WO2010042240A1 - Limited-access, reduced-pressure systems and methods - Google Patents

Limited-access, reduced-pressure systems and methods Download PDF

Info

Publication number
WO2010042240A1
WO2010042240A1 PCT/US2009/037071 US2009037071W WO2010042240A1 WO 2010042240 A1 WO2010042240 A1 WO 2010042240A1 US 2009037071 W US2009037071 W US 2009037071W WO 2010042240 A1 WO2010042240 A1 WO 2010042240A1
Authority
WO
WIPO (PCT)
Prior art keywords
reduced
pressure
encapsulating
manifold
bridge
Prior art date
Application number
PCT/US2009/037071
Other languages
French (fr)
Inventor
Bruce Mcneil
Original Assignee
Kci Licensing, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42076322&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010042240(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CA2736740A priority Critical patent/CA2736740C/en
Priority to EP19162338.8A priority patent/EP3530299A1/en
Priority to AU2009302771A priority patent/AU2009302771B2/en
Priority to EP09789512.2A priority patent/EP2344217B1/en
Priority to BRPI0913732A priority patent/BRPI0913732B8/en
Application filed by Kci Licensing, Inc. filed Critical Kci Licensing, Inc.
Priority to CN200980137088.9A priority patent/CN102159258B/en
Priority to JP2011531037A priority patent/JP5373092B2/en
Priority to RU2011111190/14A priority patent/RU2468826C1/en
Priority to MX2011003667A priority patent/MX353146B/en
Publication of WO2010042240A1 publication Critical patent/WO2010042240A1/en
Priority to HK11113034.8A priority patent/HK1158558A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M27/00Drainage appliance for wounds or the like, i.e. wound drains, implanted drains
    • A61F13/05
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/91Suction aspects of the dressing
    • A61M1/912Connectors between dressing and drainage tube
    • A61M1/913Connectors between dressing and drainage tube having a bridging element for transferring the reduced pressure from the connector to the dressing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/91Suction aspects of the dressing
    • A61M1/915Constructional details of the pressure distribution manifold
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/92Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing with liquid supply means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/08Limbs

Definitions

  • the present invention relates generally to medical treatment systems and, more particularly, to limited-access, reduced-pressure systems and methods.
  • Clinical studies and practices have shown that providing reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but application of reduced pressure has been particularly successful in treating wounds.
  • This treatment (frequently referred to in the medical community as "negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, which may include faster healing and increased formulation of granulation tissue. Unless otherwise indicated, as used herein, "or” does not require mutual exclusivity.
  • a difficult limited-access location is the bottom sole (plantar) of a patient's foot or other anatomical locations that are difficult to service.
  • a related illustrative example of a limited-access location is inside an offloading device, such as a walking boot or removable walker.
  • Another example of a limited-access location is a tissue site on a bed-ridden patient's back.
  • Other illustrative examples include a tissue site under a compression garment and sacral wounds on the foot.
  • a reduced-pressure treatment system for applying reduced pressure to a tissue site at a limited-access location on a patient includes a reduced- pressure source, a treatment manifold for placing proximate the tissue site and operable to distribute reduced pressure to the tissue site, and a sealing member for placing over the tissue site and operable to form a pneumatic seal over the tissue site.
  • the reduced-pressure treatment system also includes a reduced-pressure bridge that includes a delivery manifold operable to transfer the reduced pressure to the treatment manifold, an encapsulating envelope at least partially enclosing the delivery manifold and having a patient-facing side, a reduced-pressure- interface site formed proximate one end of the reduced-pressure bridge.
  • the reduced-pressure treatment system also includes a moisture-removing device.
  • a reduced-pressure bridge for delivering reduced pressure to a reduced-pressure dressing from a remote site includes a delivery manifold operable to transfer a reduced pressure and an encapsulating envelope at least partially enclosing the delivery manifold and having a patient-facing side.
  • a reduced- pressure-interface site is formed proximate a second end of the reduced-pressure bridge.
  • the encapsulating envelope has a second aperture formed on the patient-facing side of the encapsulating envelope.
  • the reduced-pressure bridge also includes a moisture-removing device on at least a portion of the encapsulating envelope.
  • a method for delivering reduced pressure to a tissue site at a limited-access location includes the steps of: disposing a first manifold proximate the wound and disposing a sealing member over the first manifold.
  • the sealing member has a first aperture.
  • the method for delivering reduced pressure to a tissue site further includes providing a reduced-pressure bridge having a first end and a second end.
  • the reduced-pressure bridge has a second aperture proximate the first end, a moisture- removing device, and a second manifold.
  • the method for delivering reduced pressure to a tissue site further includes coupling a reduced-pressure interface to the second end of the reduced-pressure bridge; disposing the first end of the reduced-pressure bridge over at least a portion of the sealing member with the second aperture substantially aligned with the first aperture.
  • the first manifold may be at least partially encapsulated with an encapsulating envelope that has a patient-facing side.
  • the method for delivering reduced pressure to a tissue site may further include fluidly coupling a reduced-pressure source to the reduced-pressure interface.
  • a reduced-pressure treatment kit includes a reduced-pressure bridge, the reduced-pressure bridge, a reduced-pressure interface, a reduced-pressure delivery conduit, a manifold unit, and a perforated sealing sheet.
  • the manifold unit has a plurality of preformed treatment manifolds.
  • the perforated sealing sheet is operable to be torn into a plurality of securing strips and a sealing member.
  • FIGURE 1 is a schematic, perspective view with a portion shown as a block diagram of an illustrative reduced-pressure treatment system utilizing a reduced-pressure bridge;
  • FIGURE 2A is schematic, plan view of an illustrative reduced-pressure bridge;
  • FIGURE 2B is a schematic, perspective, exploded view of the illustrative reduced- pressure bridge of FIGURE 2A;
  • FIGURE 2C is a schematic, cross-sectional view taken along line 2C-2C of the illustrative reduced-pressure bridge of FIGURE 2 A;
  • FIGURE 2D is a schematic, cross-sectional view of an alternative illustrative reduced- pressure bridge;
  • FIGURE 3 is schematic, perspective view showing an illustrative reduced-pressure bridge being coupled with a reduced-pressure interface
  • FIGURE 4 is a schematic, plan view of the reduced-pressure bridge of FIGURE 3 with the reduced-pressure interface installed;
  • FIGURE 5 is a schematic diagram of an illustrative reduced-pressure treatment system utilizing a reduced-pressure bridge shown on a traverse section through an abdomen of a patient on a bed;
  • FIGURE 6 is a schematic diagram of an illustrative embodiment of a reduced-pressure treatment kit for use with limited-access tissue sites;
  • FIGURE 7A is a schematic, perspective view of an illustrative manifold unit.
  • FIGURE 7B is a schematic plan view of the manifold unit of FIGURE 7A.
  • the reduced-pressure treatment system 100 has an illustrative embodiment of a reduced-pressure bridge 102.
  • the reduced-pressure bridge 102 facilitates reduced-pressure treatment of a tissue site 104 and in particular a limited-access tissue site, which in this illustration is on the bottom sole (plantar) of a patient's foot 106 and also within an offloading device, e.g., offloading boot 108 (shown in hidden lines).
  • the reduced-pressure treatment system 100 may be used with a tissue site at a non-limited-access site or a limited- access site.
  • limited-access tissue sites include on a patient's back, under a compression garment, in a total contact casting (TCC), in a removable walker, in a healing sandal, in a half shoe, in an ankle foot orthoses, etc.
  • the reduced-pressure treatment system 100 may be used with the bodily tissue of any human, animal, or other organism, including bone tissue, adipose tissue, muscle tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, ligaments, or any other tissue.
  • the reduced-pressure bridge 102 provides a low profile source of reduced pressure to be supplied to the limited-access tissue site 104 and thereby may increase patient comfort and enhance reliability of the reduced-pressure supply to the limited-access tissue site 104.
  • the reduced-pressure bridge 102 may readily be used with an offloading device. As such, the reduced-pressure bridge 102 may allow the patient the benefit of both reduced-pressure treatment as well as the offloading of physical pressure. As described further below, the reduced-pressure bridge 102 may include a moisture-removing device, e.g., moisture-removing device 216 in FIGURE 2B, that helps to avoid maceration of a patient's skin by removing moisture from the patient's skin.
  • a moisture-removing device e.g., moisture-removing device 216 in FIGURE 2B
  • the reduced-pressure bridge 102 has a first end 1 10 that is placed proximate the limited-access tissue site 104 and a second end 1 12.
  • the second end 112 has a reduced- pressure-interface site 114 that is for receiving a reduced-pressure interface 116, which may be a port, such as a TRAC Pad ® interface or a SensaT.R.A.C.TM pad interface from Kinetic Concepts, Inc. of San Antonio, Texas.
  • the second end 112 is typically placed at a location on or near the patient that provides convenient access by the healthcare provider, such as a convenient location for applying reduced-pressure to the reduced-pressure-interface site 114.
  • the reduced-pressure bridge 102 When an offloading device, e.g., offloading boot 108, is utilized, the reduced-pressure bridge 102 would extend from the tissue site to a place outside of the offloading device.
  • the actual length (L) of the reduced-pressure bridge 102 may be varied to support use with a particular offloading device or application.
  • a reduced-pressure delivery conduit 118 may fluidly couple the reduced-pressure interface 116 to a reduced-pressure source 120.
  • the reduced-pressure source 120 may be any device or means for supplying a reduced pressure, such as a vacuum pump or wall suction. While the amount and nature of reduced pressure applied to a site will vary according to the application, the reduced pressure will typically be between -5 mm Hg and -500 mm Hg or more typically between -25 mm Hg to -200 mm Hg. For vertical applications of the reduced- pressure bridge 102, such as is shown in FIGURE 1 on an ambulatory patient's leg, a specified minimum reduced pressure may be necessary to ensure proper fluid flow.
  • a reduced pressure of at least -125 mm Hg has been suggested as a minimum, but other pressures may be suitable for different situations.
  • reduced pressure generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure at the tissue site. Unless otherwise indicated, values of pressure stated herein are gauge pressures. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure applied to the tissue site may be more than the pressure normally associated with a complete vacuum.
  • an increase in reduced pressure or vacuum pressure typically refers to a relative reduction in absolute pressure.
  • a V.A.C. ® Therapy Unit by Kinetic Concepts, Inc. of San Antonio may be used as the reduced- pressure source 120.
  • a plurality of devices may be fluidly coupled to the reduced-pressure delivery conduit 1 18.
  • a fluid canister 122 or a representative device 124 may be included.
  • the representative device 124 may be another fluid reservoir or canister to hold exudates and other fluids removed.
  • Other examples of device 124 that may be included on the reduced-pressure delivery conduit 118 include the following non-limiting examples: a pressure-feedback device, a volume detection system, a blood detection system, an infection detection system, a flow monitoring system, a temperature monitoring system, a filter, etc.
  • Some of these devices may be formed integral to the reduced-pressure source 120.
  • a reduced-pressure port 126 on the reduced-pressure source 120 may include a filter member that includes one or more filters, e.g., an odor filter.
  • the illustrative, reduced-pressure bridge 200 has a first end 202 and a second end 204.
  • the first end 202 of the illustrative, reduced-pressure bridge 200 is configured to provide reduced pressure to a first manifold, or treatment manifold (e.g., treatment manifold 310 in FIG. 5) and the second end 204 has a reduced-pressure-interface site 206.
  • a first encapsulating member 210 is on a first side 208 of the illustrative, reduced-pressure bridge 200.
  • the first encapsulating member 210 may have an aperture 211 formed proximate the second end 204.
  • a second manifold, or delivery manifold 212 is disposed proximate the first encapsulating member 210.
  • a second encapsulating member 214 is disposed proximate a second side of the delivery manifold 212.
  • the second encapsulating member 214 may be formed with an aperture 213 proximate the first end 202.
  • a moisture-removing device 216 is disposed proximate the second encapsulating member 214, which in this illustrative embodiment is a wicking layer 218.
  • a releasable backing member or release liner 220 may be included on the first end 202 to releasably cover an adhesive as is explained further below.
  • the releasable backing member 220 may be formed with an aperture 222 that aligns with the aperture 213 in the second encapsulating member 214.
  • the delivery manifold 212 may be any material capable of transferring reduced pressure.
  • the delivery manifold 212 is a foam material, such as a GranuFoam ® material from Kinetic Concepts, Inc. of San Antonio, Texas.
  • the delivery manifold 212 may be formed from the same material as a treatment manifold (e.g., treatment manifold 310 in FIG. 5).
  • the delivery manifold 212 may have any thickness, such as a thickness in the range of 3 - 20 millimeters, 5 - 10 millimeters, 6 - 7 millimeters, etc.
  • the thickness of the delivery manifold 212 may be varied to minimize or eliminate pressure points on the tissue site.
  • the thickness of the delivery manifold 212 may also be selected to support fluid removal from the tissue site and transfer into a canister (e.g., fluid canister 122 in FIG. 1).
  • the first encapsulating member 210 and the second encapsulating member 214 may be composed of any material that facilitates maintaining reduced pressure within a first encapsulating envelope 229 formed from the first encapsulating member 210 and the second encapsulating member 214.
  • the first encapsulating member 210 and the second encapsulating member 214 include a polyurethane film, but any suitable drape material may be readily used, such as any natural rubbers, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene monomer, chlorosulfonated polyethylene, polysulfide rubber, polyurethane, EVA film, co-polyester, silicones, 3M Tegaderm® drape material, or acrylic drape material, such as one available from Avery. These are non-limiting examples.
  • a periphery portion 224 of the first encapsulating member 210 and a periphery portion 226 of the second encapsulating member 214 may be coupled, such as by RF weld 228, to form the first encapsulating envelope 229.
  • the term “coupled” includes coupling via a separate object and includes direct coupling.
  • the term “coupled” also encompasses two or more components that are continuous with one another by virtue of each of the components being formed from the same piece of material.
  • the term “coupled” may include chemical, mechanical, or thermal coupling. Fluid coupling means that fluid is in communication between the designated parts or locations.
  • the first encapsulating member 210 and the second encapsulating member 214 may be coupled using any technique, including without limitation welding (e.g., ultrasonic or RF welding), bonding, adhesives, cements, etc.
  • the first encapsulating envelope 229 may completely enclose the delivery manifold 212.
  • the moisture-removing device 216 may be coupled to at least a portion of the first encapsulating envelope 229 using any technique.
  • the wicking layer may be coupled to a patient-facing side 230 of the second encapsulating member 214 of the first encapsulating envelope 229.
  • the moisture-removing device 216 pulls moisture, e.g., perspiration, away from a patient's skin and thereby helps to avoid maceration of the patient's skin and enhances comfort.
  • the extent of the wicking layer 218 can be varied both laterally (width) and longitudinally (lengthwise).
  • the wicking layer 218 may cover 100 percent or more than 90 percent, 80 percent, 70 percent, 60 percent, or 50 percent of the patient-facing second encapsulating member 24.
  • the wicking layer 218 pulls moisture to a place where the moisture can evaporate more readily.
  • the moisture-removing device 216 is the wicking layer 218.
  • the wicking layer 218 may be a cloth-material drape, a non-woven fabric, a knitted polyester woven textile material, such as the one sold under the name InterDry® AG material from Coloplast A/S of Denmark, GORTEX® material, DuPont Softesse® material, etc.
  • a third encapsulating member 232 is provided with a plurality of apertures or fenestrations 234. The third encapsulating member 232 covers all or at least a portion of a third manifold 236, or comfort manifold.
  • a periphery portion of the third encapsulating member 232 is also coupled by any technique, such as by RF weld 228.
  • the third encapsulation member 232 forms a second encapsulating envelope 238.
  • a reduced pressure is supplied within the second encapsulation member 214 and any fluid against a patient's skin is pulled through the plurality of apertures 234 into the third manifold 236 and delivered elsewhere, e.g., to a canister, for storage or disposal.
  • a moisture vapor permeable material is pneumatically coupled to a negative pressure source to provide active removal adjacent the illustrative, reduced-pressure bridge 200.
  • apertures may be formed on the second encapsulating member 214 that allow the reduced pressure in the first encapsulating envelope 229 to pull fluids into the delivery manifold 212.
  • apertures may be formed in the second encapsulating member 214 that allow the reduced pressure in the first encapsulating envelope 229 to pull fluids into the delivery manifold 212, and reduced-pressure valves may be associated with the apertures that close when reduced pressure is absent.
  • the illustrative, reduced-pressure bridge 200 has a length (L), a width (W), and a thickness (T).
  • the illustrative, reduced-pressure bridge 200 preferably has a low of profile, e.g., small dimension T, as possible.
  • T may be 30 mm, 20 mm, 15 mm, 10 mm, 5 mm, or less. In other embodiments, T may take any size.
  • the comfort or function of the illustrative, reduced-pressure bridge 200 may be enhanced by using a length (L) to width (W) ratio that involves having the length dimension greater than the width. For example, in one embodiment, the relationship is L > 2W.
  • the relationship is L > 6W. In another illustrative embodiment, the relationship is L > 12W. In another illustrative embodiment, the relationship is L > 15 W. In one illustrative embodiment, L is approximately 668 mm and W is approximately 56 mm.
  • FIGURE 3 the illustrative reduced-pressure bridge 200 is shown with a reduced-pressure interface 240 about to be coupled to the reduced-pressure-interface site 206 of the illustrative, reduced-pressure bridge 200.
  • the aperture 211 in the first encapsulating member 210 substantially aligns with a central portion of the reduced-pressure interface 240 to provide a fluid coupling.
  • a reduced-pressure delivery conduit 242 is coupled at one end to the reduced-pressure interface 240 and at the other end has a fitting 244 that facilitates coupling to a reduced-pressure source (not shown).
  • a restricting clip or clamp 246 and a visual indicia flag 248 may also be included on a portion of the reduced-pressure delivery conduit 242.
  • FIGURE 4 shows a plan view with the reduced-pressure interface 240 coupled to the reduced-pressure-interface site 206.
  • a reduced-pressure treatment system 300 is presented.
  • the reduced-pressure treatment system 300 is shown deployed to treat a tissue site 302 on a patient's back 304. If the patient is bed-ridden, the patient's back 304 may be pressed against a portion of a bed 306. In such a situation, the use of a reduced-pressure bridge 308, or transfer member, as part of the reduced-pressure treatment system 300 may be particularly beneficial to the patient.
  • the reduced-pressure bridge 308 is analogous to the illustrative, reduced-pressure bridge 200 presented above.
  • a treatment manifold 310 is disposed proximate the tissue site 302.
  • a sealing member 312 having an attachment device 314 on a patient-facing side is disposed over the treatment manifold 310.
  • the term "manifold” as used herein generally refers to a substance or structure that helps to distribute reduced-pressure and to transport fluids.
  • the treatment manifold 310 typically includes a plurality of flow channels or pathways that are interconnected to improve distribution of fluids provided to and removed from the tissue site 302 around the treatment manifold 310.
  • the treatment manifold 310 may be a biocompatible material that is capable of being placed in contact with the tissue site 302 and distributing reduced pressure to the tissue site 302.
  • Examples of treatment manifolds 310 may include, for example, without limitation, devices that have structural elements arranged to form flow channels, such as, for example, cellular foam, open-cell foam, porous tissue collections, liquids, gels, and foams that include, or cure to include, flow channels.
  • the treatment manifold 310 may be porous and may be made from foam, gauze, felted mat, or any other material suited to a particular biological application.
  • the treatment manifold 310 is a porous foam and includes a plurality of interconnected cells or pores that act as flow channels.
  • the porous foam may be a polyurethane, open-cell, reticulated foam, such as a GranuFoam® material manufactured by Kinetic Concepts, Incorporated of San Antonio, Texas.
  • the treatment manifold 310 may also be used to distribute fluids, such as medications, antibacterials, growth factors, and various solutions to the tissue site 302.
  • the attachment device 314 may be used to hold the sealing member 312 against the patient's epidermis or another layer, such as a gasket or additional sealing member.
  • the attachment device 314 may take numerous forms, e.g., a medically acceptable, pressure- sensitive adhesive, cement, hydrocolloid, etc.
  • the sealing member 312 and the attachment device 314 are formed with a first aperture 318.
  • the sealing member 312 may be any material that provides a pneumatic seal.
  • the sealing member may, for example, be an impermeable or semi-permeable, elastomeric material that has pore sizes less than about 20 microns.
  • "Elastomeric" means having the properties of an elastomer. Elastomeric material, or elastomers, generally refers to a polymeric material that has rubber-like properties. More specifically, most elastomers have elongation rates greater than 100% and a significant amount of resilience. The resilience of a material refers to the material's ability to recover from an elastic deformation.
  • elastomers may include, but are not limited to, natural rubbers, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene monomer, chlorosulfonated polyethylene, polysulf ⁇ de rubber, polyurethane, EVA film, co-polyester, and silicones.
  • sealing member materials include a silicone drape, 3M Tegaderm® drape, acrylic drape such as one available from Avery Dennison, or an incise drape.
  • the reduced-pressure bridge 308 has a first end 320 and a second end 322.
  • a first encapsulating member 324 is coupled to a second encapsulating member 326 to form an encapsulating envelope 328.
  • the first encapsulating envelope 328 encloses, at least in part, a delivery manifold 330.
  • the second encapsulating member 326 has a second aperture 332 proximate the first end 320.
  • the second aperture 332 is sized and configured to align with the first aperture 318.
  • a reduced-pressure interface 334 is fluidly coupled at a reduced-pressure- interface site 336.
  • the reduced-pressure interface 334 is fluidly coupled to a third aperture 338.
  • a reduced-pressure delivery conduit 340 fluidly couples a reduced-pressure source (not shown) to the reduced-pressure interface 334.
  • a moisture-removing device 342 is coupled to the patient-facing side of the encapsulating envelope 328 and in particular to the second encapsulating member 326.
  • the reduced-pressure treatment kit 400 facilitates organized and efficient application of reduced pressure to a tissue site and particularly to a limited-access tissue site.
  • the reduced-pressure treatment kit 400 may include a sealed package or container that is opened by a healthcare provider.
  • the reduced-pressure treatment kit 400 may include a reduced-pressure bridge 402, a reduced-pressure interface 404, a reduced-pressure delivery conduit 408, a ruler 416, a manifold unit 418, and a perforated sealing sheet 420, or any combination thereof.
  • the ruler 416 may be used to help size the dimensions of the wound and may provide other information to help assess a wound.
  • the reduced-pressure bridge 402 may be analogous the reduced-pressure bridges 102, 200, and 308 previously presented.
  • the reduced-pressure bridge 402 has a first end 403 and a second end 405.
  • a reduced-pressure interface 404 may be coupled to a reduced-pressure- interface site 406 on the reduced-pressure bridge 402.
  • the reduced-pressure delivery conduit 408 may be coupled to the reduced-pressure interface 404.
  • the reduced-pressure delivery conduit 408 may include a visual indicia flag or label 410 and restricting clip or clamp 412.
  • a fitting 414 may be coupled at one end of the reduced-pressure delivery conduit 408 to facilitate coupling to a reduced-pressure source (not shown).
  • the perforated sealing sheet 420 has adhesive on a patient-facing side and has a releasable backing or release liner that covers the adhesive until it is ready for application.
  • a plurality of perforations e.g., mid-line perforation 422, provides a location where the healthcare provider may readily tear the perforated sealing sheet 420 to form new members.
  • a portion of the mid-line perforation 422, a first longitudinal perforation 424, and a portion of an end perforation 426 may be torn to form a first sealing member 428, which has an aperture 430.
  • the sealing member 428 may be used to secure a treatment manifold in place.
  • Other longitudinal perforations 432 may be torn to form securing strips 434 that are used to hold the reduced-pressure bridge 402 in place as will be described further below.
  • the illustrative manifold unit 418 which is also shown in FIGURES 7A and 7B, is made of a manifold material.
  • the manifold unit 418 may be formed from a reticulated foam, such as a Granufoam® material from Kinetic Concepts, Inc. of San Antonio, Texas.
  • the manifold unit 418 has a number of pre-cut manifold components that may be used.
  • a first treatment manifold 436 is formed and has a connection stem 438 that be readily torn.
  • Numerous additional treatment manifolds e.g., second treatment manifold 440 and third treatment manifold 442, may be included.
  • a mid-portion of the manifold unit 418 may have a precut 444, which is cut all the way through except for a small tag or portion 446 used to hold the manifold unit 418 together until torn.
  • the wound or tissue site (e.g., tissue site 302 in FIG. 5) may first be prepared, such by removal of any other dressings and debriding the wound and the peri-wound area.
  • the wound or tissue may be assessed with respect to size and condition.
  • the perforations, e.g., midline perforation 422, on the perforated sealing sheet 420 are torn. Tearing the perforations produces the sealing member 428, which has aperture 430, a plurality of securing strips 434, and an additional sealing member 429.
  • a treatment manifold (e.g., treatment manifold 310 in FIG. 5) is placed proximate the tissue site, e.g., a wound.
  • the healthcare provider may tear off the first treatment manifold 436, second treatment manifold, 440, or third treatment manifold 442 from the manifold unit 418 in the reduced-pressure treatment kit 400.
  • a custom treatment manifold may be cut from one of the manifold blocks 448, 450.
  • the properly sized treatment manifold is placed proximate the tissue site. If more than one treatment manifold is used, the number may be recorded on the visual indicia flag 410.
  • the sealing member 428 is attached over the wound or tissue site 302 with the aperture 430 centered thereon.
  • the sealing member 428 may first need to be trimmed to an appropriate size, which in one embodiment provides a 3 - 5 mm border around the tissue site.
  • the release liner may be removed and the adhesive placed against a portion of intact epidermis; this is analogous to the attachment device 314 being used to attach the sealing member 312 to the epidermis in FIGURE 5.
  • the reduced-pressure bridge e.g., reduced-pressure bridge 402 is then installed.
  • a release liner e.g., release liner 220 in FIG.
  • an aperture (e.g., aperture 213 in FIG. 2B) on the reduced-pressure bridge 402 is substantially aligned with the aperture 430 on the sealing member 428 (e.g., sealing member 312 in FIG. 5) and then the first end 403 pressed against the sealing member 428.
  • the second end 405 of the reduced-pressure bridge 402 is placed at a convenient location and the securing strips 434 are used to secure the reduced-pressure bridge 402 in the desired location and at a point in between as desired. If the reduced-pressure bridge 402 is longer than desired, a fold shaped like a "Z" may be added into the reduced-pressure bridge 402 to shorten the effective length.
  • a reduced-pressure source (e.g., reduced-pressure source 120 in FIG. 1) may then be provided and the fitting 414 on the reduced-pressure delivery conduit 408 coupled to the reduced-pressure source or to another conduit supplying reduced pressure.
  • the reduced- pressure source may then be activated.

Abstract

A reduced-pressure treatment system (100) for applying reduced pressure to a tissue site at a limited-access location on a patient includes a reduced-pressure source (120), a treatment manifold (310) for placing proximate the tissue site and operable to distribute reduced pressure to the tissue site, and a sealing member (312) for placing over the tissue site and operable to form a pneumatic seal over the tissue site. The reduced-pressure treatment system also includes a reduced- pressure bridge (102) and a moisture-removing device (216) on at least portion of the reduced-pressure bridge. The reduced-pressure bridge includes a delivery manifold (212) operable to transfer the reduced pressure to the treatment manifold, an encapsulating envelope (208) at least partially enclosing the delivery manifold and having a patient-facing side, and a reduced-pressure- interface site (114) formed proximate one end of the reduced-pressure bridge.

Description

TITLE OF INVENTION
LIMITED-ACCESS, REDUCED-PRESSURE SYSTEMS AND METHODS
RELATED APPLICATIONS
The present invention claims the benefit, under 35 USC § 119(e), of the filing of U.S. Provisional Patent Application serial number 61/103,566, filed October 8, 2008, entitled, "System and Method for Applying Reduced Pressure to a Patient's Limb, Such As a Foot," which is incorporated herein by reference for all purposes.
BACKGROUND
The present invention relates generally to medical treatment systems and, more particularly, to limited-access, reduced-pressure systems and methods. Clinical studies and practices have shown that providing reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but application of reduced pressure has been particularly successful in treating wounds. This treatment (frequently referred to in the medical community as "negative pressure wound therapy," "reduced pressure therapy," or "vacuum therapy") provides a number of benefits, which may include faster healing and increased formulation of granulation tissue. Unless otherwise indicated, as used herein, "or" does not require mutual exclusivity.
Providing reduced pressure to limited-access locations has been difficult. One example of a difficult limited-access location is the bottom sole (plantar) of a patient's foot or other anatomical locations that are difficult to service. A related illustrative example of a limited-access location is inside an offloading device, such as a walking boot or removable walker. Another example of a limited-access location is a tissue site on a bed-ridden patient's back. Other illustrative examples include a tissue site under a compression garment and sacral wounds on the foot. SUMMARY
Problems with existing reduced-pressure treatment devices and systems are addressed by the systems, apparatus, and methods of the illustrative embodiments described herein. According to an illustrative embodiment, a reduced-pressure treatment system for applying reduced pressure to a tissue site at a limited-access location on a patient includes a reduced- pressure source, a treatment manifold for placing proximate the tissue site and operable to distribute reduced pressure to the tissue site, and a sealing member for placing over the tissue site and operable to form a pneumatic seal over the tissue site. The reduced-pressure treatment system also includes a reduced-pressure bridge that includes a delivery manifold operable to transfer the reduced pressure to the treatment manifold, an encapsulating envelope at least partially enclosing the delivery manifold and having a patient-facing side, a reduced-pressure- interface site formed proximate one end of the reduced-pressure bridge. The reduced-pressure treatment system also includes a moisture-removing device. According to another illustrative embodiment, a reduced-pressure bridge for delivering reduced pressure to a reduced-pressure dressing from a remote site includes a delivery manifold operable to transfer a reduced pressure and an encapsulating envelope at least partially enclosing the delivery manifold and having a patient-facing side. A reduced- pressure-interface site is formed proximate a second end of the reduced-pressure bridge. The encapsulating envelope has a second aperture formed on the patient-facing side of the encapsulating envelope. The reduced-pressure bridge also includes a moisture-removing device on at least a portion of the encapsulating envelope.
According to another illustrative embodiment, a method for delivering reduced pressure to a tissue site at a limited-access location includes the steps of: disposing a first manifold proximate the wound and disposing a sealing member over the first manifold. The sealing member has a first aperture. The method for delivering reduced pressure to a tissue site further includes providing a reduced-pressure bridge having a first end and a second end. The reduced-pressure bridge has a second aperture proximate the first end, a moisture- removing device, and a second manifold. The method for delivering reduced pressure to a tissue site further includes coupling a reduced-pressure interface to the second end of the reduced-pressure bridge; disposing the first end of the reduced-pressure bridge over at least a portion of the sealing member with the second aperture substantially aligned with the first aperture. The first manifold may be at least partially encapsulated with an encapsulating envelope that has a patient-facing side. The method for delivering reduced pressure to a tissue site may further include fluidly coupling a reduced-pressure source to the reduced-pressure interface. According to another illustrative embodiment, a reduced-pressure treatment kit includes a reduced-pressure bridge, the reduced-pressure bridge, a reduced-pressure interface, a reduced-pressure delivery conduit, a manifold unit, and a perforated sealing sheet. The manifold unit has a plurality of preformed treatment manifolds. The perforated sealing sheet is operable to be torn into a plurality of securing strips and a sealing member. Other objects, features, and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE 1 is a schematic, perspective view with a portion shown as a block diagram of an illustrative reduced-pressure treatment system utilizing a reduced-pressure bridge; FIGURE 2A is schematic, plan view of an illustrative reduced-pressure bridge;
FIGURE 2B is a schematic, perspective, exploded view of the illustrative reduced- pressure bridge of FIGURE 2A;
FIGURE 2C is a schematic, cross-sectional view taken along line 2C-2C of the illustrative reduced-pressure bridge of FIGURE 2 A; FIGURE 2D is a schematic, cross-sectional view of an alternative illustrative reduced- pressure bridge;
FIGURE 3 is schematic, perspective view showing an illustrative reduced-pressure bridge being coupled with a reduced-pressure interface;
FIGURE 4 is a schematic, plan view of the reduced-pressure bridge of FIGURE 3 with the reduced-pressure interface installed;
FIGURE 5 is a schematic diagram of an illustrative reduced-pressure treatment system utilizing a reduced-pressure bridge shown on a traverse section through an abdomen of a patient on a bed;
FIGURE 6 is a schematic diagram of an illustrative embodiment of a reduced-pressure treatment kit for use with limited-access tissue sites;
FIGURE 7A is a schematic, perspective view of an illustrative manifold unit; and
FIGURE 7B is a schematic plan view of the manifold unit of FIGURE 7A.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
In the following detailed description of the illustrative embodiments, reference is made to the accompanying drawings that form a part hereof. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.
Referring to FIGURE 1, an illustrative embodiment of a reduced-pressure treatment system 100 is presented. The reduced-pressure treatment system 100 has an illustrative embodiment of a reduced-pressure bridge 102. The reduced-pressure bridge 102 facilitates reduced-pressure treatment of a tissue site 104 and in particular a limited-access tissue site, which in this illustration is on the bottom sole (plantar) of a patient's foot 106 and also within an offloading device, e.g., offloading boot 108 (shown in hidden lines). The reduced-pressure treatment system 100 may be used with a tissue site at a non-limited-access site or a limited- access site. Other illustrative examples of limited-access tissue sites include on a patient's back, under a compression garment, in a total contact casting (TCC), in a removable walker, in a healing sandal, in a half shoe, in an ankle foot orthoses, etc. The reduced-pressure treatment system 100 may be used with the bodily tissue of any human, animal, or other organism, including bone tissue, adipose tissue, muscle tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, ligaments, or any other tissue. The reduced-pressure bridge 102 provides a low profile source of reduced pressure to be supplied to the limited-access tissue site 104 and thereby may increase patient comfort and enhance reliability of the reduced-pressure supply to the limited-access tissue site 104. Because of the low profile of the reduced-pressure bridge 102, the reduced-pressure bridge 102 may readily be used with an offloading device. As such, the reduced-pressure bridge 102 may allow the patient the benefit of both reduced-pressure treatment as well as the offloading of physical pressure. As described further below, the reduced-pressure bridge 102 may include a moisture-removing device, e.g., moisture-removing device 216 in FIGURE 2B, that helps to avoid maceration of a patient's skin by removing moisture from the patient's skin.
The reduced-pressure bridge 102 has a first end 1 10 that is placed proximate the limited-access tissue site 104 and a second end 1 12. The second end 112 has a reduced- pressure-interface site 114 that is for receiving a reduced-pressure interface 116, which may be a port, such as a TRAC Pad® interface or a SensaT.R.A.C.™ pad interface from Kinetic Concepts, Inc. of San Antonio, Texas. The second end 112 is typically placed at a location on or near the patient that provides convenient access by the healthcare provider, such as a convenient location for applying reduced-pressure to the reduced-pressure-interface site 114. When an offloading device, e.g., offloading boot 108, is utilized, the reduced-pressure bridge 102 would extend from the tissue site to a place outside of the offloading device. The actual length (L) of the reduced-pressure bridge 102 may be varied to support use with a particular offloading device or application.
A reduced-pressure delivery conduit 118 may fluidly couple the reduced-pressure interface 116 to a reduced-pressure source 120. The reduced-pressure source 120 may be any device or means for supplying a reduced pressure, such as a vacuum pump or wall suction. While the amount and nature of reduced pressure applied to a site will vary according to the application, the reduced pressure will typically be between -5 mm Hg and -500 mm Hg or more typically between -25 mm Hg to -200 mm Hg. For vertical applications of the reduced- pressure bridge 102, such as is shown in FIGURE 1 on an ambulatory patient's leg, a specified minimum reduced pressure may be necessary to ensure proper fluid flow. For example in one embodiment, a reduced pressure of at least -125 mm Hg has been suggested as a minimum, but other pressures may be suitable for different situations. As used herein, "reduced pressure" generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure at the tissue site. Unless otherwise indicated, values of pressure stated herein are gauge pressures. Although the terms "vacuum" and "negative pressure" may be used to describe the pressure applied to the tissue site, the actual pressure applied to the tissue site may be more than the pressure normally associated with a complete vacuum. Consistent with the use herein, an increase in reduced pressure or vacuum pressure typically refers to a relative reduction in absolute pressure. In one illustrative embodiment, a V.A.C.® Therapy Unit by Kinetic Concepts, Inc. of San Antonio may be used as the reduced- pressure source 120.
Depending on the application, a plurality of devices may be fluidly coupled to the reduced-pressure delivery conduit 1 18. For example, a fluid canister 122 or a representative device 124 may be included. The representative device 124 may be another fluid reservoir or canister to hold exudates and other fluids removed. Other examples of device 124 that may be included on the reduced-pressure delivery conduit 118 include the following non-limiting examples: a pressure-feedback device, a volume detection system, a blood detection system, an infection detection system, a flow monitoring system, a temperature monitoring system, a filter, etc. Some of these devices may be formed integral to the reduced-pressure source 120. For example, a reduced-pressure port 126 on the reduced-pressure source 120 may include a filter member that includes one or more filters, e.g., an odor filter.
Referring now to FIGURES 2A-2C, an illustrative, reduced-pressure bridge 200 will be presented. The illustrative, reduced-pressure bridge 200 has a first end 202 and a second end 204. The first end 202 of the illustrative, reduced-pressure bridge 200 is configured to provide reduced pressure to a first manifold, or treatment manifold (e.g., treatment manifold 310 in FIG. 5) and the second end 204 has a reduced-pressure-interface site 206.
Referring primarily to FIGURE 2B, the layers that make up the illustrative, reduced- pressure bridge 200 are presented. A first encapsulating member 210 is on a first side 208 of the illustrative, reduced-pressure bridge 200. The first encapsulating member 210 may have an aperture 211 formed proximate the second end 204. A second manifold, or delivery manifold 212, is disposed proximate the first encapsulating member 210. A second encapsulating member 214 is disposed proximate a second side of the delivery manifold 212. The second encapsulating member 214 may be formed with an aperture 213 proximate the first end 202. A moisture-removing device 216 is disposed proximate the second encapsulating member 214, which in this illustrative embodiment is a wicking layer 218. A releasable backing member or release liner 220 may be included on the first end 202 to releasably cover an adhesive as is explained further below. The releasable backing member 220 may be formed with an aperture 222 that aligns with the aperture 213 in the second encapsulating member 214. The delivery manifold 212 may be any material capable of transferring reduced pressure. In one embodiment, the delivery manifold 212 is a foam material, such as a GranuFoam® material from Kinetic Concepts, Inc. of San Antonio, Texas. The delivery manifold 212 may be formed from the same material as a treatment manifold (e.g., treatment manifold 310 in FIG. 5). The delivery manifold 212 may have any thickness, such as a thickness in the range of 3 - 20 millimeters, 5 - 10 millimeters, 6 - 7 millimeters, etc. The thickness of the delivery manifold 212 may be varied to minimize or eliminate pressure points on the tissue site. The thickness of the delivery manifold 212 may also be selected to support fluid removal from the tissue site and transfer into a canister (e.g., fluid canister 122 in FIG. 1).
The first encapsulating member 210 and the second encapsulating member 214 may be composed of any material that facilitates maintaining reduced pressure within a first encapsulating envelope 229 formed from the first encapsulating member 210 and the second encapsulating member 214. In one embodiment, the first encapsulating member 210 and the second encapsulating member 214 include a polyurethane film, but any suitable drape material may be readily used, such as any natural rubbers, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene monomer, chlorosulfonated polyethylene, polysulfide rubber, polyurethane, EVA film, co-polyester, silicones, 3M Tegaderm® drape material, or acrylic drape material, such as one available from Avery. These are non-limiting examples.
Referring now primarily to FIGURES 2A and 2C, a periphery portion 224 of the first encapsulating member 210 and a periphery portion 226 of the second encapsulating member 214 may be coupled, such as by RF weld 228, to form the first encapsulating envelope 229. As used herein, the term "coupled" includes coupling via a separate object and includes direct coupling. The term "coupled" also encompasses two or more components that are continuous with one another by virtue of each of the components being formed from the same piece of material. Also, the term "coupled" may include chemical, mechanical, or thermal coupling. Fluid coupling means that fluid is in communication between the designated parts or locations. The first encapsulating member 210 and the second encapsulating member 214 may be coupled using any technique, including without limitation welding (e.g., ultrasonic or RF welding), bonding, adhesives, cements, etc. The first encapsulating envelope 229 may completely enclose the delivery manifold 212. The moisture-removing device 216 may be coupled to at least a portion of the first encapsulating envelope 229 using any technique. The wicking layer may be coupled to a patient-facing side 230 of the second encapsulating member 214 of the first encapsulating envelope 229.
The moisture-removing device 216 pulls moisture, e.g., perspiration, away from a patient's skin and thereby helps to avoid maceration of the patient's skin and enhances comfort. The extent of the wicking layer 218 can be varied both laterally (width) and longitudinally (lengthwise). For example, the wicking layer 218 may cover 100 percent or more than 90 percent, 80 percent, 70 percent, 60 percent, or 50 percent of the patient-facing second encapsulating member 24. The wicking layer 218 pulls moisture to a place where the moisture can evaporate more readily. In the illustrative embodiment of FIGURES 2A-2C, the moisture-removing device 216 is the wicking layer 218. For example, the wicking layer 218 may be a cloth-material drape, a non-woven fabric, a knitted polyester woven textile material, such as the one sold under the name InterDry® AG material from Coloplast A/S of Denmark, GORTEX® material, DuPont Softesse® material, etc. Referring now to FIGURE 2D, an alternative embodiment of the moisture-removing device 216 is presented. In this embodiment, a third encapsulating member 232 is provided with a plurality of apertures or fenestrations 234. The third encapsulating member 232 covers all or at least a portion of a third manifold 236, or comfort manifold. A periphery portion of the third encapsulating member 232 is also coupled by any technique, such as by RF weld 228. In conjunction with the second encapsulation member 214, the third encapsulation member 232 forms a second encapsulating envelope 238. In operation, a reduced pressure is supplied within the second encapsulation member 214 and any fluid against a patient's skin is pulled through the plurality of apertures 234 into the third manifold 236 and delivered elsewhere, e.g., to a canister, for storage or disposal. In still another alternative embodiment of the moisture-removal device 216, a moisture vapor permeable material is pneumatically coupled to a negative pressure source to provide active removal adjacent the illustrative, reduced-pressure bridge 200. In still another illustrative embodiment, apertures may be formed on the second encapsulating member 214 that allow the reduced pressure in the first encapsulating envelope 229 to pull fluids into the delivery manifold 212. In still another illustrative embodiment of a moisture-removing device, apertures may be formed in the second encapsulating member 214 that allow the reduced pressure in the first encapsulating envelope 229 to pull fluids into the delivery manifold 212, and reduced-pressure valves may be associated with the apertures that close when reduced pressure is absent.
Referring again primarily to FIGURES 2A-2C, the illustrative, reduced-pressure bridge 200 has a length (L), a width (W), and a thickness (T). The illustrative, reduced-pressure bridge 200 preferably has a low of profile, e.g., small dimension T, as possible. For non- limiting examples, T may be 30 mm, 20 mm, 15 mm, 10 mm, 5 mm, or less. In other embodiments, T may take any size. Moreover, the comfort or function of the illustrative, reduced-pressure bridge 200 may be enhanced by using a length (L) to width (W) ratio that involves having the length dimension greater than the width. For example, in one embodiment, the relationship is L > 2W. In another illustrative embodiment, the relationship is L > 6W. In another illustrative embodiment, the relationship is L > 12W. In another illustrative embodiment, the relationship is L > 15 W. In one illustrative embodiment, L is approximately 668 mm and W is approximately 56 mm.
Referring now to FIGURE 3, the illustrative reduced-pressure bridge 200 is shown with a reduced-pressure interface 240 about to be coupled to the reduced-pressure-interface site 206 of the illustrative, reduced-pressure bridge 200. The aperture 211 in the first encapsulating member 210 substantially aligns with a central portion of the reduced-pressure interface 240 to provide a fluid coupling. A reduced-pressure delivery conduit 242 is coupled at one end to the reduced-pressure interface 240 and at the other end has a fitting 244 that facilitates coupling to a reduced-pressure source (not shown). A restricting clip or clamp 246 and a visual indicia flag 248 may also be included on a portion of the reduced-pressure delivery conduit 242. FIGURE 4 shows a plan view with the reduced-pressure interface 240 coupled to the reduced-pressure-interface site 206.
Referring now to FIGURE 5, a reduced-pressure treatment system 300 is presented. The reduced-pressure treatment system 300 is shown deployed to treat a tissue site 302 on a patient's back 304. If the patient is bed-ridden, the patient's back 304 may be pressed against a portion of a bed 306. In such a situation, the use of a reduced-pressure bridge 308, or transfer member, as part of the reduced-pressure treatment system 300 may be particularly beneficial to the patient. The reduced-pressure bridge 308 is analogous to the illustrative, reduced-pressure bridge 200 presented above. A treatment manifold 310 is disposed proximate the tissue site 302. A sealing member 312 having an attachment device 314 on a patient-facing side is disposed over the treatment manifold 310. The term "manifold" as used herein generally refers to a substance or structure that helps to distribute reduced-pressure and to transport fluids. The treatment manifold 310 typically includes a plurality of flow channels or pathways that are interconnected to improve distribution of fluids provided to and removed from the tissue site 302 around the treatment manifold 310. The treatment manifold 310 may be a biocompatible material that is capable of being placed in contact with the tissue site 302 and distributing reduced pressure to the tissue site 302. Examples of treatment manifolds 310 may include, for example, without limitation, devices that have structural elements arranged to form flow channels, such as, for example, cellular foam, open-cell foam, porous tissue collections, liquids, gels, and foams that include, or cure to include, flow channels. The treatment manifold 310 may be porous and may be made from foam, gauze, felted mat, or any other material suited to a particular biological application. In one embodiment, the treatment manifold 310 is a porous foam and includes a plurality of interconnected cells or pores that act as flow channels. The porous foam may be a polyurethane, open-cell, reticulated foam, such as a GranuFoam® material manufactured by Kinetic Concepts, Incorporated of San Antonio, Texas. In some situations, the treatment manifold 310 may also be used to distribute fluids, such as medications, antibacterials, growth factors, and various solutions to the tissue site 302. The attachment device 314 may be used to hold the sealing member 312 against the patient's epidermis or another layer, such as a gasket or additional sealing member. The attachment device 314 may take numerous forms, e.g., a medically acceptable, pressure- sensitive adhesive, cement, hydrocolloid, etc.
The sealing member 312 and the attachment device 314 are formed with a first aperture 318. The sealing member 312 may be any material that provides a pneumatic seal. The sealing member may, for example, be an impermeable or semi-permeable, elastomeric material that has pore sizes less than about 20 microns. "Elastomeric" means having the properties of an elastomer. Elastomeric material, or elastomers, generally refers to a polymeric material that has rubber-like properties. More specifically, most elastomers have elongation rates greater than 100% and a significant amount of resilience. The resilience of a material refers to the material's ability to recover from an elastic deformation. Examples of elastomers may include, but are not limited to, natural rubbers, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene monomer, chlorosulfonated polyethylene, polysulfϊde rubber, polyurethane, EVA film, co-polyester, and silicones. Specific examples of sealing member materials include a silicone drape, 3M Tegaderm® drape, acrylic drape such as one available from Avery Dennison, or an incise drape.
The reduced-pressure bridge 308 has a first end 320 and a second end 322. A first encapsulating member 324 is coupled to a second encapsulating member 326 to form an encapsulating envelope 328. The first encapsulating envelope 328 encloses, at least in part, a delivery manifold 330. The second encapsulating member 326 has a second aperture 332 proximate the first end 320. The second aperture 332 is sized and configured to align with the first aperture 318. A reduced-pressure interface 334 is fluidly coupled at a reduced-pressure- interface site 336. The reduced-pressure interface 334 is fluidly coupled to a third aperture 338. A reduced-pressure delivery conduit 340 fluidly couples a reduced-pressure source (not shown) to the reduced-pressure interface 334. A moisture-removing device 342 is coupled to the patient-facing side of the encapsulating envelope 328 and in particular to the second encapsulating member 326.
Referring now to FIGURE 6, a schematic diagram of an illustrative embodiment of a reduced-pressure treatment kit 400 for use with limited-access tissue sites is presented. The reduced-pressure treatment kit 400 facilitates organized and efficient application of reduced pressure to a tissue site and particularly to a limited-access tissue site. The reduced-pressure treatment kit 400 may include a sealed package or container that is opened by a healthcare provider. The reduced-pressure treatment kit 400 may include a reduced-pressure bridge 402, a reduced-pressure interface 404, a reduced-pressure delivery conduit 408, a ruler 416, a manifold unit 418, and a perforated sealing sheet 420, or any combination thereof. The ruler 416 may be used to help size the dimensions of the wound and may provide other information to help assess a wound.
The reduced-pressure bridge 402 may be analogous the reduced-pressure bridges 102, 200, and 308 previously presented. The reduced-pressure bridge 402 has a first end 403 and a second end 405. A reduced-pressure interface 404 may be coupled to a reduced-pressure- interface site 406 on the reduced-pressure bridge 402. The reduced-pressure delivery conduit 408 may be coupled to the reduced-pressure interface 404. The reduced-pressure delivery conduit 408 may include a visual indicia flag or label 410 and restricting clip or clamp 412. A fitting 414 may be coupled at one end of the reduced-pressure delivery conduit 408 to facilitate coupling to a reduced-pressure source (not shown). That the reduced-pressure bridge 402 is already encapsulated as provided in the reduced-pressure treatment kit 400 allows for easy application and requires minimal work to deploy the reduced-pressure bridge 402. The perforated sealing sheet 420 has adhesive on a patient-facing side and has a releasable backing or release liner that covers the adhesive until it is ready for application. A plurality of perforations, e.g., mid-line perforation 422, provides a location where the healthcare provider may readily tear the perforated sealing sheet 420 to form new members. Thus, for example, a portion of the mid-line perforation 422, a first longitudinal perforation 424, and a portion of an end perforation 426 may be torn to form a first sealing member 428, which has an aperture 430. The sealing member 428 may be used to secure a treatment manifold in place. Other longitudinal perforations 432 may be torn to form securing strips 434 that are used to hold the reduced-pressure bridge 402 in place as will be described further below. The illustrative manifold unit 418, which is also shown in FIGURES 7A and 7B, is made of a manifold material. For example, the manifold unit 418 may be formed from a reticulated foam, such as a Granufoam® material from Kinetic Concepts, Inc. of San Antonio, Texas. The manifold unit 418 has a number of pre-cut manifold components that may be used. For example, a first treatment manifold 436 is formed and has a connection stem 438 that be readily torn. Numerous additional treatment manifolds, e.g., second treatment manifold 440 and third treatment manifold 442, may be included. A mid-portion of the manifold unit 418 may have a precut 444, which is cut all the way through except for a small tag or portion 446 used to hold the manifold unit 418 together until torn. When the stems, e.g., stem 438, are torn and the tag 446 is torn, two manifold blocks 448 and 450 are formed. Referring now primarily to FIGURES 5 and 6, an illustrative deployment of a reduced- pressure treatment system, such as the reduced-pressure treatment system 300, will be described. The wound or tissue site (e.g., tissue site 302 in FIG. 5) may first be prepared, such by removal of any other dressings and debriding the wound and the peri-wound area. The wound or tissue may be assessed with respect to size and condition. The perforations, e.g., midline perforation 422, on the perforated sealing sheet 420 are torn. Tearing the perforations produces the sealing member 428, which has aperture 430, a plurality of securing strips 434, and an additional sealing member 429. A treatment manifold (e.g., treatment manifold 310 in FIG. 5) is placed proximate the tissue site, e.g., a wound. Depending on the size, the healthcare provider may tear off the first treatment manifold 436, second treatment manifold, 440, or third treatment manifold 442 from the manifold unit 418 in the reduced-pressure treatment kit 400. If the size is notably different, a custom treatment manifold may be cut from one of the manifold blocks 448, 450. The properly sized treatment manifold is placed proximate the tissue site. If more than one treatment manifold is used, the number may be recorded on the visual indicia flag 410. Then, the sealing member 428 is attached over the wound or tissue site 302 with the aperture 430 centered thereon. The sealing member 428 may first need to be trimmed to an appropriate size, which in one embodiment provides a 3 - 5 mm border around the tissue site. To attach the sealing member 428, the release liner may be removed and the adhesive placed against a portion of intact epidermis; this is analogous to the attachment device 314 being used to attach the sealing member 312 to the epidermis in FIGURE 5. The reduced-pressure bridge, e.g., reduced-pressure bridge 402, is then installed. A release liner (e.g., release liner 220 in FIG. 2B) is removed exposing an adhesive on the first end 403 of the reduced-pressure bridge 402, and an aperture (e.g., aperture 213 in FIG. 2B) on the reduced-pressure bridge 402 is substantially aligned with the aperture 430 on the sealing member 428 (e.g., sealing member 312 in FIG. 5) and then the first end 403 pressed against the sealing member 428. The second end 405 of the reduced-pressure bridge 402 is placed at a convenient location and the securing strips 434 are used to secure the reduced-pressure bridge 402 in the desired location and at a point in between as desired. If the reduced-pressure bridge 402 is longer than desired, a fold shaped like a "Z" may be added into the reduced-pressure bridge 402 to shorten the effective length.
A reduced-pressure source (e.g., reduced-pressure source 120 in FIG. 1) may then be provided and the fitting 414 on the reduced-pressure delivery conduit 408 coupled to the reduced-pressure source or to another conduit supplying reduced pressure. The reduced- pressure source may then be activated.
Although the present invention and its advantages have been disclosed in the context of certain illustrative, non-limiting embodiments, it should be understood that various changes, substitutions, permutations, and alterations can be made without departing from the scope of the invention as defined by the appended claims.

Claims

CLAIMSWe claim:
Claim 1. A reduced-pressure treatment system for applying reduced pressure to a tissue site at limited-access location on a patient, the reduced-pressure treatment system comprising: a reduced-pressure source operable to supply reduced pressure; a treatment manifold for placing proximate the tissue site and operable to distribute reduced pressure to the tissue site; a sealing member for placing over the tissue site and operable to form a pneumatic seal over the tissue site, the sealing member having a first aperture; and a reduced-pressure bridge having a first end and a second end, the reduced-pressure bridge comprising: a delivery manifold operable to transfer the reduced pressure to the treatment manifold, a first encapsulating envelope at least partially enclosing the delivery manifold and having a patient-facing side, a reduced-pressure-interface site formed proximate the second end of the reduced-pressure bridge, a second aperture formed on the patient-facing side of the first encapsulating envelope, wherein the reduced pressure is transferred to the tissue site via the second aperture, and a moisture-removing device on at least a portion of the first encapsulating envelope.
Claim 2. The system of claim 1 wherein the first encapsulating envelope comprises: a first encapsulating member having a first perimeter portion; a second encapsulating member having a second perimeter portion; and wherein the first perimeter portion is coupled to the second perimeter portion such that the delivery manifold is at least partially enclosed by the first encapsulating member and the second encapsulating member.
Claim 3. The system of claim 2 further comprising a reduced-pressure interface coupled to the reduced-pressure interface site and wherein the reduced-pressure source is fluidly coupled to the reduced-pressure interface.
Claim 4. The system of claim 1 wherein the moisture-removing device comprises a wicking material on the patient-facing side of the first encapsulating envelope, the wicking material adapted to contact a remote tissue portion and to absorb liquid from the remote tissue portion.
Claim 5. The system of claim 4 wherein the wicking material extends along a length of the first encapsulating envelope.
Claim 6. The system of claim 1 wherein the moisture-removing device comprises a comfort manifold and a third encapsulating member coupled to the first encapsulating envelope to form a second encapsulating envelope, wherein the second encapsulating envelope encapsulates at least a portion of the comfort manifold, and wherein the third encapsulating member has a plurality of apertures.
Claim 7. The system of claim 1 wherein the first encapsulating envelope comprises a polyurethane material.
Claim 8. The system of claim 1 further comprising: a first adhesive on the patient-facing side of the sealing member; and a second adhesive disposed between the sealing member and the first encapsulating envelope, wherein the first adhesive is operable to couple the sealing member to the patient, wherein the second adhesive is operable to couple the sealing member to the first encapsulating envelope.
Claim 9. The system of claim 8 further comprising: a releasable backing that covers the first adhesive, the releasable backing being removable to expose the first adhesive.
Claim 10. The system of claim 8 wherein the first adhesive and the second adhesive comprise an acrylic adhesive material.
Claim 11. The system of claim 1 wherein the reduced-pressure bridge has a length (L) that extends from the tissue site to a remote location, and wherein L > 120 mm.
Claim 12. The system of claim 1 wherein the reduced-pressure bridge has a length (L) that extends from the tissue site to a remote location, and wherein L > 200 mm.
Claim 13. The system of claim 1 wherein the reduced-pressure bridge has a length (L) and a width (W) and wherein L > (4*W).
Claim 14. The system of claim 1 wherein the delivery manifold is a foam material.
Claim 15. A reduced-pressure bridge for delivering reduced pressure to a tissue site from a remote site, the reduced-pressure bridge comprising: a delivery manifold operable to transfer the reduced pressure, a first encapsulating envelope at least partially enclosing the delivery manifold and having a patient-facing side, a reduced-pressure- interface site formed proximate a second end of the reduced- pressure bridge, a second aperture formed on the patient-facing side of the first encapsulating envelope, wherein reduced pressure is transferable to the tissue site via the second aperture, and a moisture-removing device on at least a portion of the first encapsulating envelope.
Claim 16. The reduced-pressure bridge of claim 15 wherein the moisture-removing device comprises a wicking material on the patient-facing side of the first encapsulating envelope, the wicking material adapted to contact a remote tissue portion and to absorb liquid from the remote tissue portion.
Claim 17. The reduced-pressure bridge of claim 15 wherein the first encapsulating envelope comprises: a first encapsulating member having a first perimeter portion; a second encapsulating member having a second perimeter portion; and wherein the first perimeter portion is coupled to the second perimeter portion such that the delivery manifold is at least partially enclosed by the first encapsulating member and the second encapsulating member.
Claim 18. The reduced-pressure bridge of claim 17 wherein the first encapsulating member and second encapsulating member comprise a polyurethane material.
Claim 19. The reduced-pressure bridge of claim 16 wherein the wicking material comprises a cloth-material drape.
Claim 20. The reduced-pressure bridge of claim 16 wherein the wicking material comprises a non-woven fabric.
Claim 21. The reduced-pressure bridge of claim 16 wherein the wicking material covers at least 50 percent of a patient-facing side of the first encapsulating envelope.
Claim 22. The reduced-pressure bridge of claim 16 wherein the wicking material covers at least 70 percent of a patient-facing side of the first encapsulating envelope.
Claim 23. The reduced-pressure bridge of claim 16 wherein the wicking material covers at least 80 percent of a patient-facing side of the first encapsulating envelope.
Claim 24. The reduced-pressure bridge of claim 16 wherein the wicking material extends along a length of the first encapsulating envelope.
Claim 25. The reduced-pressure bridge of claim 15 wherein the moisture-removing device comprises a comfort manifold and a third encapsulating member for encapsulating at least a portion of the comfort manifold on the patient-facing side and wherein the third encapsulating member has a plurality of apertures.
Claim 26. The reduced-pressure bridge of claim 15 wherein the reduced-pressure bridge has a length (L), and wherein L > 120 mm.
Claim 27. The reduced-pressure bridge of claim 15 wherein the reduced-pressure bridge has a length (L), and wherein L > 200 mm.
Claim 28. The reduced-pressure bridge of claim 15 wherein the reduced-pressure bridge has a length (L) and a width (W) and wherein L > (4*W).
Claim 29. The reduced-pressure bridge of claim 15 wherein the delivery manifold is a foam material.
Claim 30. A method for delivering reduced pressure to a tissue site at a limited-access location, the method comprising the steps of: disposing a first manifold proximate the wound; disposing a sealing member over the first manifold, the sealing member having a first aperture; providing a reduced-pressure bridge having a first end and a second end, the reduced- pressure bridge having a second aperture proximate the first end and having a second manifold and a moisture-removing device; coupling a reduced-pressure interface to the second end of the reduced-pressure bridge; disposing the first end of the reduced-pressure bridge over at least of portion of the sealing member with the second aperture substantially aligned with the first aperture; and fluidly coupling a reduced-pressure source to the reduced-pressure interface.
Claim 31. The method of claim 30 wherein the moisture-removing device comprises a wicking layer.
Claim 32. The method of claim 30 wherein the moisture-removing device comprises a comfort manifold and an encapsulating member for encapsulating at least a portion of the comfort manifold on a patient-facing side of the reduced-pressure bridge and wherein the encapsulating member has a plurality of apertures.
Claim 33. A reduced-pressure treatment kit, the reduced-pressure treatment kit comprising: a reduced-pressure interface; a reduced-pressure delivery conduit; a manifold unit, the manifold unit have a plurality of preformed treatment manifolds; and a perforated sealing sheet, the perforated sealing sheet operable to be torn into a plurality of securing strips and a sealing member; a reduced-pressure bridge, the reduced-pressure bridge comprising: a delivery manifold operable to transfer the reduced pressure to the treatment manifold, a first encapsulating envelope at least partially enclosing the delivery manifold and having a patient-facing side, a reduced-pressure-interface site formed proximate a second end of the reduced-pressure bridge, an aperture formed on the patient-facing side of the first encapsulating envelope, wherein reduced pressure is transferred to a tissue site via the second aperture; and a moisture-removing device on at least a portion of the first encapsulating envelope.
Claim 34. The reduced-pressure treatment kit of claim 33 further comprising a ruler.
Claim 35. The
Figure imgf000022_0001
k miti o vjfi c vliactiimm 3 ~J3~> f juuritihiiewri
Figure imgf000022_0002
a ci p pacicvkivacigge and wherein the package surrounds the reduced-pressure bridge, the reduced-pressure interface, the reduced-pre 1sMs1u1r™e c ™on«dΛu,,i;t+, t +hv.eΩ manifold unit, and the perforated sealing sheet.
Claim 36. The reduced-pressure treatment kit of claim 33 wherein the reduced-pressure interface is coupled to the reduced-pressure-interface site of the reduced-pressure bridge and the reduced-pressure delivery conduit is coupled to the reduced-pressure interface.
Claim 37. The reduced-pressure treatment kit of claim 33 wherein the first encapsulating envelope comprises: a first encapsulating member having a first perimeter portion; a second encapsulating member having a second perimeter portion; and wherein the first perimeter portion is coupled to the second perimeter portion.
Claim 38. The reduced-pressure treatment kit of claim 37 wherein the moisture-removing device comprises a wicking material on the patient-facing side of the first encapsulating envelope, the wicking material adapted to contact a remote tissue portion and to absorb liquid from the remote tissue portion.
Claim 39. The reduced-pressure treatment kit of claim 37 wherein the moisture-removing device comprises a comfort manifold and a third encapsulating member for encapsulating at least a portion of the comfort manifold on the patient-facing side and wherein the third encapsulating member has a plurality of apertures.
PCT/US2009/037071 2008-10-08 2009-03-13 Limited-access, reduced-pressure systems and methods WO2010042240A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
MX2011003667A MX353146B (en) 2008-10-08 2009-03-13 Limited-access, reduced-pressure systems and methods.
EP19162338.8A EP3530299A1 (en) 2008-10-08 2009-03-13 Limited-access, reduced-pressure systems and methods
AU2009302771A AU2009302771B2 (en) 2008-10-08 2009-03-13 Limited-access, reduced-pressure systems and methods
EP09789512.2A EP2344217B1 (en) 2008-10-08 2009-03-13 Limited-access, reduced-pressure systems
BRPI0913732A BRPI0913732B8 (en) 2008-10-08 2009-03-13 reduced pressure treatment system for applying reduced pressure to a tissue site at a restricted access site on a patient, reduced pressure bridge for applying reduced pressure to a tissue site from a remote site, and pressure treatment kit reduced
CA2736740A CA2736740C (en) 2008-10-08 2009-03-13 Limited-access, reduced-pressure systems and methods
CN200980137088.9A CN102159258B (en) 2008-10-08 2009-03-13 Limited-access, reduced-pressure systems and methods
JP2011531037A JP5373092B2 (en) 2008-10-08 2009-03-13 Decompression system and method with limited access
RU2011111190/14A RU2468826C1 (en) 2008-10-08 2009-03-13 Systems and methods for low pressure therapy of limited approach regions
HK11113034.8A HK1158558A1 (en) 2008-10-08 2011-12-01 Limited-access, reduced-pressure systems and methods

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10356608P 2008-10-08 2008-10-08
US61/103,566 2008-10-08
US12/403,296 US8158844B2 (en) 2008-10-08 2009-03-12 Limited-access, reduced-pressure systems and methods
US12/403,296 2009-03-12

Publications (1)

Publication Number Publication Date
WO2010042240A1 true WO2010042240A1 (en) 2010-04-15

Family

ID=42076322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/037071 WO2010042240A1 (en) 2008-10-08 2009-03-13 Limited-access, reduced-pressure systems and methods

Country Status (13)

Country Link
US (5) US8158844B2 (en)
EP (2) EP3530299A1 (en)
JP (1) JP5373092B2 (en)
KR (1) KR20110074769A (en)
CN (2) CN102159258B (en)
AU (1) AU2009302771B2 (en)
BR (1) BRPI0913732B8 (en)
CA (1) CA2736740C (en)
HK (1) HK1158558A1 (en)
MX (1) MX353146B (en)
RU (1) RU2468826C1 (en)
TW (1) TW201014620A (en)
WO (1) WO2010042240A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9050398B2 (en) 2010-12-22 2015-06-09 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
US9327065B2 (en) 2009-12-22 2016-05-03 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
US9474654B2 (en) 2008-08-08 2016-10-25 Smith & Nephew, Inc. Wound dressing of continuous fibers
US9681993B2 (en) 2011-06-07 2017-06-20 Kci Licensing, Inc. Solutions for bridging and pressure concentration reduction at wound sites
US9801985B2 (en) 2007-12-06 2017-10-31 Smith & Nephew Plc Apparatus for topical negative pressure therapy
USD804014S1 (en) 2010-12-22 2017-11-28 Smith & Nephew, Inc. Suction adapter
US9889241B2 (en) 2009-06-01 2018-02-13 Smith & Nephew, Inc. System for providing continual drainage in negative pressure wound therapy
US9956329B2 (en) 2008-03-07 2018-05-01 Smith & Nephew, Inc. Wound dressing port and associated wound dressing
US9962474B2 (en) 2007-11-21 2018-05-08 Smith & Nephew Plc Vacuum assisted wound dressing
USRE46825E1 (en) 2009-01-20 2018-05-08 Smith & Nephew, Inc. Method and apparatus for bridging from a dressing in negative pressure wound therapy
US10035006B2 (en) 2005-04-27 2018-07-31 Smith & Nephew Plc Wound treatment apparatus and method
US10406036B2 (en) 2009-06-18 2019-09-10 Smith & Nephew, Inc. Apparatus for vacuum bridging and/or exudate collection
USRE48117E1 (en) 2010-05-07 2020-07-28 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
USRE48282E1 (en) 2010-10-15 2020-10-27 Smith & Nephew Plc Medical dressing
USRE49227E1 (en) 2010-10-15 2022-10-04 Smith & Nephew Plc Medical dressing

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0224986D0 (en) 2002-10-28 2002-12-04 Smith & Nephew Apparatus
US11298453B2 (en) 2003-10-28 2022-04-12 Smith & Nephew Plc Apparatus and method for wound cleansing with actives
GB0325129D0 (en) 2003-10-28 2003-12-03 Smith & Nephew Apparatus in situ
US10058642B2 (en) 2004-04-05 2018-08-28 Bluesky Medical Group Incorporated Reduced pressure treatment system
CN101257875A (en) 2005-09-06 2008-09-03 泰科保健集团有限合伙公司 Self contained wound dressing with micropump
US7779625B2 (en) 2006-05-11 2010-08-24 Kalypto Medical, Inc. Device and method for wound therapy
DE602007004546D1 (en) 2006-09-28 2010-03-18 Tyco Healthcare Portable wound therapy system
US11511094B2 (en) 2006-11-21 2022-11-29 Mark R. Moore Apparatus and method for deploying a surgical preparation
WO2009049232A1 (en) 2007-10-11 2009-04-16 Spiracur, Inc. Closed incision negative pressure wound therapy device and methods of use
WO2009066106A1 (en) 2007-11-21 2009-05-28 Smith & Nephew Plc Wound dressing
AU2008327660B2 (en) 2007-11-21 2014-02-13 Smith & Nephew Plc Wound dressing
ES2555204T3 (en) 2007-11-21 2015-12-29 T.J. Smith & Nephew Limited Suction and bandage device
US20130096518A1 (en) 2007-12-06 2013-04-18 Smith & Nephew Plc Wound filling apparatuses and methods
GB0723875D0 (en) 2007-12-06 2008-01-16 Smith & Nephew Wound management
US11253399B2 (en) 2007-12-06 2022-02-22 Smith & Nephew Plc Wound filling apparatuses and methods
WO2009139893A1 (en) 2008-05-15 2009-11-19 Ossur Hf Circumferential walker
US8158844B2 (en) * 2008-10-08 2012-04-17 Kci Licensing, Inc. Limited-access, reduced-pressure systems and methods
MX2011004415A (en) * 2008-10-29 2011-05-31 Kci Licensing Inc Reduced-pressure, wound-closure and treatment systems and methods.
GB0900423D0 (en) * 2009-01-12 2009-02-11 Smith & Nephew Negative pressure device
GB0902368D0 (en) 2009-02-13 2009-04-01 Smith & Nephew Wound packing
CA2757841C (en) 2009-04-10 2018-06-12 Spiracur, Inc. Methods and devices for applying closed incision negative pressure wound therapy
US8444614B2 (en) * 2009-04-10 2013-05-21 Spiracur, Inc. Methods and devices for applying closed incision negative pressure wound therapy
EP2419157A4 (en) 2009-04-17 2018-01-03 Kalypto Medical, Inc. Negative pressure wound therapy device
US8791315B2 (en) 2010-02-26 2014-07-29 Smith & Nephew, Inc. Systems and methods for using negative pressure wound therapy to manage open abdominal wounds
CN102397595B (en) * 2010-04-22 2015-12-16 刘玉海 Three-dimensional vacuum cupping device
US9061095B2 (en) 2010-04-27 2015-06-23 Smith & Nephew Plc Wound dressing and method of use
US20120197229A1 (en) * 2010-08-04 2012-08-02 Kalypto Medical, Inc. Sacral wound dressing and method of manufacturing a wound therapy device
RU2013157035A (en) 2011-05-24 2015-06-27 Калипто Медикал, Инк. DEVICE WITH CONTROLLER AND PUMPING MODULES FOR PROVIDING NEGATIVE PRESSURE FOR TREATMENT OF RAS
US9058634B2 (en) 2011-05-24 2015-06-16 Kalypto Medical, Inc. Method for providing a negative pressure wound therapy pump device
US9067003B2 (en) 2011-05-26 2015-06-30 Kalypto Medical, Inc. Method for providing negative pressure to a negative pressure wound therapy bandage
CN103857365B (en) 2011-07-14 2017-06-23 史密夫及内修公开有限公司 Wound dressing and treatment method
EP2636417B1 (en) * 2012-03-05 2017-04-26 Lohmann & Rauscher GmbH Wound treatment assembly and covering device for same
JP6250571B2 (en) * 2012-03-12 2017-12-20 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Pressure reducing apparatus and method
WO2013175306A2 (en) 2012-05-23 2013-11-28 Smith & Nephew Plc Apparatuses and methods for negative pressure wound therapy
DK2879636T3 (en) 2012-08-01 2017-06-19 Smith & Nephew Wound dressing
EP3406231B1 (en) 2012-08-01 2022-04-13 Smith & Nephew plc Wound dressing and method of treatment
US9681936B2 (en) * 2012-11-30 2017-06-20 Covidien Lp Multi-layer porous film material
BR112015020855A2 (en) 2013-03-15 2017-07-18 Smith & Nephew wound dressing and treatment method
BR112015027696A2 (en) * 2013-05-10 2017-08-29 Smith & Nephew FLUID CONNECTOR FOR IRRIGATION AND ASPIRATION OF WOUNDS
EP3046435B1 (en) 2013-09-18 2020-04-15 Ossur Iceland EHF Insole for an orthopedic device
US9668907B2 (en) 2013-09-25 2017-06-06 Ossur Iceland Ehf Orthopedic device
US9839549B2 (en) 2013-09-25 2017-12-12 Ossur Iceland Ehf Orthopedic device
EP3049035B1 (en) 2013-09-25 2017-10-25 Ossur Iceland EHF Orthopedic device
US9839548B2 (en) 2013-09-25 2017-12-12 Ossur Iceland Ehf Orthopedic device
KR101534687B1 (en) * 2013-12-02 2015-07-08 (주)시지바이오 Reduced pressure bridge for reduced pressure therapy device, reduced pressure therapy device using the same and using method for the same
US10058143B2 (en) 2013-12-12 2018-08-28 Ossur Hf Outsole for orthopedic device
USD742017S1 (en) 2014-03-27 2015-10-27 Ossur Hf Shell for an orthopedic device
WO2015193257A1 (en) 2014-06-18 2015-12-23 Smith & Nephew Plc Wound dressing
US9770369B2 (en) 2014-08-08 2017-09-26 Neogenix, Llc Wound care devices, apparatus, and treatment methods
US10391211B2 (en) * 2015-01-26 2019-08-27 Ossur Iceland Ehf Negative pressure wound therapy orthopedic device
JP6743050B2 (en) 2015-04-27 2020-08-19 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Pressure reducing device and method
US10076594B2 (en) * 2015-05-18 2018-09-18 Smith & Nephew Plc Fluidic connector for negative pressure wound therapy
WO2017019939A1 (en) 2015-07-29 2017-02-02 Innovative Therapies, Inc. Wound therapy device pressure monitoring and control system
CA3016484A1 (en) 2016-03-07 2017-09-14 Smith & Nephew Plc Wound treatment apparatuses and methods with negative pressure source integrated into wound dressing
WO2017186771A1 (en) 2016-04-26 2017-11-02 Smith & Nephew Plc Wound dressings and methods of use with integrated negative pressure source having a fluid ingress inhibition component
CN109069710B (en) 2016-05-03 2022-04-12 史密夫及内修公开有限公司 Optimizing power delivery to a negative pressure source in a negative pressure therapy system
CN109069711A (en) 2016-05-03 2018-12-21 史密夫及内修公开有限公司 System and method for driving negative pressure source in negative pressure treatment system
US11096831B2 (en) 2016-05-03 2021-08-24 Smith & Nephew Plc Negative pressure wound therapy device activation and control
AU2017315129B2 (en) 2016-08-25 2022-10-27 Smith & Nephew Plc Absorbent negative pressure wound therapy dressing
AU2017336310B2 (en) 2016-09-30 2022-12-08 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
GB2555584B (en) 2016-10-28 2020-05-27 Smith & Nephew Multi-layered wound dressing and method of manufacture
US10426874B2 (en) 2016-12-02 2019-10-01 Apex Medical Corp. Wound management assembly and negative pressure wound therapy system
CN110198747A (en) * 2017-01-27 2019-09-03 凯希特许有限公司 Multilayer with instillation ability closes abdomen dressing
CN110582257B (en) 2017-03-08 2022-03-15 史密夫及内修公开有限公司 Negative pressure wound therapy device control in the presence of fault conditions
CN110612131B (en) 2017-05-09 2023-05-16 史密夫及内修公开有限公司 Redundant control for negative pressure wound therapy system
US11554051B2 (en) 2017-06-30 2023-01-17 T.J. Smith And Nephew, Limited Negative pressure wound therapy apparatus
EP3681550B1 (en) 2017-09-13 2023-11-08 Smith & Nephew PLC Negative pressure wound treatment apparatuses
GB201718070D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
WO2019086332A1 (en) 2017-11-01 2019-05-09 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
GB201718072D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
GB201718054D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Sterilization of integrated negative pressure wound treatment apparatuses and sterilization methods
GB201718014D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Dressing for negative pressure wound therapy with filter
BR112020019519A2 (en) * 2018-03-26 2020-12-29 Deroyal Industries, Inc. SYSTEM TO FACILITATE REDUCED PRESSURE DISTRIBUTION TO AN INJURY PLACE
WO2019200035A1 (en) * 2018-04-13 2019-10-17 Kci Licensing, Inc. Npwt system with selectively controllable airflow
GB201811449D0 (en) 2018-07-12 2018-08-29 Smith & Nephew Apparatuses and methods for negative pressure wound therapy
CN112512479A (en) * 2018-08-01 2021-03-16 凯希特许有限公司 Soft tissue treatment using negative pressure
USD898925S1 (en) 2018-09-13 2020-10-13 Smith & Nephew Plc Medical dressing
CN114173728A (en) * 2019-07-03 2022-03-11 凯希特许有限公司 Customizable dressing for large area negative pressure therapy
US20220218892A1 (en) * 2019-07-26 2022-07-14 Kci Licensing, Inc. Low-profile fluid conductors with moisture management features
US20220257850A1 (en) * 2019-07-30 2022-08-18 Kci Licensing, Inc. Negative-Pressure Dressing For Foot Treatment
US11696962B2 (en) 2019-10-16 2023-07-11 Mark R. Moore Apparatus and method for deploying a preoperative skin disinfection device with integrated drape
US20230000714A1 (en) * 2021-07-02 2023-01-05 Syncardon Llc Apparatus and method for pulse cycle pressure modulation and negative pressure therapy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071267A (en) * 1998-02-06 2000-06-06 Kinetic Concepts, Inc. Medical patient fluid management interface system and method
US20070185426A1 (en) * 2001-02-16 2007-08-09 Kci Licensing, Inc. Biocompatible wound dressing
US20080271804A1 (en) * 2007-03-20 2008-11-06 Neogen Technologies, Inc. Flat-hose assembly for wound drainage system

Family Cites Families (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1355846A (en) 1920-02-06 1920-10-19 David A Rannells Medical appliance
US2547758A (en) * 1949-01-05 1951-04-03 Wilmer B Keeling Instrument for treating the male urethra
US2632443A (en) * 1949-04-18 1953-03-24 Eleanor P Lesher Surgical dressing
GB692578A (en) 1949-09-13 1953-06-10 Minnesota Mining & Mfg Improvements in or relating to drape sheets for surgical use
US2682873A (en) * 1952-07-30 1954-07-06 Johnson & Johnson General purpose protective dressing
NL189176B (en) 1956-07-13 1900-01-01 Hisamitsu Pharmaceutical Co PLASTER BASED ON A SYNTHETIC RUBBER.
US2969057A (en) * 1957-11-04 1961-01-24 Brady Co W H Nematodic swab
US3066672A (en) 1960-09-27 1962-12-04 Jr William H Crosby Method and apparatus for serial sampling of intestinal juice
GB1052614A (en) * 1964-06-04
US3367332A (en) * 1965-08-27 1968-02-06 Gen Electric Product and process for establishing a sterile area of skin
US3520300A (en) * 1967-03-15 1970-07-14 Amp Inc Surgical sponge and suction device
NL6808283A (en) * 1968-06-13 1969-12-16
US3568675A (en) 1968-08-30 1971-03-09 Clyde B Harvey Fistula and penetrating wound dressing
US4141361A (en) * 1970-02-09 1979-02-27 Snyder Manufacturing Co., Incorporated Evacuator
US3682180A (en) 1970-06-08 1972-08-08 Coilform Co Inc Drain clip for surgical drain
BE789293Q (en) * 1970-12-07 1973-01-15 Parke Davis & Co MEDICO-SURGICAL DRESSING FOR BURNS AND SIMILAR LESIONS
US3742952A (en) * 1971-04-28 1973-07-03 Alpha Ind Inc Surgical suction pump assembly
US3779243A (en) 1971-10-15 1973-12-18 J Tussey Contamination free surgical evacuator
US3763857A (en) 1972-04-24 1973-10-09 Kimberly Clark Co Surgical drape
US3774611A (en) 1972-06-08 1973-11-27 J Tussey Stabilized contamination free surgical evacuator
US3826254A (en) * 1973-02-26 1974-07-30 Verco Ind Needle or catheter retaining appliance
DE2527706A1 (en) * 1975-06-21 1976-12-30 Hanfried Dr Med Weigand DEVICE FOR THE INTRODUCTION OF CONTRAST AGENTS INTO AN ARTIFICIAL INTESTINAL OUTLET
DE2654426A1 (en) * 1975-12-02 1977-06-23 Simplex Ets GEAR SHIFTING FOR BICYCLES OR SIMILAR VEHICLES
DE2640413C3 (en) 1976-09-08 1980-03-27 Richard Wolf Gmbh, 7134 Knittlingen Catheter monitor
NL7710909A (en) * 1976-10-08 1978-04-11 Smith & Nephew COMPOSITE STRAPS.
GB1562244A (en) 1976-11-11 1980-03-05 Lock P M Wound dressing materials
US4080970A (en) * 1976-11-17 1978-03-28 Miller Thomas J Post-operative combination dressing and internal drain tube with external shield and tube connector
US4139004A (en) * 1977-02-17 1979-02-13 Gonzalez Jr Harry Bandage apparatus for treating burns
US4184510A (en) 1977-03-15 1980-01-22 Fibra-Sonics, Inc. Valued device for controlling vacuum in surgery
US4165748A (en) 1977-11-07 1979-08-28 Johnson Melissa C Catheter tube holder
US4256109A (en) * 1978-07-10 1981-03-17 Nichols Robert L Shut off valve for medical suction apparatus
SE414994B (en) * 1978-11-28 1980-09-01 Landstingens Inkopscentral VENKATETERFORBAND
DE2953373A1 (en) * 1978-12-06 1981-01-08 P Svedman Device for treating tissues,for example skin
US4266545A (en) 1979-04-06 1981-05-12 Moss James P Portable suction device for collecting fluids from a closed wound
US4284079A (en) 1979-06-28 1981-08-18 Adair Edwin Lloyd Method for applying a male incontinence device
US4261363A (en) * 1979-11-09 1981-04-14 C. R. Bard, Inc. Retention clips for body fluid drains
US4569348A (en) * 1980-02-22 1986-02-11 Velcro Usa Inc. Catheter tube holder strap
US4480638A (en) 1980-03-11 1984-11-06 Eduard Schmid Cushion for holding an element of grafted skin
US4297995A (en) 1980-06-03 1981-11-03 Key Pharmaceuticals, Inc. Bandage containing attachment post
US4529402A (en) * 1980-07-08 1985-07-16 Snyder Laboratories, Inc. Closed wound suction evacuator with rotary valve
US4333468A (en) * 1980-08-18 1982-06-08 Geist Robert W Mesentery tube holder apparatus
US4465485A (en) 1981-03-06 1984-08-14 Becton, Dickinson And Company Suction canister with unitary shut-off valve and filter features
US4392853A (en) * 1981-03-16 1983-07-12 Rudolph Muto Sterile assembly for protecting and fastening an indwelling device
US4373519A (en) * 1981-06-26 1983-02-15 Minnesota Mining And Manufacturing Company Composite wound dressing
US4392858A (en) * 1981-07-16 1983-07-12 Sherwood Medical Company Wound drainage device
US4419097A (en) 1981-07-31 1983-12-06 Rexar Industries, Inc. Attachment for catheter tube
AU550575B2 (en) 1981-08-07 1986-03-27 Richard Christian Wright Wound drainage device
SE429197B (en) 1981-10-14 1983-08-22 Frese Nielsen SAR TREATMENT DEVICE
DE3146266A1 (en) * 1981-11-21 1983-06-01 B. Braun Melsungen Ag, 3508 Melsungen COMBINED DEVICE FOR A MEDICAL SUCTION DRAINAGE
US4551139A (en) 1982-02-08 1985-11-05 Marion Laboratories, Inc. Method and apparatus for burn wound treatment
US4475909A (en) 1982-05-06 1984-10-09 Eisenberg Melvin I Male urinary device and method for applying the device
EP0100148B1 (en) 1982-07-06 1986-01-08 Dow Corning Limited Medical-surgical dressing and a process for the production thereof
NZ206837A (en) 1983-01-27 1986-08-08 Johnson & Johnson Prod Inc Thin film adhesive dressing:backing material in three sections
US4548202A (en) 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
US4540412A (en) 1983-07-14 1985-09-10 The Kendall Company Device for moist heat therapy
US4543100A (en) 1983-11-01 1985-09-24 Brodsky Stuart A Catheter and drain tube retainer
US4525374A (en) * 1984-02-27 1985-06-25 Manresa, Inc. Treating hydrophobic filters to render them hydrophilic
US4837285A (en) * 1984-03-27 1989-06-06 Medimatrix Collagen matrix beads for soft tissue repair
GB2157958A (en) 1984-05-03 1985-11-06 Ernest Edward Austen Bedding Ball game net support
US4897081A (en) * 1984-05-25 1990-01-30 Thermedics Inc. Percutaneous access device
US5215522A (en) * 1984-07-23 1993-06-01 Ballard Medical Products Single use medical aspirating device and method
GB8419745D0 (en) * 1984-08-02 1984-09-05 Smith & Nephew Ass Wound dressing
US4872450A (en) 1984-08-17 1989-10-10 Austad Eric D Wound dressing and method of forming same
US4826494A (en) * 1984-11-09 1989-05-02 Stryker Corporation Vacuum wound drainage system
US4655754A (en) * 1984-11-09 1987-04-07 Stryker Corporation Vacuum wound drainage system and lipids baffle therefor
US4605399A (en) 1984-12-04 1986-08-12 Complex, Inc. Transdermal infusion device
US4664652A (en) * 1985-02-07 1987-05-12 Snyder Laboratories, Inc. Wound evacuator
US5037397A (en) 1985-05-03 1991-08-06 Medical Distributors, Inc. Universal clamp
US4640688A (en) * 1985-08-23 1987-02-03 Mentor Corporation Urine collection catheter
US4710165A (en) 1985-09-16 1987-12-01 Mcneil Charles B Wearable, variable rate suction/collection device
US4758220A (en) * 1985-09-26 1988-07-19 Alcon Laboratories, Inc. Surgical cassette proximity sensing and latching apparatus
US4733659A (en) * 1986-01-17 1988-03-29 Seton Company Foam bandage
WO1987004626A1 (en) 1986-01-31 1987-08-13 Osmond, Roger, L., W. Suction system for wound and gastro-intestinal drainage
US4838883A (en) * 1986-03-07 1989-06-13 Nissho Corporation Urine-collecting device
US4735195A (en) 1986-04-01 1988-04-05 Blum Alvin S Device encouraging periodic joint motion and muscle activity
JPS62281965A (en) 1986-05-29 1987-12-07 テルモ株式会社 Catheter and catheter fixing member
GB8621884D0 (en) * 1986-09-11 1986-10-15 Bard Ltd Catheter applicator
GB2195255B (en) 1986-09-30 1991-05-01 Vacutec Uk Limited Apparatus for vacuum treatment of an epidermal surface
US4743232A (en) * 1986-10-06 1988-05-10 The Clinipad Corporation Package assembly for plastic film bandage
DE3634569A1 (en) 1986-10-10 1988-04-21 Sachse Hans E CONDOM CATHETER, A URINE TUBE CATHETER FOR PREVENTING RISING INFECTIONS
JPS63135179A (en) 1986-11-26 1988-06-07 立花 俊郎 Subcataneous drug administration set
GB8628564D0 (en) 1986-11-28 1987-01-07 Smiths Industries Plc Anti-foaming agent suction apparatus
GB8706116D0 (en) 1987-03-14 1987-04-15 Smith & Nephew Ass Adhesive dressings
US4787888A (en) 1987-06-01 1988-11-29 University Of Connecticut Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a)
US4863449A (en) 1987-07-06 1989-09-05 Hollister Incorporated Adhesive-lined elastic condom cathether
US5176663A (en) * 1987-12-02 1993-01-05 Pal Svedman Dressing having pad with compressibility limiting elements
US4906240A (en) * 1988-02-01 1990-03-06 Matrix Medica, Inc. Adhesive-faced porous absorbent sheet and method of making same
US4981474A (en) * 1988-02-16 1991-01-01 Baxter Travenol Laboratories, Inc. Body fluid drainage device
US4985019A (en) * 1988-03-11 1991-01-15 Michelson Gary K X-ray marker
GB8812803D0 (en) 1988-05-28 1988-06-29 Smiths Industries Plc Medico-surgical containers
US4919654A (en) * 1988-08-03 1990-04-24 Kalt Medical Corporation IV clamp with membrane
US5000741A (en) 1988-08-22 1991-03-19 Kalt Medical Corporation Transparent tracheostomy tube dressing
US5215539A (en) * 1988-10-12 1993-06-01 Schoolman Scientific Corporation Vacuum strip apparatus for surgery
EP0379416B1 (en) * 1989-01-16 1995-03-08 Roussel-Uclaf Azabicycloheptene derivatives and their salts, process for their preparation, their use as medicaments and compositions containing them
GB8906100D0 (en) 1989-03-16 1989-04-26 Smith & Nephew Laminates
US5527293A (en) * 1989-04-03 1996-06-18 Kinetic Concepts, Inc. Fastening system and method
US4969880A (en) 1989-04-03 1990-11-13 Zamierowski David S Wound dressing and treatment method
US5261893A (en) 1989-04-03 1993-11-16 Zamierowski David S Fastening system and method
US5100396A (en) * 1989-04-03 1992-03-31 Zamierowski David S Fluidic connection system and method
US5000164A (en) * 1989-06-26 1991-03-19 The United States Of America As Represented By The Secretary Of The Navy Circulation enhancing apparatus
JP2719671B2 (en) * 1989-07-11 1998-02-25 日本ゼオン株式会社 Wound dressing
US5358494A (en) 1989-07-11 1994-10-25 Svedman Paul Irrigation dressing
US5232453A (en) 1989-07-14 1993-08-03 E. R. Squibb & Sons, Inc. Catheter holder
GB2235877A (en) 1989-09-18 1991-03-20 Antonio Talluri Closed wound suction apparatus
US5112323A (en) * 1990-02-08 1992-05-12 Snyder Laboratories, Inc. Wound evacuator
US5134994A (en) 1990-02-12 1992-08-04 Say Sam L Field aspirator in a soft pack with externally mounted container
US5784811A (en) * 1990-03-15 1998-07-28 Walter Mauch Shoe insole
US5092858A (en) * 1990-03-20 1992-03-03 Becton, Dickinson And Company Liquid gelling agent distributor device
JP2941918B2 (en) 1990-09-19 1999-08-30 テルモ株式会社 Weighing device
US5149331A (en) 1991-05-03 1992-09-22 Ariel Ferdman Method and device for wound closure
US5342329A (en) 1991-10-11 1994-08-30 Inmed Ltda. Portable disposable device for post-surgical suction
US5278100A (en) * 1991-11-08 1994-01-11 Micron Technology, Inc. Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers
US5645081A (en) 1991-11-14 1997-07-08 Wake Forest University Method of treating tissue damage and apparatus for same
US5636643A (en) * 1991-11-14 1997-06-10 Wake Forest University Wound treatment employing reduced pressure
US5279550A (en) * 1991-12-19 1994-01-18 Gish Biomedical, Inc. Orthopedic autotransfusion system
US5167613A (en) 1992-03-23 1992-12-01 The Kendall Company Composite vented wound dressing
FR2690617B1 (en) 1992-04-29 1994-06-24 Cbh Textile TRANSPARENT ADHESIVE DRESSING.
DE4306478A1 (en) 1993-03-02 1994-09-08 Wolfgang Dr Wagner Drainage device, in particular pleural drainage device, and drainage method
US6241747B1 (en) * 1993-05-03 2001-06-05 Quill Medical, Inc. Barbed Bodily tissue connector
US5342376A (en) 1993-05-03 1994-08-30 Dermagraphics, Inc. Inserting device for a barbed tissue connector
US5344415A (en) 1993-06-15 1994-09-06 Deroyal Industries, Inc. Sterile system for dressing vascular access site
US5449379A (en) 1993-07-21 1995-09-12 Alternative Compression Technologies, Inc. Apparatus for applying a desired temperature and pressure to an injured area
US5437651A (en) 1993-09-01 1995-08-01 Research Medical, Inc. Medical suction apparatus
US5549584A (en) 1994-02-14 1996-08-27 The Kendall Company Apparatus for removing fluid from a wound
US5607388A (en) * 1994-06-16 1997-03-04 Hercules Incorporated Multi-purpose wound dressing
US5556375A (en) 1994-06-16 1996-09-17 Hercules Incorporated Wound dressing having a fenestrated base layer
US5664270A (en) 1994-07-19 1997-09-09 Kinetic Concepts, Inc. Patient interface system
PT1219311E (en) 1994-08-22 2004-11-30 Kci Licensing Inc SUCCESS PUMP FOR USE WITH A DISCHARGEABLE LIQUID CONTAINER APPARATUS FOR WOUND FLUIDS
GB2319174B (en) 1994-08-26 1998-10-07 Reflexo Cc Massage mat
DE29504378U1 (en) 1995-03-15 1995-09-14 Mtg Medizinisch Tech Geraeteba Electronically controlled low-vacuum pump for chest and wound drainage
JP2706909B2 (en) 1995-04-10 1998-01-28 辰彦 末永 Insoles and shoes
DE19517699C2 (en) * 1995-05-13 1999-11-04 Wilhelm Fleischmann Device for vacuum sealing a wound
US5688225A (en) 1995-07-31 1997-11-18 Walker; John W. Therapeutic footwear
GB9523253D0 (en) 1995-11-14 1996-01-17 Mediscus Prod Ltd Portable wound treatment apparatus
US6736787B1 (en) * 1996-04-29 2004-05-18 Mcewen James Allen Apparatus for applying pressure waveforms to a limb
US5913838A (en) * 1997-06-09 1999-06-22 Reilly; Peter C. Vibrating foot massage insole apparatus
NL1006457C2 (en) 1997-07-03 1999-01-05 Polymedics N V Drainage system to be used with an open wound, element used for applying a drainage pipe or hose and method for applying the drainage system.
US6135116A (en) 1997-07-28 2000-10-24 Kci Licensing, Inc. Therapeutic method for treating ulcers
US7214202B1 (en) 1997-07-28 2007-05-08 Kci Licensing, Inc. Therapeutic apparatus for treating ulcers
US6290685B1 (en) 1998-06-18 2001-09-18 3M Innovative Properties Company Microchanneled active fluid transport devices
GB9719520D0 (en) 1997-09-12 1997-11-19 Kci Medical Ltd Surgical drape and suction heads for wound treatment
AU755496B2 (en) 1997-09-12 2002-12-12 Kci Licensing, Inc. Surgical drape and suction head for wound treatment
CA2231802A1 (en) 1998-04-15 1999-10-15 Serge Brie An aerated cushioning structure with a variable density throughout
US6663610B1 (en) 1998-04-17 2003-12-16 Leonard S. Schultz, M.D. Smoke evacuation system
US6544202B2 (en) * 1998-08-12 2003-04-08 Mcewen James Allen Apparatus and method for applying an adaptable pressure waveform to a limb
US6129692A (en) 1998-08-31 2000-10-10 Inductive Technologies, Inc. Neuropathy relief vacuum traction assist system for carpal tunnel relief
DE19844355A1 (en) 1998-09-28 2000-04-06 Rainer E Sachse Adhesive wound dressing of flexible, membrane like material penetrable by air comprises integrated device which drains wound secretions or produces reduced pressure, or can be connected to an external suction system
US6488643B1 (en) 1998-10-08 2002-12-03 Kci Licensing, Inc. Wound healing foot wrap
US6151807A (en) * 1999-01-30 2000-11-28 Qui; Yi-Ming Health care shoe
US6178662B1 (en) * 1999-02-02 2001-01-30 David K. Legatzke Dispersed-air footpad
US6287316B1 (en) 1999-03-26 2001-09-11 Ethicon, Inc. Knitted surgical mesh
EP1168997B1 (en) 1999-04-02 2013-04-24 KCI Licensing, Inc. Vacuum assisted closure system with provision for introduction of agent
US7799004B2 (en) 2001-03-05 2010-09-21 Kci Licensing, Inc. Negative pressure wound treatment apparatus and infection identification system and method
US6856821B2 (en) 2000-05-26 2005-02-15 Kci Licensing, Inc. System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure
GB9909301D0 (en) * 1999-04-22 1999-06-16 Kci Medical Ltd Wound treatment apparatus employing reduced pressure
US6991643B2 (en) * 2000-12-20 2006-01-31 Usgi Medical Inc. Multi-barbed device for retaining tissue in apposition and methods of use
US6473920B2 (en) 1999-11-12 2002-11-05 Augustine Medical, Inc. System for warming lower extremities of supine persons
US6764462B2 (en) 2000-11-29 2004-07-20 Hill-Rom Services Inc. Wound treatment apparatus
JP2001231850A (en) * 2000-02-21 2001-08-28 Matsuda Ika Kk Medical suction tube utilizing capillary phenomenon
US6361512B1 (en) * 2000-02-23 2002-03-26 Spencer L. Mackay Massaging apparatus using inflatable bladders
WO2001062328A1 (en) 2000-02-24 2001-08-30 Venetec International, Inc. Universal catheter anchoring system
GB2359755A (en) 2000-03-03 2001-09-05 Mediplus Ltd Apparatus for assisting wound healing
GB0011202D0 (en) * 2000-05-09 2000-06-28 Kci Licensing Inc Abdominal wound dressing
US6471685B1 (en) 2000-05-18 2002-10-29 David James Johnson Medical dressing assembly and associated method of using the same
PL203787B1 (en) 2000-05-22 2009-11-30 Coffey Arthur C Combination sis and vacuum bandage and method
US6685681B2 (en) * 2000-11-29 2004-02-03 Hill-Rom Services, Inc. Vacuum therapy and cleansing dressing for wounds
US6855135B2 (en) * 2000-11-29 2005-02-15 Hill-Rom Services, Inc. Vacuum therapy and cleansing dressing for wounds
US7763769B2 (en) 2001-02-16 2010-07-27 Kci Licensing, Inc. Biocompatible wound dressing
US7070584B2 (en) 2001-02-20 2006-07-04 Kci Licensing, Inc. Biocompatible wound dressing
US6540705B2 (en) 2001-02-22 2003-04-01 Core Products International, Inc. Ankle brace providing upper and lower ankle adjustment
US6695824B2 (en) * 2001-04-16 2004-02-24 The United States Of America As Represented By The Secretary Of The Army Wound dressing system
US7108683B2 (en) * 2001-04-30 2006-09-19 Kci Licensing, Inc Wound therapy and tissue management system and method with fluid differentiation
US6631568B2 (en) 2001-07-31 2003-10-14 Schering-Plough Healthcare Products, Inc. Insole for fitness and recreational walking
US20030061733A1 (en) * 2001-10-01 2003-04-03 Nam Liong Enterprise Co.,Ltd. Shock-absorbing insole for use in a shoe
US20030125649A1 (en) 2001-10-31 2003-07-03 Mcintosh Laura Janet Method and system apparatus using temperature and pressure for treating medical disorders
WO2003057070A2 (en) * 2001-12-26 2003-07-17 Hill-Rom Services Inc. Vented vacuum bandage and method
CA2468309A1 (en) 2001-12-26 2003-07-17 Robert Petrosenko Wound vacuum therapy dressing kit
US6998510B2 (en) 2002-02-04 2006-02-14 Damage Control Surgical Technologies, Inc. Method and apparatus for improved hemostasis and damage control operations
EP1496822B1 (en) * 2002-04-10 2018-08-29 KCI Medical Resources Access openings in vacuum bandage
US20030216672A1 (en) 2002-05-15 2003-11-20 The Research Foundation Of State University Of New York System and method for healing skin injuries
WO2003099188A1 (en) 2002-05-23 2003-12-04 Otto Bock Healthcare Lp Pulsating pressure chamber and method for enhanced blood flow
US20060100556A1 (en) * 2002-06-27 2006-05-11 Hargens Alan R Method and device to enhance skin blood flow
AU2002359833A1 (en) 2002-08-21 2004-03-11 Hill-Rom Services, Inc. Wound packing for preventing wound closure
US7846141B2 (en) 2002-09-03 2010-12-07 Bluesky Medical Group Incorporated Reduced pressure treatment system
US7520872B2 (en) * 2002-09-13 2009-04-21 Neogen Technologies, Inc. Closed wound drainage system
US6979324B2 (en) 2002-09-13 2005-12-27 Neogen Technologies, Inc. Closed wound drainage system
US7815616B2 (en) * 2002-09-16 2010-10-19 Boehringer Technologies, L.P. Device for treating a wound
GB0224986D0 (en) 2002-10-28 2002-12-04 Smith & Nephew Apparatus
US7976519B2 (en) 2002-12-31 2011-07-12 Kci Licensing, Inc. Externally-applied patient interface system and method
GB0230344D0 (en) * 2002-12-31 2003-02-05 Filtvedt Marius Device for applying a pulsating pressure to a local region of the body and applications thereof
CN1822874B (en) 2003-07-22 2010-10-13 凯希特许有限公司 Negative pressure wound treatment dressing
US7942866B2 (en) * 2003-08-28 2011-05-17 Boehringer Technologies, L.P. Device for treating a wound
GB0325120D0 (en) 2003-10-28 2003-12-03 Smith & Nephew Apparatus with actives
GB0325126D0 (en) 2003-10-28 2003-12-03 Smith & Nephew Apparatus with heat
RU2283000C2 (en) * 2003-11-19 2006-09-10 Центр "Биоинженерия" Ран Method for protein production
US7282038B2 (en) 2004-02-23 2007-10-16 Tyco Healthcare Group Lp Compression apparatus
US8062272B2 (en) 2004-05-21 2011-11-22 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
US7909805B2 (en) 2004-04-05 2011-03-22 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
US7884258B2 (en) 2004-04-13 2011-02-08 Boehringer Technologies, L.P. Wound contact device
GB0508529D0 (en) * 2005-04-27 2005-06-01 Smith & Nephew Sai with microstress
US8529548B2 (en) 2004-04-27 2013-09-10 Smith & Nephew Plc Wound treatment apparatus and method
GB2415382A (en) 2004-06-21 2005-12-28 Johnson & Johnson Medical Ltd Wound dressings for vacuum therapy
GB2415908A (en) 2004-07-09 2006-01-11 Ethicon Inc Vacuum wound dressings
US7485112B2 (en) * 2004-11-08 2009-02-03 Boehringer Technologies, L.P. Tube attachment device for wound treatment
DE102004055702B3 (en) 2004-11-18 2005-11-24 Johannes Schaub Pressure and pull relieving plaster e.g. for treatment of abscesses at lower leg, has absorbing element and non absorbing pressure reduction element and at opposite surface adhesive film for fastening plaster on skin is provided
KR100640620B1 (en) * 2004-12-27 2006-11-02 삼성전자주식회사 NOR type flash memory device having twin bit cell scheme
DE102005007016A1 (en) 2005-02-15 2006-08-24 Fleischmann, Wilhelm, Dr.med. Device for the treatment of wounds
US20060189909A1 (en) 2005-02-24 2006-08-24 Hurley Timothy B Load relieving wound dressing
ATE492256T1 (en) 2005-04-12 2011-01-15 State Scient Ct Of Russian Fed Inst Of Bio Med Probl Of The Rus Acad Of Sciences DEVICE FOR THE PREVENTION AND TREATMENT OF DISORDERS OF THE MUSCULAR APPARATUS
DE102005026771B4 (en) * 2005-06-10 2007-04-19 Erdmann, Alfons, Dr. med. Device for treating patients suffering from skin lesions distributed on the skin surface as well as body coverage
US7896825B2 (en) 2005-06-17 2011-03-01 Bridgepoint Medical, Inc. Medical compression devices and methods
US20070027414A1 (en) * 2005-07-28 2007-02-01 Integra Lifesciences Corporation Laminar construction negative pressure wound dressing including bioabsorbable material
US7896823B2 (en) 2006-01-17 2011-03-01 Theranova, Llc Method and apparatus for treating wound using negative pressure therapy
AU2007212480B2 (en) 2006-02-06 2010-04-29 Solventum Intellectual Properties Company Systems and methods for improved connection to wound dressings in conjunction with reduced pressure wound treatment systems
US20070219585A1 (en) 2006-03-14 2007-09-20 Cornet Douglas A System for administering reduced pressure treatment having a manifold with a primary flow passage and a blockage prevention member
US7779625B2 (en) 2006-05-11 2010-08-24 Kalypto Medical, Inc. Device and method for wound therapy
US7615036B2 (en) 2006-05-11 2009-11-10 Kalypto Medical, Inc. Device and method for wound therapy
US20080047164A1 (en) 2006-08-23 2008-02-28 Soren Vindriis Cushioning insole adjustment kit
US7997007B2 (en) * 2006-09-15 2011-08-16 Early Success, Inc. Stimulus training system and apparatus to effectuate therapeutic treatment
MX2009002948A (en) * 2006-09-19 2009-03-31 Kci Licensing Inc Reduced pressure treatment system having blockage clearing and dual-zone pressure protection capabilities.
ZA200802015B (en) * 2006-10-27 2009-08-26 Peter John Meffan Insole
EP2079417B1 (en) 2006-11-09 2014-07-30 KCI Licensing, Inc. Porous bioresorbable linked dressing comprising microspheres and methods of making same
WO2008100437A1 (en) * 2007-02-09 2008-08-21 Kci Licensing Inc. A breathable interface system for topical reduced pressure
MX2009008397A (en) 2007-02-09 2009-10-28 Kci Licensing Inc System and method for managing reduced pressure at a tissue site.
RU2459636C2 (en) 2007-02-09 2012-08-27 КейСиАй Лайсензинг Инк. Apparatus and method for treating tissue region by applying low pressure
SE531259C2 (en) 2007-06-27 2009-02-03 Moelnlycke Health Care Ab Device for treating reduced pressure ulcers
US8021347B2 (en) 2008-07-21 2011-09-20 Tyco Healthcare Group Lp Thin film wound dressing
US8007481B2 (en) 2008-07-17 2011-08-30 Tyco Healthcare Group Lp Subatmospheric pressure mechanism for wound therapy system
JP2011521708A (en) * 2008-05-27 2011-07-28 カリプト メディカル インコーポレーション Negative pressure trauma treatment device
US8251979B2 (en) 2009-05-11 2012-08-28 Tyco Healthcare Group Lp Orientation independent canister for a negative pressure wound therapy device
US8216198B2 (en) 2009-01-09 2012-07-10 Tyco Healthcare Group Lp Canister for receiving wound exudate in a negative pressure therapy system
US8158844B2 (en) * 2008-10-08 2012-04-17 Kci Licensing, Inc. Limited-access, reduced-pressure systems and methods
US8162907B2 (en) 2009-01-20 2012-04-24 Tyco Healthcare Group Lp Method and apparatus for bridging from a dressing in negative pressure wound therapy
US10356608B2 (en) 2016-02-18 2019-07-16 Huawei Technologies Co., Ltd. System and method of user equipment state configurations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071267A (en) * 1998-02-06 2000-06-06 Kinetic Concepts, Inc. Medical patient fluid management interface system and method
US20070185426A1 (en) * 2001-02-16 2007-08-09 Kci Licensing, Inc. Biocompatible wound dressing
US20080271804A1 (en) * 2007-03-20 2008-11-06 Neogen Technologies, Inc. Flat-hose assembly for wound drainage system

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10035006B2 (en) 2005-04-27 2018-07-31 Smith & Nephew Plc Wound treatment apparatus and method
US11147714B2 (en) 2005-04-27 2021-10-19 Smith & Nephew Plc Wound treatment apparatus and method
US11045598B2 (en) 2007-11-21 2021-06-29 Smith & Nephew Plc Vacuum assisted wound dressing
US9962474B2 (en) 2007-11-21 2018-05-08 Smith & Nephew Plc Vacuum assisted wound dressing
US11701266B2 (en) 2007-11-21 2023-07-18 Smith & Nephew Plc Vacuum assisted wound dressing
US9801985B2 (en) 2007-12-06 2017-10-31 Smith & Nephew Plc Apparatus for topical negative pressure therapy
US11433176B2 (en) 2007-12-06 2022-09-06 Smith & Nephew Plc Apparatus for topical negative pressure therapy
US10561769B2 (en) 2007-12-06 2020-02-18 Smith & Nephew Plc Apparatus for topical negative pressure therapy
US11717655B2 (en) 2007-12-06 2023-08-08 Smith & Nephew Plc Apparatus for topical negative pressure therapy
US9956329B2 (en) 2008-03-07 2018-05-01 Smith & Nephew, Inc. Wound dressing port and associated wound dressing
US9474654B2 (en) 2008-08-08 2016-10-25 Smith & Nephew, Inc. Wound dressing of continuous fibers
USRE46825E1 (en) 2009-01-20 2018-05-08 Smith & Nephew, Inc. Method and apparatus for bridging from a dressing in negative pressure wound therapy
US9889241B2 (en) 2009-06-01 2018-02-13 Smith & Nephew, Inc. System for providing continual drainage in negative pressure wound therapy
US10828404B2 (en) 2009-06-01 2020-11-10 Smith & Nephew, Inc. System for providing continual drainage in negative pressure wound therapy
US10406036B2 (en) 2009-06-18 2019-09-10 Smith & Nephew, Inc. Apparatus for vacuum bridging and/or exudate collection
US11058588B2 (en) 2009-12-22 2021-07-13 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
US9974695B2 (en) 2009-12-22 2018-05-22 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
US9999547B2 (en) 2009-12-22 2018-06-19 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
US10406037B2 (en) 2009-12-22 2019-09-10 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
US9327065B2 (en) 2009-12-22 2016-05-03 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
US9642750B2 (en) 2009-12-22 2017-05-09 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
USRE48117E1 (en) 2010-05-07 2020-07-28 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
USRE48282E1 (en) 2010-10-15 2020-10-27 Smith & Nephew Plc Medical dressing
USRE49227E1 (en) 2010-10-15 2022-10-04 Smith & Nephew Plc Medical dressing
US9050398B2 (en) 2010-12-22 2015-06-09 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
US11247034B2 (en) 2010-12-22 2022-02-15 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
USD804014S1 (en) 2010-12-22 2017-11-28 Smith & Nephew, Inc. Suction adapter
US9956389B2 (en) 2010-12-22 2018-05-01 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
US9681993B2 (en) 2011-06-07 2017-06-20 Kci Licensing, Inc. Solutions for bridging and pressure concentration reduction at wound sites

Also Published As

Publication number Publication date
BRPI0913732B8 (en) 2021-06-22
AU2009302771A1 (en) 2010-04-15
US11865280B2 (en) 2024-01-09
US9744277B2 (en) 2017-08-29
CN104174075B (en) 2017-07-28
US20100087767A1 (en) 2010-04-08
KR20110074769A (en) 2011-07-01
CA2736740C (en) 2013-03-12
BRPI0913732B1 (en) 2020-01-07
JP5373092B2 (en) 2013-12-18
US8158844B2 (en) 2012-04-17
JP2012505029A (en) 2012-03-01
EP2344217A1 (en) 2011-07-20
EP3530299A1 (en) 2019-08-28
BRPI0913732A2 (en) 2017-09-12
US20120109085A1 (en) 2012-05-03
US20140039425A1 (en) 2014-02-06
CN102159258A (en) 2011-08-17
AU2009302771B2 (en) 2012-08-30
TW201014620A (en) 2010-04-16
CN102159258B (en) 2014-06-25
US20170354769A1 (en) 2017-12-14
MX353146B (en) 2017-12-20
US8575416B2 (en) 2013-11-05
CA2736740A1 (en) 2010-04-15
CN104174075A (en) 2014-12-03
US10898624B2 (en) 2021-01-26
MX2011003667A (en) 2011-04-28
EP2344217B1 (en) 2019-05-01
US20210100939A1 (en) 2021-04-08
RU2468826C1 (en) 2012-12-10
HK1158558A1 (en) 2012-07-20

Similar Documents

Publication Publication Date Title
US11865280B2 (en) Limited-access, reduced-pressure systems and methods
US11400204B2 (en) Delivery-and-fluid-storage bridges for use with reduced-pressure systems
US20190175416A1 (en) Multi-Layer Dressings, Systems, And Methods For Applying Reduced Pressure At A Tissue Site
AU2015202851B2 (en) Reduced-pressure dressings, systems, and methods employing desolidifying barrier layers
CN101959544B (en) Offloading and reduced-pressure treatment systems and methods
MX2010012970A (en) Reduced-pressure, compression systems and apparatuses for use on breast tissue.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137088.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09789512

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009302771

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009789512

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2736740

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2009302771

Country of ref document: AU

Date of ref document: 20090313

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011531037

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/003667

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 3215/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117010504

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011111190

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0913732

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0913732

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110330