WO2010075586A2 - Dual-mode rotatable input device - Google Patents

Dual-mode rotatable input device Download PDF

Info

Publication number
WO2010075586A2
WO2010075586A2 PCT/US2009/069547 US2009069547W WO2010075586A2 WO 2010075586 A2 WO2010075586 A2 WO 2010075586A2 US 2009069547 W US2009069547 W US 2009069547W WO 2010075586 A2 WO2010075586 A2 WO 2010075586A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotatable
resistive
input device
scroll wheel
stationary hub
Prior art date
Application number
PCT/US2009/069547
Other languages
French (fr)
Other versions
WO2010075586A3 (en
Inventor
Andrew Hill
David Stephen Zucker
Original Assignee
Microsoft Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Corporation filed Critical Microsoft Corporation
Priority to CN2009801531240A priority Critical patent/CN102265243B/en
Priority to JP2011543699A priority patent/JP2012514258A/en
Priority to ES09835890.6T priority patent/ES2645088T3/en
Priority to EP09835890.6A priority patent/EP2370877B1/en
Publication of WO2010075586A2 publication Critical patent/WO2010075586A2/en
Publication of WO2010075586A3 publication Critical patent/WO2010075586A3/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03543Mice or pucks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0362Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 1D translations or rotations of an operating part of the device, e.g. scroll wheels, sliders, knobs, rollers or belts

Definitions

  • Many electronic devices utilize rotatable inputs to allow a user to make an input by rotating a dial, wheel, or the like.
  • computer mice often include scroll wheels rotatable by a user to scroll a list, a document, or other object displayed on a graphical user interface of a computing device.
  • Various rotatable input devices include mechanical features that facilitate fine-scale input control.
  • some scroll wheels may include indexing features that cause the scroll wheels to rotate in a stepped manner, while other scroll wheels may utilize frictional resistance to allow fine control over a continuous range of positions.
  • one disclosed embodiment provides a rotatable input device for an electronic device, wherein the input device comprises a stationary hub, a rotatable member configured to be rotatable around the stationary hub by a user, and a resistive rotation mechanism forming an interface between the stationary hub and the rotatable member.
  • the resistive rotation mechanism comprises a resistive surface and a movable interface member configured to selectively contact the resistive surface, wherein the resistive surface and the movable interface member are configured to move relative to one another with rotation of the rotatable member.
  • the resistive mechanism further comprises a biasing mechanism configured to urge the movable interface member into engagement with the resistive surface when a rotational velocity of the rotatable member is below a threshold velocity, and to allow separation of the interface member and the resistive surface when the rotational velocity of the rotatable member is above the threshold velocity.
  • Figure 1 shows a view of an embodiment of a computer mouse with a rotatable input device in the form of a scroll wheel.
  • Figure 2 shows a view of an embodiment of a dual-mode scroll wheel for a computer mouse, and illustrates a first mode of the scroll wheel.
  • Figure 3 illustrates a second mode of the scroll wheel of Figure 2.
  • Figure 4 shows an embodiment of a dual-mode scroll wheel having bearing channels oriented out of a plane of the scroll wheel.
  • Figure 5 shows an embodiment of a dual-mode scroll wheel having bearing channels oriented in a plane of the scroll wheel.
  • Figure 6 shows an embodiment of a dual-mode scroll wheel having one magnet corresponding to two detents.
  • Figure 7 shows an embodiment of a dual-mode scroll wheel utilizing a plurality of springs as a biasing mechanism.
  • FIG. 1 shows an embodiment of a computer mouse 100 having a scroll wheel 102 that may be used to scroll through a list of items on a graphical user interface of a computing device.
  • Figure 2 shows a sectional view of the scroll wheel 102 when at rest or being rotated at a low rotational velocity
  • Figure 3 shows a sectional view of the scroll wheel 102 when rotated at a higher rotational velocity
  • the scroll wheel 102 comprises a stationary hub 200, a rotatable member 202 (i.e. the outer portion of the scroll wheel 102 that is manipulated by a user), and a resistive rotation mechanism, indicated generally at 206, that forms an interface between the stationary hub 200 and the rotatable member 202.
  • a resistive rotation mechanism indicated generally at 206
  • the depicted resistive rotation mechanism 206 comprises an indexed surface
  • the resistive rotation mechanism 206 also comprises a biasing mechanism 214 configured to urge the moveable interface members 212 into engagement with the indexed surface 210 when the rotational velocity of the rotatable member 202 is below a threshold velocity, and to separate the interface members 212 and the indexed surface 210 when the rotational velocity of the rotatable member 202 is above the threshold velocity. In this manner, the rotatable member 202 automatically switches between resistive and non-resistive rotation depending upon how fast a user rotates the scroll wheel 102.
  • resistive rotation denotes any “fine control” rotation mode that has additional friction or other resistance (indexed or non-indexed) compared to a lower-resistance mode of rotatable input device
  • non-resistive rotation denotes any rotation mode that has lower friction or other resistance compared to a fine control mode.
  • scroll wheel 102 in a computer mouse provides a simple and effective dual mode (resistive/non-resistive) scroll wheel for a computer mouse that switches between the modes without any input from a user other than ordinary manipulation of the scroll wheel that occurs during normal use.
  • This is in contrast to other dual mode scroll wheels, which have a button or other control selectable by a user to switch between resistive and non-resistive rotation, for example, via a motor or mechanical coupling that engages or disengages a resistance mechanism.
  • a rotatable input device may utilize any suitable structure or structures to add resistance to lower velocity operation.
  • the indexed surface 210 comprises a plurality of detents 220 formed on an outer radial perimeter of the stationary hub 200
  • the movable interface member comprises a plurality of bearings 222 each disposed within a corresponding internal space 224 formed in the rotatable member 202 that has an opening facing the indexed surface 210.
  • the internal space 224 may be referred to herein as a "bearing holder" in the context of specific embodiments that utilize bearings as a movable interface member.
  • the biasing mechanism 214 comprises a magnet 226 disposed within the stationary hub at a location adjacent to the detents.
  • the attraction between the magnet 226 and each bearing 222 is sufficient to pull the bearing into the detents 220 as each bearing 222 is moved past the detents 220. Therefore, at these rotational velocities, the movement of each bearing 222 into and out of the detents 220 gives the rotation of the scroll wheel 102 an indexed feel that allows precise control for fine-scale input control.
  • each bearing 222 and the depth of the bearing holders 224 may be selected to tailor the centripetal force threshold between resistive and non-resistive rotation to fall at a desired rotational velocity.
  • each bearing may have a mass of approximately 50 mg and each bearing holder 224 may have a depth of between approximately 1.5-3 mm.
  • a number of and spacing of detents compared to a number of and spacing of bearings may be selected to tailor the spacing between indices to a desired value in light of an amount of space available on the rotatable member 202 and/or the stationary hub 200. For example, where it is desired to have relatively closely spaced indices, there may be insufficient space to increase a number of bearings within the rotatable member 202. Therefore, as shown in Figures 2-3 two or more detents 220 may be provided on the indexed surface 210 so that each bearing encounters multiple detents. In this manner, a radial spacing between indices may be increased without increasing a number of bearings within the rotatable member 202.
  • a scroll wheel may be provided with eighteen bearings and one detent, nine bearings and two detents, six bearing and three detents, etc. While the depicted movable interface member comprises one or more bearings, it will be understood that any other suitable structure may be used as moveable interface member, including but not limited to pins, rollers, etc.
  • the level of resistance encountered at each index may be tailored by selection of detent depth and profile, as well as magnet strength. For example, relatively high-resistance indices may be formed via the use of a relatively stronger magnet and/or relatively deeper detents, while relatively lower resistance indices may be formed via the use of a relatively weaker magnet and/or relatively shallower detents.
  • the surfaces within each bearing holder 224 may comprise a relatively soft surface configured to reduce noise from the movement of bearings 222 within the bearing holders 224 during use. For example, a two-shot injection molding process may be used to form rotatable member 202, stationary hub 200, etc.
  • the rotatable member is formed from an acetyl plastic with an approximately 1 mm thick thermoplastic elastomeric coating formed within the bearing holders 224.
  • Figures 4 and 5 show sectional views of two embodiments of scroll wheels taken along a direction normal to a rotational axis of the scroll wheels.
  • the bearing holders 224 are arranged at an angle relative to a plane in which the rotatable member 202 rotates. This may help to prevent bearings from rolling out of the bearing holders 224 during device construction.
  • the bearing holders 524 may be arranged parallel to the plane in which the rotatable member 502 rotates on stationary hub 500.
  • FIGS. 2 and 3 show the use of a single magnet disposed beneath two closely-spaced detents such that a single pole of the magnets provides the biasing force associated with both detents.
  • one magnet may be provided for each detent.
  • both poles of a single magnet may be utilized to provide biasing force for two detents.
  • Figure 6 shows an embodiment of a scroll wheel 600 in which a single U-shaped magnet 602 is used to provide biasing force for two detents 604, 606.
  • a first pole 603 of the U-shaped magnet 602 is located adjacent to a first detent 604, and a second pole 605 of the U-shaped magnet is located adjacent to a second detent 606.
  • FIG. 7 shows another embodiment of a rotatable input device 700 according to the present disclosure.
  • input device 700 utilizes a spring 702 disposed within each internal space 704 to bias movable interface members in the form of bearings 706 toward a resistive surface 708. While coil sprigs are shown as springs 702, it will be understood that any other suitable type of spring may be used, including but not limited to leaf springs, etc.
  • the movable interface member is shown as being incorporated into a rotatable member of a scroll wheel, and the resistive surface against which the interface member is biased is shown as being disposed on an outer surface of a stationary hub.
  • a movable indexed surface may be located on a rotatable portion of a scroll wheel, and the interface member may be located on a stationary hub.
  • both the resistive surface and interface member may be located on structures external to the scroll wheel that are, for example, connected to the rotatable member of the scroll wheel via a drive shaft, suitable gearing, etc.
  • the movable interface member may comprise one or more pins disposed within the rotatable member that are configured to strike elastomeric ridges that extend from the stationary hub toward the rotatable member.
  • the disclosed rotatable input devices do not utilize complex assembly procedures, and operate entirely on mechanical principles. Therefore, the use of the disclosed rotatable input devices with computer mice does not affect the optical encoder or electronics of a mouse, thereby facilitating use of the disclosed input devices in existing mouse designs.
  • the dual-mode rotation configurations and/or approaches described herein are exemplary in nature, and that these specific embodiments or examples are not to be considered in a limiting sense, because numerous variations are possible.
  • the subject matter of the present disclosure includes all novel and non-obvious combinations and subcombinations of the various processes, systems and configurations, and other features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.

Abstract

Embodiments related to dual mode rotatable input devices that permit both resistive and non-resistive rotation are disclosed. One embodiment comprises a stationary hub, a rotatable member rotatable around the stationary hub, and a resistive rotation mechanism forming an interface between the stationary hub and the rotatable member. The resistive rotation mechanism comprises a resistive surface and a movable interface member configured to selectively contact the resistive surface, wherein the resistive surface and the movable interface member move relative to one another with rotation of the rotatable member. The resistive mechanism further comprises a biasing mechanism that urges the movable interface member into engagement with the resistive surface when a rotational velocity of the rotatable member is below a threshold velocity, and allows separation of the interface member and the resistive surface when the rotational velocity of the rotatable member is above the threshold velocity.

Description

DUAL-MODE ROTATABLE INPUT DEVICE
BACKGROUND
[0001] Many electronic devices utilize rotatable inputs to allow a user to make an input by rotating a dial, wheel, or the like. As one example, computer mice often include scroll wheels rotatable by a user to scroll a list, a document, or other object displayed on a graphical user interface of a computing device.
[0002] Various rotatable input devices include mechanical features that facilitate fine-scale input control. For example, some scroll wheels may include indexing features that cause the scroll wheels to rotate in a stepped manner, while other scroll wheels may utilize frictional resistance to allow fine control over a continuous range of positions.
However, in either case, such fine control mechanisms may impede rapid scrolling through large lists.
SUMMARY
[0003] Accordingly, various embodiments related to dual mode rotatable input devices are disclosed herein that permit both resistive and non-resistive rotation. For example, one disclosed embodiment provides a rotatable input device for an electronic device, wherein the input device comprises a stationary hub, a rotatable member configured to be rotatable around the stationary hub by a user, and a resistive rotation mechanism forming an interface between the stationary hub and the rotatable member. The resistive rotation mechanism comprises a resistive surface and a movable interface member configured to selectively contact the resistive surface, wherein the resistive surface and the movable interface member are configured to move relative to one another with rotation of the rotatable member. The resistive mechanism further comprises a biasing mechanism configured to urge the movable interface member into engagement with the resistive surface when a rotational velocity of the rotatable member is below a threshold velocity, and to allow separation of the interface member and the resistive surface when the rotational velocity of the rotatable member is above the threshold velocity. [0004] This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
[0005] Figure 1 shows a view of an embodiment of a computer mouse with a rotatable input device in the form of a scroll wheel.
[0006] Figure 2 shows a view of an embodiment of a dual-mode scroll wheel for a computer mouse, and illustrates a first mode of the scroll wheel.
[0007] Figure 3 illustrates a second mode of the scroll wheel of Figure 2.
[0008] Figure 4 shows an embodiment of a dual-mode scroll wheel having bearing channels oriented out of a plane of the scroll wheel.
[0009] Figure 5 shows an embodiment of a dual-mode scroll wheel having bearing channels oriented in a plane of the scroll wheel.
[0010] Figure 6 shows an embodiment of a dual-mode scroll wheel having one magnet corresponding to two detents.
[0011] Figure 7 shows an embodiment of a dual-mode scroll wheel utilizing a plurality of springs as a biasing mechanism.
DETAILED DESCRIPTION [0012] Various embodiments of rotatable input devices are disclosed herein that are selectively changeable between resistive and non-resistive rotation modes to allow both fine control at low rotation velocities and rapid movement through a large range of items at high rotation velocities. For example, Figure 1 shows an embodiment of a computer mouse 100 having a scroll wheel 102 that may be used to scroll through a list of items on a graphical user interface of a computing device.
[0013] Figure 2 shows a sectional view of the scroll wheel 102 when at rest or being rotated at a low rotational velocity, and Figure 3 shows a sectional view of the scroll wheel 102 when rotated at a higher rotational velocity. The scroll wheel 102 comprises a stationary hub 200, a rotatable member 202 (i.e. the outer portion of the scroll wheel 102 that is manipulated by a user), and a resistive rotation mechanism, indicated generally at 206, that forms an interface between the stationary hub 200 and the rotatable member 202. While disclosed herein in the context of a scroll wheel for a mouse, it will be understood that the rotatable input device of Figures 2-3 may be used with any other suitable rotatable control, and in any suitable use environment. It will be understood that motion of the scroll wheel 102 may be tracked via optical encoding, or via any other suitable method. Such motion tracking mechanisms are omitted from these figures for the purposes of clarity. [0014] The depicted resistive rotation mechanism 206 comprises an indexed surface
210, and one or more moveable interface members 212 configured to selectively interface with the indexed surface 210, depending upon a velocity at which the rotatable member 202 is rotated by a user. The resistive rotation mechanism 206 also comprises a biasing mechanism 214 configured to urge the moveable interface members 212 into engagement with the indexed surface 210 when the rotational velocity of the rotatable member 202 is below a threshold velocity, and to separate the interface members 212 and the indexed surface 210 when the rotational velocity of the rotatable member 202 is above the threshold velocity. In this manner, the rotatable member 202 automatically switches between resistive and non-resistive rotation depending upon how fast a user rotates the scroll wheel 102. It will be understood that other embodiments may utilize a non-indexed resistive surface without such detents, but that otherwise operates in a like manner. Further, it will be understood that the term "resistive rotation" as used herein denotes any "fine control" rotation mode that has additional friction or other resistance (indexed or non-indexed) compared to a lower-resistance mode of rotatable input device, and the term "non-resistive rotation" denotes any rotation mode that has lower friction or other resistance compared to a fine control mode.
[0015] The use of scroll wheel 102 in a computer mouse provides a simple and effective dual mode (resistive/non-resistive) scroll wheel for a computer mouse that switches between the modes without any input from a user other than ordinary manipulation of the scroll wheel that occurs during normal use. This is in contrast to other dual mode scroll wheels, which have a button or other control selectable by a user to switch between resistive and non-resistive rotation, for example, via a motor or mechanical coupling that engages or disengages a resistance mechanism.
[0016] A rotatable input device according to the present disclosure may utilize any suitable structure or structures to add resistance to lower velocity operation. For example, in the embodiment depicted in Figs. 2-3, the indexed surface 210 comprises a plurality of detents 220 formed on an outer radial perimeter of the stationary hub 200, and the movable interface member comprises a plurality of bearings 222 each disposed within a corresponding internal space 224 formed in the rotatable member 202 that has an opening facing the indexed surface 210. The internal space 224 may be referred to herein as a "bearing holder" in the context of specific embodiments that utilize bearings as a movable interface member. [0017] Further, the biasing mechanism 214 comprises a magnet 226 disposed within the stationary hub at a location adjacent to the detents. When the scroll wheel 102 is rotated at a rotational velocity less than a threshold velocity, the attraction between the magnet 226 and each bearing 222 is sufficient to pull the bearing into the detents 220 as each bearing 222 is moved past the detents 220. Therefore, at these rotational velocities, the movement of each bearing 222 into and out of the detents 220 gives the rotation of the scroll wheel 102 an indexed feel that allows precise control for fine-scale input control. [0018] On the other hand, as illustrated in Figure 3, where the rotational velocity of the scroll wheel 102 is above the threshold velocity, the attractive force of the magnet 226 is insufficient to overcome the centripetal force exerted by the bearings 222 against the "bottom" surfaces in internal spaces 224 (i.e. the surfaces of the internal spaces farthest from the stationary hub 200). Therefore, when operated at these rotational velocities, the bearings 222 do not engage with the detents, allowing the scroll wheel 102 to freely spin without indexed movement. In this manner, the scroll wheel 102 may be "flicked" at a high rotational velocity to facilitate scrolling through large documents via unindexed, unimpeded motion of the scroll wheel.
[0019] The various dimensions of the stationary hub 200, rotatable member 202, bearings 222, internal spaces 224, and other parts of the scroll wheel 102 may have any suitable values. For example, the mass of each bearing 222 and the depth of the bearing holders 224 may be selected to tailor the centripetal force threshold between resistive and non-resistive rotation to fall at a desired rotational velocity. For example, in one specific embodiment configured to enable non-resistive rotation of the scroll wheel at 1000 rpm, each bearing may have a mass of approximately 50 mg and each bearing holder 224 may have a depth of between approximately 1.5-3 mm.
[0020] Likewise, a number of and spacing of detents compared to a number of and spacing of bearings may be selected to tailor the spacing between indices to a desired value in light of an amount of space available on the rotatable member 202 and/or the stationary hub 200. For example, where it is desired to have relatively closely spaced indices, there may be insufficient space to increase a number of bearings within the rotatable member 202. Therefore, as shown in Figures 2-3 two or more detents 220 may be provided on the indexed surface 210 so that each bearing encounters multiple detents. In this manner, a radial spacing between indices may be increased without increasing a number of bearings within the rotatable member 202. As a more detailed example, if it is desired to have 20 degrees between indices, a scroll wheel may be provided with eighteen bearings and one detent, nine bearings and two detents, six bearing and three detents, etc. While the depicted movable interface member comprises one or more bearings, it will be understood that any other suitable structure may be used as moveable interface member, including but not limited to pins, rollers, etc.
[0021] The level of resistance encountered at each index may be tailored by selection of detent depth and profile, as well as magnet strength. For example, relatively high-resistance indices may be formed via the use of a relatively stronger magnet and/or relatively deeper detents, while relatively lower resistance indices may be formed via the use of a relatively weaker magnet and/or relatively shallower detents. [0022] In some embodiments, the surfaces within each bearing holder 224 may comprise a relatively soft surface configured to reduce noise from the movement of bearings 222 within the bearing holders 224 during use. For example, a two-shot injection molding process may be used to form rotatable member 202, stationary hub 200, etc. from a hard plastic, and to form a softer plastic or elastomeric coating within the bearing holders 224 and/or over indexed surface 210. In one specific embodiment, the rotatable member is formed from an acetyl plastic with an approximately 1 mm thick thermoplastic elastomeric coating formed within the bearing holders 224.
[0023] Figures 4 and 5 show sectional views of two embodiments of scroll wheels taken along a direction normal to a rotational axis of the scroll wheels. First referring to
Figure 4, the bearing holders 224 are arranged at an angle relative to a plane in which the rotatable member 202 rotates. This may help to prevent bearings from rolling out of the bearing holders 224 during device construction. Alternatively, as shown in Figure 5, the bearing holders 524 may be arranged parallel to the plane in which the rotatable member 502 rotates on stationary hub 500.
[0024] The embodiment of Figs. 2 and 3 show the use of a single magnet disposed beneath two closely-spaced detents such that a single pole of the magnets provides the biasing force associated with both detents. In other embodiments, one magnet may be provided for each detent. In yet other embodiments, both poles of a single magnet may be utilized to provide biasing force for two detents. Figure 6 shows an embodiment of a scroll wheel 600 in which a single U-shaped magnet 602 is used to provide biasing force for two detents 604, 606. A first pole 603 of the U-shaped magnet 602 is located adjacent to a first detent 604, and a second pole 605 of the U-shaped magnet is located adjacent to a second detent 606. By utilizing both poles of a magnet in this manner, a single magnet can be used to efficiently provide biasing force to two detents. This may allow space within the stationary hub to be used efficiently.
[0025] Figure 7 shows another embodiment of a rotatable input device 700 according to the present disclosure. Instead of utilizing one or more magnets to provide biasing force, input device 700 utilizes a spring 702 disposed within each internal space 704 to bias movable interface members in the form of bearings 706 toward a resistive surface 708. While coil sprigs are shown as springs 702, it will be understood that any other suitable type of spring may be used, including but not limited to leaf springs, etc. [0026] In the depicted embodiments, the movable interface member is shown as being incorporated into a rotatable member of a scroll wheel, and the resistive surface against which the interface member is biased is shown as being disposed on an outer surface of a stationary hub. However, in other embodiments, a movable indexed surface may be located on a rotatable portion of a scroll wheel, and the interface member may be located on a stationary hub. Further, in other embodiments, both the resistive surface and interface member may be located on structures external to the scroll wheel that are, for example, connected to the rotatable member of the scroll wheel via a drive shaft, suitable gearing, etc. In yet other embodiments, the movable interface member may comprise one or more pins disposed within the rotatable member that are configured to strike elastomeric ridges that extend from the stationary hub toward the rotatable member. [0027] The depicted embodiments allow a user to select between rotation modes simply by changing a rotational velocity of a rotatable input member. The disclosed rotatable input devices do not utilize complex assembly procedures, and operate entirely on mechanical principles. Therefore, the use of the disclosed rotatable input devices with computer mice does not affect the optical encoder or electronics of a mouse, thereby facilitating use of the disclosed input devices in existing mouse designs. It should be understood that the dual-mode rotation configurations and/or approaches described herein are exemplary in nature, and that these specific embodiments or examples are not to be considered in a limiting sense, because numerous variations are possible. The subject matter of the present disclosure includes all novel and non-obvious combinations and subcombinations of the various processes, systems and configurations, and other features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.

Claims

CLAIMS:
1. A rotatable input device (102) for an electronic device (100), the input device (102) comprising: a stationary hub (200); a rotatable member (202) rotatable around the stationary hub (200) by a user; a resistive rotation mechanism (206) forming an interface between the stationary hub (200) and the rotatable member (202), the resistive rotation mechanism (206) comprising a resistive surface (210) and a movable interface member (212) configured to selectively interface with the resistive surface (220), wherein the resistive surface (210) and the movable interface member (212) are configured to move relative to one another with rotation of the rotatable member (202); and a biasing mechanism (214) configured to urge the movable interface member (212) into engagement with the resistive surface (210) when a rotational velocity of the rotatable member (202) is below a threshold velocity, and to separate the interface member (212) and the resistive surface (210) when the rotational velocity of the rotatable member (202) is above the threshold velocity.
2. The rotatable input device of claim 1, wherein the input device comprises a scroll wheel on a computer mouse.
3. The rotatable input device of claim 1, wherein the resistive surface comprises a detent formed in a surface of the stationary hub.
4. The rotatable input device of claim 3, wherein the movable interface member comprises a bearing disposed in a bearing holder formed in the rotatable member, the bearing holder comprising an opening facing the resistive surface.
5. The rotatable input device of claim 3, wherein the biasing mechanism comprises a magnet located within the stationary hub adjacent to the detent.
6. The rotatable input device of claim 3, further comprising a plurality of detents formed in the surface of the stationary hub.
7. The rotatable input device of claim 6, wherein the biasing mechanism comprises a magnet with a first pole located adjacent a first detent and a second pole located adjacent a second detent.
8. The rotatable input device of claim 1, wherein the biasing mechanism comprises a magnet.
9. The rotatable input device of claim 1, wherein the biasing mechanism comprises a spring.
10. A computer mouse (100), comprising : a scroll wheel (102) rotatable by a user of the computer mouse (100); an indexed surface (210) and a movable interface member (212) associated with the scroll wheel (102), wherein rotation of the scroll wheel (102) causes relative movement between the indexed surface (210) and the movable interface member (212); and a biasing mechanism (214) configured to urge the movable interface member (212) and indexed surface (210) into engagement when a rotational velocity of the scroll wheel (102) is below a threshold velocity, and to allow the movable interface member (212) and the indexed surface (210) to separate when the rotational velocity of the scroll wheel (102) is above the threshold velocity.
11. The computer mouse of claim 10, wherein the scroll wheel comprises a rotatable member and a stationary hub, and wherein the indexed surface comprises a detent formed in a surface of the stationary hub.
12. The computer mouse of claim 11, wherein the rotatable member comprises a bearing holder with an opening facing the indexed surface, and wherein the movable interface member comprises a bearing located within the bearing holder.
13. The computer mouse of claim 12, wherein the biasing mechanism comprises a magnet located within the stationary hub adjacent to the detent.
14. The computer mouse of claim 13, wherein the biasing mechanism comprises a magnet with a first pole located adjacent a first detent and a second pole located adjacent a second detent.
15. The computer mouse of claim 10, wherein the biasing mechanism comprises a spring.
PCT/US2009/069547 2008-12-26 2009-12-26 Dual-mode rotatable input device WO2010075586A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801531240A CN102265243B (en) 2008-12-26 2009-12-26 Dual-mode rotatable input device
JP2011543699A JP2012514258A (en) 2008-12-26 2009-12-26 Dual-mode rotatable input device
ES09835890.6T ES2645088T3 (en) 2008-12-26 2009-12-26 Two-way rotary input device
EP09835890.6A EP2370877B1 (en) 2008-12-26 2009-12-26 Dual-mode rotatable input device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/344,431 US8040331B2 (en) 2008-12-26 2008-12-26 Dual-mode rotatable input device
US12/344,431 2008-12-26

Publications (2)

Publication Number Publication Date
WO2010075586A2 true WO2010075586A2 (en) 2010-07-01
WO2010075586A3 WO2010075586A3 (en) 2010-10-14

Family

ID=42284323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/069547 WO2010075586A2 (en) 2008-12-26 2009-12-26 Dual-mode rotatable input device

Country Status (6)

Country Link
US (1) US8040331B2 (en)
EP (1) EP2370877B1 (en)
JP (1) JP2012514258A (en)
CN (1) CN102265243B (en)
ES (1) ES2645088T3 (en)
WO (1) WO2010075586A2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8040331B2 (en) * 2008-12-26 2011-10-18 Microsoft Corporation Dual-mode rotatable input device
US9007302B1 (en) 2011-11-11 2015-04-14 Benjamin D. Bandt-Horn Device and user interface for visualizing, navigating, and manipulating hierarchically structured information on host electronic devices
US11513675B2 (en) * 2012-12-29 2022-11-29 Apple Inc. User interface for manipulating user interface objects
US11068128B2 (en) * 2013-09-03 2021-07-20 Apple Inc. User interface object manipulations in a user interface
KR20160051846A (en) 2013-09-03 2016-05-11 애플 인크. User interface for manipulating user interface objects with magnetic properties
US10545657B2 (en) 2013-09-03 2020-01-28 Apple Inc. User interface for manipulating user interface objects
JP2015075912A (en) * 2013-10-09 2015-04-20 ソニー株式会社 Operation mechanism and imaging apparatus
CN116301544A (en) 2014-06-27 2023-06-23 苹果公司 Reduced size user interface
TW201610758A (en) 2014-09-02 2016-03-16 蘋果公司 Button functionality
WO2016036509A1 (en) 2014-09-02 2016-03-10 Apple Inc. Electronic mail user interface
CN112199000A (en) 2014-09-02 2021-01-08 苹果公司 Multi-dimensional object rearrangement
WO2016036510A1 (en) 2014-09-02 2016-03-10 Apple Inc. Music user interface
US10073590B2 (en) 2014-09-02 2018-09-11 Apple Inc. Reduced size user interface
US10365807B2 (en) 2015-03-02 2019-07-30 Apple Inc. Control of system zoom magnification using a rotatable input mechanism
US9778760B1 (en) 2016-03-09 2017-10-03 Microsoft Technology Licensing, Llc Magnetic detent for input controls
DK201670595A1 (en) 2016-06-11 2018-01-22 Apple Inc Configuring context-specific user interfaces
CN106339112B (en) * 2016-08-25 2019-01-11 苏州达方电子有限公司 Roller device of mouse
CN108241445B (en) * 2016-12-23 2021-09-28 微软技术许可有限责任公司 Scroll wheel assembly and related input device
US10331238B2 (en) 2017-01-24 2019-06-25 Tsung-Ching Kao Magnetic scaling and positioning scroll wheel of mechanical mouse
US10726984B2 (en) * 2018-06-27 2020-07-28 Logitech Europe S.A. Electromagnetic mode change of peripheral interface wheel
DK179888B1 (en) 2018-09-11 2019-08-27 Apple Inc. CONTENT-BASED TACTICAL OUTPUTS
US11435830B2 (en) 2018-09-11 2022-09-06 Apple Inc. Content-based tactile outputs
US11733790B2 (en) * 2020-09-24 2023-08-22 Apple Inc. Ring input device with pressure-sensitive input
US11893212B2 (en) 2021-06-06 2024-02-06 Apple Inc. User interfaces for managing application widgets

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070279401A1 (en) 2006-06-02 2007-12-06 Immersion Corporation Hybrid haptic device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914705A (en) * 1996-02-09 1999-06-22 Lucent Technologies Inc. Apparatus and method for providing detent-like tactile feedback
US6128006A (en) 1998-03-26 2000-10-03 Immersion Corporation Force feedback mouse wheel and other control wheels
US5912661A (en) 1997-01-14 1999-06-15 Microsoft Corp. Z-encoder mechanism
US6865718B2 (en) 1999-09-29 2005-03-08 Microsoft Corp. Accelerated scrolling
JP2001304880A (en) 2000-04-24 2001-10-31 Denso Corp Scroll device
US6738045B2 (en) 2001-02-26 2004-05-18 Microsoft Corporation Method and system for accelerated data navigation
US6809727B2 (en) 2001-08-21 2004-10-26 Logitech Europe S.A. Roller with tactile feedback
US7312785B2 (en) 2001-10-22 2007-12-25 Apple Inc. Method and apparatus for accelerated scrolling
US7084856B2 (en) 2001-10-22 2006-08-01 Apple Computer, Inc. Mouse having a rotary dial
JP4058938B2 (en) * 2001-12-03 2008-03-12 日産自動車株式会社 Rotary input device
US7042441B2 (en) 2002-06-28 2006-05-09 Microsoft Corporation Input device including a scroll wheel assembly for manipulating an image in multiple directions
JP4311254B2 (en) * 2004-03-31 2009-08-12 日本電気株式会社 Portable electronic devices
US20060001657A1 (en) * 2004-07-02 2006-01-05 Logitech Europe S.A. Scrolling device
US7710397B2 (en) 2005-06-03 2010-05-04 Apple Inc. Mouse with improved input mechanisms using touch sensors
US20070188453A1 (en) 2006-02-15 2007-08-16 Logitech Europe S.A. Input device roller with hybrid magnetic ratchet system
US7760184B2 (en) 2006-04-03 2010-07-20 Nokia Corporation Dual mode input device
TWI317498B (en) * 2006-12-12 2009-11-21 Ind Tech Res Inst Inertial input apparatus with six-axial detection ability and the opearting method thereof
US20090102817A1 (en) * 2007-10-17 2009-04-23 Microsoft Corporation User input device with flywheel for scrolling
US8040331B2 (en) * 2008-12-26 2011-10-18 Microsoft Corporation Dual-mode rotatable input device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070279401A1 (en) 2006-06-02 2007-12-06 Immersion Corporation Hybrid haptic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2370877A4

Also Published As

Publication number Publication date
EP2370877A4 (en) 2014-04-30
US8040331B2 (en) 2011-10-18
CN102265243A (en) 2011-11-30
JP2012514258A (en) 2012-06-21
ES2645088T3 (en) 2017-12-04
EP2370877B1 (en) 2017-08-02
US20100164908A1 (en) 2010-07-01
EP2370877A2 (en) 2011-10-05
CN102265243B (en) 2013-02-06
WO2010075586A3 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
EP2370877B1 (en) Dual-mode rotatable input device
US10579090B2 (en) Rotatable input mechanism having adjustable output
JP6066427B2 (en) Leveling touch surface with planar translation response to vertical movement
US20090079711A1 (en) Scrolling Device
US7084856B2 (en) Mouse having a rotary dial
EP2511796B1 (en) Input apparatus comprising a touch sensitive input device and a rotatable input device
EP3742260B1 (en) Operation input device
US20130027308A1 (en) Wheel module for input device
TWI457792B (en) Optically transmissive key assemblies for display-capable keyboards, keypads, or other user input devices
US10847330B2 (en) No/low-wear bearing arrangement for a knob system
US20120304802A1 (en) Rotary actuator
EP2065796A1 (en) Handheld electronic device and associated method employing a graphical user interface to output on a display virtually stacked groups of selectable objects
CN105094658A (en) Large-size touch screen mobile terminal and single-hand operation processing method thereof
JP5539790B2 (en) Operation member mounting structure
JP5879317B2 (en) Operating device
US11163384B2 (en) Roller wheel module
JP6402391B2 (en) Rotation input parts
CN111381699B (en) Roller input device
US11372485B2 (en) Mouse
JP6788789B2 (en) Transmission input device
JP5820697B2 (en) Trackball
CN114974979A (en) Electronic device
WO2018191984A1 (en) Rotary encoder and pointing device
KR200183421Y1 (en) Mouse

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980153124.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09835890

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2009835890

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009835890

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011543699

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE