqueous solution containing tungsten ions and cobalt, iron, iron-manganese and nickel. An aqueous solution containing at least one kind of transition metal ions was mixed at a ratio of 60 mol% or more of tungsten ions and 40 mol% or less of transition metal ions, and the mixed aqueous solution was evaporated to dryness or spray dried. The transition metal solid solution tungsten alloy powder represented by the formula [1] in which the transition metal element is solid-solved by thermally decomposing the solid material and then hydrothermally reducing the formula [1]: MW (where M is Co, One or more selected from Fe, Mn or Ni)
The present invention provides a method for producing a transition metal solid solution tungsten alloy powder characterized in that the above is produced.
 本発明においては、タングステンイオンを含む水溶液がパラタングステン酸アンモニウム(5( NH4)2 O・12WO・5HO)水溶液であり、コバルト、鉄、マンガン及びニッケルの群から選ばれる少なくとも一種の遷移金属イオンを含む水溶液が遷移金属錯体塩水溶液であるのが好ましい。遷移金属錯体塩として酢酸塩(Fe(OH)(C23OO) 、Co( C233)2・4H2O、Mn( CH3COO)2・4H2O、Ni(C233)2・xH2O)、および硫酸塩(FeSO4・7HO、CoSO4・7HO、NiSO4・6H2O、MnSO4・5HO)を用いることができる。 In the present invention, the aqueous solution containing tungsten ions is an aqueous solution of ammonium paratungstate (5 (NH 4) 2 O · 12WO 3 · 5H 2 O), which is at least one selected from the group consisting of cobalt, iron, manganese and nickel. The aqueous solution containing transition metal ions is preferably a transition metal complex salt aqueous solution. As transition metal complex salts, acetate (Fe (OH) (C 2 H 3 OO) 2 , Co (C 2 H 3 O 3 ) 2 .4H 2 O, Mn (CH 3 COO) 2 .4H 2 O, Ni ( C 2 H 3 O 3 ) 2 · xH 2 O) and sulfates (FeSO 4 · 7H 2 O, CoSO 4 · 7H 2 O, NiSO 4 · 6H 2 O, MnSO 4 · 5H 2 O) it can.
 本発明で得られるタングステン合金粉末は、遷移金属元素がタングステン格子中に固溶されてなり、X線回折図形にbcc相ピークが認められることを特徴とするので、この遷移金属固溶タングステン合金粉末ではタングステン粒界に実質的に遷移金属元素又はその金属化合物が存在しないことが分かる。 The tungsten alloy powder obtained by the present invention is characterized in that the transition metal element is dissolved in the tungsten lattice and the bcc phase peak is observed in the X-ray diffraction pattern. Then, it turns out that a transition metal element or its metal compound does not exist substantially in a tungsten grain boundary.
 本発明に係るタングステン合金粉末は、重量組成で示すと、式[1]で示される遷移金属固溶タングステン合金粉末
   式[1]:M-W(但し、MはCo、Fe、MnまたはNiから選ばれる1種以上を示す)
であって、コバルトを0.3~20.8重量%含み、残部がタングステンからなるのを基本とするが、コバルトの全てあるいは一部を、鉄、マンガン及びニッケルの一種以上の元素で置換することにより形成される。ここで、コバルトを含めM成分がタングステン合金粉末の0.3重量%未満では省資源の効果が得られず、20.8重量%を超えると、タンクステン粒界に第2相が析出し、遷移金属元素を固溶(強制固溶)したタングステン合金粉末にならないことが見られる。
When the tungsten alloy powder according to the present invention is expressed by weight composition, the transition metal solid solution tungsten alloy powder represented by the formula [1] Formula [1]: MW (where M is Co, Fe, Mn or Ni) One or more selected)
The cobalt is basically contained in an amount of 0.3 to 20.8% by weight and the balance is made of tungsten, but all or a part of cobalt is replaced with one or more elements of iron, manganese and nickel. Is formed. Here, if the M component including cobalt is less than 0.3% by weight of the tungsten alloy powder, the resource saving effect cannot be obtained, and if it exceeds 20.8% by weight, the second phase is precipitated at the tank stainless grain boundary, It can be seen that the tungsten alloy powder does not become a solid solution (forced solid solution) of the transition metal element.
 コバルトは、タングステンの格子位置に置換して存在することで、タングステンの代替元素として作用し、価格が高騰しているタングステンの省資源化に有効である。また、コバルトを固溶(強制固溶)することで触媒活性が高め、本発明合金粉末に触媒としての機能を付与することができる。
 他方、ニッケルは、コバルトと類似の機能をもち、コバルトよりも価格が安いことに特徴を有する。また、ニッケルはコバルト以上に触媒活性を付与する。鉄は、タンクステン粉末の強度を向上させ、しかも安価であることに特徴を有する。また、鉄及び鉄-マンガンはその変態的特徴を有効に利用することができ、超硬合金金型の破壊靱性の改善に役立てることができる。
Cobalt is present in substitution for the lattice position of tungsten, so that it acts as an alternative element for tungsten and is effective for resource saving of tungsten, which is rising in price. Moreover, catalytic activity can be increased by dissolving cobalt in a solid solution (forced solid solution), and the alloy powder of the present invention can be given a function as a catalyst.
On the other hand, nickel has a function similar to that of cobalt and is characterized by a lower price than cobalt. Nickel also imparts catalytic activity over cobalt. Iron is characterized by improving the strength of tank stainless powder and being inexpensive. In addition, iron and iron-manganese can effectively utilize their transformation characteristics, and can be used to improve the fracture toughness of the cemented carbide mold.
 遷移金属イオンを含む水溶液としては、金属錯体塩、例えば、鉄、ニッケル、マンガンおよびコバルトの酢酸塩(Co( C233)2・4H2O、Fe(OH)(C23OO) 、Mn( CH3COO)2・4H2O、Ni(C233)2・xH2O)を用いると、水溶性であり、かつ、有害物質を発生させず、環境負荷が小さい。また、鉄、ニッケルおよびコバルトの遷移金属硫酸塩(CoSO4・7HO、FeSO4・7HNiSO4・6HO)の使用も循環型社会実現のために有効である。一般的に、銅の電解精製プロセスでは、電解液中の硫酸中に、鉄、ニッケルおよびコバルトの遷移金属が濃縮される。したがって、銅の電解精製で発生した廃液を、本発明のタングステン合金粉末の原料として使用することができ、かつ、蒸発乾固あるいは噴霧乾燥時に発生した硫酸も、副製品として有効利用することができる。 Examples of the aqueous solution containing transition metal ions include metal complex salts such as iron, nickel, manganese and cobalt acetates (Co (C 2 H 3 O 3 ) 2 .4H 2 O, Fe (OH) (C 2 H 3 OO) 2 , Mn (CH 3 COO) 2 .4H 2 O, Ni (C 2 H 3 O 3 ) 2 .xH 2 O) are water-soluble and do not generate harmful substances. The load is small. Use of transition metal sulfates of iron, nickel and cobalt (CoSO 4 · 7H 2 O, FeSO 4 · 7H 2 O , NiSO 4 · 6H 2 O) is also effective for realizing a recycling society. In general, copper electrorefining processes concentrate iron, nickel and cobalt transition metals in sulfuric acid in the electrolyte. Therefore, the waste liquid generated by electrolytic refining of copper can be used as a raw material for the tungsten alloy powder of the present invention, and sulfuric acid generated during evaporation to dryness or spray drying can also be effectively used as a by-product. .
 以下、本発明を代表的実施例に基づいて説明するが、遷移金属イオンを含む水溶液としては、各種金属錯体塩を単独で、または2種以上を併用して用いることによりタングステン金属に1種または2種以上の遷移金属を固溶させ、タングステン金属の一部と置換させることができるのは実施例より当業者には明らかである。 Hereinafter, the present invention will be described based on representative examples. As an aqueous solution containing transition metal ions, various metal complex salts may be used alone or in combination of two or more to form tungsten metal or It will be apparent to those skilled in the art from the examples that two or more transition metals can be dissolved and replaced with part of the tungsten metal.
 表1に示す化学成分(mol%)を有する、従来材(No.1)、本発明材(No.2~No.9)、比較材(No.10、No.11)を作製し、X線回折とEPMAにより、強制固溶体生成の可否、第2相析出の有無を調べた。 Conventional materials (No. 1), inventive materials (No. 2 to No. 9), and comparative materials (No. 10, No. 11) having chemical components (mol%) shown in Table 1 were prepared, and X By means of line diffraction and EPMA, the possibility of forced solid solution formation and the presence or absence of second phase precipitation were examined.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、溶液法とは本発明プロセスのことであり、遷移金属酢酸塩(Co( C233)2・4H2O、Fe(OH)(C23OO) 、Mn( CH3COO)2・4H2O及び/又はNi(C233)2・xH2O)の水溶液とパラタングステン酸アンモニウム(5( NH4)2 O・12WO・5HO)の水溶液を混合した後、蒸発乾固(噴霧乾燥でもよい)させ、得られた固形物を大気中823Kで酸化物に熱分解した後、水素ガス中1073Kで1h保持することにより水素熱還元してタンクステン合金粉末を得る方法である。 In Table 1, the solution method is the process of the present invention, and includes transition metal acetates (Co (C 2 H 3 O 3 ) 2 .4H 2 O, Fe (OH) (C 2 H 3 OO) 2 , Mn An aqueous solution of (CH 3 COO) 2 · 4H 2 O and / or Ni (C 2 H 3 O 3 ) 2 · xH 2 O) and ammonium paratungstate (5 (NH 4) 2 O · 12WO 3 · 5H 2 O ) And then evaporated to dryness (may be spray-dried), and the resulting solid was thermally decomposed to oxides at 823 K in the atmosphere, and then kept at 1073 K in hydrogen gas for 1 h for hydrothermal reduction. Thus, a tank stainless alloy powder is obtained.
 試料No.1は、粉末冶金の従来技術である素粉末混合法を適用して、表1の化学組成となるよう純コバルト粉末7.42重量%と残部純タングステン粉末を秤量して混合後、2ton/cm2の圧力で圧縮成型した後、水素ガス中、1073Kで1h保持して得た従来材である。第2相として純コバルト相が残留し、タングステンとの合金化は進行しなかった。 Sample No. 1 is a powder metallurgy, which is a conventional technique of powder metallurgy, and 7.42% by weight of pure cobalt powder and the remaining pure tungsten powder are weighed and mixed to obtain the chemical composition shown in Table 1, and then 2 ton / cm. This is a conventional material obtained by compression molding at a pressure of 2 and holding in hydrogen gas at 1073 K for 1 h. A pure cobalt phase remained as the second phase, and alloying with tungsten did not proceed.
 試料No.2は、溶液法によって得られた本発明材である。遷移金属酢酸塩(Co( C233)2・4H2O)の水溶液とパラタングステン酸アンモニウムを混合した。得られた合金粉末のX線回折図形はbccW相のピークのみが見られ、Coを均一に強制固溶したW合金粉末が得られた。 Sample No. 2 is the material of the present invention obtained by a solution method. An aqueous solution of transition metal acetate (Co (C 2 H 3 O 3 ) 2 .4H 2 O) and ammonium paratungstate were mixed. In the X-ray diffraction pattern of the obtained alloy powder, only the peak of the bcc W phase was observed, and a W alloy powder in which Co was uniformly and forcibly dissolved was obtained.
 試料No.3は、溶液法によって得られた本発明材である。この80mol%W-20mol%Coの組成となるように遷移金属酢酸塩(Co( C233)2・4H2O)の水溶液とパラタングステン酸アンモニウムを混合した。得られた合金粉末のX線回折図形はbccW相のピークのみがみられ、Coを均一に強制固溶したW合金粉末が得られた。この組成の水素熱還元温度、1073Kにおける平衡相は、W相とCo76相である。溶液法によって、最初、水溶液中コバルトイオンとタングステンイオンとをイオンレベルで均一にすると、水素熱還元後もコバルトはタングステン格子中に捕獲され、平衡相Co76相を形成できないことが確認された。すなわち、溶液法を適用すると、非平衡状態で強制固溶体合金粉末を製造できることが見出された。 Sample No. 3 is a material of the present invention obtained by a solution method. An aqueous solution of transition metal acetate (Co (C 2 H 3 O 3 ) 2 .4H 2 O) and ammonium paratungstate were mixed so that the composition was 80 mol% W-20 mol% Co. In the X-ray diffraction pattern of the obtained alloy powder, only the peak of the bcc W phase was observed, and a W alloy powder in which Co was forcibly solid-solved was obtained. The equilibrium phase at the hydrogen thermal reduction temperature of 1073 K of this composition is the W phase and the Co 7 W 6 phase. When cobalt ions and tungsten ions in an aqueous solution are first made uniform at the ion level by the solution method, it is confirmed that cobalt is trapped in the tungsten lattice even after hydrothermal reduction and an equilibrium phase Co 7 W 6 phase cannot be formed. It was. That is, it has been found that when a solution method is applied, a forced solid solution alloy powder can be produced in a non-equilibrium state.
 試料No.4及び試料No.5は、溶液法によって得られた本発明材である。この60mol%W-40mol%Coの組成まで、Coを均一に強制固溶したW合金粉末が得られることが確認された。溶液法を適用すると、この組成まで平衡相Co76相を形成することなく、非平衡状態で強制固溶体合金粉末を製造できた。 Sample No. 4 and sample no. 5 is a material of the present invention obtained by a solution method. It was confirmed that a W alloy powder in which Co was uniformly and solid-solved up to the composition of 60 mol% W-40 mol% Co was obtained. When the solution method was applied, forced solid solution alloy powder could be produced in a non-equilibrium state without forming an equilibrium phase Co 7 W 6 phase up to this composition.
 試料No.6は、Co( C233)2・4H2O水溶液の一部を、Fe(OH)(C23OO) 水溶液に置き換えた溶液法によって得られた本発明材である。Coの一部をFeで置換しても強制固溶体合金粉末の製造は可能であることが見出された。 Sample No. 6 is a material of the present invention obtained by a solution method in which a part of a Co (C 2 H 3 O 3) 2 .4H 2 O aqueous solution is replaced with an Fe (OH) (C 2 H 3 OO) 2 aqueous solution. . It has been found that forced solid solution alloy powder can be produced even if a part of Co is replaced by Fe.
 試料No.7はCo( C233)2・4H2O水溶液の一部を、Fe(OH)(C23OO)2、Mn(CH3COO)2・4H2O及びNi(C233)2・xH2Oの水溶液に置き換えた溶液法によって得られた本発明材である。Coの一部をFe、Mn、Niで置換しても強制固溶体合金粉末の製造は可能であることが分かった。 Sample No. 7 is a part of Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution, Fe (OH) (C 2 H 3 OO) 2 , Mn (CH 3 COO) 2 .4H 2 O and Ni (C It is the material of the present invention obtained by a solution method in which the solution is replaced with an aqueous solution of 2 H 3 O 3 ) 2 .xH 2 O. It has been found that forced solid solution alloy powder can be produced even if a part of Co is replaced by Fe, Mn, and Ni.
 試料No.8は、Co( C233)2・4H2O水溶液の一部を、Ni(C233)2・xH2O水溶液に置き換えた溶液法によって得られた本発明材である。Coの一部をNiで置換しても強制固溶体合金粉末の製造は可能であった。 Sample No. 8 is a material of the present invention obtained by a solution method in which a part of a Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution is replaced with a Ni (C 2 H 3 O 3) 2 .xH 2 O aqueous solution. It is. Even if a part of Co was replaced by Ni, forced solid solution alloy powder could be produced.
 試料No.9は、Co( C233)2・4H2O水溶液の一部を、Fe(OH)(C23OO) 及びNi(C233)2・xH2Oの水溶液に置き換えた溶液法によって得られた本発明材である。Coの一部をFe及びNiを複合して置換しても強制固溶体合金粉末の製造は可能であった。 Sample No. 9 is a part of an aqueous solution of Co (C 2 H 3 O 3 ) 2 .4H 2 O, Fe (OH) (C 2 H 3 OO) 2 and Ni (C 2 H 3 O 3 ) 2 .xH 2 O. It is this invention material obtained by the solution method replaced with the aqueous solution. The forced solid solution alloy powder could be produced even if a part of Co was replaced with a composite of Fe and Ni.
 試料No.10は、溶液法によって得られた比較材である。この10mol%W-90mol%Coの組成では、最終的に平衡相であるCo3Wが第2相として析出した。したがって、Co量が多いと、溶液法を用いても、Co格子中でのW原子の拡散が容易であるため、強制固溶体の作製は不可能であった。 Sample No. 10 is a comparative material obtained by the solution method. With this composition of 10 mol% W-90 mol% Co, Co 3 W as an equilibrium phase finally precipitated as the second phase. Therefore, if the amount of Co is large, even if the solution method is used, the diffusion of W atoms in the Co lattice is easy, so that it is impossible to produce a forced solid solution.
 試料No.11は、溶液法によって得られた比較材である。この50mol%W-50mol%Coの組成では、最終的に平衡相であるCo76が第2相として析出した。したがって、この組成においても、W原子は拡散するため、強制固溶体の作製は不可能であった。 Sample No. 11 is a comparative material obtained by the solution method. With this composition of 50 mol% W-50 mol% Co, Co 7 W 6 which is an equilibrium phase finally precipitated as the second phase. Therefore, even in this composition, since W atoms diffuse, it was impossible to produce a forced solid solution.
 試料No.12は、Co( C233)2・4H2O水溶液の一部を、Fe(OH)(C23OO) 2水溶液に置き換えた溶液法によって得られた本発明材である。Coの一部を微量のFeで置換した強制固溶体合金粉末である。 Sample No. 12 is a material of the present invention obtained by a solution method in which a part of a Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution is replaced with an Fe (OH) (C 2 H 3 OO) 2 aqueous solution. . This is a forced solid solution alloy powder in which a part of Co is replaced with a small amount of Fe.
 試料No.13は、Co( C233)2・4H2O水溶液の一部を、Fe(OH)(C23OO) 2水溶液に置き換えた溶液法によって得られた本発明材である。No.8に示したNi(C233)2・xH2O水溶液を加えずとも、強制固溶体合金粉末の製造は可能であった。 Sample No. 13 is the material of the present invention obtained by a solution method in which a part of the Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution is replaced with an Fe (OH) (C 2 H 3 OO) 2 aqueous solution. . The forced solid solution alloy powder could be produced without adding the Ni (C 2 H 3 O 3 ) 2 .xH 2 O aqueous solution shown in No. 8.
 試料No.14は、Co( C233)2・4H2O水溶液の全てを、Fe(OH)(C23OO) 2水溶液に置き換えた溶液法によって得られた本発明材である。全てをFeで置換しても強制固溶体合金粉末の製造は可能であった。 Sample No. 14 is the material of the present invention obtained by a solution method in which the entire Co (C 2 H 3 O 3) 2 .4H 2 O aqueous solution is replaced with an Fe (OH) (C 2 H 3 OO) 2 aqueous solution. Even if all were replaced with Fe, it was possible to produce forced solid solution alloy powder.
 試料No.15は、Co( C233)2・4H2O水溶液の全てを、Fe(OH)(C23OO) 2水溶液及びMn(CH3COO)2・4H2O水溶液に置き換えた溶液法によって得られた本発明材である。Coの全てをFe及びMnで置換しても強制固溶体合金粉末の製造は可能であった。 Sample No. 15 replaces all Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution with Fe (OH) (C 2 H 3 OO) 2 aqueous solution and Mn (CH 3 COO) 2 .4H 2 O aqueous solution. It is this invention material obtained by the solution method. Even if all of Co was replaced with Fe and Mn, forced solid solution alloy powder could be produced.
  [タンクステン炭化物製造例]
 表2に示す化学成分(wt%)を有する、従来材(No.21)、本発明材(No.22~No.28、No.31~No.34)、比較材(No.29、No.30)を作製した。
[Production example of tank stainless carbide]
Conventional materials (No. 21), inventive materials (No. 22 to No. 28, No. 31 to No. 34), and comparative materials (No. 29, No.) having chemical components (wt%) shown in Table 2. 30) was produced.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2中の本発明材No.22~No.27は、溶液法による遷移金属を強制固溶したタングステン合金粉末に、グラファイトを添加混合して作製した。すなわち、遷移金属酢酸塩(Co( C233)2・4H2O、Fe(OH)(C23OO) 、Mn( CH3COO)2・4H2O及び/又はNi(C233)2・xH2O)の水溶液とパラタングステン酸アンモニウム(5( NH4)2 O・12WO・5HO)の水溶液を混合した後、蒸発乾固(又は噴霧乾燥)させ、得られた固形物を大気中823Kで酸化物に熱分解し、水素ガス中1073Kで1h保持することにより水素熱還元して、遷移金属元素を強制固溶したタンクステン合金粉末を作製した。
 次に、このタングステン合金粉末に、グラファイトを混合し、Ar中、1473Kで1h保持してタングステン炭化物を作製した。
Invention material No. 1 in Table 2. 22-No. No. 27 was prepared by adding and mixing graphite to a tungsten alloy powder in which a transition metal was forcibly dissolved by a solution method. That is, transition metal acetates (Co (C 2 H 3 O 3 ) 2 .4H 2 O, Fe (OH) (C 2 H 3 OO) 2 , Mn (CH 3 COO) 2 .4H 2 O and / or Ni An aqueous solution of (C 2 H 3 O 3 ) 2 · xH 2 O) and an aqueous solution of ammonium paratungstate (5 (NH 4) 2 O · 12WO 3 · 5H 2 O) were mixed and then evaporated to dryness (or sprayed) Dried), the resulting solid was thermally decomposed into oxides at 823 K in the atmosphere, and reduced to hydrogen by reducing it to 1073 K in hydrogen gas for 1 h. Produced.
Next, graphite was mixed with this tungsten alloy powder, and held in Ar at 1473 K for 1 h to produce tungsten carbide.
 試料No.21は、粉末冶金の従来技術であるWO3にグラファイトを混合し、1473Kで1h、炭化したWC炭化物である。WC骨格内に金属相は内包されていなかった。 Sample No. 21 is WC carbide obtained by mixing graphite with WO 3 which is a conventional technique of powder metallurgy and carbonizing it at 1473K for 1 hour. The metal phase was not included in the WC skeleton.
 試料No.22、試料No.23、試料No.24、試料No.25、試料No.26、試料No.27及びNo.28は溶液法と炭化によって得られた本発明材である。WC骨格中に金属相が内包された特異な組織が得られた。この金属相は、タングステンの省資源化に役立ち、かつ、炭化物の機械的性質の改善に役立つ。試料No.22、試料No.23、試料No.24及び試料No.25の順で金属相を多く内包することが分かった。 Sample No. 22, Sample No. 23, sample no. 24, Sample No. 25, Sample No. 26, Sample No. 27 and no. 28 is the material of the present invention obtained by the solution method and carbonization. A unique tissue in which a metal phase was encapsulated in the WC skeleton was obtained. This metal phase is useful for resource saving of tungsten and for improving the mechanical properties of the carbide. Sample No. 22, Sample No. 23, sample no. 24 and sample no. It was found that many metal phases were included in the order of 25.
 試料No.26、試料No.27及びNo.28は、内包する金属相のコバルトを鉄、鉄-マンガンおよびニッケルで置換し、価格を低減した炭化物である。 Sample No. 26, Sample No. 27 and no. 28 is a carbide whose cost is reduced by substituting cobalt of the metal phase contained therein with iron, iron-manganese and nickel.
 試料No.29及びNo.30は、溶液法と炭化によって得られた比較材である。試料No.29のようにタングステン量に比してコバルト量が多いと、タンクステン合金粉末の作製時に、コバルト中、タングステンが拡散して、平衡相のCo3WやCo76が生成する。その結果、この合金粉末を炭化すると炭化物の周囲を金属相が取り囲み、炭化物中に金属相を内包することができない。 Sample No. 29 and No. 30 is a comparative material obtained by the solution method and carbonization. Sample No. When the amount of cobalt is larger than the amount of tungsten as in 29, tungsten is diffused in cobalt during the production of the tank stainless alloy powder, and Co 3 W and Co 7 W 6 in an equilibrium phase are generated. As a result, when this alloy powder is carbonized, the metal phase surrounds the carbide, and the metal phase cannot be included in the carbide.
 表2中の本発明材No.31及びNo.32は、溶液法による遷移金属を強制固溶したタングステン合金粉末に、グラファイトを添加混合して作製した。すなわち、試料No.26と同様にして、遷移金属酢酸塩(Co( C233)2・4H2O水溶液、Fe(OH)(C23OO) 水溶液及びパラタングステン酸アンモニウム(5( NH4)O・12WO・5HO)水溶液を混合した後、蒸発乾固(又は噴霧乾燥)させ、得られた固形物を大気中823Kで酸化物に熱分解した後、水素ガス中1073Kで1h保持することにより水素熱還元して、遷移金属元素を強制固溶したタンクステン合金粉末を作製した。次に、このタングステン合金粉末に、グラファイトを混合し、Ar中、1473Kで1h保持してタングステン炭化物を作製した。WC骨格中にCo-Fe固溶体相が内包された特異な組織が得られた。 Invention material No. 1 in Table 2. 31 and no. No. 32 was prepared by adding and mixing graphite to a tungsten alloy powder in which a transition metal was forcibly dissolved by a solution method. That is, in the same manner as Sample No. 26, transition metal acetate (Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution, Fe (OH) (C 2 H 3 OO) 2 aqueous solution and ammonium paratungstate After mixing (5 (NH 4 ) 2 O · 12WO 3 · 5H 2 O) aqueous solution, it was evaporated to dryness (or spray drying), and the resulting solid was thermally decomposed into oxides at 823 K in the atmosphere. A tank stainless alloy powder in which transition metal elements were forcibly dissolved was prepared by holding it at 1073 K in hydrogen gas for 1 h, and then graphite was mixed with this tungsten alloy powder, and 1473 K in Ar. A tungsten carbide was produced by holding for 1 h at a specific structure in which a Co—Fe solid solution phase was encapsulated in the WC skeleton.
 表2中の本発明材No.33及びNo.34は、溶液法によるFe及びMnを強制固溶したタングステン合金粉末に、グラファイトを添加混合して作製した。すなわち、Fe(OH)(C23OO) 水溶液及びMn(CH3COO)2・4H2O水溶液、パラタングステン酸アンモニウム(5( NH4)O・12WO・5HO)水溶液を混合した後、混合した後、蒸発乾固(又は噴霧乾燥)させ、得られた固形物を大気中823Kで酸化物に熱分解した後、水素ガス中1073Kで1h保持することにより水素熱還元して、遷移金属元素を強制固溶したタンクステン合金粉末を作製した。次に、このタングステン合金粉末に、グラファイトを混合し、Ar中、1473Kで1h保持してタングステン炭化物を作製した。Coの全てをFe、あるいはFe及びMnで置換すると、金属Fe、あるいはFe-Mn固溶体を内包するWC炭WC物の作製が可能であった。 Invention material No. 1 in Table 2. 33 and no. No. 34 was prepared by adding and mixing graphite to a tungsten alloy powder in which Fe and Mn were forcibly dissolved by a solution method. That is, Fe (OH) (C 2 H 3 OO) 2 aqueous solution, Mn (CH 3 COO) 2 .4H 2 O aqueous solution, ammonium paratungstate (5 (NH 4 ) 2 O.12WO 3 .5H 2 O) aqueous solution After mixing, after evaporating to dryness (or spray drying), the resulting solid was thermally decomposed into oxides at 823 K in the atmosphere, and then heated to 1073 K in hydrogen gas for 1 h for hydrothermal reduction Thus, a tank stainless alloy powder in which the transition metal element was forcibly dissolved was prepared. Next, graphite was mixed with this tungsten alloy powder, and held in Ar at 1473 K for 1 h to produce tungsten carbide. When all of Co was replaced with Fe, or Fe and Mn, it was possible to produce a WC charcoal WC product containing a metal Fe or Fe—Mn solid solution.
 図1に、試料No.23の本発明材をEPMA観察した結果を示す。SEM像と対応するWとCのX線像より、WCの骨格が形成されていることが分かった。また、CoのX線像より、WCの骨格中に金属相が形成されていることが理解できる。即ち、
 (a)は、SEM像である。白く見える部分がWC骨格であり、黒く見える部分が金属Coからなるドメインである。1623 Kで3.6 ks焼結時にCoドメインは不可避的に成長するが、なお、3mm以下を保っている。
 (b)はWのX線像である。WC骨格の形成を示す。
 (c)はCoのX線像である。WC骨格中のCoドメインの形成を示す。
 (d)はCのX線像である。WC骨格の形成を示す。
 この金属相の形成がタングステンの使用量削減に有効であり、かつ、機械的特性も向上させる。したがって、この新規WC炭化物を分散した超硬合金は、耐摩耗材料として好適である。
In FIG. The result of having observed 23 invention materials by EPMA is shown. From the SEM image and the corresponding X-ray images of W and C, it was found that a WC skeleton was formed. Further, it can be understood from the X-ray image of Co that a metal phase is formed in the WC skeleton. That is,
(A) is an SEM image. The part that appears white is the WC skeleton, and the part that appears black is a domain made of metal Co. The Co domain inevitably grows when sintered at 1623 K for 3.6 ks, but it remains below 3 mm.
(B) is an X-ray image of W. The formation of the WC skeleton is shown.
(C) is an X-ray image of Co. The formation of Co domains in the WC skeleton is shown.
(D) is an X-ray image of C. The formation of the WC skeleton is shown.
The formation of this metal phase is effective for reducing the amount of tungsten used and also improves the mechanical properties. Therefore, the cemented carbide in which this new WC carbide is dispersed is suitable as an abrasion resistant material.
 超硬合金は公知の製造方法、すなわち本発明のタングステン炭化物をCo粉末とともに焼結することによって製造できる。図2に、試料No.34の本発明材に5mass%の結合相Coを加えて、1623 Kで3.6 ks焼結によって、試作した超硬合金中のEPMA写真を示した。超硬合金中、WC骨格にFe-Mn固溶体相が形成され、結合相Coの一部は焼結中にこのFe-Mn固溶体相に分配されることが分かった。ビッカ-ス硬さはHv1945であり、極めて高い硬さを示した。また、ビッカ-ス硬さ試験圧痕の先端にクラックは発生せず、靱性も良好であることが分かった。即ち、
 (a)は、SEM像である。白く見える部分がWC骨格であり、黒く見える部分がFe-Mn固溶体相からなるドメインである。焼結時に金属ドメインは不可避的に成長するが、なお、1mm以下を保っている。このSEM像のビッカ-ス硬さ試験のあっ痕を示す。ビッカ-ス硬さはHv1945であり、極めて高い硬さを示した。また、ビッカ-ス硬さ試験圧痕の先端にクラックは発生せず、靱性も良好であることが分かった。
 (b)は、WのX線像である。WC骨格の形成を示す。また、Wの一部はFe-Mn固溶体ドメイン分配される。
 (c)は、FeのX線像であるFe-Mn固溶体ドメインの形成を示す。
 (d)は、CoのX線像である。結合相Coの一部は焼結中にFe-Mn固溶体ドメインに分配されることを示す。
 (e)は、CのX線像である。WC骨格の形成を示す。
 (f)は、MnのX線像である。Fe-Mn固溶体ドメインの形成を示す。
 金属ドメインを内包するWC炭化物がこのような高い硬さを示す理由は,本発明において、WC骨格が金属ドメインの変形を拘束するマイクロ構造を創出することに成功したためである。
The cemented carbide can be manufactured by a known manufacturing method, that is, by sintering the tungsten carbide of the present invention together with Co powder. In FIG. An EPMA photograph is shown in a cemented carbide made as a prototype by adding 3.6 mass of binder phase Co to 34 invention materials and sintering at 1623 K for 3.6 ks. It was found that a Fe—Mn solid solution phase was formed in the WC skeleton in the cemented carbide, and a part of the binder phase Co was distributed to the Fe—Mn solid solution phase during sintering. The Vickers hardness was Hv1945, indicating a very high hardness. It was also found that cracks did not occur at the tip of the Vickers hardness test indentation and that the toughness was good. That is,
(A) is an SEM image. The part that appears white is the WC skeleton, and the part that appears black is the domain composed of the Fe—Mn solid solution phase. The metal domain inevitably grows during sintering, but it remains below 1 mm. The trace of the Vickers hardness test of this SEM image is shown. The Vickers hardness was Hv1945, indicating a very high hardness. It was also found that cracks did not occur at the tip of the Vickers hardness test indentation and that the toughness was good.
(B) is an X-ray image of W. The formation of the WC skeleton is shown. Further, a part of W is distributed in the Fe—Mn solid solution domain.
(C) shows the formation of a Fe—Mn solid solution domain which is an X-ray image of Fe.
(D) is an X-ray image of Co. It shows that a part of the binder phase Co is distributed to the Fe—Mn solid solution domains during sintering.
(E) is an X-ray image of C. The formation of the WC skeleton is shown.
(F) is an X-ray image of Mn. The formation of Fe-Mn solid solution domains is shown.
The reason why the WC carbide including the metal domain exhibits such a high hardness is that in the present invention, the WC skeleton has succeeded in creating a microstructure that restrains deformation of the metal domain.
 以上詳述したように、本発明合金粉末は、タングステン格子中に遷移金属元素を均一一様に強制固溶している。したがって、タングステンの一部を遷移金属元素で代替した合金粉末として、超硬合金用タングステン炭化物原料など、タングステンを省資源化するための用途に広く用いることができる。例えば、本発明のタングステン合金粉末はタングステン粉末と同様にタングステン炭化物を形成し、結合相Coで焼結した超硬合金を製造することができる。 As described in detail above, the alloy powder of the present invention has the transition metal element uniformly and uniformly dissolved in the tungsten lattice. Therefore, as an alloy powder in which a part of tungsten is replaced with a transition metal element, it can be widely used in applications for saving tungsten resources such as tungsten carbide raw material for cemented carbide. For example, the tungsten alloy powder of the present invention forms tungsten carbide in the same manner as the tungsten powder, and can produce a cemented carbide sintered with the binder phase Co.
試料No.23の本発明材における金属相内包タングステン炭化物をEMPA観察した結果を示す図である。(a)は、SEM像で、白く見える部分がWC骨格であり、黒く見える部分が金属Coからなるドメインである。(b)はWのX線像で、WC骨格の形成を示す。(c)はCoのX線像で、WC骨格中のCoドメインの形成を示す。(d)はCのX線像で、WC骨格の形成を示す。Sample No. It is a figure which shows the result of having observed the metal phase inclusion tungsten carbide in 23 material of this invention by EMPA. (A) is a SEM image, the white part is a WC skeleton, and the black part is a domain made of Co. (B) is an X-ray image of W and shows the formation of the WC skeleton. (C) is an X-ray image of Co, showing the formation of a Co domain in the WC skeleton. (D) is an X-ray image of C, showing the formation of a WC skeleton. 試料No.34の本発明材における金属相内包タングステン炭化物をEMPA観察した結果を示す図である。(a)は、SEM像で、白く見える部分がWC骨格であり、黒く見える部分がFe-Mn固溶体相からなるドメインである。(b)は、WのX線像で、WC骨格の形成を示す。(c)は、FeのX線像で、Fe-Mn固溶体ドメインの形成を示す。(d)は、Coのx線像で、結合相Coの一部は焼結中にFe-Mn固溶体ドメインに分配されることを示す。(e)は、CのX線像で、WC骨格の形成を示す。(f)は、MnのX線像で、Fe-Mn固溶体ドメインの形成を示す。Sample No. It is a figure which shows the result of having observed the metal phase inclusion tungsten carbide in 34 this invention materials by EMPA. (A) is an SEM image, the white portion is a WC skeleton, and the black portion is a domain composed of a Fe—Mn solid solution phase. (B) is an X-ray image of W and shows the formation of a WC skeleton. (C) is an X-ray image of Fe and shows the formation of a Fe—Mn solid solution domain. (D) is an x-ray image of Co and shows that a part of the binder phase Co is distributed to the Fe—Mn solid solution domain during sintering. (E) is an X-ray image of C and shows the formation of a WC skeleton. (F) is an X-ray image of Mn, showing the formation of Fe—Mn solid solution domains.

Claims (6)

  1.  コバルト、鉄、マンガン及びニッケルの群から選ばれる少なくとも1種の遷移金属元素がタングステン格子中に固溶されてなり、X線回折図形にbccタングステン相ピークが認められる式[1]で示される遷移金属固溶タングステン合金粉末。
       式[1]:M-W(但し、MはCo、Fe、MnまたはNiから選ばれる1種以上を示す)
    Transition represented by the formula [1] in which at least one transition metal element selected from the group of cobalt, iron, manganese and nickel is dissolved in a tungsten lattice, and a bcc tungsten phase peak is observed in an X-ray diffraction pattern. Metal solute tungsten alloy powder.
    Formula [1]: MW (wherein M represents one or more selected from Co, Fe, Mn, or Ni)
  2.  コバルトの一部を、鉄、マンガン及びニッケルの群から選ばれる1種以上と置換した
    式[2]:Co-M1-W(但し、M1はFe、MnまたはNiから選ばれる1種以上を示す)で示される請求項1記載の遷移金属固溶タングステン合金粉末。
    Formula [2]: Co-M1-W in which a part of cobalt is substituted with one or more selected from the group consisting of iron, manganese and nickel (where M1 represents one or more selected from Fe, Mn or Ni) The transition metal solid solution tungsten alloy powder of Claim 1 shown by this.
  3.  鉄がタングステン格子中に固溶されてなり、鉄の一部がコバルト、マンガン及びニッケルの群から選ばれる1種以上と置換した
       式[3]:Fe-M2-W(但し、M2は,Co、MnまたはNiから選ばれる1種以上を示す)で示される請求項1記載の遷移金属固溶タングステン合金粉末。
    Iron is dissolved in a tungsten lattice, and a part of the iron is substituted with one or more selected from the group of cobalt, manganese, and nickel. Formula [3]: Fe—M2-W (where M2 is Co The transition metal solid solution tungsten alloy powder according to claim 1, wherein at least one selected from Mn and Ni is used.
  4.  タングステン60~90mol%に対しコバルト、鉄、マンガン及びニッケルの群から選ばれる少なくとも1種40~10mol%を固溶させてなる請求項1~3のいずれかに記載の遷移金属固溶タングステン合金粉末。 4. The transition metal solid solution tungsten alloy powder according to claim 1, wherein at least one 40 to 10 mol% selected from the group consisting of cobalt, iron, manganese and nickel is dissolved in 60 to 90 mol% of tungsten. .
  5.  タングステンイオンを含む水溶液と、コバルト、鉄、マンガン及びニッケルの群から選ばれる少なくとも1種の遷移金属イオンを含む水溶液を、タングステンイオンが60mol%以上、遷移金属イオンが40mol%以下の比率で混合し、
     該混合水溶液を蒸発乾固させるか又は噴霧乾燥させ、
     得られた固形物を酸化物に熱分解した後水素熱還元することによって、遷移金属元素を固溶した式[1]で示される遷移金属固溶タングステン合金粉末
       式[1]:M-W(但し、MはCo、Fe、MnまたはNiから選ばれる1種以上を示す)
    を製造するようにしたことを特徴とする遷移金属固溶タングステン合金粉末の製造方法。
    An aqueous solution containing tungsten ions and an aqueous solution containing at least one transition metal ion selected from the group consisting of cobalt, iron, manganese and nickel are mixed at a ratio of 60 mol% or more and 40 mol% or less of transition metal ions. ,
    Evaporating the mixed aqueous solution to dryness or spray drying;
    The obtained solid is thermally decomposed into oxides and then thermally reduced by hydrogen, so that the transition metal solid solution tungsten alloy powder represented by the formula [1] in which the transition metal element is dissolved is represented by the formula [1]: MW ( However, M shows 1 or more types chosen from Co, Fe, Mn, or Ni)
    A process for producing a transition metal solid solution tungsten alloy powder characterized by comprising producing
  6.  タングステンイオンを含む水溶液がパラタングステン酸アンモニウム水溶液であり、コバルト、鉄、マンガン及びニッケルの群から選ばれる少なくとも一種の遷移金属イオンを含む水溶液が遷移金属錯体塩水溶液である請求項4記載の遷移金属固溶タングステン合金粉末の製造方法。 The transition metal according to claim 4, wherein the aqueous solution containing tungsten ions is an aqueous ammonium paratungstate solution, and the aqueous solution containing at least one transition metal ion selected from the group consisting of cobalt, iron, manganese and nickel is an aqueous transition metal complex salt solution. Manufacturing method of solid solution tungsten alloy powder.
PCT/JP2009/064494 2008-08-25 2009-08-19 Powder of tungsten alloy with transition metal dissolved therein as solid solution and process for producing same WO2010024159A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09809812A EP2332675A1 (en) 2008-08-25 2009-08-19 Powder of tungsten alloy with transition metal dissolved therein as solid solution and process for producing same
US12/737,875 US20110243787A1 (en) 2008-08-25 2009-08-19 Power of tungsten alloy with transition metal dissolved therein as solid solution and process for producing the same
CN2009801335673A CN102131601A (en) 2008-08-25 2009-08-19 Powder of tungsten alloy with transition metal dissolved therein as solid solution and process for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-215605 2008-08-25
JP2008215605 2008-08-25

Publications (1)

Publication Number Publication Date
WO2010024159A1 true WO2010024159A1 (en) 2010-03-04

Family

ID=41721328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064494 WO2010024159A1 (en) 2008-08-25 2009-08-19 Powder of tungsten alloy with transition metal dissolved therein as solid solution and process for producing same

Country Status (5)

Country Link
US (1) US20110243787A1 (en)
EP (1) EP2332675A1 (en)
JP (1) JP5522713B2 (en)
CN (1) CN102131601A (en)
WO (1) WO2010024159A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106480347A (en) * 2016-12-05 2017-03-08 郑州丽福爱生物技术有限公司 A kind of high-strength aluminum alloy material and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2013CH04500A (en) 2013-10-04 2015-04-10 Kennametal India Ltd
KR101752687B1 (en) 2015-04-24 2017-06-30 서울대학교 산학협력단 High strength tungsten alloy with low activation and manufacturing method for the same
JP2018035020A (en) * 2016-08-30 2018-03-08 住友電気工業株式会社 Aqueous solution composition and method for producing the same, oxide powder and method for producing the same, carbide powder and method for producing the same, and cemented carbide and method for producing the same
CN109128163B (en) * 2018-08-16 2021-09-14 北京科技大学 Method for preparing high-performance tungsten-based metal part

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925950A (en) * 1982-07-16 1984-02-10 ドルニエ・ジステム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Sintered body comprising tungsten alloy
US4913731A (en) 1988-10-03 1990-04-03 Gte Products Corporation Process of making prealloyed tungsten alloy powders
JPH07500804A (en) * 1991-08-07 1995-01-26 ラットジャーズ,ザ ステート ユニバーシティ オブ ニュージャージー Carbothermal reaction process for nanophase WC-Co powder production
JPH10245603A (en) * 1997-03-04 1998-09-14 Korea Inst Of Mach & Materials Production of ultrafine w/cu metal composite powder and high density bulk material by mechanochemical method
JP2002527626A (en) 1998-10-16 2002-08-27 ウーロタングステーヌ プードル Micron metal powder based on tungsten and / or molybdenum and 3d transition metal
JP2007092089A (en) * 2005-09-27 2007-04-12 Japan New Metals Co Ltd Method for producing high-purity molybdenum-tungsten alloy powder used for raw powder for sputtering target

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2987911B2 (en) * 1990-09-12 1999-12-06 住友電気工業株式会社 Tungsten alloy particles and method for producing the same
JPH04308003A (en) * 1991-04-05 1992-10-30 Sumitomo Electric Ind Ltd Tungsten alloy granule for shielding radiation
JP3245893B2 (en) * 1991-07-04 2002-01-15 住友電気工業株式会社 Fine grain tungsten alloy and method for producing the same
JP3252481B2 (en) * 1992-09-18 2002-02-04 住友電気工業株式会社 Tungsten alloy having fine crystal grains and method for producing the same
CN1590573A (en) * 2003-08-25 2005-03-09 金益民 Production technology of nano-grade tungsten cobalt mixed powder
KR101274097B1 (en) * 2005-11-28 2013-06-13 가부시끼가이샤 아라이도 마테리아루 Tungsten alloy particles, machining process with the same, and process for production thereof
JP4651565B2 (en) * 2006-03-28 2011-03-16 京セラ株式会社 Manufacturing method of cemented carbide powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925950A (en) * 1982-07-16 1984-02-10 ドルニエ・ジステム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Sintered body comprising tungsten alloy
US4913731A (en) 1988-10-03 1990-04-03 Gte Products Corporation Process of making prealloyed tungsten alloy powders
JPH07500804A (en) * 1991-08-07 1995-01-26 ラットジャーズ,ザ ステート ユニバーシティ オブ ニュージャージー Carbothermal reaction process for nanophase WC-Co powder production
JPH10245603A (en) * 1997-03-04 1998-09-14 Korea Inst Of Mach & Materials Production of ultrafine w/cu metal composite powder and high density bulk material by mechanochemical method
JP2002527626A (en) 1998-10-16 2002-08-27 ウーロタングステーヌ プードル Micron metal powder based on tungsten and / or molybdenum and 3d transition metal
JP2007092089A (en) * 2005-09-27 2007-04-12 Japan New Metals Co Ltd Method for producing high-purity molybdenum-tungsten alloy powder used for raw powder for sputtering target

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106480347A (en) * 2016-12-05 2017-03-08 郑州丽福爱生物技术有限公司 A kind of high-strength aluminum alloy material and preparation method thereof

Also Published As

Publication number Publication date
JP2010077524A (en) 2010-04-08
CN102131601A (en) 2011-07-20
EP2332675A1 (en) 2011-06-15
US20110243787A1 (en) 2011-10-06
JP5522713B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
CN111304512B (en) Medium-high entropy alloy material, preparation method and application thereof
JP4257690B2 (en) Sintered active metal powders and alloy powders for powder metallurgy applications, methods for their production and their use
Su et al. Effects of Ni on the microstructures and properties of WC–6Co cemented carbides fabricated by WC–6 (Co, Ni) composite powders
JP5522713B2 (en) Transition metal solid solution tungsten alloy powder and method for producing the same
CN103981393B (en) Carbon nanotube-metal composite enhanced copper-based composite material and preparation method thereof
CN103998134B (en) Carrier, gold-supported genotype catalyst, methanation reaction equipment and relative method for carried metal
Lesani et al. Nanostructured MnCo2O4 synthesized via co-precipitation method for SOFC interconnect application
JP5522712B2 (en) Transition metal-encapsulated tungsten carbide, tungsten carbide-dispersed cemented carbide and method for producing the same
Xu et al. Powder metallurgy synthesis of porous NiMo alloys as efficient electrocatalysts to enhance the hydrogen evolution reaction
Reghunath et al. N-doped graphene quantum dots incorporated cobalt ferrite/graphitic carbon nitride ternary composite for electrochemical overall water splitting
JP2000501786A (en) Prealloyed powder and its use in the production of diamond tools
Azar et al. Synthesis and consolidation of W–Cu composite powders with silver addition
JP2000248304A (en) Porous metal powder and its production
Fa et al. The microstrcture and high-temperature oxidation resistance of tungsten carbide with high entropy alloys as binder
WO2006104122A1 (en) High performance catalyst using composite oxide and method for preparation thereof
EP1721666B1 (en) INTERMETALLIC COMPOUND Ni3Al CATALYST FOR METHANOL REFORMING AND METHOD FOR REFORMING METHANOL USING SAME
Highfield et al. Raney multi-metallic electrodes from regular crystalline and quasi-crystalline precursors: I. Cu-stabilized Ni/Mo cathodes for hydrogen evolution in acid
US9238854B2 (en) Method of producing carbide and carbon nitride powders containing binder, and cermet obtained from the same
CN109266945A (en) A kind of high tough high-entropy alloy and preparation method thereof
US8974857B2 (en) Methods for manufacturing of cobalt boride coating layer on surface of steels by using a pack cementation process
CN102443883A (en) Method for preparing micron-nano tungsten carbide fiber by utilizing tungsten waste material
JP2004142993A (en) Hexagonal composite carbide, and production method therefor
CN114807998A (en) High-entropy metal oxide FeCoNiCrMnO x Preparation method of (1)
KR20150092231A (en) Core-shell catalyst and method for palladium-based core particle
Fiorellino et al. (FeCo/Ppy@ C): Pt-free FeCo-Polypyrrole Nanocomposites Supported on Porous Carbon for Electrochemical Application

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133567.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809812

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009809812

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12737875

Country of ref document: US