WO2010070961A1 - 静油圧式変速車両の制御装置 - Google Patents

静油圧式変速車両の制御装置 Download PDF

Info

Publication number
WO2010070961A1
WO2010070961A1 PCT/JP2009/066720 JP2009066720W WO2010070961A1 WO 2010070961 A1 WO2010070961 A1 WO 2010070961A1 JP 2009066720 W JP2009066720 W JP 2009066720W WO 2010070961 A1 WO2010070961 A1 WO 2010070961A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle speed
pump
motor
capacity
differential pressure
Prior art date
Application number
PCT/JP2009/066720
Other languages
English (en)
French (fr)
Inventor
永至 石橋
雅行 迎野
山本 茂
由孝 小野寺
隆男 石原
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to JP2010542905A priority Critical patent/JP5274580B2/ja
Priority to US13/124,976 priority patent/US8725364B2/en
Priority to CN200980149334.2A priority patent/CN102245941B/zh
Priority to BRPI0919966A priority patent/BRPI0919966A2/pt
Publication of WO2010070961A1 publication Critical patent/WO2010070961A1/ja
Priority to US14/211,340 priority patent/US9091342B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4008Control of circuit pressure
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/202Mechanical transmission, e.g. clutches, gears
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2253Controlling the travelling speed of vehicles, e.g. adjusting travelling speed according to implement loads, control of hydrostatic transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/421Motor capacity control by electro-hydraulic control means, e.g. using solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/431Pump capacity control by electro-hydraulic control means, e.g. using solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/46Automatic regulation in accordance with output requirements
    • F16H61/47Automatic regulation in accordance with output requirements for achieving a target output speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/24Bypassing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/366Engine or motor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H2059/6838Sensing gearing status of hydrostatic transmissions
    • F16H2059/6861Sensing gearing status of hydrostatic transmissions the pressures, e.g. high, low or differential pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/04Ratio selector apparatus
    • F16H59/06Ratio selector apparatus the ratio being infinitely variable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products

Definitions

  • the present invention relates to a control device for a hydrostatic transmission vehicle, and in particular, a variable displacement pump represented by a bulldozer, which is driven by an engine, a variable displacement hydraulic motor that is rotated by pressure oil of the variable displacement pump, and a fuel adjustment lever.
  • the present invention relates to a control device for a hydrostatic transmission vehicle configured so that it can be operated by setting an engine speed to a high idle speed and an arbitrary speed less than that by (or a dial).
  • HST hydrostatic transmission
  • This hydrostatic transmission includes a variable displacement pump driven by an engine, and a variable displacement hydraulic motor that is rotated by pressure oil of the variable displacement pump. Then, by changing the swash plate angle of the variable displacement pump or the variable displacement hydraulic motor to control the displacement, the torque that can be absorbed by the hydrostatic transmission is changed, or the vehicle speed of the vehicle is steplessly changed. be able to.
  • a work vehicle such as a bulldozer can be operated with the engine speed set to a high idle speed or any lower speed by a fuel adjustment lever (or dial) (for example, Patent Document 1). reference).
  • a fuel adjustment lever or dial
  • the high idle speed is selected, and the engine is rotated at the rated maximum speed.
  • lightly loaded or self-propelled it is possible to reduce the noise during the operation, reduce the fuel consumption, etc. by reducing the engine speed by operating the fuel adjustment lever.
  • the work vehicle (bulldozer) described in Patent Document 1 can be operated by setting the engine speed to a low speed equal to or lower than the high idle speed by operating the fuel adjustment lever. .
  • the engine When the engine is operated at a low speed that is lower than the high idle speed, the engine can be operated while maintaining the same traction force (running drive torque) as at the high idle speed. The noise can be reduced and the fuel consumption can be reduced.
  • the maximum vehicle speed will be lower than when driving at a high idle speed.
  • a command vehicle speed (restricted vehicle speed) is determined according to the engine speed. And each capacity is determined based on the command vehicle speed. For example, control is performed to increase the capacity of the variable displacement motor when the engine speed decreases and to decrease the capacity of the variable displacement pump when the capacity of the variable displacement hydraulic motor reaches the maximum capacity.
  • the conventional bulldozer hydrostatic transmission basically performs control to limit the capacities of the variable displacement pump and the variable displacement hydraulic motor based only on the engine speed.
  • FIG. 11 is a graph in which the horizontal axis represents the engine speed and the vertical axis represents the torque, the line EL represents the engine output torque characteristic, and the line HL represents the absorption torque characteristic of the hydrostatic transmission for each load pressure.
  • P1 indicates a state where the load pressure is the highest
  • P8 indicates a state where the load pressure is the lowest.
  • the matching speed decreases to 1600 rpm when the load pressure becomes maximum. It becomes. That is, it varies by 670 rpm depending on the load pressure.
  • the partial operation means that the engine speed is set to a predetermined partial speed that is set lower than the high idle speed.
  • An object of the present invention is to make it possible to always perform a stable operation in a hydrostatic transmission vehicle including a hydrostatic transmission by suppressing a change in matching rotation speed due to a traveling load.
  • a control device for a hydrostatic transmission vehicle includes a hydrostatic transmission including a hydrostatic transmission including a variable displacement pump driven by an engine and a variable displacement hydraulic motor that is rotated by pressure oil of the variable displacement pump.
  • a device used in a variable speed vehicle includes a vehicle speed setting unit, a hydraulic pressure sensor, a limit torque setting unit, a limit vehicle speed setting unit, a vehicle speed selection unit, and a pump / motor capacity control unit.
  • the vehicle speed setting unit obtains the set vehicle speed based on the forward / reverse command and the speed step command instructed by the operator.
  • the hydraulic sensor detects the pressure of a hydraulic circuit including a variable displacement pump and a variable displacement hydraulic motor.
  • the limit torque setting unit acquires the engine speed, and obtains a limit torque that can be used in the hydrostatic transmission from the acquired engine speed.
  • the limit vehicle speed setting unit obtains the limit vehicle speed based on the detected pressure of the hydraulic circuit and the limit torque obtained by the limit torque setting unit.
  • the vehicle speed selection unit selects a lower vehicle speed among the set vehicle speed set by the vehicle speed setting unit and the limit vehicle speed obtained by the limit vehicle speed setting unit.
  • the pump / motor capacity control unit controls the capacities of the variable capacity pump and the variable capacity motor based on the vehicle speed selected by the vehicle speed selection unit.
  • the set vehicle speed is set based on the forward / reverse command and the speed step command instructed by the operator.
  • a limit torque that can be used in the hydrostatic transmission is obtained from the engine speed, and the limit vehicle speed is set based on the limit torque and the pressure of the hydraulic circuit. Then, the lower vehicle speed of the set vehicle speed and the limited vehicle speed is selected, and the capacities of the variable displacement pump and the variable displacement motor are controlled by the selected vehicle speed.
  • FIG. 12 is a graph in which the horizontal axis represents the engine speed and the vertical axis represents the torque.
  • the line EL is an example of the engine output torque characteristic
  • the line T is an example of the absorption torque characteristic of the hydrostatic transmission. Then, the absorption torque characteristic is constant regardless of the load pressure.
  • the engine speed is set to 2270 rpm, which is the high idle speed, by the fuel adjustment lever (or dial)
  • the engine speed is limited to 1900 rpm by partial operation. Is shown.
  • the engine speed decreases only to 1790 rpm. That is, the fluctuation due to the load pressure is suppressed to 110 rpm.
  • the limit vehicle speed setting unit has a table indicating a relationship between the limit vehicle speed and the pressure of the hydraulic circuit.
  • the low speed side of the limit vehicle speed is a pump area for obtaining the limit vehicle speed for controlling the displacement of the variable displacement pump
  • the high speed side of the limit vehicle speed is the limit vehicle speed for controlling the capacity of the variable displacement hydraulic motor. This is a desired motor area, and in the motor area, the vehicle speed limit increases as the pressure decreases.
  • an inclination is made so that the limit vehicle speed increases as the pressure decreases, thereby preventing a hunting phenomenon from occurring in the displacement control of the variable displacement hydraulic motor.
  • a control device for a hydrostatic transmission vehicle wherein the hydraulic pressure sensor includes a front hydraulic pressure sensor for detecting the pressure of the hydraulic circuit during forward travel and the hydraulic pressure during reverse travel.
  • a rear hydraulic sensor for detecting the pressure of the circuit.
  • the differential pressure calculation unit Based on the detection result of the forward / reverse lever sensor, the differential pressure calculation unit subtracts the detection value of the rear hydraulic sensor from the detection value of the front hydraulic sensor at the time of forward movement to obtain the forward / backward differential pressure, and the rear hydraulic pressure at the time of reverse movement.
  • the front-rear differential pressure is obtained by subtracting the detection value of the front hydraulic sensor from the detection value of the sensor.
  • a limit vehicle speed setting part calculates
  • the control device according to the third invention as described above is suitable for applying the first invention or the second invention to a hydrostatic transmission vehicle that switches between forward and reverse by changing the rotation direction of the motor. .
  • a control device for a hydrostatic transmission vehicle wherein the vehicle has a left traveling device and a right traveling device.
  • Each of the variable displacement pump and the variable displacement hydraulic motor includes a pump and a motor for driving the left traveling device, and a pump and a motor for driving the right traveling device.
  • the differential pressure calculation unit obtains the left / right front-rear differential pressure from the detection value of the left front hydraulic sensor and the detection value of the left rear hydraulic sensor, and calculates the right / left front / rear differential pressure from the detection value of the right front hydraulic sensor and the detection value of the right rear hydraulic sensor.
  • a differential pressure is obtained, and an average front-rear differential pressure is obtained by weighting the left-hand front-rear differential pressure and the right-hand front-rear differential pressure according to the detection result of the steering lever sensor.
  • the limit vehicle speed setting unit determines the limit vehicle speed based on the average front-rear differential pressure determined by the differential pressure calculation unit.
  • the control device has a left traveling device and a right traveling device, and includes a pump and a motor for driving the left traveling device, and a pump and a motor for driving the right traveling device. It is suitable for applying the third invention to the hydrostatic transmission vehicle having the above.
  • a control device for a hydrostatic transmission vehicle includes a hydrostatic transmission including a hydrostatic transmission including a variable displacement pump driven by an engine and a variable displacement hydraulic motor that is rotated by pressure oil of the variable displacement pump.
  • An apparatus used in a variable speed vehicle comprising a vehicle speed setting unit, a pump / motor capacity control unit, a hydraulic pressure sensor, a limit torque setting unit, a torque control pump capacity setting unit, a pump capacity selection unit, and PID control. And a motor capacity selection unit.
  • the vehicle speed setting unit obtains the set vehicle speed based on the forward / reverse command and the speed step command instructed by the operator.
  • the pump / motor capacity control unit controls the capacities of the variable capacity pump and the variable capacity motor based on the vehicle speed set by the vehicle speed setting unit.
  • the hydraulic sensor detects the pressure of a hydraulic circuit including a variable displacement pump and a variable displacement hydraulic motor.
  • the limit torque setting unit acquires the engine speed, and obtains a limit torque that can be used in the hydrostatic transmission from the acquired engine speed.
  • the torque control pump capacity setting unit sets the torque control pump capacity based on the detected pressure of the hydraulic circuit and the limit torque obtained by the limit torque setting unit.
  • the pump capacity selection unit selects the smaller pump capacity of the pump capacity obtained by the pump / motor capacity control unit and the pump capacity obtained by the torque control pump capacity setting unit, and controls the variable capacity pump. Is output as a pump capacity command value.
  • the PID control unit obtains the motor capacity by executing PID control so that the hydraulic pressure of the hydraulic circuit becomes a preset target.
  • the motor capacity selection unit selects a motor capacity of the motor capacity obtained by the pump / motor capacity control unit and the motor capacity obtained by the PID control unit, and controls the variable capacity hydraulic motor. Output as capacity command value.
  • the vehicle speed for improving the fuel efficiency is set, and the displacements of the variable displacement pump and the variable displacement hydraulic motor are controlled.
  • each capacity of the variable displacement pump and the variable displacement hydraulic motor is controlled so that the matching rotation speed is constant so that the matching rotation speed does not decrease due to an increase in the load and the engine output does not become insufficient. .
  • the desired motor capacity can be set accurately and reliably.
  • the limit vehicle speed after the displacement of the variable displacement pump reaches the maximum displacement is obtained.
  • the motor capacity is set by the PID control unit control, no hunting phenomenon occurs.
  • a control apparatus for a hydrostatic speed change vehicle wherein the hydraulic sensor includes a front side hydraulic sensor for detecting the pressure of the hydraulic circuit during forward travel and a pressure of the hydraulic circuit during reverse travel. And a rear hydraulic pressure sensor for detection.
  • the control device further includes a forward / reverse lever sensor that detects the traveling direction of the vehicle, and a differential pressure calculation unit. Based on the detection result of the forward / reverse lever sensor, the differential pressure calculation unit subtracts the detection value of the rear hydraulic sensor from the detection value of the front hydraulic sensor during forward movement to obtain the differential pressure in the forward / backward direction, and detects the rear hydraulic sensor during reverse movement.
  • the front-rear differential pressure is obtained by subtracting the detected value of the front hydraulic sensor from the value.
  • the torque control pump capacity setting unit and the PID control unit calculate each capacity based on the front-rear differential pressure determined by the differential pressure calculation unit.
  • the control device according to the sixth invention as described above is suitable for applying the fifth invention to a hydrostatic transmission vehicle that switches between forward and reverse by changing the rotation direction of the motor.
  • a control device for a hydrostatic transmission vehicle wherein the vehicle has a left traveling device and a right traveling device, and the variable displacement pump and the variable displacement hydraulic motor respectively It has a pump and a motor for driving the traveling device, and a pump and a motor for driving the right traveling device. Further, a steering lever sensor for detecting the left and right steering strokes is further provided.
  • the differential pressure calculation unit obtains the left front / rear differential pressure from the detection value of the left front hydraulic sensor and the detection value of the left rear hydraulic sensor, and calculates the right front / rear differential pressure from the detection value of the right front hydraulic sensor and the detection value of the right rear hydraulic sensor.
  • An average front-rear differential pressure is obtained by weighting the left-side front-rear differential pressure and the right-side front-rear differential pressure based on the detection result of the steering lever sensor. Further, the torque control pump capacity setting unit and the PID control unit determine each capacity based on the front-rear differential pressure determined by the differential pressure calculation unit.
  • the control device according to the seventh invention as described above has a left traveling device and a right traveling device, and includes a pump and a motor for driving the left traveling device, and a pump and a motor for driving the right traveling device. It is suitable for applying the sixth aspect of the invention to a hydrostatic transmission vehicle having the same.
  • FIG. 1 is an external perspective view of a bulldozer in which an embodiment of the present invention is adopted.
  • a control device is mounted on, for example, a bulldozer as a hydrostatic transmission vehicle.
  • a bulldozer will be described as an example of a hydrostatic transmission vehicle.
  • the bulldozer 1 includes a cab (operator's cab) 2, left and right traveling devices 3 and 4, a work device 5, a main frame (not shown), and a track frame 6.
  • the main frame is a member that forms the base of the bulldozer 1, and is equipped with a working device 5 on the front, traveling devices 3 and 4 on both the left and right sides, and a cab 2 on the top.
  • the track frame 6 is attached to the left and right sides of the main frame. In FIG. 1, only the left track frame is displayed.
  • the left and right traveling devices 3 and 4 are respectively attached to the left and right track frames 6 and have crawler belts 3a and 4a formed by connecting a plurality of plate-like shoes to each other.
  • the crawler belts 3a and 4a are wound around a plurality of upper and lower wheels, and the crawler belts 3a and 4a are rotated to enable traveling on rough terrain.
  • the cab 2 is located behind the main frame.
  • the cab 2 includes a seat for an operator to sit on, a lever for various operations, a switch for setting a vehicle speed, a pedal, instruments, and the like.
  • the levers for various operations include a steering lever and a fuel adjustment lever (or a fuel adjustment dial). It is possible to adjust the engine speed from low idle (minimum speed) to high idle (maximum speed) by operating the fuel adjustment lever.
  • the rotational speed between the low idle and the high idle is defined as the partial rotational speed
  • the operation at this partial rotational speed is defined as the partial operation.
  • the switch for setting the vehicle speed includes a button for upshifting and a button for downshifting.
  • the working device 5 includes a blade 7 and a pair of hydraulic cylinders 8, and the pair of hydraulic cylinders 8 can be expanded and contracted to tilt or move the blade 7 in a desired direction.
  • FIG. 2 shows an outline of a system mainly including a hydraulic circuit of the vehicle.
  • the output shaft of the engine 20 is connected to the drive shafts of the left and right variable displacement pumps 21 and 22.
  • the tilt positions (tilt angles) of the swash plates 21a and 22a of the left and right variable displacement pumps 21 and 22 are driven by the left and right pump swash plate driving units 23 and 24, respectively.
  • the sprockets 25 and 26 included in the left and right traveling devices 3 and 4 are connected to the drive shafts of the left and right variable displacement hydraulic motors 30 and 31 via the left and right final reduction gears 27 and 28, respectively.
  • the tilt positions (tilt angles) of the swash plates 30a and 31a of the left and right variable displacement hydraulic motors 30 and 31 are driven by the left and right motor swash plate driving units 32 and 33, respectively.
  • the left and right brake devices 34 and 35 for stopping the rotation of the hydraulic motors 30 and 31 are provided on the drive shafts of the left and right variable displacement hydraulic motors 30 and 31, respectively.
  • inflow / outflow ports 30b and 30c of the left variable displacement hydraulic motor 30 are connected to the discharge suction ports 21b and 21c of the left variable displacement pump 21 through an oil passage 38 and an oil passage 39, respectively.
  • the inflow / outflow ports 31b and 31c of the right variable displacement hydraulic motor 31 are connected to the discharge suction ports 22b and 22c of the right variable displacement pump 22 via the oil passage 40 and the oil passage 41, respectively.
  • signals from various sensors are input to the controller 50, and the pump swash plate driving units 23, 24 of the variable displacement pumps 21, 22 are controlled by the control signals output from the controller 50.
  • the motor swash plate driving units 32 and 33 of the variable displacement hydraulic motors 30 and 31 are driven and controlled.
  • controller 50 transmits an engine speed command signal to the engine controller 50a based on signals from various sensors, and the engine controller 50a controls the engine 20 based on the engine speed command signal.
  • FIG. 3 shows a control block diagram of the vehicle according to the first embodiment.
  • various sensors connected to the controller 50 are shown, and the functions of the controller 50 are shown in blocks.
  • the controller 50 is connected with a steering lever sensor 51, a forward / reverse lever sensor 52, a shift up / shift down button sensor 53, and a hydraulic pressure sensor 54 for detecting the pressure of each oil passage shown in FIG. ing.
  • a signal indicating the engine speed is input to the controller 50.
  • the engine speed signal may be input from the engine controller 50 a to the controller 50 or may be directly input from a speed sensor provided in the engine 20.
  • the steering lever sensor 51 is a sensor for detecting an operation stroke to the left or right of the steering lever by the operator.
  • the forward / backward lever sensor 52 is a sensor for detecting whether the operator has instructed forward movement or reverse movement.
  • the shift-up / shift-down sensor 53 is a sensor for detecting that the operator has operated a button for up-shifting or down-shifting, and thereby detects a gear position designated by the operator.
  • the hydraulic sensor 54 includes a sensor 54 a that detects the hydraulic pressure that is supplied to the right traveling device 4 during forward travel, a sensor 54 b that detects the hydraulic pressure that is supplied to the left traveling device 3 during forward travel, It includes a sensor 54c that detects the hydraulic pressure supplied to the right traveling device 4 during reverse travel, and a sensor 54d that detects the hydraulic pressure supplied to the left traveling device 3 during reverse travel.
  • the controller 50 includes a vehicle speed / rotation speed setting unit 60, a differential pressure calculation unit 61, a stall prevention control unit 62, a vehicle speed selection unit 63, a pump / motor capacity control unit 64, a pump control unit 65, and a motor control.
  • FIG. 4 shows details of the vehicle speed / rotation number setting unit 60.
  • the vehicle speed / revolution number setting unit 60 includes a vehicle speed setting unit 73 and a low rotation matching rotation number setting unit 72.
  • the vehicle speed setting unit 73 includes a speed stage setting unit 70 and a speed stage-vehicle speed correspondence unit 71, and is a part for setting the vehicle speed according to the instructed speed stage.
  • the low-rotation matching rotational speed setting unit 72 is a part that sets the engine rotational speed to a predetermined partial rotational speed in the low / medium speed region where the set vehicle speed is preset.
  • the speed stage setting unit 70 is a part that receives a signal from the shift up / shift down button sensor 53 and sets the speed stage.
  • a shift mode capable of quick shifting for example, shifting in three steps
  • a shift mode capable of fine shifting for example, shifting in 19 steps.
  • the speed stage is set according to the shift mode and according to the setting of the shift button of the operator.
  • the speed stage-vehicle speed correspondence unit 71 is a part in which a table indicating the correspondence between each speed stage and the set vehicle speed is stored. Therefore, here, the corresponding vehicle speed (the maximum vehicle speed at the set speed stage) can be obtained based on the speed stage set by the speed stage setting unit 70.
  • the speed stage-vehicle speed correspondence unit 71 is provided with a table for forward travel and a table for reverse travel.
  • the low rotation matching rotation speed setting unit 72 is a low matching rotation in which the upper limit value of the engine rotation is lower than the high idle rotation speed in the low / medium speed region where the vehicle speed set by the speed stage-vehicle speed correspondence unit 71 is set in advance. This is the part to set to the number. Specifically, as shown by the characteristic Et in FIG. 5 as an example, when the vehicle speed set by the operator is 0 to 7.8 km / h, the operator adjusts the high idle speed (or fuel adjustment dial) with the fuel adjustment lever (or fuel adjustment dial). Even when 2270 rpm (full mode operation) is set, an engine control signal is output so that the engine is rotated at a lower rotational speed (1900 rpm: partial rotational speed). On the other hand, in a high speed region where the set vehicle speed is 7.8 km / h or higher, an engine control signal is output so as to increase the engine speed to a high idle speed in proportion to the set vehicle speed.
  • the differential pressure calculation unit 61 In the differential pressure calculation unit 61, first, based on the detection results from the forward / reverse lever sensor 52 and the hydraulic pressure sensors 54a to 54d, the differential pressure is obtained as follows according to the logic shown in FIG.
  • the differential pressure calculation unit 61 uses the above-described left and right differential pressures ( ⁇ P L ), the right and left differential pressure ( ⁇ P R ), and the detection result from the steering lever sensor 51 to calculate the difference for limiting vehicle speed according to the following equation. Determine the pressure ( ⁇ P).
  • the differential pressure calculation unit 61 has a left front / rear differential pressure ( ⁇ P L ) which is a differential pressure between the left front hydraulic sensor 54b and the left rear hydraulic sensor 54d, and a right front / rear pressure which is a differential pressure between the right front hydraulic sensor 54a and the right rear hydraulic sensor 54c.
  • ⁇ P L left front / rear differential pressure
  • ⁇ P R right front / rear pressure
  • Each of the differential pressures ( ⁇ P R ) is weighted according to the detection result of the steering lever sensor 51, and then the average of the two differential pressures before and after is obtained, and this is set as the differential pressure for limiting vehicle speed setting ( ⁇ P).
  • ST L is a command value when defeating steering lever to the left, next -100% when tilted up, to 100% in the neutral position.
  • ST R is a command value when defeating steering lever to the right, next -100% when tilted up, to 100% in the neutral position.
  • the steering lever is configured to be tiltable in both the left and right directions around the neutral position as viewed from the operator.
  • the neutral position corresponds to “straight travel” of the work vehicle 1
  • tilting to the left corresponds to “turn left” of the work vehicle 1
  • tilting to the right corresponds to “turn right” of the work vehicle 1. Is supported.
  • the left steering command for the left crawler belt 3a is 100%
  • the right steering command for the right crawler belt 4a is also 100%.
  • the right steering command for the right crawler belt 4a decreases.
  • the left steering command for the left crawler belt 3a decreases.
  • a detection electric signal indicating an operation stroke detected by the left and right steering lever sensors 51 is input to the steering control unit 67, and the following control is performed.
  • the right steering command ST R is 0% to 100%, the right crawler 4a and the left crawler 3a is rotated in the same direction, pivoting in response to the ratio between the left steering command ST L 100% is performed. For example, when the right steering command ST R 80% and the right steering command ST R 30%, the right steering command ST R 80% has a larger turning radius.
  • the left steering command ST L decreases from 100% to ⁇ 100% (left full stroke).
  • the right steering command ST R at that time remains 100%.
  • the left steering command ST L is 100% to 0%
  • the left crawler belt 3a and the right crawler belt 4a rotate in the same direction, and turn according to the ratio of the right steering command ST R 100%.
  • the left steering command ST L 80% has a larger turning radius.
  • the super crawling is performed in which the rotation of the left crawler belt 3a rotates in the opposite direction at the same rotation speed as the right crawler belt 4a.
  • the steering commands ST R and ST L are output to a pump control unit 65 described later and converted into a pump capacity ratio.
  • FIG. 7 shows details of the stall prevention control unit 62.
  • the stall prevention control unit 62 has a limit torque setting unit 75 for obtaining a limit torque from the engine speed and a limit vehicle speed setting unit 76.
  • the limit vehicle speed setting unit 76 in FIG. 7 stores the relationship for obtaining the limit vehicle speed from the limit torque Tp and the limit vehicle speed setting differential pressure ⁇ P as shown in FIG. More specifically, a relationship is stored in which, even if the limit vehicle speed setting differential pressure ⁇ P is constant, the limit vehicle speed increases as the limit torque Tp increases, and the limit vehicle speed decreases as the limit torque Tp decreases. .
  • the region where the vehicle speed limit is relatively low is the pump region
  • the region where the torque limit is relatively high is the motor region.
  • the pump region is a region in which the pump capacity is changed while the motor capacity is maximized to change the vehicle speed (see FIG. 5; details will be described later).
  • the pump capacity is controlled so that the absorption torque of the machine is kept constant. That is, the range in which the limit torque can be controlled by controlling the pump capacity is the pump region.
  • the motor region is a region in which the vehicle speed is changed by changing the motor capacity while keeping the pump capacity at the maximum (see FIG. 5; details will be described later). It is necessary to control as indicated by the alternate long and short dash line Pc. However, when such control is performed, if the limited vehicle speed setting differential pressure ⁇ P fluctuates even a little, the limited vehicle speed goes back and forth between the lowest and highest in the motor region. That is, a hunting phenomenon occurs.
  • the pressure is not fixed, but is inclined so that the pressure decreases as the vehicle speed limit increases (characteristic Tp ′), and the hunting phenomenon occurs in the displacement control of the variable displacement hydraulic motor. It prevents it from occurring.
  • the vehicle speed selection unit 63 compares the set vehicle speed obtained by the vehicle speed / rotation number setting unit 60 with the limit vehicle speed obtained by the stall prevention control unit 62 (limit vehicle speed setting unit 76), and determines the lower vehicle speed as “command” The vehicle speed is selected.
  • FIG. 9 shows details of the pump / motor capacity control unit 64.
  • the pump / motor capacity control unit 64 includes a pump capacity setting unit 78 and a motor capacity setting unit 79.
  • the pump capacity setting unit 78 and the motor capacity setting unit 79 are each a variable capacity pump capacity value (hereinafter simply referred to as a pump capacity) corresponding to the command vehicle speed selected by the vehicle speed selection section 63, and a variable capacity hydraulic motor capacity.
  • a table of values hereinafter simply referred to as motor capacity
  • the pump capacity and the motor capacity are set in accordance with the vehicle speed selected by the vehicle speed selection unit 63.
  • the pump capacity setting unit 78 increases the pump capacity in proportion to the commanded vehicle speed until the pump capacity is maximized, that is, until the commanded vehicle speed is, for example, 3.5 km / h. After reaching the capacity, maintain a constant capacity.
  • the motor capacity setting unit 79 maintains the motor capacity at a constant capacity until the pump capacity reaches the maximum, that is, until the command vehicle speed reaches 3.5 km / h, for example, and the pump capacity reaches the maximum capacity. After that, the motor capacity is gradually reduced as the command vehicle speed increases.
  • a displacement control signal is output so that the variable displacement pump and the variable displacement hydraulic motor are controlled as described above.
  • the pump capacity table in the pump capacity setting unit 78 corresponding to the command vehicle speed and the motor capacity table in the motor capacity setting unit 79 corresponding to the command vehicle speed are such that the engine rotates at the partial rotational speed. Even so, the speed of the vehicle is set so as to reach the vehicle speed set by the vehicle speed setting unit 73.
  • the table in the low rotation matching rotation speed setting unit 72 and the table in the pump / motor capacity control unit 64 to be described later are overlapped.
  • the pump capacity Pq and the motor capacity Mq are set so that the set vehicle speed can be obtained when the engine rotates at the partial rotation speed (1900 rpm) in the low / medium speed region.
  • the region where the set vehicle speed is relatively low is a pump region in which the vehicle speed is changed by changing the pump capacity while the motor capacity is maximized.
  • the region where the set vehicle speed is relatively high is a motor region in which the vehicle speed is changed by changing the motor capacity while keeping the pump capacity at the maximum.
  • the pump region and the motor region in FIG. 5 correspond to the pump region and the motor region in FIG. 8, respectively.
  • the high speed region is a region where the set vehicle speed cannot be reached by control of the variable displacement pump and variable displacement hydraulic motor. Therefore, in the high speed region, as described above, the engine speed is increased to the high idle speed in proportion to the set vehicle speed, and the vehicle speed is changed by controlling the engine speed.
  • the pump control unit 65 adds the commands from the left and right steering levers and the forward / reverse lever to the pump capacity output from the pump / motor capacity control unit 64, converts the capacity command into a current command, and converts the left and right pump tilts. This is output as a control signal to the plate driving units 23 and 24.
  • the motor control unit 66 converts the motor capacity command output from the pump / motor capacity control unit 64 into a current command and outputs it as a control signal to the left and right motor swash plate driving units 32 and 33.
  • FIG. 10 shows details of the steering control unit 67.
  • This steering control unit 67 is a part for converting the lever stroke detected by the steering lever sensor 51 into a left and right steering command, and a conversion indicating the correspondence between the lever stroke and the command value as shown in FIG.
  • a table 82 is provided. 10 shows the relationship between the stroke of the steering lever and the right steering command, the relationship between the stroke of the steering lever and the left steering command is different only in the table (map) being symmetrical.
  • the basic configuration for conversion is the same.
  • This low rotation matching process is a process in which the engine rotation speed is automatically set to the partial rotation speed when the command vehicle speed is in the low / medium speed range in consideration of the current use state of the bulldozer.
  • the capacities of the pump and the motor are controlled in consideration of the limit torque, but here, for the sake of easy explanation, the control considering only the low rotation matching will be described first.
  • the low rotation matching process is mainly executed by the vehicle speed / rotation number setting unit 60 and the pump / motor capacity control unit 64. Specifically, when an upshift or downshift instruction is input to the speed stage setting unit 70 by the operator, the speed stage setting unit 70 sets the speed stage in accordance with this instruction. Then, the set vehicle speed corresponding to the set speed stage is set according to the speed stage-vehicle speed correspondence unit 71.
  • the set vehicle speed is set using a forward table when traveling forward, and is set using a backward table when traveling backward.
  • the low rotation matching rotation number setting unit 72 sets the rotation speed based on the set vehicle speed.
  • the low rotation matching rotation speed setting unit 72 has a table (characteristic Et) as shown in FIG. Therefore, in the low / medium speed region where the set vehicle speed is set in advance, the engine speed is set to 1900 rpm, which is the partial speed.
  • the operator has set the engine speed to the high idle speed, it is automatically set to the partial speed.
  • the pump capacity Pq and the motor capacity Mq are set so that the set vehicle speed is obtained when the engine rotates at the partial rotation speed (1900 rpm) in the low / medium speed range. In the high speed region, the set vehicle speed is obtained by controlling the engine speed.
  • the engine speed is automatically limited to the partial speed, Low fuel consumption can be realized.
  • the required vehicle speed can be obtained by controlling the engine speed, so that the maximum vehicle speed does not decrease compared to the conventional vehicle speed. That is, even when the operator is operating at a high idle speed, fuel efficiency can be reduced as compared with the conventional case, and the maximum vehicle speed equivalent to the conventional case can be obtained.
  • the limit torque characteristic T is expressed by one characteristic, and even when the low-rotation matching process is executed, the variation range of the matching rotation speed is, for example, about 110 rpm. Can be suppressed.
  • the differential pressure calculation unit 61 first obtains the left front-rear differential pressure and the right front-rear differential pressure. The details are as described in the description of the differential pressure calculation unit 61 described above.
  • the stall prevention control unit 62 sets the vehicle speed limit based on the differential pressure obtained by the differential pressure calculation unit 61 and the engine speed. The details are as described in the description of the stall prevention control unit 62 described above.
  • the vehicle speed selection unit 63 compares this vehicle speed limit with the vehicle speed set by the vehicle speed / rotation speed setting unit 60, and the lower vehicle speed is selected.
  • the pump capacity and the motor capacity are set in the pump / motor capacity control section 64 based on the vehicle speed selected by the vehicle speed selection section 63. That is, according to the vehicle speed set by the vehicle speed selection unit 63, the pump capacity is set according to the pump capacity setting unit 78, and the motor capacity is set according to the motor capacity setting unit 79.
  • the pump capacity set as described above is converted into a current command in the pump control unit 65 in consideration of commands from the steering lever sensor 51 and the forward / reverse lever sensor 52, and the left and right variable displacement pumps 21, 22 is output as a control signal to the pump swash plate drive units 23 and 24.
  • the motor capacity is converted into a current command by the motor control unit 66 and output as a control signal to the motor swash plate driving units 32 and 33 of the left and right variable capacity hydraulic motors 30 and 31.
  • the engine speed is automatically limited to the partial speed if the command vehicle speed (ie, the set vehicle speed or the limited vehicle speed) is in the low or medium speed range.
  • the command vehicle speed ie, the set vehicle speed or the limited vehicle speed
  • the required vehicle speed can be obtained by controlling the engine speed, so that the maximum vehicle speed does not decrease compared to the conventional vehicle speed. That is, even when the operator is driving at a high idle speed, fuel efficiency can be reduced as compared with the conventional one, and the maximum vehicle speed equivalent to the conventional one can be obtained.
  • the pump capacity and motor capacity are set so that the set vehicle speed can be obtained when the engine rotates at the partial rotation speed in the low / medium speed range.
  • the desired vehicle speed can be reached.
  • the fuel efficiency reduction effect is smaller in the high speed range than in the low / medium speed range, the frequency of use at the maximum vehicle speed is very low, especially as a general use situation of bulldozers. And since it will drive
  • torque control is performed so that the matching rotational speed does not fluctuate significantly due to load fluctuations.
  • the pump capacity and the motor capacity are set so that the matching rotational speed is constant. Therefore, it is suitable for executing the low rotation matching process as described above.
  • FIG. 13 shows a control block diagram of the controller 50 ′ of the vehicle according to the second embodiment of the present invention.
  • the same parts as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.
  • a set vehicle speed correction unit 68 is provided between the vehicle speed / rotation number setting unit 60 and the vehicle speed selection unit 63.
  • the pump / motor capacity control unit 64 ′ a table of pump capacity values and motor capacity values corresponding to the command vehicle speed is different from the table in the first embodiment. Except that the table is different, there is no difference from the pump / motor capacity control unit 64 in the first embodiment.
  • the low rotation matching process is mainly executed by the vehicle speed / revolution setting unit 60 and the set vehicle speed correction unit 68.
  • the set vehicle speed correction unit 68 corrects the set vehicle speed with the high idle rotation number so that the vehicle speed can reach the vehicle speed set by the vehicle speed setting unit 73 when the engine rotates at the partial rotation number.
  • the later set vehicle speed is output to the pump / motor capacity control unit 64 '. More specifically, the set vehicle speed correction unit 68 obtains the corrected set vehicle speed based on the following equation based on the set vehicle speed obtained by the vehicle speed setting unit 73 and the low rotation matching rotation speed.
  • Correction set vehicle speed set vehicle speed x (high idle speed / low speed matching speed) (Formula 2)
  • the vehicle speed selection unit 63 compares the corrected set vehicle speed obtained by the set vehicle speed correction unit 68 with the limited vehicle speed obtained by the stall prevention control unit 62 (restricted vehicle speed setting unit 76), and determines the lower vehicle speed as “command vehicle speed”. Choose as.
  • the pump / motor capacity control section 64 ' includes a pump capacity setting section 78' and a motor capacity setting section 79 'as shown in FIG.
  • the pump capacity value table corresponding to the command vehicle speed stored in the pump capacity setting unit 78 ′ and the motor capacity setting unit 79 ′ shows the vehicle speed as the vehicle speed setting unit 73 when the engine rotates at a high idle speed.
  • the correspondence relationship of the displacement of the variable displacement pump with respect to the set vehicle speed and the correspondence relationship of the displacement of the variable displacement hydraulic motor with respect to the set vehicle speed are stored in advance so that the vehicle speed set in step 1 can be reached. That is, the pump / motor capacity controller 64 'in the second embodiment is not different from the pump / motor capacity controller in the conventional bulldozer.
  • FIG. 15 shows a control block diagram of the controller 50 ′′ of the vehicle according to the third embodiment of the present invention.
  • the same parts as those in the first embodiment and the second embodiment will be denoted by the same reference numerals and description thereof will be omitted.
  • a set vehicle speed correction unit 68 is provided between the vehicle speed / revolution number setting unit 60 and the vehicle speed selection unit 63, and the pump / motor capacity control unit 64 ′ is also provided. It has a similar table. The difference between this embodiment and the first and second embodiments is that the motor capacity is mainly obtained by PID control.
  • the controller 50 ′′ is configured differently from the above-described embodiments as a stall prevention control unit 62 ′, a motor capacity control unit (PID control) 69, a pump capacity selection unit 90, and a motor capacity selection unit. 91.
  • the stall prevention control unit 62 ′ has a limit torque setting unit 75 for obtaining a limit torque from the engine speed and a torque control pump capacity setting unit 76 ′.
  • the limit torque setting unit 75 has the same configuration and function as those of the above embodiments, and sets a limit torque that is the maximum torque that can be used in the HST, according to the engine speed.
  • the torque control pump capacity setting section 76 ' stores a relationship for determining the pump capacity from the limit torque Tp and the pump capacity setting differential pressure ⁇ P as shown in FIG. More specifically, even if the differential pressure ⁇ P is constant, a relationship is stored in which the pump capacity increases as the limit torque Tp increases, and the pump capacity decreases as the limit torque Tp decreases.
  • the stall prevention control unit 62 'in the third embodiment only the pump capacity is set and output from the differential pressure and the engine speed (limit torque).
  • the motor capacity is obtained by the motor capacity control unit 69. That is, a target pressure fixed in advance is set in the motor capacity control unit 69, and the differential pressure obtained by the differential pressure calculation unit 61 is obtained by executing feedback control by PID control in the motor capacity control unit 69. The motor capacity is set so as to achieve the target pressure.
  • the pump capacity selection unit 90 is set by the pump capacity set by the pump capacity setting unit 78 ′ of the pump / motor capacity control unit 64 ′ and the pump capacity setting unit 76 ′ for torque control of the stall prevention control unit 62 ′. Compare the pump capacity, select the smaller pump capacity and output.
  • the motor capacity selection unit 91 compares the motor capacity set by the motor capacity setting unit 79 ′ of the pump / motor capacity control unit 64 ′ with the motor capacity set by the motor capacity control unit 69, and is large. Select the motor capacity of the motor and output it.
  • the low rotation matching process is the same as the process described in the first embodiment, and the process for correcting the set vehicle speed by the above-described equation (2) and obtaining the corrected set vehicle speed is the same as the process described in the second embodiment. It is the same.
  • the pump capacity is obtained by the table of the pump capacity setting unit 78 '.
  • the pump capacity is determined from the limit torque Tp and the pump capacity setting differential pressure ⁇ P by the torque control pump capacity setting section 76 ′ of the stall prevention control section 62 ′.
  • the smaller pump displacement is selected by the pump displacement selector 90, and the selected pump displacement is given to the pump controller 65. Subsequent processes are the same as those in the above embodiments.
  • the motor capacity is obtained from the correction set vehicle speed by the table of the motor capacity setting unit 79 '.
  • the motor capacity control unit 69 determines the motor capacity so that the differential pressure ⁇ P becomes the target pressure.
  • the larger motor capacity is selected by the motor capacity selection unit 91, and the selected motor capacity is given to the motor control unit 66. Subsequent processes are the same as those in the above embodiments.
  • the desired motor capacity can be set accurately and reliably.
  • the set vehicle speed is corrected to set the pump capacity and the like, but the pump / motor capacity control unit having the same table as in the first embodiment without correcting the set vehicle speed. 64 may be used to set each capacity.

Abstract

 静油圧式変速機を備える静油圧式変速車両において、走行負荷によるマッチング回転数の変化を抑える。この装置は、車速設定部と、油圧センサと、制限トルク設定部と、制限車速設定部と、車速選択部と、ポンプ・モータ容量制御部と、を備えている。車速設定部はオペレータにより指示された前後進指令及び速度段指令に基づき設定車速を求める。油圧センサは油圧回路の圧力を検出する。制限トルク設定部はエンジン回転数から静油圧式変速機で使用可能な制限トルクを求める。制限車速設定部は検出された油圧回路の圧力及び制限トルク設定部で求めた制限トルクに基づいて制限車速を求める。車速選択部は、車速設定部で設定された設定車速と、制限車速設定部で求められた制限車速と、のうちの低い方の車速を選択する。ポンプ・モータ容量制御部は、車速選択部で選択された車速に基づいて、可変容量ポンプ及び可変容量モータのそれぞれの容量を制御する。

Description

静油圧式変速車両の制御装置
 本発明は、静油圧式変速車両の制御装置、特に、ブルドーザに代表される、エンジンにより駆動される可変容量ポンプ及び可変容量ポンプの圧油により回転する可変容量油圧モータを備えるとともに、燃料調整レバー(またはダイヤル)によってエンジン回転数をハイアイドル回転数とそれ以下の任意の回転数に設定して運転できるように構成された静油圧式変速車両の制御装置に関する。
 ブルドーザ等の作業車両には、静油圧式変速機(以下、HSTとも記す)を備えている車両が多い。この静油圧式変速機は、エンジンで駆動される可変容量ポンプと、可変容量ポンプの圧油により回転する可変容量油圧モータと、を備えている。そして、可変容量ポンプ又は可変容量油圧モータの斜板角度を変化させて容量を制御することにより、静油圧式変速機が吸収できるトルクを変更したり、車両の車速を無段階で変速したりすることができる。
 また、ブルドーザ等の作業車両においては、燃料調整レバー(またはダイヤル)によってエンジン回転数をハイアイドル回転数あるいはそれ以下の任意の回転数に設定して運転できるようになっている(例えば特許文献1参照)。例えば重負荷の作業を実行する場合は、ハイアイドル回転数が選択され、エンジンは定格最高回転数で回転させられる。一方で、軽負荷の作業や自走する場合は、燃料調整レバーを絞ってエンジン回転数を下げて運転することにより、作業中の騒音の低下、燃料消費量の低減等を図ることができる。
特開2005-233420号公報
 特許文献1に記載された作業車両(ブルドーザ)においては、燃料調整レバーを操作することによりエンジン回転数をハイアイドル回転数以下の低い回転数に設定して運転することができるようになっている。エンジン回転数をハイアイドル回転数以下の低い回転数で運転した場合には、ハイアイドル回転数のときと同程度の牽引力(走行駆動トルク)を維持したままで作業を行うことができ、作業中の騒音の低下、燃料消費量の低減等を図ることができる。一方で、最高車速はハイアイドル回転数で運転したときに比べ低下することとなる。
 ところで、従来のブルドーザの静油圧式変速機の制御、すなわち可変容量ポンプ及び可変容量油圧モータの容量制御においては、エンジンのストールを防止するために、エンジン回転数に応じて指令車速(制限車速)を設定し、この指令車速に基づいて各容量を決定している。例えばエンジン回転数が減少すれば、可変容量モータの容量を大きくし、可変容量油圧モータの容量が最大容量になれば、可変容量ポンプの容量を小さくするような制御を実行している。言い換えると、従来のブルドーザの静油圧式変速機では、基本的に、エンジン回転数のみに基づいて可変容量ポンプ及び可変容量油圧モータの各容量を制限する制御を行っている。
 以上のような従来の制御方式では、図11に示すように、静油圧式変速機における負荷圧(可変容量ポンプと可変容量油圧モータを含む油圧回路の油圧)が変動すると、エンジン出力トルク特性と静油圧式変速機の制限トルク特性とがマッチングする回転数が大幅に変動することになる。なお、図11は横軸がエンジン回転数、縦軸がトルクを示すグラフであり、線ELはエンジン出力トルク特性、線HLは負荷圧ごとの静油圧式変速機の吸収トルク特性である。また、P1は負荷圧が最も大きい状態を示し、P2、P3・・・と徐々に負荷圧が小さくなり、P8は負荷圧が最も小さい状態を示す。図11の例においては、エンジン回転数をハイアイドル回転数である2270rpmに設定して運転している場合であっても、負荷圧が最大となったときにはマッチングする回転数が1600rpmまで低下することとなる。すなわち、負荷圧によって670rpm変動することとなる。
 このような負荷圧の変動によるマッチング回転数の大幅な変動は、特にパーシャル運転においてエンジン馬力が低い領域まで回転数が低下することを招き、十分な馬力を使用できないおそれがある。なお、パーシャル運転とは、エンジン回転数をハイアイドル回転数よりも低く設定された所定のパーシャル回転数に設定し、運転することをいう。
 本発明の課題は、静油圧式変速機を備える静油圧式変速車両において、走行負荷によるマッチング回転数の変化を抑えて、常に安定した作業を行うことができるようにすることにある。
 第1発明に係る静油圧式変速車両の制御装置は、エンジンにより駆動される可変容量ポンプと可変容量ポンプの圧油により回転する可変容量油圧モータとを含む静油圧式変速機を備える静油圧式変速車両に用いられる装置であって、車速設定部と、油圧センサと、制限トルク設定部と、制限車速設定部と、車速選択部と、ポンプ・モータ容量制御部と、を備えている。車速設定部はオペレータにより指示された前後進指令及び速度段指令に基づき設定車速を求める。油圧センサは可変容量ポンプと可変容量油圧モータとを含む油圧回路の圧力を検出する。制限トルク設定部は、エンジン回転数を取得するとともに、取得したエンジン回転数から静油圧式変速機で使用可能な制限トルクを求める。制限車速設定部は検出された油圧回路の圧力及び制限トルク設定部で求めた制限トルクに基づいて制限車速を求める。車速選択部は、車速設定部で設定された設定車速と、制限車速設定部で求められた制限車速と、のうちの低い方の車速を選択する。ポンプ・モータ容量制御部は、車速選択部で選択された車速に基づいて、可変容量ポンプ及び可変容量モータのそれぞれの容量を制御する。
 この制御装置では、オペレータにより指示された前後進指令及び速度段指令に基づいて設定車速が設定される。一方で、エンジン回転数から静油圧式変速機で使用可能な制限トルクが求められ、この制限トルクと油圧回路の圧力に基づいて制限車速が設定される。そして、設定車速と制限車速とのうちの低い方の車速が選択されて、この選択された車速によって可変容量ポンプ及び可変容量モータのそれぞれの容量が制御される。
 ここでは、図12に示すように、静油圧式変速機における負荷圧が変動しても、エンジン出力トルク特性と静油圧式変速の制限トルクとがマッチングする回転数を一定にすることができる。なお、図12は横軸がエンジン回転数、縦軸がトルクを示すグラフであり、線ELはエンジン出力トルク特性の一例、線Tは静油圧式変速機の吸収トルク特性の一例であり、ここでは吸収トルク特性は負荷圧によらず一定となる。図12の例においては、燃料調整レバー(またはダイヤル)によってエンジン回転数をハイアイドル回転数である2270rpmに設定して運転している場合に、パーシャル運転によってエンジン回転数が1900rpmに制限された例を示している。このような状態において、負荷圧が最大となったときでも、図12に示すような吸収トルク特性の場合は、エンジン回転数は1790rpmまでしか低下しない。すなわち、負荷圧による変動は110rpmに抑えられることとなる。
 第2発明に係る静油圧式変速車両の制御装置は、第1発明の装置において、制限車速設定部は、制限車速と油圧回路の圧力との関係を示すテーブルを有している。そして、テーブルにおいて、制限車速の低速側は可変容量ポンプの容量を制御するための制限車速を求めるポンプ領域であり、制限車速の高速側は可変容量油圧モータの容量を制御するための制限車速を求めるモータ領域であり、モータ領域では圧力が低くなるのに応じて制限車速が高くなっている。
 ここで、前述のように、可変容量ポンプの容量が最大容量に到達した後において制限トルクを一定にするためには、負荷の変動に応じて可変容量油圧モータの容量を制御する必要がある。すなわち、理想的には、可変容量ポンプの容量が最大容量に到達した後の制限車速を求めるモータ領域においては、圧力にかかわらず制限車速は一定であることが望ましい。しかし、このような制御を行うと、圧力が少しでも変動すると、モータ領域において制限車速が最低と最高の間を行き来することになる。すなわち、ハンチング現象を起こすことになる。
 そこでこの第2発明では、モータ領域においては、圧力が低くなるのに応じて制限車速が高くなるように傾斜をつけ、可変容量油圧モータの容量制御においてハンチング現象が生じるのを防止している。
 第3発明に係る静油圧式変速車両の制御装置は、第1又は第2発明の装置において、油圧センサは、前進時の前記油圧回路の圧力を検出する前側油圧センサと、後進時の前記油圧回路の圧力を検出する後側油圧センサとを有している。また、車両の進行方向を検出する前後進用レバーセンサと、差圧演算部をさらに有している。差圧演算部は、前後進用レバーセンサの検出結果に基づき、前進時には前記前側油圧センサの検出値から前記後側油圧センサの検出値を減じて前後差圧を求め、後進時には前記後側油圧センサの検出値から前記前側油圧センサの検出値を減じて前後差圧を求める。そして、制限車速設定部は、求めた前後差圧に基づいて制限車速を求めるものである。
 以上のような第3発明に係る制御装置は、モータの回転方向を変えることにより前進と後進との切り換えを行う静油圧式変速車両に第1発明または第2発明を適用するのに好適である。
 第4発明に係る静油圧式変速車両の制御装置は、第3発明の装置において、車両は左側走行装置及び右側走行装置を有している。また、可変容量ポンプ及び可変容量油圧モータはそれぞれ、左側走行装置を駆動するためのポンプ及びモータと、右側走行装置を駆動するためのポンプ及びモータとを有している。さらに、差圧演算部は、前記左前油圧センサの検出値と左後油圧センサの検出値とから左側前後差圧を求め、右前油圧センサの検出値と右後油圧センサの検出値とから右側前後差圧を求め左側前後差圧および右側前後差圧にステアリングレバーセンサの検出結果による重み付けを行った上で平均した平均前後差圧を求める。制限車速設定部は、前記差圧演算部で求めた平均前後差圧に基づいて前記制限車速を求める。
 以上のような第4発明に係る制御装置は、左側走行装置及び右側走行装置を有し、左側走行装置を駆動するためのポンプ及びモータと、右側走行装置を駆動するためのポンプ及びモータとを有する静油圧式変速車両に第3発明を適用するのに好適である。
 第5発明に係る静油圧式変速車両の制御装置は、エンジンにより駆動される可変容量ポンプと可変容量ポンプの圧油により回転する可変容量油圧モータとを含む静油圧式変速機を備える静油圧式変速車両に用いられる装置であって、車速設定部と、ポンプ・モータ容量制御部と、油圧センサと、制限トルク設定部と、トルク制御用ポンプ容量設定部と、ポンプ容量選択部と、PID制御部と、モータ容量選択部と、をさらに備えている。車速設定部はオペレータにより指示された前後進指令及び速度段指令に基づき設定車速を求める。ポンプ・モータ容量制御部は、車速設定部で設定された車速に基づいて、可変容量ポンプ及び可変容量モータのそれぞれの容量を制御する。油圧センサは可変容量ポンプと可変容量油圧モータとを含む油圧回路の圧力を検出する。制限トルク設定部は、エンジン回転数を取得するとともに、取得したエンジン回転数から静油圧式変速機で使用可能な制限トルクを求める。トルク制御用ポンプ容量設定部は、検出された油圧回路の圧力及び制限トルク設定部で求めた制限トルクに基づいて、トルク制御用のポンプ容量を設定する。ポンプ容量選択部は、ポンプ・モータ容量制御部で得られたポンプ容量とトルク制御用ポンプ容量設定部で得られたポンプ容量のうちの小さい方のポンプ容量を選択し、可変容量ポンプを制御するためのポンプ容量指令値として出力する。PID制御部は油圧回路の油圧が予め設定された目標になるようにPID制御を実行してモータ容量を求める。モータ容量選択部は、ポンプ・モータ容量制御部で得られたモータ容量とPID制御部で得られたモータ容量のうちの大きい方のモータ容量を選択し、可変容量油圧モータを制御するためのモータ容量指令値として出力する。
 この装置では、第1発明と同様に、まず、燃費向上のための車速が設定され、可変容量ポンプ及び可変容量油圧モータの各容量が制御される。一方で、負荷の増加により、マッチング回転数が低下してエンジン出力が不足することがないように、マッチング回転数を一定にするような可変容量ポンプ及び可変容量油圧モータの各容量が制御される。
 特にこの第5発明では、PID制御によりモータ容量を設定しているので、精度良くかつ確実に所望のモータ容量を設定することができる。
 また、第2発明に関連して述べたように、制限車速によって可変容量ポンプ及び可変容量油圧モータの各容量を制御した場合、可変容量ポンプの容量が最大容量に到達した後の制限車速を求めるモータ領域においては、ハンチング現象が生じるのを防止するために、圧力が低くなるのに応じて制限車速が高くなるように傾斜をつける必要がある。しかし、この第5発明では、モータ容量をPID制御部制御によって設定しているので、ハンチング現象が生じることはない。
 第6発明に係る静油圧式変速車両の制御装置は、第5発明の制御装置において、油圧センサは、前進時の油圧回路の圧力を検出する前側油圧センサと、後進時の油圧回路の圧力を検出する後側油圧センサと、を有している。また、この制御装置は、車両の進行方向を検出する前後進用レバーセンサと、差圧演算部と、をさらに備えている。差圧演算部は、前後進用レバーセンサの検出結果に基づき、前進時には前側油圧センサの検出値から後側油圧センサの検出値を減じて前後差圧を求め、後進時には後側油圧センサの検出値から前側油圧センサの検出値を減じて前後差圧を求めている。そして、トルク制御用ポンプ容量設定部及びPID制御部は、差圧演算部で求めた前後差圧に基づいて各容量を求めるものである。
 以上のような第6発明に係る制御装置は、モータの回転方向を変えることにより前進と後進との切り換えを行う静油圧式変速車両に第5発明を適用するのに好適である。
 第7発明に係る静油圧式変速車両の制御装置は、第6発明の制御装置において、車両は左側走行装置及び右側走行装置を有しており、可変容量ポンプ及び可変容量油圧モータはそれぞれ、左側走行装置を駆動するためのポンプ及びモータと、右側走行装置を駆動するためのポンプ及びモータと、を有している。また、左右のステアリングのストロークを検出するステアリングレバーセンサをさらに有している。差圧演算部は、左前油圧センサの検出値と左後油圧センサの検出値とから左側前後差圧を求め、右前油圧センサの検出値と右後油圧センサの検出値とから右側前後差圧を求め、左側前後差圧および右側前後差圧にステアリングレバーセンサの検出結果による重み付けを行った上で平均した平均前後差圧を求める。また、トルク制御用ポンプ容量設定部及びPID制御部は、差圧演算部で求めた前後差圧に基づいて各容量を求めるものである。
 以上のような第7発明に係る制御装置は、左側走行装置及び右側走行装置を有し、左側走行装置を駆動するためのポンプ及びモータと、右側走行装置を駆動するためのポンプ及びモータとを有する静油圧式変速車両に第6発明を適用するのに好適である。
 以上のような本発明では、静油圧式変速機を備える静油圧式変速車両において、走行負荷によるマッチング回転数の変化を抑えて、常に安定した作業を行うことができる。
本発明の一実施形態が採用されたブルドーザの外観斜視図。 前記ブルドーザの油圧及び制御回路を含むシステムを示す図。 前記ブルドーザのコントローラの機能ブロック図。 車速/回転数設定部の機能ブロック図。 低回転マッチング処理のエンジン回転数、ポンプ容量、モータ容量を示す図。 車両の走行状態と油圧回路の差圧との関係を示す図。 制限車速設定部の機能ブロック図。 制限車速設定部の機能ブロック図。 ポンプ・モータ容量制御図の機能ブロック図。 ステリング制御部の機能ブロック図。 従来のブルドーザにおけるエンジン出力トルク特性とHST制限トルク特性とを示す図。 本発明の一実施形態が採用されたブルドーザのエンジン出力トルク特性とHST制限トルク特性とを示す図。 第2実施形態のコントローラの機能ブロック図。 第2実施形態のポンプ・モータ容量制御部の機能ブロック図。 第3実施形態によるコントローラの機能ブロック図。 第3実施形態のストール防止制御部の機能ブロック図。
 本発明の一実施形態に係る制御装置は、静油圧式変速車両としての例えばブルドーザに搭載されている。以下では、静油圧式変速車両としてブルドーザを例にとって説明する。
 [ブルドーザの全体構成]
 ブルドーザ1は、図1に示すように、キャブ(運転室)2、左右の走行装置3,4、作業装置5、メインフレーム(図示せず)及びトラックフレーム6を備えている。
 メインフレームは、ブルドーザ1の骨格を形成するベースとなる部材であって、前方に作業装置5、左右両側に走行装置3,4、上部にキャブ2が搭載されている。
 トラックフレーム6はメインフレームの左側及び右側に取り付けられている。なお、図1においては左側のトラックフレームのみが表示されている。
 左右の走行装置3,4は、それぞれ左側及び右側のトラックフレーム6に取り付けられており、板状の複数のシューが連結されて無端状に形成された履帯3a,4aを有している。履帯3a,4aは上下の複数の転輪に巻き掛けられており、この履帯3a,4aを回転させることで不整地における走行を可能としている。
 キャブ2はメインフレーム上における後方に配置されている。このキャブ2は、オペレータが座るためのシートや、各種操作のためのレバー、車速設定用のスイッチ、ペダル及び計器類等が内装されている。なお、各種操作のためのレバーにはステアリングレバーや燃料調整レバー(または燃料調整ダイヤル)が含まれている。なお、燃料調整レバーを操作することによって、エンジン回転数をローアイドル(最小回転数)からハイアイドル(最大回転数)の間で調整することが可能である。ここでは、ローアイドルとハイアイドルの間の回転数をパーシャル回転数と定義し、このパーシャル回転数で運転することをパーシャル運転と定義する。また、車速設定用のスイッチにはシフトアップ用のボタン及びシフトダウン用のボタンが含まれている。
 作業装置5は、ブレード7及び1対の油圧シリンダ8を有しており、1対の油圧シリンダ8が伸縮することで、ブレード7を所望の方向へ傾けたり、移動させたりすることができる。
 [油圧回路システム]
 図2に、本車両の主に油圧回路を含むシステムの概略を示している。この図に示すように、エンジン20の出力軸は、左右の可変容量ポンプ21,22の駆動軸に連結されている。左右の可変容量ポンプ21,22の斜板21a,22aの傾転位置(傾転角)はそれぞれ、左右のポンプ斜板駆動部23,24によって駆動される。
 一方、左右の走行装置3,4に含まれるスプロケット25,26は、左右の終減速機27,28を介してそれぞれ左右の可変容量油圧モータ30,31の駆動軸に連結されている。左右の可変容量油圧モータ30,31の斜板30a,31aの傾転位置(傾転角)はそれぞれ、左右のモータ斜板駆動部32,33によって駆動される。
 なお左右の可変容量油圧モータ30,31の駆動軸にはそれぞれ、各油圧モータ30,31の回転を停止させるための左右のブレーキ装置34,35が設けられている。
 また、左可変容量油圧モータ30の流入出ポート30b,30cはそれぞれ、油路38、油路39を介して左側の可変容量ポンプ21の吐出吸込ポート21b,21cに接続されている。
 同様に、右可変容量油圧モータ31の流入出ポート31b,31cはそれぞれ、油路40、油路41を介して右側の可変容量ポンプ22の吐出吸込ポート22b,22cに接続されている。
 以上のシステム構成において、コントローラ50には、各種のセンサからの信号が入力されており、このコントローラ50から出力される制御信号によって、可変容量ポンプ21,22のポンプ斜板駆動部23,24及び可変容量油圧モータ30,31のモータ斜板駆動部32,33が駆動制御されるようになっている。
 また、コントローラ50は、各種のセンサからの信号に基づいてエンジン回転数指令信号をエンジンコントローラ50aに送信し、エンジンコントローラ50aはエンジン回転数指令信号に基づいてエンジン20を制御する。
 [制御ブロック(第1実施形態)]
 図3に、第1実施形態に係る本車両の制御ブロック図を示す。この図3では、コントローラ50に接続された各種のセンサを示すとともに、コントローラ50の機能をブロック化して示している。
  <センサ>
 コントローラ50には、ステアリングレバーセンサ51と、前後進用レバーセンサ52と、シフトアップ/シフトダウンボタンセンサ53と、図2に示した各油路の圧力を検出する油圧センサ54と、が接続されている。また、コントローラ50にはエンジン回転数を示す信号が入力されている。なお、エンジン回転数信号は、エンジンコントローラ50aからコントローラ50に入力されても良いし、エンジン20に設けた回転数センサから直接入力されても良い。ステアリングレバーセンサ51は、オペレータによるステアリングレバーの左又は右への操作ストロークを検出するためのセンサである。前後進用レバーセンサ52はオペレータが前進を指示したのか後進を指示したのかを検出するためのセンサである。シフトアップ/シフトダウンセンサ53は、オペレータがシフトアップ又はシフトダウンのためのボタンを操作したことを検出するためのセンサであり、これによりオペレータが指示した変速段が検出される。油圧センサ54は、図2に示すように、前進時に右側の走行装置4に供給される油圧を検出するセンサ54aと、前進時に左側の走行装置3に供給される油圧を検出するセンサ54bと、後進時に右側の走行装置4に供給される油圧を検出するセンサ54cと、後進時に左側の走行装置3に供給される油圧を検出するセンサ54dと、を含んでいる。
  <コントローラ>
 コントローラ50は、車速/回転数設定部60と、差圧演算部61と、ストール防止制御部62と、車速選択部63と、ポンプ・モータ容量制御部64と、ポンプ制御部65と、モータ制御部66と、ステアリング制御部67と、を備えている。
 -車速/回転数設定部60-
 図4に車速/回転数設定部60の詳細を示す。この車速/回転数設定部60は、車速設定部73と、低回転マッチング回転数設定部72と、を有している。車速設定部73は、速度段設定部70及び速度段-車速対応部71を含んでおり、指示された速度段に応じた車速を設定する部分である。また、低回転マッチング回転数設定部72は、設定された車速が予め設定された低・中速度領域ではエンジン回転数を所定のパーシャル回転数に設定する部分である。
 速度段設定部70は、シフトアップ/シフトダウンボタンセンサ53からの信号を受けて、速度段を設定する部分である。ここで、この車両においては、詳細な説明は省略するが、迅速な変速が可能なシフトモード(例えば3段階での変速が可能)と、きめ細かな変速が可能なシフトモード(例えば19段階の変速が可能)と、が設定されている。そこで、ここでは、シフトモードに応じて、またオペレータのシフトボタンの設定に応じて、速度段が設定される。
 速度段-車速対応部71は各速度段と設定車速との対応関係を示すテーブルが格納されている部分である。したがって、ここでは、速度段設定部70で設定された速度段に基づいて対応する車速(設定された速度段での最高車速)を求めることができる。なお、速度段-車速対応部71には、前進時のテーブルと後進時のテーブルとがそれぞれ別に設けられている。
 低回転マッチング回転数設定部72は、速度段-車速対応部71で設定された車速が予め設定された低・中速度領域では、エンジン回転の上限値をハイアイドル回転数より低い、低マッチング回転数に設定する部分である。具体的には、一例である図5の特性Etで示すように、オペレータの設定車速が0~7.8km/hまでは、オペレータが燃料調整レバー(または燃料調整ダイヤル)によりハイアイドル回転数(2270rpm:フルモード運転)を設定しても、それより低い回転数(1900rpm:パーシャル回転数)でエンジンを回転させるようにエンジン制御信号が出力される。一方で、設定車速が7.8km/h以上の高速度領域では、設定車速に比例してエンジン回転数をハイアイドル回転数まで上昇させるようにエンジン制御信号が出力される。
 なお、図5では、低回転マッチング回転数設定部72におけるテーブルと、後述するポンプ・モータ容量制御部64におけるテーブルとを重ねて示している。
 -差圧演算部61-
 差圧演算部61では、まず、前後進用レバーセンサ52および各油圧センサ54a~54dからの検出結果により、図6に示すロジックに従い以下のように差圧を求める。
 (a) 前後進用レバーが前進又は中立の場合:
 (a-1) 左前後差圧(ΔP)=左前圧力(P54b)-左後圧力(P54d)
 (a-2) 右前後差圧(ΔP)=右前圧力(P54a)-右後圧力(P54c)
 (b) 前後進用レバーが後進の場合:
 (b-1) 左前後差圧(ΔP)=左後圧力(P54d)-左前圧力(P54b)
 (b-1) 右前後差圧(ΔP)=右後圧力(P54c)-左前圧力(P54a)
 ここで、前記の「左前後差圧」、「右前後差圧」等における「左」とは左側走行装置3を駆動する油圧回路を、「右」とは右側走行装置4を駆動する油圧回路を示している。また、「前」とは油圧回路において前進時に油圧が供給される側を、「後」とは油圧回路において後進時に油圧が供給される側を示している。
 差圧演算部61は、さらに、上記により左前後差圧(ΔP)、右前後差圧(ΔP)、及びステアリングレバーセンサ51からの検出結果を用いて、次式により制限車速設定用差圧(ΔP)を求める。
   ΔP=(ΔP×ST+ΔP×ST)/2    (式1)
 すなわち、差圧演算部61は、左前油圧センサ54bと左後油圧センサ54dの差圧である左前後差圧(ΔP)及び右前油圧センサ54aと右後油圧センサ54cの差圧である右前後差圧(ΔP)のそれぞれに、ステアリングレバーセンサ51の検出結果による重み付けを行った上で、2つの前後差圧の平均を求め、これを制限車速設定用差圧(ΔP)としている。
 なお、STはステアリングレバーを左側に倒したときの指令値であり、最大まで倒したときに-100%となり、中立位置では100%となる。また、STはステアリングレバーを右側に倒したときの指令値であり、最大まで倒したときに-100%となり、中立位置では100%となる。
 ここで、ステアリングレバーは、オペレータから見て中立位置を中心に左右両方向に傾動自在に構成されている。そして、中立位置は、作業車両1の「直進走行」に対応しており、左側への傾動は作業車両1の「左旋回」に対応し、右側への傾動は作業車両1の「右旋回」に対応している。
 ステアリングレバーが中立位置(操作ストロークは0%)に位置しているときには、左履帯3aの左ステアリング指令は100%であり、右履帯4aの右ステアリング指令も100%である。そして、操作レバーの右方向の操作ストロークが増加するのに応じて、右履帯4aの右ステアリング指令が小さくなる。また操作レバーの左方向の操作ストロークが増加するのに応じて、左履帯3aの左ステアリング指令が小さくなる。左右のステアリングレバーセンサ51で検出された操作ストロークを示す検出電気信号は、ステアリング制御部67に入力され、以下の制御が行われる。
 まず、右旋回について説明する。
 レバーの右方向の操作ストロークが増加するのに応じて、右ステアリング指令STは100%から-100%(右フルストローク)まで減少する。そのときの左ステアリング指令STは100%のままである。
 右ステアリング指令STが100%から0%の場合は、右履帯4aと左履帯3aは同方向に回転して、左ステアリング指令ST100%との割合に応じた旋回が行われる。例えば、右ステアリング指令ST80%と右ステアリング指令ST30%とでは、右ステアリング指令ST80%の方が、旋回半径は大きくなる。
 また、右ステアリング指令STが0%の場合は、右履帯4aの回転は止まり、左履帯3aのみが100%で回転する右信地旋回を行う。
 一方、右ステアリング指令STが-100%(右フルストローク)の場合は、右履帯4aの回転が左履帯3aと同回転数で反対方向に回転をする超信地旋回を行う。
 そして、左旋回についても同様である。すなわち、レバーの左方向の操作ストロークが増加するのに応じて、左ステアリング指令STは100%から-100%(左フルストローク)まで減少する。そのときの右ステアリング指令STRは100%のままである。
 また、左ステアリング指令STが100%から0%の場合は、左履帯3aと右履帯4aは同方向に回転して、右ステアリング指令ST100%との割合に応じた旋回が行われる。例えば、左ステアリング指令ST80%と左ステアリング指令ST30%では左ステアリング指令ST80%の方が、旋回半径は大きくなる。
 また、左ステアリング指令STが0%の場合は、左履帯3aの回転は止まり、右履帯4aのみが100%で回転する左信地旋回を行う。
 一方、左ステアリング指令STが-100%(左フルストローク)の場合は、左履帯3aの回転が右履帯4aと同回転数で反対方向に回転をする超信地旋回を行う。
なお、ステアリング指令ST,STは後述するポンプ制御部65に出力されポンプ容量比に変換される。
 -ストール防止制御部62-
 図7にストール防止制御部62の詳細を示している。この図に示すように、ストール防止制御部62は、エンジン回転数から制限トルクを得るための制限トルク設定部75と、制限車速設定部76とを有している。
 ここで、図7の制限車速設定部76には、図8に示すような、制限トルクTpと制限車速設定用差圧ΔPとから制限車速を求めるための関係が記憶されている。より具体的には、制限車速設定用差圧ΔPが一定であっても、制限トルクTpが大きいほど制限車速が高く、制限トルクTpが小さいほど制限車速が低くなるような関係が記憶されている。この特性を示す図において、制限車速が比較的低い領域はポンプ領域であり、制限トルクが比較的高い領域はモータ領域である。
 ここで、ポンプ領域とは、モータ容量を最大としたままポンプ容量を変化させて車速を変化させる領域であり(図5参照:詳細は後述)、この領域では制限トルク(すなわち、静油圧式変速機の吸収トルク)を一定に保つようにポンプ容量の制御が行われる。すなわち、ポンプ容量を制御することにより制限トルクを制御できる範囲がポンプ領域である。
 モータ領域とは、ポンプ容量を最大としたままモータ容量を変化させて車速を変化させる領域であり(図5参照:詳細は後述)、この領域では制限トルクを一定にしようと制御すると、図の一点鎖線Pcで示すように制御する必要がある。しかし、このような制御を行うと、制限車速設定用差圧ΔPが少しでも変動すると、モータ領域において制限車速が最低と最高の間を行き来することになる。すなわち、ハンチング現象を起こすことになる。
 そこでモータ領域においては、圧力を一定にするのではなく、制限車速が高くなるのに応じて圧力が低くなるように傾斜をつけ(特性Tp’)、可変容量油圧モータの容量制御においてハンチング現象が生じるのを防止している。
 -車速選択部63-
 車速選択部63は、車速/回転数設定部60で得られた設定車速とストール防止制御部62(制限車速設定部76)で得られた制限車速とを比較し、低い方の車速を「指令車速」として選択するものである。
 -ポンプ・モータ容量制御部64-
 図9にポンプ・モータ容量制御部64の詳細を示している。ポンプ・モータ容量制御部64は、ポンプ容量設定部78と、モータ容量設定部79と、を有している。ポンプ容量設定部78及びモータ容量設定部79は、それぞれ車速選択部63で選択された指令車速に対応する可変容量ポンプの容量(以下、単にポンプ容量と記す)の値、可変容量油圧モータの容量(以下、単にモータ容量と記す)の値のテーブルを有している。そして、それぞれの設定部78,79では、車速選択部63で選択された車速に応じてポンプ容量、モータ容量が設定される。具体的には、ポンプ容量設定部78では、ポンプ容量が最大になるまでは、すなわち指令車速が例えば3.5km/hまでは、指令車速に比例してポンプ容量も大きくし、ポンプ容量が最大容量に到達した後は一定の容量に維持する。また、モータ容量設定部79では、ポンプ容量が最大になるまでは、すなわち指令車速が例えば3.5km/hになるまでは、モータ容量を一定の容量に維持し、ポンプ容量が最大容量に到達した後は指令車速が高くなるにつれてモータ容量を徐々に小さくしていく。可変容量ポンプ及び可変容量油圧モータについて以上のような制御が行われるように、容量制御信号が出力される。
 ここで、本実施形態においては、指令車速に対応するポンプ容量設定部78におけるポンプ容量のテーブル、及び指令車速に対応するモータ容量設定部79におけるモータ容量のテーブルは、エンジンがパーシャル回転数で回転しても車両の速度が車速設定部73で設定された車速に到達可能となるように設定されている。
 前述のように、図5では、低回転マッチング回転数設定部72におけるテーブルと、後述するポンプ・モータ容量制御部64におけるテーブルとを重ねて示している。図5において、ポンプ容量Pqおよびモータ容量Mqは、低・中速度領域ではエンジンがパーシャル回転数(1900rpm)で回転する場合に、設定車速が得られるように設定されている。低・中速度領域のうち設定車速が比較的低い領域ではモータ容量を最大としたままポンプ容量を変化させることにより車速を変化させるポンプ領域である。また、低・中速度領域のうち設定車速が比較的高い領域ではポンプ容量を最大としたままモータ容量を変化させることにより車速を変化させるモータ領域である。図5におけるポンプ領域とモータ領域は、それぞれ、図8におけるポンプ領域とモータ領域に対応する。
 高速度領域は、可変容量ポンプ及び可変容量油圧モータの制御によっては設定車速に到達することができない領域である。このため、高速度領域では、前述のように、設定車速に比例してエンジン回転数をハイアイドル回転数まで上昇させており、エンジン回転数の制御により車速を変化させている。
 -ポンプ制御部65-
 ポンプ制御部65は、ポンプ・モータ容量制御部64から出力されたポンプ容量に左右のステアリングレバー及び前後進用レバーからの指令を加味し、容量指令を電流指令に変換して、左右のポンプ斜板駆動部23,24に制御信号として出力するものである。
 -モータ制御部66-
 モータ制御部66は、ポンプ・モータ容量制御部64から出力されたモータ容量の指令を電流指令に変換して、左右のモータ斜板駆動部32,33に制御信号として出力するものである。
 -ステアリング制御部-
 図10にステアリング制御部67の詳細を示している。このステアリング制御部67は、ステアリングレバーセンサ51によって検出されたレバーストロークを左右のステアリング指令に変換するための部分であって、図10に示すようなレバーストロークと指令値との対応関係を示す変換テーブル82を有している。なお、この図10ではステアリングレバーのストロークと右ステアリング指令との関係を示しているが、ステアリングレバーのストロークと左ステアリング指令との関係は、テーブル(マップ)が左右対称で異なっているだけで、変換のための基本的構成は同様である。
 [制御処理]
 次に、コントローラ50の制御処理について、図3から図7を用いて説明する。
  <低回転マッチング処理>
 まず、コントローラ50が実行する低回転マッチング処理について説明する。この低回転マッチング処理は、ブルドーザの現状の使用状態を考慮し、指令車速が低・中速度領域にある場合にはエンジン回転数を自動的にパーシャル回転数に設定して運転する処理である。なお、実際の制御処理では、制限トルクも考慮されてポンプ及びモータの容量が制御されるが、ここでは、説明の容易化のために、まず、低回転マッチングのみを考慮した制御について説明する。
 低回転マッチング処理は、主に車速/回転数設定部60及びポンプ・モータ容量制御部64によって実行される。具体的には、オペレータによってシフトアップ又はシフトダウンの指示が速度段設定部70に入力されると、速度段設定部70では、この指示に応じて速度段が設定される。そして、この設定された速度段に対応する設定車速が速度段-車速対応部71にしたがって設定される。なお、設定車速は、前進時には前進用のテーブルを用いて設定され、後進時には後進用のテーブルを用いて設定される。
 速度段-車速対応部71によって車速が設定されると、この設定車速に基づいて、低回転マッチング回転数設定部72によって回転数が設定される。低回転マッチング回転数設定部72には、前述のように、図5に示すようなテーブル(特性Et)が用意されている。したがって、設定車速が予め設定された低・中速度領域では、エンジン回転数が、パーシャル回転数である1900rpmに設定される。ここでは、オペレータがエンジン回転数をハイアイドル回転数に設定していたとしても、自動的にパーシャル回転数に設定されることになる。
 前述のように、ポンプ容量Pq及びモータ容量Mqは、低・中速度領域ではエンジンがパーシャル回転数(1900rpm)で回転する場合に、設定車速が得られるように設定されている。また、高速度領域はエンジン回転数の制御により設定車速を得るようにしている。
 このように、オペレータがハイアイドル回転数に設定している場合であっても、設定車速が低・中速度領域にある場合には自動的にエンジン回転数がパーシャル回転数に制限されるので、低燃費を実現することができる。また、設定車速が高速度領域にある場合にはエンジン回転数の制御により必要な車速が得られるため、最高車速が従来と比べて低下することも無い。すなわち、オペレータがハイアイドル回転数で運転していても、従来よりも低燃費を実現できる上、従来と同等の最高車速を得ることができる。
  <トルク制御処理>
 前述のように、従来のブルドーザのポンプ及びモータの容量制御においては、負荷圧が変動すると、エンジン出力トルク特性と静油圧式変速機の制限トルク特性とがマッチングする回転数が大幅に変動することになり、低回転マッチング処理を行う上で好ましいものではない。
 そこで、本実施形態においては、前述のストール防止制御部62の部分で説明するように、トルク制御を行い、エンジン回転数から制限トルクを設定するようにしている。トルク制御を実行することにより、図12に示すように、制限トルク特性Tは1本の特性で表され、低回転マッチング処理を実行した場合でも、マッチング回転数の変化幅は、例えば110rpm程度に抑えることができる。
 このトルク制御を実行するにあたっては、まず、差圧演算部61により左前後差圧と右前後差圧とが求められる。詳しくは、前述の差圧演算部61の説明で記載したとおりである。
 差圧演算部61で求められた差圧とエンジン回転数とにより、ストール防止制御部62において制限車速が設定される。詳しくは、前述のストール防止制御部62の説明で記載したとおりである。
 制限車速が設定されると、この制限車速と前述の車速/回転数設定部60で設定された設定車速とを車速選択部63で比較し、低い方の車速が選択される。
 次に、車速選択部63で選択された車速に基づき、ポンプ・モータ容量制御部64においてポンプ容量及びモータ容量が設定される。すなわち、車速選択部63で設定された車速に応じて、ポンプ容量はポンプ容量設定部78にしたがって、またモータ容量はモータ容量設定部79にしたがって、それぞれの容量が設定される。
 以上のようにして設定されたポンプ容量は、ポンプ制御部65において、ステアリングレバーセンサ51及び前後進用レバーセンサ52からの指令が加味されて、電流指令に変換され、左右の可変容量ポンプ21,22のポンプ斜板駆動部23,24に制御信号として出力される。また、モータ容量については、モータ制御部66において電流指令に変換され、左右の可変容量油圧モータ30,31のモータ斜板駆動部32,33に制御信号として出力される。
 したがって、ハイアイドル回転数で運転している場合であっても、指令車速(すなわち設定車速または制限車速)が低・中速度領域にある場合には自動的にエンジン回転数はパーシャル回転数に制限され、低燃費を実現することができる。また、設定車速が高速度領域にある場合にはエンジン回転数の制御により必要な車速が得られるため、最高車速が従来と比べて低下することも無い。すなわち、オペレータがハイアイドル回転数で運転していても、従来よりも低燃費を実現できる上、従来と同等の最高車速も得ることができる。
 [本実施形態の特徴]
 (1) 低速回転マッチング処理によって、指令車速が予め設定された低・中速度領域の場合は、オペレータによってハイアイドル回転数での運転が指示されている場合でも、自動的に所定のパーシャル回転数で運転される。したがって、オペレータにとって面倒な運転モードの切換等の操作をすることなく、燃費の軽減、騒音の低下を図ることができる。
 しかも、ポンプ容量及びモータ容量は、低・中速度領域ではエンジンがパーシャル回転数で回転する場合に設定車速が得られるように設定されているので、エンジン回転数が低いにもかかわらず、オペレータが求める車速に到達させることができる。
 (2) 低速回転マッチング処理を実行する際に、指令車速が高速になり、ポンプ容量及びモータ容量において制御の限界に到達した場合は、エンジン回転数はハイアイドル回転数まで上昇するように制御される。このため、ハード構成を変更せずに、すなわち可変容量ポンプ及び可変容量油圧モータを大型化することなく、オペレータが要求する車速に到達することができる。
 なお、高速度領域では低・中速度領域に比べて燃費低減効果は小さくなるが、特にブルドーザの一般的な使用状況としては、最高車速で使用される頻度は非常に低い。そして、使用頻度の高い速度領域ではパーシャル回転数で運転されることになるので、使用状況全体としては、燃費は改善される。
 (3) 本実施形態では、負荷の変動によってマッチング回転数が大きく変動しないようなトルク制御を実行している。具体的には、マッチング回転数が一定になるようにポンプ容量及びモータ容量が設定される。このため、前述のような低回転マッチング処理を実行するのに好適である。
 (4) エンジン回転数に応じて制限トルクを設定し、マッチング回転数の変動幅がほぼ一定になるように各容量を制御しているので、負荷が変動してもエンジン出力が低下するのを避けることができる。
 (5) トルク制御において、ポンプ容量が最大容量に到達した後において、すなわちモータ容量を制御するモータ領域において圧力に対して制限車速を一定にしていないので、モータ容量の制御においてハンチング現象が生じるのを防止することができる。
 [制御ブロック(第2実施形態)]
 図13に本発明の第2実施形態に係る本車両のコントローラ50’の制御ブロック図を示す。なお、ここでは、第1実施形態と異なる点について記載し、第1実施形態と同一の部分については同一の符号を付して説明を省略する。
 この第2実施形態では、車速/回転数設定部60と車速選択部63との間に設定車速補正部68を設けている。また、ポンプ・モータ容量制御部64’において、指令車速に対応するポンプ容量の値、モータ容量の値のテーブルが第1実施形態におけるテーブルと異なる。テーブルが異なる点を除いては、第1実施形態におけるポンプ・モータ容量制御部64と変わるところは無い。本実施形態においては、低回転マッチング処理は、主に車速/回転数設定部60及び設定車速補正部68によって実行される。
 設定車速補正部68は、エンジンがパーシャル回転数で回転したときに車両の速度が車速設定部73で設定された車速に到達可能となるように、設定車速をハイアイドル回転数によって補正し、補正後の設定車速をポンプ・モータ容量制御部64’に出力する。より具体的には、設定車速補正部68は、車速設定部73で求めた設定車速と低回転マッチング回転数により、次式に基づいて補正設定車速を求める。
  補正設定車速=設定車速×(ハイアイドル回転数/低回転マッチング回転数)
                                 (式2)
 車速選択部63は、設定車速補正部68で求めた補正設定車速とストール防止制御部62(制限車速設定部76)で得られた制限車速とを比較し、低い方の車速を「指令車速」として選択する。
 ポンプ・モータ容量制御部64’は、図14に示すように、ポンプ容量設定部78’とモータ容量設定部79’とを有している。ポンプ容量設定部78’とモータ容量設定部79’に記憶される指令車速に対応するポンプ容量の値のテーブルには、エンジンがハイアイドル回転数で回転したときに車両の速度が車速設定部73で設定された車速に到達可能となるように、設定車速に対する可変容量ポンプの容量の対応関係及び設定車速に対する可変容量油圧モータの容量の対応関係が予め記憶されている。すなわち、この第2実施形態におけるポンプ・モータ容量制御部64’は、従来のブルドーザにおけるポンプ・モータ容量制御部と何ら変わるところは無い。
 [本実施形態の特徴]
 本実施形態によれば、従来のポンプ・モータ容量制御部に変更を加えることなく、第1実施例と同様の効果を得ることができる。
 しかも、複数のマップを持たせる必要がないので、仮にパーシャル回転数を変更する必要がある場合でも容易に対応できる。
  [制御ブロック(第3実施形態)]
 図15に本発明の第3実施形態に係る本車両のコントローラ50’’の制御ブロック図を示す。なお、ここでは、第1実施形態及び第2実施形態と異なる点について記載し、第1実施形態及び第2実施形態と同一の部分については同一の符号を付して説明を省略する。
 この第3実施形態では、第2実施形態と同様に、車速/回転数設定部60と車速選択部63との間に設定車速補正部68が設けられ、ポンプ・モータ容量制御部64’においても同様のテーブルを有している。そして、本実施形態が第1実施形態及び第2実施形態と異なる部分は、主に、モータ容量をPID制御によって求めている点である。
 具体的には、コントローラ50’’は、前記各実施形態と異なる構成として、ストール防止制御部62’と、モータ容量制御部(PID制御)69と、ポンプ容量選択部90と、モータ容量選択部91と、を有している。
 ストール防止制御部62’は、図16に示すように、エンジン回転数から制限トルクを得るための制限トルク設定部75と、トルク制御用ポンプ容量設定部76’と、を有している。制限トルク設定部75は、前記各実施形態と同様の構成及び機能を有し、エンジン回転数に応じて、HSTで使用可能な最大のトルクである制限トルクを設定するものである。また、トルク制御用ポンプ容量設定部76’には、図16に示すような、制限トルクTpとポンプ容量設定用差圧ΔPとからポンプ容量を求めるための関係が記憶されている。より具体的には、差圧ΔPが一定であっても、制限トルクTpが大きいほどポンプ容量が大きく、制限トルクTpが小さいほどポンプ容量が小さくなるような関係が記憶されている。この第3実施形態におけるストール防止制御部62’では、差圧とエンジン回転数(制限トルク)とからポンプ容量のみが設定されて出力される。
 一方、モータ容量は、モータ容量制御部69によって求められる。すなわち、モータ容量制御部69には予め固定された目標圧力が設定されており、このモータ容量制御部69においてPID制御によるフィードバック制御を実行することにより、差圧演算部61で得られる差圧が目標圧力になるようなモータ容量が設定される。
 ポンプ容量選択部90は、ポンプ・モータ容量制御部64’のポンプ容量設定部78’で設定されたポンプ容量と、ストール防止制御部62’のトルク制御用ポンプ容量設定部76’で設定されたポンプ容量とを比較し、小さい方のポンプ容量を選択して出力する。
 また、モータ容量選択部91は、ポンプ・モータ容量制御部64’のモータ容量設定部79’で設定されたモータ容量と、モータ容量制御部69で設定されたモータ容量と、を比較し、大きい方のモータ容量を選択して出力する。
 次にこの第3実施形態の動作について説明する。
 低回転マッチング処理については第1実施形態で説明した処理と同様であり、また設定車速を前述の式(2)によって補正し、補正設定車速を求める処理は、第2実施形態で説明した処理と同様である。
 以上のようにして求められた補正設定車速から、ポンプ容量設定部78’のテーブルによってポンプ容量が求められる。一方で、ストール防止制御部62’のトルク制御用ポンプ容量設定部76’によって、制限トルクTpとポンプ容量設定用差圧ΔPとからポンプ容量が求められる。
 以上のようにして求められた2つのポンプ容量のうち、小さい方のポンプ容量がポンプ容量選択部90で選択され、選択されたポンプ容量がポンプ制御部65に与えられる。以後の処理は前記各実施形態と同様である。
 また、補正設定車速から、モータ容量設定部79’のテーブルによってモータ容量が求められる。一方で、モータ容量制御部69により、差圧ΔPが目標圧力になるようなモータ容量が求められる。
 そして、以上のようにして求められた2つのモータ容量のうち、大きい方のモータ容量がモータ容量選択部91で選択され、選択されたモータ容量がモータ制御部66に与えられる。以後の処理は前記各実施形態と同様である。
 [本実施形態の特徴]
 本実施形態によれば、従来のポンプ・モータ容量制御部に変更を加えることなく、第1実施例と同様の効果を得ることができる。
 また、作業時のパワー不足を避けるためのモータ容量の設定において、PID制御によりモータ容量を設定しているので、精度良くかつ確実に所望のモータ容量を設定することができる。
 さらに、モータ容量をPID制御によって決定しているので、第1実施形態や第2実施形態に比べてより確実にモータ容量のハンチングを防止することができる。
 [他の実施形態]
 (a) 制限車速設定部76において、モータ容量を制御する領域では、制限車速に対する圧力の特性を右下がりにしたが、圧力を一定にしても良い。この場合は、図10に示したマッチング回転の変化の幅をほぼなくすことができる。
 (b) 前記実施形態で示したパーシャル回転数やハイアイドル回転数、および、設定車速や指令車速は単なる例示であり、これらの数値に限定されるものではない。
 (c) 第3実施形態において、設定車速を補正してポンプ容量等を設定するようにしたが、設定車速を補正することなく、第1実施形態と同様のテーブルを有するポンプ・モータ容量制御部64を用いて各容量を設定するようにしてもよい。
 ここでは、静油圧式変速機を備える静油圧式変速車両において、走行負荷によるマッチング回転数の変化を抑えて、常に安定した作業を行うことができる。
1 ブルドーザ
4,5 走行装置
21,22 可変容量ポンプ
23,24 ポンプ斜板駆動部
30,31 可変容量油圧モータ
32,33 モータ斜板駆動部
50,50’,50’’ コントローラ
51 ステアリングレバーセンサ
52 前後進用レバーセンサ
53 シフトアップ/シフトダウンボタンセンサ
54 油圧センサ
60 車速/回転数設定部
61 差圧演算部
62,62’ ストール防止制御部
63 車速選択部
64,64’ ポンプ・モータ容量制御部
65 ポンプ制御部
66 モータ制御部
68 設定車速補正部
70 速度段設定部
71 速度段-車速対応部
72 低回転マッチング回転数設定部
73 車速設定部
75 制限トルク設定部
76 制限車速設定部
78,78’ ポンプ容量設定部
79,79’ モータ容量設定部
90 ポンプ容量選択部
91 モータ容量選択部

Claims (7)

  1.  エンジンにより駆動される可変容量ポンプと前記可変容量ポンプの圧油により回転する可変容量油圧モータとを含む静油圧式変速機を備える静油圧式変速車両の制御装置であって、
     オペレータにより指示された前後進指令及び速度段指令に基づき設定車速を求める車速設定部(73)と、
     前記可変容量ポンプと前記可変容量油圧モータとを含む油圧回路の圧力を検出する油圧センサ(54)と、
     エンジン回転数を取得するとともに取得した前記エンジン回転数から前記静油圧式変速機で使用可能な制限トルクを求める制限トルク設定部(75)と、
     検出された前記油圧回路の圧力及び前記制限トルク設定部(75)で求めた制限トルクに基づいて制限車速を求める制限車速設定部(76)と、
     前記車速設定部(73)で設定された設定車速と、前記制限車速設定部(76)で求められた制限車速とのうちの低い方の車速を選択する車速選択部(63)と、
     前記車速選択部(63)で選択された車速に基づいて前記可変容量ポンプ及び可変容量モータのそれぞれの容量を制御するポンプ・モータ容量制御部(64)と、
    を備えた静油圧式変速車両の制御装置。
  2.  前記制限車速設定部(76)は、前記制限車速と前記油圧回路の圧力との関係を示すテーブルを有しており、
     前記テーブルにおいて、制限車速の低速側は前記可変容量ポンプの容量を制御するための制限車速を求めるポンプ領域であり、制限車速の高速側は前記可変容量油圧モータの容量を制御するための制限車速を求めるモータ領域であり、
     前記モータ領域では前記圧力が低くなるのに応じて制限車速が高くなっている、
    請求項1に記載の静油圧式変速車両の制御装置。
  3.  前記油圧センサは、前進時の前記油圧回路の圧力を検出する前側油圧センサと、後進時の前記油圧回路の圧力を検出する後側油圧センサと、を有し、
     前記車両の進行方向を検出する前後進用レバーセンサ(52)と、差圧演算部(61)と、をさらに有するとともに、
     前記差圧演算部(61)は、前記前後進用レバーセンサ(52)の検出結果に基づき、前進時には前記前側油圧センサの検出値から前記後側油圧センサの検出値を減じて前後差圧を求め、後進時には前記後側油圧センサの検出値から前記前側油圧センサの検出値を減じて前後差圧を求め、
     前記制限車速設定部(76)は、前記差圧演算部(61)で求めた前後差圧に基づいて前記制限車速を求めるものである、
    請求項1又は2に記載の静油圧式変速車両の制御装置。
  4.  前記車両は左側走行装置及び右側走行装置を有しており、
     前記可変容量ポンプ及び前記可変容量油圧モータはそれぞれ、前記左側走行装置を駆動するためのポンプ及びモータと、前記右側走行装置を駆動するためのポンプ及びモータと、を有しており、
     左右のステアリングのストロークを検出するステアリングレバーセンサをさらに有し、
     前記差圧演算部(61)は、前記左前油圧センサの検出値と前記左後油圧センサの検出値とから左側前後差圧を求め、前記右前油圧センサの検出値と前記右後油圧センサの検出値とから右側前後差圧を求め、前記左側前後差圧および前記右側前後差圧に前記ステアリングレバーセンサの検出結果による重み付けを行った上で平均した平均前後差圧を求め、
     前記制限車速設定部(76)は、前記差圧演算部(61)で求めた平均前後差圧に基づいて前記制限車速を求めるものである、
    請求項3に記載の静油圧式変速車両の制御装置。
  5.  エンジンにより駆動される可変容量ポンプと前記可変容量ポンプの圧油により回転する可変容量油圧モータとを含む静油圧式変速機を備える静油圧式変速車両の制御装置であって、
     オペレータにより指示された前後進指令及び速度段指令に基づき設定車速を求める車速設定部(73)と、
     前記車速設定部(73)で設定された車速に基づいて前記可変容量ポンプ及び可変容量モータのそれぞれの容量を制御するポンプ・モータ容量制御部(64')と、
     前記可変容量ポンプと前記可変容量油圧モータとを含む油圧回路の圧力を検出する油圧センサ(54)と、
     エンジン回転数を取得するとともに取得した前記エンジン回転数から前記静油圧式変速機で使用可能な制限トルクを求める制限トルク設定部(75)と、
     検出された前記油圧回路の圧力及び前記制限トルク設定部(75)で求めた制限トルクに基づいてトルク制御用のポンプ容量を設定するトルク制御用ポンプ容量設定部(76')と、
     前記ポンプ・モータ容量制御部(64')で得られたポンプ容量と前記トルク制御用ポンプ容量設定部(76')で得られたポンプ容量のうちの小さい方のポンプ容量を選択し、前記可変容量ポンプを制御するためのポンプ容量指令値として出力するポンプ容量選択部(90)と、
     前記油圧回路の油圧が予め設定された目標になるようにPID制御を実行してモータ容量を求めるPID制御部(69)と、
     前記ポンプ・モータ容量制御部(64')で得られたモータ容量と前記PID制御部(69)で得られたモータ容量のうちの大きい方のモータ容量を選択し、前記可変容量油圧モータを制御するためのモータ容量指令値として出力するモータ容量選択部(91)と、
    を備えた静油圧式変速車両の制御装置。
  6.  前記油圧センサは、前進時の前記油圧回路の圧力を検出する前側油圧センサと、後進時の前記油圧回路の圧力を検出する後側油圧センサと、を有し、
     前記車両の進行方向を検出する前後進用レバーセンサ(52)と、差圧演算部(61)と、をさらに備え、
     前記差圧演算部(61)は、前記前後進用レバーセンサ(52)の検出結果に基づき、前進時には前記前側油圧センサの検出値から前記後側油圧センサの検出値を減じて前後差圧を求め、後進時には前記後側油圧センサの検出値から前記前側油圧センサの検出値を減じて前後差圧を求め、
     前記トルク制御用ポンプ容量設定部(76')及び前記PID制御部(69)は、前記差圧演算部(61)で求めた前後差圧に基づいて前記各容量を求めるものである、
    請求項5に記載の静油圧式変速車両の制御装置。
  7.  前記車両は左側走行装置及び右側走行装置を有しており、
     前記可変容量ポンプ及び前記可変容量油圧モータはそれぞれ、前記左側走行装置を駆動するためのポンプ及びモータと、前記右側走行装置を駆動するためのポンプ及びモータと、を有しており、
     左右のステアリングのストロークを検出するステアリングレバーセンサをさらに有し、
     前記差圧演算部(61)は、前記左前油圧センサの検出値と前記左後油圧センサの検出値とから左側前後差圧を求め、前記右前油圧センサの検出値と前記右後油圧センサの検出値とから右側前後差圧を求め、前記左側前後差圧および前記右側前後差圧に前記ステアリングレバーセンサの検出結果による重み付けを行った上で平均した平均前後差圧を求め、
     前記トルク制御用ポンプ容量設定部(76')及び前記PID制御部(69)は、前記差圧演算部(61)で求めた前後差圧に基づいて前記各容量を求めるものである、
    請求項6に記載の静油圧式変速車両の制御装置。
PCT/JP2009/066720 2008-12-17 2009-09-28 静油圧式変速車両の制御装置 WO2010070961A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010542905A JP5274580B2 (ja) 2008-12-17 2009-09-28 静油圧式変速車両の制御装置
US13/124,976 US8725364B2 (en) 2008-12-17 2009-09-28 Control device for hydraulic transmission vehicle
CN200980149334.2A CN102245941B (zh) 2008-12-17 2009-09-28 静液压式变速车辆的控制装置
BRPI0919966A BRPI0919966A2 (pt) 2008-12-17 2009-09-28 dispositivo de controle para um veículo de transmissão hidrostática
US14/211,340 US9091342B2 (en) 2008-12-17 2014-03-14 Control device for hydrostatic transmission vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008320893 2008-12-17
JP2008-320893 2008-12-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/124,976 A-371-Of-International US8725364B2 (en) 2008-12-17 2009-09-28 Control device for hydraulic transmission vehicle
US14/211,340 Division US9091342B2 (en) 2008-12-17 2014-03-14 Control device for hydrostatic transmission vehicle

Publications (1)

Publication Number Publication Date
WO2010070961A1 true WO2010070961A1 (ja) 2010-06-24

Family

ID=42268637

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/066720 WO2010070961A1 (ja) 2008-12-17 2009-09-28 静油圧式変速車両の制御装置
PCT/JP2009/066746 WO2010070962A1 (ja) 2008-12-17 2009-09-28 静油圧式変速車両の制御装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066746 WO2010070962A1 (ja) 2008-12-17 2009-09-28 静油圧式変速車両の制御装置

Country Status (5)

Country Link
US (3) US8725364B2 (ja)
JP (3) JP5274580B2 (ja)
CN (2) CN102245941B (ja)
BR (2) BRPI0919966A2 (ja)
WO (2) WO2010070961A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8515637B2 (en) 2010-12-23 2013-08-20 Caterpillar Inc. Machine control system and method
CN109774700A (zh) * 2018-11-15 2019-05-21 中国铁建重工集团有限公司 一种井下液压驱动行走系统及行走速度调节方法
CN114402150A (zh) * 2019-09-19 2022-04-26 克拉克设备公司 驱动马达排量控制装置

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5248387B2 (ja) * 2009-03-25 2013-07-31 株式会社小松製作所 ホイールローダ
US8186473B2 (en) * 2009-05-20 2012-05-29 Cnh America Llc Hydrostatic ground drive control system for a work machine with smooth transition between speed ranges
US8573505B1 (en) * 2010-04-01 2013-11-05 Dana A. Hennessy Thawing system for machinery undercarriages
JP5222895B2 (ja) * 2010-05-07 2013-06-26 株式会社小松製作所 作業車両及び作業車両の制御方法
WO2012002585A1 (ko) * 2010-06-28 2012-01-05 볼보 컨스트럭션 이큅먼트 에이비 하이브리드식 굴삭기의 제어시스템
US20120065853A1 (en) * 2010-09-10 2012-03-15 Caterpillar Inc. System and method to prevent shift hunting
DE102011113485A1 (de) * 2011-09-15 2013-03-21 Bomag Gmbh Verfahren zum Ansteuern eines Antriebsstranges eines Fahrzeugs und Vorrichtung zur Durchführung des Verfahrens
US8762014B2 (en) 2011-09-30 2014-06-24 Caterpillar Inc. Variator characterization for feed forward torque control
US8540048B2 (en) * 2011-12-28 2013-09-24 Caterpillar Inc. System and method for controlling transmission based on variable pressure limit
JP5092060B1 (ja) * 2012-03-30 2012-12-05 株式会社小松製作所 作業車両及び作業車両の制御方法
US9562345B2 (en) * 2012-06-04 2017-02-07 Volvo Construction Equipment Ab Driving control method for construction machine
US9102372B2 (en) * 2012-07-24 2015-08-11 Caterpillar Inc. Track drive system and method
JP6080458B2 (ja) * 2012-09-28 2017-02-15 株式会社アイチコーポレーション クローラ式走行車両
US9470298B2 (en) 2012-12-21 2016-10-18 Cnh Industrial America Llc Straight tracking control system for a machine with a dual path electronically controlled hydrostatic transmission
BR112015017388A2 (pt) * 2013-01-25 2017-07-11 Volvo Constr Equip Ab aparelho de controle de fluxo para uma máquina de construção, e, aparelho de controle de percurso
US9309792B2 (en) * 2013-03-14 2016-04-12 Allison Transmission, Inc. System and method for controlling pump performance in a transmission
CN104154226B (zh) * 2013-05-15 2018-02-02 林德液压两合公司 全轮驱动的工作机的静液压式行驶驱动装置
DE102014212205A1 (de) * 2014-06-25 2015-12-31 Robert Bosch Gmbh Verfahren zum Betreiben einer hydrostatischen Maschine
GB2535700B (en) 2015-02-20 2017-09-06 Ford Global Tech Llc A method for reducing the amount of fuel used by an engine of a motor vehicle
JP2018508001A (ja) * 2015-03-13 2018-03-22 ダナ イタリア エス. アール. エル. 静油圧式および直接駆動トランスミッション
JP6569181B2 (ja) * 2016-03-16 2019-09-04 日立建機株式会社 作業車両
FR3057843B1 (fr) * 2016-10-25 2018-11-30 Poclain Hydraulics Industrie Systeme d'assistance a l'entrainement de vehicule comprenant un circuit hydraulique ouvert
EP3351447A1 (en) 2017-01-18 2018-07-25 Deere & Company Control arrangement for an engine and a hydrostatic transmission of a vehicle
DE102017207570A1 (de) * 2017-02-14 2018-08-16 Robert Bosch Gmbh Hydrostatisches Getriebe und Verfahren zur Bremsung damit
US10370826B2 (en) * 2017-03-08 2019-08-06 Cnh Industrial America Llc System and method for reducing fuel consumption of a work vehicle
JP6683883B2 (ja) 2017-09-29 2020-04-22 日立建機株式会社 ホイールローダ
US10801617B2 (en) * 2018-01-05 2020-10-13 Cnh Industrial America Llc Propel system with active pump displacement control for balancing propel pump pressures in agricultural vehicles
JP6924159B2 (ja) 2018-02-23 2021-08-25 株式会社小松製作所 作業車両及び作業車両の制御方法
JP7160539B2 (ja) * 2018-02-23 2022-10-25 株式会社小松製作所 作業車両及び作業車両の制御方法
US10697151B2 (en) 2018-05-01 2020-06-30 Deere & Company Method of controlling a work machine according to a drivetrain load-adjusted economy mode and control system thereof
JP7175107B2 (ja) * 2018-05-31 2022-11-18 株式会社小松製作所 ブレード制御装置及びブレード制御方法
US10906551B2 (en) * 2018-07-05 2021-02-02 Kubota Corporation Traveling work vehicle equipped with work apparatus
US11559355B2 (en) 2018-07-30 2023-01-24 Boston Scientific Neuromodulation Corporation Augmented and virtual reality for use with neuromodulation therapy
JP7245582B2 (ja) 2018-11-16 2023-03-24 株式会社小松製作所 作業車両、及び作業車両の制御方法
JP7155034B2 (ja) * 2019-02-15 2022-10-18 株式会社小松製作所 作業機械の制御システム
JP7214591B2 (ja) * 2019-08-02 2023-01-30 株式会社クボタ 作業機
JP7182335B2 (ja) * 2019-04-05 2022-12-02 株式会社クボタ 作業機
JP7182336B2 (ja) * 2019-04-05 2022-12-02 株式会社クボタ 作業機
WO2021047650A1 (zh) * 2019-09-12 2021-03-18 中联农业机械股份有限公司 机动车辆及其转向行走控制系统及方法
JP2021099122A (ja) 2019-12-20 2021-07-01 川崎重工業株式会社 静油圧無段変速システム
JP2021146836A (ja) * 2020-03-18 2021-09-27 本田技研工業株式会社 車両制御装置
CN111705859B (zh) * 2020-06-30 2022-12-30 柳工常州机械有限公司 推土机转向控制方法和系统
JP2022022892A (ja) * 2020-07-10 2022-02-07 株式会社小松製作所 作業機械、および作業機械の制御方法
JP7397261B2 (ja) 2020-11-26 2023-12-13 日立建機株式会社 転圧機械
CN112664650B (zh) * 2021-01-05 2023-01-06 潍柴动力股份有限公司 一种用于静液压自动at变速箱的换档控制方法及系统
CN112693521A (zh) * 2021-01-08 2021-04-23 北京理工大学 静液驱动履带车辆神经网络pid转向控制方法
CN112699493B (zh) * 2021-01-08 2022-12-09 北京理工大学 一体化传动直驶稳定性分析模型与实验系统
JP7324963B2 (ja) * 2021-03-26 2023-08-10 日立建機株式会社 作業機械
CN113189999B (zh) * 2021-04-30 2024-04-16 徐工集团工程机械股份有限公司道路机械分公司 压路机及其速度控制方法和系统、控制器和存储介质
US11841080B2 (en) 2021-09-28 2023-12-12 Dana Italia S.R.L. Vehicle system with hydromechanical transmission and power management strategy
CN114263083A (zh) * 2021-12-22 2022-04-01 湖南三一华源机械有限公司 一种压路机节能控制方法、系统及压路机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023547A (ja) * 1988-06-16 1990-01-09 Mitsubishi Heavy Ind Ltd 自送型油圧機械の制御装置
JPH02199367A (ja) * 1989-01-27 1990-08-07 Hitachi Constr Mach Co Ltd 走行用油圧駆動装置
JP2007092908A (ja) * 2005-09-29 2007-04-12 Kubota Corp 作業機の変速制御装置
JP2008180275A (ja) * 2007-01-24 2008-08-07 Komatsu Ltd 油圧駆動装置
WO2008123376A1 (ja) * 2007-03-30 2008-10-16 Komatsu Ltd. 静油圧式無段変速機を備えた車両の制御装置

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1258397A (ja) * 1968-03-25 1971-12-30
US3916625A (en) * 1974-09-23 1975-11-04 Clark Equipment Co Hydrostatic propulsion system
DE2522719C2 (de) * 1975-05-22 1986-06-05 Linde Ag, 6200 Wiesbaden Steuereinrichtung
US4121479A (en) * 1977-03-04 1978-10-24 Sundstrand Corporation Power transmission
DE3035522C2 (de) * 1980-09-19 1983-03-24 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Hydrostatischer Antrieb für zuschaltbare Zusatzantriebsräder selbstfahrender schwerer Arbeitsmaschinen
GB8300483D0 (en) * 1983-01-08 1983-02-09 Commercial Hydraulics Ltd Vehicle steering system
JPS6370311A (ja) 1986-09-11 1988-03-30 Komatsu Ltd 建設車輌用エンジンのガバナ装置
JPH0830426B2 (ja) * 1988-08-23 1996-03-27 株式会社小松製作所 シュースリップに基づくエンジン出力制御方法
US5011458A (en) * 1988-11-09 1991-04-30 Kumm Industries, Inc. Continuously variable transmission using planetary gearing with regenerative torque transfer and employing belt slip to measure and control pulley torque
US5177964A (en) * 1989-01-27 1993-01-12 Hitachi Construction Machinery Co., Ltd. Hydraulic drive traveling system
DE69023651T2 (de) * 1989-06-09 1996-05-02 Komatsu Mfg Co Ltd Vorrichtung zum steuern eines motors mit änderlichem vermögen für ein hydraulisch angetriebenes fahrzeug.
KR920704048A (ko) * 1990-11-30 1992-12-19 니시하찌죠 미노루 차량용 무단변속기
JP2885518B2 (ja) * 1991-01-09 1999-04-26 ヤンマーディーゼル株式会社 作業車の制御装置
JPH05338474A (ja) 1992-06-10 1993-12-21 Yanmar Agricult Equip Co Ltd 移動農機
DE69413293T2 (de) * 1993-04-27 1999-06-02 Shimadzu Corp Gabelstapler-Steuergerät
DE19524188A1 (de) * 1995-07-03 1997-01-09 Brueninghaus Hydromatik Gmbh Hydrostatischer Antrieb mit synchronisiertem Direktdurchtrieb
JP3897319B2 (ja) 1997-07-18 2007-03-22 本田技研工業株式会社 車両用変速機のクリープ制御装置
JPH11210878A (ja) * 1998-01-20 1999-08-03 Honda Motor Co Ltd 可変容量型油圧式変速機の油圧制御装置
JP4386508B2 (ja) * 1999-09-05 2009-12-16 本田技研工業株式会社 静油圧式無段変速機の制御方法
JP4191362B2 (ja) * 2000-03-31 2008-12-03 本田技研工業株式会社 無段変速機の制御方法
KR100483874B1 (ko) * 2002-07-12 2005-04-20 가부시끼 가이샤 구보다 작업차의 주행 제어 장치
JP4208179B2 (ja) * 2002-10-28 2009-01-14 株式会社小松製作所 油圧駆動車両
JP4201172B2 (ja) * 2002-11-18 2008-12-24 株式会社小松製作所 油圧走行システム
JP4315888B2 (ja) * 2003-11-11 2009-08-19 株式会社小松製作所 車両制御装置
US7685900B2 (en) * 2003-12-04 2010-03-30 Komatsu Ltd. Vehicle mounted with continuous stepless transmission
CN1680701B (zh) * 2004-01-21 2011-05-11 株式会社小松制作所 静压式变速车辆及静压式变速器的控制器
JP4448777B2 (ja) 2004-01-21 2010-04-14 株式会社小松製作所 静油圧式変速車両および静油圧式変速機のコントローラ
WO2005092691A1 (ja) * 2004-03-26 2005-10-06 Komatsu Ltd. 作業車両の走行制御装置および走行制御プログラムあるいは作業車両の制御装置および制御プログラム
DE112005001726T5 (de) * 2004-07-28 2010-04-22 Komatsu Ltd. Schaltsteuervorrichtung und Schaltsteuerverfahren für Fahrzeuge
JP4404313B2 (ja) * 2004-12-07 2010-01-27 ヤンマー株式会社 作業車両の制御装置
JP2007022379A (ja) * 2005-07-19 2007-02-01 Kanzaki Kokyukoki Mfg Co Ltd 作業運搬車
JP4193830B2 (ja) * 2005-09-02 2008-12-10 コベルコ建機株式会社 作業機械の油圧制御装置
CN101900043B (zh) * 2005-10-28 2012-01-04 株式会社小松制作所 发动机、液压泵以及发电电动机的控制装置
US7798272B2 (en) * 2006-11-30 2010-09-21 Caterpillar Inc Systems and methods for controlling slip of vehicle drive members
WO2008081856A1 (ja) * 2006-12-28 2008-07-10 Hitachi Construction Machinery Co., Ltd. 油圧式走行車両の走行制御装置
CN101578441B (zh) * 2007-01-18 2012-11-21 株式会社小松制作所 发动机的控制装置及其控制方法
EP1961994A3 (en) * 2007-01-23 2010-08-25 Kanzaki Kokyukoki Mfg. Co., Ltd. Working-vehicle transmission system
EP2106951B1 (en) * 2007-01-23 2013-06-26 Yanmar Co., Ltd. Working vehicle with a hydraulic stepless transmission
JP5171053B2 (ja) * 2007-02-09 2013-03-27 日立建機株式会社 油圧駆動車両のクラッチ制御装置
JP5084295B2 (ja) * 2007-02-09 2012-11-28 日立建機株式会社 油圧建設機械のポンプトルク制御装置
JP4871760B2 (ja) * 2007-02-28 2012-02-08 日立建機株式会社 油圧駆動車両の原動機回転数制御装置
JP5046690B2 (ja) * 2007-03-12 2012-10-10 日立建機株式会社 作業車両の制御装置
JP4297948B2 (ja) * 2007-04-13 2009-07-15 トヨタ自動車株式会社 ハイブリッド駆動装置およびその制御方法
US7854681B2 (en) * 2007-04-30 2010-12-21 Caterpillar Inc System for controlling a machine with a continuously variable transmission
US7886534B2 (en) * 2007-06-12 2011-02-15 Parker-Hannifin Corporation Integrated hydrostatic transmission assembly
US7778756B2 (en) * 2007-06-29 2010-08-17 Vermeer Manufacturing Company Track trencher propulsion system with load control
JP5069518B2 (ja) * 2007-08-10 2012-11-07 日立建機株式会社 作業機械の走行システム
JP4825765B2 (ja) * 2007-09-25 2011-11-30 株式会社クボタ バックホーの油圧システム
US7849953B2 (en) * 2007-11-29 2010-12-14 Caterpillar Paving Products Inc Control system and method for operating a hydrostatically driven vehicle
JP5062835B2 (ja) * 2008-01-11 2012-10-31 ヤンマー株式会社 作業車輌
HUE028251T2 (en) * 2008-06-05 2016-12-28 Maziere Filip De Reversible Variable Gear RVT
US20110036881A1 (en) * 2009-08-13 2011-02-17 Mustang Motion LLC Golf cart storage accessory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023547A (ja) * 1988-06-16 1990-01-09 Mitsubishi Heavy Ind Ltd 自送型油圧機械の制御装置
JPH02199367A (ja) * 1989-01-27 1990-08-07 Hitachi Constr Mach Co Ltd 走行用油圧駆動装置
JP2007092908A (ja) * 2005-09-29 2007-04-12 Kubota Corp 作業機の変速制御装置
JP2008180275A (ja) * 2007-01-24 2008-08-07 Komatsu Ltd 油圧駆動装置
WO2008123376A1 (ja) * 2007-03-30 2008-10-16 Komatsu Ltd. 静油圧式無段変速機を備えた車両の制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8515637B2 (en) 2010-12-23 2013-08-20 Caterpillar Inc. Machine control system and method
CN109774700A (zh) * 2018-11-15 2019-05-21 中国铁建重工集团有限公司 一种井下液压驱动行走系统及行走速度调节方法
CN109774700B (zh) * 2018-11-15 2023-12-12 中国铁建重工集团股份有限公司 一种井下液压驱动行走系统及行走速度调节方法
CN114402150A (zh) * 2019-09-19 2022-04-26 克拉克设备公司 驱动马达排量控制装置

Also Published As

Publication number Publication date
WO2010070962A1 (ja) 2010-06-24
US8532888B2 (en) 2013-09-10
US8725364B2 (en) 2014-05-13
CN102245941A (zh) 2011-11-16
BRPI0919966A2 (pt) 2015-12-08
US9091342B2 (en) 2015-07-28
US20110202243A1 (en) 2011-08-18
CN102245940A (zh) 2011-11-16
JP2013076470A (ja) 2013-04-25
JP5274580B2 (ja) 2013-08-28
JP5274581B2 (ja) 2013-08-28
US20110196585A1 (en) 2011-08-11
CN102245941B (zh) 2014-05-07
BRPI0920016A2 (pt) 2015-12-15
US20150066317A1 (en) 2015-03-05
JP5555782B2 (ja) 2014-07-23
JPWO2010070962A1 (ja) 2012-05-24
JPWO2010070961A1 (ja) 2012-05-24
CN102245940B (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5274580B2 (ja) 静油圧式変速車両の制御装置
JP5362958B2 (ja) 油圧駆動装置
JP5164933B2 (ja) 作業車両の制御装置
JP4990333B2 (ja) 作業車両
JP5072926B2 (ja) 作業車両
JP4482522B2 (ja) エンジン出力制御装置
JP2005061322A (ja) 作業車両の制御装置
WO2010109972A1 (ja) 建設車両
JP6198846B2 (ja) ホイールローダ及びその制御方法
JP5074571B2 (ja) 作業車両および作業車両の制御方法
JP2004144254A (ja) 油圧駆動車両
JP5978396B2 (ja) 作業車両
JP2982606B2 (ja) 静油圧−機械式変速機の制御装置
JP5860390B2 (ja) 作業車両の変速装置
JP7245582B2 (ja) 作業車両、及び作業車両の制御方法
WO2022201676A1 (ja) 作業機械
KR20180030696A (ko) 작업차량
JP6351678B2 (ja) ホイールローダ及びその制御方法
JP2019070433A (ja) 車両の走行制御装置
JP2008232342A (ja) 走行制御装置
KR20160133322A (ko) 휠 로더의 제어 방법 및 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149334.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833266

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13124976

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2010542905

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0919966

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110428